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Abstract

This paper studies optimal estimation of parameters taking the form φ(θ0),
where θ0 is unknown but can be regularly estimated and φ is a known directionally
differentiable function. The irregularity caused by nondifferentiability of φ makes
traditional optimality criteria such as semiparametric efficiency and minimum vari-
ance unbiased estimation impossible to apply. We instead consider optimality in the
sense of local asymptotic minimaxity – i.e. we seek estimators that locally asymp-
totically minimize the maximum of the risk function. We derive the lower bound
of local asymptotic minimax risk within a class of plug-in estimators and develop
a general procedure for constructing estimators that attain the bound. As an illus-
tration, we apply the developed theory to the estimation of the effect of Vietnam
veteran status on the quantiles of civilian earnings.
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1 Introduction

In many econometric problems, parameters of interest embody certain irregularity that
presents significant challenges for estimation and inference (Hirano and Porter, 2012;
Fang and Santos, 2014). A large class of these parameters take the form φ(θ0) where
θ0 is a well-behaved parameter that depends on the underlying distribution of the data
while φ is a known but potentially nondifferentiable function. Economic settings in
which such irregularity arises with ease include treatment effects (Manski and Pepper,
2000; Hirano and Porter, 2012; Song, 2014a,b), interval valued data (Manski and Tamer,
2002), incomplete auction models (Haile and Tamer, 2003), and estimation under shape
restrictions (Chernozhukov et al., 2010).

The aforementioned examples share the common feature of φ being directionally
differentiable despite a possible failure of full differentiability. In this paper, we study
optimal estimation of φ(θ0) for such irregular φ. In regular settings, one usually thinks
of optimality in terms of semiparametric efficiency (Bickel et al., 1993). Unfortunately,
the irregularity caused by nondifferentiability of φ makes traditional optimality criteria
including semiparametric efficiency impossible to apply – in particular, if φ is nondif-
ferentiable, then any estimator for φ(θ0) is necessarily irregular and biased(Hirano and
Porter, 2012). Hence, the first question we need to address is: what is an appropriate
notion of optimality for nondifferentiable φ? Following the decision theoretic framework
initiated by Wald (1950) and further developed by Le Cam (1955, 1964), we may com-
pare the competing estimators under consideration by examining their expected losses.
Specifically, let Tn be an estimator of φ(θ0) and ` a loss function that measures the
loss of estimating φ(θ0) using Tn by `(rn{Tn − φ(θ0)}), where rn ↑ ∞ is the rate of
convergence for estimation of θ0. The resulting expected loss or risk function is then

EP [`(rn{Tn − φ(θ(P ))})] , (1.1)

where EP denotes the expectation taken with respect to P that generates the data
and θ0 ≡ θ(P ) signifies the dependence of θ0 on P . The function (1.1) can in turn be
employed to assess the performance of the estimator Tn – in particular, we would like
an estimator to have the smallest possible risk at every P in the model. Unfortunately,
it is well known that there exist no estimators that minimize the risk uniformly for all
P (Lehmann and Casella, 1998).

As ways out of this predicament, one can either restrict the class of competing es-
timators, or seek an estimator that has the smallest risk in some overall sense. For the
former approach, common restrictions imposed on estimators include mean unbiased-
ness, quantile unbiasedness and equivariance (including regularity which is also known
as asymptotic equivariance in law). By Hirano and Porter (2012), however, if φ is only
directionally differentiable, then no mean unbiased, quantile unbiased or regular esti-
mators exist. It is noteworthy that non-existence of unbiased estimators implies that
bias correction procedures cannot fully eliminate the bias of any estimator; in fact, any
procedure that tries to remove the bias would push the variance to infinity (Doss and
Sethuraman, 1989). As to equivariance in terms of groups of transformations, it is un-
clear to us what a suitable group of invariant transformations should be. Alternatively,
one may translate the risk function (1.1) into a single number such as Bayesian risk that
leads to average risk optimality or the maximum risk that leads to minimaxity. Since
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our analysis shall focus on local risk, one may not have natural priors on the space of lo-
calization parameters in order to evaluate the Bayesian risk. Moreover, when the model
is semiparametric or nonparametric which our setup accommodates, Bayes estimators
entail specification of priors on infinite dimensional spaces which practitioners may lack.

The approach we adopt in this paper towards optimal estimation of φ(θ0) is a com-
bination of the above two: we confine our attention to the important class of plug-in
estimators of the form φ(θ̂n), where θ̂n is a regular estimator of θ0, and seek estimators
that minimize the maximum of the risk function – i.e. the risk under the worst case sce-
nario. In addition, the optimality shall be in local sense, that is, we consider maximum
risk over neighborhoods around the distribution that generates the data. This is justi-
fied by the facts that global risk is somewhat too restrictive for infinite dimensional P
(Bickel et al., 1993, p.21) and that one can locate the unknown parameter with consid-
erable precision as sample size increases (Hájek, 1972). Specifically, for θ̂n an arbitrary
regular estimator of θ0, we establish the lower bound of the following local asymptotic
minimax risk:

sup
I⊂fH

lim inf
n→∞

sup
h∈I

EPn,h [`(rn{φ(θ̂n)− φ(θ(Pn,h))})] , (1.2)

where H is the set of localization parameters, and I ⊂f H signifies that I is a finite
subset of H so that the first supremum is taken over all finite subsets of H.1 For detailed
explanations on why we take the above version of local asymptotic minimaxity, which
dates back to van der Vaart (1988a, 1989), we defer our discussion to Section 2.3. The
lower bound derived relative to the local asymptotic minimax risk (1.2) is consistent
with the regular case (van der Vaart and Wellner, 1996); moreover, it is also consistent
with previous work by Song (2014a) who studies a more restrictive class of irregular
parameters.

We also present a general procedure of constructing optimal plug-in estimators. An
optimal plug-in estimator is of the form φ(θ̂n+ ûn/rn), where θ̂n is an efficient estimator
of θ0 usually available from efficient estimation literature, and ûn is a correction term
that depends on the particular loss function `. It is interesting to note that optimality
is preserved under simple plug-in for differentiable maps (van der Vaart, 1991b), but in
general not for nondifferentiable ones due to the presence of the correction term ûn –
i.e. ûn equals zero when φ is differentiable but may be nonzero otherwise. Heuristically,
the need of the correction term ûn arises from the fact that the simple plug-in estimator
φ(θ̂n) may have undesirably high risk at θ0 where φ is nondifferentiable. By adding
a correction term, one is able to reduce the risk under the worst case scenario. As
an illustration, we apply the construction procedure to the estimation of the effect of
Vietnam veteran status on the quantiles of civilian earnings. In the application, the
structural quantile functions of earnings exhibit local nonmonotonicity, especially for
veterans. Nonetheless, by estimating the closest monotonically increasing functions to
the population quantile processes, we are able to resolve this issue and provide locally
asymptotically minimax plug-in estimators.

There has been extensive study on optimal estimation of regular parameters (Ibrag-
imov and Has’minskii, 1981; Bickel et al., 1993; Lehmann and Casella, 1998). The best

1For example, if P is parametrized as θ 7→ Pθ where θ belongs to an open set Θ ⊂ Rk, one typically
considers local parametrization h 7→ Pθ0+h/

√
n with local parameter h ranging over the whole space Rk.

We shall have a formal definition of H in Section 2.2.
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known optimality results are characterized by the convolution theorems and the local
asymptotic minimax theorems (Hájek, 1970; Hájek, 1972; Le Cam, 1972; Koshevnik and
Levit, 1976; Levit, 1978; Pfanzagl and Wefelmeyer, 1982; Begun et al., 1983; Millar,
1983, 1985; Chamberlain, 1987; van der Vaart, 1988b; van der Vaart and Wellner, 1990;
van der Vaart, 1991a). However, little work has been done on nondifferentiable parame-
ters. Blumenthal and Cohen (1968a,b) considered minimax estimation of the maximum
of two translation parameters and pointed out the link between biased estimation and
nondifferentiability of the parameter. Hirano and Porter (2012) formally established the
connection between differentiability of parameters and possibility of regular, mean unbi-
ased and quantile unbiased estimation, and emphasized the need for alternative optimal-
ity criteria when the parameters of interest are nondifferentiable. Chernozhukov et al.
(2013) considered estimation of intersection bounds in terms of median-bias-corrected
criterion. The work by Song (2014a,b) is mostly closely related to ours. By restricting
the parameter of interest to be a composition of a real valued Lipschitz function having
a finite set of nondifferentiability points and a translation-scale equivariant real-valued
map, Song (2014a,b) was able to establish local asymptotic minimax estimation within
the class of arbitrary estimators. In present paper, we consider a much wider class of
parameters at the expense of restricting the competing estimators to be of a plug-in
form. We note also that for differentiable φ, the optimality of the plug-in principle has
been established by van der Vaart (1991b).

The remainder of the paper is structured as follows. Section 2 formally introduces
the setup, presents a convolution theorem for efficient estimation of θ that will be essen-
tial for later discussion, and specifies the suitable version of local asymptotic minimaxity
criterion for our purposes. In Section 3 we derive the minimax lower bound for the class
of plug-in estimators, and then present a general construction procedure. Section 4 ap-
plies the theory to the estimation of the effect of Vietnam veteran status on the quantiles
of civilian earnings. Section 5 concludes. All proofs are collected in Appendices.

2 Setup, Convolution and Minimaxity

In this section, we formally set up the problem under consideration, present a convolution
theorem for the estimation of θ, and establish the optimality criterion that will be
employed to assess the statistical performance of plug-in estimators φ(θ̂n).

2.1 Setup and Notation

In order to accommodate applications such as incomplete auction models and estimation
under shape restrictions, we must allow for both the parameter θ0 and the map φ to
take values in possibly infinite dimensional spaces; see Examples 2.3 and 2.4 below. We
therefore impose the general requirement that θ0 ∈ Dφ and φ : Dφ ⊆ D → E for D and
E Banach spaces with norms ‖ · ‖D and ‖ · ‖E respectively, and Dφ the domain of φ.

The estimator θ̂n is assumed to be an arbitrary map of the sample {Xi}ni=1 into the
domain of φ. Thus, the distributional convergence in our context is understood to be
in the Hoffman-Jørgensen sense and expectations throughout should be interpreted as
outer expectations (van der Vaart and Wellner, 1996), though we obviate the distinction
in the notation.
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We introduce notation that is recurrent in this paper. For a set T , we denote the
space of bounded functions on T by

`∞(T ) ≡ {f : T → R : ‖f‖∞ <∞} , ‖f‖∞ ≡ sup
t∈T
|f(t)| , (2.1)

which is a Banach space under the norm ‖ · ‖∞. If (T,M, µ) is a measure space, we
define for 1 ≤ p <∞,

Lp(T,M, µ) ≡ {f : T → R : ‖f‖Lp <∞} , ‖f‖Lp ≡ {
∫
|f |p dµ}1/p , (2.2)

which is a Banach space under the norm ‖ · ‖Lp . If the underlying σ-algebra M or the
measure µ is understood without confusion, we also write Lp(T, µ) or Lp(T ). If (T, d)
is a metric space, we define

BL1(T ) ≡ {f : T → R : sup
t∈T
|f(t)| ≤ 1 and |f(t1)− f(t2)| ≤ d(t1, t2)} , (2.3)

that is, BL1(T ) is the set of all Lipschitz functions whose level and Lipschitz constant
is bounded by 1. For two sets A and B, we write A ⊂f B to signify that A is a finite
subset of B. For a finite set {g1, . . . , gm}, we write gm ≡ (g1, . . . , gm)ᵀ. Lastly, we define
Km
λ ≡ {x ∈ Rm : ‖x‖ ≤ λ} for λ > 0.

2.1.1 Examples

To illustrate the applications of our framework, we begin by presenting some examples
that arise in the econometrics and statistics literature. We shall revisit these examples
later on as we develop our theory. To highlight the essential ideas and for ease of
exposition, we base our discussion on simplifications of well known examples. The
general case can be handled analogously.

In the treatment effect literature one might be interested in estimating the maximal
treatment effect. Our first example has been considered in Hirano and Porter (2012)
and Song (2014a,b).

Example 2.1 (Best Treatment). Let X = (X(1), X(2))ᵀ ∈ R2 be a pair of potential
outcomes under two treatments. Consider the problem of estimating the parameter

φ(θ0) = max{E[X(1)],E[X(2)]} . (2.4)

One can think of φ(θ0) as the expected outcome under the best treatment. In this
case, θ0 = (E[X(1)],E[X(2)])ᵀ, D = R2, E = R, and φ : R2 → R is given by
φ(θ) = max(θ(1), θ(2)). Parameters of this type are essential in characterizing optimal
decision rules in dynamic treatment regimes which, as opposed to classical treatment,
incorporate heterogeneity across both individuals and time (Murphy, 2003). We note
that the functional form of (2.4) is also related to the study of bounds of treatment
effects under monotone instruments (Manski and Pepper, 2000, 2009). Minimax esti-
mation of φ(θ) when X(1) and X(2) are independent normal random variables with equal
variances has been studied in Blumenthal and Cohen (1968a,b). �

Partial identification is an inherent feature of statistical analysis based on interval
censored data. In these settings, one might still want to estimate identified features of
the model under consideration. Our second example is based on Manski and Tamer
(2002) who study inference on regressions with interval data on a regressor or outcome.
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Example 2.2 (Interval Regression Model). Let Y ∈ R be a random variable generated
by

Y = α+ βW + ε ,

where W ∈ {−1, 0, 1} is a discrete random variable, and E[ε|W ] = 0. Suppose that
Y is unobservable but there exist (Yl, Yu) such that Yl ≤ Y ≤ Yu almost surely. Let
ϑ = (α, β)ᵀ and Z = (1,W )ᵀ. Then the identified region for ϑ is

Θ0 ≡ {ϑ ∈ R2 : E[Yl|Z] ≤ Zᵀϑ ≤ E[Yu|Z]} .

Interest often centers on either the maximal value of a particular coordinate of ϑ or
the maximal value of the conditional expectation E[Y |W ] at a specified value of the
covariates, both of which can be expressed as

sup
ϑ∈Θ0

λᵀϑ , (2.5)

for some known λ ≡ (λ(1), λ(2))ᵀ ∈ R2. Let θ0 ≡ (P (W = −1), P (W = 1))ᵀ. It is shown
in Appendix B that the analysis of (2.5) reduces to examining terms of the form2

φ(θ0) = max{ψ(θ0), 0} , (2.6)

where for each θ = (θ(1), θ(2))ᵀ ∈ R2, ψ(θ) is defined by

ψ(θ) = λ(1) θ(1) + θ(2)

θ(1) + θ(2) − (θ(2) − θ(1))2
+ λ(2) θ(1) − θ(2)

θ(1) + θ(2) − (θ(2) − θ(1))2
.

In this example, D = R2, E = R and φ : R2 → R satisfies φ(θ) = max{ψ(θ), 0} with
ψ(θ) defined as above. The functional form of φ here is common in a class of partially
identified models (Beresteanu and Molinari, 2008; Bontemps et al., 2012; Chandrasekhar
et al., 2012; Kaido and Santos, 2013; Kaido, 2013; Kline and Santos, 2013). �

The next example presents a nondifferentiable function which appears as an iden-
tification bound on the distribution of valuations in an incomplete model of English
auctions (Haile and Tamer, 2003; Hirano and Porter, 2012).

Example 2.3 (Incomplete Auction Model). In an English auction model with symmet-
ric independent private values, a robust approach of interpreting bidding data proposed
by Haile and Tamer (2003) is to assume only that bidders neither bid more than their
valuations nor let an opponent win at a price they would be willing to beat. Consider
two auctions in which bidders’ valuations are i.i.d. draws from F . Let Bi and Vi be
bidder i’s bid and valuation respectively, and let F1 and F2 be the distributions of bids
in two auctions. The first assumption implies Bi ≤ Vi for all i, which in turn imposes a
upper bound of F :3

F (v) ≤ min{F1(v), F2(v)} .
Similarly, by exploiting the assumption that bidders do not let an opponent win at a
price below their willingness to pay, one may obtain a lower bound on F . For simplicity,
we consider only the upper bound which we write as

φ(θ0)(v) = min{F1(v), F2(v)} . (2.7)

In this example, θ0 = (F1, F2), D = `∞(R) × `∞(R), E = `∞(R) and φ : `∞(R) ×
`∞(R)→ `∞(R) satisfies φ(θ)(v) ≡ max{θ(1)(v), θ(2)(v)}. �

2Here we work with φ(θ0) for simplicity and ease of exposition.
3Haile and Tamer (2003) actually exploit order statistics of bids in order to obtain tighter bounds

on F .
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Our final example involves a map that monotonizes estimators in linear quantile
regressions. Being estimated in pointwise manner, the quantile regression processes
need not be monotonically increasing (Bassett and Koenker, 1982; He, 1997). This
problem can be fixed by considering the closest monotonically increasing function.4

Example 2.4 (Quantile Functions without Crossing). Let Y ∈ R and Z ∈ Rd be
random variables. Consider the linear quantile regression model:

β(τ) ≡ arg min
β∈Rd

E[ρτ (Y − Z ′β)] ,

where ρτ (u) ≡ u(τ − 1{u ≥ 0}). Let T ≡ [ε, 1− ε] for some ε ∈ (0, 1/2) and θ0 ≡ c′β(·) :
T → R be the quantile regression process, for fixed Z = c. Under misspecification, θ0

need not be monotonically increasing. In order to avoid the quantile crossing problem,
we may instead consider projecting θ0 onto the set of monotonically increasing functions
– i.e. the closest monotonically increasing function to θ0:

φ(θ0) = ΠΛθ0 ≡ arg min
λ∈Λ

‖λ− θ0‖L2 , (2.8)

where Λ be the set of monotonically increasing functions in L2(T , ν) with ν the Lebesgue
measure on T , and ΠΛ is the metric projection onto Λ – i.e. the mapping that assigns
every point in L2(T ) with the closest point in Λ.5 In this example, D = L2(T ), E = Λ
and φ : L2(T ) → Λ is defined by φ(θ) = ΠΛθ. We note that the metric projection
approach introduced here can in fact handle a larger class of estimation problems under
shape restrictions; see Remark 2.1. �

Remark 2.1. Let θ0 : T → R be a unknown real valued function where T = [a, b] with
−∞ < a < b < ∞. Then one may monotonize θ0 by considering the nearest mono-
tonically increasing function φ(θ0) ≡ ΠΛθ0 where Λ ⊂ L2(T ) is the set of increasing
functions. More generally, one may take Λ to be a closed and convex set of functions
satisfying certain shape restrictions such as convexity and homogeneity. Then the pro-
jection ΠΛθ0 of θ0 onto Λ is the closest function to θ0 with desired shape restrictions. �

2.2 The Convolution Theorem

In this section, before delving into the discussion of the defining ingredient φ, we for-
malize basic regularity assumptions and then present a convolution theorem for the
estimation of θ0, which in turn will be employed when deriving the asymptotic minimax
lower bound for the estimation of φ(θ0).

Following the literature on limits of experiments (Blackwell, 1951; Le Cam, 1972;
van der Vaart, 1991a), we consider a sequence of experiments En ≡ (Xn,An, {Pn,h :
h ∈ H}), where (Xn,An) is a measurable space, and Pn,h is a probability measure
on (Xn,An), for each n ∈ N and h ∈ H with H a subspace of some Hilbert space
equipped with inner product 〈·, ·〉H and induced norm ‖ · ‖H . We observe a sample
X1, . . . , Xn that is jointly distributed according to some Pn,h. This general framework

4Alternatively, Chernozhukov et al. (2010) propose employing a sorting operator to monotonize
possibly nonmonotone estimators.

5The set Λ is closed and convex so that the metric projection ΠΛ exists and is unique; see Appendix
B for detailed discussion.
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allows us to consider non i.i.d. models (Ibragimov and Has’minskii, 1981; van der Vaart,
1988b; van der Vaart and Wellner, 1990) as well as common i.i.d. setup. We confine
our attention to the family of probability measures {Pn,h : h ∈ H} possessing local
asymptotic normality; see Assumption 2.1(ii).6 This is perhaps the most convenient
class to begin with in the literature of efficient estimation, since mutual contiguity
implied by local asymptotic normality allows us, by Le Cam’s third lemma, to deduce
weak limits along sequence {Pn,h}∞n=1 from that under the fixed sequence {Pn,0}∞n=1 –
usually thought of as the underlying truth. Formally, we impose

Assumption 2.1 (i) The set H is a subspace of some separable Hilbert space with inner
product 〈·, ·〉H and induced norm ‖ · ‖H .

(ii) The sequence of experiments (Xn,An, {Pn,h : h ∈ H}) is asymptotically normal,
i.e.

log
dPn,h
dPn,0

= ∆n,h −
1

2
‖h‖2H , (2.9)

where {∆n,h : h ∈ H} is a stochastic process which converges to {∆h : h ∈ H}
marginally under {Pn,0},7 with {∆h : h ∈ H} a Gaussian process having mean
zero and covariance function given by E[∆h1∆h2 ] = 〈h1, h2〉H .8

Separability as in Assumption 2.1(i) is only a minimal requirement in practice, while
linearity is standard although not entirely necessary.9 The essence of Assumption 2.1(ii)
is that the sequence of experiments En can be asymptotically represented by a Gaussian
shift experiment. Thus, one may “pass to the limit first”, “argue the case for the limiting
problem” which has simpler statistical structure, and then translate the results back to
the original experiments En (Le Cam, 1972).10 In the i.i.d. case, Assumption 2.1(ii) is
guaranteed by the so-called differentiability in quadratic mean; see Remark 2.2.

Regularity conditions on the parameter θ and an estimator θ̂n are imposed as follows.
In our setup, we recognize θ as a map θ : {Pn,h} → D and write θn(h) ≡ θ(Pn,h).

Assumption 2.2 The parameter θ : {Pn,h} → Dφ ⊂ D, where D is a Banach space with
norm ‖ · ‖D, is regular, i.e. there exists a continuous linear map θ′0 : H → D such that
for every h ∈ H,

rn{θn(h)− θn(0)} → θ′0(h) as n→∞ , (2.10)

for a sequence of {rn} with rn →∞ as n→∞.

6Our results in fact extend to models having local asymptotic mixed normality; see Jeganathan
(1981, 1982) and van der Vaart (1998, Section 9.6).

7That is, for any finite set I ⊂ H, (∆n,h : h ∈ I)
L−→ (∆h : h ∈ I) under {Pn,0}.

8Here, dPn,0 and dPn,h can be understood as densities of Pn,0 and Pn,h with respect to some σ-finite
measure µn, respectively. Fortunately, the log ratio above is independent of the choice of µn; see van der
Vaart (1998, p.189-91).

9In fact, H can be relaxed to be a convex cone; see van der Vaart and Wellner (1996) and van der
Vaart (1989).

10From a technical level, for any finite set I ⊂ H, weak convergence of likelihoods in Assumption
2.1(ii) is equivalent to convergence in terms of Le Cam’s deficiency distance (Le Cam, 1972, 1986).
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Assumption 2.3 θ̂n : {Xi} → Dφ is regular, i.e. there is a fixed tight random variable
G ∈ D such that for any h ∈ H,

rn{θ̂n − θn(h)}
Ln,h→ G in D , (2.11)

where
Ln,h→ denotes weak convergence under {Pn,h}.

Assumption 2.2, which dates back to Pfanzagl and Wefelmeyer (1982), is essentially
a Hadamard differentiability requirement; see Remark 2.3. Our optimality analysis shall
extend from Hadamard differentiable parameters to a class of (Hadamard) directionally
differentiable parameters. The derivative θ′0 : H → D is crucial in determining the
efficiency bound for estimating θ. If D = Rm, the derivative θ′0 : H → Rm uniquely
determines through the Riesz representation theorem a m × 1 vector θ̃0 of elements in
the completion H of H such that θ′0(h) = 〈θ̃0, h〉 for all h ∈ H. The matrix Σ0 ≡ 〈θ̃0, θ̃

ᵀ
0〉

is called the efficiency bound for θ. For general D, the efficiency bound is characterized
through the topological dual space D∗ of D (Bickel et al., 1993); see Theorem 2.1.

Assumption 2.3 means that {θ̂n} is asymptotically equivariant in law for estimating
θn(h), or put it another way, the limiting distribution of {θ̂n} is robust to “local per-
turbations” {Pn,h} of the “truth” {Pn,0}. In this way it restricts the class of plug-in
estimators we consider. For instance, superefficient estimators such as Hodges’ estima-
tor and shrinkage estimators are excluded from our setup (Le Cam, 1953; Huber, 1966;
Hájek, 1972; van der Vaart, 1992). Finally, we note that while regularity of θ, as ensured
by Assumption 2.2, is necessary for Assumption 2.3 to hold (Hirano and Porter, 2012),
it is in general not sufficient unless the model is parametric (Bickel et al., 1993).

Assumptions 2.1, 2.2 and 2.3 together place strong restrictions on the structure of the
asymptotic distribution of θ̂n. In particular, for every θ̂n satisfying the above regularity
conditions, its weak limit can be represented as the efficient Gaussian random variable
plus an independent noise term, as illustrated in the following convolution theorem
taken directly from van der Vaart and Wellner (1990). The derivative θ′0 : H → D as a
continuous linear map has an adjoint map θ′∗0 : D∗ → H satisfying d∗θ′0(h) = 〈θ′∗0 d∗, h〉H
for all d∗ ∈ D∗; that is, θ′∗0 maps the dual space D∗ of D into H.

Theorem 2.1 (Hájek-Le Cam Convolution Theorem) Let (Xn,An, {Pn,h : h ∈ H})
be a sequence of statistical experiments, and θ̂n be an estimator for the parameter θ :
{Pn,h} → D. Suppose that Assumptions 2.1, 2.2 and 2.3 hold. It follows that11

G d
= G0 + U , (2.12)

where G0 is a tight Gaussian random variable in D satisfying d∗G0 ∼ N (0, ‖θ′∗0 d∗‖2H)
for every d∗ ∈ D∗, and U is a tight random variable in D that is independent of G0.
Moreover, the support of G0 is θ′0(H) (the closure of {θ′0(h) : h ∈ H} relative to ‖·‖D).12

One important implication of Theorem 2.1 is that a regular estimator sequence
{θ̂n} is considered efficient if its limiting law is such that U is degenerate at 0. In
addition, normality being “the best limit” is a result of optimality, rather than an ex

11The symbol
d
= denotes equality in distribution.

12The support of G0 refers to the intersection of all closed subsets D0 ⊂ D with P (G0 ∈ D0) = 1.
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ante restriction. If φ is Hadamard differentiable, then we may conclude immediately
that φ(θ̂n) is an efficient estimator for φ(θ0) if θ̂n is for θ0 (van der Vaart, 1991b). When
φ is Hadamard directionally differentiable only, however, we have to base our optimality
analysis within the class of irregular estimators because no regular estimators exist in
this context (Hirano and Porter, 2012). As a result, the convolution theorem is not
available in general, which motivates the optimality analysis in terms of asymptotic
minimax criterion.

Remark 2.2. Let {Xi}ni=1 be an i.i.d. sample with common distribution P that is known
to belong to a collection P of Borel probability measures, and let {Pt : t ∈ (0, ε)} ⊂ P
with P0 = P be a submodel such that∫ [

dP
1/2
t − dP 1/2

t
− 1

2
hdP 1/2

]2

→ 0 as t ↓ 0 , (2.13)

where h is called the score of this submodel. In this situation, we identify Pn,h with∏n
i=1 P1/

√
n,h where {P1/

√
n,h} is differentiable in quadratic mean with score h, and the

set Ṗ0 of all score functions thus obtained, which are necessarily elements of L2(P ),
will be the index set H, also known as the tangent set of P. It can be shown that the
sequence {Pn,h} satisfies Assumption 2.1(ii) (van der Vaart and Wellner, 1996). �

Remark 2.3. Let {Xi}ni=1 be an i.i.d. sample generated according to some P ∈ P
where P is dominated by a σ-finite measure µ. Since P can be embedded into L2(µ)
via the mapping Q 7→

√
dQ/dµ, we can obtain a tangent set Ṡ0 consisting of Fréchet

derivatives of differentiable paths {dP 1/2
t } in L2(µ) (Bickel et al., 1993). Define the

continuous linear operator θ̇0 : Ṡ0 → D by θ̇0(g) ≡ θ′0(2g/dP 1/2), then (2.10) can be
read as

lim
t↓0

t−1{θ(dP 1/2
t )− θ(dP 1/2)} = θ̇0(g) , (2.14)

where {dP 1/2
t } is a curve passing dP 1/2 with Fréchet derivative g ≡ 1

2hdP
1/2. This is

exactly Hadamard differentiability if we view θ as a map from {
√
dQ/dµ : Q ∈ P} ⊂

L2(µ) to the space D. �

2.3 Local Asymptotic Minimaxity

There are different versions of local asymptotic minimax risk. In this section we briefly
review some of these and specify the one that is appropriate for our purposes. For
simplicity of exposition, let us confine our attention to the i.i.d. case. Let P be a
collection of probability measures, θ the parameter of interest and ` a loss function. In an
asymptotic framework, a global minimax principle would imply that an asymptotically
best estimator sequence {Tn} of θ should be the one for which the quantity

lim inf
n→∞

sup
P∈P

EP [`(rn{Tn − θ(P )})] (2.15)

is minimized, where EP denotes expectation under P , and rn ↑ ∞ is the rate of con-
vergence for estimating θ. While this version is suitable when P is parametric, it is
somewhat too restrictive for semiparametric or nonparametric models. In addition,
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this approach is excessively cautious since we are able to learn about P with arbitrary
accuracy as sample size n → ∞ and hence it would be unreasonable to require nice
properties of the estimator sequence around regions too far away from the truth (Hájek,
1972; Ibragimov and Has’minskii, 1981; van der Vaart, 1992). The strategy is then to
minimize the asymptotic maximum risk over (shrinking) neighborhoods of the truth.

The earliest consideration of local asymptotic minimaxity in the literature is perhaps
Chernoff (1956), according to whom the idea actually originated from Charles Stein
and Herman Rubin. Different variants have been developed since then (Hájek, 1972;
Koshevnik and Levit, 1976; Levit, 1978; Chamberlain, 1987), among which an important
version is of the form

lim
a→∞

lim inf
n→∞

sup
P∈Vn,a

EP [`(rn{Tn − θ(P )})] , (2.16)

where Vn,a shrinks to the truth as n → ∞ for each fixed a ∈ R and spans the whole
parameter space as a → ∞ for each fixed n ∈ N (Ibragimov and Has’minskii, 1981;
Millar, 1983). For instance, Begun et al. (1983) and van der Vaart (1988b) take Vn,a to
be:

Vn,a = {Q ∈ P : rndH(Q,P ) ≤ a} , dH(Q,P ) ≡
[∫

(dQ1/2 − dP 1/2)2

]1/2

.

However, the above neighborhood versions may invite two problems. First, the
neighborhoods might be too large so that the sharp lower bounds are infinite. This is
more easily seen in the Hellinger ball version. As pointed out by van der Vaart (1988b,
p.32), one may pick Qn ∈ Vn(P, a) for each n ∈ N such that

∏n
i=1Qn is not contiguous to∏n

i=1 P (Oosterhoff and Zwet, 1979, Theorem 1), which in turn implies that rn{Tn− θ}
escapes to “infinity” under

∏n
i=1Qn (Lehmann and Romano, 2005, Theorem 12.3.2).

Second, when it comes to the construction of an optimal estimator, one typically has to
establish uniform convergence over the neighborhoods, which may be impossible if the
neighborhoods are “too big”.

In this paper, we shall consider local asymptotic minimax risk over smaller neigh-
borhoods – more precisely, neighborhoods that consist of finite number of distributions
– as in van der Vaart (1988b, 1989, 1998) and van der Vaart and Wellner (1990, 1996):

sup
I⊂f Ṗ0

lim inf
n→∞

sup
h∈I

EPn,h [`(rn{Tn − θ(Pn,h)})] , (2.17)

where the first supremum is taken over all finite subsets I in the tangent set Ṗ0 as de-
fined in Remark 2.2, and {Pn,h} is a differentiable path with score h. This resolves the
aforementioned concerns as well as two subtleties that are worth noting here. First, it
is necessary to take supremum over neighborhoods of the truth (the second supremum)
in order to obtain robust finite sample approximation and as a result rule out superef-
ficient estimators, while the first supremum is needed to remove the uncertainty of the
neighborhoods.13 Second, the local nature of the risk may be translated to the global
one if one replaces the second supremum with suph∈Ṗ0 and ignore the first supremum,
so that we are back to the aforementioned uniformity issue. Another possibility is to
consider finite dimensional submodels; see Remark 2.4.

13The role played by supI⊂f Ṗ0 is the same as that by lima→∞ in display (2.16).
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Remark 2.4. As another approach to circumvent the contiguity and uniformity con-
cerns aforementioned, van der Vaart (1988b) considers a version of asymptotic minimax-
ity based on finite dimensional submodels. Let h1, . . . , hm ∈ Ṗ0 be linearly independent
and {Pmn,λ}∞n=1 a differentiable path with score

∑m
j=1 λjhj for each fixed λ ∈ Rm. As λ

ranges over Rm, we obtain a full description of local perturbations of some parametric
submodel. Then one may consider the following:

sup
Hm

lim
a→∞

lim inf
n→∞

sup
‖λ‖≤a

EPmn,λ [`(rn{Tn − θ(Pmn,λ)})] , (2.18)

where the first supremum is taken over all finite dimensional subspaces Hm ⊂ Ṗ0

spanned by h1, . . . , hm. The same approach has been employed by van der Vaart (1988b,
1989) to obtain generalized convolution theorems for weakly regular estimators. We note
however that this version of local asymptotic minimaxity is equivalent to (2.17) in the
sense that they yield the same lower bound that is attainable and hence induce the same
optimal plug-in estimators. This is essentially because for any parametric submodel Pm
with scores h1, . . . , hm, the expansion of the log likelihood ratio (2.9) holds uniformly
over λ ∈ K with K any compact set in Rm (Bickel et al., 1993, Proposition 2.1.2). �

3 Optimal Plug-in Estimators

Building on the ingredients established for θ in previous section, we now proceed to
investigate optimal plug-in estimators of φ(θ). To begin with, we first review the notion
of Hadamard directional differentiability, then establish the minimax lower bound for
the class of plug-in estimators, and finally show the attainability by presenting a general
procedure of constructing optimal plug-in estimators.

3.1 Hadamard Directional Differentiability

A common feature of the examples introduced in Section 2.1.1 is that there exist points
θ ∈ D at which the map φ : D → E is not differentiable. Nonetheless, at all such θ at
which differentiability is lost, φ actually remains directionally differentiable. This is most
easily seen in Examples 2.1 and 2.2, in which the domain of φ is a finite dimensional
space. In order to address Examples 2.3 and 2.4, however, a notion of directional
differentiability that is suitable for more abstract spaces D is necessary. Towards this
end, we follow Shapiro (1990) and define

Definition 3.1. Let D and E be Banach spaces equipped with norms ‖ · ‖D and ‖ · ‖E
respectively, and φ : Dφ ⊆ D → E. The map φ is said to be Hadamard directionally
differentiable at θ ∈ Dφ if there is a map φ′θ : D→ E such that:

lim
n→∞

‖φ(θ + tnzn)− φ(θ)

tn
− φ′θ(z)‖E = 0 , (3.1)

for all sequences {zn} ⊂ D and {tn} ⊂ R+ such that tn ↓ 0, zn → z as n → ∞ and
θ + tnzn ∈ Dφ for all n.

As various notions of differentiability in the literature, Hadamard directional differen-
tiability can be understood by looking at the restrictions imposed on the approximating
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map (i.e. the derivative) and the way the approximation error is controlled (Averbukh
and Smolyanov, 1967, 1968). Specifically, let

Remθ(z) ≡ φ(θ + z)− {φ(θ) + φ′θ(z)} , (3.2)

where φ(θ)+φ′θ(z) can be viewed as the first order approximation of φ(θ+z). Hadamard
directional differentiability of φ then amounts to requiring the approximation error
Remθ(z) satisfy that Remθ(tz)/t tends to zero uniformly in z ∈ K for any compact
set K – i.e.

sup
z∈K
‖Remθ(tz)

t
‖E → 0 , as t ↓ 0 .

However, unlike Hadamard differentiability that requires the approximating map φ′θ be
linear and continuous, linearity of the directional counterpart is often lost though the
continuity is automatic (Shapiro, 1990). In fact, linearity of the derivative is the exact
gap between these two notions of differentiability.

The way that Hadamard directional differentiability controls the approximation error
ensures the validity of the Delta method, which we exploit in our asymptotic analysis.
Moreover, the chain rule remains valid for compositions of Hadamard directional differ-
entiable maps; see Remark 3.1.14 We note also that though Definition 3.1 is adequate
for our purposes in this paper, there is a tangential version of Hadamard directional
differentiability, which restricts the domain of the derivative φ′θ0 to be a subset of D.

Remark 3.1. Suppose that ψ : B → Dφ ⊂ D and φ : Dφ → E are Hadamard direc-
tionally differentiable at ϑ ∈ B and θ ≡ ψ(ϑ) ∈ Dφ respectively, then φ ◦ ψ : B → E
is Hadamard directionally differentiable (Shapiro, 1990) at ϑ with derivative φ′θ ◦ ψ′ϑ :
B → E. Thus, if θ : {Pn,h} → Dφ is not regular but θ(Pn,h) = ψ(ϑ(Pn,h)) for some

parameter ϑ : {Pn,h} → B admitting a regular estimator ϑ̂n and a Hadamard direction-
ally differentiable map ψ, then the results in this paper may be applied with φ̃ ≡ φ ◦ ψ,
θ̃(Pn,h) ≡ ϑ(Pn,h), and ϑ̂n in place of φ, θ(Pn,h) and θ̂n respectively. �

3.1.1 Examples Revisited

We next verify Hadamard directional differentiability of the maps in the examples in-
troduced in Section 2.1.1, and hence show that they indeed fall into our setup. The first
example is straightforward.

Example 2.1 (Continued). Let j∗ = arg maxj∈{1,2} θ
(j). For any z = (z(1), z(2))′ ∈

R2, simple calculations reveal that φ′θ : R2 → R is given by

φ′θ(z) =

{
z(j∗) if θ(1) 6= θ(2)

max{z(1), z(2)} if θ(1) = θ(2)
. (3.3)

Note that φ′θ is nonlinear precisely when Hadamard differentiability is not satisfied. �

14In fact, by slight modifications of the arguments employed in Averbukh and Smolyanov (1968),
one can show that Hadamard directional differentiability is the weakest directional differentiability that
satisfies the chain rule, just as Hadamard differentiability is the weakest differentiability that does the
same job.
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Example 2.2 (Continued). In this example, by the chain rule (see Remark 3.1) it
is easy to verify that

φ′θ(z) = ψ′θ(z)1{ψ(θ) > 0}+ max{ψ′θ(z), 0}1{ψ(θ) = 0} , (3.4)

where 1{·} denotes the indicator function, and

ψ′θ(z) =
[λ(1)(z(1) + z(2)) + λ(2)(z(1) − z(2))][θ(1) + θ(2) − (θ(2) − θ(1))2][

θ(1) + θ(2) − (θ(2) − θ(1))2
]2

− [λ(1)(θ(1) + θ(2)) + λ(2)(θ(1) − θ(2))][z(1) + z(2) − 2(θ(2) − θ(1))(z(2) − z(1))][
θ(1) + θ(2) − (θ(2) − θ(1))2

]2 .

Clearly, the directional derivative φ′θ is nonlinear at θ with ψ(θ) = 0. �

Example 2.3 and 2.4 are more involved in that the domain and range of φ are both
infinite dimensional.

Example 2.3 (Continued). Let B1 = 1{x : θ(1)(x) > θ(2)(x)}, B2 = 1{x : θ(2)(x) >
θ(1)(x)} and B0 = 1{x : θ(1)(x) = θ(2)(x)}. Then it is not hard to show that φ is
Hadamard directionally differentiable at any θ ∈ `∞(R) × `∞(R) satisfying for any
z ∈ `∞(R)× `∞(R),

φ′θ(z) = z(1)1B1 + z(2)1B2 + max{z(1), z(2)}1B0 . (3.5)

Here, nonlinearity occurs when the set of points at which θ(1) and θ(2) are equal is not
empty, implying Hadamard directional differentiability. �

Example 2.4 (Continued). For a set A ⊂ L2(T ), denote the closed linear span
of A by [A], and define the complement A⊥ of A by A⊥ ≡ {z ∈ L2(T ) : 〈z, λ〉 =
0 for all λ ∈ A}. Lemma B.4 shows that ΠΛ is Hadamard directionally differentiable at
every θ ∈ L2(T ) and the resulting derivative satisfies for all z ∈ L2(T )

φ′θ(z) = ΠCθ(z) , (3.6)

where

Cθ = Tθ ∩ [θ − θ]⊥ , Tθ =
⋃
α≥0

α{Λ− θ} , (3.7)

with θ = ΠΛθ. Note that Cθ is a closed convex cone, which can be thought of as
a local approximation to Λ at θ along the direction perpendicular to the projection
residual θ − ΠΛθ. Unlike Fang and Santos (2014), the consideration of nonboundary
points θ /∈ Λ here is necessitated by the possible misspecification of conditional quantile
functions. �

3.2 The Lower Bounds

As the first step towards establishing the minimax lower bound, we would like to lever-
age the Delta method for Hadamard directionally differentiable maps (Shapiro, 1991;
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Dümbgen, 1993) to derive the weak limits of rn{φ(θ̂n) − φ(θn(h))} under {Pn,h}. This
is not a problem in i.i.d. settings since we may write

rn{φ(θ̂n)− φ(θn(h))} = rn{φ(θ̂n)− φ(θn(0))} − rn{φ(θn(h))− φ(θn(0))} ,

and then Delta method can be employed right away in view of the fact that θn(0) is
typically a constant. In general, however, we would hope the directional differentiability
of φ is strong enough to possess uniformity to certain extent.

There are two ways to obtain uniform differentiability in general. One natural way, of
course, is to incorporate uniformity into the definition of differentiability (van der Vaart
and Wellner, 1996, Theorem 3.9.5). For differentiable maps, continuous differentiability
suffices for uniform differentiability; for directionally differentiable ones, unfortunately,
continuous differentiability is a rare phenomenon. In fact, one can show by way of
example that it is unwise to include uniformity in the definition of Hadamard directional
differentiability. The other general principle of obtaining uniformity is to require θn(0)
converge sufficiently fast. Following Dümbgen (1993), we take this latter approach and
require θn(0) converge in the following manner:

Assumption 3.1 There are fixed θ0 ∈ Dφ and ∆ ∈ θ′0(H) such that as n→∞,

rn{θn(0)− θ0} → ∆ . (3.8)

Assumption 3.2 The map φ : Dφ ⊂ D → E, where E is a Banach space with norm
‖ · ‖E, is Hadamard directionally differentiable at θ0.

In the i.i.d. setup, Assumption 3.1 is automatically satisfied with θn(0) = θ0 ≡ θ(P ),
∆ = 0, and {rn} any sequence. Assumption 3.2 simply formalizes the appropriate notion
of directional differentiability of φ. It is worth noting that directional differentiability is
only assumed at θ0. This Hadamard directional differentiability condition, together with
Assumptions 2.2, 2.3, and 3.1, allows us to deduce weak limits of rn{φ(θ̂n)− φ(θn(h))}
under {Pn,h}.

Next, minimaxity analysis necessitates the specification of a loss function or a family
of loss functions. As recommended by Strasser (1982), we shall consider a collection of
loss functions and they are specified as follows:

Assumption 3.3 The loss function ` : E → R+ is such that `M ≡ ` ∧M is Lipschitz
continuous, i.e. for each M > 0, there is some constant C`,M > 0 such that:

|`M (x)− `M (y)| ≤ C`,M‖x− y‖E for all x, y ∈ E . (3.9)

Assumption 3.3 includes common loss functions such as quadratic loss, absolute loss,
and quantile loss but excludes the zero-one loss. We emphasize that the symmetry of `
is not needed here. From a technical level, this is because we no longer need Anderson’s
lemma to derive the lower bound of minimax risk. Moreover, we note that Assumption
3.3 clearly implies continuity of ` and Lipschitz continuity if ` is bounded.

Given the ability to derive weak limits of rn{φ(θ̂n)−φ(θn(h))}, asymptotic normality
of {Pn,h}, and a loss function `, we are able to obtain the lower bound of local asymptotic
minimax risk as the first main result of this paper.
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Theorem 3.1 Let (Xn,An, {Pn,h : h ∈ H}) be a sequence of statistical experiments,

and θ̂n a map from the data {Xi}ni=1 into a set Dφ. Suppose that Assumptions 2.1, 2.2,
2.3, 3.1, 3.2 and 3.3 hold. Then it follows that

sup
I⊂fH

lim inf
n→∞

sup
h∈I

En,h[`(rn{φ(θ̂n)− φ(θn(h))})]

≥ inf
u∈D

sup
h∈H

E
[
`
(
φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h))

)]
, (3.10)

where En,h denotes the expectation evaluated under Pn,h.

The lower bound takes a minimax form which in fact is consistent with regular
cases – i.e. when φ is Hadamard differentiable or equivalently φ′θ0 is linear, in which the
lower bound is given by E[`(φ′θ0(G0))] provided that ` is subconvex (van der Vaart and
Wellner, 1996). To see this, note that if φ′θ0 is linear, then

inf
u∈D

sup
h∈H

E[`(φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h)))]

= inf
u∈D

E
[
`
(
φ′θ0(G0) + φ′θ0(u)

)]
= E[`(φ′θ0(G0))] ,

where the last step is by Anderson’s lemma since ` is subconvex and φ′θ0(G0) is Gaussian
in view of φ′θ0 being continuous and linear. Thus, the minimax form in (3.10) is caused
entirely by the nonlinearity of φ′θ0 . We note also that the lower bound in Theorem 3.1
is consistent with that in Song (2014a) for the special class of parameters studied there.

If the lower bound in (3.10) is infinite, then any estimator is “optimal”. One should
then change the loss function or work with an alternative optimality criteria so that
the problem becomes nontrivial. Given a particular loss function, finiteness of the lower
bound hinges on the nature of both the model and the parameter being estimated. For
the sake of finiteness of the lower bound, we thus require the derivative φ′θ0 satisfy:

Assumption 3.4 The derivative φ′θ0 is Lipschitz continuous, i.e. there exists some con-
stant Cφ′ > 0 possibly depending on θ0 such that

‖φ′θ0(z1)− φ′θ0(z2)‖E ≤ Cφ′‖z1 − z2‖D for all z1, z2 ∈ Dφ . (3.11)

Assumption 3.4 in fact is satisfied in all of our examples; see Section 3.2.1. The
following Lemma shows that Assumption 3.4 ensures finiteness of the lower bound in
(3.10) for a class of popular loss functions.

Lemma 3.1 Let `(·) = ρ(‖ · ‖E) for some nondecreasing lower semicontinuous function
ρ : R+ → R+. If Assumption 3.4 holds and E[ρ(Cφ′‖G0‖D)] <∞, then

inf
u∈D

sup
h∈H

E[`(φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h)))] <∞ .

The moment condition in Lemma 3.1 is easy to verify in practice when combined
with Lipschitz property of ρ (Bogachev, 1998, Theorem 4.5.7) or tail behavior of the
CDF of ‖G0‖E (Davydov et al., 1998, Proposition 11.6) but by no means necessary. If
the lower bound is finite, this would not be a concern in the first place. As another
example, if D is Euclidean, then it suffices that there is some δ > 0 such that

sup
c∈Rm

E[`(φ′θ0(G0 + c)− φ′θ0(c))1+δ] <∞ .
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In cases when θ is Euclidean valued – i.e. D = Rm for some m ∈ N, we have a simpler
form of the lower bound in (3.10). This includes semiparametric and nonparametric
models as well as parametric ones; see Examples 2.1 and 2.2.

Corollary 3.1 Let (Xn,An, {Pn,h : h ∈ H}) be a sequence of statistical experiments,

and θ̂n an estimator for the parameter θ : {Pn,h} → Dφ ⊂ D with D = Rm for some
m ∈ N. Suppose that Assumptions 2.1, 2.2, 2.3, 3.1, 3.2 and 3.3 hold. If the efficiency
bound Σ0 ≡ 〈θ̃0, θ̃

ᵀ
0〉 is nonsingular, then it follows that

sup
I⊂fH

lim inf
n→∞

sup
h∈I

En,h[`(rn{φ(θ̂n)− φ(θn(h))})]

≥ inf
u∈Rm

sup
c∈Rm

E[`(φ′θ0(G0 + u+ c)− φ′θ0(c))] . (3.12)

The lower bound in (3.12) is a minimax optimization problem over Rm; in particular,
the supremum is taken over Rm instead of the tangent set. This simply follows from the
facts that the support of G0 is θ′0(H) by Theorem 2.1 and that a nondegenerate Gaussian
random variable in Rm has support Rm. As a result, the construction of optimal plug-in
estimators in Section 3.3 becomes much easier when θ is Euclidean valued.

3.2.1 Examples Revisited

In this section we explicitly derive the lower bound for each example introduced in
Section 2.1.1. For simplicity of illustration, we confine our attention to the simplest
i.i.d. setup. That is, we assume that the sample X1, . . . , Xn is i.i.d. and distributed
according to P ∈ P, and we are interested in estimating φ(θ).

Example 2.1 (Continued). Simple algebra reveals that φ′θ is Lipschitz continuous.
In order to compare with previous literature, consider the case when X is bivariate
normal with covariance matrix σ2I2, and take the squared loss function. As shown in
Appendix B, the lower bounds is given by

inf
u∈R2

sup
c∈R2

E[`(φ′θ0(G0 + u+ c)− φ′θ0(c))]

= inf
u∈R2

sup
c∈R2

E

[(
max{G(1)

0 + u(1) + c(1),G(2)
0 + u(2) + c(2)} −max{c(1), c(2)}

)2
]

= σ2 ,

where G0 ≡ (G(1)
0 ,G(2)

0 ) ∼ N(0, σ2I2), and the infimum is achieved when u = (−∞, 0)
and c = (−∞, c(2)) with c(2) ∈ R arbitrary. In fact, the lower bound can be also achieved
at u = 0 and c = 0. We note that this lower bound is consistent with Song (2014a) and
Blumenthal and Cohen (1968b). �

Example 2.2 (Continued). In this case, it is also easy to see that φ′θ is Lipschitz
continuous. For the squared loss function, the lower bound at the point θ0 with ψ(θ0) = 0
becomes

inf
u∈R2

sup
c∈R2

E[(max{ψ′θ0(G0 + u+ c), 0} −max{ψ′θ0(c), 0})2] ,

where G0 is the efficient Gaussian limit for estimating θ0. �
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Example 2.3 (Continued). In this example, it can be shown that φ′θ is Lipschitz
continuous. For the loss function `(z) = ‖z‖∞, the lower bound becomes

inf
u(1),u(2)∈`∞(R)

sup
h(1),h(2)∈H

{E[‖(G(1)
0 + u(1))1B1 + (G(2)

0 + u(2))1B2

+ max{G(1)
0 + u(1) + h(1),G(2)

0 + u(2) + h(2)}1B0 −max{h(1), h(2)}1B0‖∞]} ,

whereH consists of all bounded measurable real valued functions on R with
∫
R h dP = 0,

and (G(1)
0 ,G(2)

0 ) is the efficient Gaussian limit in `∞(R) × `∞(R) for estimating θ0 ≡
(F1, F2). �

Example 2.4 (Continued). Since Cθ0 is closed and convex, φ′θ0 or equivalently ΠCθ0

is Lipschitz continuous (Zarantonello, 1971, p.241). If the loss function `(·) : L2(T )→ R
is `(z) = ‖z‖2L2 , then the lower bound is finite and given by

inf
u∈L2(T )

sup
h∈H

E[‖ΠCθ0
(G0 + u+ θ′0(h))−ΠCθ0

(θ′0(h))‖2L2 ] ,

where H ≡ {(h1, h2) : h1 ∈ H1, h2 ∈ H2} with15

H1 ≡ {h1 : Z → R : E[h1(Z)] = 0} ,
H2 ≡ {h2 : Y ×Z → R : E[h2(Y, z)] = 0 for a.s. z ∈ Z } ,

G0 is a zero mean Gaussian process in L2(T ) with covariance function Cov(τ1, τ2) ≡
J(τ1)−1Γ(τ1, τ2)J(τ2)−1 in which for fY (y|Z) the density of Y conditional on Z,

J(τ) ≡ c′E[fY (Z ′β(τ)|Z)ZZ ′] , ∀ τ ∈ T ,

Γ(τ1, τ2) ≡ E[(τ1 − 1{Y ≤ Z ′β(τ1)})(τ2 − 1{Y ≤ Z ′β(τ2)})ZZ ′] , ∀ τ1, τ2 ∈ T ,

and,

θ′0(h)(τ) ≡ −J(τ)−1

∫
c′z1{y ≤ z′β(τ)}h1(y, z)P (dy, dz)

− J(τ)−1

∫
c′z(1{y ≤ z′β(τ)} − τ)h2(z)P (dy, dz) .

For a detailed discussion on the efficient estimation of θ, see Lee (2009, Theorem 3.1). �

3.3 Attainability via Construction

Having established the lower bounds as in Theorem 3.1 and Corollary 3.1, we now
proceed to show the attainability of the bounds by developing a general procedure of
constructing optimal plug-in estimators. The lower bounds in (3.10) and (3.12) suggest
that an optimal plug-in estimator is of the form φ(θ̂n + ûn/rn) where ûn is an estima-
tor of the optimal noise term in Theorem 2.1 – i.e. ûn should be an estimator of the
minimizer(s) in the lower bounds. We deal with infinite dimensional D first in order to
accommodate Examples 2.3 and 2.4, and then specialize to Euclidean D.

15see Severini and Tripathi (2001). Technically, H here is not the tangent set; however, every element
in the tangent set can be written as a unique decomposition involving some pair in H. This shouldn’t
bother us since tangent set per se is not of our interest.
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Recall from Theorem 3.1 that the lower bound for the local asymptotic minimax risk
is given by

inf
u∈D

sup
h∈H

E
[
`
(
φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h))

)]
. (3.13)

If the objective function in (3.13) were known, we would pick the optimal correction
term by solving a minimax optimization problem. However, this is not the case since
there are four unknown objects here: the law of the efficient Gaussian component G0,
the derivatives φ′θ0 and θ′0, and the space H. We thus work with the sample analog of
(3.13) by replacing G0, φ′θ0 , θ′0, and H with their sample counterparts.

We shall assume that the law of G0 can be estimated by bootstrap or simulation.
Specifically, let θ̂n be an efficient estimator of θ, and θ̂∗n a bootstrapped version of it
– i.e. θ̂∗n is a function mapping the data {Xi}ni=1 and random weights {Wi} that are
independent of {Xi} into the domain Dφ of φ. This abstract definition suffices for
encompassing the nonparametric, Bayesian, block, score, and weighted bootstrap as
special cases. The hope is then that the limiting law of rn{θ̂n − θ0} can be consistently
estimated by the (finite sample) law of rn{θ̂∗n − θ̂n}, which necessitates a metric that
measures distances between probability measures. Since the law G0 is tight and hence
separable, we may employ the bounded Lipschitz metric dBL introduced by Dudley
(1966, 1968): for two Borel probability measures L1 and L2 on D, define

dBL(L1, L2) ≡ sup
f∈BL1(D)

|
∫
f dL1 −

∫
f dL2| ,

where recall that BL1(D) is the space of bounded and Lipschitz continuous functions as
defined in (2.3). We may now measure the distance between the law of Ĝ∗n ≡ rn{θ̂∗n− θ̂n}
conditional on {Xi} and the limiting law G0 of rn{θ̂n − θ0} by

dBL(Ĝ∗n,G0) = sup
f∈BL1(D)

|E[f(rn{θ̂∗n − θ̂n})|{Xi}]− E[f(G0)]| . (3.14)

Employing the distribution of rn{θ̂∗n − θ̂n} conditional on the data to approximate the
distribution of G0 is then asymptotically justified if their distance, equivalently (3.14),
converges in probability to zero.

The estimation of θ′0 can be done by analogy principle since the derivative θ′0 typically
takes the form θ′0 ≡ θ′0(P ), that is, we may estimate θ′0 by θ̂′n = θ′0(Pn) with Pn the
empirical measure. Estimation of the derivative φ′θ0 is trickier. In this regard, we
impose sufficient conditions so as to meet Assumption 3.3 in Fang and Santos (2014).
The following assumption formalizes our discussion so far.

Assumption 3.5 (i) Ĝ∗n : {Xi,Wi}ni=1 → Dφ with {Wi} independent of {Xi} satisfies

supf∈BL1(D) |E[f(Ĝ∗n)|{Xi}]− E[f(G0)]| = op(1) under {Pn,0}.

(ii) θ̂′n : H → D depends on {Xi} and satisfies ‖θ̂′n(ĥn) − θ′0(h)‖D
p−→ 0 under {Pn,0}

whenever ‖ĥn − h‖H
p−→ 0 under {Pn,0} with ĥn : {Xi} → H.

(iii) φ̂′n : D → E depends on {Xi} satisfying (a) for any z ∈ D, φ̂′n(z) is consistent

for φ′θ0(z) – i.e. ‖φ̂′n(z) − φ′θ0(z)‖E
p−→ 0 under {Pn,0}; and (b) there is some

deterministic constant Cφ̂′ such that ‖φ̂′n(z1) − φ̂′n(z2)‖E ≤ Cφ̂′‖z1 − z2‖D outer
almost surely for all z1, z2 ∈ D.
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Assumption 3.5(i) is simply a bootstrap consistency condition on Ĝ∗n for the target
law of G0, including Song (2014a)’s simulation method as a special case. Assumption
3.5(ii) imposes a weak consistency condition on the estimator θ̂n. One might require

θ̂′n be consistent in the sense that ‖θ̂′n − θ′0‖op
p−→ 0 where ‖ · ‖op is the operator norm.

However, such an assumption is too restrictive for a Glivenko-Cantelli argument to hold
since the operator norm is a supremum taken over all h ∈ H with ‖h‖H ≤ 1. The point-
wise consistency condition on φ̂′n in Assumption 3.5(iii)-(a) is a minimal requirement,
while Assumption 3.5(iii)-(b) imposes Lipschitz continuity on φ̂′n, a condition inherited
from φ′θ0 as in Assumption 3.4. Assumptions 3.5(iii)-(a) and -(b) together imply that

φ̂′n converges in probability to φθ0 uniformly over all δ-enlargement of compact sets in
D, a condition that has been employed in Fang and Santos (2014) to construct a valid
inference procedure for the parameter φ(θ).

We next deal with approximating the spaces H and D as needed to construct an
analog to the bound (3.13). To understand the unknown nature of H, consider the
i.i.d. setup in which case H ≡ Ṗ0 where Ṗ0 is the tangent set as defined in Remark
2.2. In these settings, it is common that Ṗ0 is equal to the largest possible tangent
set L2

0(P ) ≡ {h ∈ L2(P ) :
∫
hdP = 0}, which depends on the unknown probability

measure P . It is worth noting that L2
0(P ) can be viewed as the projection of L2(P ) onto

the complement of the subspace of constant functions. In fact, this projection nature
of Ṗ0 is prevalent in efficient estimation (Bickel et al., 1993), an insight helpful to the
estimation of H.

Since both H and D are infinite dimensional, we need to approximate H and D by
sequences of sieve spaces, which typically consist of compact subsets or finite dimensional
subspaces that grow dense in H and D. Consider the space H first. If we have a “basis”
{gm} for Ṗ0, then we may approximate H by finite dimensional subspaces constructed
from {gm}. For example, the space C0

c (Rdx) of mean zero continuous functions on Rdx

with compact support is dense in L2
0(P ); by the Stone-Weierstrass theorem, the set

of polynomial functions are in turn dense in C0
c (Rdx). Thus, following Chamberlain

(1987) who approximates the efficiency bound in models defined by conditional moment
restrictions based on polynomials, we may take the polynomials, properly projected or
truncated, as a complete sequence in H. As for the space D over which the infimum is
taken, we may employ linear sieves as approximation. These being said, we assume the
following:

Assumption 3.6 (i) {gm}∞m=1 ⊂ H is complete in the sense that for each h ∈ H and
ε > 0, there exists α1, . . . , αm such that ‖h −

∑m
j=1 αjgj‖H < ε; (ii) for each m ∈ N,

ĝm : {Xi} → H satisfies ‖ĝm − gm‖H
p−→ 0 under {Pn,0}; (iii) {ψk}∞k=1 ⊂ D is complete.

Assumption 3.6(i) formalizes the approximation property of {gm}, in a way like the
Schauder basis except that the representation coefficients αj might not be unique, while
Assumption 3.6(iii) is a similar approximation condition imposed on {ψk}. Assumption
3.6(ii) requires that {gm} be estimated by a sequence {ĝm} of random variables to
accommodate the unknown nature of H.

Given the availability of complete sequences {gm} and {ψk} in H and D respectively,
we may approximate the lower bound (3.13) by

min
v∈Kk

τk

max
c∈Km

λm

E[`(φ′θ0(G0 + (ψk)ᵀv + θ′0(gm)ᵀc)− φ′θ0(θ′0(gm)ᵀc))] , (3.15)
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where Kk
τk

and Km
λm

are balls in Rk and Rm respectively as defined in the beginning
of Section 2.1, {λm} and {τk} are sequences that diverge to infinity as m, k → ∞
respectively, and θ′0(gm) ≡ (θ′0(g1), . . . , θ′0(gm))ᵀ. Heuristically, (3.15) is the bound for
the parametric submodel whose tangent set is {cᵀgm : c ∈ Km

λm
} and noise term u is

restricted to be bounded in norm by τk. As the approximation indices m, k increase to
infinity, (3.15) converges to the lower bound (3.13). With gm, G0, θ′0 and φ′θ0 in (3.15)

replaced by the corresponding estimates {ĝm}, Ĝ∗n, θ̂′n and φ̂′n, the bound (3.15) can in
turn be estimated by

min
v∈Kk

τk

max
c∈Km

λm

E[`(φ̂′n(Ĝ∗n + (ψk)ᵀv + θ̂′n(ĝm)ᵀc)− φ̂′n(θ̂′n(ĝm)ᵀc))|{Xi}] , (3.16)

where θ̂′n(ĝm) ≡ (θ̂′n(ĝ1), . . . , θ̂′n(ĝm))ᵀ, and the expectation is evaluated with respect to
the bootstrap weights {Wi}ni=1 holding {Xi}ni=1 fixed. For notational simplicity, define

B̂m(v) ≡ max
c∈Km

λm

E[`(φ̂′n(Ĝ∗n + (ψk)ᵀv + θ̂′n(ĝm)ᵀc)− φ̂′n(θ̂′n(ĝm)ᵀc))|{Xi}] ,

Ψ̂k,m ≡ {v ∈ Kk
τk

: B̂m(v) ≤ min
v′∈Kk

τk

B̂m(v′) + εn} ,

where εn = op(1) as n→∞. Here, Ψ̂k,m is the set of minimizers for the sample analog
approximating problem (3.16), allowing negligible computational error εn that tends to
zero in probability.

We are now ready to construct the optimal plug-in estimators. For any v̂n,k,m ∈ Ψ̂k,m,
we consider estimating φ(θn(h)) by

φ(θ̂n +
ûn,k,m
rn

) , ûn,k,m ≡ (ψk)ᵀv̂n,k,m , (3.17)

where θ̂n is an efficient estimator of θ – i.e. it satisfies

Assumption 3.7 {θ̂n} is an efficient estimator of θ – i.e. for each h ∈ H,

rn{θ̂n − θn(h)}
Ln,h→ G0 in D ,

where G0 is the efficient Gaussian random variable as in Theorem 2.1.

Our first construction result shows that the plug-in estimator (3.17) attains the local
asymptotic minimax lower bound (3.13).

Theorem 3.2 Suppose that Assumptions 2.1, 2.2, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, and 3.7
hold. Let {λm} and {τk} be sequences that diverge to infinity as m, k →∞ respectively.
If v̂n,k,m ∈ Ψ̂k,m, then

lim sup
k→∞

lim sup
m→∞

sup
I⊂fH

lim sup
n→∞

sup
h∈I

En,h
[
`
(
rn
(
φ(θ̂n +

ûn,k,m
rn

)− φ(θn(h))
))]

≤ inf
u∈D

sup
h∈H

E
[
`
(
φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h))

)]
, (3.18)

where ûn,k,m ≡ (ψk)ᵀv̂n,k,m.
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We note that, though unpleasant, the first two lim sup’s over k and m are necessary
in general and more importantly are taken after letting n → ∞. The reason is that
minimizers in Ψ̂k,m would possibly diverge to “infinity” as the search ranges Kk

τk
and

Km
λm

grow to the whole (noncompact) spaces, rendering the Delta method inapplicable
under just Hadamard directional differentiability. Nonetheless, by restricting u to be in
a compact set Du ⊂ D, for example a class of smooth functions, we are able to remove
the first lim sup; see Section 3.3.1.

The general construction of optimal plug-in estimators for infinite dimensional D is
intrinsically complicated. When D is Euclidean – i.e. D = Rm for some m ∈ N, the
computation greatly simplifies. Recall that by Corollary 3.1, the lower bound in this
case is given by

inf
u∈Rm

sup
c∈Rm

E
[
`
(
φ′θ0(G0 + u+ c)− φ′θ0(c)

)]
. (3.19)

Comparing (3.19) with (3.13), it is clear that we can dispense with the computation
burden of estimating H and θ′0. Instead we now only have to estimate the directional
derivative φ′θ0 and the law of G0. Following the same idea as before, we therefore define

B̂λ(u) ≡ max
c∈Km

λ

E[`(φ̂′n(Ĝ∗n + u+ c)− φ̂′n(c))|{Xi}] ,

Ψ̂τ,λ ≡ {u ∈ Km
τ : B̂λ(u) ≤ min

u′∈Km
τ

B̂λ(u′) + εn} ,

where εn = op(1) as n→∞. As expected, if we pick ûn,τ,λ ∈ Ψ̂τ,λ, then

φ
(
θ̂n +

ûn,τ,λ
rn

)
(3.20)

will be an optimal plug-in estimator, as confirmed by the following theorem.

Theorem 3.3 Let D = Rm for some m ∈ N and Σ0 ≡ 〈θ̃0, θ̃
ᵀ
0〉 be nonsingular. Suppose

that Assumptions 2.1, 2.2, 3.1, 3.2, 3.3, 3.4, 3.5(i)(iii), and 3.7 hold. Then

lim sup
τ→∞

lim sup
λ→∞

sup
I⊂fH

lim sup
n→∞

sup
h∈I

En,h
[
`
(
rn
(
φ(θ̂n +

ûn,τ,λ
rn

)− φ(θn(h))
))]

≤ inf
u∈Rm

sup
c∈Rm

E
[
`
(
φ′θ0(G0 + u+ c)− φ′θ0(c)

)]
. (3.21)

It is worth noting that the optimal plug-in estimators (3.17) and (3.20) depend,
through the correction terms ûn,m,k and ûn,τ,λ respectively, on the choice of the loss
function `, which in turn hinges on the nature of the problem at hand and practitioners’
risk preference.

3.3.1 Smoothed Optimal Plug-in Estimators

By letting k,m → ∞ and τ, λ → ∞ after n tends to infinity in the lower bounds,
one essentially confines the minimizers ûn,m,k and ûn,τ,λ to compact subsets. We may
alternatively start with compact (possibly infinite dimensional) spaces and base our
analysis therein.
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In the literature of nonparametric and semi-(non)parametric methods, compactness
can be obtained by attaching an appropriate norm different from the one that defines
the space under consideration (Gallant and Nychka, 1987). For detailed discussions we
refer the readers to Gallant and Nychka (1987), Newey and Powell (2003) and Santos
(2012). We instead impose the following high level conditions.

Assumption 3.8 (i) Du ⊂ D is compact; (ii) {Dk}∞k=1 with Dk ⊂ Du for each k ∈ N is
a sequence of compact sieves satisfying for any u ∈ Du, there exists uk ∈ Dk such that
‖uk − u‖D → 0 as k →∞.

Suppose that we are interested in the following restricted version of lower bound:

min
u∈Du

sup
h∈H

E
[
`
(
φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h))

)]
, (3.22)

which is equal to the bound (3.13) if the infimum in the latter is attained in Du. In
turn, (3.22) can be approximated by

min
u∈Du

max
c∈Km

λm

E[`(φ′θ0(G0 + u+ θ′0(gm)ᵀc)− φ′θ0(θ′0(gm)ᵀc))] , (3.23)

where λm →∞ as m→∞. Replacing gm, G0, θ′0 and φ′θ0 in (3.23) by their correspond-

ing estimates {ĝm}, Ĝ∗n, θ̂′n and φ̂′n, and approximating Du by the sequence of compact
sieves {Dk}, we may in turn estimate the bound (3.23) by considering

B̂m(u) ≡ max
c∈Km

λm

E[`(φ̂′n(Ĝ∗n + u+ θ̂′n(ĝm)ᵀc)− φ̂′n(θ̂′n(ĝm)ᵀc))|{Xi}] ,

Ψ̂m ≡ {u ∈ Dkn : B̂m(u) ≤ min
u′∈Dkn

B̂m(u′) + εn} ,

where εn = op(1) as n→∞. Notice that the set Ψ̂m of minimizers of B̂m(u) is obtained
on the approximating space Dkn , though we have suppressed the dependence of Ψ̂m on
n for notational simplicity.

Now take arbitrary ûn,m ∈ Ψ̂m and define the plug-in estimator

φ(θ̂n +
ûn,m
rn

) . (3.24)

Optimality of (3.24) in the sense of local asymptotic minimaxity is confirmed as follows.

Theorem 3.4 Suppose that Assumptions 2.1, 2.2, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6(i)(ii), 3.7,
and 3.8 hold. Let ûn,m ∈ Ψ̂m. If λm, kn →∞ as m,n→∞ respectively, then

lim sup
m→∞

sup
I⊂fH

lim sup
n→∞

sup
h∈I

En,h
[
`
(
rn
(
φ(θ̂n +

ûn,m
rn

)− φ(θn(h))
))]

≤ inf
u∈Du

sup
h∈H

E
[
`
(
φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h))

)]
. (3.25)

We note that similar as the sieve approximation for D, one may also consider con-
struction based on a general sequence of compact sieves of H. While one might have
different tastes on the choice of compact sieves for D – for instance, one might choose
different degrees of smoothness which in turn directly affects the smoothness of the
correction term ûn, approximation for H is purely for computational purposes and has
more indirect effect on ûn. We thus skip the general approximation for H here.
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3.3.2 Examples Revisited

We now turn to Examples 2.1-2.4. For the sake of brevity, we omit the bootstrap
procedure, and instead focus on verifying Assumptions 3.5(ii)(iii), 3.6, and 3.7. For
Examples 2.1 and 2.2, there is no need to estimate H and θ′0; see Corollary 3.1.

Example 2.1 (Continued). The sample mean Xn serves as an efficient estimator of
θ. Denote ĵ∗ = arg maxj∈{1,2} X̄

(j) and pick tn ↑ ∞ satisfying tn/
√
n ↓ 0. Define

φ̂′n(z) =

{
z(ĵ∗) if |X̄(1) − X̄(2)| > tn

max{z(1), z(2)} if |X̄(1) − X̄(2)| ≤ tn
. (3.26)

Then it is straightforward to verify that φ̂′n is Lipschitz continuous and pointwise con-
sistent. �

Example 2.2 (Continued). The efficient estimation of θ0 in this example can be
conducted in the conditional moment restriction framework (Newey, 1993). Then we
may estimate φ′θ0 by

φ̂′n(z) = ψ′
θ̂n

(z)1{ψ(θ̂n) > tn}+ max{ψ′
θ̂n

(z), 0}1{|ψ(θ̂n)| ≤ tn} ,

where θ̂n is an efficient estimator of θ0, and tn is a sequence specified as in Example
2.1. �

Example 2.3 (Continued). Let F̂1 and F̂2 be the empirical CDFs of F1 and F2

respectively. It is known that empirical CDFs F̂1 and F̂2 are efficient in estimating F1

and F2 respectively (van der Vaart and Wellner, 1996), and hence (F̂1, F̂2) is efficient
in estimating (F1, F2) in the product space `∞(R) × `∞(R) (van der Vaart, 1991b).
The form of the derivative φ′θ0 as in (3.5) suggests a natural estimator for it. Define

B̂1 ≡ {x ∈ R : F̂1n(x) − F̂2n(x) > tn}, B̂2 ≡ {x ∈ R : F̂2n(x) − F̂1n(x) > tn}, and
B̂0 ≡ {x ∈ R : |F̂1n(x) − F̂2n(x)| ≤ tn} where tn is again as in Example 2.1. Let
φ̂′n : `∞(R)× `∞(R)→ `∞(R) be defined by

φ̂′n(z) = z(1)1B̂1
+ z(2)1B̂2

+ max{z(1), z(2)}1B̂0
.

Then φ̂′n is Lipschitz continuous and pointwise consistent.

In this example, we have to estimate θ′0 and a basis {gj} of L2
0(P ), as well as the

derivative φ′θ0 and the law of G0. By Section 3.11.1 in van der Vaart and Wellner (1996),
for each h ≡ (h1, h2) ∈ H ×H with H being the set of bounded measurable functions
on R,

θ′0(h)(v) =
( ∫ v

−∞
h1(t)P1(dt),

∫ v

−∞
h2(t)P2(dt)

)
.

Thus, we may take the following estimator of θ′0:

θ̂′n(h)(v) =
( ∫ v

−∞
h1(t)P1n(dt),

∫ v

−∞
h2(t)P2n(dt)

)
.

As to Assumption 3.6(ii), if {g(i)
m } is complete in L2(Pi) with i = 1, 2, then we may take

g
(1)
1 (v)− 1

n

n∑
i=1

g
(1)
1 (B1i) , g

(1)
2 (v)− 1

n

n∑
i=1

g
(1)
2 (B1i) , . . . ,

g
(2)
1 (v)− 1

n

n∑
i=1

g
(2)
1 (B2i) , g

(2)
2 (v)− 1

n

n∑
i=1

g
(2)
2 (B2i) , . . . ,
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where {B1i}ni=1 and {B2i}ni=1 are bids from auctions 1 and 2 respectively; see Lemma
B.2.16 In this example, since functions in `∞(R) can be rather irregular, one might want
to follow the compact version of construction, for instance, let Du be a class of smooth
R2-valued functions. For concrete constructions, see Gallant and Nychka (1987), Newey
and Powell (2003), and Santos (2012). �

Example 2.4 (Continued). Since β(·) : T → R can be efficiently estimated by
the quantile regression process β̂n(·), we thus conclude that θ̂n ≡ c′β̂n(·) is efficient in
estimating θ0 (van der Vaart, 1991b). As to estimation of the derivative φ′θ0 , we follow
the approach pursued by Hong and Li (2014) and propose the following estimator:

φ̂′n(z) ≡ t−1
n {ΠΛ(θ̂n + tnz)−ΠΛ(θ̂n)} ,

where tn satisfies tn → 0 and tn
√
n → ∞ as n → ∞.17 The derivative θ′0 can be

estimated as follows:

θ̂′n(h) ≡ −Ĵ(τ)−1

∫
c′z1{y ≤ z′β̂(τ)}h1(y, z)Pn(dy, dz)

− Ĵ(τ)−1

∫
c′z(1{y ≤ z′β̂(τ)} − τ)h2(z)Pn(dy, dz) ,

where Ĵ(τ) is constructed as in Angrist et al. (2006):

Ĵ(τ) ≡ 1

2nκn

n∑
i=1

1{|Yi − Z ′iβ̂(τ)| ≤ κn}ZiZ ′i ,

where κn satisfies κn → 0 and κ2
nn→∞. A complete sequence in H1 can be estimated

similarly as in Example 2.3. As to H2, if {gj(y, z)} is complete in L2(Y ×Z ), then we
may take

g1(y, z)− 1

n

n∑
i=1

g1(Yi, z) , g2(y, z)− 1

n

n∑
i=1

g2(Yi, z) , . . . .

A complete sequence {ψk} in L2(T ) can be a sequence of polynomials, while the compact
space Du can be chosen to be a class of smooth functions in L2(T ) as in Example 2.3. �

4 Empirical Application

In this section, we apply the theory developed in previous sections to the estimation
of the effect of Vietnam veteran status on the quantiles of civilian earnings (Angrist,
1990). Since certain types of men are more likely to service in the military, making the
veteran status endogenous, a conventional quantile regression method is inappropriate
to recover the casual relationship. Following Angrist (1990), we employ the Vietnam
draft lottery eligibility indicator as an instrument for veteran status. In particular, we
apply the instrumental quantile regression framework developed by Chernozhukov and
Hansen (2005, 2006) to the Current Population Survey data set as in Chernozhukov et al.

16For example, if Pi satisfies
∫
eM|v| Pi(dv) < ∞ for all M ∈ (0,∞), then {1, v, v2, . . .} is complete

in L2(Pi).
17Song (2014a,b) essentially took the same approach.
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(2010), which consists of four variables: annual labor real earnings, weakly real wage,
veteran status indicator with value 1 for veterans, and Vietnam draft lottery eligibility
indicator as an instrument with value 1 for eligible men. As in Chernozhukov et al.
(2010), we focus on the annual labor earnings throughout.

Let Y denote the annual labor real earnings, D the veteran status, and Z the Viet-
nam draft lottery eligibility. Under instrument independence and rank similarity, Cher-
nozhukov and Hansen (2005) showed that the quantile regression coefficients β(τ) for
veterans can be identified by the following conditional moment restriction:

E[(τ − 1{Y ≤ β(τ)D})|Z] = 0 a.s., ∀ τ ∈ (0, 1) , (4.1)

much like the counterpart in mean regression models. Chernozhukov and Hansen (2006)
developed the instrumental variable quantile regression based on restriction (4.1), which
can be viewed as a quantile regression analog of two stage least squares.

Unfortunately, since β(τ) is estimated pointwise, there is in general no guarantee
that the quantile function β̂(·) is monotonically increasing. To circumvent the non-
monotonicity when estimating the structural quantile functions of earnings, we there-
fore employ the metric projection operator introduced in Example 2.4. In estimating
the correction terms, we take polynomials as basis functions for D ≡ L2(T ) and H, and
set m = 4, k = 3. The quantile index set T is taken to be the grid on [0.25, 0.75] with
increment 0.001, while the number of bootstrap repetitions is set to be two hundred. As
for the estimation of the Hadamard directional derivative, we follow the same approach
as in Example 2.4 and set tn = n−1/3. The correction terms are estimated relative to
the L2 loss function.
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Figure 1 Structural Quantile Functions of Earnings for Veterans

In Figures 1 and 2 we show the structural quantile functions of earnings for veter-
ans and non-veterans respectively, as well as their optimal projected counterparts with
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Figure 2 Structural Quantile Functions of Earnings for Non-Veterans

correction terms. In both figures, the original quantile functions exhibit obvious non-
monotonicity at certain regions, especially for veterans. The projected counterparts are
by construction monotone and optimal in terms of local asymptotic minimaxity. We
note significant differences between original quantile curve and the optimal projected
one for veterans. For example, the median of the annual earnings for veterans is 9,819
dollars according to the original estimate and 9,929 dollars according to the projected
estimate. The maximal difference of 1,767 dollars occurs at the 0.725 quantile. In con-
trast, we find less difference between the original structural quantile function and the
optimal projected counterpart for the non-veterans, with the maximal gap being 403
dollars at the 0.725 quantile.

5 Conclusion

In this paper, we have derived the local asymptotic minimax lower bound for a class of
plug-in estimators of directionally differentiable parameters, which arise in a large class
of econometric problems. The employment of minimaxity criterion, although perhaps
not fully necessary, seems to the most suitable one for our purposes. The derived lower
bound is intrinsically complicated. Nonetheless, we have been able to present a general
construction procedure to show attainability of the lower bound.
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Appendix A Proofs of Main Results

The following list includes notation and definitions that will be used in the appendix.

Aε For a set A in a metric space (T, d) and ε > 0, Aε ≡ {a ∈ T : d(a,A) ≤ ε}.
A ⊂f B For sets A and B, A is a finite subset of B.
Mᵀ For an m× n matrix M , Mᵀ is the transpose of M .
Km
λ For λ > 0, Km

λ ≡ {x ∈ Rm : ‖x‖ ≤ λ}.
[A] For a set A in a normed space, [A] is the closed linear span of A.
A⊥ For a set A in a Hilbert space H, A⊥ ≡ {x ∈ H : 〈x, y〉H = 0 , ∀ y ∈ A}.

`∞(T ) The space of bounded functions on T .

‖f‖Lp For a measure space (T,M , µ) and 1 ≤ p <∞, ‖f‖Lp ≡ {
∫
|f |p dµ}1/p.

Lp(T ) For a measure space (T,M , µ), Lp(T ) ≡ {f : T → R : ‖f‖Lp <∞}.
BL1(T ) The set of functions f with supt∈T |f(t)| ≤ 1 and |f(t1)− f(t2)| ≤ d(t1, t2).

Proof of Theorem 3.1: For each finite subset I ⊂ H, we have

lim inf
n→∞

sup
h∈I

En,h[`(rn{φ(θ̂n)− φ(θn(h))})]

≥ sup
h∈I

lim inf
n→∞

En,h[`(rn{φ(θ̂n)− φ(θn(h))})] . (A.1)

By Assumption 3.3, ` is continuous and positive. In turn, Lemma A.1 allows us to
invoke the portmanteau theorem to conclude that

lim inf
n→∞

En,h[`(rn{φ(θ̂n)− φ(θn(h))})]

≥ E[`(φ′θ0(G + θ′0(h) + ∆)− φ′θ0(θ′0(h) + ∆))] . (A.2)

Combining results (A.1) and (A.2) we thus have

lim inf
n→∞

sup
h∈I

En,h[`(rn{φ(θ̂n)− φ(θn(h))})]

≥ sup
h∈I

E[`(φ′θ0(G + θ′0(h) + ∆)− φ′θ0(θ′0(h) + ∆))] . (A.3)

Taking supremum on both sides in (A.3) over all finite I ⊂ H yields that

sup
I⊂fH

lim inf
n→∞

sup
h∈I

En,h[`(rn{φ(θ̂n)− φ(θn(h))})]

≥ sup
I⊂fH

sup
h∈I

E[`(φ′θ0(G + θ′0(h) + ∆)− φ′θ0(θ′0(h) + ∆))]

= sup
h∈H

E[`(φ′θ0(G + θ′0(h) + ∆)− φ′θ0(θ′0(h) + ∆))]

= sup
h∈H

E[`(φ′θ0(G + θ′0(h))− φ′θ0(θ′0(h)))] , (A.4)

where the last equality is due to the fact that ∆ ∈ θ′0(H) by Assumption 3.1 and the
fact that H is linear by Assumption 2.1(i).

In view of (A.4) and the desired lower bound in (3.10), it suffices to show that,

sup
h∈H

E[`(φ′θ0(G + θ′0(h))− φ′θ0(θ′0(h)))]

≥ inf
u∈D

sup
h∈H

E[`(φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h)))] . (A.5)
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Towards this end, we follow the idea of Song (2014a) but, instead of employing the
purification theorem initially developed by Dvoretzky et al. (1950, 1951), we appeal to
a more generalized version in Feinberg and Piunovskiy (2006) and hence are able to
simplify the proof that would be otherwise involved.

Since H is separable by Assumption 2.1(i), we may pick a sequence {hj}∞j=1 that is
dense in H. By positivity and continuity of ` implied by Assumption 3.3 and continuity
of θ′0 and φ′θ0 implied by Assumptions 2.2 and 3.4, we may conclude by Fatou’s lemma
that E[`(φ′θ0(G+θ′0(h))−φ′θ0(θ′0(h)))] is lower semicontinuous in h. It follows by Lemma
A.5 that

sup
h∈H

E[`(φ′θ0(G + θ′0(h))− φ′θ0(θ′0(h)))] = sup
j∈N

E[`(φ′θ0(G + θ′0(hj))− φ′θ0(θ′0(hj)))] .

(A.6)

Fix J ∈ N. For j = 1, . . . , J , write ρ(z, u) = (ρ1(z, u), . . . , ρJ(z, u))ᵀ where

ρj(z, u) = E[`(φ′θ0(G0 + u+ θ′0(hj))− φ′θ0(θ′0(hj)))]z .

By Assumptions 2.1, 2.2 and 2.3, Theorem 2.1 applies so that we may write G d
= G0 +U,

where G0 is the efficient Gaussian component and U is the noise term independent of
G0. Denote the distribution of U by Q. For fixed λ > 1, let Z follow the uniform
distribution νλ supported on [1, λ]. By Theorem 1 in Feinberg and Piunovskiy (2006),
there is a measurable map u∗ : [1, λ]→ D such that∫ λ

1

∫
D
ρ(z, u)Q(du)νλ(dz) =

∫ λ

1
ρ(z, u∗(z)) νλ(dz) ,

which in turn implies that, for all j = 1, . . . , J ,

1 + λ

2

∫
D
E[`(φ′θ0(G0 + u+ θ′0(hj))− φ′θ0(θ′0(hj)))]Q(du)

=

∫ λ

1
E[`(φ′θ0(G0 + u∗(z) + θ′0(hj))− φ′θ0(θ′0(hj)))]z νλ(dz)

≥
∫ λ

1
E[`(φ′θ0(G0 + u∗(z) + θ′0(hj))− φ′θ0(θ′0(hj)))] νλ(dz) , (A.7)

where the inequality exploits the facts that z ≥ 1 and that ` ≥ 0. By change of variable
applied to the right hand side of (A.7), we have for all j = 1, . . . , J ,

1 + λ

2

∫
D
E[`(φ′θ0(G0 + u+ θ′0(hj))− φ′θ0(θ′0(hj)))]Q(du)

≥
∫ 1

0
E[`(φ′θ0(G0 + u∗((λ− 1)y + 1) + θ′0(hj))− φ′θ0(θ′0(hj)))] dy . (A.8)

It follows that

1 + λ

2
max

j=1,...,J
E[`(φ′θ0(G + θ′0(hj))− φ′θ0(θ′0(hj)))]

≥ inf
λ>1

max
j=1,...,J

∫ 1

0
E[`(φ′θ0(G0 + u∗((λ− 1)y + 1) + θ′0(hj))− φ′θ0(θ′0(hj)))] dy

≥ inf
u∈R(u∗)

max
j=1,...,J

∫ 1

0
E[`(φ′θ0(G0 + u+ θ′0(hj))− φ′θ0(θ′0(hj)))] dy

≥ inf
u∈D

max
j=1,...,J

E[`(φ′θ0(G0 + u+ θ′0(hj))− φ′θ0(θ′0(hj)))] , (A.9)
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where R(u∗) denotes the range of u∗.

Letting λ ↓ 1 and then J →∞ in (A.9) yields

sup
j∈N

E[`(φ′θ0(G + θ′0(hj))− φ′θ0(θ′0(hj)))]

≥ inf
u∈D

sup
j∈N

E[`(φ′θ0(G0 + u+ θ′0(hj))− φ′θ0(θ′0(hj)))] . (A.10)

Combining (A.6), (A.10), and the fact that the expectation on the right hand side is
also lower semicontinuous in h by Assumptions 2.2, 3.2 and 3.3, we thus conclude that

sup
h∈H

E[`(φ′θ0(G + θ′0(h))− φ′θ0(θ′0(h)))]

≥ inf
u∈D

sup
h∈H

E[`(φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h)))] , (A.11)

proving (A.5) and hence the Theorem. �

Lemma A.1 Let (Xn,An, {Pn,h : h ∈ H}) be a sequence of statistical experiments, and

θ̂n be an estimator for the parameter θ : {Pn,h} → D. If Assumptions 2.2, 2.3, 3.1 and
3.2 hold, then

rn{φ(θ̂n)− φ(θn(h))}
Ln,h→ φ′θ0(G + θ′0(h) + ∆)− φ′θ0(θ′0(h) + ∆) (A.12)

for every h ∈ H.

Proof: Rewrite

rn{φ(θ̂n)− φ(θn(h))} = rn{φ(θ̂n)− φ(θ0)} − rn{φ(θn(h))− φ(θ0)} . (A.13)

By Assumptions 2.3, 2.2, and 3.1, we have

rn(θ̂n − θ0) = rn{θ̂n − θn(h)}+ rn{θn(h)− θn(0)}+ rn{θn(0)− θ0}
Ln,h→ G + θ′0(h) + ∆ ,

for every h ∈ H. By Assumption 3.2, φ is Hadamard directionally differentiable at θ0

tangentially to D, and hence by the Delta method (Fang and Santos, 2014, Theorem
2.1) we may conclude that

rn{φ(θ̂n)− φ(θ0)}
Ln,h→ φ′θ0(G + θ′0(h) + ∆) . (A.14)

On the other hand, Assumptions 2.2, and 3.1 imply that for all h ∈ H,

rn{θn(h)− θ0} = rn{θn(h)− θn(0)}+ rn{θn(0)− θ0} → θ′0(h) + ∆ ,

whence by Assumption 3.2,

rn{φ(θn(h))− φ(θ0)} → φ′θ0(θ′0(h) + ∆) . (A.15)

The Lemma then follows from displays (A.13), (A.14) and (A.15). �

Proof of Lemma 3.1: By Assumption 3.4, we have

‖φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h))‖E ≤ Cφ′‖G0 + u‖D ,
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and hence by ρ being nondecreasing

inf
u∈D

sup
h∈H

E[`(φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h)))]

= inf
u∈D

sup
h∈H

E[ρ(‖φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h))‖E)]

≤ inf
u∈D

E[ρ(Cφ′‖G0 + u‖D)] . (A.16)

For each c ≥ 0, the set Ac ≡ {y : ρ(Cφ′‖y‖D) ≤ c} is clearly symmetric. It is also closed
since if {yn} ⊂ Ac and yn → y, then ρ being lower semicontinuous implies that

ρ(Cφ′‖y‖D) ≤ lim inf
n→∞

ρ(Cφ′‖yn‖D) ≤ c .

Finally, Ac is convex since if y1, y2 ∈ Ac, then for any λ ∈ (0, 1)

ρ(Cφ′‖λy1 + (1− λ)y2‖D) ≤ρ(λCφ′‖y1‖D + (1− λ)Cφ′‖y2‖D)

≤ ρ(max{Cφ′‖y1‖D, Cφ′‖y2‖D}) ≤ c .

Therefore ρ(Cφ′‖·‖D) is subconvex. We thus conclude from result (A.16) and Anderson’s
lemma (van der Vaart and Wellner, 1996) that

inf
u∈D

sup
h∈H

E[`(φ′θ0(G0+u+ θ′0(h))− φ′θ0(θ′0(h)))]

≤ inf
u∈D

E[ρ(Cφ′‖G0 + u‖D)] = E[ρ(Cφ′‖G0‖D)] <∞ .

This establishes the Lemma. �

Proof of Corollary 3.1: By Theorem 3.1, we know that the lower bound is given
by

inf
u∈D

sup
h∈H

E[`(φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h)))] . (A.17)

By Assumptions 2.2, 3.4 and 3.3, we may conclude by Fatou’s lemma that the expecta-
tion in (A.17) is lower semicontinuous in h. It follows by Lemma A.5 that

inf
u∈D

sup
c∈θ′0(H)

E[`(φ′θ0(G0 + u+ c)− φ′θ0(c))] . (A.18)

Since G0 is Gaussian in D ≡ Rm with nonsingular covariance Σ0, by Theorem 2.1 it
must be the case that θ′0(H) = Rm. The Corollary then follows. �

Proof of Theorem 3.2: Suppose first that the loss function ` is bounded by M > 0.
Fix ε > 0. Then there is some uε ∈ D such that

sup
h∈H

E[`(φ′θ0(G0 + uε + θ′0(h))− φ′θ0(θ′0(h)))]

≤ inf
u∈D

sup
h∈H

E[`(φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h)))] +
ε

4
. (A.19)

By Assumptions 3.3 and 3.4, suph∈H E[`(φ′θ0(G0 +u+θ′0(h))−φ′θ0(θ′0(h)))] is (Lipschitz)
continuous in u. Thus, there is some δ > 0 such that

sup
h∈H

E[`(φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h)))]

≤ sup
h∈H

E[`(φ′θ0(G0 + uε + θ′0(h))− φ′θ0(θ′0(h)))] +
ε

4
,
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whenever ‖u− uε‖D < δ. By Assumption 3.6(iii) and the fact that τk →∞ as k →∞,
there is some vk ∈ Kk

τk
such that ‖uk − uε‖D < δ with uk ≡ (ψk)ᵀvk for all k large

enough, which in turn means that

sup
h∈H

E[`(φ′θ0(G0 + uk + θ′0(h))− φ′θ0(θ′0(h)))]

≤ sup
h∈H

E[`(φ′θ0(G0 + uε + θ′0(h))− φ′θ0(θ′0(h)))] +
ε

4
. (A.20)

Combining results (A.19) and (A.20) we thus have for all k large enough,

inf
v∈Kk

τk

sup
h∈H

E[`(φ′θ0(G0 + (ψk)ᵀv + θ′0(h))− φ′θ0(θ′0(h)))]

≤ sup
h∈H

E[`(φ′θ0(G0 + uk + θ′0(h))− φ′θ0(θ′0(h)))]

≤ inf
u∈D

sup
h∈H

E[`(φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h)))] +
ε

2
. (A.21)

Next, for notational simplicity, define

Bm(v) ≡ max
c∈Km

λm

E[`(φ′θ0(G0 + (ψk)ᵀv + θ′0(gm)ᵀc)− φ′θ0(θ′0(gm)ᵀc))] ,

B(v) ≡ sup
h∈H

E[`(φ′θ0(G0 + (ψk)ᵀv + θ′0(h))− φ′θ0(θ′0(h)))] , Ψk,m ≡ arg min
v∈Kk

τk

Bm(v) .

Fix k large enough so that (A.21) holds. By Assumptions 3.3 and 3.4, it is clear that
both B(v) and Bm(v) for each m ∈ N are continuous functions on Kk

τk
. Moreover,

Bm(v) increasingly converges to B(v) as m → ∞ for each v ∈ Kk
τk

with additional

Assumption 3.6(i). To see this, fix v ∈ Kk
τk

and pick hε ∈ H such that

B(v)− ε ≤ E[`(φ′θ0(G0 + (ψk)ᵀv + θ′0(hε))− φ′θ0(θ′0(hε)))] ≤ B(v) . (A.22)

By Assumptions 2.2, 3.3 and 3.4, E[`(φ′θ0(G0+(ψk)ᵀv+θ′0(h))−φ′θ0(θ′0(h)))] is (Lipschitz)
continuous in h, and hence by Assumption 3.6(i) and the fact that λm →∞ as m→∞,
we have for all m sufficiently large

E[`(φ′θ0(G0 + (ψk)ᵀv + θ′0(hε))− φ′θ0(θ′0(hε)))] ≤ Bm(v) + ε . (A.23)

Combining previous two displays we obtain B(v) − 2ε ≤ Bm(v) ≤ B(v) for all m
sufficiently large. This shows that Bm(v) increasingly converges to B(v) for each v ∈
Kk
τk

. It follows by Dini’s theorem (Aliprantis and Border, 2006, Theorem 2.66) that

Bm → B uniformly on Kk
τk

. We thus conclude that there is an m0 such that for all
m ≥ m0, B(v) ≤ Bm(v) + ε/2 or equivalently

sup
h∈H

E[`(φ′θ0(G0 + (ψk)ᵀv + θ′0(h))− φ′θ0(θ′0(h)))]

≤ sup
c∈Km

λm

E[`(φ′θ0(G0 + (ψk)ᵀv + θ′0(gm)ᵀc)− φ′θ0(θ′0(gm)ᵀc))] +
ε

2
, (A.24)

for all v ∈ Kk
τk

.

Next, fix an arbitrary subsequence {n`}. For fixed m, k ∈ N, Bm(·) is continuous
on Kk

τk
by Assumptions 3.3 and 3.4, which, together with compactness of Kk

τk
, implies
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that Ψk,m is nonempty and compact by Theorem 2.43 in Aliprantis and Border (2006).
Combination of Lemma A.2 and Lemma A.6 then implies that there exist a further
subsequence {n`j} and some v∗k,m ∈ Ψk,m such that

v̂n`j ,k,m
p−→ v∗k,m , (A.25)

as j → ∞ under {Pn,h} with h ∈ H, for each k,m ∈ N. Result (A.25), together with
Assumptions 3.7, 2.2, 3.1 and 3.2, allows us to invoke Slutsky’s theorem and the Delta
method to conclude that

rn`j {φ(θ̂∗n`j
+
ûn`j ,k,m

rn`j
)−φ(θn`j (h))}

Ln`j
,h

→ φ′θ0(G0 + u∗k,m + ∆ + θ′0(h))−φ′θ0(∆ + θ′0(h))

for each h ∈ H, where u∗k,m ≡ (ψk)ᵀv∗k,m. Since ` is bounded and continuous, it follows
that for all m sufficiently large and all k ∈ N,

sup
I⊂fH

lim sup
j→∞

sup
h∈I

En`j ,h[`(rn`j {φ(θ̂n`j +
ûn`j ,k,m

rn`j
)− φ(θn`j (h))})]

= sup
h∈H

E[`(φ′θ0(G0 + (ψk)ᵀv∗k,m + θ′0(h))− φ′θ0(θ′0(h)))]

≤ max
v∈Ψk,m

B(v) ≤ max
v∈Ψk,m

Bm(v) +
ε

2
= inf

v∈Kk
τk

Bm(v) +
ε

2
,

where the first inequality is due to v∗k,m ∈ Ψk,m, the second inequality is by result (A.24),
while the last equality is by definition of Ψk,m. This implies that for all k large enough,

lim sup
m→∞

sup
I⊂fH

lim sup
j→∞

sup
h∈I

En`j ,h[`(rn`j {φ(θ̂n`j +
v̂n`j ,k,m

rn`j
)− φ(θn`j (h))})]

≤ lim sup
m→∞

inf
v∈Kk

τk

Bm(v) +
ε

2
= inf

v∈Kk
τk

B(v) +
ε

2

≤ inf
u∈D

sup
h∈H

E[`(φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h)))] + ε , (A.26)

where the equality follows from the fact that Bm → B uniformly on Kk
τk

, and the last
inequality holds for all k sufficiently large due to (A.21). We thus have

lim sup
k→∞

lim sup
m→∞

sup
I⊂fH

lim sup
j→∞

sup
h∈I

En`j ,h[`(rn`j {φ(θ̂n`j +
v̂n`j ,k,m

rn`j
)− φ(θn`j (h))})]

≤ inf
u∈D

sup
h∈H

E[`(φ′θ0(G0 + u+ θ′0(h))− φ′θ0(θ′0(h)))] + ε .

The theorem then follows for bounded ` by the facts that {n`} and ε are arbitrary. For
general loss functions `, replace ` in the above proof with `M ≡ ` ∧M and then let
M →∞. �

Lemma A.2 Suppose that Assumptions 2.1, 2.2, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7
hold. Let v̂n,k,m ∈ Ψ̂k,m. If the loss function ` is bounded, then it follows that for each
k,m ∈ N,

d(v̂n,k,m,Ψk,m)
p−→ 0 , (A.27)

under Pn,h for all h ∈ H.
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Proof: Fix k,m ∈ N throughout. For notational simplicity, write ϑ ≡ (vᵀ, cᵀ)ᵀ ∈ Θ ≡
Kk
τk
×Km

λm
and η0 ≡ (θ′0, φ

′
θ0

), and define the function fϑ,η0(·) : D→ R by

fϑ,η0(z) ≡ `(φ′θ0(z + (ψk)ᵀv + θ′0(gm)ᵀc)− φ′θ0(θ′0(gm)ᵀc)) .

Let η̂n ≡ (θ̂′n, φ̂
′
n) and define

Pfϑ,η0 ≡ E[`(φ′θ0(G0 + (ψk)ᵀv + θ′0(gm)ᵀc)− φ′θ0(θ′0(gm)ᵀc))] ,

Pfϑ,(θ′0,φ̂′n) ≡ E[`(φ̂′n(G0 + (ψk)ᵀv + θ′0(gm)ᵀc)− φ̂′n(θ′0(gm)ᵀc))|{Xi}] ,

Pfϑ,η̂n ≡ E[`(φ̂′n(G0 + (ψk)ᵀv + θ̂′n(ĝm)ᵀc)− φ̂′n(θ̂′n(ĝm)ᵀc))|{Xi}] ,
Pnfϑ,η̂n ≡ E[`(φ̂′n(Ĝ∗n + (ψk)ᵀv + θ̂′n(ĝm)ᵀc)− φ̂′n(θ̂′n(ĝm)ᵀc))|{Xi}] ,

where Pfϑ,(θ′0,φ̂′n), and Pfϑ,η̂n are expectations taken with respect to G0 while holding

{Xi}ni=1 fixed. The ensuing arguments are organized parallel to those of the consistency
result in the theory of the extremum estimation, the only difference being that the set of
population minimizers is possibly a nonsingleton. Therefore, we need to show a uniform
convergence result and an identification condition.

Uniform Convergence: For each ε > 0,

sup
ϑ∈Θ
|Pnfϑ,η̂n − Pfϑ,η0 | = op(1) , (A.28)

under {Pn,0}. In turn, it suffices to show that

sup
ϑ∈Θ
|Pnfϑ,η̂n − Pfϑ,η̂n | = op(1) , (A.29a)

sup
ϑ∈Θ
|Pfϑ,η̂n − Pfϑ,(θ′0,φ̂′n)| = op(1) , (A.29b)

sup
ϑ∈Θ
|Pfϑ,(θ′0,φ̂′n) − Pfϑ,η0 | = op(1) , (A.29c)

under {Pn,0}. Fix ε > 0 and consider (A.29a). Note that for every realization of {Xi},
the real valued functions

`(φ̂′n(·+ (ψk)ᵀv + θ̂′n(ĝm)ᵀc)− φ̂′n(θ̂′n(ĝm)ᵀc))

are bounded and Lipschitz continuous on D with Lipschitz constant C`Cφ̂′ by Assump-

tions 3.3 and 3.5(iii)-(b). It then follows by Assumption 3.5(i) that

sup
ϑ∈Θ
|Pnfϑ,η̂n − Pfϑ,η̂n | ≤ sup

f∈BLa(D)
|E[f(Ĝ∗n)|{Xi}]− E[f(G0)]| = op(1) ,

under {Pn,0}, where a ≡ max{M,C`Cφ̂′} with M being a upper bound of `, proving

(A.29a).

Next, consider (A.29b). We have

sup
ϑ∈Θ
|Pfϑ,η̂n − Pfϑ,(θ′0,φ̂′n)| ≤ 2C`Cφ̂′‖θ̂

′
n(ĝm)ᵀc− θ′0(gm)ᵀc‖D

≤ 2C`Cφ̂′λm

m∑
j=1

‖θ̂′n(ĝj)− θ′0(gj)‖D = op(1) ,
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under {Pn,0}, where the first inequality is due to Assumptions 3.3 and 3.5(iii)-(b), and
the second inequality is by Assumptions 3.5(ii) and 3.6(ii). This shows (A.29b).

Lastly, let us deal with (A.29c). For fixed k,m ∈ N, K1 ≡ {(ψk)ᵀv : v ∈ Kk
τk
} and

K2 ≡ {θ′0(gm)ᵀc : c ∈ Km
λm
} is compact in D by Proposition 4.26 in Folland (1999). Fix

ε, η > 0. Since G0 is tight, there is some compact K0 ⊂ D such that P (G0 /∈ K0) <
η/(2M). Let K ≡ K0 +K1 +K2. Clearly, K ⊂ D is compact. We now have

sup
ϑ∈Θ
|Pfϑ,(θ′0,φ̂′n) − Pfϑ,η0 | ≤ sup

ϑ∈Θ
E[|`(φ̂′n(G0 + (ψk)ᵀv + θ′0(gm)ᵀc)

− φ̂′n(θ′0(gm)ᵀc))− `(φ′θ0(G0 + (ψk)ᵀv + θ′0(gm)ᵀc)− φ′θ0(θ′0(gm)ᵀc))|
∣∣{Xi}]

≤ sup
z∈K

C`‖φ̂′n(z)− φ′θ0(z)‖E + sup
z∈K2

C`‖φ̂′n(z)− φ′θ0(z)‖E + 2M · P (G0 /∈ K0)

≤ op(1) + η ,

where the first inequality is by the triangle inequality, the second is by Assumption 3.3,
and the last is by Lemma A.7. This immediately implies (A.29c) and hence we conclude
that (A.28) holds.

Identification Condition: For each ε > 0,

inf
v∈Kk

τk
\Ψεk,m

sup
c∈Km

λm

Pf(v,c),η0
> inf

v∈Kk
τk

sup
c∈Km

λm

Pf(v,c),η0
, (A.30)

or equivalently, infv∈Kk
τk
\Ψεk,m

Bm(v) > infv∈Kk
τk
Bm(v), where Ψε

k,m ≡ {v ∈ Rk :

d(v,Ψk,m) ≤ ε}. To see this, fix ε > 0 and suppose that infu∈Kk
τk
\Ψεk,m

Bm(v) =

infu∈Kk
τk
Bm(v). Then we may pick a sequence {vi} ⊂ Kk

τk
\Ψε

k,m such that

Bm(vi)→ inf
v∈Kk

τk

Bm(v) as i→∞ .

By passing to a subsequence if necessary, we may assume that vi → v∗ as i→∞ where
v∗ ∈ Kk

τk
\Ψε

k,m. Assumptions 3.3 and 3.4 imply that Bm(v) is (Lipschitz) continuous in
v and therefore

Bm(v∗) = inf
v∈Kk

τk

Bm(v) ,

meaning that v∗ ∈ Ψk,m. On the other hand, v∗ ∈ Kk
τk
\Ψε

k,m implies that we may take

a sequence {vj} ⊂ Kk
τk
\Ψε

k,m such that vj → v∗ as j →∞, which in turn implies that

d(v∗,Ψk,m) = lim
j→∞

d(vj ,Ψk,m) ≥ ε > 0 ,

a contradiction. Therefore, (A.30) must hold.

We are now in a position to show result (A.27). Fix ε > 0. By the identification
result (A.30), there is some δ > 0 such that whenever v ∈ Kk

τk
\Ψε

k,m we have

Bm(v)−Bm(v∗k,m) ≥ δ , (A.31)
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where v∗k,m is any element in Ψk,m. It follows that

Pn,0(d(v̂n,k,m,Ψk,m) > ε) = Pn,0(v̂n,k,m ∈ Kk
τk
\Ψε

k,m)

≤ Pn,0(Bm(v̂n,k,m)−Bm(v∗k,m) ≥ δ)

= Pn,0(Bm(v̂n,k,m)− B̂m(v̂n,k,m) + B̂m(v̂n,k,m)−Bm(v∗k,m) ≥ δ)

≤ Pn,0(Bm(v̂n,k,m)− B̂m(v̂n,k,m) + B̂m(v∗k,m) + εn −Bm(v∗k,m) ≥ δ)

≤ Pn,0(2 sup
v∈Kk

τk

|Bm(v)− B̂m(v)|+ εn ≥ δ)

≤ Pn,0(2 sup
ϑ∈Θ
|Pnfϑ,η̂n − Pfϑ,η0 |+ εn ≥ δ)→ 0 , (A.32)

where the second inequality is by the definition of v̂n,k,m, and the last step is by (A.28)
and the fact that εn = op(1) as n → ∞. By Assumption 2.1(ii), Pn,h and Pn,0 are
mutually contiguous for each h ∈ H; see, for example, Example 6.5 in van der Vaart
(1998). Result (A.27) then follows from (A.32) and Le Cam’s first lemma. �

Proof of Theorem 3.3: The proof follows closely that of Theorem 3.2. Define

B(u) ≡ max
c∈Rm

E[`(φ′θ0(G0 + u+ c)− φ′θ0(c))] ,

Bλ(u) ≡ max
c∈Km

λ

E[`(φ′θ0(G0 + u+ c)− φ′θ0(c))] , Ψτ,λ ≡ arg min
u∈Km

τ

Bλ(u) .

Again, consider first the case when ` is bounded. Fix ε > 0 and τ > 0. By Assumption
3.3 and 3.4, Bλ(u) and B(u) are both (Lipschitz) continuous in u. Moreover, it is clear
that Bλ(u) ↑ B(u) as λ ↑ ∞ for each u ∈ Km

τ . It then follows by Dini’s theorem that
Bλ → B uniformly on Km

τ so that we may find some λ > 0 with λ ≥ τ if necessary such
that

B(u) ≤ Bλ(u) + ε for all u ∈ Km
τ . (A.33)

The rest of the proof is essentially the same as that of Theorem 3.3 by employing
subsequence arguments, in view of Lemma A.3 and Lemma A.6. �

Lemma A.3 Suppose that Assumptions 2.1, 2.2, 2.3 3.1, 3.2, 3.3, 3.4, and 3.5(i)(iii)
hold. Let ûn,τ,λ ∈ Ψ̂τ,λ. Further assume that the loss function ` is bounded. Then for
all τ, λ > 0 we have

d(ûn,τ,λ,Ψτ,λ)
p−→ 0 , (A.34)

under Pn,h for each h ∈ H.

Proof: Following the proof of Lemma A.2, it suffices to show a unform convergence
condition and an identification condition. Since the identification condition can be shown
using exactly the same arguments as before, we shall only prove the following: for fixed
τ, λ > 0,

sup
u∈Km

τ

|B̂λ(u)−Bλ(u)| = op(1) , (A.35)
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under Pn,0. To this end, rewrite

sup
u∈Km

τ

|B̂λ(u)−Bλ(u)|

≤ sup
u∈Km

τ

| sup
c∈Km

λ

E[`(φ̂′n(Ĝ∗n + u+ c)− φ̂′n(c))|{Xi}]− sup
c∈Km

λ

E[`(φ̂′n(G0 + u+ c)− φ̂′n(c))|{Xi}]|

+ sup
u∈Km

τ

| sup
c∈Km

λ

E[`(φ̂′n(G0 + u+ c)− φ̂′n(c))|{Xi}]− sup
c∈Km

λ

E[`(φ′θ0(G0 + u+ c)− φ′θ0(c))]| .

(A.36)

For the first term on the right hand side, we have by Assumptions 3.3 and 3.5(iii)-(b):

sup
u∈Km

τ

| sup
c∈Km

λ

E[`(φ̂′n(Ĝ∗n + u+ c)− φ̂′n(c))|{Xi}]− sup
c∈Km

λ

E[`(φ̂′n(G0 + u+ c)− φ̂′n(c))|{Xi}]|

≤ sup
u∈Km

τ ,c∈Km
λ

|E[`(φ̂′n(Ĝ∗n + u+ c)− φ̂′n(c))|{Xi}]− E[`(φ̂′n(G0 + u+ c)− φ̂′n(c))|{Xi}]|

≤ sup
f∈BLa(D)

|E[f(Ĝ∗n)|{Xi}]− E[f(G0)]| = op(1) , (A.37)

where a ≡ max{M,C`Cφ̂′} with M being a upper bound of `, and the last equality is

by Assumption 3.5(i). As for the second term on the right hand side of (A.36), fix ε > 0
and choose a compact set K0 ⊂ Rm such that P (G0 /∈ K0) < ε/(4M). Then

sup
u∈Km

τ

| sup
c∈Km

λ

E[`(φ̂′n(G0 + u+ c)− φ̂′n(c))|{Xi}]− sup
c∈Km

λ

E[`(φ′θ0(G0 + u+ c)− φ′θ0(c))]|

≤ sup
u∈Km

τ ,c∈Km
λ

E[|`(φ̂′n(G0 + u+ c)− φ̂′n(c))− `(φ′θ0(G0 + u+ c)− φ′θ0(c))||{Xi}]

≤ 2M · P (G0 /∈ K0) + C` sup
z∈K
‖φ̂′n(z)− φ′θ0(z)‖E + C` sup

z∈Km
λ

‖φ̂′n(z)− φ′θ0(z)‖E

≤ ε

2
+ op(1) , (A.38)

where K ≡ K0 +Km
λ +Km

τ is compact, and the last step is by Lemma A.7.

Result (A.35) then follows from results (A.36), (A.37) and (A.38). The rest of the
proof follows from that of Lemma (A.2). �

Proof of Theorem 3.4: The proof is essentially the same as that of Theorem 3.2 by
combining Lemmas A.4 and A.6 and is thus omitted. �

Lemma A.4 Suppose that Assumptions 2.1, 2.2, 2.3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6(i)(ii),
and 3.8 hold. Assume that the loss function ` is bounded. If ûn,m ∈ Ψ̂m, then for each
m ∈ N,

d(ûn,m,Ψm)
p−→ 0 , (A.39)

under {Pn,h} for each h ∈ H.

Proof: Fix m ∈ N throughout. The proof closely follows that of Lemma A.2. First,
by the same arguments as before we can show the following uniform convergence result:

sup
u∈Du

|B̂m(u)−Bm(u)| p−→ 0 (A.40)
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under Pn,0, and the identification condition – i.e. for each ε > 0,

inf
u∈Du\Ψεm

Bm(u) > inf
u∈Du

Bm(u) . (A.41)

Fix ε > 0. Now by the identification result (A.41), there is some δ > 0 such that
whenever u ∈ Du\Ψε

m we have

Bm(u)−Bm(u∗m) ≥ 2δ , (A.42)

where u∗m is any element in Ψm. Moreover, by Assumptions 3.3 and 3.4, Bm(u) is
continuous. Then by Assumption 3.8(ii) and the fact that kn →∞ as n→∞, we may
pick ukn ∈ Dkn such that

Bm(ukn)− δ ≤ Bm(u∗m) , (A.43)

for all n sufficiently large. We now have for all n sufficiently large (so that (A.43) holds):

Pn,0(d(ûn,m,Ψm) > ε) = Pn,0(ûn,m ∈ Du\Ψε
m)

≤ Pn,0(Bm(ûn,m)−Bm(u∗m) ≥ 2δ)

= Pn,0(Bm(ûn,m)− B̂m(ûn,m) + B̂m(ûn,m)−Bm(u∗m) ≥ 2δ)

≤ Pn,0(Bm(ûn,m)− B̂m(ûn,m) + B̂m(ukn) + εn −Bm(u∗m) ≥ 2δ)

≤ Pn,0(Bm(ûn,m)− B̂m(ûn,m) + B̂m(ukn) + εn −Bm(ukn) ≥ δ)
≤ Pn,0(2 sup

u∈Dkn
|Bm(u)− B̂m(u)|+ εn ≥ δ)

≤ Pn,0(2 sup
u∈Du

|Bm(u)− B̂m(u)|+ εn ≥ δ)→ 0 , (A.44)

where the second inequality is due to the definition of ûn,m, and the third inequality is
by (A.43). Result (A.39) then follows under {Pn,0} by (A.44), (A.40) and εn = op(1) as
n→∞. By Assumption 2.1(ii), Pn,h and Pn,0 are mutually contiguous for each h ∈ H;
see, for example, Example 6.5 in van der Vaart (1998). Then lemma follows from Le
Cam’s first lemma. �

Lemma A.5 Let (D, τ) be a topological space and f : D→ R be a lower semicontinuous
function. For any A ⊂ D, we have

sup
x∈A

f(x) = sup
x∈A

f(x) ,

where A denotes the closure of A relative to τ .

Proof: Only consider the nontrivial case when A is nonempty. Suppose first that
supx∈A f(x) = ∞. Fix arbitrary large M > 0. Then there is some x0 ∈ A such that

f(x0) ≥ M . Since x0 ∈ A, we may pick a net {xα} ⊂ A such that xα → x0 in τ . But
then since f is lower semicontinuous, lim infα f(xα) ≥ f(x0). In turn, this implies that
there is some α∗ such that supx∈A f(x) ≥ f(xα∗) > f(x0) − 1 ≥ M − 1. Since M is
arbitrary, it follows that supx∈A f(x) =∞.

Now suppose that supx∈A f(x) < ∞. Obviously, supx∈A f(x) ≤ supx∈A f(x). To
conclude, it suffices to show that for any ε > 0,

sup
x∈A

f(x) ≤ sup
x∈A

f(x) + ε . (A.45)
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First, we may pick some x0 ∈ A such that supx∈A f(x) ≤ f(x0) + ε/2. Next, we may
choose a net {xα} ⊂ A such that xα → x0 in τ . Since f is lower semicontinuous,
lim infα f(xα) ≥ f(x0), implying that we may find some α∗ such that f(x0) ≤ f(xα∗) +
ε/2. Combining previous two inequalities, we conclude that

sup
x∈A

f(x) ≤ f(x0) + ε/2 ≤ f(xα∗) + ε ≤ sup
x∈A

f(x) + ε ,

proving (A.45), and we thus establish the Lemma. �

Lemma A.6 Let (D, d) be a metric space and K ⊂ D a nonempty compact subset. Let
(Ωn,An, Pn) be a sequence of probability spaces and Xn : Ωn → D arbitrary maps such

that d(Xn,K)
p−→ 0 under {Pn}. Then for any subsequence {nk}, there exist a further

subsequence {nkj} and some deterministic c ∈ K such that Xnkj

p−→ c as j →∞.

Proof: We proceed by contradiction. Fix a subsequence {nk} and suppose that for

each c ∈ K and every subsequence {nkj}, Xnkj

p9 c as j → ∞. This implies that for

each c ∈ K there exist εc > 0 and ηc ∈ (0, 1) such that

lim inf
k→∞

Pnk(d(Xnk , c) > 2εc) > ηc ,

or equivalently,

lim sup
k→∞

Pnk(d(Xnk , c) < 2εc) < 1− ηc . (A.46)

Next, for each c ∈ K, let Bc(εc) ≡ {c′ ∈ K : d(c′, c) < εc}. Since {Bc(εc)}c∈K is an open
cover of K, compactness of K implies that there exists a finite subcover {Bcj (εj)}J

∗
j=1

with J∗ < ∞ and εj ≡ εcj that covers K. Observe that if d(Xnk , cj) ≥ 2εj for all
j = 1, . . . , J∗, then we must have

d(Xnk ,K) ≥ ε0 ,

where ε0 ≡ min(ε1, . . . , εJ∗). To see this, suppose d(Xnk ,K) < ε0 and d(Xnk ,K) =
d(Xnk , c

′) for some c′ ∈ K. Since d(c′, cj) < εj for some j, it follows that

d(Xnk , cj) ≤ d(Xnk , c
′) + d(c′, cj) < ε0 + εj ≤ 2εj ,

a contradiction, implying that

Pnk(d(Xnk ,K) ≥ ε0) ≥ Pnk(d(Xnk , cj) ≥ 2εj , j = 1, . . . , J∗) . (A.47)

Elementary calculations then reveal that

lim inf
k→∞

Pnk(d(Xnk , cj) ≥ 2εj , j = 1, . . . , J∗)

= 1− lim sup
k→∞

Pnk(d(Xnk , cj) < 2εj for some j = 1, . . . , J∗)

≥ 1−
J∗∑
j=1

lim sup
k→∞

Pnk(d(Xnk , cj) < 2εj) ≥ 1−
J∗∑
j=1

(1− ηcj ) ≡ η0 , (A.48)

where we may assume that η0 > 0 by choosing ηcj ’s sufficiently small since we may
increase each εc to make ηc arbitrarily close to 1 or 1− ηc arbitrarily close to zero and
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meanwhile J∗ wouldn’t increase because the radius of each open ball Bc(εc) of the open
cover {Bc(εc)}c∈K increases. Combination of (A.47) and (A.48) then yields

lim inf
k→∞

Pnk(d(Xnk ,K) ≥ ε0) ≥ η0 > 0 ,

a contradiction. This completes the proof. �

Lemma A.7 Suppose Assumptions 2.1(ii) and 3.5(iii) hold. Then for any compact
subset K ⊂ D and any ε > 0,

sup
I⊂fH

lim sup
n→∞

sup
h∈I

Pn,h(sup
z∈K
‖φ̂′n(z)− φ′θ0(z)‖E > ε) = 0 . (A.49)

Proof: Fix a compact subset K ⊂ D and ε > 0. Since K is compact, φ′θ0 is continuous

and hence uniformly continuous on K so that we may find a finite collection {zj}Jj=1

with J <∞ such that zj ∈ K for all j and

sup
z∈K

min
1≤j≤J

max
{
Cφ̂′‖z − zj‖D, ‖φ

′
θ0(z)− φ′θ0(zj)‖E

}
<
ε

3
.

This, along with Assumption 3.5(iii)-b), implies that

sup
z∈K
‖φ̂′n(z)− φ′θ0(z)‖E ≤ max

1≤j≤J
‖φ̂′n(zj)− φ′θ0(zj)‖E +

2

3
ε . (A.50)

Fix a finite subset I ⊂ H. By Assumption 2.1(ii), Pn,h and Pn,0 are mutually contiguous
for each h ∈ H; see, for example, Example 6.5 in van der Vaart (1998). It follows from
Assumption 3.5(iv)-a) and Le Cam’s first lemma that

lim sup
n→∞

sup
h∈I

Pn,h(‖φ̂′n(zj)− φ′θ0(zj)‖E >
ε

3
) = 0 for all j = 1, . . . , J . (A.51)

Combining (A.51) and (A.51) we thus conclude that

lim sup
n→∞

sup
h∈I

Pn,h(sup
z∈K
‖φ̂′n(z)− φ′θ0(z)‖E > ε)

≤ lim sup
n→∞

sup
h∈I

Pn,h( max
1≤j≤J

‖φ̂′n(zj)− φ′θ0(zj)‖E >
ε

3
)

≤
J∑
j=1

lim sup
n→∞

sup
h∈I

Pn,h(‖φ̂′n(zj)− φ′θ0(zj)‖E >
ε

3
) = 0 .

Since this is true for each finite I ⊂ H, the lemma then follows immediately. �

Appendix B Results for Examples 2.1 - 2.4

Example 2.1 (Best Treatment)

By Corollary 3.1, the lower bound when θ(1) = θ(2) in this example becomes

inf
u∈R2

sup
c∈R2

E
[
`
(
φ′θ0(G0 + u+ c)− φ′θ0(c)

)]
= inf

u∈R2
sup
c∈R2

E

[(
max{G(1)

0 + u(1) + c(1),G(2)
0 + u(2) + c(2)} −max{c(1), c(2)}

)2
]
,
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where G0 ∼ N (0, σ2I2). Replace u(1) and u(2) with u−∆u and u respectively; similarly
define c−∆c and c. Since the problem is symmetric in c1 and c2, we may assume that
∆c ≥ 0. Then we have

inf
u∈R2

sup
c∈R2

E
[
`
(
φ′θ0(G0 + u+ c)− φ′θ0(c)

)]
= inf

u∈R,∆u∈R
sup

∆c≥0
E

[(
max(G(1)

0 −∆c −∆u,G
(2)
0 ) + u

)2
]

= inf
u∈R,∆u∈R

sup
∆c≥∆u

E

[(
max(G(1)

0 −∆c,G
(2)
0 ) + u

)2
]
.

Notice that for each u ∈ R,

sup
∆c≥∆u

E

[(
max(G(1)

0 −∆c,G
(2)
0 ) + u

)2
]

is monotonically decreasing in ∆u, whence we have by setting ∆u =∞ that

inf
u∈R2

sup
c∈R2

E
[
`
(
φ′θ0(G0 + u+ c)− φ′θ0(c)

)]
= inf

u∈R
E

[(
G(2)

0 + u
)2
]

= E[(G(2)
0 )2] = σ2 .

It is clear that the optimum is achieved at u = (−∞, 0) and c = (−∞, c(2)) with
c(2) ∈ R arbitrary. This is consistent with Example 6 in Song (2014a). By tedious but
straightforward calculations one can show that the lower bound can be also achieved at
u = 0 and c = 0.

Example 2.2 (Interval Censored Outcome)

In this example, the identified region for ϑ is

Θ0 ≡ {ϑ ∈ R2 : E[Yl|Z] ≤ Zᵀϑ ≤ E[Yu|Z]} .

Let’s now work out supϑ∈Θ0
λᵀϑ for some fixed λ ∈ R2. We have

sup{λᵀE[ZZᵀ]−1E[ZE[Y |Z]] : E[Yl|Z] ≤ E[Y |Z] ≤ E[Yu|Z]}

=
1∑

j=−1

1{λᵀE[ZZᵀ]−1zj ≥ 0}λᵀE[ZZᵀ]−1zjE[Yu|Z = zj ]P (Z = zj)

+

1∑
j=−1

1{λᵀE[ZZᵀ]−1zj < 0}λE[ZZᵀ]−1zjE[Yl|Z = zj ]P (Z = zj) ,

where zj = (1, j)ᵀ for j ∈ {−1, 0, 1}. Consider

1{λᵀE[ZZᵀ]−1z1 ≥ 0}λᵀE[ZZᵀ]−1z1

= 1{λ(1) θ(1) + θ(2)

θ(1) + θ(2) − (θ(2) − θ(1))2
+ λ(2) θ(1) − θ(2)

θ(1) + θ(2) − (θ(2) − θ(1))2
≥ 0}

×

[
λ(1) θ(1) + θ(2)

θ(1) + θ(2) − (θ(2) − θ(1))2
+ λ(2) θ(1) − θ(2)

θ(1) + θ(2) − (θ(2) − θ(1))2

]
≡ 1{ψ(θ) ≥ 0}ψ(θ) .
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By the chain rule for Hadamard directionally differentiable maps (see Remark 3.1), one
can show that

φ′θ(z) = ψ′θ(z)1{ψ(θ) > 0}+ max{ψ′θ(z), 0}1{ψ(θ) = 0} .

Example 2.3 (Incomplete Auction Model)

Lemma B.1 Let φ : `∞(R)× `∞(R) → `∞(R) be given by φ(θ) = max(θ(1), θ(2)), and
Bi = 1{x : θi(x) > θ−i(x)} for i = 1, 2 and B0 = {x : θ1(x) = θ2(x)}. It follows that
φ is Hadamard directionally differentiable at any θ ∈ `∞(R)× `∞(R) such that for any
z ∈ `∞(R)× `∞(R),

φ′θ(z) = z(1)1B1 + z(2)1B2 + max{z(1), z(2)}1B0 .

Proof: Fix z ∈ `∞(R)×`∞(R) and let {zn} ≡ {(z1n, z2n)} be any sequence in `∞(R)×
`∞(R) such that zn → z relative to the product norm as n → ∞. Take arbitrary
sequence tn → 0 as n→∞. Write

t−1
n [φ(θ + tnzn)(x)− φ(θ)(x)]

= t−1
n

[
max{θ(1)(x) + tnz1n(x), θ(2)(x) + tnz2n(x)} −max{θ(1)(x), θ(2)(x)}

]
= t−1

n max{tnz1n(x), θ(2)(x)− θ(1)(x) + tnz2n(x)}1B1(x) + max{z1n(x), z2n(x)}1B0(x)

+ t−1
n max{θ(1)(x)− θ(2)(x) + tnz1n(x), tnz2n(x)}1B2(x) .

Consider the first term. Since tn = o(1) and z1n = z2n = O(1), for all n sufficiently large
we must have

max{tnz1n(x), θ(2)(x)− θ(1)(x) + tnz2n(x)}1B1(x) = tnz1n(x)1B1(x)

uniformly in x ∈ R, imply that

t−1
n max{tnz1n(x), θ(2)(x)− θ(1)(x) + tnz2n(x)}1B1(x)→ z(1)1B1(x)

uniformly in x. The third term can be handled similarly while the second term is
immediate. �

Lemma B.2 Suppose that H is a separable Hilbert space with inner product 〈·, ·〉 and
induced norm ‖ · ‖. Let {hj}∞j=1 be a complete sequence in H and M ⊂ H a closed
subspace. Let Π be the orthogonal projection onto M. Then {Πhj}∞j=1 is complete in M.

Proof: Fix ε > 0 and h ∈ M. Then by completeness of {hj} in H, there exists
λ1, . . . , λn such that ‖h− (λ1h1 + · · ·+ λnhn)‖ < ε. It follows that

‖h− (λ1Πh1 + · · ·+ λnΠhn)‖ = ‖Πh− (λ1Πh1 + · · ·+ λnΠhn)‖
= ‖Π(h− (λ1h1 + · · ·+ λnhn))‖ ≤ ‖Π‖op‖h− (λ1h1 + · · ·+ λnhn)‖ < ε ,

where the second inequality follows from ‖Π‖op = 1 by Conway (1990, Proposition 3.3).
We thus establish the Lemma.
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Example 2.4 (Quantile Curves without Crossing)

Let D = L2(T , ν) where T = [ε, 1 − ε] with 0 < ε < 1/2 and ν the Lebesgue measure
on T . The set Λ of (weakly) increasing functions in D can be formalized as follows. As
standard in Lp spaces, we consider two functions in L2(T ) to define the same element
when they are equal almost everywhere. We therefore say that f ∈ L2(T ) is ν-monotone
or simply monotone, if there exists a monotonic function g : T → R such that

ν({t ∈ T : f(t) 6= g(t)}) = 0 .

We then define Λ to be the set of ν-monotone functions in L2(T ). We first show that Λ
is closed and convex so that the metric projection exists and is singleton valued.

Lemma B.3 Let Λ ⊂ L2(T ) be the set of increasing functions. Then Λ is convex and
closed.

Proof: Suppose that f1, f2 ∈ Λ. Then there exist increasing functions g1 and g2 such
that fi = gi almost everywhere. Since for any a ∈ [0, 1], af1 +(1−a)f2 = ag1 +(1−a)g2

almost everywhere, and ag1 + (1 − a)g2 is clearly increasing, we thus conclude that
af1 + (1 − a)f2 ∈ Λ and thus Λ is convex. Now take a sequence {fn} ⊂ Λ such that
‖fn − f‖L2 → 0 as n → ∞. By passing to a subsequence if necessary, we may assume
that fn → f ∈ L2(T ) almost everywhere as n→∞. Since fn ∈ Λ, there is an increasing
function gn ∈ Λ such that gn = fn almost everywhere. It follows that gn → f almost
everywhere. Next define, for each t ∈ T ,

f(t) ≡ lim sup
n→∞

gn(t) .

Then f = f almost everywhere. Pick any s, t ∈ T with s < t, we have

f(s) = lim sup
n→∞

gn(s) ≤ lim sup
n→∞

gn(t) = f(t) .

Thus f is increasing, implying that f ∈ Λ and hence Λ is closed. �

We note that if f ∈ L2(T ) is monotonically increasing on T except a Lebesgue null
set say E0 ⊂ T , then there must exist an f̃ such that f̃ = f almost everywhere and
f̃ is increasing everywhere on T , meaning that f ∈ Λ. Specifically, we construct f̃ as
follows:

f̃(t) ≡

{
f(t) if t ∈ E1

limn→∞ f(tn) if t ∈ E0

,

where E1 ≡ T \E0, and {tn} ⊂ E1 is any sequence satisfying tn ↓ t as n → ∞. Such
a sequence exists because otherwise there exists a ball Bt(r) ≡ {t′ ∈ T : |t′ − t| ≤ r}
for some r > 0 such that Bt(r) ∩ E1 = ∅ and hence Bt(r) ⊂ E0, which is impossible
since then ν(E0) ≥ ν(Bt(r)) > 0. Now it is straightforward to verify that f̃ is increasing
on the whole domain T . One important implication out of this is that if f /∈ Λ, then
there exists a Lebesgue measurable set E with ν(E) > 0 such that f(s) > f(t) whenever
s, t ∈ E satisfy s < t.

We next proceed to establish the directional differentiability of metric projection
onto Λ at nonboundary points. There are couple of sufficient regularity conditions in
the literature towards this end. In present case, working with polyhedricity (Haraux,
1977) is easier for us.
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Lemma B.4 Let D = L2(T ) and Λ the set of (weakly) increasing functions in D. Then
the projection ΠΛ is Hadamard directionally differentiable at any θ ∈ D and the resulting
derivative evaluated at z ∈ D is given by ΠCθ(z), where

Cθ = Tθ ∩ [θ −ΠΛθ]
⊥ .

Proof: By Haraux (1977), it suffices to show that Λ is polyhedric – i.e.

(Λ + [ΠΛθ]) ∩ [θ −ΠΛθ]⊥ = Λ + [ΠΛθ] ∩ [θ −ΠΛθ]
⊥ . (B.1)

In turn, polyhedricity (B.1) is immediate if we can show that Λ + [ΠΛθ] is closed. To
this end, consider a sequence {fn} ⊂ Λ + [ΠΛθ] such that ‖fn − f‖L2 → 0 for some
f ∈ L2(T ). We want to show that f ∈ Λ + [ΠΛθ].

Let θ = ΠΛθ. Without loss of generality we may assume that fn = λn + anθ where
λn ∈ Λ is an increasing function for each n ∈ N. If {an} is bounded, then by passing to
a subsequence if necessary we may assume that an → a ∈ R as n → ∞. This implies
that λn = fn − anθ → λ ≡ f − aθ in L2 as n → ∞. Since Λ is closed, we have λ ∈ Λ
and hence f = λ + aθ ∈ Λ + [ΠΛθ]. For unbounded {an}, by passing to a subsequence
if necessary, first consider the case when an ↑ ∞ with an > 0 for all n ∈ N. Then
fn = λn + anθ ∈ Λ for each n ∈ N since Λ is a convex cone. This immediately implies
that f ∈ Λ since Λ is closed and hence f ∈ Λ + [ΠΛθ].

It remains to consider the case where fn = λn − anθ where an ↑ ∞ and an > 0 for
all n ∈ N. Suppose that f /∈ Λ + [ΠΛθ]. Then f + aθ is not increasing for all a ∈ R.
In particular, f + anθ + aθ is not increasing for each n and a > 0 – i.e. for each n ∈ N,
there is a subset En ⊂ T with ν(En) > 0 such that for all s, t ∈ En with s < t we have

f(s) + anθ(s) + aθ(s) > f(t) + anθ(t) + aθ(t) . (B.2)

Since ‖fn− f‖L2 → 0, by passing to a subsequence if necessary we may assume that
fn → f almost everywhere on T as n → ∞. By Egoroff’s theorem (Saks, 1937, p.19),
we may write T =

⋃∞
j=0 Fj where F0, F1, F2, . . . are Lebesgue measurable sets such that

ν(F0) = 0, and fn → f uniformly on each Fj for j = 1, 2, . . .. Let Ẽn = En\F0 for all
n ∈ N. We claim that Ẽn ⊃ Ẽn+1 for each n ∈ N. To see this, pick s, t ∈ Ẽn+1 with
s < t such that

f(s) + an+1θ(s) + aθ(s) > f(t) + an+1θ(t) + aθ(t) . (B.3)

It follows that

f(s) + anθ(s) + aθ(s) = f(s) + an+1θ(s) + aθ(s) + (an − an+1)θ(s)

> f(t) + an+1θ(t) + aθ(t) + (an − an+1)θ(s)

≥ f(t) + an+1θ(t) + aθ(t) + (an − an+1)θ(t)

= f(t) + anθ(t) + aθ(t) ,

where the first inequality is by (B.2), and the second is due to the facts that an ≤ an+1

and that θ(s) < θ(t) by θ ∈ Λ. Clearly, fn → f everywhere as n→∞ on Ẽ1.

To begin with, note that if there exist s, t ∈ Ẽn with s < t for some n ∈ N such
that θ(s) = θ(t), then by (B.2) it must be the case that f(s) > f(t). Since fn + αnθ
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is monotonically increasing, s < t and θ(s) = θ(t), it follows that fn(s) ≤ fn(t) for all
n ∈ N and hence f(s) ≤ f(t) by letting n → ∞, a contradiction. Therefore, we may
assume without loss of generality that θ(s) < θ(t) for any s, t ∈ Ẽ1 with s < t.

We further claim that ν(Ẽn) ↓ 0 as n→∞. To see this, pick s1, t1 ∈ Ẽ1 with s1 < t1
such that (B.2) holds. We then have

[f(s1) + anθ(s1) + aθ(s1)]− [f(t1) + anθ(t1) + aθ(t1)]

= [f(s1) + aθ(s1)]− [f(t1) + aθ(t1)] + an[θ(s1)− θ(t1)]

→ −∞ < 0 , as n→∞ .

Thus one of {s1, t1} is not in
⋂∞
n=1 Ẽn. Continuing in this fashion, we end up with⋂∞

n=1 Ẽn consisting of a singleton and hence ν(Ẽn) ↓ 0 as n→∞. Since Ẽ1 ⊂
⋃∞
j=1 Fj ,

it follows that Ẽn0 ⊂
⋃J
j=1 Fj for some n0 and J large enough, implying that fn → f

uniformly on Ẽn0 . Thus, for all sufficiently large n ≥ n0 where n0 doesn’t depend on a,

fn(s) + ε+ anθ(s) + aθ(s) > fn(t)− ε+ anθ(t) + aθ(t) ,

or,

λn(s) + 2ε+ a[θ(s)− θ(t)] > λn(t) , (B.4)

for s, t ∈ En\F0 with s < t. Since θ(s) − θ(t) < 0, by choosing a > 0 such that
2ε + a[θ(s) − θ(t)] = 0, we may conclude that λn(s) > λn(t) for all sufficiently large
n ≥ n0, reaching a contradiction. Hence we must have f ∈ Λ + [ΠΛθ], meaning that
Λ + [ΠΛθ] is closed so that Λ is polyhedric. �
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