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Abstract

We analyze a model of market competition in which two identical �rms choose

prices as well as how to present, or �frame�, their products. A consumer is

randomly assigned to one �rm, and whether he makes a price comparison with

the other �rm is a probabilistic function of the �rms� framing strategies. We

analyze the Nash equilibria in this model. In particular, we show how the answers

to the following questions are linked: (1) Are �rms�choices of prices and frames

correlated? (2) Can �rms earn payo¤s in excess of the max-min level? (3)

Does greater consumer rationality (in the sense of better ability to make price

comparisons) imply lower equilibrium prices? We also argue that our model

provides a novel account of the phenomenon of product di¤erentiation.

1 Introduction

Standard models of market competition assume that consumers are perfectly able to

form a preference ranking of all the alternatives they are aware of, given search costs and

potentially limited information about product characteristics. In reality, consumers do

not always carry out all the comparisons that �should�be made. Moreover, whether

consumers make preference comparisons often depends on the way the alternatives are

presented, or �framed�. For instance:
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� The complexity of price schedules often makes it hard to make comparisons.
A mobile phone calling plan can condition rates on the timing of the call, the

network a¢ liation of the call�s destination, or on total previous usage. Since

di¤erent calling plans condition on di¤erent contingencies, consumers may �nd

it di¢ cult to compute the most attractive one.

� Consumers may fail to regard a market alternative as being relevant to their
choice problem, even when they know of its existence. Few conspicuous features

of the �rst alternative they consider may steer them towards making comparisons

with some products at the expense of others. For instance, a consumer who is

exposed to a hamburger ad or walks by a hamburger stall while considering op-

tions for a light meal, may fail to take into account alternatives that do not easily

fall into the fast food category to which hamburger is traditionally associated.1

This paper studies market competition when consumers have limited ability to

compare market alternatives, and when comparability is sensitive to framing. Adapting

a formalism �rst introduced in Eliaz and Spiegler (2007), we construct a model that

enriches standard Bertrand competition by incorporating the �rms�framing decisions.

We are interested in the e¤ects of framing on consumer behavior only in so far as

it hinders or facilitates price comparisons, and we ignore framing e¤ects that cause

preference reversals. We explore the interaction between �rms�pricing and framing

decisions, and its implications for industry pro�ts and consumer welfare.

Here are some of the questions that we address: (1) Are pricing and framing equilib-

rium strategies correlated? (2) Does the consumers�limited, frame-sensitive ability to

rank alternatives enable �rms to earn collusive pro�ts? (3) How are �rms�equilibrium

pricing and framing decisions a¤ected when some ways of framing an alternative are

more conducive to price comparisons than others? (4) Does greater consumer rational-

ity (in the sense of lower sensitivity to framing) lead to a more competitive equilibrium

outcome?

In our model, two pro�t-maximizing �rms produce perfect substitutes at zero cost,

and face one consumer who buys one unit if priced below a reservation value. Each

�rm i choose a price pi and a format xi for its products. Given the �rms�pricing

and framing decisions, the consumer chooses as follows. He is initially assigned to one

�rm at random, say �rm 1. With probability � (x1; x2), the consumer makes a price

comparison and chooses the rival �rm�s product if strictly cheaper. Otherwise, he buys

1This example is based on an experiment by Nedungadi (1989).
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from the �rm 1. When � (x; y) = � (y; x) for all formats x; y - a property we dub �order

independence�- price comparisons are independent of the order in which the consumer

considers alternatives.

The framing structure given by � can be viewed as a random graph, where the set

of nodes corresponds to the set of formats, and � (x; y) is the (independent) proba-

bility of a directed link from node x to node y. The graph structure represents the

consumer�s limited, frame-sensitive ability to make price comparisons. The interpre-

tation of a link from format x to format y is that y is easy to compare to x, or that

x triggers associations that make the consumer think of the product framed by y as

an equivalent choice whenever he �rst considers the product framed by x. Because of

the graph structure, our framework may be reminiscent of models of spatial competi-

tion. However, in the concluding section we show that there are signi�cant di¤erences

between the two formalisms, both at the level of individual consumer behavior and at

the level of equilibrium analysis.

Formats in our model capture the various ways in which �rms can present an intrin-

sically homogeneous product. We use the term �format�in a broad sense that includes

aspects of the products�presentation which may be of no relevance to a consumer�s

utility and yet a¤ect his propensity to make a price comparison. A format can be a

price format, a �language� in which a contract is written, an aspect of the position-

ing of a product (e.g., the assignment of food products into categories such as snacks

or health food), and so on. The utility-irrelevance of framing is a limitation of our

model. For instance, a consumer may have preferences over the di¤erent contingencies

covered by a mobile phone calling plan whereas, in our model, such contingencies are

introduced by �rms for the sole purpose of facilitating or hindering price comparisons.

The benchmark case of a rational consumer is represented by a complete graph (i.e.,

every node is linked to every other node with probability one), because the consumer

always makes a price comparison and chooses the cheapest alternative. The model

collapses to conventional Bertrand competition, with �rms charging prices equal to

zero in Nash equilibrium.

An illustrative example: A �core-periphery�graph

We use the following example to illustrate the model and some of our main insights.

Consider the order-independent graph given by Figure 1:2

2In this paper, diagrams that represent order-independent graphs are drawn as non-directed graphs.
In addition, the diagrams supress self-links. Order-independent graphs and non-directed graphs are
payo¤ equivalent for the �rms. The di¤erence is that in the former the link between x and y is realized
independently of the link between y and x whereas in the latter they are realized simultaneously.
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Figure 1

The two �core�nodes in the center can be interpreted as relatively basic price for-

mats that are comparable (and thus linked) with probability q. The four �peripheral�

nodes represent more complex formats, each being comparable to one of the basic for-

mats, to which it is linked with probability one. Alternatively, the core nodes may

represent broad product categories, while each peripheral node can be interpreted as a

re�nement of its �parent�broad category.

Let us consider �rst an extreme case in which the two core formats are incompara-

ble - i.e., q = 0. The game played between the two �rms has a unique symmetric Nash

equilibrium. Firms play a mixed strategy that randomizes independently over formats

and prices. The framing strategy assigns probability 1
2
to each of the two core formats

and zero probability to the peripheral formats. Note that this framing strategy has the

property that when a �rm adopts it, the probability of a price comparison is 1
2
, inde-

pendently of the rival �rm�s framing strategy: this framing strategy max-minimizes the

probability of a price comparison. The expected equilibrium price is 1
2
, and thus �rms

earn an equilibrium payo¤ of 1
4
, which is also the max-min payo¤. Pro�ts are positive

due to consumers� limited ability to make price comparisons. However, competitive

forces are strong enough to rule out additional, collusive gains above max-min payo¤s.

Now consider the case in which the two core formats are comparable - i.e., q = 1.

The framing strategy that mixes uniformly between the two core formats remains the

unique strategy that max-minimizes the probability of a price comparison. Conse-

quently, the max-min payo¤ is still 1
4
. However, in symmetric Nash equilibrium �rms
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do not play this framing strategy. Instead, they mix uniformly over all six formats.

Moreover, the framing and pricing strategies are correlated: when the price is in [2
3
; 1],

�rms mix uniformly over the four peripheral formats, and when the price is in [2
5
; 2
3
],

�rms mix uniformly over the two core formats. Expected equilibrium price is 2
3
, and

thus the �rms�equilibrium payo¤ is 1
3
, which exceeds the max-min level.

The graph with q = 1 has greater connectivity than the graph with q = 0, and thus

represents a �more rational�consumer. For any strategy pro�le of the �rms, it leads

to fewer decision errors for a consumer. Nevertheless, the expected Nash equilibrium

price is higher when q = 1. This apparent anomaly is explained by the fact that

�rms that charge a high (low) price have an incentive to adopt a framing strategy

that induces a low (high) probability of a price comparison. When q = 0, the framing

strategy that mixes uniformly over the two core formats equalizes the probability of a

price comparison for all formats. Hence, it is optimal for �rms to adopt this framing

strategy independently of their price. In contrast, when q = 1, mixing uniformly over

the two core formats does not suit �rms that charge a high price, as core formats are

always comparable. When a �rm�s realized price is high, it is optimal for the �rm

to choose peripheral formats as are they are less likely to trigger a price comparison.

Thus, equilibrium payo¤s rise above the max-min level.

Overview of the results

We begin our analysis of Nash equilibria for graphs that satisfy order independence.

This analysis, presented in Section 3, highlights a property of graphs, called �weighted

regularity�, which generalizes the familiar regularity property. A graph is weighted-

regular if nodes can be assigned weights such that each node has the same total weighted

links. (Regularity corresponds to a special case in which the weights are uniform across

the entire set of graph nodes.) Under weighted regularity, all formats are equally

comparable, once the frequency with which they are played is factored in.

We show that if a graph is weighted-regular, there exists a Nash equilibrium in

which the �rms� pricing and framing strategies are independent, and their payo¤s

are equal to the max-min level. The signi�cance of max-min equilibrium payo¤s is

that competitive forces prevail in that they push industry pro�ts to the lowest level

possible given the consumer�s limited ability to make price comparisons. Conversely,

if �rms�pricing and framing strategies are independent in some Nash equilibrium, the

graph must be weighted-regular and �rms earn max-min payo¤s in this equilibrium.

Moreover, their pricing strategies must be identical.

We investigate a special class of symmetric Nash equilibria, called �cuto¤ equi-

libria�, where every format that is played with positive probability is unambiguously
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associated with prices either above or below a cuto¤. We show that a cuto¤ equilib-

rium induces max-min payo¤s if and only if the graph is weighted-regular. Moreover,

the equilibrium framing strategy conditional on prices above (below) the cuto¤ min-

maximizes (max-minimizes) the probability of a price comparison.

We apply the results above to obtain a complete characterization of symmetric Nash

equilibria in a class of �bi-symmetric�graphs, that is, graphs in which the connectivity

between two formats depends only on which of two categories they belong to. In Section

4, we relax order independence and examine the extent to which these results can be

extended.

Related literature

This paper joins recent attempts to formalize in broad terms the role of framing e¤ects

in decision making. Rubinstein and Salant (2008) study choice behavior, where the

notion of a choice problem is extended to include both the choice set A and a frame

f , which is interpreted as observable information which should not a¤ect the rational

assessment of alternatives but nonetheless a¤ects choice. A choice function assigns

an element in A to every extended choice problem. Rubinstein and Salant conduct a

choice-theoretic analysis of such extended choice functions, and relate their framework

to the standard model of choice correspondences. In particular, they identify conditions

under which extended choice functions are consistent with utility maximization. Bern-

heim and Rangel (2007) use a similar framework to extend standard welfare analysis

to situations in which choices are sensitive to frames.

Our notion of frame dependence di¤ers from the one in the above models. First, we

associate frames with individual alternatives, rather than entire choice sets. Second, in

our model framing a¤ects the probability that consumers apply a preference ranking,

but never leads to preference reversals. Finally, our focus is on market implications

rather than choice-theoretic analysis. In this respect, this paper is closest to Eliaz and

Spiegler (2007), which �rst formalized the idea that framing (and marketing devices in

general) a¤ects preference incompleteness without reversing preference rankings. The

model of consumer behavior in Eliaz and Spiegler is more general in that the consumer�s

propensity to apply a preference ranking to a pair of market alternatives depends on

an arbitrary function of the alternatives�payo¤-relevant details as well as their frames.

In the market applications analyzed in Eliaz and Spiegler, framing decisions are costly

and price setting is assumed away, leading to very di¤erent game-theoretic properties.

This paper contributes to a growing theoretical literature on the market interaction

between pro�t-maximizing �rms and boundedly rational consumers. Rubinstein (1993)

analyzes monopolistic behavior when consumers di¤er in their ability to understand
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complex pricing schedules. Piccione and Rubinstein (2003) study intertemporal pricing

when consumers have diverse ability to perceive temporal patterns. Spiegler (2006a,b)

analyzes markets in which pro�t-maximizing �rms compete over consumers who rely

on naive sampling to evaluate each �rm. DellaVigna and Malmendier (2004), Eliaz and

Spiegler (2006,2008) and Gabaix and Laibson (2006) study interaction with consumers

having limited ability to predict their future tastes. See Ellison (2006) for a recent

survey.

Our paper is also related to the large literature on product di¤erentiation (for in-

stance, see Anderson, De Palma and Thisse (1992)). Indeed, our model provides a novel

interpretation of this phenomenon. In equilibrium, �rms o¤er a homogenous product

in a variety of guises, and this variety can be viewed as a kind of product di¤eren-

tiation. Yet, in our model, di¤erentiation does not result from the �rms�attempt to

cater to diverse taste niches, but from the attempt to make price comparison less likely.

The force behind di¤erentiation is the limited comparability between di¤erent ways of

presenting a homogeneous product, rather than di¤erentiated tastes. >From the point

of view of consumer welfare, di¤erentiation in our model has the purely negative e¤ect

of raising market prices.

2 The Model

A graph is a pair (X; �), where X is a �nite set of nodes and � : X �X ! [0; 1] is a

function that determines the probability �(x; y) a directed edge links node x to node

y. The probability that x is linked to y is independent of other links being realized.

Let n denote jXj. We refer to nodes as formats. Assume that �(x; x) = 1 for every

x 2 X - that is, every format is linked to itself. A graph � is deterministic if for every

distinct x; y 2 X, �(x; y) 2 f0; 1g. A graph � is order independent if �(x; y) = �(y; x)
for all x; y 2 X.
A market consists of two identical, expected-pro�t-maximizing �rms and one con-

sumer. These �rms produce at zero cost a homogenous product for which the consumer

has a reservation value equal to one. The �rms move simultaneously. A pure strategy

for �rm i is a pair (pi; xi), where pi 2 [0; 1] is a price and xi 2 X. We allow �rm i to

employ mixed strategies of the form
�
�i; (F

x
i )x2Supp(�i)

�
, where �i 2 �(X) and F xi is a

cdf over [0; 1] for every x 2 Supp(�i). We refer to �i as �rm i�s framing strategy and

to F xi as �rm i�s pricing strategy at x. Let �
x 2 �(X) denote a degenerate probability

distribution that assigns probability one to node x. The marginal pricing strategy
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induced by a mixed strategy
�
�i; (F

x
i )x2Supp(�i)

�
is

Fi =
X

x2Supp(�)

�i(x)F
x
i

Given a cdf F , let F� denote its left limit.

Given a realization (pi; xi)i=1;2 of the �rms�strategies, the consumer chooses a �rm

according to the following rule. He is randomly assigned to a �rm - with probability 1
2

for each �rm. Suppose that he is assigned to �rm i. If there is a link from xi to xj - an

event that occurs with probability �(xi; xj) - the consumer makes a price comparison

and chooses �rm j if pj < pi. Otherwise, the consumer chooses the initially assigned

�rm i.

The consumer�s initial assignment to a �rm can be interpreted as the �rst alternative

considered in a sequential decision process or as a default option arising from previous

decisions. The consumer�s choice procedure is biased in favor of the initial �rm i:

the consumer selects it with probability one when pj � pi and with probability 1 �
�(xi; xj) when pj < pi. When the graph is order-independent, the sequential aspect

of the choice procedure is inessential. In this case, the model is consistent with an

additional interpretation in which the consumer is confronted with both alternatives

simultaneously, chooses the cheaper one if the formats are linked, and chooses randomly

otherwise.

To illustrate the �rms�payo¤ function, consider the following graph:

qx y

Figure 2

Thus, � (x; y) = q and there is no link from y to x. Suppose that �rm 1 adopts the

format x while �rm 2 adopts the format y. If p1 < p2, �rm 1 earns a payo¤ of 12p1 while

�rm 2 earns 1
2
p2. If p1 > p2, �rm 1 earns p1 � (12 �

1
2
q) while �rm 2 earns p2 � (12 +

1
2
q).
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When �rm i plays the mixed strategy
�
�i; (F

x
i )x2Supp(�i)

�
, we can write �rm j�s

expected payo¤ from the pure strategy (p; x) as follows:

p

2
� f1 +

X
y2X

�i(y) � [(1� F yi (p)) � �(y; x)� F
y�
i (p) � �(x; y)]g

Is consumer choice rational?

Fully rational consumers are represented by a complete graph - i.e. �(x; y) = 1 for all

x; y 2 X. Rational consumers make a price comparison independently of the �rms�
framing decisions, and in this case the model is reduced to standard Bertrand compe-

tition.

For a typically incomplete graph, the consumer�s choice behavior is inconsistent with

maximizing a random utility function over price-format pairs. To see why, consider the

following deterministic, order-independent graph: X = fa; b; cg, �(a; b) = �(b; c) = 1
and �(a; c) = 0. Suppose that p < p0 < p00. When faced with the strategy pro�le

((p; a); (p0; b)), the consumer chooses (p; a) with probability one. Similarly, when faced

with the strategy pro�le ((p0; b); (p00; c)), the consumer chooses (p0; b) with probabil-

ity one. However, when faced with the strategy pro�le ((p; a); (p00; c)), the consumer

chooses each alternative with probability 1
2
. No random utility function over [0; 1]�X

can rationalize such choice behavior. The reason is that the graph represents a binary

relation which is intransitive, and this translates into the intransitivity of the implied

revealed preference relation over price-format pairs.

Hide and seek

Our analysis will make use of an auxiliary two-player, zero-sum game, which is a

generalization of familiar games such as Matching Pennies. The players are referred

to as hider and seeker, denoted h and s. The players share the same action space X.

Given the action pro�le (xh; xs), the hider�s payo¤ is ��(xh; xs) and the seeker�s payo¤
is �(xh; xs). We will refer to this game as the hide-and-seek game associated with a

graph. Given a mixed-strategy pro�le (�h; �s) in this game, the probability that the

seeker �nds the hider is

v (�h; �s) =
X
x2X

X
y2X

�h (x)�s (y)� (x; y)

To see the relevance of this auxiliary game to our model, suppose that �rm 1 plays

a mixed strategy with framing strategy � and an atomless marginal pricing strategy F
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over the support [pL; pH ]. When �rm 2 considers charging the price pH , it should select

a format that minimizes the probability of a price comparison. Hence, it behaves as

a hider in the hide-and-seek game, where the seeker�s strategy is �. Similarly, when

�rm 2 considers charging the price pL, it should select a format that maximizes the

probability of a price comparison. Hence, it behaves as a seeker in the hide-and-seek

game, where the hider�s strategy is given by �. When a �rm considers charging an

intermediate price, it chooses its framing strategy partly as a hider and partly as a

seeker.

The value of the hide-and-seek game is

v� = max
�s
min
�h
v (�h; �s)

The max-min payo¤ of a �rm in our model is thus 1
2
(1 � v�). The reason is that the

worst-case scenario for a �rm is that its opponent plays p = 0 and adopts the seeker�s

max-min framing strategy, to which a best-reply is to play p = 1 and minimize the

probability of a price comparison.

Preliminary analysis of Nash equilibria

We will conduct a detailed analysis of Nash equilibria in the following sections. In this

section, we present two basic results. The �rst characterizes the support of the marginal

pricing strategies when both �rms make positive pro�ts. The second provides a simple

necessary and su¢ cient condition for the equilibrium outcome to be competitive (that

is, both �rms charge zero prices).

Proposition 1 In any Nash equilibrium in which �rms make positive pro�ts, there

exists a price pl 2 (0; 1) such that for both i = 1; 2, Fi is strictly increasing over the

interval [pl; 1).

Proposition 2 Let Fi be a Nash-equilibrium marginal pricing strategy for �rm i, i =

1; 2. Then, F1 (0) = F2 (0) = 1 if and only if there exists a format x� 2 X such that

�(x; x�) = 1 for every x 2 X.

Note that a corollary of Proposition 1 is that if �rm i earns the max-min payo¤
1
2
(1� v�) in Nash equilibrium, then it must be the case that �rm j�s framing strategy

conditional on p < 1 is a max-min strategy for the seeker in the associated hide-and-

seek game.
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The proofs of these results rely on price undercutting arguments that are somewhat

more subtle than familiar ones. For instance, suppose that �rm 1�s marginal pricing

strategy has a mass point at some price p� which belongs to the support of �rm 2�s

marginal pricing strategy. In conventional models of price competition, there is a clear

incentive for �rm 2 to undercut its price slightly below p�. In our model, however,

price undercutting may have to be accompanied by a change in the framing strategy

in order to be e¤ective. Adopting a new framing strategy may be undesirable for �rm

2 because it could change the probability of a price comparison when the realization

of �rm 1�s pricing strategy is p 6= p�.
For the rest of the paper, we assume that the necessary and su¢ cient condition for

a competitive equilibrium outcome is violated.

Condition 1 For every x 2 X there exists y 6= x such that �(y; x) < 1.

This condition ensures that the �rms�max-min payo¤ is strictly positive - or, equiv-

alently, that the value of the associated hide-and-seek game is strictly below one. Once

competitive equilibrium outcomes have been eliminated, any Nash equilibrium must be

mixed. To see why, assume that each �rm i plays a pure strategy (pi; xi). If 0 < pi � pj,
then �rm j can deviate to the strategy (pi � "; xi), where " > 0 is arbitrarily small,

and raise its payo¤. If pi = 0, �rm i earns zero pro�ts, contradicting the observation

that the �rms�max-min payo¤s are strictly positive. Thus, from now on, we will take

it for granted that Nash equilibrium is strictly mixed.

3 Nash Equilibrium under Order Independence

In this section, we analyze mixed strategy equilibria in order-independent graphs.

We present the notion of weighted regularity, some general characterization results,

and a complete characterization of symmetric equilibria in the class of so-called �bi-

symmetric� graphs. We use this characterization to highlight the non-trivial e¤ects

that greater consumer rationality has on equilibrium prices in our model. Finally,

we discuss the novel account that our model provides for the phenomenon of product

di¤erentiation.

3.1 Weighted Regularity

When an order-independent graph is regular - i.e. when
P

y2X � (x; y) = �v for all

nodes x 2 X - all formats are equally comparable in the sense that each format has
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an identical expected number of links. However, this notion of equal comparability

ignores the frequency with which di¤erent formats are adopted. If, for example, x is

an isolated node and both �rms choose this format, the consumer will make a price

comparison with probability one. Hence, a proper notion of equal comparability should

take into account the frequency of adoption of di¤erent formats.

De�nition 1 An order-independent graph (X; �) is weighted-regular if there exist � 2
�(X) and �v 2 [0; 1] such that

P
y2X � (y)� (x; y) = �v for all x 2 X. We say in this

case that � veri�es weighted regularity.

Regularity thus corresponds to a special case in which the uniform distribution over

X veri�es weighted regularity. Note that the set of distributions that verify weighted

regularity is convex. The following are examples of weighted-regular, order-independent

graphs.

Example 3.1: Equivalence relations. Consider a deterministic graph that in which

�(x; y) = 1 if and only if x and y belongs to the same equivalence class of an equivalence

relation. Any distribution that assigns equal probability to each equivalence class

veri�es weighted regularity.

Example 3.2: A cycle with random links. LetX = f1; 2; :::; ng, where n is even. Assume
that for every distinct x; y 2 X, �(x; y) = 1

2
if jy � xj = 1 or jy � xj = n � 1, and

�(x; y) = 0 otherwise. A uniform distribution over all odd-numbered nodes veri�es

weighted regularity.

Example 3.3: Linear similarity. Consider the following deterministic graph. Let X =

f1; 2; :::; 3Lg, where L � 2 is an integer. For every distinct x; y 2 X, �(x; y) = 1 if

and only if jx� yj = 1. A uniform distribution over the subset f3k� 1gk=1;:::;L veri�es
weighted regularity.

In addition, note that the graph given by Figure 1 is weighted regular if and only

if q = 0. The framing strategy that veri�es weighted regularity in this case assigns

probability 1
2
to each of the two core nodes.

Lemma 1 The distribution � 2 �(X) veri�es weighted regularity in a graph (X; �) if
and only if (�; �) is a Nash equilibrium in the associated hide-and-seek game.
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Proof. Suppose that � veri�es weighted regularity. If one of the players in the as-
sociated hide-and-seek game plays �, every strategy for the opponent - including �

itself - is a best-reply. Now suppose that (�; �) is a Nash equilibrium in the associated

hide-and-seek game. Denote v(�; �) = v�. If some format attains a higher probability

of a price comparison than v�, then � cannot be a best-reply for the seeker. Similarly,

if some format attains a lower probability of a price comparison than v�, then � cannot

be a best-reply for the hider. Therefore, it must be the case that every format generates

the same probability of a price comparison - namely v� - against �.

Thus, a graph is weighted-regular if and only if the associated hide-and-seek game

has a symmetric Nash equilibrium.

3.2 Price-Format Independence and Equilibrium Payo¤s

A mixed strategy
�
�; (F x)x2Supp(�)

�
exhibits price-format independence if F x = F y for

any x; y 2 Supp(�). The next proposition shows that if the graph is weighted-regular,
there exists a symmetric Nash equilibrium that exhibits price-format independence.

Conversely, if the strategies are price-format independent in some Nash equilibrium,

then each �rm plays a framing strategy that veri�es weighted regularity and earns

max-min payo¤s. In addition, the �rms�pricing strategies must be identical. De�ne

the cdf

G�(p) = 1� 1� v
�

2v�
� 1� p
p

(1)

with support [1�v
�

1+v� ; 1].

Proposition 3 (i) Suppose that �1 and �2 verify weighted regularity. Then, there

exists a Nash equilibrium in which �rm i, i = 1; 2, plays the framing strategy �i and

the pricing strategy F xi (p) = G
�(p) for all x 2 X, and earns max-min payo¤s.

(ii) Let
�
�i; (F

x
i )x2Supp(�i)

�
i=1;2

be a Nash equilibrium in which both �rms� strategies

exhibit price-format independence. Then, �1 and �2 verify weighted regularity, �rms

earn max-min payo¤s, and their marginal pricing strategy is given by 1.

Proof. (i) Suppose that �rm i plays the framing strategy �i. By the de�nition

of weighted regularity, every format that the rival �rm j may adopt attains the same

probability of a price comparison v� against �i. We can thus assume that the probability
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of a price comparison is exogenously �xed at v�. The pricing strategy F given by (1)

has the property that for every p in the support of F , the following equation holds:

1� v�
2

=
p

2
� [1 + v�(1� F (p))� v�F (p)]

which is necessary and su¢ cient for F to be a best-replying pricing strategy to itself,

given that the probability of a price comparison is v�.

(ii) By assumption, F xi = Fi for any x 2 Supp(�i), i = 1; 2. Therefore, x 2
argmin v(�; �i) for every x 2 Supp(�j) - otherwise, it would be pro�table to deviate
into the pure strategy (1; y) for some y 2 argmin v(�; �i). Similarly, x 2 argmax v(�; �i)
for every x 2 Supp(�j) - otherwise, it would be pro�table to deviate into the pure
strategy (pl; y) for some y 2 argmax v(�; �i). It follows that (�1; �2) and (�1; �2)

are Nash equilibria of the associated hide-and-seek game. Hence, as �1 and �2 max-

minimize as well as min-maximize v, (�1; �1) and (�2; �2) are also Nash equilibria of the

associated hide-and-seek game. Therefore, both �1 and �2 verify weighted regularity.

Relatively standard arguments (see Proposition 1 in Spiegler (2006)) establish that the

equilibrium pricing strategy for each �rm must be given by (1) if the probability of a

price comparison is exogenously �xed at v�.

For an intuition behind this result, note that when �rms play framing strategies

that verify weighted regularity, their opponents are indi¤erent among all formats and

can treat the probability of a price comparison v� as �xed and exogenous. Therefore, we

can construct an equilibrium in which �rms play framing strategies that verify weighted

regularity, and an independent pricing strategy. For the converse, note that the fram-

ing strategy that �rms play in conjunction with the highest price in the equilibrium

distribution minimizes the probability of a price comparison against the equilibrium

framing strategy. Similarly, the framing strategy associated with the lowest price in the

equilibrium distribution maximizes the probability of a price comparison against the

equilibrium framing strategy. If these two framing strategies coincide, then all formats

must induce the same probability of a price comparison against the opponent�s framing

strategy.

To demonstrate this result, let us revisit some of the examples presented in the

previous sub-section. In Example 3.2, suppose that �rm 1 (2) plays a framing strategy

which is a uniform distribution over all odd-numbered (even-numbered) nodes. Both

distributions verify weighted regularity. Suppose further that both �rms play indepen-

dently the pricing strategy given by (1), where v� = 2
n
. This strategy pro�le constitutes
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a Nash equilibrium.

In Example 3.3, suppose that both �rms play a framing strategy which mixes uni-

formly over the subset of nodes f3k � 1gk=1;:::;L. This distribution veri�es weighted
regularity. Suppose further that both �rms play independently the pricing strategy

given by (1), where v� = 1
L
. This strategy pro�le constitutes a symmetric Nash equi-

librium, in which the consumer makes a price comparison if and only if the �rms adopt

the same format. In this equilibrium, the formats that are played with positive prob-

ability are like �local monopolies�: when the consumer faces two di¤erent formats, he

remains loyal to the one adopted by the �rm he is initially assigned to. Price compar-

isons take place only when both �rms use the same format.

Not all Nash equilibria in weighted-regular graphs necessarily exhibit price-format

independence. This is trivially the case in graphs that contain redundant nodes (i.e.,

there exist distinct formats x; x0 such that �(x; y) = �(x0; y) for every y 2 X). In this
case, we can construct an equilibrium in which the framing strategy veri�es weighted

regularity, yet the format x is associated with low prices while the format x0 is associated

with high prices. As we will see in Section 3.3, price-format correlation is possible under

weighted-regular graphs even when there are no redundant nodes.

Two questions are still open. Do max-min equilibrium payo¤s imply that the graph

is weighted-regular? Does weighted regularity imply that equilibrium payo¤s cannot

exceed the max-min level? We are only able to address these questions under some

restrictions on equilibrium strategies.

Proposition 4 Consider a Nash equilibrium
�
�i; (F

x
i )x2Supp(�i)

�
i=1;2

. If �rm 1 earns

max-min payo¤s and �rm 2 play a framing strategy with full support, then (X; �) is

weighted-regular.

Proof. The proof is based on the following version of Farkas�lemma. Let 
 be an
l � m matrix and b an l-dimensional vector. Then, exactly one of the following two

statements is true: (i) there exists � 2 Rm such that 
� = b and � � 0; (ii) there

exists � 2 Rl such that 
T � � 0 and bT � < 0.
Suppose that (X; �) is not weighted-regular. Let us �rst show that for every � 2

�(X) such that � (x) > 0 for all x 2 X, there exists ~� 2 �(X) such that, for all y 2 X,X
x2X

� (x)� (x; y) <
X
x2X

~� (x)� (x; y)
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Order the nodes so that X = f1; ::; ng. Any � 2 �(X) is thus represented by a row
vector (�1; :::; �n). Let � be a n � n matrix whose ijth entry is � (i; j). Note that
� = �T . Since (X; �) is not weighted-regular, there exist no � 2 Rn and c > 0 such
that ��T = (c; c; :::; c)T . By Farkas�Lemma, there exists a column vector � 2 Rn

such that �� � 0 and (c; c; :::; c)� < 0. Since �(i; i) = 1 for every i 2 f1; :::; ng and
�(i; j) � 0 for all i; j 2 f1; :::; ng, we can modify � into a column vector ~� such that
~�i > �i for every i, �~� > 0 and

P
i
~�i = 0. Let � 2 �(X) and �(i) > 0 for every

i 2 f1; :::; ng. By the construction of ~�, ~� = � + �~� is also a probability distribution
over X, for a su¢ ciently small � > 0. Then

�~�T = ��T + ��~� > ��T

In particular, every component of the vector �~�T is strictly larger than the correspond-

ing component of ��T .

By hypothesis, �2(x) > 0 for all x 2 X. We have shown that there exists another
framing strategy ~� such that every format y 2 X induces a strictly higher probability

of a price comparison than �2. This contradicts that �2 is a max-min strategy.

The proof of this result relies entirely on the associated hide-and-seek game. It also

shows that if, in the hide-and-seek game, there exists a max-min strategy with full

support for the seeker, there must exist a symmetric Nash equilibrium.

3.3 Cuto¤ Equilibria

In this sub-section we study equilibria that exhibit a simple kind of price-format correla-

tion. A symmetric Nash equilibrium in which �rms play the strategy (�; (F x)x2Supp(�))

is a cuto¤ equilibrium if there exist prices pl � pm � ph such that for all x 2 Supp(�),
the support of F x is either [pl; pm] or [pm; ph]. Thus, in a cuto¤ equilibrium formats

are unambiguously associated either with high prices or with low prices. Let �H be the

framing strategy conditional on the nodes in which the pricing strategy has support

[pm; ph]. Similarly, let �L be the framing strategy conditional on the nodes in which

the pricing strategy has support [pl; pm].

Lemma 2 If (�; (F x)x2Supp(�)) is a cuto¤ equilibrium strategy with pl < pm < ph, then
(�H ; �L) is a Nash equilibrium in the associated hide-and-seek game.
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Proof. Let (�; (F x)x2Supp(�)) be a cuto¤ equilibrium. Note that a �rm charging pm is

indi¤erent between �H and �L. Moreover, �H minimizes v(�H ; �) and �L maximizes

v(�L; �). Denote � = 1 � F (pm). Then, � = ��H + (1 � �)�L. The payo¤ from the

strategy (pm; �H) can be written as

pm

2
(1 + v(�H ; �)� 2 (1� �) v(�H ; �L))

Since �H minimizes v(�; �), it must be the case that �H minimizes v(�; �L). The payo¤
from the strategy (pm; �L) can be written as

pm

2
(1 + 2�v(�L; �H)� v(�L; �))

Since �L maximizes v(�; �), it must be the case that �L maximizes v(�; �H). Hence,
(�L; �H) is a Nash equilibrium in the hide-and-seek game.

Proposition 5 Consider a cuto¤ equilibrium (�; (F x)x2Supp(�)). (i) If �rms earn max-
min payo¤s, then � veri�es weighted regularity. (ii) If the graph is weighted-regular,

then �rms earn max-min payo¤s.

Proof. (i) Assume that �rms earn max-min payo¤s in equilibrium. If pm coincides
with pl or ph, then argminx2X v(�x; �) = argmaxx2X v(�x; �) hence � veri�es weighted

regularity. Let us now suppose that pl < pm < ph. Denote � = 1 � F (pm). Then,
� = ��H +(1��)�L. Since � max-minimizes v, � is a max-min strategy for the seeker
in the associated hide-and-seek game. By Lemma 2, (�L; �H) is a Nash equilibrium

in the hide-and-seek game. Therefore, v(�L; �H) = v(�H ; �) = v�. Equation ?? im-
plies v(�L; �) = v(�H ; �). Hence, min v(�; �) = max v(�; �) - i.e., � veri�es weighted
regularity.

(ii) Suppose that the graphs is weighted-regular, and let � 2 �(X) be a framing

strategy that veri�es this property. Therefore, v(�x; �) = v� for every x 2 X. Now
suppose that (�; (F x)x2Supp(�)) is a cuto¤ equilibrium in which �rms earn payo¤s above

the max-min level. Then, v(�H ; �) < v�. Since �H and �L are optimal at pm:

2�v(�H ; �H)� v(�H ; �) � 2�v� � v�

2�v(�L; �H)� v(�L; �) � 2�v� � v�

where � denotes the probability that p > pm.

17



Optimality of �L at pl implies

v(�L; �) � v�

Hence, v(�L; �H) � v�. By equation (??), v(�H ; �H) > v�. Since by de�nition,

v(�H ; �) = �v(�H ; �H) + (1� �)v(�H ; �L)

we obtain v(�H ; �) > v�, a contradiction.

The intuition for this result is as follows. According to Lemma 2, the formats

adopted in the low (high) price range of a cuto¤ equilibrium are �seeking formats�

(�hiding formats�) that aim to maximize (minimize) the probability of a price compar-

ison. When weighted regularity is violated, there is a real distinction between seeking

and hiding formats. When both �rms realize a price in the high range, the probabil-

ity that the consumer chooses correctly is relatively low, because the �rms�framing

strategy conditional on p > pm evades a price comparison. In particular, when a �rm

charges the monopolistic price p = 1 it is compared to the rival �rm with a prob-

ability below v�, hence its payo¤ exceeds the max-min level. Thus, the distinction

between �seeking�and �hiding� formats gives �rms a market power they lack when

the graph is weighted-regular (where the distinction between �seeking�and �hiding�

formats disappears). The illustrative example in the Introduction demonstrates this

e¤ect.

For a non-trivial example of a weighted-regular graph that gives rise to a cuto¤

equilibrium, consider the deterministic, nine-node graph given by Figure 3. A uniform

distribution over the six bold nodes veri�es weighted regularity (v� = 1
3
). One can

construct an equilibrium in which this is indeed the framing strategy, and yet framing

and pricing decisions are correlated. Speci�cally, the three peripheral nodes are played

with probability 1
3
each conditional on p 2 [2

3
; 1], while their internal neighbors are

played with probability 1
3
each conditional on p 2 [1

2
; 2
3
). The marginal pricing strategy
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is given by expression (1).

Figure 3

3.4 Bi-Symmetric Graphs

In this sub-section we provide a complete characterization of symmetric Nash equilib-

rium in a special class of graphs. An order-independent graph (X; �) is bi-symmetric

if X can be partitioned into two sets, Y and Z, such that for every distinct x; y 2 X:

�(x; y) = f
qY if x; y 2 Y , x 6= y
qZ if x; y 2 Z, x 6= y
q if x 2 Y and y 2 Z

where min(qY ; qZ ; q) < 1.

One natural interpretation is that Y and Z represent two broad ways of spuriously

categorizing products. Under this interpretation, it makes sense to assume that two

particular brands are more comparable when they are similarly categorized - i.e., q �
min(qY ; qZ). In contrast, when qY � q � qZ , it is more natural to interpret Y and Z as
two broad price formats, where Y represents a more complex format than Z. De�ne

q�I =
1 + qI � (nI � 1)

nI

where I = Y; Z and nI = jIj. Without loss of generality, assume q�Z � q�Y .
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One can verify that a bi-symmetric graph is weighted-regular if and only if (see

Appendix)

(q�Y � q)(q�Z � q) � 0

When q�Y = q�Z = q, there is a continuum of framing strategies that verify weighted

regularity. Otherwise, the framing strategy that veri�es weighted regularity assigns

probability
q�Y � q

(q�Y � q) + (q�Z � q)
to the set Z, and mixes uniformly within Y and Z.

The value of the hide-and-seek game under weighted regularity is thus

v� =
q�Y q

�
Z � q2

(q�Y � q) + (q�Z � q)
(2)

except when q�Y = q
�
Z = q, in which case v

� = q.

By Proposition 3, if weighted regularity holds, any distribution that veri�es weighted

regularity is an equilibrium framing strategy and G�(p) given in (1) is a price-format

independent equilibrium pricing strategy.

When the condition for weighted regularity is not satis�ed - i.e., when q is strictly

between q�Y and q
�
Z - the value of the game is v

� = q, since there is a Nash equilibrium

in the hide-and-seek game, in which the seeker plays the framing strategy U(Z) (that

is, a uniform distribution over Z), while the hider plays U(Y ) (that is, a uniform

distribution over Y ). It can be veri�ed that there exists a cuto¤ equilibrium in which:

�H � U(Y ) (3)

�L � U(Z)

F (pm) =
q � q�Y
q�Z � q�Y

Denote � = 1� F (pm). Then, �rms earn an equilibrium payo¤ of

(1� �) � 1
2
(1� q) + � � 1

2
(1� q�Y )

which strictly exceeds the max-min level of 1
2
(1�q). The pricing strategy can be easily

derived from (3). We omit it for brevity.

The following proposition states that the above equilibria characterize the set of

symmetric equilibria.
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Proposition 6 Let (X; �) be a bi-symmetric graph. In symmetric Nash equilibrium:
(i) If (q�Y �q)(q�Z�q) � 0, �rms play a framing strategy that veri�es weighted regularity,
and independently the pricing strategy given by (1), where v� is given by (2).

(ii) If (q�Y � q)(q�Z � q) < 0, �rms play the cuto¤ equilibrium given by (3).

Proof. See Appendix.

This result provides another demonstration for the non-trivial relation between

consumer rationality and equilibrium pro�ts. Let q�Y < q � q�Z , and consider the �rms�
equilibrium payo¤ as a function of q�Z . When q = q

�
Z , the graph is weighted-regular and

�rms earn the max-min payo¤ 1
2
(1 � q). As q�Z goes up, the max-min payo¤ remains

the same, yet equilibrium payo¤s rise. This is surprising, because a higher value of q�Z
corresponds to a �more rational�consumer. To recall the intuition for the example in

the Introduction, a higher q�Z pushes �rms to a framing strategy that places greater

weight on �hiding�. The �rms�market power is strengthened, since the probability of

a price comparison is lower.

3.5 A Comment on Asymmetric Equilibria

Nash equilibrium is not necessarily unique and not necessarily symmetric in our model.

Recall that in Example 3.2, there exist asymmetric mixed-strategy equilibria, in which

�rms randomize over disjoint sets of formats. However, in these equilibria, the �rms�

pricing strategies and pro�ts are the same as in the symmetric equilibrium that this

graph generates. Whether this is a general property of equilibria in our model is an

open question.

For a special class of graphs, we are able to establish the uniqueness of Nash equi-

librium. We say that a graph (X; �) is symmetric if � (x; y) = q for all distinct x and

y.

Proposition 7 Suppose that (X; �) is symmetric with q < 1. The Nash equilibrium is
unique. Both �rms play the framing strategy U(X). Moreover, F xi is given by (1) for

every x 2 X, i = 1; 2, where
v� =

1 + q (n� 1)
n

Proof. See Appendix.

Thus, framing asymmetries across �rms and price levels are impossible in equilib-

rium. Note that symmetric graphs are a special case of bi-symmetric graphs in which

qY = qZ = q.
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4 Relaxing Order Independence

In this section we explore some properties of Nash equilibria when the graph violates

order independence. We begin by extending the notion of weighted regularity.

De�nition 2 A graph (X; �) is weighted-regular if there exist � 2 �(X) and �v 2 [0; 1]
such that

P
y2X � (y)� (x; y) =

P
y2X � (y)� (y; x) = �v for all x 2 X. We say �

veri�es weighted regularity.

The equivalence between weighted regularity and the existence of symmetric equi-

librium in the associated hide-and-seek game, established for order-independent graphs,

needs to be quali�ed when order independence is relaxed.

Lemma 3 (i) If � veri�es weighted regularity, then (�; �) is a Nash equilibrium in the
hide-and-seek game; (ii) If (�; �) is a Nash equilibrium in the hide-and-seek game and

�(x) > 0 for every x 2 X, then � veri�es weighted regularity.

Proof. The proof of part (i) is identical to the order-independent case. Let us turn to
part (ii). Suppose that (�; �) is a Nash equilibrium in the hide-and-seek game. Since

� is a best-reply for the hider against �, v(�x; �) � v(�; �) for every x 2 X. By the
full-support assumption, if there is a frame x 2 X for which v(�x; �) > v(�; �), thenP

x2X �(x)v(�
x; �) > v(�; �). The L.H.S. of this inequality is by de�nition v(�; �), a

contradiction. Similarly, since � is a best-reply for the seeker against �, v(�; �x) �
v(�; �) for every x 2 X. By the full-support assumption, if there is a frame x 2 X
for which v(�; �x) < v(�; �), then

P
x2X �(x)v(�; �

x) < v(�; �). The L.H.S. of this

inequality is by de�nition v(�; �), a contradiction. It follows that for every x 2 X,
v(�x; �) = v(�; �x) = v(�; �), hence the graph is weighted regular.

To see how the full support assumption is necessary for the second part of this

lemma, consider the deterministic graph given by Figure 4. The hide-and-seek game

induced by this graph has a symmetric Nash equilibrium in which both the hider and

the seeker play y and z with probability 1
2
each. However, the graph is not weighted-
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regular.

y z

x

Figure 4

The full-support quali�cation carries over to the next result, which is a close vari-

ation on Proposition 3.

Proposition 8 (i) Suppose that �1 and �2 verify weighted regularity. Then, there

exists a Nash equilibrium in which each �rm i = 1; 2 plays the framing strategy �i and

the pricing strategy F xi (p) = G
�(p) for all x 2 X, and earns max-min payo¤s.

(ii) Let
�
�i; (F

x
i )x2Supp(�i)

�
i=1;2

be a Nash equilibrium in which the pricing strategies

exhibit price-format independence and the framing strategies have full support for both

�rms. Then, �1 and �2 verify weighted regularity, �rms earn max-min payo¤s, and

their marginal pricing strategy is given by (1).

Proof. Analogous to the proof of Proposition 3.

One can extend the notion of bi-symmetric graphs by allowing asymmetric connec-

tivity between the sets Y and Z - that is, �(y; z) = qY Z and �(z; y) = qZY for every

y 2 Y , z 2 Z, where qY Z 6= qZY (while maintaining the assumption that connectivity
is symmetric and constant within each of the two sets). The reader can easily verify

that such graphs are never weighted regular. The following example demonstrates that

they admit a type of price-format correlation di¤erent from the one captured by cuto¤

equilibria. In particular, the supports of the pricing strategies can be nested in one

another.

Let X = fx; yg, and assume � (y; x) = q and � (y; x) = 0. There is a symmetric

Nash equilibrium in which the �rms play a framing strategy that satis�es � (x) = 1
2�q ,
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and a pricing strategy given by:

F x(p) =
1

2p+ pq
(3p+ q � 1)

F y(p) =
1

2p+ pq
(3p+ pq � 1)

over the interval [ 1
3+q
; 1], and

F x (p) =
1

2p

�
3p+ q � pq2 � 1

�
F y (p) = 0

over the interval [ 1�q
3�q2 ;

1
3+q
]. Note that �rms earn max-min payo¤s in this equilibrium.

An incumbent-entrant model

Equilibrium analysis when order independence is relaxed is greatly simpli�ed if the

assumption that the consumer�s initial �rm assignment is random is dropped. Suppose

that the consumer is initially assigned to �rm 1, referred to as the Incumbent. Firm 2

is referred to as the Entrant. In this case, �rm 1�s max-min payo¤ is 1� v�, while �rm
2�s max-min payo¤ is zero.

Proposition 9 Any Nash equilibrium
�
�i; (F

x
i )x2Supp(�i)

�
i=1;2

of the Incumbent-Entrant

model has the following properties:

(i) (�1; �2) constitutes a Nash equilibrium in the associated hide-and-seek game in which

�rm 1 (2) is the hider (seeker).

(ii) Firm 1�s equilibrium payo¤ is 1� v� while �rm 2�s equilibrium payo¤ is v�(1� v�).
(iii) The �rms�marginal pricing strategies over [1� v�; 1) are given by:

F1(p) = 1� 1� v
�

p

F2(p) =
1

v�
� [1� 1� v

�

p
]

and F1 has an atom of size 1� v� on p = 1.

Proof. See Appendix.

The simplicity of the equilibrium characterization in this case results from the �rms�

unambiguous incentives when choosing their framing strategies. The Incumbent has

an unequivocal incentive to avoid a price comparison (because then it is chosen with
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probability one), while the Entrant has an unequivocal incentive to enforce a price

comparison (because otherwise it is chosen with probability zero). Note that �rm 2�s

equilibrium pro�t does not behave monotonically in the price comparison probability

v�. The reason is that when comparison is very unlikely, industry pro�ts are high but

the Incumbent has signi�cant market power, whereas when price comparison is very

likely, the Incumbent�s market power is greatly diminished but industry pro�ts are

eroded because of the stronger competitive pressure.

5 Conclusion: Remarks on Product Di¤erentiation

We conclude with a discussion of how our model relates to the phenomenon of product

di¤erentiation. The mixing over formats that we observe in Nash equilibrium can be

viewed as a type of product di¤erentiation. Variety is conventionally viewed as the

market�s response to consumers�di¤erentiated tastes. In contrast, in our model the

�rms�product is inherently homogenous; di¤erentiation is a pure re�ection of the �rms�

attempt to avoid price comparisons.

Our model can be interpreted as an unconventional model of spatial competition.

Think of �rms as stores and of nodes as possible physical locations of stores. A link

from one location x to another location y indicates that it is costless to travel from

x to y. The absence of a link from x to y means that it is impossible to travel in

this direction. According to this interpretation, the consumer follows a myopic search

process in which he �rst goes randomly to one of the two stores (independently of their

locations). Then, he travels to the second store if and only if this �trip� is costless.

Finally, the consumer chooses the cheapest �rm that his search process has elicited

(with a tie-breaking rule that favors the initial �rm.)

Although this re-interpretation is reminiscent of the literature on spatial compe-

tition, there is a crucial di¤erence. In conventional models of spatial competition,

consumers are attached to speci�c locations and select the nearest �rm, as long as

travelling costs are not prohibitively high (in which case they choose neither �rm).

Thus, a consumer who is attached to a location x does not care at all about the cost

of transportation between two stores if neither of them is located at x. In contrast,

in our model, consumer choice is always sensitive to the probability of a link between

the �rms�locations. Recall that in our model consumer choice may be impossible to

rationalize with a random utility function over pairs (p; x). In contrast, conventional

models of spatial competition (and product di¤erentiation in general) are based on

the assumption that consumer choice is consistent with a random utility function over
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price-location pairs.

The di¤erent consumer behavior induced by the two classes of models implies dif-

ferences in equilibrium outcomes. First, recall our observation in Section 2 that pure-

strategy Nash equilibria that support non-zero prices fail to exist. Second, some im-

portant e¤ects in our model are impossible in conventional spatial competition models.

For example, consider a spatial competition model that �ts the graph of Figure 1. In

particular, assume that the consumer is attached to each core node with probability

� and to each peripheral node with probability (1 � 2�)=4. It can be shown that in
symmetric equilibrium of this model, �rms assign zero probability to the peripheral

nodes for every value of � and q.

It may be interesting to explore - especially for empirical purposes - a model that

synthesizes the two approaches to product di¤erentiation. Suppose that instead of

a single consumer, there is a population of consumers, where each consumer type is

characterized by two primitives: a graph �� and a willingness-to-pay function u� : X !
f0; 1g. The function u� essentially describes the set of product formats (or brands)
that type � likes. Aggregate consumer behavior will thus re�ect the distribution of

this extended notion of consumer types. In particular, observed behavior that may

be impossible to reconcile with conventional models of di¤erentiated tastes may be

accounted for by such an extended model that combines taste heterogeneity and limited

comparability.
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6 Appendix: Proofs

6.1 Proposition 1

Consider a Nash equilibrium in which �rms earn strictly positive payo¤s. For each

�rm i = 1; 2, let pli denote the in�mum of the support of Fi. Denote pl = min(pl1; p
l
2).

Suppose that there is an interval (p; p0), pl � p < p0 � 1, such that F2(p) = F�2 (p
0).

Then, F1 cannot assign any weight to the interval (p; p0). Otherwise, �rm 1 can make

higher pro�ts by deviating from any strategy (p00; x) in the support of its equilibrium

strategy, p00 2 (p; p0), to the strategy (p00+"; x), where " > 0 is su¢ ciently small. Thus,
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F1(p) = F�1 (p
0). Let us now show that there exists no x 2 X such that (p; x) is a

best-reply for any �rm i against �rm j�s strategy. If neither F1 nor F2 have a mass

point at p, then �rm i can pro�tably deviate to (p + "; x), where " > 0 is su¢ ciently

small. Now suppose that F x2 , say, has a mass point at p for some x 2 X. Such a mass
point is a best-reply for �rm 2 only if �rm 1 also has a mass point at (p; y) for some y

for which � (x; y) > 0 - otherwise, deviating to (p+ "; x) would be pro�table for �rm 2,

for a su¢ ciently small " > 0. But this means that �rm 1 can pro�tably deviate from

(p; y) to (p � "; y) for a su¢ ciently small " > 0. This contradicts the hypothesis that
both F1 and F2 are �at in the interval (p; p0):

6.2 Proposition 2

De�ne XA = fx 2 X : � (y; x) = 1 for all y 2 Xg and XB = X �XA. Suppose that

F1 (0) = 1. Then, �rm 1 makes zero pro�ts. It follows that F2 (0) = 1 and hence �rm

2 also makes zero pro�ts. Obviously, Supp (�i) � XA, i = 1; 2, as if �i (x) > 0 and

� (y; x) < 1 for some y, �rm j can make positive pro�ts charging p = 1 and choosing

y.

If F1 (0) < 1, then �rm 2 makes positive pro�ts. Thus, F2 (0) < 1 and �rm 1 also

makes positive pro�ts. We �rst show that there must exist y 2 Supp (�i) such that
� (x; y) < 1 for some x 2 Supp (�j), i 6= j, i; j = 1; 2. Suppose instead that � (x; y) = 1
for all x 2 Supp (�2), y 2 Supp (�1). By Proposition 1, the upper bound of the support
of Fi is equal to 1 for i = 1; 2. Take a node z in the support of �2 such that the upper

bound of the support of F zi is equal to one. The pro�ts of �rm 2 are equal to

X
x2X

�
1

2
� 1
2
F x�1 (1)

�
�1 (x)

Choosing a price equal to 1� " and a node x� in XA, �rm 2 obtains

(1� ")
X
x2X

�
1

2
� 1
2
� (x�; x)F x1 (1� ") +

1

2
(1� F x1 (1� "))

�
�1 (x)

Since �rm 2�s payo¤ is positive, F x�1 (1) < 1 for some x 2 Supp (F1). But then,

for " su¢ ciently small, the second expression is larger than the �rst expression, a

contradiction.

Now let p� be the lowest price p in Supp (F1) [ Supp (F2) for which there exist
x 2 Supp (�j) and y 2 Supp (�i), where i 6= j, such that p 2 Supp (F yi ) and � (x; y) < 1.
Without loss of generality, suppose that p� 2 Supp (F y2 ). Firm 2�s payo¤ from the pure
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strategy (p�; y) is

p�
X
x2X

�
1

2
� 1
2
� (y; x)F x�1 (p�) +

1

2
� (x; y) (1� F x1 (p�))

�
�1 (x)

If �rm 2 deviates to the pure strategy (p� � "; x�), x� 2 XA, it will earn

(p� � ")
X
x2X

�
1

2
� 1
2
� (x�; x)F x1 (p

� � ") + 1
2
(1� F x1 (p� � "))

�
�1 (x)

By the de�nition of p�, if F x�1 (p�) > 0, then � (y; x) = 1. Since � (x; y) < 1 for some

x 2 Supp (�1), for " su¢ ciently small, the second expression is larger than the �rst
expression, a contradiction.

6.3 Proposition 6

De�ne

a = 1 + qY (nY � 1)� qnY
b = 1 + qZ (nZ � 1)� qnZ

One can verify that weighted regularity holds if and only if the system"
a �b
nY nZ

#"
�1

�2

#
=

"
0

1

#
has a non-negative solution - that is, if and only if ab � 0 (or, equivalently, if and only
if (q�Y � q)(q�Z � q) � 0).
Let

�
�; (F x)x2Supp(�)

�
be a symmetric Nash equilibrium strategy, and let F denote

the equilibrium marginal pricing strategy. By Proposition 1, and due to the symmetry

of equilibrium, F is continuously and strictly increasing over the support [pl; 1], pl < 1.

Let Sx denote the support of F x, and let pxl and pxu denote the in�mum and supre-

mum of Sx. Let vx(�)be the probability that the consumer makes a price comparison

conditional on the event that one �rm adopts the format x. That is:

vx (�) =
X
y2X

� (y)� (x; y) (4)

The following claims establish Proposition 6.
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Lemma 4 In a symmetric Nash equilibrium of a bi-symmetric graph, F (p) is contin-

uous on [pl; 1].

Proof. It follows from standard arguments, due to the symmetry of equilibrium.

Lemma 5 Suppose that (X; �) is bi-symmetric. In a symmetric Nash equilibrium,
� (x) = � (x0) for any x; x0 2 Y or x; x0 2 Z, i = 1; 2.

Proof. Let Xmax = argmaxx2X � (x). Suppose that Xmax \ Y 6= ? and that

maxx2X � (x) > � (y) for some y 2 Y . Let �p be the highest price in [x2XmaxSx and

suppose that �p 2 Sx̂, for x̂ 2 Xmax
i . Firm i�s payo¤ from the pure strategy (�p; x̂) is0@ qY � (y) (1� F y (�p))+P

x2Y�(x̂;y) (1� F x (�p)) qY � (x) +
P

x2Z (1� F x (�p)) q� (x) +
1

2

�
1� vx̂ (�)

�
1A ,

If the �rm deviates to the strategy (�p; y), it earns

�p

0@ � (y) (1� F y (�p))P
x2Y�(x̂;y) (1� F x (�p)) qY � (x) +

P
x2Z (1� F x (�p)) q� (x) +

1

2
(1� vy (�))

1A .
Since vx̂ (�) > vy (�), this deviation is pro�table.

Let Xmin = argminx2X � (x). Suppose that Xmin \ Y 6= ? and that min� (x) <

� (y) for some y 2 Y . Let ~p be the highest price in Sy. The pro�t of �rm i from the

pure strategy (~p; x̂) where x̂ 2 Xmin is

~p

0@ � (x̂)
�
1� F x̂ (~p)

�
+P

x2Y�(x̂;y) (1� F x (�p)) qY � (x) +
P

x2Z (1� F x (�p)) q� (x) +
1

2

�
1� vx̂ (�)

�
1A ,

The pro�t of �rm i from the pure strategy (~p; y) is

~p

0@ qY � (x̂)
�
1� F x̂ (~p)

�P
x2Y�(x̂;y) (1� F x (�p)) qY � (x) +

P
x2Z (1� F x (�p)) q� (x) +

1

2
(1� vy (�))

1A .
Since vx̂ (�) < vy (�), the pro�t at x̂ is larger than the pro�t at y, a contradiction.

Lemma 6 Suppose that (X; �) is bi-symmetric. In a symmetric Nash equilibrium, for
any p 2 [pl; 1], F x (p) = F x0 (p) whenever x; x0 2 Y or x; x0 2 Z.
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Proof. Suppose that F y (p) > F y
0
(p) for y; y0 2 Y . Firm i�s payo¤ from the pure

strategy (p; y) is

p

0@ (1� F y (p))� (y) + qY
�
1� F y0 (p)

�
� (y)+P

x2Y�(y;y0) (1� F x (p)) qY � (x) +
P

x2Z (1� F x (�p)) q� (x) +
1

2
(1� vy (�))

1A
If the �rm deviates to the pure strategy (p; y0), it earns

p

0@ �
1� F y0 (p)

�
� (y) + qY (1� F y (p))� (y)+P

x2Y�(y;y0) (1� F x (p)) qY � (x) +
P

x2Z (1� F x (�p)) q� (x) +
1

2

�
1� vy0 (�)

�
1A .

Since vy (�) = vy
0
(�) by Lemma 5, this deviation is pro�table.

Lemma 7 Suppose that � (x) = 0 for some x 2 X in some symmetric Nash equilibrium

of a bi-symmetric graph (X; �). Then, � veri�es weighted regularity.

Proof. Without loss of generality, assume that �(x) = 0 for some x 2 Y . By the
above lemmas, � is a uniform distribution over Z. Thus, in particular, �(x0) = 0 for

all x0 2 Y . Therefore, If vz (�) = vz0 (�) for any z; z0 2 Z, and vy (�) 6= vy0 (�) for any
y; y0 2 Y . If vz (�) 6= vy (�) for some y 2 Y and z 2 Z, then it must be pro�table to
deviate either to the pure strategy (1; y) or to the pure strategy (pl; y). It follows that

� veri�es weighted regularity.

Lemma 8 Consider a symmetric Nash equilibrium of a bi-symmetric graph (X; �)

such that � (x) > 0 for all x 2 X. Then:
(i) If the graph is not weighted-regular, either pyu = pzl or pzu = pyl for any y 2 Y and
z 2 Z.
(ii) If pyu = pzl or pzu = pyl for any y 2 Y and z 2 Z, the graph is not weighted-regular.

Proof. (i) Suppose that the graph is not weighted-regular and vz (�) < vy (�). By the
above Lemmas, at nodes in Y have the same F y and all nodes in Z have the same F z.

Therefore, Sy \ Sz 6= ?, for any y 2 Y and z 2 Z. The following equations must hold
in equilibrium.

� (z) qnZ (1� F z (pyu)) +
1

2
(1� vy (�)) =

� (z) (1 + qZ (nZ � 1)) (1� F z (pyu)) +
1

2
(1� vz (�))
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� (z) qnZ + (1 + qX (n� 1))� (y)
��
1� F y

�
pzl
���

+
1

2
(1� vy (�)) =

� (z) (1 + qZ (nZ � 1)) + qn� (y)
��
1� F y

�
pzl
���

+
1

2
(1� vz (�))

which simplify to

b� (z) (1� F z (pyu)) = vz (�)� vy (�)
2

b� (z)� a� (y)
�
1� F y

�
pzl
��
=
vz (�)� vy (�)

2

Hence, b < 0. Since the graph is weighted regular, a > 0. It can be easily veri�ed that

the above equations can hold only if F z (pyu) = 0 and F y
�
pzl
�
= 1. If vz (�) > vy (�),

a symmetric argument establishes the claim.

(ii) Suppose that pyu = pzl. Note that

vz (�)� vy (�) = b� (z)� a� (y)

In equilibrium

b� (z) =
b� (z)� a� (y)

2

Since � (y) ; � (z) > 0, we have ab < 0. A symmetric argument establishes the claim

for the case pzu = pyl.

Lemma 9 Consider a symmetric Nash equilibrium of a bi-symmetric graph (X; �)

such that � (x) > 0 for any x 2 X. If pyu 6= pzl and pzu 6= pyl for any y 2 Y and

z 2 Z, then the graph is weighted-regular. Moreover, max-min payo¤s are obtained,
and F z (p) = F y (p) for any p 2 [pl; 1].

Proof. Lemma 8 implies that if pyu 6= pzl and pzu 6= pyl for any y 2 Y and z 2 Z then
the graph is weighted-regular. As in the proof of Lemma 8, the following equilibrium

conditions must hold

b� (z) (1� F z (pyu)) = b� (z)� a� (y)
2

b� (z)� a� (y)
�
1� F y

�
pzl
��
=
b� (z)� a� (y)

2

First note that, if either b = 0 or a = 0, then either � (y) = 0 or � (z) = 0, and the

claim follows by Lemma 7. Hence suppose that ab > 0. Setting (1� F z (pyu)) = � and
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�
1� F y

�
pzl
��
= �, rewrite the system in matrix notation as264 b� � b

2

a

2
b

2
�a� + a

2

375" � (z)
� (y)

#
=

"
0

0

#

This system has a non-null solution if and only if

�� � � + 2�� + 1 = 0

which is only possible, for 0 � �; � � 1, when � = 1; � = 0 or � = 0; � = 1. In the

former case, vzi (�) = v
y
i (�). In the latter case,

b� (z) =
b� (z)� a� (y)

2

and hence positive solutions for � (z) ; � (y) do not exist when ab > 0. Thus in equilib-

rium, F z (pyu) = 1, F y
�
pzl
�
= 0, and vz (�) = vy (�). Consequently, for any p 2 [pl; 1]

b� (z) (1� F z (p)) = a� (y) (1� F y (p))

Since vz (�)� vy (�) = b� (z)� a� (y) = 0, we have F z (p) = F y (p).

It follows from the above lemmas that if q�Y < q < q�Z , then a symmetric Nash

equilibrium must be a cuto¤ equilibrium. Moreover, there are two cases to consider:

either �H is a uniform distribution over Y and �L is a uniform distribution over Z,

or �H is a uniform distribution over Z and �L is a uniform distribution over Y . To

determine which is the actual case, and to pin down the framing strategy �, we rely on

the condition that �rms are indi¤erent between playing y 2 Y and z 2 Z at the cuto¤
price pm (where pm = pzu = pyl in the former case, and pm = pzl = pyu in the latter

case).

In the former case, the condition is given by the equation

� (y)nY q � � (z)nZq�Z = � (y)nY q�Y � � (z)nZq

for arbitrary y 2 Y and z 2 Z. In the latter case, the condition is given by the equation

� (z)nZq � � (y)nY q�Y = � (z)nZq�Z � � (y)nY q

for arbitrary y 2 Y and z 2 Z. Since q�Y < q < q�Z , the latter case is ruled out, and
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only the former case remains, yielding the precise expression for �:

6.4 Proposition 7

Given a framing strategy � and a node x 2 X, de�ne vx(�) as in (4). Note that in a
symmetric graph, vx(�) = vy(�) if and only if �(x) = �(y). The proof follows from the

following claims.

Lemma 10 Fi (p) is continuous on [pl; 1), i = 1; 2.

Proof. Consider �rst the case q = 0. Suppose that F xj has a mass point at p 2 [pl; 1).
Firm i�s payo¤ from the pure strategy (p; x) is

p � [
�
1� F xj (p)

�
�j (x) +

1

2

�
F xj (p)� F x�j (p)

�
�j (x) +

1

2
(1� �j (x))]

The �rm�s payo¤ from (p+ "; x) is bounded from above by

(p+ ") � [
�
1� F xj (p)

�
�j (x) +

1

2
(1� �j (x))]

and the �rm�s payo¤ from (p� "; x) is bounded from below by

(p� ") � [(1� F x�j (p))�j (x) +
1

2
(1� �j (x))]

If " > 0 is su¢ ciently small, the third expression is strictly larger than the �rst two.

Since the second expression is increasing in ", it follows that for small ", F xi assigns

zero probability to the interval (p; p + "). But this means that �rm j can pro�tably

deviate from (p; x) to (p+ "
2
; x).

The proof for the case q > 0 is more conventional. If F xj has a mass point at some

p 2 [pl; 1), then in order for Fi to be a best-reply, it must be �at on an interval [p; p+"),
contradicting Proposition 1.

Lemma 11 �i (x) =
1

n
for all x 2 X, i = 1; 2.

Proof. Let Xmax
i = argmaxx2X �i (x). Let Six be the support of F xi , let p

xl
i and p

xu
i

be the in�mum and supremum of Six, and let X l
i be the set of nodes such that p

xl
i = p

l

any x 2 X l
i . By Lemma ??, X

l
i is non-empty and is a subset of X

max
j , i 6= j. Suppose

that maxx2X �1 (x) >
1

n
. We consider two cases.
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Case 1: X l
i = X

l
j. We �rst show that X

l
i = X

max
j , i 6= j. Suppose not and let x0 2 X l

i

and x00 2 Xmax
j � X l

i . By hypothesis, x
00 =2 X l

j. For any su¢ ciently small " > 0, �rm

i�s payo¤ from the pure strategy (pl + "; x0) is

�
pl + "

�0@ �
1� F x0j

�
pl + "

��
�j (x

0) + q�j (x
00)+P

x2X�(x0;x00)
�
1� F xj

�
pl + "

��
q�j (x) +

1

2

�
1� vx0i (�j)

�
1A

If the �rm deviates to (pl + "; x00), it earns

�
pl + "

�0@ �j (x
00) +

�
1� F x0j

�
pl + "

��
q�j (x

0)+P
x2X�(x0;x00)

�
1� F xj

�
pl + "

��
q�j (x) +

1

2

�
1� vx00i (�j)

�
1A

Since x0; x00 2 Xmax
j , �j (x0) = �j (x00) and hence vx

0
i (�j) = v

x00
i (�j). Since by hypothesis

F x
0

j

��
pl + "

��
> 0, �rm i�s deviation is pro�table.

By de�nition, maxx2X �2 (x) �
1

n
. Suppose that this inequality holds with equality.

Then, Xmax
2 = X. But then, since Xmax

1 = Xmax
2 , maxx2X �1 (x) =

1

n
, a contradiction.

It follows that maxx2X �2 (x) >
1

n
. Hence, pxui < 1 for any x 2 X l

i , i = 1; 2. Suppose

that px
0u
1 is the highest pxui for any x 2 X l

i , i = 1; 2. Let x
00 be such that x00 =2 Xmax

2 .

Firm 1�s payo¤ from the pure strategy (px
0u
1 ; x0) is

px
0u
1

0@ q�j (x
00)
�
1� F x00j

�
px

0u
1

��
+P

x2X�(x0;x00)
�
1� F xj

�
pl + "

��
q�j (x) +

1

2

�
1� vx0i (�j)

�
1A

If the �rm deviates to (px
0u
1 ; x00), it earns

�
pl + "

�0@ �j (x
00)
�
1� F x00j

�
px

0u
1

��
+P

x2X�(x0;x00)
�
1� F xj

�
pl + "

��
q�j (x) +

1

2

�
1� vx00i (�j)

�
1A

Since vx
0
i (�j) > v

x00
i (�j), the deviation is pro�table.

Case 2: X l
i 6= X l

j. We �rst show that X
l
i \X l

j = ?. Suppose not and let x0 2 X l
i \X l

j

and x00 2 X l
i � X l

j. For any su¢ ciently small " > 0, �rm i�s payo¤ from the pure

strategy (pl + "; x0) is

�
pl + "

�0@ �
1� F x0j

�
pl + "

��
�j (x

0) + q�j (x
00)+P

x2X�(x0;x00)
�
1� F xj

�
pl + "

��
q�j (x) +

1

2

�
1� vx0i (�j)

�
1A
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If the �rm deviates to (pl + "; x00), it earns

�
pl + "

�0@ �j (x
00) +

�
1� F x0j

�
pl + "

��
q�j (x

0)+P
x2X�(x0;x00)

�
1� F xj

�
pl + "

��
q�j (x) +

1

2

�
1� vx00i (�j)

�
1A

Since x0; x00 2 Xmax
j , �j (x0) = �j (x00) and hence vx

0
i (�j) = v

x00
i (�j). As by hypothesis

F x
0

j

��
pl + "

��
> 0, �rm i�s deviation is pro�table.

Let �Xi = fx 2 X j x =2 Xmax
j or pxli � pxlj , i 6= jg. Let �pi = minx2 �Xi p

xl
i . Since

X l
i \X l

j = ?, �pi > pl. Also, as maxx2X �1 (x) > minx2X �1 (x), �pi < 1. Suppose that
�pi � �pj. We �rst show that it cannot be the case that �pi = px

0l
i for x0 =2 Xmax

j . Let x00

be a node in Xmax
j \X l

i . Firm i�s payo¤ from the pure strategy (�pi; x0) is

�pi

0@ �j (x
0)
�
1� F x0j (�pi)

�
+ q�j (x

00)+P
x2X�(x0;x00)

�
1� F xj (�pi)

�
q�j (x) +

1

2

�
1� vx0i (�j)

�
1A

If the �rm deviates to (�pi; x00), it earns

�pi

0@ �j (x
00) + q�j (x

0)
�
1� F x0j (�pi)

�
+P

x2X�(x0;x00)
�
1� F xj (�pi)

�
q�j (x) +

1

2

�
1� vx00i (�j)

�
1A

Since vx
00
i (�j)�vx

0
i (�j) = (1� q) (�j (x00)� �j (x0)), it can be veri�ed that the deviation

is pro�table.

Suppose that �pi = px
0l
i for x0 2 Xmax

j . If px
0l
j < �pi, a contradiction is easily obtained

as for any x 2 X l
i , the strategy (�pi; x) is a pro�table deviation (recall that �pi � �pj by

hypothesis). If px
0l
j = �pi, then �pi = �pj and, by the same argument, F xj (p) = 0 for any

x 2 X l
i in an interval [p

l; �pi + ") for some " > 0 (if not, pxli < �pj = p
xl
j for some node x

in X l
i). Hence, x

0 =2 X l
i . Let x

00 2 X l
i . Then, for any 
 2 (0; "), �rm i�s payo¤ from the

pure strategy (p+ 
; x0) is

(p+ 
)

0@ �j (x
0)
�
1� F x0j (p+ 
)

�
+ q�j (x

00)+P
x2X�(x0;x00)

�
1� F xj (p+ 
)

�
q�j (x) +

1

2

�
1� vx0i (�j)

�
1A

If the �rm deviates to (p+ 
; x00), it earns

(p+ 
)

0@ �j (x
00) + q�j (x

0)
�
1� F x0j (p+ 
)

�
+P

x2X�(x0;x00)
�
1� F xj (p+ 
)

�
q�j (x) +

1

2

�
1� vx00i (�j)

�
1A
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Since �j (x0) = �j (x00), vx
0
i (�j) = v

x00
i (�j) and F

x0
j (p+ 
) > 0, one can verify that the

deviation is pro�table.

Lemma 12 F1 and F2 have no mass points.

Proof. We already saw that F1 and F2 have no mass points below p = 1. Suppose

that F1 has a mass point at p = 1. By standard arguments, F2 has no mass point at

p = 1. By Lemma 11, �rm 1�s payo¤ is then

1

2
� (1� q) (n� 1)

n

Then, if �rm 2 plays the pure strategy (1� "; x), it earns at least

(1� ") 1
n
(1� F x1 (1� ")) +

(1� ")
2

(1� q) (n� 1)
n

Since, lim"�!0 F
x
1 (1� ") < 1, �rm 20s payo¤ is strictly above �rm 1�s payo¤. But

this means that the supports of F1 and F2 have a di¤erent in�mum, contradicting

Proposition 1

Lemma 13 F xi (p) = F
x0
j (p) for any p 2 [pl; 1], x; x0 2 X, i; j 2 f1; 2g.

Proof. We �rst show that F xi (p) must be strictly increasing for any x 2 X and

i = 1; 2. Let [p0; p00) be such that F y1 (p) > F
y0

1 (p) for p 2 [p0; p00) and F xi (p) = F x
0

j (p)

for any p 2 [p00; 1], x; x0 2 X, i; j 2 f1; 2g. Then, �rm 2�s payo¤ from the pure strategy
(p; y), p 2 [p0; p00), is

p � 1
n
�

0@ (1� F y1 (p)) + q
�
1� F y

0

1 (p)
�
+P

x2X�(y;y0) q (1� F x1 (p)) +
(1� q) (n� 1)

2n

1A
If the �rm deviates to (p; y0), it earns

p � 1
n
�

0@
�
1� F y

0

1 (p)
�
+ q (1� F y1 (p))+P

x2X�(y;y0) q (1� F x1 (p)) +
(1� q) (n� 1)

2n

1A
Since F y1 (p) > F

y0

1 (p), the deviation is pro�table. Hence, F
y
2 (p) is constant on [p

0; p00).

Since F2 is strictly increasing, there exists a node y00 such that F
y
2 (p) > F y

00

2 (p) for
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p 2 [p0; p00). It follows that F y1 is also constant on [p0; p00). Now let p̂ be lowest price p0 for
which F yi is constant on [p

0; p00) for i = 1; 2. Since F y2 (p̂) > F
y00

2 (p̂) and F y1 (p̂) > F
y0

1 (p̂),

a contradiction is obtained showing, by analogous arguments, the strategy (p̂; y) is not

a best-reply.

Since every F xi (p) is strictly increasing for any x 2 X and i = 1; 2, it can easily

be veri�ed that its value is determined by a system of linear equations which has a

unique, symmetric solution.

6.5 Proposition 9

(i) Whenever p1 � p2, the consumer chooses �rm 1 with probability one. Whenever

p1 > p2, the consumer chooses �rm 2 if and only if he makes a price comparison.

Therefore, for every price p that �rm 1 considers which lies strictly above the lower

bound of F2, the �rm has an incentive to choose a format x that minimizes v(�; �L2 (p)),
where �L2 (p) denotes �rm 2�s framing strategy conditional on p0 < p. Similarly, for

every price p that �rm 2 considers which lies strictly below the upper bound of F1,

the �rm has an incentive to choose a format x that maximizes v(�H1 (p); �), where
�H1 (p) denotes �rm 1�s framing strategy conditional on p0 > p. It can be veri�ed

that Proposition 1 extends to the Incumbent-Entrant model. Therefore, F1 and F2
have the same lower bound pl < 1 and the same upper bound ph = 1. Therefore, in

Nash equilibrium, �rm 1�s framing strategy conditional on p > pl and �rm 2�s framing

strategy conditional on p < 1 constitute a Nash equilibrium in the associated hide-

and-seek game. These framing strategies are equal to the �rms�marginal equilibrium

framing strategies, because as we will verify below, F1 does not have an atom on pl

and that F2 does not have an atom on p = 1.

(ii) Since p = 1 is in the support of F1 and �rm 2�s framing strategy conditional

on p < 1 max-minimizes v, �rm 1�s equilibrium payo¤ is 1� v�. Since �rm 1 is chosen

with probability one when it charges pl, and since pl is in the support of F1, it follows

that pl = 1� v�. But since pl is also the in�mum of the support of F2, and since �rm

1�s framing strategy conditional on p > pl min-maximizes v, it follows that �rm 2�s

payo¤ is v� � (1� v�).
(iii) The formulas of F1 and F2 follow directly from the condition that every

p 2 (1 � v�; 1) maximizes each �rm�s pro�t given the opponent�s strategy, and the
characterization of �rm 1�s framing strategy conditional on p > pl and �rm 2�s framing

strategy conditional on p < ph.

38


