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Abstract

We analyze the optimal design of dynamic mechanisms in the absence of transfers.

The designer uses future allocation decisions as a way of eliciting private information.

Values evolve according to a two-state Markov chain. We solve for the optimal allo-

cation rule, which admits a simple implementation. Unlike with transfers, efficiency

decreases over time, and both immiseration and its polar opposite are possible long-run

outcomes. Considering the limiting environment in which time is continuous, we show

that persistence hurts.
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1 Introduction

This paper is concerned with the dynamic allocation of resources when transfers are not

allowed and information regarding their optimal use is private information to an individual.

The informed agent is strategic rather than truthful.

We are looking for the social choice mechanism that would get us closest to efficiency.

Here, efficiency and implementability are understood to be Bayesian: both the individual

and society understand the probabilistic nature of the uncertainty and update based on it.
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Society’s decision not to allow for money –be it for economic, physical, legal or ethical

reasons– is taken for granted. So is the sequential nature of the problem: temporal constraints

apply to the allocation of goods, whether jobs, houses or attention, and it is often difficult

to ascertain future demands.

Throughout, we assume that the good to be allocated is perishable.1 Absent private

information, this makes the allocation problem trivial: the good should be provided if and

only if its value exceeds its cost.2 But in the presence of private information, and in the

absence of transfers, linking future allocation decisions to current ones is the only instrument

available to society to elicit truthful information. Our goal is to understand this link.

Our main results are a characterization of the optimal mechanism, and a simple indirect

implementation for it. Roughly speaking, the agent should be granted an inside option,

corresponding to a certain number of units of the good that he is entitled to receive “no

questions asked.” This inside option is updated according to his choice: whenever the agent

desires the unit, his inside option is decremented by one unit; whenever he forgoes it, it is

also revised, though not necessarily upward. Furthermore, we show that this results in very

simple dynamics: an initial phase of random length during which the efficient choice is made

in each round, followed by an irreversible switch to one of the two possible outcomes in the

“silent” game: either the unit is always supplied, or never again. These results are contrasted

with those from static design with many units (e.g., Jackson and Sonnenschein, 2007) as well

with those from dynamic mechanism design with transfers (e.g., Battaglini, 2005).

Formally, our good can take one of two values in each round, with the value being serially

correlated over time. While this is certainly restrictive, it is known that, even with transfers,

the problem becomes intractable beyond binary types (see Battaglini and Lamba, 2014).3

We start with the i.i.d. case, which suffices to bring out many of the insights, before proving

the results in full generality. The cost of providing the good is fixed and known. Hence,

it is optimal to assign the good in a given round if and only if the value is high. We cast

our problem of solving for the efficient mechanism (given values and cost, and the agent’s

discount factor) as the one faced by a disinterested principal with commitment choosing

when to supply the good as a function of the agent’s reports. There are no transfers, no

certification technology, and no signals about the agent’s value, even ex post.

1Many allocation decisions involve goods or services that are perishable: how a nurse or a worker divides

his time, or more generally, which patients should receive scarce medical resources (blood, treatments, etc.);

which investments and activities should get the go-ahead in a firm, etc.
2This is because the supply of the perishable good is taken as given. There is a considerable literature

on the optimal ordering policy for perishable goods, starting with Fries (1975).
3In Section 5.2, we consider the case of a continuum of types independently distributed over time.
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As mentioned above, we show that the optimal policy can be implemented by a “budget”

mechanism, in which the appropriate unit of account is the number of units that the agent is

entitled to get in a row, “no questions asked.” While the updating when the agent foregoes

the unit is a little subtle, it is independent of the principal’s belief about the agent’s type.

The only role of the prior belief is to pin down the initial budget. This budget mechanism is

not a token mechanism, in the sense that the total (discounted) number of units the agent

receives is not fixed: depending on the sequence of reports, the agent might end up with few

or many units.4 Eventually, the agent is granted the unit forever, or never again. Hence,

immiseration is not ineluctable.

In Section 5.1, we study the continuous-time limit in which the flow value for the good

changes according to a two-state Markov chain. This allows us to show that persistence

hurts. As the Markov chain becomes more persistent, efficiency decreases, though the agent

might actually gain from this increased persistence.

Allocation problems in the absence of transfers are plentiful, and it is not our purpose

to survey them here. We believe that our results can inform practices on how to implement

algorithms to make better allocations. As an example, think about nurses that must decide

whether to take seriously some alerts that are either triggered by sensors or by patients

themselves. The opportunity cost of their time is significant. Patients, however, appreciate

quality time with nurses whether or not their condition necessitates it. This gives rise to a

challenge that every hospital must contend with: ignore alarms, and take the chance that a

patient with a serious condition does not get attended to; pay heed to all of them, and end

up with overwhelmed nurses. “Alarm fatigue” is a serious problem that health care must

confront (see, for instance, Sendelbach, 2012). We suggest the best way of trading off the

two risks that come along with it: neglecting a patient in need of care, and one that simply

cries wolf.5

Related Literature. Closest to our work are the literature on mechanism design with

transfers, and the literature on “linking incentive constraints.” Sections 4.5 and 3.4 are

entirely devoted to them, explaining why transfers (resp., the dynamic nature of the rela-

tionship) matter, so we will brief here.

4It is not a “bankruptcy” mechanism in the sense of Radner (1986) either, as the specific ordering of the

reports matters.
5To be sure, our mechanism is much simpler than existing electronic nursing workload systems. However,

none appears to take seriously as a constraint the strategic behavior of the agent.
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The obvious benchmark with transfers is Battaglini (2005),6 who considers our general

model but allows transfers. Another important difference is his focus on revenue maxi-

mization, a meaningless objective without prices. Results are diametrically opposed: In

Battaglini, efficiency necessarily improves over time (in fact, exact efficiency obtains eventu-

ally with probability 1). Here instead, efficiency decreases over time, in the sense described

above, with an asymptotic outcome which is at best the outcome of the static game. As

for the agent’s utility, it can go up or down, depending on the history that realizes: getting

the good forever is clearly the best possible outcome from his point of view; never getting it

again being the worst. Krishna, Lopomo and Taylor (2013) provide an analysis with limited

liability (though transfers are allowed) in a model closely related to Battaglini, suggesting

that, indeed, ruling out unlimited transfers matters for both the optimal contract and the dy-

namics. It is worth mentioning here an important exception to the quasi-linearity commonly

assumed in the dynamic mechanism design literature, namely, Gomes and Pavan (2014).

“Linking incentive constraints” refers to the idea that, as the number of identical copies

of a decision problem increases, tying them together allows the designer to improve on the

isolated problem. See Fang and Norman (2006), and Jackson and Sonnenschein (2007) for

papers specifically devoted to this idea, although it is arguably much older (see Radner, 1981;

Rubinstein and Yaari, 1983). Hortala-Vallve (2010) provides an interesting analysis of the

unavoidable inefficiencies that must be incurred away from the limit, and Cohn (2010) shows

the suboptimality of the mechanisms that are commonly used, even in terms of the rate of

convergence. Our focus is on the exactly optimal mechanism for a fixed degree of patience,

not on proving asymptotic optimality for some mechanism (indeed, many seemingly different

mechanisms yield asymptotic optimality). This allows us to estimate the rate of convergence.

Another important different with most of these papers is that our problem is truly dynamic,

in the sense that the agent does not know future values but must learn them online. Section

3.4 elaborates on the distinction.

The idea that virtual budgets could be used as intertemporal instruments to discipline

agents with private information has appeared in several papers in economics. Möbius (2001)

might well be the first who suggests that keeping track of the difference in the number of

favors granted (with two agents) and granting favors or not as a function of this difference

might be a simple but powerful way of sustaining cooperation in long-run relationships. See

also Athey and Bagwell (2001), Abdulkadiroğlu and Bagwell (2012) and Kalla (2010). While

these token mechanisms are known to be suboptimal (as is clear from our characterization

6See also Zhang (2012) for an exhaustive analysis of Battaglini’s model, as well as Fu and Krihsna (2014).
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of the optimal one), they have desirable properties nonetheless: properly calibrated, they

yield an approximately efficient allocation as the discount factor tends to one. To our

knowledge, Hauser and Hopenhayn (2008) is the paper that comes closest to solving for the

optimal mechanism (within the class of PPE). Their numerical analysis allows them to qualify

the optimality of simple budget rules (according to which each favor is weighted equally,

independently of the history), showing that this rule might be too simple (the efficiency cost

can reach 30% of surplus). Remarkably, their analysis suggests that the optimal (Pareto-

efficient) strategy shares many common features with the optimal policy that we derive

in our one-player world: the incentive constraint always binds, and the efficient policy is

followed unless it is inconsistent with promise-keeping (so, when promised utilities are too

extreme). Our model can be viewed as a game with one-sided incomplete information, in

which the production cost of the principal is the known value to the second player. There

are some differences, however: first, our principal has commitment, so he is not tempted

to act opportunistically, and is not bound by individual rationality. Second, this principal

maximizes efficiency, rather than his own payoff. Third, there is a technical difference: our

limiting model in continuous time corresponds to the Markovian case in which flow values

switch according to a Poisson process. In Hauser and Hopenhayn, the lump-sum value arrives

according to a Poisson process, so that the process is memoryless. Li, Matouschek and Powell

(2015) solve for the perfect public equilibria in a model close to our i.i.d. benchmark, and

allow for monitoring (public signals), showing how better monitoring improves performance.

More generally, that allocation rights to other (or future) units can be used as a “cur-

rency” for eliciting private information is long known. It goes back at least to Hylland and

Zeckhauser (1979), who are the first to explain to what extent this can be viewed as a pseudo-

market. Casella (2005) develops a similar idea within the context of voting rights. Miralles

(2012) solves a two-unit version of our problem, with more general value distributions, but

his analysis is not dynamic: both values are (privately) known at the outset. A dynamic

two-period version of Miralles is analyzed by Abdulkadiroğlu and Loertscher (2007).

All the versions considered in this paper would be trivial in the absence of imperfect

observation of the values. If values were perfectly observed, it would be optimal to assign

the good if and only if the value is high. Because of private information, it is necessary to

distort the allocation: after some histories, the good is provided independently of the report;

after some others, it is never provided again. In this sense, scarcity of good provision is en-

dogenously determined, for the purpose of information elicitation. There is a large literature

in operations research considering the case in which this scarcity is taken as exogenously

given –there are only n opportunities to provide the good, and the problem is then when to
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exercise these opportunities. Important early contributions to this literature are Derman,

Lieberman and Ross (1972) and Albright (1977). Their analysis suggests a natural mecha-

nism that can be applied in our environment: give the agent a certain number of “tokens,”

and let him exercise them whenever he pleases.

Exactly optimal mechanisms have been computed in related environments. Frankel

(2011) considers a variety of related settings. Closest is his analysis in his Chapter 2, where

he also derives an optimal mechanism. While he allows for more than two types and actions,

he restricts attention to the case of types that are serially independent over time (our starting

point). More importantly, he assumes that the preferences of the agent are independent of

the state, which allows for a drastic simplification of the problem. Gershkov and Moldovanu

(2010) consider a dynamic allocation problem related to Derman, Lieberman and Ross, in

which agents have private information regarding the value of obtaining the good. In their

model, agents are myopic, and the scarcity in the resource is exogenously assumed. In addi-

tion, transfers are allowed. They show that the optimal policy of Derman, Lieberman and

Ross (which is very different from ours) can be implemented via appropriate transfers. John-

son (2013) considers a model that is strictly more general than ours (he allows two agents,

and more than two types). Unfortunately, he does not provide a solution to his model.

A related literature considers the related problem of optimal stopping in the absence of

transfers, see in particular Kováč, Krähmer and Tatur (2014). This difference reflects the

nature of the good, perishable or durable. When only one unit is desired and waiting is

possible, it is a stopping problem, as in their paper. With a perishable good, a decision

must be taken in every round. As a result, incentives (and the optimal contract) have

hardly anything in common. In the stopping case, the agent might have an option value to

foregoing the current unit, in case the value is low and the future prospects are good. Not

here –his incentives to forego the unit must be endogenously generated via the promises. In

the stopping case, there is only one history of outcomes that does not terminate the game.

Here instead, policies differ not only in when they first provide the good, but what happens

afterwards.

Finally, while the motivations of the papers do not share much in common, the techniques

for the i.i.d. benchmark that we use borrow many ideas from Thomas and Worrall (1990),

as we explain in Section 3. For this section, our intellectual debt is considerable.

Section 2 introduces the model. Section 3 solves the i.i.d. benchmark, introducing most

of the ideas of the paper, while Section 4 solves for the general model. Section 5 extends

results to the case of either continuous time or continuous types. Section 6 concludes.
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2 The Model

Time is discrete and the horizon infinite, indexed by n = 0, 1, . . . There are two parties, a

disinterested principal and an agent. In each round, the principal can produce an indivisible

unit of good at a cost of c > 0. The agent’s value (or type) in round n, vn, is a random

variable that takes value l or h. We assume that 0 < l < c < h, so that supplying the good

is efficient if and only if the value is high, but the agent’s value is always positive.

The value follows a Markov chain, with

P[vn+1 = h | vn = h] = 1− ρh, P[vn+1 = l | vn = l] = 1− ρl,

for all n ≥ 0, where ρl, ρh ∈ [0, 1]. The (invariant) probability of h is q := ρl/(ρh + ρl).

For simplicity, we also assume that the initial value is drawn according to the invariant

distribution, that is, P[v0 = h] = q. The (unconditional) expected value of the good is

denoted µ := E[v] = qh+ (1− q)l. We make no assumption regarding how µ compares to c.

Let κ := 1 − ρh − ρl be a measure of persistence of the Markov chain. Throughout, we

assume that κ ≥ 0, or equivalently 1 − ρh ≥ ρl: that is, the distribution over tomorrow’s

type conditional on today’s type being h first-order stochastically dominates the distribution

conditional on today’s type being l.7 Two interesting special cases are κ = 1 and κ = 0. The

former corresponds to perfect persistence, the latter, to independent values.

The agent’s value is private information. Specifically, at the beginning of each round, the

value is drawn and the agent is informed of it.

Players are impatient and share a common discount factor δ ∈ [0, 1).8 To rule out

trivialities, we assume throughout δ > l/µ as well as δ > 1/2.

Let xn ∈ {0, 1} refer to the supply decision in round n, e.g., xn = 1 means that the good

is supplied in round n.

Our focus is on identifying the (constrained) efficient mechanism, as defined below.

Hence, we assume that the principal internalizes both the cost of supplying the good and the

value of providing it to the agent, and we seek to solve for the principal’s favorite mechanism.

Thus, given an infinite history {xn, vn}∞n=0, the principal’s realized payoff is defined as

(1− δ)

∞
∑

n=0

δnxn(vn − c),

7The role of this assumption, commonly adopted in the literature, and what happens otherwise, when

values are negatively serially correlated, is discussed below.
8The commonality of the discount factor is important. We view our principal as a social planner, trading

off the agent’s utility with the social cost of giving him the good, as opposed to an actual player. As a social

planner internalizing the agent’s utility, it is hard to see why his discount rate would differ from the agent’s.
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where δ ∈ [0, 1) is a discount factor. The agent’s realized utility is defined as9

(1− δ)

∞
∑

n=0

δnxnvn.

Throughout, payoff (resp., utility) refers to the expectation of these values, given the relevant

player’s information. Note that the utility belongs to the interval [0, µ].

The (risk-neutral) agent seeks to maximize his utility. We now introduce or emphasize

several important assumptions maintained throughout our analysis.

- There is no transfer. This is our point of departure from Battaglini (2005) and most of

the literature on dynamic mechanism design. Note also that our objective is efficiency,

not revenue maximization. With transfers, there is a trivial mechanism that achieves

efficiency: supply the good if and only if the agent pays a fixed price chosen in the

range (l, h).

- There is no ex post signal regarding the realized value of the agent –not even payoffs are

observed. Depending on the context, it might be realistic to assume that a (possibly

noisy) signal of the value obtains at the end of each round, independently of the supply

decision. In some other economic examples, it might make more sense to assume

instead that this signal obtains if the good is supplied only (e.g., a firm finding out

the productivity of a worker that is hired); conversely, statistical evidence might only

obtain from not supplying the good, if supplying it averts a risk (patient calling for care,

police for backing, etc.). See Li, Matouschek and Powell (2014) for such an analysis

(with “public shocks”) in a related context. Presumably, the optimal mechanism will

differ according to the monitoring structure. Understanding what happens without

any signal seems to be the natural first step.

- We assume that the principal commits ex ante to a (possibly randomized) mechanism.

This brings our analysis closer to the literature on dynamic mechanism design, and

distinguishes it from the literature on chip mechanisms (as well as Li, Matouschek and

Powell, 2014), which assumes no commitment on either side and solves for (perfect

public) equilibria of the game.

- The good is perishable. Hence, previous choices affect neither feasible nor desirable

future opportunities. If the good were perfectly durable, and only one unit demanded,

the problem would be one of stopping, as in Kováč, Krähmer and Tatur (2014).

9Throughout, the term payoff is reserved to the principal’s objective, and utility to the agent’s.

8



Because of commitment by the principal, it is without loss that we focus on policies in which

the agent truthfully reports his type in every round, and the principal commits to a (possibly

random) supply decision as a function of this last report, as well as of the entire history of

reports.

Formally, a direct mechanism, or policy, is a collection (xn)
∞
n=0, with xn : {l, h}n → [0, 1]

(with {l, h}0 := {∅}),10 mapping a sequence of reports by the agent into a decision to

supply the good or not in a given round. Our definition already takes advantage of the fact

that, because preferences are time-separable, the policy may be taken to be independent

of past realized supply decisions. A direct mechanism defines a decision problem for the

agent who seeks to maximize his utility. A reporting strategy is a collection (mn)
∞
n=0, where

mn : {l, h}n × {l, h} → ∆({l, h}) maps previous reports and the value in round n into a

report in that round.11 The policy is incentive compatible if truth-telling (that is, reporting

the current value faithfully, independently of past reports) is an optimal reporting strategy.

Our objective is, firstly, to solve for the optimal (incentive-compatible) policy, that is,

for the policy that maximizes the principal’s payoff, subject to incentive compatibility. The

value is the resulting payoff. Secondly, we would like to find a simple indirect implementation

of this policy. Finally, we want to understand the dynamics of payoff and utility under this

policy.

3 The i.i.d. Benchmark

We start our investigation with the simplest case, in which values are i.i.d. over time, that is,

κ = 0. This is a simple extension of Thomas and Worrall (1990), although the indivisibility

caused by the absence of transfers leads to dynamics that differ markedly from theirs. See

Section 4 for the analysis in the general case κ ≥ 0.

With independent values, it is well known that attention can be further restricted to

policies that can be represented by a tuple of functions Ul, Uh : [0, µ] → [0, µ], pl, ph :

[0, µ] → [0, 1], mapping a utility U (interpreted as the continuation utility of the agent)

into a continuation utility ul = Ul(U), uh = Uh(U) from the next round onward, as well as

probabilities ph(U), pl(U) of supplying the good in this round given the current report of

the agent. These functions must be consistent in the sense that, given U , the probabilities

of supplying the good and the promised continuation utilities do yield U as a given utility

10For simplicity, we use the same symbols l, h for the possible agent’s reports as for the values of the good.
11Without loss of generality, we assume that this strategy does not depend on past values, given past

reports, as the decision problem from round n onwards does not depend on these past values.
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to the agent. This is “promise-keeping.” We stress that U is the ex ante utility in a given

round, that is, it is computed before the agent’s value is realized. The reader is referred to

Spear and Srivastava (1987) and Thomas and Worrall (1990) for details.12

Because such a policy is Markovian with respect to the utility U , the principal’s payoff

is also a function of U only. Hence, solving for the optimal policy and the (principal’s) value

function W : [0, µ] → R amounts to a Markov decision problem. Given discounting, the

optimality equation characterizes both the value and the (set of) optimal policies. For any

fixed U ∈ [0, µ], the optimality equation states that

W (U) = sup
ph,pl,uh,ul

{(1− δ) (qph(h− c) + (1− q)pl(l − c))

+ δ (qW (uh) + (1− q)W (ul))} , (OBJ)

subject to incentive compatibility and promise-keeping, namely

(1− δ)phh + δuh ≥ (1− δ)plh+ δul, (ICH)

(1− δ)pll + δul ≥ (1− δ)phl + δuh, (ICL)

U = (1− δ) (qphh+ (1− q)pll) + δ (quh + (1− q)ul) , (PK)

(ph, pl, uh, ul) ∈ [0, 1]× [0, 1]× [0, µ]× [0, µ].

Incentive compatibility and promise-keeping conditions are referred to as IC (ICH , ICL)

and PK, for short. This optimization program is denoted P.

Our first objective is to calculate the value function W , as well as the optimal policy.

Obviously, not the entire map might be relevant once we take into the specific choice of

the initial promise –some promised utilities might simply never arise, for any sequence of

reports. Hence, we are also interested in solving for the initial promise U∗, the maximizer

of the value function W .

3.1 Complete Information

As a benchmark, consider the case in which there is complete information: that is, consider

P, dropping the IC constraints. Since values are i.i.d., it is without loss to assume that

pl, ph are constant over time. Given U , the principal chooses ph and pl to maximize

qph(h− c) + (1− q)pl(l − c),

12Note that not every policy can be represented in this fashion, as the principal does not need to treat

two histories leading to the same continuation utility identically. But because they are equivalent from the

agent’s viewpoint, the principal’s payoff must be maximized by some policy that does so.
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subject to U = qphh+ (1− q)pll. It follows easily that:

Lemma 1 Under complete information, the optimal policy is







ph = U
qh
, pl = 0 if U ∈ [0, qh],

ph = 1, pl =
U−qh
(1−q)l

if U ∈ [qh, µ].

The value function, denoted W̄ , is equal to

W̄ (U) =







(

1− c
h

)

U if U ∈ [0, qh],
(

1− c
l

)

U + cq
(

h
l
− 1
)

if U ∈ [qh, µ].

Hence, the initial promise (maximizing W̄ ) is U0 := qh.

That is, unless U = qh, the optimal policy (pl, ph) cannot be efficient: to deliver U < qh,

the principal chooses to scale down the probability with which to supply the good when the

value is high, maintaining pl = 0. Similarly, for U > qh, the principal is forced to supply the

good with positive probability even when the value is low, to satisfy promise keeping.

While this policy is the only constant optimal one, there are many other (non-constant)

optimal policies. We will encounter some in the sequel.

We call W̄ the complete-information payoff function. It is piecewise linear (see Figure

1). Plainly, it is an upper bound to the value function under incomplete information.

3.2 The Optimal Mechanism

We now solve for the optimal policy under incomplete information in the i.i.d. case. We first

provide an informal derivation of the solution. It follows from two observations (formally

established below). First,

The efficient supply choice (pl, ph) = (0, 1) is made “as long as possible.”

To understand the qualification, note that if U = 0 (resp., U = µ), promise keeping leaves

no leeway in the choice of probabilities: the good cannot (resp., must) be supplied, indepen-

dently of the report. More generally, if U ∈ [0, (1−δ)qh), it is impossible to supply the good

if the value is high, yet satisfy promise keeping. In this range of utility, the observation must

be interpreted as saying that the supply choice is as efficient as possible given the restriction

imposed by promise keeping. This implies that a high report leads to a continuation utility
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of 0, with the probability of the good being supplied adjusting accordingly. An analogous

interpretation applies to U ∈ (µ− (1− δ)(1− q)l, µ].

These two peripheral intervals have length that vanishes as δ → 1, and are ignored for

the remainder of this discussion. For every other promised utility, we claim that it is optimal

to make the (“static”) efficient supply choice. Intuitively, there is never a better time to

redeem part of the promised utility than when the value is high: in such rounds, interests

of the principal and agent are aligned. Conversely, there cannot be a worse opportunity to

pay back the agent what he is due than when his value is low, as tomorrow’s value cannot

be lower than today’s.

As trivial as this observation may sound, it already implies that the dynamics of the

inefficiencies must be very different from those in Battaglini’s model with transfers: here,

inefficiencies are backloaded.

Given that the supply decision is efficient as long as possible, the high type agent has no

incentive to pretend to be a low type. On the other hand:

Incentive compatibility of the low type agent always binds.

More precisely, it is without loss to assume that ICL always binds, and to disregard ICH .

The reason why the constraint binds is standard: because the agent is risk neutral, the

principal’s payoff must be a concave function of U (else, he could offer the agent a lottery

that the agent would be willing to accept and that would make the principal better off).

Concavity implies that there is no gain in spreading continuation utilities ul, uh beyond what

is required for ICL to be satisfied.

Because we are left with two variables (ul, uh), and have two constraints (ICL and PK),

it is immediate to solve for the optimal policy. Algebra is not needed: because the agent is

always willing to say that his value is high, it must be that his utility can be computed as

if he followed this reporting strategy, namely,

U = (1− δ)µ+ δuh, or uh =
U − (1− δ)µ

δ
.

Because U is a weighted average of uh and µ ≥ U , it follows that uh ≤ U : promised utility

necessarily decreases after a high report. To compute ul, note that the reason the high

type agent is unwilling to pretend he has a low value is that he gets an incremental value

(1−δ)(h−l) from getting the good, relative to what would make him just indifferent between

both reports. Hence, defining U := q(h− l), it holds that

U = (1− δ)U + δul, or ul =
U − (1− δ)U

δ
.
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Because U is a weighted average of U and ul, it follows that ul ≤ U if and only if U ≤ U :

in that case, even a low report leads to a decrease in the continuation utility, albeit not as

large a decrease as if the report had been high and the good provided.

The following theorem (proved in appendix, as are all other results) summarizes this

discussion, with the necessary adjustments on the peripheral intervals.

Theorem 1 The unique optimal policy is given by

pl = max

{

0, 1− µ− U

(1− δ)l

}

, ph = min

{

1,
U

(1− δ)µ

}

.

Given these values of (ph, pl), continuation utilities are given by

uh =
U − (1− δ)phµ

δ
, ul =

U − (1− δ)(pll + (ph − pl)U)

δ
.

For reasons that will become clear shortly, this policy is not uniquely optimal for U ≤ U .

We now turn to a discussion of the utility dynamics and of the shape of the value function,

which are closely related. This discussion revolves around the following lemma.

Lemma 2 The value function W : [0, µ] → R is continuous and concave on [0, µ], contin-

uously differentiable on (0, µ), linear (and equal to W̄ ) on [0, U ], and strictly concave on

[U, µ]. Furthermore,

lim
U↓0

W ′(U) = 1− c

h
, lim

U↑µ
W ′(U) = 1− c

l
.

Indeed, consider the functional equation for W that we obtain from the policy of Theorem

1, namely (ignoring again the peripheral intervals for the sake of the discussion),

W (U) = (1− δ)q(h− c) + δqW

(

U − (1− δ)µ

δ

)

+ δ(1− q)W

(

U − (1− δ)U

δ

)

,

Hence, taking for granted the differentiability of W stated in the lemma,

W ′(U) = qW ′(Uh) + (1− q)W ′(Ul),

or, in probabilistic terms, W ′(Un) = E[W ′(Un+1)], given the information at round n. That

is, W ′ is a bounded martingale, and must therefore converge.13 This martingale was first

uncovered by Thomas and Worrall (1990), and so we refer to it as the TW-martingale.

13It is bounded because W is concave, and so its derivative is bounded by its value at 0 and µ, given in

the lemma.
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Because W is strictly concave on (U, µ), yet uh 6= ul on this range, it follows that the process

{Un}∞n=0 must eventually exit this interval (almost surely). Hence, Un must converge to

either U∞ = 0 or µ. But note that, because uh < U and ul ≤ U on the interval (0, U ], this

interval is a transient region for the process. Hence, if we started this process in the interval

[0, U ], the limit must be 0, and the TW-martingale implies W ′ must be constant on this

interval –hence, the linearity of W .14

While W ′
n := W ′(Un) is a martingale, Un is not: because the optimal policy gives

Un = (1− δ)qh+ δE[Un+1],

utility drifts up or down (stochastically) according to whether U = Un is above or below

qh. Intuitively, if U > qh, then the flow utility delivered is not enough to honor the average

promised utility, so that the expected continuation utility must be even larger than U .

This raises the question of the initial promise U∗: does it lie above or below qh, and where

does the process converge to, given that it starts there? The answer, again, is provided by

the TW-martingale. Indeed, U∗ is characterized by W ′(U∗) = 0 (uniquely so, given strict

concavity on [U, µ]). Hence,

0 = W ′(U∗) = P[U∞ = 0 | U0 = U∗]W ′(0) +P[U∞ = µ | U0 = U∗]W ′(µ),

where W ′(0),W ′(µ) are the one-sided derivatives given in the lemma. Hence,

P[U∞ = 0 | U0 = U∗]

P[U∞ = µ | U0 = U∗]
=

(c− l)/l

(h− c)/h
. (1)

The initial promise is chosen so as to yield this ratio of absorption probabilities at 0 and µ.

Remarkably, this ratio is independent of the discount factor (despite the discrete nature of the

random walk, whose step size depends on δ!). Hence, both long-run outcomes are possible,

no matter how patient the players are. On the other hand, depending on parameters, U∗

can be above or below qh, the first-best initial promise, as is easy to check in examples. In

the appendix, we show that U∗ is decreasing in the cost, as should be clear, given that the

random walk {Un} only depends on c via the choice of initial promise U∗, as given by (1).

We record this discussion in the following lemma.

Lemma 3 The process {Un}∞n=0 (with U0 = U∗) converges to 0 or µ, a.s., with probabilities

given by (1).

14This gives rise to multiple optimal policies on this range: as long as the spread is large enough to satisfy

ICL, not so large as to violate ICH , consistent with PK and contained in [0, U ], it is an optimal choice.
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Figure 1: Value function for (δ, l, h, q, c) = (.95, .40, .60, .60, .50).

3.3 Implementation

As mentioned, the optimal policy is not a token mechanism, as the number of units the agent

gets is not fixed.15 Yet it admits a very simple indirect implementation in terms of a budget

that can be described as follows. Let f := (1− δ)U , and g := (1− δ)µ− f = (1− δ)l.

Give the agent a budget of U∗ initially. At the beginning of every round, charge him

a fixed fee equal to f ; if he asks for the item, supply it and charge a variable fee g for it;

increment his budget by the interest rate 1
δ
− 1 per round –at least, as long as it is feasible.

This scheme might become infeasible for two reasons: his budget might no longer allow

him to pay g for a unit that he asks for; give him then whatever fraction his budget can buy

(at unit price p); or his budget might be so close to µ that it is no longer possible to pay

him the interest rate on his budget; give him the excess back, independently of his report,

at a conversion rate given by the price g as well.

For budgets below U , the agent is “in the red,” and even if he does not buy a unit, his

budget shrinks over time. If his budget is above U , he is “in the black,” and forfeiting a unit

leads to a larger budget. When the budget gets above µ− (1− δ)(1− q)l, the agent “breaks

the bank” and gets to µ which is an absorbing state.

15To be clear, this is not an artifact of discounting: the optimal policy in the finite-horizon undiscounted

version of our model can be derived along the same lines (using the binding ICL and PK constraints), and

the number of units obtained by the agent is history-dependent there as well.
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This structure is somewhat reminiscent of results in the literature on optimal financial

contracting (see, for instance, Biais, Mariotti, Plantin and Rochet, 2007), a literature that

assumes transfers:16 in their analysis as well, one obtains (at least for some parameters) an

upper absorbing boundary (where the agent gets first-best), and a lower absorbing boundary

(where the project is terminated). There are several important differences, however. Most

importantly, the agent is not paid in the intermediate region: promises are the only source of

incentives. In our environment, the agent receives the good if his value is high, so efficiency

is achieved in this intermediate region.

3.4 A Comparison with Token Mechanisms as in Jackson and Son-

nenschein (2007)

A discussion of the relationship of our results with those in environments with transfers is

relegated to Section 4.5, because the environment of Section 4 is the exact counterpart of

Battaglini (2005). On the other hand, because token mechanisms are usually introduced in

i.i.d. environments, we make a few observations about the connection between our results

and those of Jackson and Sonnenschein (2007) here, to explain why our dynamic analysis is

substantially different from the static one with many copies.

There are two conceptually distinct issues. First, are token mechanisms optimal or not?

Second, is the problem static or dynamic? For the purpose of asymptotic analysis (when

either the discount factor δ tends to 1, or the number of equally weighted copies T < ∞
tends to infinity), the distinctions are blurred: token mechanisms are optimal in the limit,

whether the problem is static or dynamic. Because the focus of Jackson and Sonnenschein is

on asymptotic analysis, they focus on the static model and on the token mechanism, derive

a rate of convergence for this mechanism (namely, the loss relative to the first best is of the

order O(1/
√
T )), and discuss that their results extend to the dynamic case. We may then

cast the comparison in terms of the agent’s knowledge. In Jackson and Sonnenschein, the

agent is a prophet (in the sense of stochastic processes, he knows the entire realization of the

process from the start), while in our environment the agent is a forecaster (the process of

his reports must be predictable with respect to the realized values up to the current date).

Not only are token mechanisms asymptotically optimal whether the agent is a prophet or a

forecaster, the agent’s information plays no role if we restrict attention to token mechanisms,

16There are other important differences in the set-up: they allow two instruments: downsizing the firm

and payments; and the problem is of the moral hazard type, as the agent can divert resources from a risky

project, reducing the chances it succeeds in a given period.
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in the binary-type environment, absent discounting. This is because, with binary values and

a fixed number of units, it makes no difference whether one knows the realized sequence

ahead of time. Forgoing low-value items as long as the budget does not allow all remaining

units to be claimed is not costly, because later units cannot turn out to be worth even less.

Similarly, accepting high-value items cannot be a mistake.

But the optimal mechanism in our environment is not a token one: a report does not only

affect whether the agent obtains the current unit, it affects the total number he obtains.17

Furthermore, the optimal mechanism when the agent is a prophet is not a token one either

(even in the finite undiscounted horizon case): the optimal mechanism does not simply ask

the agent to select a fixed number of copies he would like, but offers him a menu that trades

off the risk in getting the units he claims are low or high, and the expected number that he

gets.18 This is because the agent’s private information does not only pertain to whether a

given unit has a high value, but to how many units are high. Token mechanisms do not elicit

any information in this regard. Because the prophet has more information in this regard

than the forecaster, the optimal mechanisms are distinct.

The question of how the two mechanisms compare (in terms of average efficiency loss)

is therefore ambiguous a priori. Given that the prophet has more information regarding

the number of high-value items, the mechanism must satisfy more incentive-compatibility

constraints (which is bad for welfare), but perhaps induces a better fit between the number

of units he gets and the number he should get. Indeed, it is not hard to construct examples

(with T = 3, say) where the comparison goes either way according to parameters. However,

asymptotically, the comparison is clear, as the next lemma states.

Lemma 4 It holds that

|W (U∗)− q(h− c)| = O(1− δ).

In the case of a prophetic agent, the average loss converges to zero at rate O(
√
1− δ).

With a prophet, the rate is no better than with token mechanisms. Indeed, token mecha-

nisms achieve rate O(
√
1− δ) precisely because they do not attempt to elicit the number

of high units. By the central limit theorem, this implies that a token mechanism gets it

wrong by an order O(
√
1− δ). The lemma shows that the cost of incentive compatibility is

strong enough that the optimal mechanism does hardly better, shaving off only a fraction

17To be clear, token mechanisms are not optimal even without discounting.
18The characterization of the optimal mechanism in the case of a prophetic agent is somewhat peripheral

to our analysis and omitted.
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of this inefficiency.19 The forecaster’s relative lack of information serves the principal: as he

knows values only one round ahead of time, he gives it away for free until absorption; his

private information regarding the number of high units being of the order (1−δ), the overall

inefficiency is of the same order.

Hence, when dealing with a forecaster, unlike with a prophet, there is a real loss in using

a token mechanism, as opposed to the budget mechanism described above.

4 The General Markov Model

We now return to the general model in which types are persistent rather than independent.

As a warm-up, consider the case of perfect persistence ρh = ρl = 0. If types never change,

there is simply no possibility for the principal to use the future allocations as an instrument

to elicit truth-telling. We are back to the static problem, whose solution is either to always

provide the good (if µ ≥ c), or never to do so.

This suggests that persistence plays an ambiguous role a priori. Because current types

assign different probabilities of being (say) high types tomorrow, one might hope that tying

the promised utility in the future to the current reports might facilitate truth-telling. On

the other hand, the case of perfectly persistent types makes clear that correlation diminishes

the scope for using future allocations as a “transfer”: utilities might still be separable over

time, but the current type affects both flow and continuation utility. A definite comparative

statics is obtained in the continuous-time limit, see Section 5.1.

The techniques that served us well with independent values are no longer useful. We will

not be able to rely on martingale techniques. Worse, ex ante utility is no longer a valid state

variable. To understand why, note that, with independent types, an agent of a given type

can evaluate his continuation utility based only on his current type, the probabilities of trade

as a function of his report, and the promised utility tomorrow, as a function of his report.

But if one’s type today is correlated with tomorrow’s type, how can the agent evaluate his

continuation utility without knowing how the principal intends to implement it? This is

problematic because the agent can deviate unbeknownst to the principal, in which case the

continuation utility as computed by the principal, given his incorrect belief about the agent’s

type tomorrow, is not the same as the continuation utility under the agent’s belief.

19This result might be surprising given Cohn’s (2010) improvement upon Jackson and Sonnenschein.

However, while Jackson and Sonnenschein covers our set-up, Cohn’s does not, and features more instruments

at the principal’s disposal. See also Eilat and Pauzner (2011) for an optimal mechanism in a related setting.
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On the other hand, conditional on the agent’s type tomorrow, his type today carries no

information about future types, by the Markovian assumption. Hence, tomorrow’s promised

ex interim utilities suffice for the agent to compute his utility today, whether he deviates

or not: that is, we must specify his promised utility tomorrow conditional on each of his

possible report then. Of course, his type tomorrow is not observable, so we must use instead

the utility he gets from reporting his type tomorrow, conditional on truthful reporting.

This creates no difficulty, as on path, the agent has incentive to report truthfully his type

tomorrow. Hence, he does so as well after having lied in the previous round (conditional

on his current type and his previous report, his previous type does not affect the decision

problem that he faces). That is, the one-shot deviation principle holds here: when a player

considers lying, there is no loss in assuming that he will report truthfully tomorrow, so that

the promised utility pair that we use corresponds to his actual possible continuation utilities

if he plays optimally in the continuation, whether or not he reports truthfully today.

We are obviously not the first ones to point out the necessity to use as state variable the

vector of ex interim utilities, given a report today, as opposed to the ex ante utility, when

types are serially correlated. See Townsend (1982), Fernandes and Phelan (2000), Cole and

Kocherlakota (2001), Doepke and Townsend (2006) and Zhang and Zenios (2008).

Hence, to use dynamic programming, we must carry the pair of utilities that must be

delivered today as a function of the report. Still this is not enough: to evaluate the payoff to

the principal, given such a pair, we must also specify his belief regarding the agent’s type.

Let φ denote the probability that he assigns to the high type. This belief can take only three

values, depending on whether this is the initial round, or whether the previous report was

high or low. Nonetheless, we treat φ as an arbitrary element in the unit interval.

Another complication arises from the fact that the principal’s belief depends on the

history. For this belief, the last report is a sufficient statistic.

4.1 The Program

As discussed, the principal’s optimization program, cast as a dynamic programming problem,

requires three state variables: the belief of the principal, φ = P[v = h] ∈ [0, 1], and the pair

of (ex interim) utilities that the principal delivers as a function of the current report, Uh, Ul.

The highest utility µh (resp., µl) that can be given to a player whose type is high (resp.,

low), delivered by always supplying the good, solves

µh = (1− δ)h + δ(1− ρh)µh + δρhµl, µl = (1− δ)l + δ(1− ρl)µl + δρlµh,
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that is,

µh = h− δρh(h− l)

1− δ + δ(ρh + ρl)
, µl = l +

δρl(h− l)

1− δ + δ(ρh + ρl)
.

We note that

µh − µl =
1− δ

1− δ + δ(ρh + ρl)
(h− l).

The gap between the maximum utilities as a function of the type decreases in δ, vanishing

as δ → 1.

A policy is now a pair (ph, pl) : R2 → [0, 1]2, mapping the current utility vector U =

(Uh, Ul) into the probability with which the good is supplied as a function of the report, and

a pair (U(h), U(l)) : R2 → R
2, mapping U into the promised utilities (Uh(h), Ul(h)) if the

report is h, and (Uh(l), Ul(l)) if it is l. These definitions abuse notation, since the domain of

(U(h), U(l)) should be those utility vectors that are feasible and incentive-compatible.

Define the function W : [0, µh] × [0, µl] × [0, 1] → R ∪ {−∞} that solves the following

program, for all U ∈ [0, µh]× [0, µl], and φ ∈ [0, 1],

W (U, φ) = sup {φ ((1− δ)ph(h− c) + δW (U(h), 1− ρh))

+ (1− φ) ((1− δ)pl(l − c) + δW (U(l), ρl))} ,

over pl, ph ∈ [0, 1], and U(h), U(l) ∈ [0, µh]× [0, µl] subject to promise-keeping and incentive

compatibility, namely,

Uh = (1− δ)phh+ δ(1− ρh)Uh(h) + δρhUl(h) (2)

≥ (1− δ)plh+ δ(1− ρh)Uh(l) + δρhUl(l), (3)

and

Ul = (1− δ)pll + δ(1− ρl)Ul(l) + δρlUh(l) (4)

≥ (1− δ)phl + δ(1− ρl)Ul(h) + δρlUh(h), (5)

with the convention that supW = −∞ whenever the feasible set is empty. Note that W is

concave on its domain (by linearity of the constraints in the promised utilities). An optimal

policy is a map from (U, φ) into (ph, pl, U(h), U(l)) that achieves the supremum for some W .

4.2 Complete Information

Proceeding as with independent values, we briefly derive the solution under complete infor-

mation, that is, dropping (3) and (5). Write W̄ for the resulting value function. Ignoring
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promises, the efficient policy is to supply the good if and only if the type is h. Let v∗h (resp.,

v∗l ) denote the utility that a high (low) type gets under this policy. The pair (v∗h, v
∗
l ) satisfies

v∗h = (1− δ)h + δ(1− ρh)v
∗
h + δρhv

∗
l , v∗l = δ(1− ρl)v

∗
l + δρlv

∗
h,

which gives

v∗h =
h(1− δ(1− ρl))

1− δ(1− ρh − ρl)
, v∗l =

δhρl
1− δ(1− ρh − ρl)

.

When a high type’s promised utility Uh is in [0, v∗h], the principal supplies the good only if

the type is high. Therefore, the payoff is Uh(1 − c/h). When Uh ∈ (v∗h, µh], the principal

always supplies the good if the type is high. To fulfill the promised utility, the principal also

produces the good when the agent’s type is low. The payoff is v∗h(1−c/h)+(Uh−v∗h)(1−c/l).

We proceed analogously given Ul (notice that the two problems of delivering Uh and Ul are

uncoupled). To sum up, W̄ (U, φ) is given by































φUh(h−c)
h

+ (1− φ)Ul(h−c)
h

if U ∈ [0, v∗h]× [0, v∗l ],

φUh(h−c)
h

+ (1− φ)
(

v∗
l
(h−c)

h
+

(Ul−v∗
l
)(l−c)

l

)

if U ∈ [0, v∗h]× [v∗l , µl],

φ
(

v∗
h
(h−c)

h
+

(Uh−v∗
h
)(l−c)

l

)

+ (1− φ)Ul(h−c)
h

if U ∈ [v∗h, µl]× [0, v∗l ],

φ
(

v∗
h
(h−c)

h
+

(Uh−v∗
h
)(l−c)

l

)

+ (1− φ)
(

v∗
l
(h−c)

h
+

(Ul−v∗
l
)(l−c)

l

)

if U ∈ [v∗h, µl]× [v∗l , µl].

For future purposes, it is useful to note that the derivative of W (differentiable except at

Uh = v∗h and Ul = v∗l ) is in the interval [1− c/l, 1− c/h], as expected: the latter corresponds

to the most efficient way of allocating utility, the former to the most inefficient one. In fact,

W is piecewise linear (a “tilted pyramid”), with a global maximum at v∗ = (v∗h, v
∗
l ).

4.3 Feasible and Incentive-Feasible Payoffs

One difficulty with using ex interim utilities as state variables, rather than ex ante utility, is

that the dimensionality of the problem increases with the cardinality of the type set. Another

related difficulty is that it is not obvious what vectors of utilities are even feasible, given

the incentive constraints. Promising to give all future units to the agent in case his current

report is high, while giving none if this report is low is simply not incentive compatible.

The set of feasible utility pairs (that is, the largest bounded set of vectors U such that

(2) and (4) can be satisfied with continuation vectors in the set itself) is easy to describe.

Because the two promise-keeping equations are uncoupled, it is simply the set [0, µh]× [0, µl]

itself (as was already implicit in Section 4.2).
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What is challenging is to solve for the incentive-compatible, feasible (in short, incentive-

feasible) utility pairs: these are ex interim utilities for which we can find probabilities and

pairs of promised utilities tomorrow that make it optimal for the agent to report his value

truthfully, such that these promised utility pairs tomorrow satisfy the same property, etc.

Definition 1 The incentive-feasible set, V ∈ R
2, is the set of ex interim utilities in round

0 that are obtained for some incentive-compatible policy.

It is standard to show that V is the largest bounded set such that, for each U ∈ V , there

exists ph, pl ∈ [0, 1] and two pairs U(h), U(l) ∈ V solving (2)–(5).20

Our first step towards solving for the optimal mechanism is to solve for V . To get some

intuition for its structure, let us review some of its elements. Clearly, 0 ∈ V, µ := (µh, µl) ∈ V :

it suffices to never or always supply the unit, independently of the reports, which is incentive

compatible.21 More generally, for some integer m ≥ 0, the principal can supply the unit

for the first m rounds, independently of the reports, and never after. We refer to such

policies as pure frontloaded policies, as they deliver a given number of units as quickly as

possible. More generally, a (possibly mixed) frontloaded policy is one that randomizes over

two pure frontloaded policies with consecutive integers m,m+1. Similarly, we define a pure

backloaded policy as one that does not supply the good for the first m rounds, but does

afterwards, independently of the reports. (Mixed backloaded policies being defined in the

obvious way.)

Suppose that we fix a backloaded and a frontloaded policy such that the high-value agent

is indifferent between both. Then surely the low-value agent prefers the backloaded policy.

This is because it gives him “more time” to switch from his (initial) low value to a high value.

Hence, given Uh ∈ (0, µh), the utility Ul obtained by the backloaded policy that gives Uh to

the high type is higher than the utility Ul from the frontloaded policy that also gives Uh.

The utility pairs corresponding to backloading and frontloading are easily solved for,

since they obey simple recursions. First, for ν ≥ 0, let

uν
h = δνµh − δν(1− q)(µh − µl)(1− κν), (6)

uν
l = δνµl + δνq(µh − µl)(1− κν), (7)

20Clearly, incentive-feasibility is closely related to self-generation (see Abreu, Pearce and Stacchetti, 1990),

though it pertains to the different types of a single agent, as opposed to the different players in the game.

The distinction is not merely a matter of interpretation, as a high type can become a low type and vice-versa,

for which there is no analogue in repeated games. Nonetheless, the proof of this characterization is identical.
21With some abuse, we write µ ∈ R

2, as it is the natural extension as an upper bound of the feasible set

of µ ∈ R.
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and set uν := (uν
h, u

ν
l ). Second, for ν ≥ 0, let

uν
h = (1− δν)µh + δν(1− q)(µh − µl)(1− κν), (8)

uν
l = (1− δν)µl − δνq(µh − µl)(1− κν), (9)

and set uν := (uν
h, u

ν
l ). The sequence uν is decreasing (in both its arguments) as ν increases,

with u0 = µ, with limν→∞ uν = 0. Similarly, uν is increasing, with u0 = 0 and limν→∞ uν = µ.

Backloading is not only better than frontloading for the low-value agent, fixing the high-

value agent’s utility. These policies yield the best and worst utilities. Formally,

Lemma 5 It holds that

V = co{uν , uν : ν ≥ 0}.

That is, V is a polygon with a countable infinity of vertices (and two accumulation points).

See Figure 2 for an illustration. It is easily checked that
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Figure 2: The set V for parameters (δ, ρh, ρl, l, h) = (9/10, 1/3, 1/4, 1/4, 1).
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When the switching time ν is large, the change in utility from incrementing it has an impact

on the agent’s utility that is essentially independent of his initial type. Hence, the slopes of

the boundaries are less than 1 and approach 1 as ν → ∞. Because (µl − v∗l )/(µh − v∗h) > 1,

the vector v∗ is outside V : for any φ, the complete-information value function W̄ (U, φ)

increases as we vary U within V toward its lower boundary, either horizontally or vertically.

This should not be too surprising: because of private information, the low-type agent derives

information rents, so that, if the high-type agent’s utility were first-best, the low-type agent’s

utility would be too high.

It is instructive to study how the shape of V varies with persistence. When κ = 0

and values are independent over time, the lower type prefers to get a larger fraction (or

probability) of the good tomorrow rather than today (adjusting for discounting), but has

no preference over later times; and similarly for the high type. As a result, all the vertices

{uν}∞ν=1 (resp., {uν}∞ν=1) are aligned, and V is a parallelogram whose vertices are 0, µ, u1 and

u1. As κ increases, the imbalance between the types’ utilities grows, and the set V flattens

out; in the limit of perfect persistence, the low-type agent no longer feels differently about

frontloading vs. backloading, as no amount of time allows his type to change. See Figure 3.
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Figure 3: Impact of Persistence, as measured by κ ≥ 0.

The structure of V relies on the assumption κ ≥ 0: if types were negatively correlated
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over time, then frontloading and backloading wouldn’t be the policies spanning the boundary

of V . This is easily seen by considering the case in which there is perfect negative serial

correlation. Then giving the unit if only if the round is odd (resp., even) favors (hurts)

the low-type agent, relative to the high type. These two policies achieve extreme points of

V , and according to whether higher or lower values of Uh are being considered, the other

boundary points combine such alternation with front- or backloading. Negative correlation

thus requires a separate (though analogous) treatment, motivating our focus on κ ≥ 0.

Importantly, front- and backloading are not the only ways to achieve boundary payoffs.

It is not hard to see that the lower locus corresponds to those policies that (starting from

this locus) assign as high a probability as possible to the good being supplied for every high

report, while promising continuation utilities that make ICL always bind. Similarly, the

upper boundary corresponds to those policies that assign as low a probability as possible

to the good being supplied for low reports, while promising continuation utilities that make

ICH always bind. Front- and backloading are representative examples in each class.

4.4 The Optimal Mechanism

Not every incentive-feasible utility vector is on path, given the optimal policy: no matter

what the sequence of reports is, some vectors simply never arise. While it is necessary to

solve for the value function and the optimal policy on the entire domain V , we first focus

on the subset of V that turns out to be relevant given the optimal initial promise and the

resulting dynamics, and relegate discussion of the optimal policy for other utility vectors to

the end of the section.

This subset is the lower locus –the polygonal chain spanned by pure frontloading. And

the two observations from the i.i.d. case remain valid: the efficient choice is made as long as

possible given feasibility, and the promises are chosen in a way that the agent is indifferent

between both reports when his type is low.

To understand why such a policy yields utilities on the “frontloading” boundary (as

mentioned at the end of Section 4.3), note that, because the low type is indifferent between

both reports, the agent is willing to always report high, irrespective of his type. Because the

principal then supplies the good, it means that, from the agent’s point of view, the pair of

utilities can be computed as if frontloading was the policy that was being implemented.

From the principal’s point of view, however, it matters that this is not the actual policy.

As in the i.i.d. case (a special case of the analysis), the payoff is higher under the efficient

policy. Making the efficient choice, even if it involves delay, increases his payoff.
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Figure 4: Dynamics on the lower locus.

Hence, after a high report, and as in the i.i.d. case, continuation utility goes down.22

More precisely, U(h) is computed as under frontloading, as the solution to the system

Uv = (1− δ)v + δEv[U(h)], v = l, h,

where U is given. Here, Ev[U(h)] is the expectation of the utility vector U(h) given that the

current type is v (e.g., for v = h, Ev[U(h)] = ρhUl(h) + (1− ρh)Uh(h)).

The promise U(l) does not admit such an explicit formula, as it is pinned down by ICL

and the requirement that it lies on the lower boundary. In fact, U(l) might be lower or higher

than U (see Figure 4) depending on where U lies on the boundary. If it is high enough, U(l)

is higher; on the other hand, under some condition, U(l) is lower than U when U is low

enough.23 The condition has a simple geometric interpretation: if the half-open line segment

(0, v∗] intersects the boundary,24 then U(l) is lower than U if and only if U lies below U .25

If on the other hand, there is no such intersection, then U(l) is always higher than U . This

22Because the lower boundary is upward sloping, ex interim utilities of both types vary in the same way.

Accordingly, we use terms such as “higher” or “lower” utility, and write U < U ′ for the component-wise order.
23As in the i.i.d. case, U(l) is nonetheless always higher than U(h).
24This line has equation Ul =

δρl

1−δ(1−ρl)
Uh.

25With some abuse, we write U ∈ R
2, as it is the natural extension of U ∈ R as introduced in Section 3.

Also, we set U = 0 if the intersection does not exist.
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intersection exists if and only if
h− l

l
>

1− δ

δρl
. (10)

Hence, U(l) is higher than U (for all U) if the low-type persistence is high enough, which

is intuitive: utility goes down even after a low report if U is so low that even the low-type

agent expects to have sufficiently soon and often a high value that the efficient policy would

yield too high a utility. When the low-type persistence is high, this does not happen.26 As

in the i.i.d. case, the principal is able to achieve the complete-information payoff if and only

if U ≤ U (or U = µ).

We summarize this discussion with the following theorem, a special case of the next.

Theorem 2 The optimal policy consists in the constrained-efficient policy

pl = max

{

0, 1− µl − Ul

(1− δ)l

}

, ph = min

{

1,
Uh

(1− δ)h

}

,

alongside a (specific) initial promise U0 > U on the lower boundary of V , and choices

(U(h), U(l)) on this lower boundary such that ICL always binds.

While the implementation in the i.i.d. case is described in terms of a “utility budget,” inspired

by the use of (ex ante) utility as a state variable, the analysis of the Markov case strongly

suggests the use of a more concrete metric –the number of units the agent is entitled to claim

in a row, “no questions asked.” The utility vectors on the boundary are parametrized by

the number of rounds it takes to reach 0 under frontloading. Because of integer issues, we

denote such a policy by a pair (m, λ) ∈ (N0∪{∞})× [0, 1) with the interpretation that with

probability λ the good is supplied for m rounds, and with the complementary probability

1−λ for m+1 rounds, and write Uh(m, λ), Ul(m, λ). If m = ∞, the good is always supplied,

yielding utility µ.

We may think of the optimal policy as follows. In a given round m, the agent is promised

(mn, λn). If the agent asks for the unit (and this is feasible, that is, mn ≥ 1), the next

promise (mn+1, λn+1), is then the solution to

Ul(mn, λn)− (1− δ)l

δ
= El

[

Uvt+1(mn+1, λn+1)
]

, (11)

where El

[

Uvn+1(mn+1, λn+1)
]

= (1 − ρl)Ul(mn+1, λn+1) + ρlUh(mn+1, λn+1) is the expected

utility from tomorrow’s promise (mn+1, λn+1) given that today’s type is low. If mn < 1 and

26This condition is satisfied in the i.i.d. case because of our maintained assumption that δ > l/µ.
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the agent claims to be high, he then gets with the probability q̃ that solves Ul(mn, λn) −
q̃(1− δ)l = 0.) On the other hand, claiming to being low simply leads to the revised promise

Ul(mn, λn)

δ
= El

[

Uvn+1(mn+1, λn+1)
]

, (12)

provided that there exists a (finite) mn+1 and λn+1 ∈ [0, 1) that solve this equation.27 The

policy described by (11)–(12) reduces to the one described in Section 3.3 in that case (a

special case of the Markovian one). The policy described in the i.i.d. case obtains by taking

expectations of these dynamics with respect to today’s type.

It is perhaps surprising that the optimal policy can be solved for. Less surprising is that

comparative statics are difficult to obtain by other means than numerical simulations. By

scaling both ρl and ρh by a common factor, p ≥ 0, one varies the persistence of the value

without affecting the invariant probability q, and so not either the value µ. Numerically,

it appears a decrease in persistence (increase in p) leads to a higher payoff. When p = 0,

types never change and we are left with a static problem (for the parameters chosen here, it

is then best not to provide the good). When p increases, types change more rapidly, so that

promised utility becomes a frictionless currency.

As mentioned, this comparative statics is merely suggested by simulations. Given that

promised utility varies as a random walk with unequal step size, on a grid that is itself a

polygonal chain, there is little hope to establish this result more formally here. To derive a

result along these lines, see Section 5.1. Nonetheless, it might be worth pointing out that it

is not persistence, but positive correlation that is detrimental. It is tempting to think that

any type of persistence is bad, because it endows the agent with private information that

not only pertains to today’s value, but tomorrow’s as well, and eliciting private information

is usually costly in information economics. But conditional on his knowledge about today’s

type, the agent’s information regarding his future type is known (unlike, say, in the case of

a prophetic agent with i.i.d. values). Indeed, note that, with perfectly negatively correlated

types, the complete-information payoff would be easy to achieve: offer the agent a choice

between getting the good in all odd or all even rounds. Given that δ > l/h (in fact, we

assumed δ > l/µ), the low-type agent would tell the truth. Just as a lower discount rate,

more negative correlation (or less positive correlation) makes future promises more potent

as a way of providing incentives, as preferences misalignment is shorter-lived.

27This is impossible if the promise (mn, λn) is already too large (formally, if the corresponding payoff

vector (Uh(m,λ), Ul(m,λ) ∈ Vh), in which case the good is given even in that event with the probability

that solves Ul(mn,λn)−q̃(1−δ)l
δ

= El

[

Uvn+1
(∞)

]

.
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It is immediate that, given any initial choice of U0 /∈ V ∪ {µ}, finitely many consecutive

reports of l (or h) suffice for the promised utility to reach µ (or 0). As a result, both long-run

outcomes have strictly positive probability under the optimal policy, for any optimal initial

choice. By the Borel-Cantelli lemma, this implies that absorption occurs almost surely.

As in the i.i.d. model, the ex ante utility, computed under the invariant distribution, is a

random process that drifts upwards if and only if qUl + (1 − q)Uh ≥ qh, as the right-hand

side is the flow utility under the efficient policy. However, we are unable to derive the

absorption probabilities, starting from U0, as the Markov model admits no analogue to the

TW-martingale.

4.5 A Comparison with Transfers as in Battaglini (2005)

As mentioned, our model can be viewed as a no-transfer counterpart of Battaglini (2005).

At first sight, the difference in results is striking. One of the main findings of Battaglini,

“no distortion at the top,” has no counterpart. With transfers, efficient provision occurs

forever as soon as the agent reveals to be of the high type. Also, as noted, with transfers,

even along the one history in which efficiency is not achieved in finite time, namely an

uninterrupted string of low reports, efficiency is asymptotically approached. Here instead,

as explained, we necessarily end up (with probability one) with an inefficient outcome, which

can be implemented without using further reports. And both such outcomes (providing the

good forever or never again) can arise. In summary, inefficiencies are frontloaded as much

as possible with transfers, while here they are backloaded to the greatest extent possible.

The difference can be understood as follows. First, and importantly, Battaglini’s results

rely on revenue maximization being the objective function. With transfers, efficiency is

trivial to achieve: simply charge c whenever the good has to be supplied.

Once revenue maximization becomes the objective, the incentive constraints reverse with

transfers: it is no longer the low type who would like to mimick the high type, but the high

type who would like to avoid paying his entire value for the good by claiming he is a low type:

to avoid this, the high type must be given information rents, and his incentive constraint

becomes the binding one. Ideally, the principal would like to charge for these rents before

the agent has private information, when the expected value of these rents to the agent are

still common knowledge. When types are i.i.d., this poses no difficulty, and these rents can

be expropriated one round ahead of time; with correlation, however, different types of the

agent value these rents differently, as their likelihood of being high in the future depends on

their current type. However, when considering information rents far enough in the future,
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the initial type hardly affects the conditional expectation of the value of these rents, so that

they can be “almost” extracted. As a result, it is in the principal’s best interest to maximize

the surplus and so offer a nearly efficient contract at all dates sufficiently far away.

We see that money plays two roles. First, because it is an instrument that allows to “clear”

promises on the spot, without allocative distortions, it prevents the occurrence of backloaded

inefficiencies –a poor substitute for money in this regard. Even if payments could not be

made “in advance,” this would suffice to restore efficiency if this was the objective. Another

role of money, as highlighted by Battaglini, is that it allows transferring value from the agent

to the principal before private information realizes, so that information rents no longer stand

in the way of efficiency, at least, as far as the remote future is concerned. Hence, these future

inefficiencies can be eliminated, so that inefficiencies only arise in the short run.

Perhaps a plausible intermediate case arise when money is available, but the agent is

protected by limited liability, so that payments can only go one way, from the principal to

the agent. The principal strives to maximize social surplus, net of the payments he makes.28

In this case, we show in appendix (see Lemma 11) that no transfers are made if (and only

if) c− l < l. This condition can be interpreted as follows: c− l is the cost to the principal of

incurring one inefficiency (supplying the good when the type is low), while l is the cost to the

agent of forfeiting a low-unit value. Hence, if it is costlier to buy off the agent than to supply

the good when the value is low, the principal prefers not to use money as an instrument

ever, and to follow the optimal policy absent any money.

4.6 The General Solution

Theorem 2 follows from the analysis of the optimal policy on the entire domain V . Because

only those values in V along the lower boundary turn out to be relevant, the reader might

elect to skip this subsection, which solves completely for the program of Section 4.1.

First, we further slice V into subsets, and introduce two sequences of utility vectors to

this purpose. Given U , define the sequence {vν}ν≥1 by

vνh = δν ((1− q)U l + qUh + (1− q)κν(Uh − U l)) , v
ν
l = δν ((1− q)U l + qUh − qκν(Uh − U l)) ,

and define

V = co{{0} ∪ {vν}ν≥0}. (13)

28If payments do not matter for the principal, then again efficiency is easily achieved, as he could pay c

to the agent if and only if the report is low, and nothing otherwise.

30



See Figure 5. Note that V has non-empty interior if and only if ρl is sufficiently large, see

(10). This set is the domain of utilities for which the complete-information payoff can be

achieved, as stated next.

Lemma 6 For all U ∈ V ∪ {µ}, and all φ,

W (U, φ) = W̄ (U, φ).

Conversely, if U /∈ V ∪ {µ}, then W (U, φ) < W̄ (U, φ) for all φ ∈ (0, 1).

Second, we define ûν := (ûν
h, û

ν
l ), ν ≥ 0, as follows:

ûν
h = µh − (1− δ)h− δν+1

(

(1− q)l + qh+ (1− q)κν+1(µh − µl)
)

,

ûν
l = µl − (1− δ)l − δν+1

(

(1− q)l + qh− qκν+1(µh − µl)
)

.

We note that û0 = 0, and ûν is an increasing sequence (in both coordinates) contained in

V , with limν→∞ ûν = ū1. The ordered sequence {ûν}ν≥0 defines a polygonal chain P that

divides V \ V into two further subsets, Vt and Vb, consisting of those points in V \V that lie

above or below P . It is readily verified that the points U on P are precisely those for which,

assuming ICH, the resulting U(l) lies exactly on the lower boundary of V . We also let Pb,

Pt be the (closure of the) polygonal chains defined by {uν}ν≥0 and {uν}ν≥0 that correspond

to the lower and upper boundaries of V .

We now define a policy (which as we will see is optimal), ignoring for now the choice of

the initial promise.

Definition 2 For all U ∈ V , set

pl = max

{

0, 1− µl − Ul

(1− δ)l

}

, ph = min

{

1,
Uh

(1− δ)h

}

, (14)

and

U(h) ∈ Pb, U(l) ∈







Pb if U ∈ Vb

Pt if U ∈ Pt.

Furthermore, if U ∈ Vt, U(l) is chosen so that ICH binds.

For each continuation utility vector U(h) or U(l), this gives one constraint (either an incentive

constraint, or the constraint that the utility vector lies on one of the boundaries). In addition

to the two promise-keeping equations, this gives four constraints, which uniquely define the
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Figure 5: The set V and the optimal policy for (δ, ρh, ρl, l, h) = (9/10, 1/3, 1/4, 1/4, 1).

pair of points (U(h), U(l)). It is readily checked that the policy as well as the choices of

U(l), U(h) also imply that ICL binds for all U ∈ Pb.

A surprising property of this policy is its independence of the principal’s belief. That is,

the principal’s belief about the agent’s value is irrelevant to the optimal policy, given the

promised utility. However, the initial choice of utility on the lower boundary depends on this

belief, as does the payoff. But the monotonicity properties of the value function with respect

to utilities are sufficiently strong and uniform that the constraints pin down the policy.

Figure 5 illustrates the dynamics of the optimal policy. Given any promised utility vector

in V , the vector (ph, pl) = (1, 0) is played (unless U is too close to 0 or µ), and promised

utilities depend on the report: a report of l takes the utility to the right (towards higher

utilities), while a report of h takes it to the left and to the lower boundary. Below the

polygonal chain, the l report also takes us to the lower boundary (and ICL binds), while

above it, it does not, and it is ICH that binds. In fact, note that if the utility vector is on

the upper boundary, the continuation utility after l remains there.

For completeness, we also define the subsets over which promise-keeping prevents the

efficient choices (ph, pl) = (1, 0) from being made. Let Vh be {(Uh, Ul) : (Uh, Ul) ∈ V, Ul ≥ u1
l }

and Vl be {(Uh, Ul) : (Uh, Ul) ∈ V, Uh ≤ u1
h}. It is easily verified that (ph, pl) = (1, 0) is

feasible at U given promise-keeping if and only if U ∈ V \ (Vh ∪ Vl).
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Theorem 3 Fix U0 ∈ V ; given U0, the policy stated above is optimal. The initial promise

U∗ is in Pb ∩ (V \ V ), with U∗ increasing in the principal’s prior belief.

Furthermore, the value function W (Uh, Ul, φ) is weakly increasing in Uh along the rays

x = φUh + (1− φ)Ul for any φ ∈ {1− ρh, ρl}.

Given that U∗ ∈ Pb, and given the structure of the optimal policy, the promised utility vector

actually never leaves Pb. It is also simple to check that, as in the i.i.d. case (and with the

same arguments), the (one-sided) derivative of W approaches the derivative of W̄ as either

U approaches µ or the set V . As a result, the initial promise U∗ is strictly interior.

5 Extensions

Two modeling choices deserve discussion. First, we have opted for a discrete-time framework

as it embeds the case of independent values –a natural starting point for which there is

no counterpart in continuous time. But this comes with a price. By varying the discount

factor, we both change the patience of the players and the rate at which types change,

with independent values. This is not necessarily the case with Markovian types, but the

analytical difficulties prevent us from deriving definitive comparative statics, a deficiency

that we remedy below, by resorting to continuous time.

Second, we have assumed that the agent’s value is binary. As is well known (see Battaglini

and Lamba, 2014, for instance), it is difficult to make progress with more types, even with

transfers, unless strong assumptions are imposed. In the i.i.d. case, this is nonetheless

possible. Below, we consider the case of a continuum of types, which allows us to evaluate

the robustness of our different findings.

5.1 Continuous Time

To make further progress, we examine the limiting stochastic process of utility and payoff

as transitions are scaled according to the usual Poisson limit, when variable round length,

∆ > 0, is taken to 0, at the same time as the transition probabilities ρh = λh∆, ρl = λl∆.

That is, we let (vt)t≥0 be a continuous-time Markov chain (by definition, a right-continuous

process) with values in {h, l}, initial probability q of h, and parameters λh, λl > 0. Let T0,

T1, T2, . . ., be the corresponding random times at which the value switches (setting T0 = 0 if

the initial state is l, so that, by convention, vt = l on any interval [T2k, T2k+1)). The initial

type is h with probability q = ρl/(ρh + ρl).
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The optimal policy defines a tuple of continuous-time processes that follow deterministic

trajectories over any interval [T2k, T2k+1). First, the belief (µt)t≥0 of the principal, which

takes values in {0, 1}. Namely, µt = 0 over any interval [T2k, T2k+1), and µt = 1 otherwise.

Second, the utilities of the agent (Ul,t, Uh,t)t≥0, as a function of his type. Finally, the expected

payoff of the principal, (Wt)t≥0, computed according to his belief µt.

The pair of processes (Ul,t, Uh,t)t≥0 takes values in V , obtained by considering the limit

(as ∆ → 0) of the formulas for {uν , uν}ν∈N. In particular, one obtains that the lower bound

is given in parametric form by

uh(τ) = (1− e−rτ )µh + e−rτ (1− e−(λh+λl)τ (1− q)(µh − µl)),

ul(τ) = (1− e−rτ )µh − e−rτ (1− e−(λh+λl)τq(µh − µl)).

where τ ≥ 0 can be interpreted as the requisite time for the promises to be fulfilled, under

the policy that consists in producing the good regardless of the reports until that time is

elapsed. Here, as before

µ =

(

h− λh

λh + λl + r
(h− l), l +

λl

λh + λl + r
(h− l)

)

is the utility vector achieved by providing the good forever. The upper boundary is now

given by

uh(τ) = e−rτµh − e−rτ (1− e−(λh+λl)τ (1− q)(µh − µl)),

ul(τ) = e−rτµh − e−rτ (1− e−(λh+λl)τq(µh − µl)).

Finally, the set V is either empty or defined by those utility vectors in V lying below the

graph of the curve defined by

vh(τ) = e−rτ ((1− q)U l + qUh) + e−rτ (1− e−(λh+λl)τ (1− q)(Uh − U l)),

vl(τ) = e−rτ ((1− q)U l + qUh)− e−rτ (1− e−(λh+λl)τq(Uh − U l)),

where (Uh, U l) are the coordinates of the largest intersection of the graph of u = (uh, ul)

with the line ul =
λl

λl+r
uh. It is immediate to check that V has nonempty interior iff (cf.

eqrefperscon)
h− l

l
>

r

λl
.

Hence, the complete-information payoff cannot be achieved for any utility level (aside from 0

and µ) whenever the low state is too persistent. On the other hand, V is always non-empty

when the agent is sufficiently patient.
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Figure 6: Incentive-feasible set for (r, λh, λl, l, h) = (1, 10/4, 1/4, 1/4, 1).

Figure 6 illustrates this construction. Note that the boundary of V is smooth, except at

0 and µ. It is also easy to check that the limit of the chain defined by ûν lies on the lower

boundary: Vb is asymptotically empty.

The great advantage of the Poisson system is that payoffs can be explicitly solved for.

We sketch the details of the derivation.

How does τ –the denomination of utility on the lower boundary– evolve over time?

Along the lower boundary, it evolves continuously. On any interval of time over which h is

continuously reported, it evolves deterministically, with increments

dτh := −dt.

On the other hand, when l is reported, the evolution is more complicated. Algebra gives

that

dτ l :=
g(τ)

µ− q(h− l)e−(λh+λl)τ
dt,

where

g(τ) := q(h− l)e−(λh+λl)τ + lerτ − µ,

and µ = qh+ (1− q)l, as before.

The increment dτ l is positive or negative, depending upon whether τ maps into a utility

vector in V or not. If V has nonempty interior, we can identify the value of τ that is the
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intersection of the critical line and the boundary; call it τ̂ , which is simply the positive root

(if any) of g. Otherwise, set τ̂ = 0.

The evolution of utility is not continuous for utilities that are not on the lower boundary.

A high report leads to a vertical jump in the utility of the low type, down to the lower

boundary. See Figure 6. This is intuitive, as by promise-keeping the utility of the high type

agent cannot jump, as such an instantaneous report has only a minute impact on his flow

utility. A low report, on the other leads to a drift in the type’s utility.

Our goal is to derive the principal’s value function. Because his belief is degenerate, except

at the initial instant, we write Wh(τ) (resp., Wl(τ)) for the payoff when (he assigns probability

one to the event that) the agent’s valuation is currently high (resp., low). By definition of

the policy that is followed, the value functions solve the paired system of equations

Wh(τ) = rdt(h− c) + λhdtWl(τ) + (1− rdt− λhdt)Wh(τ + dτh) +O(dt2),

and

Wl(τ) = λldtWh(τ) + (1− rdt− λldt)Wl(τ + dτ l) +O(dt2).

Assume for now (as will be verified) that the functions Wh,Wl are twice differentiable. We

then get the differential equations

(r + λh)Wh(τ) = r(h− c) + λhWl(τ)−W ′
h(τ),

and

(r + λl)Wl(τ) = λlWh(τ) +
g(τ)

µ− q(h− l)e−(λh+λl)τ
W ′

l (τ),

subject to the following boundary conditions.29 First, at τ = τ̂ , the value must coincide

with the one given by the first-best payoff W̄ on that range. That is, Wh(τ̂) = W̄h(τ̂), and

Wl(τ̂ ) = W̄l(τ̂). Second, as τ → ∞, it must hold that the payoff µ−c be approached. Hence,

lim
τ→∞

Wh(τ) = µh − c, lim
τ→∞

Wl(τ) = µl − c.

Despite having variable coefficients, it turns out that this system can be solved. See Section

C.1 of the appendix for the solution, based on which the next comparative statics follows.

Lemma 7 The value W (τ) := qWh(τ)+(1−q)Wl(τ) decreases pointwise in persistence 1/p,

where λh = pλ̄h, λl = pλ̄l, for some fixed λ̄h, λ̄l, with, for all τ ,

lim
p→∞

W (τ) = W̄ (τ), lim
p→0

max
τ

W (τ) = max{µ− c, 0}.

29To be clear, these are not HJB equations, as there is no need to verify the optimality of the policy that is

being followed. This has already been established. These are simple recursive equations that these functions

must satisfy.
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The proof is in Appendix C.1. Hence, persistence hurts the principal’s payoff, as is intuitive:

with independent types, the agent’s preferences are quasilinear in promised utility, so that

the only source of inefficiency derives from the bounds on this currency. When types are

correlated, promised utility no longer enters independently of today’s types in the agent’s

preferences, reducing the degree to which this can be used to provide incentives efficiently.

With perfectly persistent types, there is no leeway anymore, and we are back to the inefficient

static outcome. Figure 7 illustrates the value function for two levels of persistence, and

compares it to the complete-information payoff evaluated along the lower locus, W̄ (the

lower envelope of three curves).

How about the agent’s utility? We note that the utility of both types is increasing in τ .

Indeed, since a low type is always willing to claim that his value is high, we may compute

his utility as the time over which he would get the good if he continuously claimed to be

of the high type: this is precisely the definition of τ . But persistence plays an ambiguous

role on the agent’s utility: indeed, perfect persistence is his favorite outcome if µ > c, so

that always providing the good is best in the static game. Conversely, perfect persistence

is worse if µ < c. Hence, persistence tends to improve the agent’s situation when µ > c.30

As r → 0, the principal’s value converges to the complete-information payoff q(h − c). We

conclude with a rate of convergence, without further discussion, given the comparison with

Jackson and Sonnenschein (2007) made in Section 3.4.

Lemma 8 It holds that

|max
τ

W (τ)− q(h− c)| = O(r).

5.2 Continuous Types

It is important to understand the role played by the assumption of two types only. To make

progress, assume here that types are drawn i.i.d. from some atomless distribution F with

support [v, 1], v ∈ [0, 1), and density f > 0 on [v, 1]. Soon we specialize to power distribution

F (v) = va with a ≥ 1, but this is not necessary just yet. Let µ = E[v] be the expected

value of the type, and so the highest promised utility. Assume that the inverse hazard rate

λ(v) = 1−F (v)
f(v)

is differentiable and such that v 7→ λ(v)− v is monotone. As before, we start

with the benchmark of complete information.

Lemma 9 The complete-information payoff function W̄ is strictly concave. The complete-

information policy is unique, and of the threshold type, with threshold v∗ that is continuously

30However, this convergence is not necessarily monotone, as is easy to check via examples.
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(λl, λh, r, l, h, c) = (p/4, 10p/4, 1, 1/4, 1, 2/5) and p = 1, 1/4).

decreasing from 1 to 0 as U goes from 0 to v̄. Furthermore, given the initial promise U ,

future utility remains constant at U .

That is, given promised utility U ∈ [0, µ], there exists a threshold v∗ such that the good is

provided if and only if the type is above v∗. Furthermore, utility does not evolve over time.

Returning to the case in which the agent privately observes his value, we prove that31

Theorem 4 The value function is strictly concave in U , continuously differentiable, and

strictly below the complete-information payoff (except for U = 0, µ). Given U ∈ (0, µ), the

optimal policy p : [0, 1] → [0, 1] is not a threshold policy.

Once again, we see how the absence of money affects the structure of the allocation: one

might have expected, given the linearity of the agent’s utility and the principal’s payoff, the

solution to be “bang-bang” in p, so that, given some value of U , all types above a certain

threshold get the good supplied, while those below get it with probability zero. However,

without transfers, incentive compatibility requires continuation utility to be distorted, and

the payoff is not linear in the utility. Hence, consider a small interval of types around the

31See additional appendix.
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indifferent candidate threshold type. From the principal’s point of view, conditional on

the agent being in this interval, the outcome is a lottery over p = 0, 1, and corresponding

continuation payoffs. Replacing this lottery by its expected value would leave the agent

virtually indifferent, but it would certainly help the principal, because his continuation payoff

is a strictly concave function of the continuation utility.

It is difficult to describe dynamics in the same level of detail as for the binary case.

However, we recover the TW-martingale: W ′ is a bounded martingale, because, U -a.e.,

W ′(U) =

∫ 1

0

W ′(U(U, v))dF (v),

where U : [0, µ] × [0, 1] → [0, v̄] is the optimal policy mapping current utility and reported

type into continuation utility. Hence, because except at U = 0, µ, U(U, ·) is not constant

(v-a.e.), and W is strictly concave, it must be that the limit is either 0 or µ, and both must

occur with positive probability. Hence

Lemma 10 Given any initial level U0, the utility process Un converges to {0, µ}, with both

limits having strictly positive probability if v > 0 (If v = 0, 0 occurs a.s.).

In appendix C.2, we explain how the optimal policy may be found using control theory,

and prove the following proposition.

Proposition 1 For power distribution F (v) = va with a ≥ 1, there exists U∗∗ ∈ (0, µ) such

that

1. for any U < U∗∗, there exists v1 such that p(v) = 0 for v ∈ [0, v1] and p(v) is strictly

increasing (and continuous) when v ∈ (v1, 1]. The constraint U(1) ≥ 0 binds and the

constraint p(1) ≤ 1 does not.

2. for any U ≥ U∗∗, there exists 0 ≤ v1 ≤ v2 ≤ 1 such that p(v) = 0 for v ≤ v1, p(v) is

strictly increasing (and continuous) when v ∈ (v1, v2) and p(v) = 1 for v ≥ v2. The

constraints U(0) ≤ µ and U(1) ≥ 0 do not bind.

It is clear that indirect implementation is more difficult, as the agent is no longer making

binary choices, but gets assigned the good with positive probability for some values. Hence,

at the very least, the variable fee of two-part tariff that we describe must be extended to a

nonlinear schedule, where the agent pays a price for each “share” of the good that he would

like.
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Markovian Types. Given the complexity of the problem, we see little hope for analytic

results with more types once independence is dropped. We note that deriving the incentive-

feasible set is a difficult task. In fact, even with three types, an explicit characterization

is lacking. It is intuitively clear that frontloading is the worst policy for the low type,

given some promised utility to the high type, and backloading is the best, but how about

maximizing a medium type’s utility, given a pair of promised utilities to the low and high

type? It appears that the convex hull of utilities from frontloading and backloading policies

traces out the lowest utility that a medium type can get for any such pair, but the set of

incentive-feasible payoffs has full dimension: the highest utility that he can get obtains when

one of his incentive constraint binds, but there are two possibilities here, according to the

incentive constraint. We obtain two hypersurfaces that do not seem to admit closed-form

solutions. And the analysis of the i.i.d. case suggests that the optimal policy might well

follow a path of utility triples on such a boundary. One might hope that assuming that

values follow a renewal process as opposed to a general Markov process might result in a

lower-dimensional problem, but unfortunately we fail to see a way.

6 Concluding Comments

Here we discuss a few obvious extensions.

Renegotiation-Proofness. The optimal policy, as described in Sections 3 and 4, is clearly

not renegotiation-proof, unlike in the case with transfers (see Battaglini, 2005): after a his-

tory of reports such that the promised utility would be zero, both agent and principal would

be better off by reneging and starting afresh. There are many ways to define renegotiation-

proofness. Strong-renegotiation (Farrell and Maskin, 1989) would lead to a lower boundary

on the utility vectors visited (unless, in case µ is sufficiently low, that it makes the relation-

ship altogether unprofitable, so that U∗ = 0.) But the structure of the optimal policy can still

be derived from the same observations: the low-type incentive-compatibility condition and

promise keeping pin down the continuation utilities, unless a boundary is reached, whether

the lower boundary (that must serve as a lower reflecting barrier) or the upper absorbing

boundary µ.

Public Signals. While assuming no evidence whatsoever allows to clarify how the principal

can take advantage of the repetition of the allocation decision to mitigate the inefficiency that

goes along with private information, there are many applications for which some statistical
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evidence is available. This public signal depends on the current type, but also possibly on

the action chosen by the principal. For instance, if we interpret the decision as filling a

position (as in the labor example), we might get feedback on the quality of the applicant

only if he is hired. If instead providing the good consists insuring the agent against a risk

whose cost might be either high or low, it is when the principal fails to do so that he might

find out that the agent’s claim was warranted.

Incomplete Information Regarding the Process. So far, we have assumed that the

agent’s type is drawn from a distribution that is common knowledge. This is obviously an

extreme assumption. In practice, the agent might have superior information regarding the

frequency with which high values arrive. If the agent knows the distribution from the start,

the revelation principle applies, and it is a matter of revisiting the analysis from Section 3,

but with an incentive compatibility constraint at time 0.

Or the agent might not have any such information either initially, but be able to learn

from successive arrivals what the underlying distribution is. This is the more challenging

case in which the agent himself is learning about q (or more generally, the transition matrix)

as time passes by. In that case, the agent’s belief might be private (in case he has deviated

in the past). Therefore, it is necessary to enlarge the set of reports. A mechanism is now

a map from the principal’s belief µ (about the agent’s belief), a report by the agent of this

belief, denoted by ν, his report on his current type (h or l) into a decision to allocate the

good or not, and the promised continuation utility. While we do not expect either token

or budget mechanisms to be optimal in such environments, their simplicity and robustness

suggest that they might provide valuable benchmarks.
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A Missing Proof For Section 3

Proof of Theorem 1. Based on PK and the binding ICL, we solve for uh, ul as a function

of ph, pl and U :

uh =
U − (1− δ)ph(qh+ (1− q)l)

δ
, (15)

ul =
U − (1− δ)(phq(h− l) + pll)

δ
. (16)
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We want to show that an optimal policy is such that (i) either uh as defined in (15) equals

0 or ph = 1; and (ii) either ul as defined in (16) equals v̄ or pl = 0. Write W (U ; ph, pl) for the

maximum payoff from using ph, pl as probabilities of assigning the good, and using promised

utilities as given by (15)–(16) (followed by the optimal policy from the period that follows).

Substituting uh and ul into (OBJ), we get, from the fundamental theorem of calculus, for

any fixed p1h < p2h such that the corresponding utilities uh are interior,

W (U ; p2h, pl)−W (U ; p1h, pl) =

∫ p2
h

p1
h

{(1− δ)q (h− c− (1− q)(h− l)W ′(ul)− v̄W ′(uh))} dph.

This expression decreases (pointwise) in W ′(uh) and W ′(ul). Recall that W ′(u) is bounded

from above by 1 − c/h. Hence, plugging in the upper bound for W ′, we obtain that

W (U ; p2h, pl) − W (U ; p1h, pl) ≥ 0. It follows that there is no loss (and possibly a gain) in

increasing ph, unless feasibility prevents this. An entirely analogous reasoning implies that

W (U ; ph, pl) is nonincreasing in pl.

It is immediate that uh ≤ ul and both uh, ul decreases in ph, pl. Therefore, either uh ≥ 0

binds or ph equals 1. Similarly, either ul ≤ v̄ binds or pl equals 0.

Proof of Lemma 2. We start the proof with some notation and preliminary remarks.

First, given any interval I ⊂ [0, µ], we write Ih :=
[

a−(1−δ)µ
δ

, b−(1−δ)µ
δ

]

∩ [0, µ] and Il :=
[

a−(1−δ)U
δ

, b−(1−δ)U
δ

]

∩ [0, µ] where I = [a, b]; we also write [a, b]h, etc. Furthermore we use the

(ordered) sequence of subscripts to indicate the composition of such maps, e.g., Ilh = (Il)h.

Finally, given some interval I, we write ℓ(I) for its length.

Second, we note that, for any interval I ⊂ [U, U ], identically, for U ∈ I, it holds that

W (U) = (1− δ)(qh− c) + δqW

(

U − (1− δ)µ

δ

)

+ δ(1− q)W

(

U − (1− δ)U

δ

)

, (17)

and hence, over this interval, it follows by differentiation that, a.e. on I,

W ′(U) = qW ′(uh) + (1− q)W ′(ul).

Similarly, for any interval I ⊂ [U, µ], identically, for U ∈ I,

W (U) = (1− q)
(

U − c− (U − µ)
c

l

)

+ (1− δ)q(µ− c) + δqW

(

U − (1− δ)µ

δ

)

, (18)

and so a.e.,

W ′(U) = −(1− q)(c/l − 1) + qW ′(uh).
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That is, the slope of W at a point (or an interval) is an average of the slopes at uh, ul, and

this holds also on [U, µ], with the convention that its slope at ul = µ is given by 1− c/l. By

weak concavity of W , if W is affine on I, then it must be affine on both Ih and Il (with the

convention that it is trivially affine at µ). We make the following observations.

1. For any I ⊆ (U, µ) (of positive length) such that W is affine on I, ℓ(Ih∩I) = ℓ(Il∩I) =
0. If not, then we note that, because the slope on I is the average of the other two, all

three must have the same slope (since two intersect, and so have the same slope). But

then the convex hull of the three has the same slope (by weak concavity). We thus

obtain an interval I ′ = co{Il, Ih} of strictly greater length (note that ℓ(Ih) = ℓ(I)/δ,

and similarly ℓ(Il) = ℓ(I)/δ unless Il intersects µ). It must then be that I ′h or I ′l
intersect I, and we can repeat this operation. This contradicts the fact the slope of W

on [0, U ] is (1− c/h), yet W (µ) = µ− c.

2. It follows that there is no interval I ⊆ [U, µ] on which W has slope (1− c/h) (because

then W would have this slope on I ′ := co{{U} ∪ I}, and yet I ′ would intersect I ′l .)

Similarly, there cannot be an interval I ⊆ [U, µ] on which W has slope 1− c/l.

3. It immediately follows from 2 that W < W̄ on (U, µ): if there is a U ∈ (U, µ) such that

W (U) = W̄ (U), then by concavity again (and the fact that the two slopes involved

are the two possible values of the slope of W̄ ), W must either have slope (1− c/h) on

[0, U ], or 1− c/l on [U, µ], both being impossible.

4. Next, suppose that there exists an interval I ⊂ [U, µ) of length ε > 0 such that W is

affine on I. There might be many such intervals; consider the one with the smallest

lower extremity. Furthermore, without loss, given this lower extremity, pick I so that

it has maximum length, that W is affine on I, but on no proper superset of I. Let

I := [a, b]. We claim that Ih ∈ [0, U ]. Suppose not. Note that Ih cannot overlap with

I (by point 1). Hence, either Ih is contained in [0, U ], or it is contained in [U, a], or

U ∈ (a, b)h. This last possibility cannot occur, because W must be affine on (a, b)h,

yet the slope on (ah, U) is equal to (1 − c/h), while by point 2 it must be strictly less

on (U, bh). It cannot be contained in [U, a], because ℓ(Ih) = ℓ(I)/δ > ℓ(I), and this

would contradict the hypothesis that I was the lowest interval in [U, µ] of length ε over

which W is affine.

We next observe that Il cannot intersect I. Assume b ≤ U . Hence, we have that Il

is an interval over which W is affine, and such that ℓ(Il) = ℓ(I)/δ. Let ε′ := ℓ(I)/δ.
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By the same reasoning as before, we can find I ′ ⊂ [U, µ) of length ε′ > 0 such that

W is affine on I ′, and such that I ′h ⊂ [0, U ]. Repeating the same argument as often as

necessary, we conclude that there must be an interval J ⊂ [U, µ) such that (i) W is

affine on J , J = [a′, b′], (ii) b′ ≥ U , there exists no interval of equal or greater length

in [U, µ) over which W would be affine. By the same argument yet again, Jh must be

contained in [0, U ]. Yet the assumption that δ > 1/2 is equivalent to Uh > U , and so

this is a contradiction. Hence, there exists no interval in (U, µ) over which W is affine,

and so W must be strictly concave.

This concludes the proof.

Differentiability follows from an argument that follows Benveniste and Scheinkman (1979),

using some induction. We note that W is differentiable on (0, U). Fix U > U such that

Uh ∈ (0, U). Consider the following perturbation of the optimal policy. Fix ǫ(p − p̄)2, for

some p̄ ∈ (0, 1) to be determined. With probability ǫ > 0, the report is ignored, the good is

supplied with probability p ∈ [0, 1] and the next value is Ul (Otherwise, the optimal policy

is implemented). Because this event is independent of the report, the IC constraints are still

satisfied. Note that, for p = 0, this yields a strictly lower utility than U to the agent, while it

yields a strictly higher utility for p = 1. As it varies continuously, there is some critical value

–defined as p̄– that makes the agent indifferent between both policies. By varying p, we may

thus generate all utilities within some interval (U − ν, U + ν), for some ν > 0, and the payoff

W̃ that we obtain in this fashion is continuously differentiable in U ′ ∈ (U − ν, U + ν). It

follows that the concave function W is minimized by a continuously differentiable function

W̃ –hence, it must be as well.

Proof of Lemma 4. We first consider the forecaster. We will rely on Lemma 8 from the

continuous-time (Markovian) version of the game defined in Section 5.1. Specifically, consider

a continuous-time model in which random shocks arrive according to a Poisson process at

rate λ. Conditional on a shock, the agent’s value is h with probability q and l with the

complementary probability. Both the shocks’ arrivals and the realized values are the agent’s

private information. This is the same model as in Subsection 5.1 where λh = λ(1−q), λl = λq.

The principal’s payoff W is the same as in Proposition 2. Let W ∗ denote the principal’s

payoff if the shocks’ arrival times are publicly observed. Since the principal benefits from

more information, his payoff weakly increases W ∗ ≥ W . (The principal is guaranteed W by

implementing the continuous-time limit of the policy specified in Theorem 2.) Given that

both players are risk neutral, the model with random public arrivals is the same as the model

in which shocks arrive at fixed intervals, t = 1/λ, 2/λ, 3/λ, . . . This is effectively the discrete-
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time model with i.i.d. values in which the round length is ∆ = 1/λ and the discount factor

is δ = e−
r
λ . Given that the loss is of the order O(r/λ) in the continuous-time private-shock

model, the loss in the discrete-time i.i.d. model is of smaller order than O(1− δ).

We now consider the prophet. We divide the analysis in three stages. In the first two,

we consider a fixed horizon 2N + 1 and no discounting, as is usual. Let us start with the

simplest case: a fixed number of copies 2N + 1, and q = 1/2.32 Suppose that we relax the

problem (so as to get a lower bound on the inefficiency). The number m = 0, . . . , 2N +1, of

high copies is drawn, and the information set {(m, 2N +1−m), (2N +1−m,m)} is publicly

revealed. That is, it is disclosed whether there are m high copies, of N −m high copies (but

nothing else).

The optimal mechanism consists of the collection of optimal mechanisms for each infor-

mation set. We note that, because q = 1/2, both elements in the information set are equally

likely. Hence, fixing {(m, 2N + 1 − m), (2N + 1 −m,m)}, with m < N , it must minimize

the inefficiency

min
p0,p1,p2

(1− p0)m(h− c) + (2N + 1− 2m)
(1− p1)(h− c) + p1(c− l)

2
+ p2m(c− l),

where p0, p1, p2 are in [0, 1]. To understand this expression, we note that it is common

knowledge that at least m units are high (hence, providing them with probability p0 reduces

the inefficiency m(h−c) from these. It is also known that m are low, which if provided (with

probability p2) leads to inefficiency m(c − l) and finally there are 2N + 1 − 2m units that

are either high or low, and the choice p1 in this respect implies one or the other inefficiency.

This program is already simplified, as p0, p1, p2 should be a function of the report (whether

the state is (m, 2N + 1 −m) or (2N + 1 −m,m)) subject to incentive-compatibility, but it

is straightforward that both IC constraints bind and lead to the same choice of p0, p1, p2 for

both messages. In fact, it is also clear that p0 = 1 and p2 = 0, so for each information set,

the optimal choice is given by the minimizer of

(2N + 1− 2m)
(1− p1)(h− c) + p1(c− l)

2
≥ (2N + 1− 2m)κ,

where κ = min{h − c, c − l}. Hence, the inefficiency is minimized by (adding up over all

information sets)

N
∑

m=0

(

2N + 1

m

)(

1

2

)2N+1

(2N + 1− 2m)κ =
Γ
(

N + 3
2

)

√
πΓ(N + 1)

κ →
√
2N + 1√
2π

κ.

32We pick the number of copies as odd for simplicity. If not, let Nature reveal the event that all copies

are high if this unlikely event occurs. This gives as lower bound for the inefficiency with 2N + 2 copies the

one we derive with 2N + 1.
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We now move on to the case where q 6= 1/2. Without loss of generality, assume q > 1/2.

Consider the following public disclosure rule. Given the realized draw of high and lows, for

any high copy, Nature publicly reveals it with probability λ = 2 − 1/q. Low copies are not

revealed. Hence, if a copy is not revealed, the principal’s posterior belief that it is high is

q(1− λ)

q(1− λ) + (1− q)
=

1

2
.

Second, Nature reveals among the undisclosed balls (say, N ′ of those) whether the number of

highs is m or N ′−m, namely it discloses the information set {(m,N ′−m), (N ′−m,m)}, as

before. Then the agent makes a report, etc. Conditional on all publicly revealed information,

and given that both states are equally likely, the principal’s optimal rule is again to pick a

probability p1 that minimizes

(N ′ − 2m)
(1− p1)(h− c) + p1(c− l)

2
≥ (N ′ − 2m)κ.

Hence, the total inefficiency is

2N+1
∑

m=0

(

2N + 1

m

)

qm(1− q)2N+1−m

(

m
∑

k=0

(

m

k

)

λk(1− λ)m−k|2N + 1− k − 2(m− k)|
)

κ,

since with k balls revealed, N ′ = 2N +1−k, and the uncertainty concerns whether there are

(indeed) m− k high values or low values. Alternatively, because the number of undisclosed

copies is a compound Bernoulli, it is a Bernoulli random variable as well with parameter qλ,

and so we seek to compute

1√
2N + 1

2N+1
∑

m=0

(

2N + 1

m

)

(qλ)m(1− qλ)N+1−m Γ
(

N −m+ 3
2

)

√
πΓ(N −m+ 1)

κ.

We note that

lim
N→∞

1√
2N + 1

2N+1
∑

m=0

(

2N + 1

m

)

(qλ)m(1− qλ)N+1−m Γ
(

N −m+ 3
2

)

√
πΓ(N −m+ 1)

= lim
N→∞

2N+1
∑

m=0

(

2N + 1

m

)

(qλ)m(1− qλ)N+1−m

√
2N − 1−m

2
√
Nπ

= sup
α>0

lim
N→∞

2N+1
∑

m=0

(

2N + 1

m

)

(qλ)m(1− qλ)N+1−m

√

2N − 1− (2N + 1)qλ(1 + α)

2
√
Nπ

= sup
α>0

√

1− (1 + α)qλ√
2π

=

√
1− qλ√
2π

=

√
1− q√
π

,
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hence the inefficiency converges to

√
2N + 1

√
1− q√
π

κ.

Third, we consider the case of discounting. Note that, because the principal can always treat

items separately, facing a problem with k i.i.d. copies, whose value l, h is scaled by a factor

1/k (along with the cost) is worth at least as much as one copy with a weight 1. Hence, if

say, δm = 2δk, then modifying the discounted problem by replacing the unit with weight δm

by two i.i.d. units with weight δk each makes the principal better off. Hence, we fix some

small α > 0, and consider N such that δN = α, i.e., N = lnα/ ln δ. The principal’s payoff

is also increased if the values of all units after the N -th one are revealed for free. Hence,

assume as much. Replacing each copy k = 1, . . . , N by ⌊δk/δN⌋ i.i.d. copies each with weight

δN gives us as lower bound to the loss to the principal

sup
α

δN
√

∑N
k=1⌊δk/δN⌋

,

and the right-hand side tends to a limit in excess of 1
2
√
1−δ

(use α = 1/2 for instance).

B Missing Proof For Section 4

Proof of Lemma 5. Let W denote the set co{uν , uν : ν ≥ 0}. The point u0 is supported

by (ph, pl) = (1, 1), U(h) = U(l) = (µh, µl). For ν ≥ 1, uν is supported by (ph, pl) =

(0, 0), U(h) = U(l) = uν−1. The point u0 is supported by (ph, pl) = (0, 0), U(h) = U(l) =

(0, 0). For ν ≥ 1, uν is supported by (ph, pl) = (1, 1), U(h) = U(l) = uν−1. Therefore, we

have W ⊂ B(W ). This implies that B(W ) ⊂ V .

We define four sequences as follows. First, for ν ≥ 0, let

wν
h = δν (1− κν) (1− q)µl,

wν
l = δν (1− q + κνq)µl,

and set wν = (wν
h, w

ν
l ). Second, for ν ≥ 0, let

wν
h = µh − δν (1− κν) (1− q)µl,

wν
l = µl − δν (1− q + κνq)µl,

and set wν = (wν
h, w

ν
l ). For any ν ≥ 1, wν is supported by (ph, pl) = (0, 0), U(h) = U(l) =

wν−1, and wν is supported by (ph, pl) = (1, 1), U(h) = U(l) = wν−1. The sequence wν starts
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at w0 = (0, µl) with limν→∞wν = 0. Similarly, wν starts at w0 = (µh, 0) and limν→∞wν = µ.

We define a set sequence as follows:

W ν = co
(

{uk, uk : 0 ≤ k ≤ ν} ∪ {wν , wν}
)

.

It is obvious that V ⊂ B(W 0) ⊂ W 0. To prove that V = W , it suffices to show that

W ν = B(W ν−1) and limν→∞W ν = W .

For any ν ≥ 1, we define the supremum score in direction (λ1, λ2) given W ν−1 as

K((λ1, λ2),W
ν−1) = supph,pl,U(h),U(l)(λ1Uh + λ2Ul), subject to (2)–(5), ph, pl ∈ [0, 1], and

U(h), U(l) ∈ W ν−1. The set B(W ν−1) is given by

⋂

(λ1,λ2)

{

(Uh, Ul) : λ1Uh + λ2Ul ≤ K((λ1, λ2),W
ν−1)

}

.

Without loss of generality, we focus on directions (1,−λ) and (−1, λ) for all λ ≥ 0. We

define three sequences of slopes as follows:

λν
1 =

(1− q)(δκ− 1)κν(µh − µl)− (1− δ)(qµh + (1− q)µl)

q(1− δκ)κν(µh − µl)− (1− δ)(qµh + (1− q)µl)

λν
2 =

1− (1− q) (1− κν)

q (1− κν)

λν
3 =

(1− q) (1− κν)

qκν + (1− q)
.

It is easy to verify that

λν
1 =

uν
h − uν+1

h

uν
l − uν+1

l

=
uν
h − uν+1

h

uν
l − uν+1

l

, λν
2 =

uν
h − wν

h

uν
l − wν

l

=
uν
h − wν

h

uν
l − wν

l

, λν
3 =

wν
h − 0

wν
l − 0

=
wν

h − µh

wν
l − µl

.

When (λ1, λ2) = (−1, λ), the supremum score as we vary λ is

K((−1, λ),W ν−1) =



















































(−1, λ) · (0, 0) if λ ∈ [0, λν
3]

(−1, λ) · wν if λ ∈ [λν
3, λ

ν
2]

(−1, λ) · uν if λ ∈ [λν
2, λ

ν−1
1 ]

(−1, λ) · uν−1 if λ ∈ [λν−1
1 , λν−2

1 ]

· · ·
(−1, λ) · u0 if λ ∈ [λ0

1,∞)
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Similarly, when (λ1, λ2) = (1,−λ), we have

K((1,−λ),W ν−1) =



















































(1,−λ) · (µh, µl) if λ ∈ [0, λν
3]

(1,−λ) · wν if λ ∈ [λν
3 , λ

ν
2]

(1,−λ) · uν if λ ∈ [λν
2 , λ

ν−1
1 ]

(1,−λ) · uν−1 if λ ∈ [λν−1
1 , λν−2

1 ]

· · ·
(1,−λ) · u0 if λ ∈ [λ0

1,∞)

Therefore, we have W ν = B(W ν−1). Note that this method only works when parameters are

such that λν
3 ≤ λν

2 ≤ λν−1
1 for all ν ≥ 1. If ρl/(1− ρh) ≥ l/h, the proof stated above applies.

Otherwise, the following proof applies.

We define four sequences as follows. First, for 0 ≤ m ≤ ν, let

wh(m, ν) = δν−m (qµh (1− δm) + (1− q)µl)− (1− q)(δκ)ν−m (µh ((δκ)
m − 1) + µl) ,

wl(m, ν) = δν−m (qµh (1− δm) + (1− q)µl) + q(δκ)ν−m (µh ((δκ)
m − 1) + µl) ,

and set w(m, ν) = (wh(m, ν), wl(m, ν)). Second, for 0 ≤ m ≤ ν, let

wh(m, ν) =
(1− q)δνκν (µh (δ

mκm − 1) + µl) + κm (µhδ
m − δν (qµh (1− δm) + (1− q)µl))

δmκm
,

wl(m, ν) =
−qδνκν (µh (δ

mκm − 1) + µl) + κm (µlδ
m − δν (qµh (1− δm) + (1− q)µl))

δmκm
,

and set w(m, ν) = (wh(m, ν), wl(m, ν)). Fixing ν, the sequence w(m, ν) is increasing (in

both its arguments) as m increases, with limν→∞w(ν − m, ν) = um. Similarly, fixing ν,

w(m, ν) is decreasing as m increases, limν→∞w(ν −m, ν) = um.

Let W (ν) = {w(m, ν) : 0 ≤ m ≤ ν} and W (ν) = {w(m, ν) : 0 ≤ m ≤ ν}. We define a

set sequence as follows:

W (ν) = co
(

{(0, 0), (µh, µl)} ∪W (ν) ∪W (ν)
)

.

Since W (0) equals [0, µh] × [0, µl], it is obvious that V ⊂ B(W (0)) ⊂ W (0). To prove

that V = W := co{uν , uν : ν ≥ 0}, it suffices to show that W (ν) = B(W (ν − 1)) and

limν→∞W (ν) = W . The rest of the proof is similar to the first part and hence omitted.

Proof of Lemma 6. It will be useful in this proof and those that follows to define the

operator Bij , i, j = 0, 1. Given an arbitrary A ⊂ [0, µh]× [0, µl], let

Bij(A) := {(Uh, Ul) ∈ [0, µh]× [0, µl] : U(h) ∈ A,U(l) ∈ A solving (2)–(5) for (ph, pl) = (i, j)} ,
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and similarly Bi·(A),B·j(A) when only ph or pl is constrained.

The first step is to compute V0, the largest set such that V0 ⊂ B·0(V0). Plainly, this is

a proper subset of V , because any promise Ul ∈ (δρlµh + δ(1 − ρl)µl, µl] requires that pl be

strictly positive.

Note that the sequence {vν} solves the system of equations, for all ν ≥ 1:






vν+1
h = δ(1− ρh)v

ν
h + δρhv

ν
l

vν+1
l = δ(1− ρl)v

ν
l + δρlv

ν
h,

and v1l = v0l (From v1l = v0l and the second equation for ν = 0, we obtain that v0 lies on

the line Ul =
δρl

1−δ(1−ρl)
Uh.) In words, the utility vector vν+1 obtains by setting ph = pl = 0,

choosing as a continuation payoff vector U(l) = vν , and assuming that ICH binds (so that

the high type’s utility can be derived from the report l). To prove that these vectors are

incentive feasible using such a scheme, it remains to exhibit U(h) and show that it satisfies

ICL. In addition, we must argue that U(h) ∈ µ. We prove by construction. Pick any vν

such that ν ≥ 1. Once we fix a ph ∈ [0, 1], PKH requires that U(h) must lie on the line

δ(1− ρh)Uh(h) + δρhUl(h) = vνh − δphh. There exists a unique ph, denoted pνh, such that vν

lies on the same line as U(h) does, that is

δ(1− ρh)Uh(h) + δρhUl(h) = vνh − δpνhh = δ(1− ρh)v
ν
h + δρhv

ν
l .

It is easy to verify that

pνh = δν (1− (1− q) (1− κν))
v0h
v∗h

.

Given that v0h ≤ v∗h, we have pνh ∈ [0, 1]. Substituting pνh into PKH and ICL, we want to

show that there exists U(h) ∈ µ such that both PKH and ICL are satisfied. It is easy to

verify that the intersection of PKH and Ul(h) = δρl
1−δ(1−ρl)

Uh(h) is below the intersection

of the binding ICL and Ul(h) = δρl
1−δ(1−ρl)

Uh(h). Therefore, the intersection of PKH and

Ul(h) =
δρl

1−δ(1−ρl)
Uh(h) satisfies both PKH and ICL. In addition, the constructed PKH goes

through the boundary point vν , so the intersection of PKH and Ul(h) = δρl
1−δ(1−ρl)

Uh(h) is

inside µ.

Finally, we must show that the point v0 can itself be obtained with continuation payoffs

in µ. That one is obtained by setting (ph, pl) = (1, 0), set ICL as a binding constraint, and

U(l) = v0 (again one can check as above that U(h) is in µ and that ICH holds). This suffices

to show that µ ⊆ V0, because this establishes that the extreme points of µ can be sustained

with continuation payoffs in the set, and all other utility vectors in µ can be written as a

convex combination of these extreme points.
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The proof that V0 ⊂ µ follows the same lines as determining the boundaries of V in

the proof of Lemma 5: one considers a sequence of (less and less) relaxed programs, setting

Ŵ 0 = V and defining recursively the supremum score in direction (λ1, λ2) given Ŵ ν−1

as K((λ1, λ2),W
ν−1) = supph,pl,U(h),U(l) λ1Uh + λ2Ul, subject to (2)–(5), ph, pl ∈ [0, 1], and

U(h), U(l) ∈ Ŵ ν−1. The set B(Ŵ ν−1) is given by

⋂

(λ1,λ2)

{

(Uh, Ul) ∈ V : λ1Uh + λ2Ul ≤ K((λ1, λ2),W
ν−1)

}

,

and the set Ŵ ν = B(Ŵ ν−1) obtains by considering an appropriate choice of λ1, λ2. More

precisely, we always set λ2 = 1, and for ν = 0, pick λ1 = 0. This gives Ŵ 1 = V ∩ {U :

Ul ≤ v0l , Ul ≥ v1
l
−v2

l

v1
h
−v2

h

(Uh − v2h)}. We then pick (for every ν ≥ 1) as direction λ the vector

(λ11, 1) · (1, (vνl − vν+1
l )/(vνh − vν+1

h )), and as result obtain that

µ ⊆ Ŵ ν+1 = Ŵ ν ∩
{

U : Ul ≥
vν+1
l − vν+2

l

vν+1
h − vν+2

h

(Uh − vν+2
h )

}

.

It follows that µ ⊆ co{{(0, 0)} ∪ {vν}ν≥0}.
Next, we argue that this achieves the complete-information payoff. First, note that

µ ⊆ V ∩ {U : Ul ≤ v∗l }. In this region, it is clear that any policy that never gives the unit to

the low type while delivering the promised utility to the high type must be optimal. This is

a feature of the policy that we have described to obtain the boundary of V (and plainly it

extends to utilities U below this boundary).

Finally, one must show that above it the complete-information payoff cannot be achieved.

It follows from the definition of µ as the largest fixed point of B·0 that starting from any

utility vector U ∈ V \ µ, U 6= µ, there is a positive probability that the unit is given

(after some history that has positive probability) to the low type. This implies that the

complete-information payoff cannot be achieved in case U ≤ v∗. For U ≥ v∗, achieving the

complete-information payoff requires that ph = 1 for all histories, but it is not hard to check

that the smallest fixed point of B1· is not contained in V ∩ {U : U ≥ v∗}, from which it

follows that suboptimal continuation payoffs are collected with positive probability.

Proof of Theorem 2 and 3. We start the proof by defining the function W : V ×
{ρl, 1 − ρh} → R ∪ {−∞}, that solves the following program, for all (Uh, Ul) ∈ V , and

µ ∈ {ρl, 1− ρh},

W (Uh, Ul, µ) = sup {µ ((1− δ)ph(h− c) + δW (Uh(h), Ul(h), 1− ρh))

+ (1− µ) ((1− δ)pl(l − c) + δW (Uh(l), Ul(l), ρl))} ,
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over (pl, ph) ∈ [0, 1]2, and U(h), U(l) ∈ V subject to PKH, PKL, ICL. Note that ICH is

dropped so this is a relaxed problem. We characterize the optimal policy and value function

for this relaxed problem and relate the results to the original optimization problem. Note

that for both problems the optimal policy for a given (Uh, Ul) is independent of µ as µ

appears in the objective function additively and does not appear in constraints. Also note

that the first best is achieved when U ∈ V . So, we focus on the subset V \ V .

1. We want to show that for any U , it is optimal to set ph, pl as in (14) and to choose

U(h) and U(l) that lie on Pb. It is feasible to choose such a U(h) as the intersection

of ICL and PKH lies above Pb. It is also feasible to choose such a U(l) as ICH is

dropped. To show that it is optimal to choose U(h), U(l) ∈ Pb, we need to show

that W (Uh, Ul, 1 − ρh) (resp., W (Uh, Ul, ρl)) is weakly increasing in Uh along the rays

x = (1− ρh)Uh + ρhUl (resp., y = ρlUh + (1− ρl)Ul). Let W̃ denote the value function

from implementing the policy above.

2. Let (Uh1(x), Ul1(x)) be the intersection of Pb and the line x = (1 − ρh)Uh + ρhUl. We

define function wh(x) := W̃ (Uh1(x), Ul1(x), 1−ρh) on the domain [0, (1−ρh)µh+ρhµl].

Similarly, let (Uh2(y), Ul2(y)) be the intersection of Pb and the line y = ρlUh+(1−ρl)Ul.

We define wl(y) := W̃ (Uh2(y), Ul2(y), ρl) on the domain [0, ρlµh + (1 − ρl)µl]. For any

U , let X(U) = (1− ρh)Uh+ ρhUl and Y (U) = ρlUh+(1− ρl)Ul. We want to show that

(i) wh(x) (resp., wl(y)) is concave in x (resp., y); (ii) w′
h, w

′
l is bounded from below by

1−c/l (derivatives have to be understood as either right- or left-derivatives, depending

on the inequality); and (iii) for any U on Pb

w′
h(X(U)) ≥ w′

l(Y (U)). (19)

Note that we have w′
h(X(U)) = w′

l(Y (U)) = 1 − c/h when U ∈ µ. For any fixed

U ∈ Pb \ (µ ∪ Vh) , a high report leads to U(h) such that (1 − ρh)Uh(h) + ρhUl(h) =

(Uh− (1− δ)h)/δ and U(h) is lower than U . Also, a low report leads to U(l) such that

ρlUh(l) + (1 − ρl)Ul(l) = Ul/δ and U(l) is higher than U if U ∈ Pb \ (µ ∪ Vh). Given

the definition of wh, wl, we have

w′
h(x) = (1− ρh)U

′
h1(x)w

′
h

(

Uh1(x)− (1− δ)h

δ

)

+ ρhU
′
l1(x)w

′
l

(

Ul1(x)

δ

)

w′
l(y) = ρlU

′
h2(y)w

′
h

(

Uh2(y)− (1− δ)h

δ

)

+ (1− ρl)U
′
h2(y)w

′
l

(

Ul2(y)

δ

)

.
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If x, y are given by X(U), Y (U), it follows that (Uh1(x), Ul1(y)) = (Uh2(y), Ul2(y)) and

hence

w′
h

(

Uh1(x)− (1− δ)h

δ

)

= w′
h

(

Uh2(y)− (1− δ)h

δ

)

w′
l

(

Ul1(x)

δ

)

= w′
l

(

Ul2(y)

δ

)

.

Next, we want to show that for any U ∈ Pb and x = X(U), y = Y (U)

(1− ρh)U
′
h1(x) + ρhU

′
l1(x) = ρlU

′
h2(y) + (1− ρl)U

′
l2(y) = 1

(1− ρh)U
′
h1(x)− ρlU

′
h2(y) ≥ 0.

This can be shown by assuming that U is on the line segment Uh = aUl + b. For any

a > 0, the equalities/inequality above hold. The concavity of wh, wl can be shown by

taking the second derivative

w′′
h(x) = (1− ρh)U

′
h1(x)w

′′
h

(

Uh1(x)− (1− δ)h

δ

)

U ′
h1(x)

δ
+ ρhU

′
l1(x)w

′′
l

(

Ul1(x)

δ

)

U ′
l1(x)

δ

w′′
l (y) = ρlU

′
h2(y)w

′′
h

(

Uh2(y)− (1− δ)h

δ

)

U ′
h2(x)

δ
+ (1− ρl)U

′
l2(y)w

′′
l

(

Ul2(y)

δ

)

U ′
l2(y)

δ
.

Here, we use the fact that Uh1(x), Ul1(x) (resp., Uh2(y), Ul2(y)) are piece-wise linear in

x (resp., y). For any fixed U ∈ Pb ∩ Vh and x = X(U), y = Y (U), we have

w′
h(x) = (1− ρh)U

′
h1(x)w

′
h

(

Uh1(x)− (1− δ)h

δ

)

+ ρhU
′
l1(x)

l − c

l

w′
l(y) = ρlU

′
h2(y)w

′
h

(

Uh2(y)− (1− δ)h

δ

)

+ (1− ρl)U
′
h2(y)

l − c

l
.

Inequality (19) and the concavity of wh, wl can be shown similarly. To sum up, if wh, wl

satisfy properties (i), (ii) and (iii), they also do after one iteration.

3. Let W be the set of W (Uh, Ul, 1− ρh) and W (Uh, Ul, ρl) such that

(a) W (Uh, Ul, 1 − ρh) (resp., W (Uh, Ul, ρl)) is weakly increasing in Uh along the rays

x = (1− ρh)Uh + ρhUl (resp., y = ρlUh + (1− ρl)Ul);

(b) W (Uh, Ul, 1− ρh) and W (Uh, Ul, ρl) coincide with W̃ on Pb.

(c) W (Uh, Ul, 1− ρh) and W (Uh, Ul, ρl) coincide with W̄ on µ;
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If we pick W0(Uh, Ul, µ) ∈ W as the continuation value function, the conjectured policy

is optimal. Note that it is optimal to choose ph, pl according to (14) because w′
h, w

′
l are

in the interval [1 − c/l, 1 − c/h]. We want to show that the new value function W1 is

also in W. Property (b) and (c) are trivially satisfied. We need to prove property (a)

for µ ∈ {1− ρh, ρl}. That is,

W1(Uh + ε, Ul, µ)−W1(Uh, Ul, µ) ≥ W1(Uh, Ul +
1− ρh
ρh

ε, µ)−W1(Uh, Ul, µ). (20)

We start with the case in which µ = 1− ρh. The left-hand side equals

δ(1− ρh)
(

W0(Ũh(h), Ũl(h), 1− ρh)−W0(Uh(h), Ul(h), 1− ρh)
)

, (21)

where Ũ(h) and U(h) are on Pb and

(1− δ)h+ δ
(

(1− ρh)Ũh(h) + ρhŨl(h)
)

= Uh + ε,

(1− δ)h+ δ ((1− ρh)Uh(h) + ρhUl(h)) = Uh.

For any fixed U ∈ V \ (µ ∪ Vh), the right-hand side equals

δρh

(

W0(Ũh(l), Ũl(l), ρl)−W0(Uh(l), Ul(l), ρl)
)

, (22)

where Ũ(l) and U(l) are on Pb and

δ
(

ρlŨh(l) + (1− ρl)Ũl(l)
)

= Ul +
1− ρh
ρh

ε,

δ (ρlUh(l) + (1− ρl)Ul(l)) = Ul.

We need to show that (27) is greater than (28). Note that U(h), Ũ(h), U(l), Ũ(l) are

on Pb, so only the properties of wh, wl are needed. Inequality (20) is equivalent to

w′
h

(

Uh − (1− δ)h

δ

)

≥ w′
l

(

Ul

δ

)

, ∀(Uh, Ul) ∈ V \ (µ ∪ Vh ∪ Vl). (23)

The case in which µ = ρl leads to the same inequality as above. Given that wh, wl

are concave, w′
h, w

′
l are decreasing. Therefore, we only need to show that inequality

(23) holds when (Uh, Ul) are on Pb. This is true given that (i) wh, wl are concave; (ii)

inequality (19) holds; (iii) (Uh − (1 − δ)h)/δ corresponds to a lower point on Pb than

Ul/δ does. When U ∈ Vh, the right-hand side of (20) is given by (1 − ρh)ε(1 − c/l).

Inequality (20) is equivalent to w′
h((Uh − (1 − δ)h)/δ) ≥ 1 − c/l, which is obviously

true. Similar analysis applies to the case in which U ∈ Vl.
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This shows that the optimal policy for the relaxed problem is indeed the conjectured policy

and W̃ is the value function. The maximum is achieved on Pb and the continuation utility

never leaves Pb. Given that this optimal mechanism does not violate ICH , it is the optimal

mechanism of our original problem.

We are back to the original optimization problem. The first observation is that we can

decompose the optimization problem into two sub-problems: (i) choose ph, U(h) to maximize

(1 − δ)ph(h − c) + δW (Uh(h), Ul(h), 1 − ρh) subject to PKH and ICL; (ii) choose pl, U(l)

to maximize (1 − δ)pl(l − c) + δW (Uh(l), Ul(l), ρl) subject to PKL and ICH . We want to

show that the conjecture policy with respect to ph, U(h) is the optimal solution to the first

sub-problem. This can be shown by taken the value function W̃ as the continuation value

function. We know that the conjecture policy is optimal given W̃ because (i) it is always

optimal to choose U(h) that lies on Pb due to property (a); (ii) it is optimal to set ph to be

1 because w′
h lies in [1 − c/l, 1 − c/h]. The conjecture policy solves the first sub-problem

because (i) W̃ is weakly higher than the true value function point-wise; (ii) W̃ coincides with

the true value function on Pb. The analysis above also implies that ICH binds for U ∈ Vt.

Next, we show that the conjecture policy is the solution to the second sub-problem.

For a fixed U ∈ Vt, PKL and ICH determines Uh(l), Ul(l) as a function of pl. Let γh, γl

denote the derivative of Uh(l), Ul(l) with respect to pl

γh =
(1− δ)(lρh − h(1− ρl))

δ(1− ρh − ρl)
, γl =

(1− δ)(hρl − l(1− ρh))

δ(1− ρh − ρl)
.

It is easy to verify that γh < 0 and γh+γl < 0. We want to show that it is optimal to set pl to

be zero. That is, among all feasible pl, Uh(l), Ul(l) satisfying PKL and ICH, the principal’s

payoff from the low type, (1 − δ)pl(l − c) + δW (Uh(l), Ul(l), ρl), is the highest when pl = 0.

It is sufficient to show that within the feasible set

γh
∂W (Uh, Ul, ρl)

∂Uh
+ γl

∂W (Uh, Ul, ρl)

∂Ul
≤ (1− δ)(c− l)

δ
, (24)

where the left-hand side is the directional derivative of W (Uh, Ul, ρl) along the vector (γh, γl).

We first show that (24) holds for all U ∈ Vb. For any fixed U ∈ Vb, we have

W (Uh, Ul, ρl) = ρl

(

(1− δ)(h− c) + δwh

(

Uh − (1− δ)h

δ

))

+ (1− ρl)δwl

(

Ul

δ

)

.

It is easy to verify that ∂W/∂Uh = ρlw
′
h and ∂W/∂Ul = (1 − ρl)w

′
l. Using the fact that

w′
h ≥ w′

l and w′
h, w

′
l ∈ [1− c/l, 1− c/h], we prove that (24) follows. Using similar arguments,

we can show that (24) holds for all U ∈ Vh.
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Note that W (Uh, Ul, ρl) is concave on V . Therefore, its directional derivative along the

vector (γh, γl) is monotone. For any fixed (Uh, Ul) on Pb, we have

lim
ε→0

γh
∂W (Uh+γhε,Ul+γlε,ρl)

∂Uh
+ γl

∂W (Uh+γhε,Ul+γlε,ρl)
∂Ul

−
(

γh
∂W (Uh,Ul,ρl)

∂Uh
+ γl

∂W (Uh,Ul,ρl)
∂Ul

)

ε

=γh
2ρl
δ
w′′

h

(

Uh − (1− δ)h

δ

)

+ γl
2 1− ρl

δ
w′′

l

(

Ul

δ

)

≤ 0.

The last inequality follows as wh, wl are concave. Given that (γh, γl) points towards the

interior of V , (24) holds within V .

For any x ∈ [0, (1−ρh)µh+ρhµl], let z(x) be ρlUh1(x)+(1−ρl)Ul1(x). The function z(x) is

piecewise linear with z′ being positive and increasing in x. Let µ0 denote the prior belief of the

high type. We want to show that the maximum of µ0W (Uh, Ul, 1−ρh)+(1−µ0)W (Uh, Ul, ρl)

is achieved on Pb for any prior µ0. Suppose not. Suppose (Ũh, Ũl) ∈ V \ Pb achieves

the maximum. Let U0 (resp., U1) denote the intersection of Pb and (1 − ρh)Uh + ρhUl =

(1 − ρh)Ũh + ρhŨl (resp., ρlUh + (1 − ρl)Ul = ρlŨh + (1 − ρl)Ũl). It is easily verified that

U0 < U1. Given that (Ũh, Ũl) achieves the maximum, it must be true that

W (U1
h , U

1
l , 1− ρh)−W (U0

h , U
0
l , 1− ρh) < 0

W (U1
h , U

1
l , ρl)−W (U0

h , U
0
l , ρl) > 0.

We show that this is impossible by arguing that for any U0, U1 ∈ Pb and U0 < U1,

W (U1
h , U

1
l , 1− ρh)−W (U0

h , U
0
l , 1− ρh) < 0 implies that W (U1

h , U
1
l , ρl)−W (U0

h , U
0
l , ρl) < 0.

It is without loss to assume that U0, U1 are on the same line segment Uh = aUl+b. It follows

that

W (U1
h , U

1
l , 1− ρh)−W (U0

h , U
0
l , 1− ρh) =

∫ s1

s0
w′

h(s)ds

W (U1
h , U

1
l , ρl)−W (U0

h , U
0
l , ρl) = z′(s)

∫ s1

s0
w′

l(z(s))ds,

where s0 = (1 − ρh)U
0
h + ρhU

0
l and s1 = (1 − ρh)U

1
h + ρhU

1
l . Given that w′

h(s) ≥ w′
l(z(s))

and z′(s) > 0,
∫ s1

s0
w′

h(s)ds < 0 implies that z′(s)
∫ s1

s0
w′

l(z(s))ds < 0.

The optimal U0 is chosen such that X(U0) maximizes µ0wh(x) + (1− µ0)wl(z(x)) which

is concave in x. Therefore, at x = X(U0) we have

µ0w
′
h(X(U0)) + (1− µ0)w

′
l(z(X(U0)))z

′(X(U0)) = 0.

According to (19), we know that w′
h(X(U0)) ≥ 0 ≥ w′

l(z(X(U0))). Therefore, the derivative

above is weakly positive for any µ′
0 > µ0 and hence U0 increases in µ0.
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C Missing Proof for Section 5

C.1 Continuous Time

We directly work with the expected payoff W (τ) = qWh(τ) + (1 − q)Wl(τ). Let τ0 denote

the positive root of

w0(τ) := µe−rτ − (1− q)l.

As is easy to see, this root always exists and is strictly above τ̂ , with w0(τ) > 0 iff τ < τ̂ .

Finally, let

f(τ) := r − (λh + λl)
w0(τ)

g(τ)
erτ .

It is then straightforward to verify (though not quite as easy to obtain) that33

Proposition 2 The value function of the principal is given by

W (τ) =







































W̄1(τ) if τ ∈ [0, τ̂),

W̄1(τ)− w0(τ)
h−l
hl

crµ

∫ τ

τ̂
e
−

∫ t
τ0

f(s)ds

w2
0
(t)

dt

∫
∞

τ̂

λh+λl
g(t)

e
2rt−

∫ t
τ0

f(s)ds
dt

if τ ∈ [τ̂ , τ0),

W̄1(τ) + w0(τ)
h−l
hl

c



1 + rµ

∫
∞

τ
e
−

∫ t
τ0

f(s)ds

w2
0
(t)

dt

∫
∞

τ̂

λh+λl
g(t)

e
2rt−

∫ t
τ0

f(s)ds
dt



 if τ ≥ τ0,

where

W̄1(τ) := (1− e−rτ )(1− c/h)µ.

It is straightforward to derive the closed-form expressions for complete-information payoff,

which we omit here.

Proof of Lemma 7. The proof has three steps. We recall that W (τ) = qWh(τ) + (1 −
q)Wl(τ). Using the system of differential equations, we get

(

erτ l + q(h− l)e−(λh+λl)τ − µ
)

((r + λh)W
′(τ) +W ′′(τ))

= (h− l)qλhe
−(λh+λl)τW ′(τ) + µ(r(λh + λl)W (τ) + λlW

′(τ)− rλl(h− c)).

It is easily verified that the function W given in Proposition 2 solves this differential equation,

and hence is the solution to our problem. Let w := W − W̄1. By definition, w solves a

homogeneous second-order differential equation, namely,

k(τ)(w′′(τ) + rw′(τ)) = rµw(τ) + erτw0(τ)w
′(τ), (25)

33As τ → t0, the integrals entering in the definition of W diverge, although not W itself, given that

limτ→t0 w0(τ) → 0. As a result, limτ→t0 W (τ) is well-defined, and strictly below W1(t0).
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with boundary conditions w(τ̂) = 0 and limτ→∞w(τ) = −(1− l/h)(1− q)c. Here,

k(τ) :=
q(h− l)e−(λh+λl)τ + lerτ − µ

λh + λl
.

By definition of τ̂ , k(τ) > 0 for τ > τ̂ . First, we show that k increases with persistence

1/p, where λh = pλ̄h, λl = pλ̄l, for some λ̄h, λ̄l fixed independently of p > 0. Second, we

show that rµw(τ)+ erτw0(τ)w
′(τ) < 0, and so w′′(τ)+ rw′(τ) < 0 (see (25)). Finally we use

these two facts to show that the payoff function is pointwise increasing in p. We give the

arguments for the case τ̂ = 0, the other case being analogous.

1. Differentiating k with respect to p (and without loss setting p = 1) gives

dk(τ)

dp
=

µ

λ̄h + λ̄l

− e−(λ̄h+λ̄l)τ (h− l)λ̄l(1 + (λ̄l + λ̄h)τ)

(λ̄h + λ̄l)2
− l

λ̄h + λ̄l

erτ .

Evaluated at τ = τ̂ , this is equal to 0. We majorize this expression by ignoring the

term linear in τ (underlined in the expression above). This majorization is still equal

to 0 at 0. Taking second derivatives with respect to τ of the majorization shows that

it is concave. Finally, its first derivative with respect to τ at 0 is equal to

h
λ̄l

λ̄h + λ̄l

− l
r + λ̄l

λ̄h + λ̄l

≤ 0,

because r ≤ h−l
l
λ̄l whenever τ̂ = 0. This establishes that k is decreasing in p.

2. For this step, we use the explicit formulas for W (or equivalently, w) given in Propo-

sition 2. Computing rµw(τ) + erτw0(τ)w
′(τ) over the two intervals (τ̂ , τ0) and (τ0,∞)

yields on both intervals, after simplification,

−
h−l
hl

c
∫∞
τ̂

λ̄h+λ̄l

rvg(t)
e
2rt−

∫ t

τ0
f(s)ds

dt
erτe−

∫ τ

τ̂
fsds < 0.

[The fraction can be checked to be negative. Alternatively, note that W ≤ W̄1 on

τ < τ0 is equivalent to this fraction being negative, yet W̄1 ≥ W̄ (W̄1 is the first branch

of the complete-information payoff), and because W solves our problem it has to be

less than W̄1.]

3. Consider two levels of persistence, p, p̃, with p̃ > p. Write w̃, w for the corresponding

solutions to the differential equation (25), and similarly W̃ ,W . Note that W̃ ≥ W

is equivalent to w̃ ≥ w, because W̄1 and w0 do not depend on p. Suppose that there
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exists τ such that w̃(τ) < w(τ) yet w̃′(τ) = w′(τ). We then have that the right-hand

sides of (25) can be ranked for both persistence levels, at τ . Hence, so must be the

left-hand sides. Because k(τ) is lower for p̃ than for p (by our first step), because k(τ)

is positive and because the terms w′′(τ) + rw′(τ), w̃′′(τ) + rw̃′(τ) are negative, and

finally because w̃′(τ) = w′(τ), it follows that w̃′′(τ) ≤ w′′(τ). Hence, the trajectories

of w and w̃ cannot get closer: for any τ ′ > τ , w(τ) − w̃(τ) ≤ w(τ ′) − w̃(τ ′). This is

impossible, because both w and w̃ must converge to the same value, −(1− l/h)(1−q)c,

as τ → ∞. Hence, we cannot have w̃(τ) < w(τ) yet w̃′(τ) = w′(τ). Note however

that this means that w̃(τ) < w(τ) is impossible, because if this were the case, then by

the same argument, since their values as τ → ∞ are the same, it is necessary (by the

intermediate value theorem) that for some τ such that w̃(τ) < w(τ) the slopes are the

same.

Proof of Lemma 8. The proof is divided into two steps. First we show that the

difference in payoffs between W (τ) and the complete-information payoff computed at the

same level of utility u(τ) converges to 0 at a rate linear in r, for all τ . Second, we show that

the distance between the closest point on the graph of u(·) and the complete-information

payoff maximizing pair of utilities converges to 0 at a rate linear in r. Given that the

complete-information payoff is piecewise affine in utilities, the result follows from the triangle

inequality.

1. We first note that the complete-information payoff along the graph of u(·) is at most

equal to max{W̄1(τ), W̄2(τ)}, where W̄1 is defined in Proposition 2 and

W̄2(τ) = (1− e−rτ )(1− c/l)µ+ q(h/l − 1)c.

These are simply two of the four affine maps whose lower envelope defines W̄ , see

Section 3.1 (those for the domains [0, v∗h]× [0, v∗l ] and [0, µh]× [v∗l , µl]). The formulas

obtain by plugging in uh, ul for Uh, Ul, and simplifying. Fix z = rτ (note that as r → 0,

τ̂ → ∞, so that changing variables is necessary to compare limiting values as r → 0),

and fix z such that lez > µ (that is, such that g(z/r) > 0 and hence z ≥ rτ̂ for small

enough r). Algebra gives

lim
r→0

f(z/r) =
(ez − 1)λhl − λlh

lez − µ
,

and similarly

lim
r→0

w0(z/r) = (qh− (ez − 1)(1− q)l)e−z,
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as well as

lim
r→0

g(z/r) = lez − µ.

Hence, fixing z and letting r → 0 (so that τ → ∞), it follows that
w0(τ)

∫ τ

τ̂
e
−

∫ t
τ0

f(s)ds

w2
0(t)

dt

∫
∞

τ̂

λh+λl
g(t)

e
2rt−

∫ t
τ0

f(s)ds
dt

converge to a well-defined limit. (Note that the value of τ0 is irrelevant to this quantity,

and we might as well use rτ0 = ln(µ/((1− q)l)), a quantity independent of r). Denote

this limit κ. Hence, for z < rτ0, because

lim
r→0

W̄1(z/r)−W (z/r)

r
=

h− l

hl
cκ,

it follows that W (z/r) = W̄1(z/r) +O(r). On z > rτ0, it is immediate to check from

the formula of Proposition 2 that

W (τ) = W̄2(τ) + w0(τ)
h− l

hl
crµ

∫ τ

τ̂
e
−

∫ t
τ0

f(s)ds

w2
0(t)

dt
∫∞
τ̂

λh+λl

g(t)
e
2rt−

∫ t

τ0
f(s)ds

dt
.

[By definition of τ0, w0(τ) is now negative.] By the same steps it follows that W (z/r) =

W̄2(z/r) +O(r) on z > rτ0. Because W = W̄1 for τ < τ̂ , this concludes the first step.

2. For the second step, note that the utility pair maximizing complete-information payoff

is given by v∗ =
(

r+λl

r+λl+λh
h, λl

r+λl+λh
h
)

. (Take limits from the discrete game.) We

evaluate u(τ)− v∗ at a particular choice of τ , namely

τ ∗ =
1

r
ln

µ

(1− q)l
.

It is immediate to check that

ul(τ
∗)− v∗l
qr

= −uh(τ
∗)− v∗h

(1− q)r
=

l + (h− l)
(

(1−q)l
µ

)

r+λl+λh
r

r + λl + λh

→ l

λl + λh

,

and so ‖u(τ ∗)− v∗‖ = O(r). It is also easily verified that this gives an upper bound on

the order of the distance between the polygonal chain and the point v∗. This concludes

the second step.
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C.2 Continuous Types

For clarity of exposition, we assume that the agent’s value v is drawn from [v, v] (instead of

[v, 1]) according to F with v ∈ [0, v). Let x1(v) = p(v) and x2(v) = U(U, v). The optimal

policy x1, x2 is the solution to the control problem,

max

∫ v

v

(1− δ)x1(v)(v − c) + δW (x2(v))dF

subject to the law of motion x′
1 = u and x′

2 = −(1 − δ)vu/δ. The control is u and the law

of motion captures the incentive compatibility constraints. We define a third state variable

x3 to capture the promise-keeping constraint

x3(v) = (1− δ)vx1(v) + δx2(v) + (1− δ)

∫ v

v

x1(s)(1− F (s))ds.

The law of motion of x3 is x′
3(v) = (1− δ)x1(v)(F (v)− 1).34 The constraints are

u ≥ 0

x1(v) ≥ 0, x1(v) ≤ 1

x2(v) ≤ v̄, x2(v) ≥ 0

x3(v) = U, x3(v)− (1− δ)vx1(v)− δx2(v) = 0.

Let γ1, γ2, γ3 be the costate variables and µ0 the multiplier for u ≥ 0. For the rest of this

sub-section the dependence on v is omitted when no confusion arises. The Lagrange is

L = ((1− δ)x1(v − c) + δW (x2)) f + γ1u− γ2
1− δ

δ
vu+ γ3(1− δ)x1(F − 1) + µ0u.

The first-order conditions are

∂L
∂u

= γ1 − γ2
1− δ

δ
v + µ0 = 0

γ̇1 = − ∂L
∂x1

= (1− δ) (γ3(1− F )− f(v − c))

γ̇2 = − ∂L
∂x2

= −δfW ′(x2)

γ̇3 = − ∂L
∂x3

= 0.

34Note that the promise-keeping constraint can be rewritten as

U = (1− δ)vx1(v) + δx2(v) + (1− δ)

∫ v

v

x1(s)(1 − F (s))ds.
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The transversality conditions are

γ1(v) ≤ 0, γ1(v) + (1− δ)vγ3(v) ≤ 0,

γ1(v)x1(v) = 0, (γ1(v) + (1− δ)vγ3(v)) (1− x1(v)) = 0,

γ2(v) ≥ 0, γ2(v) + δγ3(v) ≥ 0,

γ2(v)(v̄ − x2(v)) = 0, (γ2(v) + δγ3(v))x2(v) = 0,

γ3(v) and γ3(v) free.

The first observation is that γ3(v) is constant, denoted γ3. Moreover, given γ3, γ̇1 involves

no endogenous variables. Therefore, for a fixed γ1(v), the trajectory of γ1 is fixed. Whenever

u > 0, we have µ0 = 0. The first-order condition ∂L
∂u

= 0 implies that

γ2 =
δγ1

(1− δ)v
and γ̇2 =

δ (γ1 − vγ̇1)

(δ − 1)v2
.

Given that γ̇2 = −δfW ′(x2), we could determine the state x2

x2 = (W ′)
−1

(

vγ̇1 − γ1
(δ − 1)fv2

)

. (26)

The control u is given by −ẋ2δ/((1−δ)v). As the promised utility varies, we conjecture that

the solution can be one of the three cases.

Case one occurs when U is intermediate: There exists v ≤ v1 ≤ v2 ≤ v such that x1 = 0

for v ≤ v1, x1 is strictly increasing when v ∈ (v1, v2) and x1 = 1 for v ≥ v2. Given that u > 0

iff v ∈ (v1, v2), we have

x2 =























(W ′)−1
(

vγ̇1−γ1
(δ−1)fv2

)∣

∣

∣

v=v1
if v < v1

(W ′)−1
(

vγ̇1−γ1
(δ−1)fv2

)

if v1 ≤ v ≤ v2

(W ′)−1
(

vγ̇1−γ1
(δ−1)fv2

)∣

∣

∣

v=v2
if v > v2,

and

x1 =



















0 if v < v1

− δ
1−δ

∫ v

v1

ẋ2

s
ds if v1 ≤ v ≤ v2

1 if v > v2.

The continuity of x1 at v2 requires that

− δ

1− δ

∫ v2

v1

ẋ2

s
ds = 1. (27)
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The trajectory of γ2 is given by

γ2 =



















δγ1
(1−δ)v1

+ δ(F (v1)− F (v))v1γ̇1(v1)−γ1(v1)
(δ−1)f(v1)v21

if v < v1
δγ1

(1−δ)v
if v1 ≤ v ≤ v2

δγ1
(1−δ)v2

− δ(F (v)− F (v2))
v2γ̇1(v2)−γ1(v2)
(δ−1)f(v2)v22

if v > v2.

If (W ′)−1
(

v1γ̇1(v1)−γ1(v1)

(δ−1)f(v1)v21

)

< v̄ and (W ′)−1
(

v2γ̇1(v2)−γ1(v2)

(δ−1)f(v2)v22

)

> 0, the transversality condition

requires that

δγ1(v1)

(1− δ)v1
+ δF (v1)

v1γ̇1(v1)− γ1(v1)

(δ − 1)f(v1)v
2
1

= 0 (28)

δγ1(v2)

(1− δ)v2
− δ(1− F (v2))

v2γ̇1(v2)− γ1(v2)

(δ − 1)f(v2)v22
= −δγ3. (29)

We have four unknowns v1, v2, γ3, γ1(v) and four equations, (27)–(29) and the promise-

keeping constraint. Alternatively, for a fixed v1, (27)–(29) determine the three other un-

knowns v2, γ3, γ1(v). We need to verify that all inequality constraints are satisfied.

Case two occurs when U is close to 0: There exists v1 such that x1 = 0 for v ≤ v1 and x1

is strictly increasing when v ∈ (v1, v]. The x1(v) ≤ 1 constraint does not bind. This implies

that γ1(v) + (1− δ)vγ3 = 0. When v > v1, the state x2 is pinned down by (26).

From the condition that γ1(v) + (1 − δ)vγ3(v) = 0, we have that W ′(x2(v)) = 1 − c/v.

Given strict concavity of W and W ′(0) = 1 − c/v, we have x2(v) = 0. The constraint

x2(v) ≥ 0 binds, so (29) is replaced with

δγ1(v)

(1− δ)v
+ δγ3 ≤ 0,

which is always satisfied given that γ1(v) ≤ 0. From (28), we can solve γ3 in terms of v1.

Lastly, the promise-keeping constraint pins down the value of v1. Note that the constraint

x1(v) ≤ 1 does not bind. This requires that

− δ

1− δ

∫ v

v1

ẋ2

s
ds ≤ 1. (30)

There exists a v∗1 such that this inequality is satisfied if and only if v1 ≥ v∗1. When v1 < v∗1,

we move to case one. We would like to prove that the left-hand side increases as v1 decreases.

Note that γ3 measures the marginal benefit of U , so it equals W ′(U).

Case three occurs when v > 0 and U is close to µ: There exists v2 such that x1 = 1 for

v ≥ v2 and x2 is strictly increasing when v ∈ [v, v2). The x1(v) ≥ 0 constraint does not bind.
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This implies that γ1(v) = 0. When v < v2, the state x2 is is pinned down by (26). From the

condition that γ1(v) = 0, we have that W ′(x2(v)) = 1 − c/v. Given strict concavity of W

and W ′(v̄) = 1− c/v, we have x2(v) = v̄. The constraint x2(v) ≤ 1 binds, so (28) is replaced

with
δγ1(v)

(1− δ)v
≤ 0,

which is always satisfied given that γ1(v) ≤ 0. From (29), we can solve γ3 in terms of v2.

Lastly, the promise-keeping constraint pins down the value of v2. Note that the constraint

x1(v) ≥ 0 does not bind. This requires that

− δ

1− δ

∫ v2

v

ẋ2

s
ds ≤ 1. (31)

There exists a v∗2 such that this inequality is satisfied if and only if v2 ≤ v∗2. When v2 > v∗2,

we move to case one.

Proof of Proposition 1. To illustrate, we assume that v is uniform on [0, 1]. The proof

for F (v) = va with a > 1 is similar. We start with case two. From condition (28), we solve

for γ3 = 1 + c(v1 − 2). Substituting γ3 into γ1(v), we have

γ1(v) =
1

2
(1− δ)(1− v)(v(c(v1 − 2) + 2)− cv1).

The transversality condition γ1(0) ≤ 0 is satisfied. The first-order condition ∂L
∂u

= 0 is also

satisfied for v ≤ v1. Let G denote the function
(

(W ′)−1)′. We have

− δ

1− δ

∫ 1

v1

ẋ2

s
ds = − δ

(1 − δ)

∫ 1

v1

G
(

1− c+
c

2

(

v1 −
v1
s2

)) cv1
s3

1

s
ds

= − δ

(1 − δ)

∫ 0

v1−1/v1

G
(

1− c+
c

2
x
) c

2

√

1− x

v1
dx.

The last equality is obtained by the change of variables. As v1 decreases, v1 − 1/v1 de-

creases and
√

1− x/v1 increases. Therefore, the left-hand side of (30) indeed increases as

v1 decreases.

We continue with case one. From (28) and (29), we can solve for γ3 and γ1(v)

γ3 = 1 + c

(

v1(2v2 − 1)

v22
− 2

)

,

γ1(v) =
1

2
(δ − 1)

(

v

(

(v − 2)

(

c

(

v1(2v2 − 1)

v22
− 2

)

+ 1

)

− 2c+ v

)

+ cv1

)

.
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It is easily verified that γ1(0) ≤ 0, γ1(1) ≤ 0, and the first-order condition ∂L
∂u

= 0 is satisfied.

Equation (27) can be rewritten as

− δ

1− δ

∫ v2

v1

ẋ2

s
ds = − δ

(1− δ)

∫ v2

v1

G

(

1− c+
c

2

(

v1(2v2 − 1)

v22
− v1

s2

))

cv1
s3

1

s
ds = 1.

For any v1 ≤ v∗1 , there exists v2 ∈ (v1, 1) such that (27) is satisfied.

Transfers with Limited Liability. Here, we consider the case in which transfers are

allowed but the agent is protected by limited liability. Therefore, only the principal can pay

the agent. The principal maximizes his payoff net of payments. The following lemma shows

that transfers occur on the equilibrium path when the ratio c/l is higher than 2.

Lemma 11 The principal makes transfers on path if and only if c− l > l.

Proof. We first show that the principal makes transfers if c− l > l. Suppose not. The

optimal mechanism is the same as the one characterized in Theorem 1. When U is sufficiently

close to µ, we want to show that it is “cheaper” to provide incentives using transfers. Given

the optimal allocation (ph, uh) and (pl, ul), if we reduce ul by ε and make a transfer of

δε/(1 − δ) to the low type, the IC/PK constraints are satisfied. When ul is sufficiently

close to µ, the principal’s payoff increment is close to δ(c/l− 1)ε− δε = δ(c/l− 2), which is

strictly positive if c− l > l. This contradicts the fact that the allocation (ph, uh) and (pl, ul)

is optimal. Therefore, the principal makes transfers if c− l > l.

If c−l ≤ l, we first show that the principal never makes transfers if ul, uh < µ. With abuse

of notation, let tm denote the current-period transfer after m report. Suppose um < µ and

tm > 0. We can increase um (m = l or h) by ε and reduce tm by δε/(1− δ). This adjustment

has no impact on IC/PK constraints and strictly increases the principal’s payoff given that

W ′(U) > 1 − c/l when U < µ.35 Suppose ul = µ and tl > 0. We can always replace pl, tl

with pl + ε, tl − εl. This adjustment has no impact on IC/PK and (weakly) increases the

principal’s payoff. If ul = µ, pl = 1, we know that the promised utility to the agent is at

least µ. The optimal scheme is to provide the unit forever.

35It is easy to show that the principal’s complete-information payoff, if U ∈ [0, µ] and c− l ≤ l, is the same

as W̄ in Lemma 1.
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