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Abstract 
 
 This paper reports on the results of a dynamic pricing experiment that compares the 
performance of three popular pricing programs–hourly pricing, critical peak pricing, and critical 
peak-pricing with a rebate–for a representative sample from the population of households in the 
District of Columbia.  The sampled households differ in terms of their income levels, electricity-
using appliance holdings and whether they own a smart thermostat.  Using a nonparametric 
conditional mean estimation framework that allows for customer-specific fixed effects and hour-
of-sample fixed effects, I find that customers on all of the dynamic pricing programs 
substantially reduce their electricity consumption during high-priced periods.  The hourly 
average treatment effects associated with each of these dynamic pricing plans are larger in 
absolute value for households with all-electric heating and households with smart thermostats.   
Low-income households have significantly larger hourly average treatment effects than higher 
income households on the same dynamic-pricing tariff.  The results of these experiments are also 
used to investigate two hypotheses about differences in the customer-level demand response to 
the three dynamic pricing tariffs.   Specifically, I find that for roughly the same marginal price 
during a critical peak period, critical peak pricing yields a larger hourly average demand 
reduction than critical peak pricing with a rebate.  I also find that the demand reduction 
associated with higher hourly prices is very similar to the predicted demand reduction associated 
with the same price increase under critical peak pricing. 
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1. Introduction 

The widespread adoption of dynamic pricing programs for retail electricity in the United 

States is rapidly becoming feasible.  A number of jurisdictions are installing or have installed 

interval meters for a large fraction or all of their customers.  With this technology in place, the 

only remaining barrier is whether state regulators will require customers to pay for their 

electricity according to retail prices that vary with hourly system conditions. 

 Despite the substantial potential benefits to final electricity consumers from dynamic 

pricing of retail electricity, state regulators face enormous political risk from implementing even 

voluntary dynamic pricing programs.  Consumer groups often oppose the implementation of 

dynamic pricing programs by arguing that households are unlikely to adjust their consumption in 

response to prices that vary with hourly system conditions so that the shift to dynamic pricing 

will only require these customers to pay higher retail prices. 

 Recently, electric retailers in several jurisdictions have received complaints about the 

accuracy of recently installed interval meters.  For example, a number of Pacific Gas and Electric 

(PG&E) customers in Kern County have complained that their interval meters recorded 

substantially higher consumption that they believed had actually occurred.  PG&E responded  

that the higher recorded consumption was the result of an increase in usage due to unusually hot 

weather.1   Nevertheless, a number of Kern county customers remain unconvinced and have 

detailed records demonstrating that their alleged electricity consumption with the interval meter 

is substantially larger than their historical consumption for the same time period in previous 

                                                 
1
“Smart meters need independent testing,” December 4, 2009, http://articles.sfgate.com/2009-12-

04/opinion/17182554_1_smartmeters-pg-e-pacific-gas 
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years. Ultimately, PG&E admitted that a significant number of their meters did not communicate 

energy usage back to PG&E, failed to work, or were installed improperly.1  

To overcome the political resistance to both interval meters and dynamic pricing, state 

regulators must design programs that yield tangible benefits to final consumers while exposing 

them to limited bill volatility.  This paper reports on the results of a dynamic pricing experiment 

for the District of Columbia that uses hourly data on household-level electricity consumption for 

random sample of households from July 2008 to March 2009 to compare the relative 

performance of several popular dynamic pricing programs across several types of residential 

customers.  This experiment is used to examine three hypotheses about the design of dynamic 

pricing programs. 

 The first is concerned with the extent to which retailers to need to pre-commit on day-

ahead basis to sustained periods of high retail prices during the following day in order to obtain 

sizeable hourly demand reductions as opposed to set hourly retail prices that pass through the 

day-ahead hourly wholesale price.  Specifically, if customers have a “cost to take action” to 

reduce their demand, then clustering periods of high hourly retail prices may result in a larger 

hourly average price response than a dynamic pricing tariff that that passes through the hourly 

wholesale price in the hourly retail price charged to final consumers.  The critical peak pricing 

(CPP) tariff addresses the cost of taking action by pre-committing to a CPP event that can last up 

to 4 to 6 hours, during which retail prices are set at very high level.  Comparing the household-

level hourly average price response under a retail pricing plan that passes through the wholesale 

price in the hourly retail price to the hourly average price response achieved under a CPP tariff 
                                                 

1Finney, Michael “PG&E Acknowledges SmartMeter Problems,” April 26, 2010, 
http://abclocal.go.com/kgo/story?section=news/7_on_your_side&id=7406652. 
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can determine whether there is a significant “cost-of-taking-action” with hourly pricing. 

 The second hypothesis investigates whether there is a difference in a customer’s price 

response under a pure CPP tariff versus a CPP with rebate (CPR) tariff that sets roughly the same 

marginal price of electricity during a CPP event.  The CPR tariff is popular with customers 

because it pays a rebate that depends on the amount a customer’s hourly consumption is below a 

pre-specified reference level during a CPP event day.   However, different from CPP pricing, if 

the customer’s hourly consumption is not below the reference level, the customer pays for his 

consumption during a CPP event at the standard fixed retail price.  In contrast, a customer on the 

CPP tariff pays for all of his consumption at the high CPP period price during a CPP event.  

Therefore, the CPR tariff provides a customer with the option to forgo taking actions to reduce 

demand during a CPP period, with the only consequence being that the customer pays for this 

consumption according to the standard fixed retail price of electricity.  My hypothesis is that this 

“option to quit” may reduce the magnitude of the average demand reduction during CPP events 

for customers on a CPR tariff versus customers on a CPP tariff with the same marginal price 

during a CPP event. 

 The third hypothesis assesses the impact of automated technology on the ability of 

customers to achieve demand reductions in response to high-priced hours or CPP events.   Smart 

thermostats were offered to customers in the experimental group with central air-conditioning 

and the ability to set their thermostat.   The hypothesis examined is the extent to which the 

demand reduction achieved under each of the pricing programs was altered by the existence of a 

smart thermostat that could automatically change the household’s usage of electricity for air 

conditioning or heating in response to a high hourly prices or a CPP event. 

 The results of the experiment find precisely estimated demand reductions in response to 
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high hourly prices and CPP periods across all customer types, although it appears that all-electric 

customers (those with electric heating) have larger percentage reductions in their consumption 

during high-priced periods.  The estimated hourly average price responses for all dynamic 

pricing tariffs tend to be larger in absolute value during the summer months versus the winter 

months.  In addition, for the same dynamic pricing tariff, low income consumers have larger in 

absolute value percentage demand reductions during CPP periods.   

In terms of the three hypotheses described above, these results are broadly consistent with 

there being “no cost-of-taking action” associated with hourly pricing versus critical peak pricing, 

in part because periods of high hourly prices tend to be clustered during the day, typically during 

the same hours of the day that CPP periods occur.  I also find a clear “option-to-quit” effect 

associated with CPR pricing versus CPP pricing.  Even though both the CPR tariff and the CPP 

tariff face consumers with roughly the same marginal price during a CPP event (when a rebate is 

being paid for the CPR tariff), the percentage demand reduction during a CPP event is roughly ½ 

to 1/4 the magnitude of the demand reduction during a CPP event for the same type of customer 

on the CPP tariff.  Finally, I find that for all types of customers, having a smart thermostat yields 

a larger percentage demand reduction in response to high hourly prices and CPP events. This 

boost to the percentage demand reduction is the greatest for all-electric customers and customers 

on CPP tariffs. 

 Taken together, these results suggest that the hourly pricing or CPP tariffs will yield the 

largest demand reductions in response to high hourly wholesale prices.  These results also warn 

against the implementation of CPR tariffs. Although these tariffs achieve substantial percentage 

demand reductions for low-income customers, because the experiment did not subject low-

income customers to CPP or hourly pricing, I am unable to determine whether the “option to 
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quit” effect also applies to them.  

 The remainder of the paper proceeds as follows.  Section 2 describes the major analytical 

challenges associated with designing dynamic pricing programs.  The results of the District of 

Columbia experiment will be used to gain a deeper understanding of a number of these 

challenges.  Section 3 describes the details of the experimental design and data collection 

process.  Section 4 presents the general treatment effects estimation framework and the results of 

estimating these models for three dynamic pricing plans and four customer types.  Section 5 

describes how the estimation results can be used to design dynamic pricing schemes.    

2. The Challenges Faced in Designing Dynamic Pricing Programs 

The major challenge with implementing widespread dynamic pricing for the household 

sector is designing a tariff that delivers tangible benefits to electricity consumers without 

subjecting them to unacceptable levels of price risk.  A tariff that simply passes through hourly 

wholesale prices in the hourly retail price paid by the household may not yield as stable, 

predictable and sizeable demand response as alternative dynamic-pricing tariffs.  Because of the 

political constraints faced by state regulators, dynamic pricing plans are typically offered on a 

voluntary basis.  Wolak (2007) discusses the political economy behind the state regulator’s logic 

for implementing dynamic pricing on a voluntary basis.  Because how onerous a dynamic-

pricing plan is perceived to be determines how many customers are willing to switch to it from 

the default fixed-price tariff, understanding household behavior under a variety of dynamic 

pricing planning can contribute valuable input to achieving widespread adoption of dynamic 

pricing. 

2.1.  The Fixed Cost of Taking Action 

A common complaint about retail tariffs that pass through the hourly wholesale price in 
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the retail price is that these dynamic pricing tariffs require customers to monitor hourly retail 

prices in order to decide whether to reduce demand during a given hour of the day.  The 

customer must assess whether the pattern of hourly prices is sufficient to justify taking action to 

reduce demand.   For example, assuming that there is a fixed cost to taking action to reduce 

demand and that the wholesale price increase lasts only one hour implies that a very large price 

spike is necessary to cause the customer to take action. 

 Taking the example of a residential customer with a 2.5 kilowatt-hour (KWh) demand in 

that hour and $5 fixed cost of taking action to reduce demand by 20 percent, implies that a 

hourly price spike of at least $10,000 per megawatt-hour (MWh), or 1,000 cents/KWh. is needed 

to produce sufficient cost savings from reducing demand by 0.5 KWh, 20 percent of 2.5 KWh, to 

overcome the $5 cost of taking action.  This logic implies that if customers face a fixed cost of 

taking action to reduce their demand by 20 percent, there may be many high-priced hours that 

the customer decides do not produce sufficient electricity cost saving to pay this $5 cost of taking 

action. 

 A larger number of consecutive hours of high prices implies that a lower average hourly 

price is needed to overcome the fixed cost of taking action.  For example, if the duration of the 

price spike is two hours, then the average price for the two hours must exceed $5,000/MWh for a 

0.5 KWh demand reduction during each hour to compensate for the $5 cost of taking action.   A 

three-hour duration price spike only requires an average price greater than $3,333/MWh to 

compensate for the fixed cost of taking action to reduce demand by 0.5 KWh in each of the three 

hours. 

 This logic demonstrates that a dynamic pricing tariff that passes through the hourly 

wholesale price may result in many hours of high prices when little or no demand reduction 
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occurs, because these hourly prices are not high enough for a large enough number of 

consecutive hours to yield savings from the resulting hourly demand reductions to overcome the 

fixed cost to the household of taking action to reduce demand.   Consequently, if households 

have economically significant costs of taking action to reduce their demand, then the average 

demand reduction for these households to a given percent hourly price increase should be smaller 

than the estimated demand reduction associated with the same percentage price increase for 

dynamic pricing programs where the retailer pre-commits to four to six consecutive hours of 

high retail prices. 

2.2.   The Moral Hazard Problem with CPP Pricing 

  The CPP tariff pre-commits households to a sustained period of high retail prices during a 

CPP event.  For consumption during all other hours of the day, month and year, the household 

pays according to a fixed-price tariff.  The disadvantage of a CPP tariff from the perspective of 

the household is that it creates a moral hazard problem for the retailer that offers the CPP tariff 

because retailer is typically able to charge a price that is substantially higher than the standard 

retail rate during a CPP event and thereby earn revenues (less transmission and distribution 

charges) that are vastly in excess of the cost of providing electricity to the household.  Moreover, 

if the retailer can count on a certain percentage demand reduction from households on the CPP 

tariff, then it has an incentive to under-procure its expected retail electricity needs in the forward 

market and rely on declaring CPP events (and the resulting demand reduction from CPP 

customers) to balance its retail load obligations with its wholesale energy purchases. 

 The moral hazard problem for retailers with CPP pricing is somewhat addressed by the 

retailer pre-committing to declaring no more than a small number of CPP events during a pre-

specified time period.  Although this limits the number of times that the retailer can declare at 
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CPP event, the basic feature of the CPP tariff remains--it puts the entire burden of managing 

hourly price risk on the customer.   The retailer faces no downside risk associated with declaring 

a CPP day, regardless of what wholesale electricity prices are during the CPP event.  It simply 

charges the household a much higher implicit wholesale price during the CPP event, so the 

retailer has no incentive not to use all of the CPP events it is allowed to declare under the pricing 

plan. 

 The moral hazard problem for retailers associated with CPP pricing is dealt with through 

CPP pricing with a rebate (CPR).  Under this pricing plan, each household is assigned reference 

level for their hourly consumption relative to which rebates will be issued during CPP events.   If 

Q(ref) is this reference level and Q(act) is the customer’s actual consumption during the hour 

when a CPP event occurs, the CPR customer receives a rebate equal to max(0,Q(ref)-

Q(act))*p(rebate), where p(rebate) is the cents per KWh rebate paid during CPP events.  This 

rebate mechanism pays the household the difference between Q(ref) and Q(act) times the rebate 

price if Q(ref) is below Q(act) and zero otherwise.  The CPP with rebate mechanism addresses 

the moral hazard problem of the retailers with respect to CPP pricing because the retailer now 

faces revenue risk associated with declaring a CPP event.  If it declares a CPP event is has an 

obligation to pay rebates to households for their hourly consumption reduction below Q(ref).   If 

customers are able to achieve an actual level of consumption far below Q(ref), then the retailer is 

obligated to make substantial rebate payments.   Therefore, under a CPR tariff, the retailer has a 

strong incentive to only declare CPP events when it believes that the amount of rebate payments 

that it will make can be recovered from the wholesale energy cost saving that declaring a CPP 

event will achieve.  In this sense, the CPR tariff shares the risk of managing wholesale price risk 

between the retailer and household, rather than simply passing it through to retail customers. 
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2.3. The Option to Quit with CPR Pricing 

 Although the CPR tariff addresses the moral hazard problem associated with the retailer 

declaring CPP events, there are several complications associated with the design and 

implementation of CPR tariffs.  The problem of setting the customer’s reference level, Q(ref), is 

particularly challenging given the tremendous variability in household-level hourly electricity 

consumption.  Determining what the household would have consumed during a given hour in the 

absence of the CPP event, requires a very accurate model of the household’s electricity 

consumption behavior.  Approaches based on functions of household’s historical hourly 

consumption during similar days that are not CPP days suffer from the baseline inflation 

problems described in Wolak (2006). 

 Another potential shortcoming of CPR pricing relative to CPP pricing stems from the 

asymmetric payoff function to the household under CPR pricing versus CPP pricing.  In 

particular, a customer under a CPP tariff faces both an upside and downside from the decision to 

take action to reduce his consumption during a CPP event.  By reducing its consumption, the 

household avoids having to pay the very high price for electricity during the CPP event.  If the 

household does not take action to reduce its consumption it still pays for all hourly consumption 

at the high CPP price.  In contrast, the CPR tariff gives a household the option to continue to pay 

according to the standard fixed price tariff if it does not wish to reduce its consumption below 

Q(ref).  Only if the household takes action to reduce its consumption below Q(ref) does it receive 

the rebate.  Different from the CPP tariff, here is no high-price punishment for failing to reduce 

consumption during CPP events under the CPR tariff.  This creates an “option to quit” for CPR 

customers that does not exist for CPP customers that could reduce the magnitude of the average 

demand reduction achieved under CPR pricing, even if the two programs face households with 
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the same marginal price for consuming electricity during a CPP event (assuming that the CPR 

customer receives a rebate). 

 The following example illustrates the “option to quit” effect.  Suppose that P(CPP) is the 

price paid by CPP tariff households during a CPP event, P(fixed) is the standard fixed-price tariff 

paid by CPR customers for all of the electricity they consume, and P(rebate) is the rebate price 

for CPR customers that manage to reduce their consumption below Q(ref).   Suppose that P(CPP) 

= P(fixed) + P(rebate) so that both the CPP tariff customers and CPR customers face the same 

marginal price of an additional KWh during a CPP event if the CPR customer is currently 

consuming at Q(ref) or below.  P(fixed) + P(rebate) is the correct marginal price for a CPR 

customer with Q(act) below Q(ref), because this customer receives P(rebate) and avoids paying 

P(fixed) if it consumes one less 1 KWh of electricity. 

 Suppose that before a CPP event is declared (typically the day before the event day), the 

amount of uncertainty faced by the household about its electricity consumption the next day is 

reduced to two possible states of the world for both the CPP and CPR households.  The first state 

of the world is one in which is it relatively low-cost for the household to reduce its consumption 

below Q(ref) and  second is one where it is extremely costly for the household to do this, 

although smaller reductions are possible at lower cost.   The difference between the two states of 

the world could be the result of external factors such as the weather the following day or other 

factors specific to the household.   For example, the weather could be milder than expected or 

hotter than expected and this impacts the ability of the household to reduce its electricity 

consumption. 

 A risk-averse household facing this decision problem and purchasing according to the 

CPP tariff would still have a strong incentive to reduce their consumption under both states of 
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the world.  However, under the CPR tariff, if the household determines that it is too difficult to 

reduce its consumption below Q(ref) in the second state of the world, it will face P(fixed) as the 

marginal cost of consuming electricity.  In this second state of the world, the CPR household will 

consume more electricity than it would under the CPP tariff facing P(CPP), which is much 

greater than P(fixed).  Consequently, the average realized demand reduction (over these two 

states of the world) of the household under the CPR tariff is likely to be smaller than the average 

reduction of the household under the CPP tariff.  This difference in the average demand 

reduction is the result of the “option to quit” under the CPR tariff.   Consequently, by comparing 

the average demand reduction of households on the CPP tariff versus customers on a CPR tariff 

where P(CPP) for the CPP tariff is approximately equal to P(rebate) + P(fixed) for the CPR 

tariff, the difference in the estimated price responses CPP events under the CPP tariff versus 

CPR tariff is a measure of the magnitude of the “option to quit” under the CPR tariff. 

2.4. Automated Response  

 The declining cost and size of computing and communications technologies and the 

increasing availability of wireless networks in the household has the prospect of allowing 

customers to combine these technologies with dynamic pricing tariffs to achieve larger and more 

predictable demand reductions in response to hourly retail price signals.   Technologies such as 

smart thermostats can also be programmed to reduce electricity consumption for heating and 

cooling automatically in response to high hourly prices. These thermostats can also be 

programmed to display hourly prices, the existence of CPP event, and other information that can 

help a household better manage its electricity consumption.  In addition, dynamic pricing 

information can be sent to a home computer and a wireless network can be used to adjust the 

electricity consumption of appliances throughout the home automatically according to 



 13

programmed algorithms that depend on dynamic prices, weather conditions and other factors that 

determine the household’s hourly demand for electricity.  Wolak (2007) discusses these 

technologies and how they might be used in combination with dynamic pricing programs to 

benefit consumers with interval meters that record their consumption on an hourly basis. 

 All of these technologies involve up-front costs that must be justified by the cost savings 

achieved from the increased price-responsiveness they provide.  Returning to the above example 

of the residential customer with a demand of 2.5 KWh and a demand reduction during a CPP 

event of 20%, suppose that a smart thermostat that automatically responds to CPP events 

increases the average impact of a CPP event by 10%, so that the customer’s response to a CPP 

event is now 30%.  If electricity costs the customer 70 cents/KWh during a CPP event, then the 

additional 10% reduction in demand, or 0.25 KWh, during each of the 4 hours of the CPP event 

yields an additional savings of 70 cents per CPP event due to the existence of the smart 

thermostat.  If the customer experiences 10 CPP events per year, then this implies that owning 

the smart thermostat saves the customer $7 per year.   If we assume that the thermostat lasts 10 

years and saves the customer $7 in electricity costs each year and customer’s risk-adjusted 

interest rate for this type of investment is 5 percent, then the present value of this annual savings 

for 10 years is roughly $50.  Therefore, if the smart thermostat has up-front costs less than $50, 

the discounted present value of energy savings from being on the CPP tariff with this smart 

thermostat justifies this up-front investment. 

 This example shows that the economic benefits a household receives from automated 

response technology depends on both the magnitude of demand reduction achieved with the 

technology as well the structure of dynamic pricing tariff that it is combined with.  One set of 

challenges associated with implementing dynamic pricing is determining which automated 
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technologies are economic for which dynamic pricing programs. 

3. The PowerCentsDC Program 

The Smart Meter Pilot Project, Inc. (SMPPI), which was formed as a non-profit 

organization through a merger settlement approved by the Public Service Commission of the 

District of Columbia in 2002, initiated the PowerCentsDC program to investigate the impact of a 

variety of dynamic pricing programs and smart meter and smart thermostat technologies on the 

household-level consumption of electricity.  Starting in July 2008, 1,245 customers—857 

treatment and 388 control customers—participated in an experiment designed to assess the price-

responsiveness of households to three types of dynamic pricing programs:  (1) Critical Peak 

Pricing (CPP), (2) Critical Peak pricing with a rebate (CPR) and (3) Hourly Pricing (HP).    

Random samples of treatment participants were chosen from all eight wards of the 

District of Columbia from four types of customers: (1) R-regular household customers, (2) AE--

all electric (households with electric heating) (3) RAD—regular limited income, and (4) RAD-

AE—all electric (households with electric heating) limited income customers.  Customers were 

selected from the four groups to replicate the proportion that they appear in the general 

population.  Treatment customers in the R and AE groups were then randomly assigned to the 

three types of pricing programs—CPP, CPR, and HP.  Figure 1 shows the location of the sample 

households throughout the 8 wards of the District of Columbia.  Treatment customers assigned to 

each pricing plan and were not told about the existence of the other two pricing plans.   The 

program design only allowed low income participants to be subjected to the CPR treatment.  

Treatment customers were recruited through direct mail and notified that they “have been 

selected as a participant.”   In order to ensure that CPP and HP pricing treatment customers 

remained on their pricing plan for the duration of the experiment, each treatment customer was 
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promised a $100 payment, with $50 paid up front and $50 paid at the end of the experiment 

period.   No payment was made to any CPR customers because their bill could not increase as a 

result of participating in the experiment. 

The control group was also randomly selected from the eight wards of the District of 

Columbia.  Control participants were not made aware of the PowerCentsDC program and did not 

receive any information about the program, CPP events, or hourly prices.  Interval meters were  

installed on the premises of all customers in the treatment and control groups.  The meters record 

electricity use hourly and transmit it every day to the data center using a wireless 

communications link.  The smart meters also have an LCD display so that customers can read the 

meter locally.  A random sample of customers in the treatment group was offered the option to 

have a smart thermostat that contains a wireless receiver inside.  These thermostats can be 

remotely programmed on behalf of the customer to use less air conditioning or electric heating 

during CPP events or periods of high hourly prices.   Customers can override this automatic 

adjustment or change the settings.  The thermostats also have a small display that shows the 

current price of electricity faced by the customer and his estimated bill to date.  Figure 2 displays 

a picture of the meter and thermostat. 

Table 1 provides a breakdown of the participants by income level, all electric versus 

regular customers, and by control versus the three dynamic-pricing programs.  Both treatment 

and control customers received their standard monthly billing statements. All treatment 

customers also received a detailed Electric Usage Report in their monthly bill detailing their rate 

code and the breakdown of CPP period payments for CPP customers, and CPP period rebates for 

CPR customers and average hourly prices during the month on weekdays and weekends for HP 

customers.  Figures 3(a) to 3(c) give sample electric usage reports for CPR, CPP, and HP 



 16

programs, respectively. 

For both the CPP and CPR pricing programs, customers were subject to at most 12 CPP 

events during the summer months (June 1 to September 30) and 3 CPP events during the winter 

months (November 1 to February 28).   The critical peak hours occur between 2 pm to 6 pm in 

the summer and between 6 am and 8 am and 6 pm and 8 pm during the winter months.  Critical 

peak events were called based on a day-ahead temperature forecast above a pre-specified 

threshold during the summer months and below a minimum temperature threshold during the 

winter months.  The summer 2008 threshold was 90 degrees and the winter 2008-2009 threshold 

was 18 degrees. 

At the time of their enrollment in the experiment, treatment customers stated their 

preferences for how they would like to be notified of CPP events—by phone, e-mail, or text 

messages on their cell phone.  Notifications were delivered no later than 5 pm the day before a 

CPP event.  Some participants asked for two modes of notification in order to avoid the problem 

of failing to check their voice mail, e-mail or text messages in time to respond to a CPP event or 

an HP warning.  Based on feedback from program participants during the experiment, customers 

were generally satisfied that they had been adequately notified of CPP events and HP warnings. 

All control customers, but the RAD-AE customers, paid for their electricity according to 

increasing block price schedules with two blocks or tiers.  The RAD-AE customers have three 

pricing tiers.  Table 2 lists the price schedules faced by the four types of control customers:  R, 

AE, RAD, and RAD-AE.   The CPP treatment customers paid according to increasing-block 

schedules with two tiers that had slightly lower tier prices than the corresponding control 

cents/KWh and 78 cents/KWh, for their consumption during critical peak events.  Table 3 lists 

the increasing block schedules for these customers and the CPP event prices for these customers. 
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The CPR customers pay according to the same increasing block prices as control 

customers, but they receive rebates for the amount their actual consumption, Q(act), is less than 

their reference level, Q(ref), during critical peak periods.  Otherwise CPR customers receive no 

rebate.  The rebate is computed as max(0,Q(ref)-Q(act))*P(rebate).  If there are no CPP periods 

within a month or the customer is unable to reduce its consumption below Q(ref) during any of 

the CPP periods that occur in that month the customer’s bill is computed the same way as the bill 

of a control customer.  Because of concerns that a CPR household might be able to manipulate 

its reference level in the manner discussed in Wolak (2006) for the Anaheim CPR pricing 

experiment, customers were not told how their reference level, Q(ref), was computed each 

month.  Each customer’s monthly reference level was computed as the average of the three 

highest non-event consumption amounts on non-holiday weekdays during CPP periods of that 

billing month.   

Table 4 lists the CPR rebate prices, P(rebate), for each of the four customer types.  The 

rebate prices for the R and AE customers were selected to yield very similar marginal prices 

during a CPP event for CPP customers and CPR customers.  For example, the Summer Tier 1 

CPR rebate price from Table 4 is 63.9 cents/KWh and the Tier 1 block price for the CPR 

customer from Table 2 is 12.9 cents/KWh, which implies a marginal price for a CPR customer 

receiving a rebate during a summer CPP event of 76.8 cents/KWh.  The Summer Tier 1 CPP 

price from Table 3 is 77.1 cents/KWh.   For both R and AE customers and all pricing tiers, rebate 

prices were chosen to come as close as possible to satisfying the equation P(CPP) = P(rebate) + 

P(tier), where P(CPP) is the CPP event price for CPP customers and P(tier) is the tier fixed price 

for CPR customers. 

For RAD and RAD-AE customers the rebate amount was set at a slightly higher rate to 
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encourage the participation of low-income customers in the pricing experiment.  CPR was the 

only dynamic pricing tariff offered to low-income treatment group customers.   

During the summer months of 2008, only six CPP events were declared based on the 

maximum temperature threshold.  Table 5 lists the critical peak days during the summer months 

and actual maximum daily temperature and time of the maximum temperature on the CPP day.  

For all but the first CPP day on August 4, the realized maximum temperature on all of the 

summer CPP days was larger than the 90 degrees threshold.  For all but the first CPP day, the 

maximum temperature for the day occurred during the 2 pm to 6 pm CPP event period.  Table 6 

lists the minimum realized daily temperature for the winter CPP days and the hour of the day 

when the minimum temperature occurred.  The last column of the table lists the mean 

temperature during the wintertime critical peak period.   Except for the January 16 CPP event, 

the realized average temperature during the CPP period was significantly higher than the 18 

degrees threshold.  These results suggest that maximum temperatures for the day are more 

straightforward to forecast on a day-ahead basis than minimum temperatures for the day. 

Hourly pricing customers paid according to the day-ahead prices that tracked prices set in 

the PJM day-ahead wholesale electricity market for the District of Columbia. These prices were 

weighted across hours of the day so that the wholesale price implicit in the hourly retail price 

was higher in the high-priced hours of the day and lower in the low-priced hours of the day than 

the PJM day-ahead prices.  This was done to increase the attractiveness to HP customers of 

reducing their hourly demand in response to these prices. The hourly prices were posted on the 

PowerCentsDC project website for HP participants to access and are also available by calling a 

toll-free number.  The prices are also displayed in real-time on the smart thermostats.   

HP participants were also notified on a day-ahead basis by phone, e-mail, or text message 
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when hourly prices were “high” as determined by a preset threshold.   The threshold for high 

hourly prices was set to be 23 cent/KWh during the summer months.  Because of the massive 

slowdown in economic activity after September 2008, the threshold was revised downward to 15 

cents/KWh for the winter months.  These “high price” hour notifications were sent to customers 

before 5 pm of the day before these prices were in effect.  Different from the CPP event 

notification, customers were told which hours of the following day the hourly price exceeded the 

threshold.   Notifications were given for 38 hours during the sample period.  Figure 4 displays 

the time path of hourly prices from July 2008 to February of 2009. 

4.  Experiment Estimation Results 

  This section presents the analysis of household-level behavior under the three dynamic 

pricing plans for the entire sample period and the summer and winter months separately for the R 

and AE customers.  For these customers, I recover hourly average treatments effects for a CPP 

event for CPP customers and CPR customers combined and separately and an hourly average 

treatment effect for an HP warning for HP tariff customers.  For RAD and RAD-AE customers, I 

estimate hourly average treatment effects associated with a CPP event for CPR tariff for the 

entire sample period and the summer and winter months separately.   Finally, for each of these 

customer types and pricing plans, I also estimate the change in the magnitude of the average 

treatment effect associated with the customer having a smart thermostat. 

 Define the following notation:  

y(i,h) = the natural logarithm of the consumption in KWh of customer i during hour h 

Hour(h) = indicator variable for hour-of-sample h=1,…,24*D, where D is the total number of 

days in the sample period 

Treat(i,j) = indicator variable for whether customer i is in treatment group j (j=CPP, CPR, or HP) 
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CPP(h) = indicator variable for whether hour-of-sample h is a critical peak event hour 

THERM(i) = indicator variable for whether customer i has a smart thermostat 

From these variables construct the following interactions: 

CPP_PER(i,h) = CPP(h)*Treat(i,j)=CPP or CPR) = indicator variable for whether customer  i is 

in the treatment group and is either a CPP or CPR customer and hour h is during a CPP event, 

HP_PER(i,h) = HP(h)*Treat(i,j=HP) = indicator variable for whether customer i is in the 

treatment group and is an HP customer and hour h is during a HP warning hour, 

CPP_PER(i,h)*THERM(i) = indicator variable for whether customer i has a smart thermostat 

and is in the treatment group and either a CPP or CPR customer and hour h is during a CPP 

event, 

HP_PER(i,h)*THERM(i) = indicator variable for whether customer i has a smart thermostat and 

is in the treatment group and an HP customer and hour h is during an HP warning hour, 

CPM_K(i,h) = CPP(h)*Treat(i,K) for customer type K=R,AE and dynamic pricing tariff M = P 

(for CPP) or R (for CPR).  

For example, CPP_AE(i,h) is an indicator variable for whether hour h is a CPP event given that 

customer i is an AE customer. 

 The basic average treatment effects model takes the following form: 

y(i,h) = α(CPP_PER(i,h)) + β(HP_PER(i,h))  + λh + δi + εih,   (1) 

where δi is a customer-specific fixed-effect that controls for persistent differences across 

customers in their hourly consumption, λh is an hour-of-sample fixed effect for hour-of-sample h 

which accounts for differences in y(i,h) across hours in the sample period for a given household, 

and εih is an unobserved mean zero stochastic disturbance that is uncorrelated with any of the 

regressors in this model, including the two sets of fixed-effect.   This model assumes the same 
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hourly average treatment effect associated with the CPP event for CPP customer and a CPR 

customer and a separate hourly average treatment effect for a HP warning. 

 The second model allows for different hourly average treatment effects associated with a 

CPP day for CPP customers and CPR customers: 

y(i,h) = α1(CPP_M(i,h)) + α2(CPR_M(i,h)) + β(HP_PER(i,h))  + λh + δi + εih,      (2) 

where α1 is the hourly average treatment effect associated with a CPP day for CPP customer of 

type M = R or AE and α2 is the hourly average treatment effect associated with a CPP day for 

CPR customer of type M = R or AE.   The third model estimated allows for a different treatment 

effect for each dynamic pricing plan depending on whether the household has a smart thermostat. 

It the following form: 

y(i,h) = α1(CPP_M(i,h)) + α2(CPR_M(i,h)) + β(HP_PER(i,h)) + γ1(HP_PER(i,h)*THERM(i)) 

+ γ2(CPP_M(i,h)*THERM(i)) + γ3(CPR_M(i,h)*THERM(i)) + λh + δi + εih (3) 

for M = R or AE.  RAD and RAD-AE customers are only subjected to the CPA tariff so, only the 

following model is estimated for these customers: 

y(i,h) = α1(CPP_PER(i,h))  + γ1(CPP_PER(i,h)*THERM(i)) + λh + δi + εih,  (4) 

so α1 is the hourly average treatment effect associated with a CPP day for CPA customer. 

 Tables 6.1 to 6.3 present the estimates of models (1)-(3) for R customers for the full 

sample period of July 21, 2008 to March 17, 2009.   To guard against arbitrary forms of both 

heteroscedasticity and autocorrelation in the εih, all of the standard errors presented in the 

remainder of the paper are computed using the heteroscedasticity and autocorrelation-consistent 

covariance matrix for two-way panel data models presented in Arrellano (1987).   

The model (1) results demonstrate sizeable and precisely estimated average treatment 

effects associated with both HP warnings and CPP events for both CPP and CPR customers.    
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The hourly average treatment effect of a CPP event for both CPP and CPR customers is 9 

percent and hourly average treatment effect for an HP warning is 3 percent.   Table 6.2 breaks 

out the average treatment effect of a CPP event separately for CPP and CPR customers.   These 

results reveal a much larger hourly average treatment effect for a CPP event for a CPP customer 

versus CPR customer, 13 percent versus 5.3 percent, respectively.  For these estimates, the 

hourly average treatment effect for an HP warning is still 3 percent.   Table 6.3 includes 

interactions with the smart thermostat indicator variable for each of the regressors in Table 6.2 to 

quantify the change in the hourly average treatment effect if the customer has a smart thermostat.  

These results show that the existence of a smart thermostat increases the size of the hourly 

average treatment effect for all three customer types, but by far the largest increase is for CPP 

customers.  There is an 11 percentage point increase in the size of the hourly average treatment 

average treatment effect for an R-customer on a CPP tariff having a smart thermostat. 

 The results in Tables 6.1 to 6.3 illustrate a number of points that also apply to AE-

customers.  First, all dynamic pricing tariffs result in sizeable and precisely estimated hourly 

average treatment effects.  Second, the treatment effect of a CPP event for CPP customer is 

typically more than 2 to 3 times the absolute value of the treatment effect of a CPP event for 

CPR customer.  Third, the treatment effect associated with a HP warning is roughly 1/3 to ¼ of 

the absolute value of the hourly average treatment effect of a CPP event for CPP customer.   

Fourth, the existence of the smart thermostat increases the absolute value of the hourly average 

treatment effect associated with all dynamic pricing plans and the increase in the treatment effect 

is largest for CPP customers.    

The second result is consistent with the existence of sizeable “option to quit” associated 

with the CPR tariff versus the CPP tariff.  The third result is roughly consistent with there being 
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little or no “cost of taking action” because the price during a CPP event is roughly 70 to 75 cents 

per KWh and lowest hourly price at which an HP warning is issued is 23 cents/KWh in the 

summer and 15 cents/KWh in the winter, which are both roughly 1/3 to ¼ of 70 to 75 

cents/KWh.  Therefore, the ratio of the hourly average treatment effect of a CPP event for a CPP 

customer to the hourly average treatment effect of an HP warning for an HP customer appears to 

be roughly consistent with the ratio of the hourly price faced by a CPP customer during a CPP 

event versus a HP customer during an HP warning.  In future research I plan to explore the issue 

of the equality of the two demand responses for CPP customers and HP customers by estimating 

a demand system using hourly pricing data for both sets of customers and the three dynamic 

pricing tariffs. 

 Tables 7.1 to 7.3 reproduce the results in Table 6.1 to 6.3 for the summer sample period.  

These results allow the same quantitative and qualitative conclusions to be drawn as the results 

presented in Tables 6.1.to 6.3.  Tables 8.1 to 8.3 reproduce the Tables 6.1 to 6.3 results for the 

winter time period.   For this time sample period, the average treatment effects are smaller in 

absolute value and less precisely estimated.  Only the CPP tariff appears to have a substantial 

and precisely estimated hourly average treatment effect and precisely estimated increase in the 

absolute value of the hourly average treatment effect associated with a smart thermostat.  The 

smaller in absolute value and less precise hourly average treatment effects for the winter sample 

versus the summer sample holds for the other three customer types.  This can be attributed to the 

fact that there were a much smaller number of CPP events and HP warnings during the winter 

sample period versus the summer sample period, or simply the fact that customers have less 

ability or desire to reduce their electricity consumption during the winter versus the summer.  

Ongoing additional data collection efforts over a longer time period could resolve this issue. 
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 Tables 9.1 to 9.3 present the estimates of models (1) to (3) for the AE customers for the 

full sample period.  These results show sizeable and very precisely estimated hourly average 

treatment effects for all dynamic pricing tariffs.  For example, the hourly average treatment 

effect of an HP warning is 17.5 percent and the average treatment effect of CPP event for both 

CPP and CPR customers is 16.1 percent.  Consistent with the same modeling results for R 

customers, the hourly average treatment effect of CPP event for CPP customers is almost 3 times 

the value of the hourly average treatment effect of CPP event for a CPR customer, 24.5 percent 

versus 8.46 percent, respectively.  These results provide further evidence for the existence of a 

sizeable “option to quit” associated with CPR tariff.   A comparison of the hourly average 

treatment effect of an HP warning to the hourly average treatment effect of a CPP event for CPP 

customer provides even stronger evidence of no “cost of taking action” associated with hourly 

pricing.  The HP warning hourly average treatment effect is roughly 70 percent of the CPP event 

hourly average treatment effect for CPP customers.   The impact of a smart thermostat for AE 

customers is also consistent with the impact of a smart thermostat for R customers, although the 

absolute value and precision of the estimated increase in the absolute value of the hourly average 

treatment effects are larger for AE customers.  Once again, the largest increase in the absolute 

value of the hourly average treatment effect associated with a smart meter is for CPP customers. 

 Table 10.1 to 10.3 and 11.1 to 11.3 present estimates of the same models as Tables 9.1 to 

9.3 for the summer and winter samples, respectively.  Similar to the R customer results, the 

average treatment effects for the summer months are similar to those for the full sample, except 

for the HP customers.  The HP customers have significantly smaller hourly average treatment 

effects for an HP warning during the summer months relative to the full sample.  Different from 

the R customer results, the winter sample hourly average treatment effects estimation results are 
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larger in absolute value and generally more precisely estimated, particularly for the HP 

customers.  This result is consistent with the fact that AE customers use electricity for heating 

and therefore many have greater opportunities relative to R customers to reduce their electricity 

consumption during CPP periods and HP warning periods during the winter months. 

 Tables 12.1 to 12.3 estimate model (4) for the RAD customers for the full sample and the 

summer sample and winter sample, separately.   Because they are low-income, RAD customers 

were only allowed to be treated with the CPR dynamic pricing tariff.  For all three samples, the 

hourly average treatment effect associated with a CPP event for CPR customers is substantially 

larger than the hourly average treatment effect associated with a CPP event for an R or AE 

customer paying according to a CPR tariff.  This increase in the magnitude of the hourly average 

treatment could be partially explained by the larger rebate paid to RAD customers on the CPR 

tariff versus R or AE customers on the CPR tariff.  However, the RAD hourly average treatment 

effect is almost twice the hourly average treatment effect of a CPP event for R or AE customers 

on the CPR tariff, even though the RAD customer rebate price is approximately 30 to 38 percent 

higher than the rebate price for R or AE CPR customers.  This result is consistent with other 

factors besides the larger rebate price explaining the much larger hourly average treatment effect 

of a CPP event for RAD customers on the CPR tariff.  For the full sample, results, I also find that 

RAD customers with a smart thermostat have a noticeably larger in absolute value hourly  

average treatment effect.   

 Tables 13.1 to 13.3 estimate model (4) for the RAD-AE customers for the three samples.  

These low-income consumers also have a substantially higher hourly average treatment effect 

associated with a CPP event for customers on the CPR tariff than regular AE customers.   For 

example, for the full sample RAD-AE customer results the average treatment effect is 12 
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percent, whereas for the full sample of AE customers shown in Table 9.2, the hourly average 

treatment effect of a CPP event for customers on the CPR tariff is 8.5 percent.  For the same 

reasons as described above for the RAD households, this increase in the hourly average 

treatment effect for RAD-AE versus AE customers on the CPR tariff does not appear to be 

completely explained by ratio of the rebate prices set for these two types of customers.   These 

results are also consistent with a smart meter increasing the absolute value of the magnitude of 

the treatment effect for a CPP day for RAD-AE customers on a CPR tariff.  However, none of 

these parameter estimates are very precisely estimated.  This result is likely to be due to the fact 

that there is less than 20 RAD-AE customers in the treatment group and a very small number of 

them have a smart thermostat, so that it is very difficult to precisely estimate the impact of a 

smart thermostat given the available data.  The larger in absolute value average treatment effect 

from a CPP event for RAD and RAD-AE customers on CPR tariffs versus R and AE customers 

on these same tariffs is very encouraging for the prospect of dynamic pricing benefitting low-

income consumers. 

5.  Implications of Experimental Results for the Design of Dynamic Pricing Programs 

The results of the PowerCentsDC Program experiment demonstrates that all three 

dynamic pricing programs provide stable, predictable and sizeable demand reductions in 

response to CPP events and HP warnings for both R and AE customers.  For low-income R and 

AE customers on the CPR tariff, a CPP event yields a larger hourly average treatment effect than 

the same tariff yields for R and AE customers.   For all four types of customers and all dynamic 

pricing programs, having a smart thermostat predicts an increase in the absolute value of the 

treatment effect.  Smart thermostats appear to implement the largest increase in the absolute 
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value of the hourly average treatment effect for customers on CPP tariffs, particularly AE 

customers. 

These experimental results also provide clear answer to several of the major challenges 

associated with the design of dynamic pricing programs.  First, there does not appear to be an 

economically significant “cost of taking action” to reduce demand associated with hourly 

pricing.  The ratio of the hourly average treatment effect associated with an HP warning to the 

hourly average treatment effect of CPP event for CPP customers appears to be completely 

explained by the ratio of average price paid by HP customers during an HP warning period 

relative to the average price paid by CPP customers during a CPP event.  One explanation for 

this result is shown in the graph of the hourly prices in Figure 4.  Hours with high prices tends to 

be clustered within the day and during the same time intervals covered by CPP events.  This is 

particularly the case during the summer months.  For example, a number of the CPP events 

during sample period contained at least two HP warning periods.   

The experimental results also confirm the existence of a substantial “option to quit” 

associated with the CPR tariff for both R and AE customers.  For the full sample, summer 

sample, and winter sample results, despite the fact the marginal prices for the CPP period for the 

CPP tariff and CPR tariff (assuming a rebate was being paid) were approximately equal, the 

hourly average treatment effect associated with a CPP event for the CPR tariff was ½ to 1/3 the 

size of the hourly average treatment associated with a CPP event for the CPP tariff for the same 

customer type.  These results suggest a substantial shortcoming to the CPR tariff in achieving the 

goal of a stable, predictable and sizeable demand reduction at least cost. 

The experimental results demonstrated that the presence of a smart thermostat increased 

the absolute value of the hourly average treatment effect for all customer types and pricing plans.  
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However, the CPP tariff was shown to experience the highest boost to the hourly average 

treatment effect from a smart thermostat.  Although further information must be collected on the 

costs of installing and operating smart thermostats in order to evaluate the discounted present 

value of the costs saving from installing a smart thermostat, one conclusion is possible from 

these results.  The greatest cost savings will come from combining a smart thermostat with CPP 

pricing. 

A final encouraging result from the experiment is that the average hourly treatment effect 

associated with low-income customers was consistently larger than the average hourly treatment 

effect associated the same dynamic pricing tariff for higher income customers.   Combining this 

result with results for the three pricing programs for R and AE customers suggests that an HP or 

CPP pricing plan for low-income consumers that mitigates the bill risk concerns of these tariffs 

for low-income households could produce larger hourly average treatment effects.  For example, 

an HP or CPP plan that provides low-income households with a monthly credit on their 

electricity bill, that if unused in one month rolls over to the next month, could yield average 

hourly treatment effects larger than those achieved for R and AE customers.  
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Table 1:  Program Participants 
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Table 2:  Increasing Block Prices for Control Group and CPR Customers 
 

Price 
Plan  Summary 

Tier 1 Size 
(kWh) 

Tier 1 Price 
per kWh 

Tier 2 
kWh 

Tier 2 
Price 

Tier 3 
kWh 

Tier 3 
Price 

R  Applies to most residential 
customers 

0‐400   12.9¢  401+  14.7¢  –  – 

AE  Customers with electric 
heating 

0‐400   12.8¢  401+  14.7¢  –  – 

RAD  Limited income customers  0‐400   5.4¢  401+  14.8¢  –  – 

RAD‐
AE 

Limited income with 
electric heating 

0‐400  5.4¢  401‐
700 

12.3¢  701+  14.6¢ 

 
 

Table 3:  Block Prices and CPP Event Prices for CPP Customers 
 

Price 
Plan 

Summer 
Tier 1 

Summer 
Tier 2 

Summer  
Tier 1   

Critical 
Peak 

Summer  
Tier 2   

Critical 
Peak 

Winter 
Tier 1 

Winter 
Tier 2 

Winter  
Tier 1   

Critical 
Peak 

Winter  
Tier 2   

Critical 
Peak 

R  12.3¢  14.1¢  77.1¢  78.9¢  11.7¢  12.6¢  72.2¢  73.1¢ 

AE  12.3¢  14.2¢  75.1¢  76.9¢  11.6¢  12.1¢  70.2¢  70.7¢ 

 
 

Table 4:  Rebate Prices for CPR Customers 
 

 

Price 
Plan 

Summer  
Tier 1   

Critical 
Peak 

Summer  
Tier 2   

Critical 
Peak 

Summer  
Tier 3   

Critical 
Peak 

Winter  
Tier 1   

Critical 
Peak 

WInter  
Tier 2   

Critical 
Peak 

WInter  
Tier 3   

Critical 
Peak 

R  ‐63.9¢  ‐62.1¢  –  ‐63.9¢  ‐62.1¢  – 

AE  ‐64.9¢  ‐63.1¢  –  ‐64.9¢  63.1¢  – 

RAD  ‐82.1¢  ‐79.0¢  –  ‐82.1¢  ‐79.0¢  – 

RAD‐AE  ‐88.0¢  ‐89.0¢  ‐85.0¢  ‐62.0¢  ‐61.4¢  ‐60.4¢ 
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Table 5.1:  Summertime Critical Peak Days and Actual Maximum Daily Temperatures  
 

Critical Peak Day 
Actual Max 
Temp (°F) 

Time of High 
Temp 

Tuesday, August 5  86  1:00 pm 

Wednesday, August 6  94  4:00 pm 

Monday, August 18  93  4:00 pm 

Tuesday, August 19  94  4:00 pm 

Wednesday, September 3  95  3:00 pm 

Friday, September 4  95  4:00 pm 

Note:  CPP period is from 2 pm to 6 pm. 
 
 

Table 5.2:  Wintertime Critical Peak Days and Actual Minimum Daily Temperatures  
 

Critical Peak Day 
Actual Min 
Temp (°F) 

Time of Low 
Temp 

Mean Temp 
during Critical 

Peak (°F) 

Thursday, January 15  17.1  12:00 am  22.9 

Friday, January 16  10.9  12:00 am  12.5 

Wednesday, February 4  23.0  12:00 am  28.0 

Note:  CPP period is from 6 am to 8 am and 6 pm to 8 pm 
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Table 6.1: Model 1 Results for R Customers (Full Sample) 
 

Parameter  Estimate  Std. Error  t Value  
HP_PER  -0.03003  0.01110  -2.70  
CPP_PER  -0.09087  0.00731  -12.43  

 
 

Table 6.2: Model 2 Results for R Customers (Full Sample) 
 

Parameter  Estimate  Std. Error  t Value  
HP_PER  -0.03010  0.01110  -2.71  
CPP_R  -0.13030  0.00939  -13.88  
CPR_R  -0.05315  0.00923  -5.76  

 
 

Table 6.3: Model 3 Results for R Customers (Full Sample) 
 

Parameter  Estimate Std. Error t Value  
HP_PER  -0.04788  0.01262  -3.80  
CPP_R  -0.10636  0.01034  -10.29  
CPR_R  -0.05021  0.01059  -4.74  
HP_PER*THERM  -0.01799  0.01285  -1.40  
CPP_R*THERM  -0.11060  0.02001  -5.53  
CPR_R*THERM  -0.00996  0.01771  -0.56  

Standard Errors computed using heterosceasticity and autorcorrelation consistent covariance 
matrix from Arrellano (1987). 
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Table 7.1: Model 1 Results for R Customers (Summer Sample) 
 

Parameter  Estimate  Std. Error  t Value  
HP_PER  -0.02574  0.01312  -1.96  
CPP_PER  -0.08892  0.00810  -10.98  

 
 

Table 7.2: Model 2 Results for R Customers (Summer Sample) 
 

Parameter Estimate Std. Error t Value 
HP_PER -0.02576 0.01312 -1.96 
CPP_R -0.12529 0.01031 -12.15 
CPR_R -0.05349 0.01021 -5.24 

 
 
 

Table 7.3: Model 3 Results for R Customers (Summer Sample) 
 
 

Parameter  Estimate Std. Error t Value  
HP_PER  -0.05149  0.01488  -3.46  
CPP_R  -0.09653  0.01131  -8.54  
CPR_R  -0.04819  0.01169  -4.12  
HP*THERM  -0.03819  0.02679  -1.42  
CPP_R*THERM  -0.13592  0.02197  -6.19  
CPR_R*THERM  -0.01801  0.01947  -0.93  

Standard Errors computed using heterosceasticity and autorcorrelation consistent covariance 
matrix from Arrellano (1987). 
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Table 8.1: Model 1 Results for R Customers (Winter Sample) 
 

Parameter  Estimate  Std. Error  t Value  
HP_PER  -0.00753  0.01817  -0.41  
CPP_PER  -0.05542  0.01453  -3.81  

 
 

Table 8.2: Model 2 Results for R Customers (Winter Sample) 
 

Parameter  Estimate  Std. Error  t Value  
HP_PER  -0.00753  0.01817  -0.41  
CPP_R  -0.08600  0.01919  -4.48  
CPR_R  -0.02815  0.01834  -1.54  

 
 

Table 8.3: Model 3 Results for R Customers (Winter Sample) 
 

 
Parameter  Estimate  Std. Error  t Value  
HP_PER  -0.01427  0.02072  -0.69  
CPP_R  -0.05617  0.02146  -2.62  
CPR_R  -0.03274  0.02113  -1.55  
HP*THERM  -0.02564  0.03789  -0.68  
CPP_R*THERM  -0.12609  0.04059  -3.11  
CPR_R*THERM  0.01561  0.03575  0.44  

Standard Errors computed using heterosceasticity and autorcorrelation consistent covariance 
matrix from Arrellano (1987). 
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Table 9.1: Model 1 Results for AE Customers (Full Sample) 
 

Parameter  Estimate  Std. Error  t Value  
HP_PER  -0.17501  0.02350  -7.45  

CPP _PER  -0.16162  0.01433  -11.28  
 
 

Table 9.2: Model 2 Results for AE Customers (Full Sample) 
 

Parameter  Estimate  Std. Error  t Value  
HP_PER  -0.17514  0.02350  -7.45  
CPP_AE  -0.24578  0.01841  -13.35  
CPR_AE  -0.08462  0.01781  -4.75  

 
 

Table 9.3: Model 3 Results for AE Customers (Full Sample) 
 

Parameter  Estimate  Std. Error  t Value  
HP_PER  -0.16161  0.02657  -6.08  
CPP_AE  -0.17026  0.02248  -7.57  
CPR_AE  -0.07833  0.02071  -3.78  

HP*THERM  -0.05260  0.04824  -1.09  
CPP_AE*THERM  -0.19146  0.03269  -5.86  
CPR_AE*THERM  -0.01949  0.03266  -0.60  

Standard Errors computed using heterosceasticity and autorcorrelation consistent covariance 
matrix from Arrellano (1987). 
 
 
 
 
 
 

 
 

  



 37

 
 
 
 
 
 

Table 10.1: Model 1 Results for AE Customers (Summer Sample) 
 

Parameter  Estimate  Std. Error  t Value  
HP_PER  -0.05787  0.02686  -2.15  
CPP_PER  -0.12629  0.01439  -8.78  

 
 

Table 10.2: Model 2 Results for AE Customers (Summer Sample) 
 

Parameter  Estimate  Std. Error  t Value  
HP_PER  -0.05799  0.02686  -2.16  
CPP_AE  -0.22356  0.01841  -12.14  
CPR_AE  -0.03644  0.01788  -2.04  

 
 

Table 10.3: Model 3 Results for AE Customers (Summer Sample) 
 

Parameter  Estimate Std. Error t Value  
HP_PER  -0.05069  0.03054  -1.66  
CPP_AE  -0.13325  0.02240  -5.95  
CPR_AE  -0.01901  0.02073  -0.92  
HP*THERM  -0.02749  0.05417  -0.51  
CPP_AE*THERM  -0.23122  0.03265  -7.08  
CPR_AE*THERM  -0.05452  0.03284  -1.66  

Standard Errors computed using heterosceasticity and autorcorrelation consistent covariance 
matrix from Arrellano (1987). 
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Table 11.1: Model 1 Results for AE Customers (Winter Sample) 
 

Parameter  Estimate  Std. Error  t Value  
HP_PER  -0.32245  0.03670  -8.79  
CPP_PER  -0.04279  0.03048  -1.40  

 
Table 11.2: Model 2 Results for AE Customers (Winter Sample) 

 

Parameter  Estimate  Std. Error  t Value  
HP_PER  -0.32251  0.03670  -8.79  
CPP_AE  -0.21594  0.03957  -5.46  
CPR_AE  0.02163  0.03772  0.57  

 
 

Table 11.3: Model 3 Results for AE Customers (Winter Sample) 
 

Parameter  Estimate Std. Error t Value  
HP_PER  -0.29384  0.04112  -7.15  
CPP_AE  -0.14696  0.04896  -3.00  
CPR_AE  -0.04459  0.04431  -1.01  
HP*THERM  -0.11975  0.07743  -1.55  
CPP_AE*THERM  0.07566  0.07033  1.08  
CPR_AE*THERM  -0.06764  0.06859  -0.99  

Standard Errors computed using heterosceasticity and autorcorrelation consistent covariance 
matrix from Arrellano (1987). 
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Table 12.1: Model 4 Results for RAD Customers (Full Sample) 
 

Parameter  Estimate  Std. Error  t Value  
CPR_PER  -0.13609  0.01768  -7.70  

CPR_PER*THERM -0.04193  0.02039  -2.10  
 
 

Table 12.2: Model 4 Results for RAD Customers (Summer Sample) 
 

Parameter  Estimate  Std. Error  t Value  
CPP_PER  -0.10009  0.01840  -5.44  

CPP_PER*THERM  -0.04727  0.04841  -0.98  
 

Table 12.3: Model 4 Results for RAD Customers (Wiuter Sample) 
 

Parameter  Estimate  Std. Error  t Value  
CPP_PER  -0.13171  0.03451  -3.82  

CPP_PER*THERM  -0.05261  0.08962  -0.59  
Standard Errors computed using heterosceasticity and autorcorrelation consistent covariance 
matrix from Arrellano (1987). 
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Table 13.1: Model 4 Results for RAD-AE Customers (Full Sample) 
 

Parameter  Estimate  Std. Error  t Value  
CPP_PER  -0.1204  0.06173  -1.96  

CPP_PER*THERM  -0.0227  0.01595  -1.36  
 
 

Table 13.2: Model 4 Results for RAD-AE Customers (Summer Sample) 
 

Parameter  Estimate  Std. Error  t Value  
CPP_PER  -0.14308  0.10514  -1.36  

CPP_PER*THERM  -0.05561  0.05523  -1.01  
 
 

Table 13.3: Model 4 Results for RAD-AE Customers (Winter Sample) 
 

Parameter  Estimate  Std. Error  t Value  
CPP_PER  -0.07944  0.04695  -1.69  
CPP_PER*THERM  -0.07661  0.12336  -0.62  

Standard Errors computed using heterosceasticity and autorcorrelation consistent covariance 
matrix from Arrellano (1987). 
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Figure 1:  Distribution of PowerCentsDC Program Participants 
(District and Ward Boundaries in Orange) 

 
 
 

Figure 2:  Interval Meter and Smart Thermostat 
 

                                .  
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Figure 3(a):  Electric Usage Report for CPR Customer 
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Figure 3(b):  Electric Usage Report for CPP Customer 
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Figure 3(c):  Electric Usage Report for HP Customer 
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Figure 4:  Hourly Prices for PowerCentsDC HP Customers 
 
 

 


