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Abstract

Two central challenges in estimating models of differentiated products are separating

quality from price and separating observed components of quality from unobserved

components. There are important applications where the latter decomposition is not

needed, and it is then possible to undertake more general treatment of the former.

We develop a method that allows researches to identify and estimate hedonic price

functions for housing when quality is treated as latent. We illustrate the usefulness of

our new technique using two applications. First we estimate the model jointly for the

Chicago and New York metropolitan areas, obtaining estimated hedonic price func-

tions for the two metropolitan areas using a common latent quality scale. This per-

mits comparison of housing prices for each quality level between the two metropolitan

areas, comparison of housing stocks of each quality level, and calculation of differ-

ences in agglomeration economies between the two metro areas. Second, we gain new

insights into the causes and effects of the recent housing market crisis focusing on

Miami. Using data for three time periods, we estimate changes in rents and prices

across the quality spectrum during the dramatic run-up in housing prices in the years

preceding the financial crisis.

Keywords: Hedonic Models, Asset Value of Housing, Non-parametric Identification,

Semi-parametric Estimation, Housing Market Crisis, Multiple Housing Markets.



1 Introduction

Two central challenges in estimating models of differentiated products are separating

quality from price, and separating observed components of quality from unobserved

components. A major focus of the hedonic literature has been estimation of models

of differentiated products with the objective of delineating the demand and supply of

individual product characteristics. The pioneering work of Rosen (1974) transformed

this literature and inspired extensive research focused on applications and associated

issues of identification and estimation.1

The typical hedonic approach utilizes observations for product prices and a vector

of product characteristics available for one or more markets. The objective in im-

plementation is then to develop identification and estimation procedures that yield

consistent parameter estimates taking account of the potential presence of unobserved

product characteristics. This is in practice quite challenging. In many applications,

study of product characteristics is the central objective. For such problems, the

challenge of separating observed and unobserved components cannot be sidestepped.

There are other important applications, however, where the delineation of the role

of individual product characteristics is not needed. For such applications, avoiding

the complexities of separating the roles of observed and unobserved characteristics

permits a less restrictive approach to estimation of the hedonic price function.

The key to this alternative approach is treatment of quality as latent. We develop

this new strategy and demonstrate its value by applications to metropolitan-wide

housing markets. In our application to housing markets, we make additional innova-

tions. We provide an integrated treatment of rental rates and asset (property) values.

1This has been an important agenda of hedonic theory and of associated empirical work linking

house values to observed house characteristics. For a review of the recent literature see, for example,

Kuminoff, Smith, and Timmins (2013).
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We show how to estimate the nonlinear equilibrium pricing functions for both rentals

and property values. Key elements of our approach are the following. We develop

a non-parametric matching approach to identify the implicit rent-to-value ratio for

owner-occupied houses as a function of latent quality. We threat the metropolitan

area as a unified housing market. We show that rental and asset prices as a func-

tion of quality are separately identified for the entire distribution of housing in the

metropolitan area, yielding an estimator of the quality distribution of housing in the

entire market. We define quality in the broadest terms to incorporate not only struc-

tural housing characteristics per se, but also all publicly provided amenities as well

as natural amenities. Finally, we also show how to estimate period-to-period changes

in housing supply as a function of quality. Implementation of our new approach is

feasible with readily available data for metropolitan housing markets in the U.S.

Our key simplifying assumption is that quality can be mapped onto a unidimen-

sional index. In this respect, our approach is positioned between two widely employed

characterizations of housing markets. One treats housing as a homogeneous and per-

fectly divisible commodity. The other treats housing as comprised of a fixed stock

of heterogeneous housing types.2 Our approach occupies the middle ground, with

housing being continuous and unidimensional, as in the former approach, while being

heterogeneous along the quality dimension and inelastically supplied within-period,

as in the latter. In adopting this unidimensional characterization of housing, we forgo

the potential of the multi-attribute framework for valuing individual elements of the

bundle of housing attributes. We also avoid the severe challenges entailed in extend-

ing the multi-attribute framework to a multi-period setting, such as modeling changes

in the stocks and prices of houses with varying attribute bundles. In exchange for our

simplifying assumption, we gain a tractable framework that is ideally suited to study

2The former dates to the classic works of Muth (1960, 1969) and Mills (1972) while the later was

pioneered by Dunz (1989) and Nechyba (1997, 2000).
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the distributions of quality and price in metropolitan housing markets, comparisons

across metropolitan areas, and changes over time within and across markets.3

We show that there exists a new flexible parametrization of Rosen’s model that

exploits generalized forms of the log-normal distributions proposed by Vianelli (1983).

This approach yields a closed-form solution for the equilibrium hedonic pricing func-

tion. The baseline specification incorporates variation in income across households

that have a common preference function. We then generalize to consider multiple

household types, with the income distribution and the preference function varying

across types. An innovation of our approach for this multiple-type model is use of

k-means clustering to group households into types.

When quality is latent there is an obvious identification issue since there is no

inherent scale for housing quality. For every non-linear pricing model, there exists a

transformation of the utility function such that this model is observationally equiva-

lent to the original model and pricing is linear. We can, therefore, normalize housing

quality by setting it equal to the rental price in a baseline period and identify prefer-

ences for housing from the observed income expansion paths. We need data for more

than one time period or multiple spatial markets to identify non-linearities in pricing

of housing.4

3Ekeland, Heckman, and Nesheim (2004) establish non-parametric identification using data for

a single market when marginal utility and marginal product functions are additive. Their paper

demonstrates the payoff from exploiting all equilibrium implications of the hedonic structure. We

follow their lead, exploiting all equilibrium information in identification and estimation of our model.

Heckman, Matzkin, and Nesheim (2010) extend their analysis of non-parametric identification to

non-additive models utilizing a unidimensional quality scale with multidimensional types. Analo-

gously, we use a unidimensional index of housing quality with multiple household types. We adopt a

flexible parametric specification of preferences and distribution of household characteristics, but an

interesting question for future work is non-parametric identification of our latent-quality framework

along the lines of Hechman, Matzkin, and Nesheim (2010).
4Exploiting variations among multiple markets is also a useful strategy to obtain identification if
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In addition, we must overcome one more identification problem. For rental units,

we observe rental prices, but not housing values. For owner-occupied units, we observe

housing values, but not rental prices. As a consequence, both rental rates and values

are only partially observed by the econometrician. This imposes the need to identify

the equilibrium rent-to-value ratio as a function of quality. Empirical hedonic studies

typically resolve this problem by either only focusing on owner occupied housing or

using a common estimate of the user cost that does not depend on quality. The

former approach ignores rentals while the later approach may be inconsistent with

the data. In both of our applications we can reject the null hypothesis that the user

cost does not depend on quality.

We consider investors who trade real estate assets and model the equilibrium in

these competitive asset markets. We show that the value of the house is given by the

expected net present value of the discounted stream of rental income. Housing values

and rents are, therefore, closely linked in equilibrium. One cannot analyze values

separately from rents. At each point of time, the proportionality between rents and

values can be captured by a time varying quality dependent rent-to-value function.

We show that these functions are non-parametrically identified by characterizing the

set of households that are indifferent between owning and renting for a given level of

housing quality.

Our empirical findings provide valuable new insights into metropolitan housing

markets. We provide two applications. We estimate the model jointly using data

for two large metropolitan areas, Chicago and New York. The results provide a

comparison of the quantity of housing of each quality for the two metropolitan areas.

We estimate the compensating variation arising from the difference in quality and

characteristics are observed as discussed in Bartik (1987) and Epple (1987). Alternative strategies for

identification are discussed in Ekeland, Heckman, and Nesheim (2004), Bajari and Benkard (2005),

and Heckman, Matzkin, and Nesheim (2010) and Bajari, Fruehwirth, Kim, and Timmins (2012).
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price a household of a given income would obtain in a larger relative to a smaller

metropolitan area. We also compare compensating variations as a function of income

across household types. These measures are of interest in their own right and also

provide valuable insights into agglomeration economies. In particular, the aggregate

of the compensating variations across the entire set of households occupying the

larger metropolitan area provides a measure of the aggregate compensating variation

foregone by households choosing to reside in the larger metropolitan area, and hence a

measure of the minimum agglomeration benefits that must be provided by the larger

metropolitan area. We find that, for a household at the 50th income percentile in

Chicago, a compensating variation of approximately 20% of income is required to

induce that household to move to New York.

In our second application, we study changes in price across the quality distribution

in Miami which experienced dramatic housing prices during the recent housing bubble.

We find housing prices relative to annualized rents increased over the entire quality

spectrum, but with especially pronounced increases at the lower end of qualities.

These findings accord well with the widespread reporting of eased access to credit,

especially for lower-income buyers, during the housing price run-up.5

2 Asset Prices and Rental Rates

We consider the determination of asset prices and rental rates for houses with het-

erogenous quality. Our model distinguishes between housing services, defined as the

period flow of housing consumption, and housing assets. Housing values or prices for

real estate assets depend on prevailing and expectations about future interest rates,

5This part of our analysis build on the work of Landvoigt, Piazzesi, and Schneider (2015) who

employ a latent unidimensional housing quality scale and the approach of equating CDF’s of housing

demand and supply to impose market clearing for each house quality type.
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costs of homeownership, property taxes and rental rates for housing services. Real

estate values are determined in asset markets. Housing services can be rented in

frictionless markets that allow for nonlinear pricing of housing quality. Current and

future rental rates partially determine housing values, while housing values partially

determine the supply of new housing units. As a consequence, both markets cannot

be studied in isolation.

2.1 Asset Markets

First, we consider the asset markets for housing. Housing units differ by quality, which

can be characterized by a one-dimensional ordinal measure denoted by h. There is

an asset market in which investors can buy and sell houses at the beginning of each

period. Let Vt(h) denote the asset price of a house of quality h at time t.6

Assumption 1 Investors discount housing assets at a rate that reflects the perceived

financial market risk of housing assets.

Let the one-period risk-adjusted interest rate be denoted by it. Investors are also

responsible for paying property taxes to the city. The property tax rate is given by

τ pt . Finally owners have additional costs due to appreciation and maintenance that

occurs with rate δt.

Assumption 2 The market for housing assets is competitive.

The expected profits, Πt, of buying a house with quality h at the beginning of

period t and selling it at the beginning of the next period is then given by:

Et[Πt(h)] = Et

[
−Vt(h) + vt(h) +

Vt+1(h)(1− τ pt+1 − δt+1)

1 + it

]
(1)

6Our approach is closely related to that of Poterba (1984), Poterba (1992) and Poterba and Sinai

(2008).

6



where the first term reflects the initial investment, the second term the flow profits

from rental income at time t, and the last term the discounted expected value of

selling the asset in the next period.7

In equilibrium, expected profits for investors must be equal to zero. Hence housing

values or asset prices must satisfy the following no-arbitrage condition:

0 = Et

[
−Vt(h) + vt(h) +

Vt+1(h)(1− τ pt+1 − δt+1)

1 + it

]
(2)

Solving for Vt(h), we obtain the following recursive representation of the asset value

at time t:

Vt(h) = vt(h) +
(1− τ pt+1 − δt+1)

(1 + it)
Et [Vt+1(h)] (3)

By successive forward substitution of the preceding, we obtain:

Vt(h) = vt(h) + Et

∞∑
j=1

βt+j vt+j(h) (4)

where the stochastic discount factor is given by:

βt+j =

j∏
k=1

(1− τ pt+k − δt+k)
(1 + it+k−1)

(5)

This demonstrates that the asset value of a house of quality h is the expected dis-

counted flow of future rental income. The discount factors βt+j depend on interest

rates, property tax rates and depreciation rates. An alternative instructive way of

writing this expression is as follows. Let 1 + πt(h) =
vt+j(h)

vt+j−1(h)
denote the rate of

housing inflation at date t. Define β̃t+j as follows:

β̃t+j(h) =

j∏
k=1

(1− τ pt+k − δt+k) (1 + πt+k(h))

(1 + it+k−1)
(6)

Then:

Vt(h) =
vt(h)

ct(h)
(7)

7For analytical convenience, we are assuming that property taxes and maintenance expenditures

are due at the beginning of the next period.
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where ct(h) is the user cost of capital:

ct(h) =
1

1 + Et
∑∞

j=1 β̃t+j(h)
(8)

Consider the time-invariant case studied by Poterba (1984, 1992):

Et

j∏
k=1

(1− τ pt+k − δt+k)(1 + πt+k(h))

(1 + it+k−1)
=

[
(1− τ p − δ)(1 + π(h))

1 + i

]j
(9)

When τ p, δ, π, and i are small, the preceding closely approximates the continuous

time solution of Poterba (1984): u(h) = (i+ τ p + δ − π(h)).

Our model does not assume that investors have correct expectations about housing

rental appreciation. There may be time periods, for example, where expectations of

rental price increases prove to be greater than the actual rates of increase that are

realized.

2.2 Rental Markets

To complete our model of asset prices, we need to derive the equilibrium rent function

that prevails in the market for housing services. We follow the hedonic literature in

allowing for non-linear pricing in a rental market for housing services. There is a

continuum of renters with mass equal to Nt. We normalize the population at the

initial date to be one (N1 = 1) and treat {Nt}∞t=1 as an exogenous process. In our

model, owner-occupants households make decisions about housing consumption using

an implicit rental that equals the amount the dwelling would command on the rental

market. Hence, for simplicity in the presentation in this section, we refer to all housing

consumers as renters.

In our baseline model, renters differ in income denoted by y. We then extend this

model and allow for additional sources of heterogeneity among households. The main

advantage of the baseline model is that we can obtain a closed form solution to the
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equilibrium rental price function, as we will see below, which is helpful to establish

the basic identification results. We show that key results go through in the more

general class of models discussed below.

Let Ft(y) be the metropolitan income distribution at time t. Renters have pref-

erences defined over housing services h and a composite good b. Let Ut(h, b) be the

utility of a household at time t.

Since housing quality is ordinal, housing quality is only defined up to a monotonic

transformation. Given such a normalization, we can define a mapping vt(h) that

denotes the period t rental price of a house that provides quality h. The transactions

cost in the rental market are zero. Hence, a household can costlessly change its

housing consumption on a period-to-period basis as rental rates change. It follows

that a household’s optimal choice of housing at each date t maximizes its period

utility at date t:

max
ht,bt

Ut(ht, ct) (10)

s.t. yt = vt(ht) + ct

where ct denotes expenditures on a composite good.

The first-order condition for the optimal choice of housing consumption is:

mt(ht, yt − vt) ≡
Uh(ht, yt − vt)
Uc(ht, yt − vt)

= v′t(ht) (11)

Solving this expression yields housing demand ht(yt, vt(h)). Integrating over the in-

come distribution yields the aggregate housing demand Hd
t (h|vt(h)):

Hd
t (h|vt(h)) =

∫ ∞
0

1{ht(y, vt(h)) ≤ h} dFt(y) (12)

where 1{·} denotes an indicator function. Thus Hd
t (h|vt(h)) is the fraction of renters

whose housing demand is less than or equal to h.

To characterize household sorting in equilibrium, we impose an additional restric-

tion on household preferences.
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Assumption 3 The utility function satisfies the following single-crossing condition:

∂mt

∂y

∣∣∣
Ut(h,y−v(h))=Ū

> 0 (13)

Assumption 3 states that high-income households are willing to pay more for a

higher quality house than low-income households – a weak restriction on preferences.

The single-crossing condition implies the following result.

Proposition 1 If Ft(y) is strictly monotonic, then there exists a monotonically in-

creasing function yt(v) which is defined as

yt(v) = F−1
t (Gt(v)) (14)

Note that yt(v) fully characterizes household sorting in equilibrium.

Finally, we need to consider housing supply to close the model. Let qt(h) denote

the density of housing of quality h at date t. The distribution of housing quality is

thus fixed at time. However, it can change over time. These changes are captured by

the following law of motion:

qt(h) = s(qt−1(h), Vt(h), Vt−1(h)) (15)

Supply of quality h at date t thus depends on the quantity of that housing quality the

previous period, the values of houses of that quality in the previous and current peri-

ods. This formulation reflects the fact that home builders produce and sell dwellings

and hence are concerned about the market value of the dwelling, Vt(h), and not im-

plicit rent. Including lagged values of quantity and price serves to capture potential

adjustment costs. To estimate the model we will later use a parametric version of

this function.

Assumption 4 We adopt the following constant-elasticity parametric form for this

supply function:

qt(h) =
1

kt
qt−1(h)

(
Vt(h)

Vt−1(h)

)ζ
(16)
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where

kt =

∫ ∞
0

qt−1(h)

(
Vt(h)

Vt−1(h)

)ζ
dh (17)

While this function is not explicitly derived from a specification of a cost function

for the producer, it has attractive properties. It is parsimonious; it introduces only

one additional parameter, ζ. Equation (16) also implies that the stock of housing

of quality h does not change from date t − 1 to date t if the the asset price of that

quality of housing does not change. If the price of housing type h rises, the quantity

rises as a constant elasticity function of the proportion by which the price increases.

If the price of housing type h falls, the quantity declines reflecting depreciation and

reduced incentive to invest in maintaining the housing stock. The magnitude of the

response depends on the elasticity ζ.

In period one, we take the housing stock, R1(h), as given. The market clearing

condition for the housing market in period one is then:

G1(v1(h)) = R1(h) (18)

Consider periods t > 1. The distribution of housing supply in period t is:

Rt(h) =

∫ h

0

kt qt−1(x)

(
Vt(x)

Vt−1(x)

)ζ
dx (19)

We thus obtain a recursive relationship governing the evolution of the supply of

housing over time. Market clearing in the housing market at date t requires:

Gt(vt(h)) = Rt(h) (20)

The ”number” of renters of income y at date t is given by:

nyt (y) = Ntft(y) (21)

where ft(y) is the income density. Similarly, the number of houses at rental v is:

nvt (v) = Ntgt(v) (22)
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where gt(v) is the income density. Single-crossing implies that, in equilibrium, the

house rental expenditure at date t by income y must satisfy:

NtFt(y) = NtGt(v) (23)

or Ft(y) = Gt(v). In equilibrium rental markets must clear for each value of h. We

can define an equilibrium in the rental market for each point of time as follows:

Definition 1 A hedonic housing market equilibrium is an allocation of housing con-

sumption for each renter and price function vt(h) such that

a) Households behave optimally given the price function;

b) Housing markets clear, i.e. for each level of housing quality h, we have:

Hd
t (h| vt(h)) = Rt(h) (24)

To obtain a closed form solution for the equilibrium pricing function, we impose

additional functional form assumptions.

Assumption 5 Income and housing are distributed generalized log-normal with lo-

cation parameter (GLN4).8

ln(yt) ∼ GLN4(µt, σ
rt
t , βt) (25)

ln(vt) ∼ GLN4(ωt, τ
mt
t , θt)

These functions are sufficiently flexible to fit the housing value and income distribu-

tions in the metro areas and time periods that we consider in the empirical analysis.

Imposing the restriction that rt = mt permits us to obtain a closed-form mapping

from house value to income. We then establish that the further assumption that

8The four-parameter distribution for income simplifies to the standard two-parameter lognormal

when the location parameter, βt, equals zero and the parameter rt = 2. Similarly for the house

value distribution. See Appendix B
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θt − βt is time invariant permits us to obtain a closed-form solution to the hedonic

price function.9

Proposition 2 If rt = mt ∀t, the income housing value locus is given by the follow-

ing expression:

yt = At (vt + θt)
bt − βt (26)

with at = µt − σt
τt
ωt, At = eat , and bt = σt

τt
.

For our discussion of identification below, it is useful to note that all of parameters

of the sorting locus, at = µt− σt
τt
ωt, At = eat , bt = σt

τt
, and θt can be estimated directly

from the data. In addition, it will be useful below to note that if bt > 1, this function

is convex.

To obtain a closed form solution for the equilibrium price function, we adopt the

following functional form for household preferences.

Assumption 6 Let utility given by:

U = ct(h) +
1

α
ln(yt − vt(h)− κ) (27)

with ct(h) = ln(1− φ(h+ η)γ), where α > 0, γ < 0, φ > 0, and η > 0.10

In addition to yielding a closed-form solution for the hedonic price function, this

utility function proves to be relatively flexible in allowing variation in price and income

elasticities.11 Given this parametric specification of the utility function, we have the

following result:

9We impose both of these restrictions when estimating our model. We later estimate a discretized

version without these restrictions to establish that these restrictions do not impair fit in the context

of our applications.
10This utility function requires the following two conditions be satisfied 1 − φ(h + η)γ > 0 and

yt − vt − κ > 0.
11See Appendix C for details.
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Proposition 3 If bt > 1 (σt > τt) and κ = θt − βt ∀t, the hedonic pricing function

is well defined and given by:

vt(h) =
(
At
[
1− (1− φ(h+ η)γ)α(bt−1)

]) 1
1−bt − θt (28)

for all h > ( 1
φ
)

1
γ − η

Note that σt
τt
> 0 is required for the price function to be increasing with h.

Our analysis of rental markets, therefore, provides an analytical characterization

of the the rental price of housing, vt(h), as a function of house quality, h. The market

fundamentals determining vt(h) are the quality of the housing stock and the demand

for housing services arising from the distribution of income in the metropolitan popu-

lation. Equilibrium also depends indirectly on the equilibrium in asset markets since

supply depends on asset values..

2.3 Extensions

In this section we show how to extend this model to allow for a additional sources of

heterogeneity among households. Let us assume that there exist i = 1, ..., I different

types of households. For examples, households may differ by age, number of children,

level of education, race, or ethnicity. The fraction of each type i at time t is given by

sit. Each type of household has a utility function that depends on its type Ui(h, b).

For example, a straight forward extension of the parametric utility function used in

the previous section is the following utility function:

Ui(h, b) = ln(1− φi(h+ ηi)
γi) +

1

αi
ln(b− κi) (29)

Moreover, let Fi,t(y) denote the income distribution for each type.

In principle, we can proceed as before and derive the demand of each household

type as above, treating housing as a continuous good. With this generalization to mul-

tiple types, analytical solutions for the equilibrium price functions are not available,

14



and we rely on numerical solution methods. Anticipating the need to rely on numer-

ical solution algorithms, we develop the extension of our model using a discretized

approximation of the housing stock.12

Given a grid of values (h1, ...., hJ), we use discrete distributions to approximate

the continuous distributions characterizing housing demand and supply. We index

the pricing function accordingly and let vjt = vt(hj). There will be, for each type, an

income that is indifferent between each ”adjacent” pair of housing qualities. These

cut-off incomes ŷi,j,t satisfy

Ui(hj, ŷi,jt − vjt) = Ui(hj+1, ŷi,j,t − vj+1,t) (30)

As a consequence all households of type i with ŷi,j−1,t ≤ ŷi,j,t will consume housing

quality j assuming that preferences for each type satisfy a single-crossing condition.

For the parametrization of the utility function discussed above, these cut-off levels

are given by:

ŷi,j,t =
vj,t − e(Mi,j+1−Mj)αi vj+1,t

1− e(Mi,j+1−Mj)αi
+ κi (31)

where Mi,j = ln(1 − φi(hj + ηi)
γi). Given these income cut-offs, the demand of

household type i for houses with quality hj is given by:

Hd
i,j,t(v1t, ..., vJt) = Fi,t(ŷi,j,t) − Fi(ŷi,j−1,t) (32)

where Fi(y) is the income distribution function of type i. Summing over all types then

yields the total demand. The market clearing conditions for housing can, therefore,

be written as a system of J nonlinear equations in each period t:

I∑
i=1

si,t Hi,j,t(v1,t, ..., vJ,t) = rj,t ∀j (33)

where rj,t is the fraction of units in each quality bin hj

rj,t = Rt(hj)−Rt(hj−1) (34)

12Another advantage of the the discrete approach is that we can easily relax the functional form

assumption for the utility function.
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It is straightforward then to extend the definition of equilibrium to this extension of

our model.

3 Identification

We consider identification of the model assuming that a) we have access to data for

one market that is observed for more than one time period; and b) h is not observed.

Moreover, we first consider the model with one type for which we have an analytical

solution of the equilibrium price function. Since housing quality is ordinal and latent,

there is no intrinsic unit of measurement for housing quality. The implications of the

latent quality measure for identification are formalized by the following proposition.

Proposition 4 For every model with equilibrium rental price function v(h), there ex-

ists a monotonic transformation of h denoted by h∗ such that the resulting equilibrium

pricing function is linear in h∗, i.e. v(h∗) = h∗.

We can use arbitrary monotonic transformations of h and redefine the utility

function accordingly. Proposition 4 then implies that if we only observe data in one

housing market and one time period, we cannot identify u1(h) separately from v(h).

Suppose now that we have data for more than one time period in a market. A corollary

of Proposition 4 is that we can normalize housing quality by setting h = vt(h) in one

time period t. As we show in the proof of Proposition 5, this allows us to establish

identification of the preference parameters. If, in addition, we make the standard

assumption that period preferences are invariant over time, this normalization then

suffices to identify the price functions in all other time periods.

Assumption 7 The utility function is invariant across period.

Assumption 7 implies the following result.
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Proposition 5 The parameters of our utility function and the price function in all

periods t+ s, s > 1 are identified.

Broadly speaking, the parameters of the utility function are identified from the ob-

served income-expansion paths in the baseline period. Conditional on knowing the

utility function, the rental price functions in all subsequent periods only depend on

the observed joint distribution of rents and income. The proof of Proposition 5 pro-

vided in the appendix formalizes this result. The same argument applies to establish

identification from cross-sectional data for two or more geographically distinct mar-

kets.

Thus far we have implicitly assumed that the distribution of rents is observed

by the econometrician. Here, we discuss how to relax this assumption and account

for the fact that rents are not observed for owner-occupied housing and need to be

imputed.

As discussed previously, owner-occupants make their housing consumption deci-

sions, and hence purchase decisions, based on implicit rent that corresponds to the

market rent a dwelling would command. Hence households with income y consume

the same quality of housing independently whether they live in a rental unit, for

which we observe, vt(y), or in an owner-occupied unit, for which we observe Vt(y).

By varying income y we can trace out the equilibrium locus Vt(v). As a consequence,

we have the following result:

Proposition 6 There exists an equilibrium locus vt = vt(Vt) which characterizes the

rent of any housing unit as a function of its asset price. Moreover, this function is

non-parametrically identified.

Proposition 6 implies that we can impute rents for owner-occupied using the rent-

value functions. In practice, our data are more noisy since rents and values are not
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perfectly correlated with income as predicted by our model. However, we can use

E[vt|y] and E[Vt|y] to estimate the two sorting loci, vt(y) and Vt(y), and proceed as

discussed above. As a consequence the rent-to-value function is non-parametrically

identified.

Having identified the rent-to-value function, it is straight forward to identify the

housing supply function based on the market clearing condition in periods t ≥ 2. We

have the following result

Proposition 7 The parameters of housing supply function are identified if we observe

the equilibrium for at least two periods or two geographically distinct markets.

Note that the key insights of the identification strategy cary over to the model

with multiple discrete types. Proposition 4 is still valid. Our approach for identifying

rent-to-value functions described in Proposition 6 also generalizes to models in which

households are characterized by an observed vector of characteristics. The key as-

sumption is that the average quality of housing consumption conditional on observed

characteristics is the same for owners and renters, i.e. there is no sorting on unob-

servables into home ownership. The non-parametric matching algorithm extends to

more general demand models in which demand depends on a vector of observed state

variables.13

It remains to extend the results in Proposition 5. Note that the proof of Propo-

sition 5 presented in the appendix relies on the analytical solution of the equilibrium

price function. But the basic ideas behind the proof of Proposition 5 carry over. Given

the normalization of quality in terms of values in the baseline period, the condition

for identification is that there exists a unique value of the parameters of the utility

function that is consistent with the market clearing conditions for the J qualities in

13An alternative strategy to identify and estimate the rent-to-value function is discussed in Bracke

(2013), who uses observations of houses that were both rented and sold within a short period.
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the baseline period. If these conditions are met, the parameters of the utility function

can be recovered from the observed equilibrium in the baseline period. Equilibrium

prices for all subsequent periods are given by the market clearing conditions in all

subsequent periods.

4 Estimation

The proofs of identification are constructive and can be used to define a three step

estimator for our model. First, we estimate the rent-to-value functions using a non-

parametric matching estimator. For simplicity of exposition, we discuss estimation

based on data for multiple time periods, but the logic applies equally if estimation

is for multiple geographically distinct markets, or both. We estimate the rent-value

function for each time period allowing for changes in the user-cost functions across

time periods. This approach captures changes in credit market conditions and investor

expectations in a flexible non-parametric way. Second, we impute rents for owner-

occupied housing and estimate the joint aggregate distribution of rents and income

for each time period. Third, we estimate the structural parameters of the rental

model using an extremum estimator which matches quantiles of the income and value

distributions while imposing the parameter constraints in Propositions 2 and 3 and

the housing market equilibrium restriction that Rt+j(h) = Gt+j(vt+j(h)) for j ≥ 1.

Let F̃N
t,j denote the jth percentile of empirical income distribution at time t that

is estimated based on a sample with size N . Similarly, let G̃N
t,j denote the jth per-

centile of empirical housing value distribution at time t that is estimated based on

a sample with size N . Moreover, let Ft(yt,j;ψ) and Gt(yt,j;ψ) denote the theoretical

counterparts of the quantiles predicted by our model. Our extremum estimator is

then defined as:

ψ̂N = argminψ∈Ψ LN(ψ) (35)
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subject to the structural constraints. The objective function is:

LN(ψ) = (1−W ) (lNy (ψ) + lNr (ψ)) + W lh(ψ) (36)

for some weight W ∈ [0, 1] and:

lNy (ψ) =
T∑
t=1

J∑
j=1

([Ft(yt,j;ψ)− Ft(yt,j−1;ψ)]− [F̃N
t,j − F̃N

t,j−1])2

lNr (ψ) =
T∑
t=1

J∑
j=1

[Gt(vt,j;ψ)−Gt(vt,j−1;ψ)]− [G̃N
t,j − G̃N

t,j−1])2

lNh (ψ) =
T∑
t=2

J∑
j=1

([Gt(vt(hj;ψ)−Rt(hj;ψ))2

Note that W is the weight that is assigned to the market clearing conditions.14 We

use a standard bootstrap procedure to estimate the standard errors.

This estimator can be extended to estimate the model with multiple observed

types. There are two differences. First, we need to estimate the rent to value loci

separately for each type to convert housing values into rent. That gives us the aggre-

gate rent distributions for each type. Second, we do not have an analytical solution

to the hedonic price function, but need to compute the equilibrium prices numeri-

cally using the J market clearing conditions in the discretized version of the model.

With these two changes, the modified estimation algorithm follows the steps discussed

above for the simpler model.

5 Empirical Results

We obtained data from the American Housing Survey, the most comprehensive na-

tional housing survey in the United States. There is a national and a metropolitan

version, and, in selected years, also an extended metropolitan component for some

14We find that our estimates do not depend significantly on the choice of this parameter.
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metropolitan areas in the national version. There are surveys conducted every year,

but the metropolitan areas covered in the metropolitan version change in each year.

There is no fixed interval over which the same metropolitan area is re-surveyed. The

unit of observation in the survey is the housing unit together with the household.

The same housing unit is followed through time, but the sample of households may

change.15

Fortunately, the AHS conducted surveys in both Chicago and New York for both

1999 and 2003. We exploit data from these surveys for our first application, jointly es-

timating the model for those two metropolitan areas. Our second application exploits

three successive surveys (1995, 2002, 2007) for Miami to study the period preceding

the housing bubble and period of the housing bubble in Miami.

5.1 The Housing Markets of Chicago and New York

One of the most advantageous features of our model is its capacity to separate quality

from price by identifying the prices for different levels of the quality distribution for

each market at each point in time. One very interesting application is comparison

across metropolitan areas over time. Fortunately, the AHS provides data for con-

current years, 1999 and 2003, for two major metropolitan areas, Chicago and New

York. Hence, for our first application, we estimate our model for these two periods

for these two metropolitan areas. AHS definitions of each of these metropolitan areas

15The sample is selected from the decennial census. Periodically, the sample is updated by adding

newly constructed housing units and units discovered through coverage improvement. The survey

data are weighted because there is incomplete sampling lists and non response. The weights are

designed to match independent estimates of the total number of homes. Under-coverage and nonre-

sponse rate is approximately 11 percent. Compared to the level derived from the adjusted Census

2000 counts, housing unit under-coverage is about 2.2 percent.
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is unchanged across these two periods.16 We use New York metropolitan area in 1999

as the base for our normalization. As a shorthand, we will sometimes refer to the two

metropolitan areas as CMA and NYMA. We present results for our continuous model

with one household type and also for the discretized model with multiple household

types.

Two key steps set the stage for estimation of parameters of our model. One is

presentation of our findings defining implicit rents. The other is presentation of our

analysis of classification of households by type for the multiple-type model. We then

obtain the structural parameters using an estimator that includes orthogonality con-

ditions for predicted and observed income and rent percentiles for each metropolitan

area.17

We start with our estimates of the user-cost mapping between rents and values.18

We find that the estimated user cost ranges between 0.058 and 0.061 for 1999, and

between 0.051 and 0.062 for 2003. In subsequent discussion, we will use the term

rentals to encompass rental payments for rental units and implicit rentals for owner-

occupied units.

For implementation of our multiple-type model, we reduce the dimensionality of

potential household types using k-means clustering. This is a standard method in

data mining.19 The method partitions the points in a multidimensional data matrix

16The Chicago metropolitan area is defined by the Census in 1999 and 2003 to consist of the fol-

lowing counties: Cook, Du Page, Kane, Lake, McHenry, and Will. The New York metropolitan area

is comprised of Bronx, Kings, Nassau, New York, Putnam, Orange, Queens, Richmond, Rockland,

Westchester, and Suffolk counties.
17Preference parameters must simultaneously satisfy structural constraints for all metropolitan

areas considered.
18We estimate this equivalence by calculating the mean rents and values by income. These means

give us the user cost u(h). Our sample sizes within type are not sufficiently large to estimate user

cost by income for different household types.
19Neill (2006) provides a clear treatment of this topic. Nath (2007) shows an interesting application
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into k clusters. An iterative partitioning minimizes the sum, over all clusters, of the

within-cluster sums of point-to-cluster-centroid distances. The results presented here

are for squared Euclidean distances. We focus on capturing the role of two important

variables that influence the housing consumption decisions of households: age and

number of children. Households are clustered with respect to the share of income

they spend on rent.

Table 1: k-means clustering centroids.

Cluster # Children Age Share of Population

Chicago

1 0.29 29.03 0.261

1999 2 1.45 45.60 0.465

3 0.24 72.31 0.273

1 0.29 29.19 0.246

2003 2 1.43 45.75 0.484

3 0.269 73.10 0.269

Cluster # Children Age Share of Population

NYC

1 0.35 27.33 0.251

1999 2 1.77 46.54 0.486

3 0.45 67.43 0.262

1 0.45 28.15 0.268

2003 2 1.99 48.11 0.466

3 0.30 65.12 0.264

We obtain three clusters, which is the optimal number of clusters calculated with

our sample data.20 Table 1 shows estimated cluster shares and centroids for CMA

of this method to detection of crime hot spots.
20We used NYMA in 2003 for the cluster analysis, employing the silhouette criterion in determining

the optimal number of clusters. The silhouette of a data point is a measure of its relative match to
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and NYMA respectively for 1999 and 2003. As we will see, our estimation supports

the claim that these types have significantly different preferences. An intuitive inter-

pretation of the three groups is the following: Type 1 is primarily comprised of young

households with few or no children, Type 2 is primarily comprised of middle aged

households with more than one child, and Type 3 is comprised of older households

with no children residing in the household. As can be seen in Table 1, the share of

households by type is remarkably similar across the two metropolitan areas and the

two time periods. The mean number of children is modestly higher for each type in

NYMA relative to CMA. Mean age in the third group is somewhat higher in CMA

than in NYMA. Overall, however, means by age and by number of children within

each type are quite similar across metropolitan ares and across periods.

Further information about the clusters is provided in Figure 1 which shows the

distribution of number of children by age of household head in the two metropolitan

areas in 2003. To help in reading the figure, we have included curves that approxi-

mately demarcate the three household types.

Figure 1: # of Children for each household type obtained through k-means clustering.
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Income distributions by type for 2003 in the two metropolitan areas are shown in

the top panel of Figure 2; rental distributions are shown in the bottom panel. The

its cluster relative to alternative clusters.
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distributions for income show that the Type 3 households tend to be poorest among

the three groups in both metropolitan areas. Likewise, the rental distributions show

that Type 3 households tend to have lower rental expenditures than the other two

types. There is little difference in income distributions between Types 1 and 2 in

NYMA whereas households Type 2 households tend to be more well-to-do in CMA.

In NYMA, Type 1 households tend to have the highest rental expenditures. In CMA,

Type 1 households have the highest rental expenditures over the lower half of the

income range while Type 2 households have highest expenditures over the upper half

of the income rang.

Figure 2: Observed distributions for each household type obtained through k-means

clustering.
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Figure 3 provides rental expenditure shares as a function of income in 2003 for

CMA and NYMA. The ordering of expenditure shares across types is the same in

both metro areas. At each income level, the ordering of types from highest to lowest

expenditure is Type 3, Type 1, and Type 2. Type 3 households spend a higher share

of income on rents at each level income than the other two household types. 21 At

high income levels, Type 1 and Type 2 households spend similar shares on housing.

Type 2 households spend a somewhat smaller share than Type 1 at each income

level, perhaps sacrificing housing quality in order to provide for other needs of their

children.

Overall Figures 2 and 3 demonstrate that the clustering algorithm has identified

types with differing income distributions and differing housing expenditure patterns.

Figure 3: Share of income spent on housing for each household type obtained through

k-means clustering.
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The estimates for the preference and supply functions are reported in Table 1. The

21The AHS income measure is designed to include all wage and non-wage income. Research by

Susin (2003) shows that the AHS estimate of non-wage income is lower than the CPS measure. Hence,

the higher expenditure share of older (i.e., Type 3) households may, in part, reflect underestimate

of non-wage income.
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first row of Table 1 shows results for our baseline one-type model. The remaining

three rows show results from the three-type model. All parameters have the correct

algebraic signs and bootstrapped standard errors show the estimates to be highly

significant. The implications of our preference parameter estimates are best illustrated

by a few select figures.

Table 2: Joint estimates 1999-2003 for New York City and Chicago.

Type α φ η γ ζ

Baseline 1.399 2.921 9.111 -0.880 0.055

(0.031) (0.578) (2.104) (0.199) (0.019)

Type 1 3.123 2.733 4.554 -0.749

(0.012) (0.451) (0.023) (0.832)

0.079Type 2 1.332 4.576 14.675 -0.799

(0.013) (0.231) (2.235) (0.140) (0.009)

Type 3 0.104 2.018 0.1779 -1.030

(0.098) (0.143) (0.234) (0.056)

Price and income elasticities implied by our preference parameters estimates are

plotted as a function of income in Figure 4.22 The income elasticities have the same

order across the income range with Type 1 having the highest elasticity at each income

level and and Type 3 the lowest. Type 3 households have the lowest price elasticity,

with the elasticity being approximately -.5 throughout the range of income. The

elasticity for Type 2 households is also relatively constant across the income range

at approximately -.6. Type 1 households exhibit the greatest sensitivity to price,

especially at the lower range of incomes. The price elasticity for Type 1 households

increases from approximately -1 at low income levels to -.8 at high income levels. As

22Recall from our discussion of equations 66 and 67 the assumptions implicit in the derivation of

elasticities.
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Figure 4: Income and Price Elasticities.
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one would expect, for each income level, the elasticities from the one-type model lie

near the middle of the elasticities of the three-type model.

The right-most column of Table 2 shows the supply elasticity estimates. Our

estimate for the annual supply elasticity from the model with three household types

is 0.079. The estimated elasticity from the one-type model is somewhat lower, .055.

Recall that the changes in supply stock of a certain quality over time depend on

changes in values and the estimated elasticity through the supply equation (17). The

implied supply growth of quality from our estimates are between 4.30% and 6.82% for

the 4 year period, which correspond to average annualized changes of approximately

1.1% and 1.7% respectively. The estimated annual growth in total number of units

was 5.2% per year over the 4 year period, with the largest number of additional units

being created in the qualities located around the middle of the distribution.23 Our

supply elasticity estimates are along the lines of the estimates of supply elasticities

summarized in Glaeser (2004).

We next illustrate fit of our model to the data. In the interest of space, we

23The reported numbers correspond to Chicago
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illustrate for our one-type model. Figure 5 shows the fit of the one-type model to the

income and rent distributions. The left two graphs in Panel A show the fit to income

distributions in NYMA in 1999 and 2003 respectively, while the right two graphs

show fit to 1999 and 2003 NYMA rental distributions. The corresponding graphs for

Chicago are shown in Panel B. These graphs illustrate that the fit to the income and

rent data is quite good in both metropolitan areas in both time periods.

Figure 6 illustrate the resulting equilibration of supply and demand for each qual-

ity level in the two time periods in the two metropolitan areas. The upper pair of

graphs are for CMA in 1999 and 2003 and the lower pair for NYMA in 1999 and 2003.

As these graphs illustrate, our approach results in close correspondence of supply and

demand over the quality range in both metro areas in both time periods.

We next turn to a presentation of the implications of our model. In particular,

we compare hedonic price functions for the two metropolitan areas for the two time

periods; we compare estimated housing stocks for each housing quality level in the two

metropolitan areas, and we provide an analysis of differential agglomeration economies

across the two metropolitan areas.

Figure 7 shows the price functions in 2003 for CMA and NYMA from both the

one-type model and the three-type model. The steeper curves show the hedonic price

functions for 2003 for NYMA from the two alternative models while the shallower

curves show the estimates for CMA. In each metropolitan area, the estimates from

the two alternative models are strikingly close to each other.

Points a, b, c, and d show house quality and annualized rent paid by households at

the 20th, 40th, 60th, and 80th percentiles of the income distribution in Chicago at the

optimally chosen housing consumption levels for those households. The corresponding

upper-case values A, B, C, and D show qualities and prices that households with

those incomes would optimally choose if they were located in New York. At each
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Figure 5: Goodness of Fit
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Figure 6: Supply and Demand Equilibrium
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Figure 7: Price Functions
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income level, households pay more in New York than Chicago, and consume lower

quality housing in New York than Chicago. In considering these comparisons, it

is important to keep in mind that our house quality measure is comprehensive and

includes all locational amenities in addition to the housing structure itself. Differences

in cultural or environmental amenities are embodied in our quality measure. This is

an important feature of our modeling approach.

We next turn to a comparison of the distributions of stocks of housing by quality

in the two metropolitan areas. The distributions of housing by quality are shown

in Figure 8. As we have just seen, at every income level, a household in NYMA

consumes lower quality than the corresponding household in CMA. The effect of this

difference in consumption levels is to shift the distribution of quality in NYMA to the

left relative to that in CMA. This effect is augmented to some extent by differences

in the income distributions in the two metro areas. The CDF for income for the

Chicago metro area is shifted to the right relative to the New York metro area, i.e.,

CMA incomes tend to be higher. The relatively higher concentration of low-income
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Figure 8: Quality Distributions
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households in New York accentuates the leftward shift in the quality distribution in

New York relative to Chicago. CMA has relatively more high quality housing. Given

its much higher population, however, NYMA has a larger number of housing units at

almost at all quality levels than CMA.

Our framework provides a new approach for measuring agglomeration economies.24

The logic of our approach is the following. Housing at each quality level in the New

York metro area is more expensive than in Chicago. To be equally well off in the two

metro areas, a given household must then earn more in New York metro area than in

the Chicago metro area. Hence, the compensation required in New York metro area

for a household to be as well off as its counterpart in Chicago metro area is a measure

of the additional earnings required in New York metro area.

In the top panel of Figure 9, we plot for each household type for each income

the compensating variation (CV) that would be required for that type and income

24Rosenthal and Strange (2003) provide an in-depth analysis of the spatial and organizational

features of agglomeration economies and a discussion of alternative approaches to measuring ag-

glomeration economies.
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in Chicago to be equally well off in New York. For all three types, CV declines with

income, reflecting the declining share of income spent on housing as income rises for

all three types. We see that, across the income range, the highest compensation would

be required for Type 3 households. This reflects the higher propensity of Type 3 to

consume housing and the relatively inelastic response of Type 3 to price. Types 1

and 2 have similar CV values at each income level, with Type 1 being slightly higher

than Type 2 at all incomes.

Figure 9: Compensating Variations
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In the right panel of Figure 9, we plot the CV calculated from the one-type model

and the CV aggregated across types from the three-type model. The estimates are

remarkably close over the entire income range. For a household earning $24,000 in

CMA (the 20th income percentile in Chicago), compensating variation of approxi-

mately 25% of the household’s income ($6,000) would be required. For a household

at the 80th percentile, CV of approximately 16% of income ($15,000) would be re-

quired. Productivity, and hence earnings, in NYMA would need to be higher by these

amounts to compensate a household for the differences in housing price functions be-

tween the two metropolitan areas.
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5.2 The Housing Market Bubble: The Case of Miami

As a further application of the one type model, we study changes in prices and

rents across the quality dimension in Miami during the period leading up to the

financial crisis. We take advantage of three successive AHS surveys of the Miami

(FL) metropolitan area in 1995, 2002 and 2007. We divide this period into two sub-

periods: a) the pre-bubble period from 1995 - 2002; b) the bubble period from 2002

-2007.25

First, we estimate the rent-to-value functions using our non-parametric matching

estimator for the three periods in our data set.26 Figure 10 plots the estimated

functions for the three time periods.

We find that the rent-to-value ratio ranged between 0.07 and 0.06 in 1995. The

function showed a relatively modest decline between 1995 and 2002, with somewhat

larger decreases at the low and high ends of the quality distribution. In contrast, we

see large changes in the rent-value function during the bubble period between 2002

and 2007. The range of the function is from 0.035 to 0.046. We clearly reject the null

hypothesis that the user costs do not depend on quality.

Note that the average 30 year mortgage rate was 7.95 percent in 1995, 6.54 percent

in 2002 and 6.34 percent in 2007. Hence, credit became somewhat cheaper between

1995 and 2002, consistent with our finding of a decline in user cost shown in Figure 10.

25The Miami Metropolitan Area is defined by the Census in 1995 and 2002 to consist of Broward

and Miami-Dade counties. In 2007, Palm Beach county is added to the definition of the Miami

Metropolitan Area. In order to keep a constant definition of the metropolitan area across periods,

we use micro data to construct the aggregates for 2007, so that only data for Broward and Miami-

Dade counties are used in every period. Also, all dollar values are in 2007 dollars in this and our

subsequent application.
26Note that it is difficult to estimate the locus outside a range of 50 and 500 thousand dollars due

to sparseness of data in the sample outside this range.
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Figure 10: Rent-to-Value Functions
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There was little change in mortgage rates between 2002 and 2007. There is, however,

widespread evidence that credit became more available during the the period leading

up to the bubble, especially for applicants with low credit ratings (Keys, Mukherjee,

Seru, and Vig (2010)). Figure 10 shows that the largest changes in the rent-value

ratio are for lower quality houses which is consistent with the notion that demand for

these asset may have increased more strongly due to changes in credit markets.

Another possible explanation for the change in the user-cost function is that in-

vestor expectations about future appreciation in rental rates and, thus, housing values

changed during that time period. Our estimates indicate the average expectations of

annual real rental appreciation must have been on the order of 2 percentage points.

Our non-parametric matching approach does not allow us to distinguish between the

hypothesis that changes in the rent-value ratio were driven by changes in credit market

conditions or by changes in investor expectations. Brueckner, Calem, and Nakamura

(2012) and Brueckner, Calem, and Nakamura (2015) present a theoretical framework

and empirical evidence that these phenomena reinforced each other–expected housing
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Figure 11: Growth in income and rent
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price inflation encouraged relaxation of lending standards that in turn fed housing

price inflation.

We combine data for owner-occupied and rental dwellings for each period, as in

the preceding section. Our model accounts for changes in the distribution of real

income, housing supply, and also population growth of more than 1% per year that

occurred in Miami during the period from 1995-2007. The left panel in figure 11 shows

that rents were relatively stable across the quality distribution during the pre-bubble

period between 1995 and 2002; at each quantile rent increased somewhat less than

the increase in income. (Recall that rents reflect both rental properties and implicit

rent on owner-occupied properties.) The right panel of Figure 11 shows that rents

increased at a somewhat faster rate during the bubble period with 5 year increases

ranging up to 10 percent at the upper end of the quality spectrum. These 5-year

rental increases were, however, quite modest relative to the run-up of housing prices

discussed next. Thus, our findings are consistent with research by Sommer, Sullivan,

and Verbrugge (2011) who also report that there was no “bubble ”in rental rates for

housing.
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Figure 12: Capital Gains
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Next, we compute the capital gains across the quality spectrum during the pre-

bubble and bubble periods. The predicted capital gains combine our estimates of the

rent-to-value functions with the predicted equilibrium hedonic rent functions. The

results are illustrated in Figure 12. First consider the pre-bubble period, shown by

the lower curve in the graph. Our estimates imply that 7-year capital gains were

approximately 10 percent for most houses. Houses in the upper two deciles of the

quality distribution had larger gains of up to 20 precent. During the bubble period,

our model yields 5-year capital gains ranging between 30 and 60 percent. We see

larger increases at the low and middle levels of quality than at the high end. This

pattern of gains is consistent with loosening of credit market constraints playing a

substantial role in explaining the run-up in housing markets. In particular, we would

expect that relaxation of lending standards would increase access to credit by buyers

of low- and middle-quality housing units, thereby bidding up prices of those units.

These results are also consistent with the model and results reported in Landvoigt

et al. (2015).
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6 Conclusions

We have developed a new approach for estimating hedonic price functions for rents

and values. Our method has a number of advantages. First, it does not require any

a priori assumptions about the characteristics that determine house quality. Second,

it is easily implementable using metropolitan-level data on the distribution of house

values and rents, as well as the distribution of household income. Third, it provides

a straightforward summary of the changes in prices across the house quality distri-

bution, complementing single-index measures such as the Case-Shiller index. Fourth,

it is comprehensive in incorporating all location-specific amenities in addition to ser-

vices provided by the dwelling. Fifth, it provides a new, comprehensive approach to

measuring agglomeration economies. Sixth, it gives new insights into the mechanism

that generates housing price changes.

Estimating the model jointly for New York and Chicago, we provide a contrast of

hedonic price functions and house quality distributions across the two metropolitan

areas. We also calculate differences in agglomeration economies between the two

areas, including calculations, specific to household type, of differences in earnings

required to make a household in New York as well off as its counterpart in Chicago.

Applying our framework to Miami, we find that rent-to-value functions are highly non-

linear in quality. Moreover, rent-to-value ratios dropped by up to 50 percent from

the pre-bubble levels during the bubble period. Rents only increased moderately.

We thus provide an accounting of how rentals and prices changed across the quality

distribution during the bubble period as contrasted to the pre-bubble period.

There are variety of other potential applications of our approach. Our framework

permits investigation of how changes in the real interest rate affects prices, rentals,

and quantities across the quality spectrum in a metropolitan area–via the impact of

the real interest rate on user cost of capital. By incorporating multiple household
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types, our framework also permits analysis of how changes in demographic compo-

sition and the income distribution affect housing prices and rents across the quality

spectrum in a metropolitan area, and the associated impact on supply across the qual-

ity distribution. Similarly, the model can be used to study how housing price changes

from growth in size or income distribution of one demographic group impact welfare

of other demographic groups. Data are available that permit applying the model to

make comparisons across other metropolitan housing markets, such as London and

New York. More challenging generalizations are also of interest. For example, it

may be feasible to extend the model to incorporate tenure choice. This wold permit

investigation of how demographic composition, income distributions, and population

size, via impacts on equilibrium prices and rents, affect tenure composition across the

house quality spectrum in a metropolitan area.
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A Proofs

Proof 1 The single-crossing condition implies that there is stratification of house-

holds by income in equilibrium. Stratification implies that there exists a distribution

function for house values Gt(v) such that:

Ft(y) = Gt(v) (37)

Hence there exists a monotonic mapping between income and housing value. If Ft is

strictly monotonic, it can be inverted, and hence F−1
t exists. Q.E.D.

Proof 2 Equating the quantiles for income and value distributions, i.e. setting

Ft(yt(v)) = Gt(v) for yt > exp(µt)− βt, and vt > exp(ωt)− θt, yields:∫ [(ln(yt+βt)−µt)/σt]rt/rt
0

e−tt1/rt−1dt

2rΓ(1 + 1/rt)
=

∫ [(ln(vt+θt)−ωt)/τt]mt/mt
0

e−tt1/mt−1dt

2mΓ(1 + 1/mt)
(38)

Assuming rt = mt in each period, the quantiles are equal when

ln(yt + βt)− µt
σt

=
ln(vt + θt)− ωt

τt
(39)

Similar steps lead to the same conclusion when yt < exp(µt)−βt, and vt < exp(ωt)−θt.

Solving (39) yields:

yt = e
(µt−σtτt ωt)(vt + θt)

σt
τt − βt (40)

Q.E.D.

Proof 3 The household’s FOC is:

αu′(h) · dh =
dv

(yt − vt − κ)
(41)

Substituting the income loci (26):

αu′(h)dh =
dv

At(vt + θt)bt − βt − vt − κ
(42)
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Since κ = θt − βt ∀t, the FOC becomes:

αiu
′
i(h)dh =

dv

At(vt + θt)bt − (vt + θt)
(43)

Integrating the right hand side yields:∫
dv

At(v + θt)bt − (v + θt)
=

1

bt − 1

(
ln

(
− 1

At

(
vt + θt − At (v + θt)

bt
))
− bt ln v + θt

)
+ct

(44)

which implies:

αu(h) =
1

bt − 1
ln

(
1− (vt + θt)

1−bt

At

)
+ ct (45)

Notice that integrating the left hand side recovers the original function u(h). Using

the utility function we get

α ln(1− φ(h+ η)γ) =
1

bt − 1
ln

(
1− (v + θt)

1−bi

At

)
+ ct (46)

Solving for vt

(1− φ(h+ η)γ)α(bt−1) =

(
1− (vt + θt)

1−bt

At

)
ect (47)

and hence

vt =

(
At

[
1− (1− φ(h+ η)γ)α(bt−1)

ect

]) 1
1−bt

− θt (48)

Normalizing the constant of integration to c = 0 gives the result. Q.E.D.

Proof 4 We can write the household’s optimization problem as:

max
h

u1(h) + u2(y − v(h)) (49)

The FOC of this problem with respect to h is given by:

u′1(h)− u′2(y − v(h)) v′(h) = 0 (50)
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Now define h∗ = v(h) and hence h = v−1(h∗). The decision problem associated with

this model is then

max
h∗

u1(v−1(h∗)) + u2(y − h∗) (51)

and the FOC with respect to h∗ is

u′1(v−1(h∗)) v−1′(h∗)− u′2(y − h∗) = 0 (52)

Now h = v−1(h∗) = v−1(v(h)) and hence v−1′(h∗) v′(h) = 1. Hence we conclude that

the two models are observationally equivalent. In the first case, we have non-linear

pricing and in the second case we have linear pricing. Q.E.D.

Proof 5 Recall from our discussion following Proposition 2 that parameters At, bt, θt

can be estimated directly from data for income and house rent distributions. We show

these are sufficient for identification of the utility function parameters. First consider

the normalization vt(h) = h. Recall that the equilibrium hedonic pricing function is

given by:

vt =
(
At

[
1− [1− φ(h+ η)γ]α(bt−1)

]) 1
1−bt − θt (53)

Setting

α =
1

bt − 1
(54)

implies

vt = (At [1− [1− φ(h+ η)γ]])
1

1−bt − θt = (Atφ(h+ η)γ)
1

1−bt − θt (55)

Setting

φ =
1

At
(56)

implies

vt = ((h+ η)γ)
1

1−bt − θt (57)
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Setting

γ = 1− bt (58)

implies

vt = (h+ η)− θt (59)

Finally, setting

η = θt (60)

implies.

vt = h (61)

That establishes identification of the parameters of the utility function. The price

equation in period t+ s is then given by:

vt+s(h) =
(
At+s

[
1− [1− φ(h+ η)γ]α(bt+s−1)

]) 1
1−bt+s − θt+s (62)

The parameters of joint value and income distribution in period t nail down the pa-

rameters of the utility function. The assumption of constant utility then imply that

vt+s(h) is fully identified by the parameters bt+s, At+s, and θt+s. Q.E.D.

Proof 6 The result follows from the discussion in the text.

Proof 7 Given our normalizations, we have also identified the housing supply func-

tion in the first period since R1(h) = G1(v) which then identifies the density of housing

quality in the first period q1(h).

Proposition 5 implies that v2(h) is identified. As a consequence G2(v2(h)) is iden-

tified. Proposition 6 implies that V1(h) and V2(h) are identified. As a consequence ζ

is identified of the market clearing condition:

R2(h) = k2

∫ h

0

q1(x)

(
V2(x)

V1(x)

)ζ
dx (63)
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Q.E.D.

Note that this proof generalizes for more complicated parametric forms of the supply

function.

B The Generalized Lognormal Distribution with

Location (GLN4)

The generalized lognormal distribution with location GLN4 pdf is given by:

f(y) =
1

2(x+ β)r
1
rσΓ

(
1 + 1

r

)e− 1
rσr
| ln(x+β)−µ|r (64)

The CDF of the GNL4 distribution is given by:

Ft(y) =



Γ
(

1
r
, B(y + β)

)
2Γ(1

r
)

for y < exp(µ)− β,

1
2

for y = exp(µ)− β,

1
2

+
γ
(

1
r
,M(y + β)

)
2Γ(1

r
)

for y > exp(µ)− β.

(65)

where

• B(y) =

[
µ−log(y+β)

σ

]r
r

, M(y) =

[
log(y+β)−µ

σ

]r
r

,

and

• Γ(s, z) =∈∞z e−ttv−1dt, γ(v, z) =
∫ z

0
e−ttv−1dt

are the incomplete gamma functions.
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C Price and Income Elasticities

The conventionally defined income and price elasticities are obtained when the he-

donic function is linear, i.e.,when v(h) = ph. The price elasticity of demand is then

given by:
dh

dp

p

h
=

(−αφγh+ (h+ η)((h+ η)−γ − φ))

(−αφγ + (1− γ)(h+ η)−γ − φ)

1

h
(66)

and the income elasticity of demand is given by:

dh

dy

y

h
=
−αφγ
p

[
1

−αφγ + (1− γ)(h+ η)−γ − φ

]
κ− p

αφγ
[−αφγh+ (h+ η)1−γ − φ(h+ η)]

h
(67)

We have seen that this specification of household preferences yields plausible price

and income elasticities.
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