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Defending A Policy Regime Against Speculative
Attacks

Abstract

Many policies, such as currency pegs and government’s bailouts, are subject to
speculative attacks, which may result in financial and economic crises. Because the
main cause of these speculative attacks is the government’s limited commitment, the
government needs to resolve the limited commitment problem when defending against
speculative attacks. This paper analyzes a dynamic regime change game, where a policy
maker may obtain the commitment power by building a reputation and a continuum of
speculators may learn the policy maker’s type. I show that if speculators’ learning speed
is slow (speculators individually learn), the model has a unique equilibrium in which
no speculator attacks and the policy maker sustains the status quo forever. This is
because the incentive of building a reputation brings the policy maker the commitment
power. If learning is fast, multiple equilibria with attacks exist. In any equilibrium
with attacks, the first attacking period depends on the entire learning process, the time
interval between two consecutive attacking periods is uniformly bounded, and the weak
policy maker abandons the policy regime almost surely.
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1 Introduction

Speculative attacks on currency pegs have occurred in many countries. The main cause of

such attacks is the central bank’s limited commitment to sustain the currency peg. Despite

various instruments developed to defend against currency attacks (see Drazen (2000)), sus-

taining the currency peg when facing attacks is costly. If the speculative attacks become

sufficiently aggressive, the cost incurred in sustaining the currency peg may outweigh the

benefit, leading the central bank to abandon it and so making the attacks profitable. There-

fore, whether attacks occur depends on whether speculators believe the central bank will

abandon the currency peg.

Speculators’ beliefs that the central bank will abandon the currency peg are affected by

the central bank’s past behaviors: if the currency peg survives past attacks, the central bank

is believed to have strong interests in sustaining the currency peg in the future. Hence, by

defending against speculative attacks, the central bank can build a “reputation”, which may

deter future attacks. Following previous works on the reputation effect, such as Kreps and

Wilson (1982), Milgrom and Roberts (1982), and Fudenburg and Levine (1989), I assume

the central bank has private information about the value it derives from the currency peg.

If this value is sufficiently high, the central bank would like to pay any cost of defending

to sustain the currency peg. Then in case of a low value, by defending against speculative

attacks, the central bank makes speculators believe that it is more likely to have a high value

and thus more likely to sustain the currency peg in the future.

Although the benefit is unknown by all speculators, they may exogenously learn about

it. Specifically, each speculator collects one private signal about the benefit in every period,

and the accumulated signals become infinitely precise in the limit. Therefore, if the benefit

is low, speculative attacks may happen because the central bank is believed not to have

commitment to sustain the currency peg. As the possibility of future attacks increases, the

incentive of the central bank to build a reputation is weakened.

In this paper, I shed light on the issue of defending a policy regime against speculative

attacks by analyzing the interaction between a policy maker’s reputation building and spec-

ulators’ learning in a dynamic regime change game. While the individual learning (which

leads to the common learning in my model) is usually sufficient for attacks in some equilib-

rium (for example, see Angeletos, Hellwig, and Pavan (2007)), I show that when the learning

speed is relatively slow, my model has a unique equilibrium, in which no speculator attacks

and the central bank sustains the status quo forever. The equilibrium uniqueness implies

that the central bank’s lowest equilibrium average discounted payoff is its highest feasible

payoff. Therefore when the learning speed is relatively slow, the central bank effectively

defends the status quo against speculative attacks.

1



Turning to the details of my model, the policy maker decides to sustain the status quo

or abandon it in every period. If she abandons the status quo, she receives a zero flow payoff,

and the game ends. If she sustains the status quo, she obtains a period benefit but incurs a

defending cost, and then the game enters the next period. The period benefit could be either

high or low. It is fixed and is the policy maker’s private information. There is a continuum

of speculators, each exogenously observing one piece of private information in every period.

Each speculator then uses his own private signals to decide whether to attack the status quo

or not. Assume each speculator individually learns the policy maker’s benefit.

When the learning speed is slow, there is no equilibrium with attacks in this framework.

Why does the learning speed in the limit matter for the equilibrium characterization? First,

in an equilibrium with attacks, speculators attack infinitely often. Otherwise, there is a

period such that no speculator attacks ever again if the status quo is in place after that

period. Then a sufficiently patient policy maker sustains the status quo for sure in the last

“attacking” period, which leads to a contradiction that no attack happens in an attacking

period. Second, the time interval between any two consecutive attacking periods is uniformly

bounded by some integer K̄. If speculators do not attack within K̄ periods after the former

attacking period, the policy maker can profitably deviate to sustain the status quo in the

former attacking period. These two facts, together with a bounded (away from 1) probability

that the weak policy maker defends, establish a lower bound of the reputation building speed.

On the other hand, a common belief is a necessary condition for attacks in any particular

period, because of the coordination motives among speculators. So if the learning speed is

slow, a common belief may not be formed within a bounded number of periods, which implies

that infinitely many attacks cannot happen in an equilibrium. Therefore, the strategy profile

in which no speculator attacks and the policy maker sustains the status quo forever is the

unique equilibrium.

The equilibrium uniqueness stems from the commitment power brought by the policy

maker’s incentive to build a reputation. When the learning speed in the limit is slow, the

weak policy maker’s average discounted payoff from sustaining the status quo is positive in

any equilibrium. So sustaining the status quo forever is dominating abandoning the status

quo in some period in any equilibrium. Since the policy maker will sustain the status quo no

matter how aggressive the attacks are, the attacking cost deters any individual speculator

from attacking.

There are fast learning speeds with which infinitely many equilibria with attacks exist.

The weak policy maker will abandon the status quo almost surely in finite periods in these

equilibria. Though the equilibrium regime change outcome is the same as that in some

equilibria in a dynamic regime change game without a defender, the dynamics of attacking

are significantly different. First, the earliest possible first attacking period may not be the
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first time speculators form a common belief. Though speculators have a common belief that

the policy maker is weak in some period, if their learning speed in the subsequent periods is

slow, they cannot form common beliefs fast enough to guarantee subsequent attacks. Then

the weak policy maker has strict incentives to sustain the status quo and build a reputation.

Hence, the earliest possible first attacking period depends on the entire learning process.

Second, as analyzed in the slow learning case, the time interval between two attacking

periods is bounded. Therefore, only if the learning speed is sufficiently fast such that a

common belief be formed within any K̄ periods, an equilibrium with attacks exists. The

existence of an equilibrium with attacks implies the existence of infinitely many equilibria

with attacks. As the policy maker becomes arbitrarily patient, her lowest equilibrium payoff

is close to 0, which means the policy maker cannot effectively defend against speculative

attacks.

My model implies that the pre-established institutions will determine whether a policy

maker can effectively defend the policy regime against speculative attacks. Most impor-

tantly, while there are a lot of researches supporting the transparency of the policy maker in

facilitating her communications with the market, my model suggests that the transparency

increases the difficulties in defending against speculative attacks. In the model, the specu-

lators’ learning process captures the transparency of the policy maker. So the results of the

model imply that if the policy maker is required to release her information eventually, it is

better for her to release it slowly when defending against speculative attacks.

Currency pegs are not the only target of speculators. Speculators have attacked the

price ceiling supported by buffer stock sales in the gold market (Henderson and Salant, 1978;

Salant, 1983), the unallocated cumulative catch quotas in fisheries (Gaudet, Moreaux, and

Salant, 2002), and the unallocated “stock quotas’ on autos and H1B visas (Gaudet and

Salant, 2003). Recently, people have been concerned about the potential speculative attacks

on the European central bank’s bailouts package to help several countries in the eurozone

with their sovereign debt crises. If such attacks occur, the European central bank will find it

hard to maintain the bailouts package, which will increase the sovereign default risk. Then

not only the European financial market is affected, but the US equity market will also be

hurt (Jeanneret, 2011). My model could be directly applied to these issues.

1.1 Previous Works on Currency Attacks

Speculative attacks induced by policies have drawn economists’ attentions. Following the

canonical crisis model developed by Henderson and Salant (1978), economists analyze the

issue of defending against speculative attacks extensively in the foreign exchange market,

where speculators attack the pegged currency. Krugman (1979), Flood and Garber (1984),

and Broner (2008) study the “first generation” models of currency attacks, which treats
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currency attacks as a run on the central bank’s foreign reserves. Besides arguments against

the dependence of currency attacks on reserves (Drazen, 2000), I show in Subsection 6.1 that

under a reasonable borrowing constraint, the issue of defending against speculative attacks

is independent of foreign reserves.

The “second generation” models of currency attacks emphasize the limited commitment

of the central bank to sustain the fixed exchange rate. In these models, speculators attack the

currency because they expect other speculators to attack and the central bank to abandon

the currency peg. Obstfeld (1996) analyzes a complete information model, in which multiple

equilibria exist because of the coordination motive among speculators. Morris and Shin

(1998) apply global games (introduced by Carlsson and van Damme (1993)) to currency

attacks, in which speculators observe the relevant fundamentals with small noises, and show

that there exists a unique equilibrium as the noise diminishes. The central bank in these

two models plays a passive role as in the one-shot game in my model, because in a static

environment, the central bank abandons the fixed exchange rate once the defending cost is

greater than the benefit.

Angeletos, Hellwig, and Pavan (2006), and Angeletos and Pavan (2011) demonstrate

that the signaling effects of preemptive instruments lead to multiple equilibria. In my model,

the reputation may preempt future attacks. In addition, when speculators’ learning speed is

slow, the incentive of building a reputation will preempt all speculative attacks, which leads

to the equilibrium uniqueness in my model. Goldstein, Ozdenoren, and Yuan (2011) uncover

the informational complementarity among speculators, because the central bank is uncertain

about its benefit from the fixed exchange rate and thus learn from the market. In my model,

since it is common knowledge that the lowest period benefit is positive, the policy maker

may still have incentive to build a reputation that her signals favoring a high benefit. All

these works are in a static environment. But defending the policy regime against speculative

attacks is an intrinsically dynamic process, because speculators have the option to attack the

status quo repeatedly. Additionally, a potentially infinite horizon model provides a better

framework to analyze the interaction between the reputation effect and the learning effect.

Economists have focused on dynamic global games recently. Angeletos, Hellwig, and

Pavan (2007) show the equilibrium multiplicity in a dynamic regime change game with

learning. Because the regime change rule is exogenously given, their model is an analogue of

the induced game in my model. I will discuss the difference between results in their model

and those in my induced game in Subsection 6.3. Dasgupta, Steiner, and Stewart (2010)

study a dynamic global game with private learning in which the asynchronous coordination

is allowed. Since the asynchronous coordination requires asynchronous common belief, they

draw very different conclusions from those in my model, where synchronous coordination

among speculators is a necessary condition for the policy maker to abandon the status quo.
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Huang (2011) analyzes the interaction between coordination and social learning in a dynamic

regime change game. In all these studies, the regime change rule is exogenously given, which

is not a realistic assumption in the issue of defending against speculative attacks.

1.2 Other Related Literature

The policy maker’s reputation in my model is not just a particular equilibrium (Barro and

Gordon (1983) and Ljungqvist and Sargent (2002)), but is defined as the public belief of

speculators. Wiseman (2009) studies the reputation bound of an informed player with unin-

formed players exogenously learning in a repeated chain store game. He establishes a lower

bound of the chain store’s equilibrium payoff when the precision of exogenous signals is small,

which is strictly smaller than the stackelberg payoff. Though he dose not show the lower

bound is tight, many equilibria with the informed player’s payoff lower than the stackelberg

payoff can be constructed. My model features coordination motives among speculators and

the stopping property which result in significantly different conclusions.

Because of the coordination motive among speculators, a common belief among spec-

ulators is necessary for attacks. The common belief concept is introduced by Monderer and

Samet (1989) and generalized by Morris and Shin (2007). Since speculators learn to form

common beliefs, this paper is related to the learning literature. Cripps, Ely, Mailath, and

Samuelson (2008) provide general conditions for common learning. All these theoretical

works focus on economies with a finite number of players. Complementing these works,

I define and apply the common belief and the common learning among a continuum of

speculators.

The remainder of the paper is organized as follows. In Section 2, I present the model

of defending against speculative attacks. I then first analyze the equilibrium behaviors of

the policy maker in Section 3. Given candidate equilibrium actions of the policy maker,

speculators play a dynamic regime change game with an exogenous regime change rule.

Section 4 is devoted to the analysis of such “induced” game. In Section 5, I characterize

the equilibrium of the model of defending against speculative attacks and show how the

interaction between the reputation and the learning determines the outcome of the model.

In Section 6, I discuss some related issues and how my model differs from closely related

papers. Section 7 concludes. All omitted proofs are presented in the Appendix.

2 Defending A Regime Against Attacks

Time is discrete and is indexed by t ∈ {1, 2, . . . }. The game starts with the status quo

in place. There is a continuum of long-lived speculators of measure 1, indexed by i and

uniformly distributed over [0, 1]. In any period t, speculator i (i ∈ [0, 1]) chooses between
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attacking the status quo or not. Denote by ait = 1 that speculator i attacks in period t and

by ait = 0 otherwise. The size of attacks in period t is defined as the measure of speculators

attacking. Let At denote the size of attacks in period t, then At =
∫ 1

0
aitdi. In every period,

after observing the size of attacks in that period, a policy maker decides whether to sustain

the status quo or abandon it. The game continues as long as the status quo is in place and

ends once the policy maker abandon the status quo.

2.1 Payoffs

In period t, any speculator’s flow payoff depends on his own action and the regime change

outcome in that period. The flow payoff from not attacking is normalized to be 0, no matter

the status quo is abandoned or not. If speculator i attacks in period t, he receives 1−c if the

status quo is abandoned in period t and −c otherwise. Here, c ∈ (0, 1) is the opportunity

cost of attacking.

The policy maker receives a period benefit from maintaining the status quo, θ. But in

order to sustain the status quo in period t, the policy maker needs to pay a cost At, which

is just the size of attacks in period t.1 So the net period t payoff of the policy maker from

maintaining the status quo is θ−At. If the policy maker abandons the status quo in period

t, her period t payoff is 0.

Assume all agents in this model share a common discount factor δ ∈ (0, 1). Then the

average discounted payoff of a speculator i is:

vi =


(1− δ)

[
T−1∑
t=1

δt−1(−c)ait + δT−1(1− c)aiT
]
, if the regime changes in period T ;

(1− δ)
∞∑
t=1

δt−1ait(−c), if the regime never changes,

and the average discounted payoff of the policy maker is:

u =


(1− δ)

T−1∑
t=1

δt−1(θ − At), if the regime changes in period T ;

(1− δ)
∞∑
t=1

δt−1(θ − At), if the regime never changes.

2.2 Information

The policy maker’s period benefit from maintaining the status quo, θ, is drawn from the

set Θ ≡ {L,H} at the beginning of the game, where 0 < L < 1 < H. All agents share a

common prior belief about θ = L, denoted by µ1 = Pr(θ = L). Once picked, θ is fixed. The

policy maker knows the picked θ as her private information. No speculator knows θ.

1Generalizing the defending cost to be a function of the size of attacks C(At) with 0 ≤ C(At) ≤ C(1) < H
would not change results in this paper.
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In any period t, before making his decision, speculator i observes a private signal

zit = θ+ξit about θ. Assume ξit ∼ N (0, 1/ηt) is independent of θ, independent and identically

distributed across i, and serially uncorrelated. That is, speculators observe conditionally

independent signals in every period. Let zti denote speculator i’s private signals up to period

t. Then in period t, all speculators simultaneously make decisions after observing their own

private signals up to period t. The policy maker, observing the size of attacks At, then

chooses to maintain the status quo or abandon it. Neither individual nor aggregate actions

are observed by speculators; hence the only public information at the beginning of period t

is that the status quo is still in place.

2.3 Equilibrium

The policy maker decides whether to maintain the status quo in period t based on past

and current sizes of attacks and her type. Hence the policy maker’s strategy is a mapping

from her type and the attacking history to a real number in [0, 1]. So s2(θ, {Aτ}tτ=1) is the

probability that the type θ policy maker maintains the status quo in period t, given the

attacking history {Aτ}tτ=1.

The private history of a speculator i consists of his own private signals and past actions.

Denote a typical history that any speculator observes before he makes the decision in period

t by ht ∈ Rt × {0, 1}t−1 (h1 ∈ R is just a speculator’s private signal in the first period). Let

H = ∪∞t=1h
t be the set of all relevant histories. Then any speculator i’s strategy is defined as

si : H → [0, 1], that is, si(h
t) is the probability that speculator i attacks in period t, given

his private history ht.

The solution concept of this game is Perfect Bayesian equilibrium (PBE). Some special

features of this game simplify the definition of a PBE. So it is helpful to first analyze these

features to get a simplified definition of a PBE for this game. First, because there is a

continuum of speculators, any individual speculator is so “small” that his action cannot

affect the current and future sizes of attacks. Hence, given the policy maker’s strategy, any

individual speculator’s action does not affect the time when the regime changes. As a result,

a strategy of speculator i is part of a PBE, if and only if it prescribes an action after any

history hti to maximize his period t flow payoff. That is, in a PBE, any speculator behaves

“myopically”.

Second, define speculator i’s private belief about L in period t to be the belief formed

after the history hti. Besides the private history hti, speculator i also makes inference from

the fact that the status quo is in place at the beginning of period t. In particular, since there

is a continuum of speculators, fix a strategy profile, conditional on θ, the size of attacks in

any period t is a deterministic number, At(θ). Then based on the policy maker’s strategy,

speculators update their beliefs. Since speculators share a common prior, in a PBE, their
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updated beliefs just based on the public history must be same. Call this belief the public

belief, and denote the period t public belief about θ = L by µt. Then in a PBE, any speculator

i forms the private belief in two steps. (i) From the fact that the status quo is in place at

the beginning of period t, speculator i forms the public belief about θ = L. (ii) Speculator

i then employ Bayes’ rule to form his private belief about θ = L based on the public belief

µt and his private history hti. Denote this private belief about θ = L by ρµt(hti). Because

speculators behave myopically in a PBE, their period t equilibrium actions depend only on

the public belief about L in period t and their own private history up to period t.

Third, the policy maker is sequentially rational in a PBE. That is, after any attacking

history {Aτ}tτ=1, the policy maker’s equilibrium action has to maximizes her continuation

average discounted payoff. But given a public belief µt, the past attacks {Aτ}t−1
τ=1 do not affect

future plays. Hence, the policy maker’s equilibrium continuation strategy in any period t

only depends on θ (her type), µt (the public belief), and At (the size of attacks in period t).

Finally in a PBE, given the associated public belief µt, no regime change in period t is

always on the equilibrium path unless the policy maker chooses to abandon the status quo

in period t for all θ. But H > 1 and largest possible cost incurred in sustaining the status

quo is 1 (because the total measure of speculators is 1), so always maintaining the status

quo is the unique dominant strategy of the policy maker with θ = H. This implies that

abandoning the status quo for all θ in period t is not a part of a PBE. As a result, in a PBE

no speculator has information sets off the equilibrium path.

Definition 1 A strategy profile s = (si)i∈[0,1]∪{2} and a public belief system {µt}t constitute

a Perfect Bayesian equilibrium if

1. given (si)i∈[0,1] and {µt}t, s2(θ) prescribes a strategy after any attacking history with as-

sociated (µt, At) to maximize the type θ policy maker’s continuation average discounted

payoff, ∀θ ∈ Θ;

2. Given s2 and other speculators’ strategies, in any period t with associated µt, si(h
t
i)

solves the following maximization problem for any hti:

max
a∈[0,1]

{[
(1− s2(L, µt, At(L)))ρµt(hti) + (1− s2(H,µt, At(H)))(1− ρµt(hti))− c

]
a
}

;

3. Given s, {µt}t is calculated by Bayes’ rule on the path of play.

3 The Policy Maker’s Reputation

Because always maintaining the status quo is the unique dominant strategy for the policy

maker when θ = H, the model is like a reputation model in which θ = H is the commitment
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type. Therefore, we say that the policy maker is of a “strong” type if θ = H and is of

a “weak” type if θ = L. In an equilibrium, the strong policy maker always defends the

status quo against any speculative attacks. Then how about the weak policy maker? In any

equilibrium, if the size of attacks is smaller than L in any period t, the weak policy maker

would like to maintain the status quo. Because by sustaining the status quo, the weak

policy maker receives a positive flow payoff in period t (since L > At(L)) and non-negative

continuation payoffs (since she can always abandon the status quo in period t+1), sustaining

the status quo in period t with At(L) < L dominates abandoning it.

The interesting case is when At(L) ≥ L. Since the cost incurred in sustaining the status

quo outweighs the benefit from the status quo, it is optimal for a myopic weak policy maker

to abandon the status quo. But the policy maker would take into account her future payoffs

when making the current decision. The following lemma shows that in any equilibrium, if

At(L) ≥ L on the equilibrium path, the weak policy maker will randomize, provided that

she is sufficiently patient.

Lemma 1 Fix any δ ∈ (1 − L, 1). In any equilibrium, the weak policy maker sustains the

status quo with probability qt ∈ (0, 1− c) in period t after At(L) ≥ L on the equilibrium path.

The intuition about the randomization of the weak policy maker when At(L) ≥ L in

any equilibrium (provided that δ is sufficiently large) follows the argument in the reputation

literature (Fudenberg and Levine, 1989). On one hand, in an equilibrium, if the probability

that the weak policy maker maintains the status quo is high, the expected payoff of any

speculator from attacking would be less than the attacking cost. Therefore, the size of

attacks is 0 (smaller than L). On the other hand, if the weak policy maker abandons the

status quo for sure when At(L) ≥ L, by deviating to maintain the status quo, she can quickly

signal herself as a strong policy maker, so that she can deter all future attacks. When the

policy maker is patient enough (δ > 1− L), this deviation is profitable.

When At(L) ≥ L, Lemma 1 not only describes the weak policy maker’s behavior on

the equilibrium path, but also helps to pin down the continuation payoff of the weak policy

maker in period t. Because abandoning the status quo brings the weak policy maker 0 average

discounted payoff, the fact that the weak policy maker randomizes on the equilibrium path

when At(L) ≥ L implies her equilibrium continuation payoff in period t is 0. Then fix the

continuation strategy profile, after any A′t > At(L), the sequential rationality requires the

weak policy maker to abandon the status quo in period t, because she will receive a negative

average discounted payoff by sustaining the status quo. Similarly, for all A′t < At(L), the

weak policy maker will sustain the status quo for sure.2 In another case of At(L) < L on the

2The size of attacks A′t 6= At cannot be reached by any individual speculator’s unilateral deviation, but
the weak policy maker needs to play optimally after A′t, given the continuation strategy profile. Since the
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equilibrium path, the weak policy maker sustains the status quo for sure in the equilibrium.

Her action after any off-equilibrium size of attacks A′t is also pinned down by the continuation

strategy profile. In this case, the policy maker’s decision rule in period t is in one of the

following two forms: (i) if sustaining the status quo brings a positive average discounted

payoff when the size of attacks is 1, the policy maker will sustain the status quo for sure for

any A′t; (ii) if there is Ât such that sustaining the status quo after Ât brings a zero average

discounted payoff, the weak policy maker sustains the status quo for sure for all A′t < Ât,

sustains the status quo with probability qt ∈ [0, 1] when A′t = Ât, and abandons the status

quo for sure for all A′t > Ât.

To sum up, fix the continuation strategy profile, the weak policy maker’s equilibrium

strategy is in the following form: assume the weak policy maker’s average discounted payoff

from sustaining the status quo after Ât(L) is 0, then

s2(L, µt, A
′
t) =


1, if A′t < Ât(L);

qt, if A′t = Ât(L);

0, if A′t > Ât(L).

In addition, if Ât is the equilibrium size of attacks in period t, qt ∈ (0, 1− c) after A′t = Ât.

Otherwise, qt ∈ [0, 1].

Lemma 1 also implies that if the weak policy maker sustains the status quo in period

t when facing attacks with size At(L) ≥ L, the public belief updates according to the Bayes’

rule:

µt+1 =
µtqt

µtqt + (1− µt)
.

Since qt < 1− c, µt+1 < µt. Define the policy maker’s reputation as the public belief about

θ = H, then the weak policy maker can build her reputation by defending the status quo

against attacks. The higher the policy maker’s reputation is, the less likely speculators attack

in the future. As a result, the weak policy maker has an incentive to mimic the strong policy

maker, which provides the weak policy maker some commitment power.

4 Common Learning among Speculators

In this section, I analyze speculators’ equilibrium behaviors. Suppose a strategy profile of

speculators is part of an equilibrium, and At is the equilibrium size of attacks in period t.

Then the corresponding equilibrium action of the weak policy maker is

s2(L, µt, At) =

{
1, if At < L;

qt ∈ (0, 1− c), if At ≥ L.

aggregate actions of speculators are not observable to speculators, they will play as if the size of attacks
in period t is At. Therefore, the continuation payoff from sustaining the status quo is strictly positive if
A′t < At and is strictly negative if A′t > At.

10



That is, given a relevant candidate equilibrium strategy of the policy maker, speculators

know that if the size of attacks is less than the benefit θ, the regime does not change;

if the size of attacks is greater than or equal to the benefit (this is true only if θ = L),

the regime changes with probability qt. Because if At = 0 in period t, qt could be any

number in [0, 1] for a possible size of attacks greater than or equal to L, let’s first consider

a general sequence {qt}t, with qt ∈ (0, 1] for all t. Then the regime change rule induced by

the candidate equilibrium action of the policy maker is as follows (denote by τ̂ the time the

regime changes):

Pr(τ̂ = t|τ̂ ≥ t) =

{
0, if At < θ;

1− qt, if At ≥ θ.

Take this regime change rule as exogenously given, the game played by speculators is called

the “induced” game.

Consider the strategy profile in which no speculator attacks, no matter what the private

history is. Because At = 0 for all t on the path of play, according to the regime change rule,

the status quo will be in place forever. Hence, it is the best for any speculator not to

attack. Therefore, the strategy profile without attacks is an equilibrium (call it no attack

equilibrium). This pure coordination failure equilibrium directly follows from the continuum

speculators assumption. Then, is there any equilibrium with attacks? If so, when do attacks

happen? How about the regime change outcome in such an equilibrium?

4.1 Conditions of Attacking

Any speculator i’s equilibrium choice in any period t depends on both his private signals and

his past actions. This dependence on private histories makes equilibrium strategies rather

complicated. However, the following lemma 2 shows that in any equilibrium, speculators’

strategies are in a simple form. Let β1 = η1, and recursively define βt+1 = βt + ηt+1. Then

define a new sequence {xit}t by letting xi1 = zi1 and xit+1 = βt

βt+1
xit + ηt+1

βt+1
zit+1. From the

standard Gaussian updating formula, xit ∼ N (θ, 1/βt) is the sufficient statistic of zti about

θ.

Lemma 2 In any equilibrium, speculators employ symmetric cutoff rules in every period.

In particular, any equilibrium is characterized by a sequence {x∗t}∞t with x∗t ∈ R ∪ {−∞},
and any speculator attacks in period t if and only if xit ≤ x∗t .

So in any equilibrium, any speculator i’s decision only depends on the sufficient statistic of

his private signals. This is so both because private actions are not informative about θ and

because the sufficient statistic leads to the same private belief as private signals do. Hence,

in any equilibrium with the associated public belief system {µt}t, ρµt(hti) = ρµt(xit) (∀i and

∀t). In the no attack equilibrium, x∗t = −∞ for all t. Therefore, the question whether there
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is an equilibrium with attacks can be formulated as the problem whether there is a sequence

{x∗t}t such that x∗t ∈ R for some t and x∗t is speculators’ equilibrium threshold point in period

t for all t.

Define x̃t as the sufficient statistic in period t such that

Pr(xt ≤ x̃t|θ = L) = Φ(
√
βt(x̃t − L)) = L,

where Φ(·) is the cdf of the standard normal distribution. So conditional on θ = L, in period

t, the measure of speculators who have the sufficient statistic lower than or equal to x̃t is

exactly L.

Lemma 3 If the induced game has an equilibrium in which the associated public belief in

period t is µt and conditional on τ̂ ≥ t, a positive measure of speculators attack in period t,

then

ρµt(x̃t) ≥
c

1− qt
. (1)

The intuition of Lemma 3 is illustrated in the following figure. Let

g(x, µt) = χ(Pr(xt ≤ x|θ = L) ≥ L)(1− qt)ρµt(x)− c,

where χ(·) is the indicator function. So g(x, µt) is a speculator’s expected payoff from

attacking in period t, when his own private sufficient statistic is x, all other speculators are

using the cutoff rule with the threshold point x, and the public belief in period t is µt. Then

in an equilibrium with µt and At > 0, g(x, µt) = 0 must have a solution. In the figure, if

x < x̃t, χ(Pr(xt ≤ x|θ = L) ≥ L) = 0 which in turn implies that g(x, µt) = −c < 0. For

x ≥ x̃t, χ(Pr(xt ≤ x|θ = L) ≥ L)(1 − qt)ρµt(x) − c = (1 − qt)ρµt(x) − c. Because ρµt(x) is

continuous and strictly decreasing in x, and lim
x→∞

ρµt(x) = 0, the necessary condition for the

existence of a solution to g(x, µt) = 0 is max
x≥x̃t

ρµt(x) = ρµt(x̃t) ≥ c
1−qt .

Figure 1: Function g(x, µt).

Figure 1 also suggests a sufficient condition for the existence of an equilibrium in which

a positive measure of speculators attack in period t.
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Lemma 4 If ρµ1(x̃t) ≥ c
1−qt , the induced game has an equilibrium in which a positive mea-

sure of speculators attack in period t.

I prove this lemma in the appendix by construction. The key point of the construction is

that if no speculator chooses to attack in any period τ , the regime dose not change for sure,

no matter θ = L or θ = H. Therefore, the public belief does not change. So if speculators

do not attack until period t, the public belief µt = µ1. Then the condition of this lemma

guarantees the possibility of attacks in period t.

4.2 Common Beliefs and Common Learning

Given the exogenous regime change rule, the game played by speculators features coordina-

tion motives in every period. However, because the regime does not change when θ = H,

speculators are uncertain about the coordination result. As a result, if a speculator attacks

in some period t, he must believe θ = L with probability at least c
1−qt . But because of the

coordination motive, this speculator needs to form a belief about other speculators’ beliefs,

form a belief about other speculators’ beliefs about other speculators’ beliefs, and so on.

This infinite hierarchy of beliefs is called common belief (Monderer and Samet, 1989). In

this subsection, I follow Morris and Shin (2007) to define a version of common belief in the

model and apply this concept to the analysis of speculators’ behaviors.

Consider the conditions for speculator i to attack. Because speculator i behaves “my-

opically”, he attacks if and only if he believes that the regime changes with probability at

least c. If θ = H, the regime does not change. And conditional on θ = L, the regime changes

only if the size of attacks is greater than or equal to L. Conditional on the joint event

θ = L and At(L) ≥ L, the regime changes with probability 1 − qt. Therefore, if speculator

i attacks, his private belief about the joint event θ = L and At(L) ≥ L is at least c
1−qt .

Because At(L) ≥ L only if at least L measure speculators c
1−qt -believe the joint event, at

least L measure speculators c
1−qt -believe that at least L measure speculators c

1−qt -believe the

joint event, and so on. Therefore, speculator i attacks only if he c
1−qt -believes the entire list

of following events:3

1. θ = L;

2. when θ = L, at least L measure speculators c
1−qt -believe θ = L;

3. when θ = L, at least L measure speculators c
1−qt -believe statement (2);

4. when θ = L, at least L measure speculators c
1−qt -believe statement (3);

3As in Monderer and Samet (1989), a player p-believes an event if his posterior belief about the event is
at least p.
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5. . . .

If when θ = L, there are at least L measure speculators c
1−qt -believe the above entire list of

events, there is a common (L, c
1−qt )-belief about L among speculators.

Proposition 1 shows that if attacks happen in period t in an equilibrium, then there is

a common (L, c
1−qt )-belief among speculators.

Proposition 1 If the induced game has an equilibrium in which the associated public belief

in period t is µt and conditional on τ̂ ≥ t, a positive measure of speculators attack in period

t, then there is a common (L, c
1−qt )-belief about θ = L among speculators in period t.

Proof. Because there is a continuum of speculators, a common (L, c
1−qt )-belief about θ = L

is equivalent to that there are at least L measure speculators c
1−qt -believing θ = L. To see

this, consider any speculator i’s private belief in period t about the whole list of events:

Pr(θ = L, statement 2, statement 3, . . . |xit)

= Pr(statement 3, . . . |statement 2, θ = L, xit) Pr(statement 2|θ = L, xit) Pr(θ = L|xit).

Obviously, Pr(statement 3, . . . |statement 2, θ = L, xit) = 1. Since sufficient statistics are

conditionally independent, if there are at least L measure speculators c
1−qt -believing θ =

L, Pr(statement 2|θ = L, xit) = Pr(statement 2|θ = L) = 1. So if there are L measure

speculators c
1−qt -believing θ = L, there is a common (L, c

1−qt )-belief about θ = L. Conversely,

if there are less than L measure of speculators c
1−qt -believing θ = L, any speculator i’s private

belief in period t about the whole list of events above is 0. So there is not a common (L, c
1−qt )-

belief about L.

Then, from Lemma 3, I only need to show that the inequality (1) is equivalent to that

there are at least L measure speculators c
1−qt -believing θ = L. First, suppose ρµt(x̃t) ≥ c

1−q .

Because ρµt(xt) is strictly decreasing in xt, any speculator i with private sufficient statistic

xit ≤ x̃t has a posterior belief greater than or equal to c
1−qt . Then the definition of x̃t implies

that there are at least L measure speculators c
1−qt -believing θ = L.

Now, suppose ρµt(x̃t) <
c

1−qt . Since ρµt(xt) is continuous and strictly decreasing in xt,

∃ ε > 0 such that ρµt(x̃t − ε) < c
1−qt . In addition, conditional on θ = L, only speculators

with private sufficient statistic less than x̃t− ε have private beliefs about θ = L at least c
1−qt .

Then since Pr(xt < x̃t − ε|θ = L) < Pr(xt < x̃t|θ = L) = L, a common (L, c
1−q )-belief about

θ = L cannot be formed.

Since a common (L, c
1−qt )-belief about θ = L is necessary for attacks in period t in the

equilibrium, it is natural to ask how θ = L is commonly (L, c
1−qt )-believed. The answer to

this question is “by learning”. Each speculator collects one private signal in every period,

hence his sufficient statistic is increasingly accurate. Given p ∈ (0, 1) and µ1 ∈ (0, 1), define
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Bp
it(θ) = {xit : Prµ1(θ|xit) ≥ p} for any period t and any speculator i. Then Bp

it(θ) is the

event that speculator i p-believes θ. Note the public belief which is used by any speculator

i to calculate his private beliefs in all periods is µ1. That is, to form the private belief

Prµ1(θ|xit) about θ, speculator i ignores the information revealed from the public history

τ̂ ≥ t.

Definition 2 Speculator i learns θ ∈ Θ individually, if for each p ∈ (0, 1), there is T such

that for all t > T , Pr(Bp
it(θ)|θ) ≥ p. Speculator i learns Θ if he learns each θ ∈ Θ.

The definition of individual learning is the same as that in Cripps, Ely, Mailath and Samuel-

son (2008). The following Lemma 5 provides a sufficient and necessary condition for any

speculator to learn Θ.

Lemma 5 Any speculator learns Θ individually, if and only if

lim
t→∞

βt = +∞.

But individual learning about Θ may not be sufficient for attacks in an equilibrium,

because the coordination motive requires common (L, c
1−q )-belief about θ = L. Intuitively,

the notion of common learning in an economy consisting of a continuum of agents of measure

1 should be that after some period T , there is a common (p, p)-belief among speculators in

every period for any p ∈ (0, 1). However, this notion is too strong to be necessary for attacks

in an equilibrium, because as shown in Lemma 4 that attacks happens in period t in an

equilibrium if θ = L is common (L, c
1−q )-belief in period t. So the common learning concept

which is defined as follows is weaker than that in Cripps, Ely, Mailath and Samuelson (2008).

Definition 3 Speculators (L, c
1−qt )-commonly learns θ = L in period t, if fix the public belief

at µ1, there is a common (L, c
1−qt )-belief among speculators in period t.

If speculators cannot individually learn Θ, that is, the sequence {βt}t is bounded above

by β̄ < +∞, fix qt = q sufficiently close to 1− c, speculators cannot (L, c
1−q )-commonly learn

L in any period t. Then no attack equilibrium will be the unique equilibrium. So for the

possibility of attacks in some equilibrium, I assume that speculators individually learn Θ,

that is, lim
t→∞

βt = +∞. Lemma 6 below, together with Lemma 4, shows that if there is a

subsequence of {qt}t bounded above by some q̃ < 1 − c, and speculators individually learn

Θ, then there is an equilibrium in which attacks happen in some period T .

Lemma 6 If there is q̃ < 1− c such that {qt}t has a subsequence bounded above by q̃, then

individual learning implies common learning in some period T .
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4.3 Equilibrium of The Induced Game

The no attack equilibrium always exists in the induced game. According to the exogenous

regime change rule, the regime does not change in the no attack equilibrium. Then what are

conditions for the existence of an equilibrium with attacks? Suppose an equilibrium with

attacks exists, what are the dynamics of attacks? Will the regime change when θ = L?

Because of the flexibility of the sequence {qt}t, it is hard to get interesting conclusions

in the induced game. Therefore, I focus on the case that the sequence {qt}t has a subsequence

bounded above by q̃ < 1− c.

Proposition 2 Fix any µ1 ∈ (0, 1), any sequence {qt}t with a subsequence bounded above

by q̃ < 1− c, and any strictly increasing and unbounded sequence {βt}t. With the exogenous

regime change rule, multiple equilibria exist in the induced game:

1. no attack equilibrium exists;

2. there exists an equilibrium with attacks in which there is T such that no attacks happen

after period T ;

3. there exists an equilibrium with attacks in which there is t > T such that attacks happen

in period t, for any T .

The proof of Proposition 2 is illustrated in Figure 2 below. Suppose qt = q̃ < 1 − c,
and β1 is sufficiently large so that x̃1 ≤ H+L

2
. The x-axis is the public belief about L, and

the y-axis is the variance of the private sufficient statistic. This “public belief – variance”

space describes the condition for attacks in any period. When µ ≥ c
1−q̃ , attacks are possible

for all β ≥ β1. When µ < c
1−q̃ , there is β̃ > β1 such that attacks are possible if and only

if β ≥ β̃. β̃ is a strictly increasing function of µ. Therefore, in all graphs in Figure 2, the

“public belief – variance” space is divided into two parts by the function β̃(µ): in the lower

right part, attacks are possible because there is a common (L, c
1−q̃ )-belief about L; and in

the upper left part, there is no common (L, c
1−q̃ )-belief about L, so no attack can happen.

Fix an equilibrium, arrows indicate directions to which points move.

The left graph of Figure 2 shows the no attack equilibrium. Since speculators do

not attack, the public belief does not change. And as they accumulate private signals, the

variance of the sufficient statistic goes to 0. Therefore, all arrows are going down in this

graph. The middle graph of Figure 2 illustrates an equilibrium, in which speculators attack

once and if the policy maker sustains the status quo when facing attacks, no speculator

attacks ever again. Note attacks happen when the point (µ, 1/β) is in the lower right part.

And if attacks happen at some point (µ, 1/β), the arrows point to the southwest, because

the policy maker’s reputation increases (µ decreases) and speculators keep learning. The
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Figure 2: Multiple equilibria in the induced game

right graph of Figure 2 illustrates an equilibrium in which speculators attack infinitely often.

The key point here is the individual learning. If the initial point is in the upper left part,

speculators cannot attack, so that the public belief does not change. Then individual learning

leads the path to cross the line β̃(µ), so attacks become possible.

In the no attack equilibrium and in any equilibrium with attacks in at most finitely

many periods, speculators will learn the true state eventually. Hence, if θ = L, they (L, c
1−q̃ )-

commonly learn θ = L infinitely often. So no attack after some period is just due to the pure

coordination failure. In these equilibria, even if θ = L, with positive probability the regime

does not change. Therefore, it is more interesting to analyze equilibria in which attacks

happen infinitely often.

I first summarize three straightforward properties of an equilibrium in which attacks

happen infinitely often. First, the exogenous regime change rule implies that conditional

on θ = L, if attacks happen in period t, At(L) ≥ L. Otherwise, no speculator will choose

to attack, since the regime changes with probability 0. Second, because attacks happen

infinitely often, if θ = L, the regime changes with probability 1. Third, even if θ = H,

attacks happen infinitely often. This is so because fix the public belief, speculators (L, c
1−q̃ )-

commonly learn θ = L infinitely often even though the true state is H. In the following, I

investigate two more equilibrium properties, which are significantly different from those of

the model with the regime change outcomes endogenously determined by the policy maker.

Let T1(s) be the first period in which attacks happen in the equilibrium s. Then

min
s
T1(s) is pinned down by the first period in which there is a common (L, c

1−q )-belief

about θ = L among speculators.

Corollary 1 Suppose lim
t→∞

βt = +∞, then

min
s
T1(s) = min

t
{t : ρµ1(x̃t) ≥

c

1− qt
}.
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Note for a fixed sequence {βt}t, Corollary 1 implies that min
s
T1(s) does not depend on how

speculators learn after the period in which a common (L, c
1−q )-belief about θ = L forms in

the first time.

Fix an equilibrium s. Define Q(s) ⊂ N such that in s, At > 0 if and only if t ∈ Q(s).

That is, in the equilibrium s, Q(s) is the set of periods in which attacks happen.

Corollary 2 Given any integer K ∈ N, there is an equilibrium s′ such that |T ′ − T | > K

for any T, T ′ ∈ Q(s′).

Suppose T and T ′ are two consecutive periods in which attacks happen. Then Corollary 2

implies that the number of periods between T and T ′ may be unbounded in an equilibrium.

Call the periods between T and T ′ the common learning phase, since speculators only collect

private signals and the public belief does not change. This is actually the phase of tranquility

in Angeletos, Hellwig, and Pavan (2007). Note for a fixed equilibrium, in some periods in

the common learning phase, there is a common (L, c
1−q )-belief about θ = L, but speculators

choose not to attack. An implication of this corollary is that the sequence of sizes of attacks

is not monotone in some equilibrium s′. For any three consecutive periods T , T ′, and T ′′ in

Q(s′), if T ′−T is sufficiently large and T ′′−T ′ is relative small, it is possible that AT ′ > AT

and AT ′ > AT ′′ .

5 Reputation Versus Common Learning

Let’s go back to the model where the regime change outcome is endogenously chosen by the

policy maker. It is straightforward that the strategy profile in which the policy maker always

maintains the status quo and no speculator attacks is an equilibrium. Call this equilibrium

the no attack equilibrium. In the “no attack equilibrium”, the type θ policy maker’s average

discounted payoff is θ, her largest feasible payoff (or the “stackelberg payoff” in the reputation

literature). Then are there equilibria with attacks? If so, what is the lowest equilibrium

payoff (the reputation bound) of the policy maker?

The analysis in section 3 shows that in any equilibrium with attacks, the policy maker’s

strategy must be in the following form: assume the weak policy maker’s average discounted

payoff from sustaining the status quo after Ât(L) is 0. Then

s2(L, µt, A
′
t) =


1, if A′t < Ât(L);

qt, if A′t = Ât(L);

0, if A′t > Ât(L).

In addition, if Ât is the equilibrium size of attacks in period t, qt ∈ (0, 1− c) after A′t = Ât.

Otherwise, qt ∈ [0, 1]. Lemma 2 shows that in any equilibrium given the regime change rule
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induced by the policy maker’s equilibrium actions, speculators employ cutoff rule in every

period and make decisions only based on the public belief and the private sufficient statistics.

Furthermore, a slightly modified version of Proposition 1 shows that if attacks happen in

period t in some equilibrium, then given the public belief µt in period t, there must be a

common (L, c)-belief about θ = L in period t. The requirement of a common (L, c)-belief

about θ = L is due to the freedom of choosing qt ∈ (0, 1− c). It seems that simply putting

these two parts together, we can characterize all equilibria with attacks. Therefore, the

equilibrium characterization should be very similar to Proposition 2, when speculators are

assumed to be able to learn Θ individually. Is this generally true?

Let’s first consider a strategy profile specifying (1) attacks happen, and (2) if the policy

maker sustains the status quo in some period, no speculator attacks ever again.

Lemma 7 Fix any δ ∈ (1 − L, 1). Consider a strategy profile with attacks. Suppose there

is T such that speculators refrain from attacking even again after period T , if the policy

maker sustains the status quo at the end of period T . Then the strategy profile cannot be an

equilibrium.

Proof. Suppose there is an equilibrium s in which attacks happen and conditional on τ̂ > T ,

no speculator attacks after period T . Without losing generalization, let T = maxQ(s), then

T is the last period in which attacks happen. Because At > 0, At(L) ≥ L. Therefore,

the probability that the weak policy maker maintains the status quo in period T is qT <

1− c. Therefore, because abandoning the status quo brings the weak policy maker 0 average

discounted payoff in period T , the weak policy maker’s average discounted payoff in period

T is 0 on the equilibrium path.

Now consider the deviation of the policy maker in period T to qT = 1. That is, the

weak policy maker maintains the status quo for sure. By this deviation, τ̂ > T . Since the

deviation is not observable, no speculator chooses not to attack after period T . Then the

weak policy maker’s average discounted payoff in period T from this deviation is:

(1− δ)[(L− At) + L

∞∑
τ=1

δτ ]

> (1− δ)(L− 1) + δL

> 0.

Hence, this deviation is profitable.

Lemma 7 implies that in any equilibrium, once attacks happen, speculators cannot

terminate attacking. This is different from the second part of Proposition 2. In Proposition

2, the regime change rule is exogenous, so speculators do not attack after some period in
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some equilibrium. However, the regime change rule is endogenously chosen by the policy

maker in the model. If speculators do not attack after some period T , the weak policy maker,

who is sufficiently patient, will maintain the status quo for sure when facing attacks.

So whether there is an equilibrium with attacks is equivalent to whether there is an

equilibrium in which speculators attack infinitely often. In any period t, if At(L) ≥ L and

the policy maker sustains the status quo,

µt+1 =
µtqt

µtqt + (1− µt)
.

Since in any equilibrium with attacks, qt ∈ (0, 1 − c), so µt+1 < µt. That is, if attacks

happen in period t, and the status quo is in place at the end of period t, speculators believe

that the policy maker is more likely to be strong. So by defending against attacks, the

weak policy maker builds her reputation. On the other hand, however, speculators get more

accurate information about the policy maker’s type over time. This weakens the policy

maker’s incentive to build her reputation. An implicit assumption for this argument is

that the common learning phase can be arbitrarily long. However, the following Lemma 8

shows that the number of periods in any common learning phase is uniformly bounded. Fix

δ ∈ (1− L, 1). Let K̄ be the smallest integer such that

(L− 1) + L
K̄∑
τ=1

δτ ≥ 0.4

Lemma 8 Fix any δ ∈ (1−L, 1). Suppose there is an equilibrium s in which attacks happen

in period t if and only if t ∈ Q(s). Then for any two consecutive periods Tn and Tn+1 in

Q(s), Tn+1 − Tn ≤ K̄.

Proof. Because attacks happen in period Tn and period Tn+1 in the equilibrium s, the

weak policy maker must randomize in these two periods. Further more, from Lemma 1,

qTn ∈ (0, 1 − c) and qTn+1 ∈ (0, 1 − c). Therefore, because abandoning the status quo

always brings the policy maker 0 average discounted payoff, the weak policy maker’s average

discounted payoff is 0 in both period Tn and period Tn+1.

Now let’s calculate the weak policy maker’s average discounted payoff in period Tn

from maintaining the status quo:

(1− δ)[(L− ATn(L)) + L

Tn+1−Tn−1∑
τ=1

δτ ] + δTn+1−Tn0 = 0.

4To see the existence of K̄, note that L− 1 < 0 and that (L− 1) + δL
1−δ > 0. So K̄ > 0.
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Therefore,

0 = (L− ATn(L)) + L

Tn+1−Tn−1∑
τ=1

δτ

> (L− 1) + L

Tn+1−Tn−1∑
τ=1

δτ .

So
Tn+1−Tn−1∑

τ=1

δτ <
K̄∑
τ=1

δτ which implies that Tn+1 − Tn − 1 < K̄. Therefore, Tn+1 − Tn ≤ K̄.

Since this is true for all n, the claim is true.

The fact that in any equilibrium common learning phases cannot be arbitrarily long

is due to the weak policy maker’s indifference between maintaining and abandoning the

status quo when facing attacks. When speculators are in a common learning phase, while

they acquire more accurate information about the policy maker’s type, the policy maker

is accumulating flow payoffs. Therefore, in order to make the policy maker indifferent at

the beginning of a common learning phase, speculators have to attack again before the

policy maker collects too many flow payoffs. This is different from Corollary 2, in which the

regime change rule is exogenously given, so speculators do not need to make a policy maker

randomize when she is facing attacks.

In any equilibrium with speculators attacking infinitely often, failing attacks decrease

speculators’ public belief about θ = L. So consider the public history, the formed common

(L, c)-belief about θ = L may be ruined. This happens especially when the incremental

accuracy of private information cannot offset the discrete drop of the public belief due to

the failing attacks. Therefore, speculators have to learn to form a common (L, c)-belief

about θ = L again within a fixed number of periods. This suggests that the equilibrium

characterization is determined by the comparison between the speed in which the public

belief decreases and the speed in which speculators commonly learn, that is, the comparison

between the policy maker’s reputation building and speculators’ common learning.

5.1 Slow Common Learning

The comparison between the reputation and the common learning is determined by three

factors. First, attacks provide the policy maker chances to build her reputation. In addition,

the more frequently attacks happen, the quicker the reputation is built. Once attacks begin,

speculators have to attack again within K̄ period. So the reputation building speed is

bounded below by (1− c)
t−T1

K̄ , because the probability of maintaining the status quo in any

“attacking” period is bounded above by (1− c). Second, the accuracy of speculators’ private

sufficient statistics are strictly increasing. In a common learning phase, the policy maker
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cannot build the reputation, but speculators knows more and more about her type. The

learning speed is captured by the increasing rate of β, that is, the accuracy of new private

signals. Third, βT1 is the “stock” accuracy of speculators’ private information, while the

increments of β’s are the “flow” accuracy. Though speculators can freely choose the “stock”

accuracy before attacks happen (by coordinating not to attack until some T1), the “flow”

accuracy is given exogenously.

Figure 3: Reputation v.s. Common Learning.

Figure 3 shows the possibility that if speculators’ learning speed is relatively slow, a

strategy profile specifying attacks infinitely often cannot be an equilibrium. No matter what

the “stock” accuracy speculators choose (the initial point in the graph), it is possible that the

path will cross the line β̃(µ). Then the slow learning speed implies that within K̄ periods,

the path cannot cross the line β̃(µ) from above. So the policy maker will deviate to sustain

the status quo for sure.

Proposition 3 below formalizes this argument and provides a sufficient condition for

the uniqueness of the equilibrium. In particular, the condition (2) below captures the above

three factors: the numerator is the lower bound of the policy maker’s reputation building

speed, the denominator is speculators’ common learning speed, and it is independent of the

first time in which attacks happen.

Proposition 3 Fix any δ ∈ (1− L, 1). Suppose

lim
t→∞

(1− c) t
K̄

φ[Φ−1(L)− (H − L)
√
βt]

= 0. (2)
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There is no equilibrium in which attacks happen. In this case, the type θ policy maker’s

lowest equilibrium average discounted payoff is θ.

Proof. Lemma 7 implies that if attacks happen in an equilibrium s, Q(s) is unbounded.

Let T1 ∈ Q(s) be the first period in which attacks happen. Recall that Pr(xt ≤ x̃t|θ = L) =

Φ[
√
βt(x̃t − L)] = L. So

x̃t =
Φ−1(L)√

βt
+ L.

Define µ̃t such that when the public belief is µ̃t, the speculator who has the private sufficient

statistic x̃t forms the posterior belief ρµ̃t(x̃t) = c. Then

ρµ̃t(x̃t)

=
µ̃tφ[
√
βt(x̃t − L)]

µ̃tφ[
√
βt(x̃t − L)] + (1− µ̃t)φ[

√
βt(x̃t −H)]

=
µ̃tφ[Φ−1(L)]

µ̃tφ[Φ−1(L)] + (1− µ̃t)φ[Φ−1(L)− (H − L)
√
βt]

= c.

Therefore, by rearranging terms, we have

κ̃t ≡
µ̃t

1− µ̃t
=

c

(1− c)φ[Φ−1(L)]
φ[Φ−1(L)− (H − L)

√
βt].

Now define κt ≡ µt

1−µt
, then µt ≥ µ̃t if and only if κt ≥ κ̃t. For t ≤ T1, κt = κ1. But by

the beginning of any period t > T1, Lemma 8 implies that attacks have happened at least Q

times. Here Q is the smallest integer which is larger than or equal to t−T1

K̄
. Therefore,

κt =
µt

1− µt

=

(
µ1

1− µ1

) ∏
τ∈Q(s)∩{τ :τ<t}

qτ

<

(
µ1

1− µ1

)
(1− c)Q

≤
(

µ1

1− µ1

)
(1− c)

t−T1
K̄ .

Suppose condition (2) holds. Then for any ε > 0, there exists T such that for all t > T ,

(1− c) t
K̄

φ[Φ−1(L)− (H − L)
√
βt]

< ε.

Take

ε <
c(1− c)

T1
K̄
−1(

µ1

1−µ1

)
φ[Φ−1(L)]

,
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then for all t > T ,

κt
κ̃t

<


(

µ1

1−µ1

)
φ[Φ−1(L)]

c(1− c)
T1
K̄
−1

 (1− c) t
K̄

φ[Φ−1(L)− (H − L)
√
βt]

<


(

µ1

1−µ1

)
φ[Φ−1(L)]

c(1− c)
T1
K̄
−1

 ε
< 1.

This inequality holds because the term in the square bracket is independent of t. Though

T1 depends on the specific equilibrium candidate (so I have to take different ε for differ-

ent equilibrium candidate), the fact that we can find T is independent of the equilibrium

candidate.

Therefore, for the strategy profile s, κt < κ̃t is equivalent to µt < µ̃t. So for all

t > T , ρµt(x̃t) < c which implies that there is no common (L, c)-belief in period t. If s is an

equilibrium in which attacks happen infinitely often, then Proposition 1 says that for any

T , there is t > T such that there is a common (L, c)-belief about θ = L among speculators.

These lead to the contradiction.

Three remarks about Proposition 3 are worth emphasizing. First, the equilibrium

uniqueness is because of the commitment power brought by the policy maker’s incentive to

build the reputation. Because the strong policy maker behaves as a commitment type who

always maintains the status quo, the weak policy maker wants to mimic so that she builds

the reputation to be the strong type. This reputation incentive provides the weak policy

maker a commitment power. Since if the status quo is in place, any speculator attacking will

get negative payoff, no speculator want to attack. Second, for any T , how speculators learn

in the first T periods does not affect the equilibrium characterization. Because speculators

will learn slowly after period T , the weak policy maker will want to build her reputation

in the tail. The reputation incentive in the tail results in no attacks after some period T .

Because once attacks happen speculators cannot terminate attacking, speculators will never

start attacking. Third, the policy maker does not need to be very patient. As long as

δ > 1 − L, the weak policy maker has the reputation incentive (that is, it is valuable for

her to build the reputation to deter future attacks). Because K̄ is non increasing in δ, the

reputation building speed is nondecreasing in δ.5

There are two intuitive comparative static analyses. First, when the attacking cost c

becomes large, the numerator converges to 0 faster. So equation (2) is easier to hold. That

5Because K̄ is defined to be an integer, there is ε > 0 such that for all δ ∈ (1 − ε, 1), K̄ reaches its
minimum, so the reputation building speed reaches its maximum.
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is, the higher the attacking cost, the less likely the status quo is attacked. Second, if the

benefit L increases, the policy maker needs fewer periods to collect flow payoffs to make her

average discounted payoff 0. That is, K̄ is an increasing function of L. Hence, the larger

the flow payoff is, the less likely speculators attack. Note, an increase in H does not have

any effect on the equilibrium characterization, because no matter how large H is, the strong

policy maker’s equilibrium behavior does not change.

Compare Proposition 3 with Proposition 2, it is easy to see the role of the policy

maker’s reputation. In Proposition 2, there is a sequence {qt}t such that for all possible

prior beliefs and all strictly increasing and unbounded sequences of {β}t, there are infinitely

many equilibria with attacks. This conclusion is under the assumption that the regime

change rule is exogenously given. But in Proposition 3, the policy maker decides whether

to sustain or abandon the status quo, so she may deviate to sustain it, which leads to the

difference between Proposition 3 and Proposition 2.

5.2 Fast Common Learning

When the common learning is fast, there may exist equilibria with attacks. A sequence of

{βt}t for an equilibrium with attacks can be identified by the method of “reverse engineering”.

Suppose we want an equilibrium in which attacks happen in period t if and only if t ∈ Q ⊂ N.

Then a strictly increasing sequence of {βt}t can be found by the following algorithm:

1. Arrange elements in Q to be {T1, T2, . . . } such that Tn+1 > Tn;

2. Find AT1(L) = L
T2−T1−1∑
τ=1

δτ ;

3. Choose βT1 such that

µT1φ[Φ−1(AT1(L))]

µT1φ[Φ−1(AT1(L))] + (1− µT1)φ[Φ−1(AT1(L))− (H − L)
√
βT1 ]

> c;

4. Given βT1 , calculate x∗T1
and qT1 such that

Φ[
√
βT1(x∗T1

− L)] = AT1(L)

and

(1− qT1)
µT1φ[Φ−1(AT1(L))]

µT1φ[Φ−1(AT1(L))] + (1− µT1)φ[Φ−1(AT1(L))− (H − L)
√
βT1 ]

= c;

5. From Bayes’ rule, calculate

µT2 =
µT1qT1

µT1qT1 + (1− µT1)
;
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6. In any Tn ∈ Q with µTn , determine ATn(L). Then similar to the case in T1, calculate

βTn , x∗Tn
, qTn and µTn+1 . Note, βTn+1 > βTn for all Tn, Tn+1 ∈ Q;

7. Given Tn, Tn+1 ∈ Q, in any t such that Tn+1 > t > Tn, pick any βt ∈ (βTn , βTn+1) and

βt+1 > βt if t+ 1 < Tn+1. Then in any t /∈ Q, set qt = 1 and x∗t = −∞.

Proposition 4 Fix any δ ∈ (1−L, 1). The sequence {βt}t constructed in the above algorithm

exists and leads to an equilibrium in which speculators attack in period t ∈ Q if and only if

Tn+1 − Tn ≤ K̄ for all Tn, Tn+1 ∈ Q.

Suppose given the sequence of {βt}t, there is an equilibrium with attacks. Then,

it is straightforward to show that there are infinitely many equilibria with attacks. So it is

interesting to compare the properties of these equilibria with those of equilibria in the induced

game. First, given any equilibrium with attacks, speculators never terminate attacking (see

Lemma 7). This is due to the policy maker’s incentive to maintain the status quo for future

payoffs. But with exogenous regime change rule, there are equilibria in which attacks only

happen in finitely many periods.

Second, recall that T1(s) is the first period in which attacks happen in the equilibrium

s. Then the first possible “attacking” period min
s
T1(s) depends on the entire sequence {βt}t.

The reason why there may be no attack in period T by which there is a common (L, c)-

belief among speculators is due to the policy maker’s incentive to build her reputation.

For example, speculators (L, c)-commonly learn θ = L by period T , but after period T ,

the accuracy of private sufficient statistics increases very slowly for a long time and then

increases fast. Because the “stock” of the accuracy of the private sufficient statistic in period

T is bounded, if the slow increasing phase is very long, a common (L, c)-belief about θ = L

cannot be form at the end of such phase. Then the policy maker has a strict incentive to

maintain the status quo in period T no matter how large the attack is. So no speculator

chooses to attack in period T in any equilibrium. This is different from the conclusion in

Corollary 1, where the weak status quo is abandoned exogenously with positive probability

if the size of attacks is larger than or equal to L.

6 Discussion

6.1 Borrowing Constraints

Traditional models, such as the first generation models of currency attacks, explain specu-

lative attacks as a run on the capacity of the policy maker to sustain the policy regime. I

show in this subsection that imposing a reasonable borrowing constraint to the policy maker

will not change the result of the model. Consider the currency attacks example. Suppose
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the central bank holds a credit line in an outside borrower, so that it can borrow at most 1

unit of the foreign reserve. Therefore, the central bank can borrow again if and only if its

outstanding balance has been fully repaid.

Let Tn be the nth attacking period in an equilibrium. Because the borrowing constraint

is not binding at the beginning of period T1, as the same argument in Lemma 1, the policy

maker sustains the status quo with probability qT1 ∈ (0, 1 − c) if AT1(L) ≥ L in the equi-

librium. So the policy maker’s average discounted payoff from sustaining the status quo in

period T1 is 0. If the policy maker cannot repay her outstanding balance by period T2, then

the discounted benefits she collects until period T2 cannot cover the defending cost in period

T1. Since she has to abandon the status quo in period T2, her average discounted payoff

in period T2 is 0. This implies that the policy maker’s average discounted payoff in period

T1 is negative, which leads to the contradiction. Therefore, the borrowing constraint is not

binding at the beginning of period T2. Then by induction, it can be shown that imposing

the borrowing constraint does not change the results of this paper.

6.2 The Myopic Policy Maker

When δ = 0, the policy maker is myopic. So the equilibrium of the model prescribes an

equilibrium in the one-shot game in every period with associated public belief µt. Since the

policy maker does not value future payoffs, in period t, if At(L) > L, the policy maker will

abandon the status quo for sure. When At(L) = L, the policy maker may randomize. Given

a candidate equilibrium strategy of the policy maker, the induced game in period t could be

solved by Figure 1. Suppose when At(L) ≥ L, the policy maker abandons the status quo for

sure. If and only if ρµt(x̃t) ≥ c, the equation g(x, µt) = 0 has a solution x∗t ∈ R. Therefore,

there exists an equilibrium with attacks in the one-shot game in period t if and only if there

is a common (L, c)-belief about θ = L. In such an equilibrium, the policy maker sustains the

status quo if and only if At(L) < L, and speculator i attacks if and only if xit ≤ x∗t . Given

this equilibrium in period t, if the status quo is in place at the beginning of period t + 1,

µt+1 = 0.

Given the policy maker’s equilibrium strategy, the induced game among speculators in

the one-shot game in any period differs from the model in Morris and Shin (1998). Because

the policy maker sustains the status quo for sure if At(L) < L, attacking is not a dominant

strategy for any private signal. Hence, this induced game is not a global game, and it has

either a unique equilibrium in which no speculator attacks or multiple equilibria.
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6.3 Continuum State Space

Angeletos, Hellwig, and Pavan (2007) (AHP) analyze a dynamic regime change game, in

which θ is drawn from the real line, and in period t the regime change if and only if At(θ) ≥ θ.

Since the second period, their model is very similar to the induced model in my paper,

provided that qt = q̃ < 1 − c for all t. However, the outcome of the induced model is

different from the model in AHP. In the induced game, given any prior belief µ1 ∈ (0, 1),

individual learning results in infinitely many equilibria. In AHP, denote the infimum of the

state surviving the attacks in the first period by θ. If θ is sufficiently close to 1 (due to the

extremely aggressive attacks in the first period), there exists a unique equilibrium, in which

no attack can happen ever again.

This difference relies on the different common belief requirements. In the induced

game, as long as there is a common (L, c
1−q̃ )-belief in any period t, there is an equilibrium

in which some speculators attack in period t. Here, L and q̃ is fixed. So the learning effects

will overturn any public belief. But in AHP, given a θ′ < 1, attacks happen only if there is

a common (θ′, c
Pr(θ≤θ′|θ>θ))-belief about θ ≤ θ′. But this common belief cannot be formed as

θ is sufficiently close to 1.

6.4 Exogenous Public Information

The reputation bound of an informed player when uninformed short-lived players are learn-

ing about the informed player’s type has been studied by Wiseman (2009) in a repeated

chain store game. Though Wiseman (2009) does not show the tightness of the established

reputation bound, one can construct an equilibrium with the chain store’s payoff strictly

lower than the stackelberg payoff, no matter how slow the learning speed is. This is different

from Proposition 3. And two assumptions of my model lead to this difference. First, specu-

lators’ private information is idiosyncratic. Because of the coordination feature, speculators

put more weight on the public information when making decisions. The public information

in my model is the policy maker’s reputation, hence, the policy maker has stronger incentive

to build the reputation. Second, the game ends once the policy maker abandons the status

quo. Because the continuation payoff from abandoning the status quo is the policy maker’s

minmax value, the policy maker also has stronger incentive to sustain the status quo.

Now suppose besides private signals, in every period t speculators observe an exogenous

public signal yt = θ + ϑt, where ϑ ∼ N (0, 1/αt). Assume
∞∑
t=1

αt = +∞. Then conditional

on θ = L, in the limit, the sufficient statistic of the public signal is extremely precise. So

the public signals will overturn the public belief formed from the fact that the status quo

is in place. That is, the reputation built is easily ruined by the public signals. Therefore, a

common (L, c)-belief can be formed frequently. Hence, an equilibrium with attacks exist.
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7 Conclusion

I analyze a model where the policy maker is building a reputation by taking advantage of

her private information and speculators are learning the policy maker’s private information.

The interaction between the reputation and the learning determines the equilibrium char-

acterization and the outcome of defending against speculative attacks. In particular, when

speculators learning speed is slow in the limit, the reputation effect will dominate the learn-

ing effect. As a result, the unique equilibrium of the model is the no attack equilibrium,

in which no speculator attacks and the policy maker sustains the policy regime forever.

Therefore, when the learning speed is slow in the limit, the policy maker effectively defends

speculative attacks, because the incentive of building a reputation brings the policy maker

the commitment power. In case of a fast learning speed, equilibria with attacks may exist.

In any equilibrium with attacks, the first attacking period depends on the whole learning

process, the time interval between two consecutive attacking periods is bounded, and the

weak policy maker abandons the status quo almost surely.

From a theoretical perspective, I show that the reputation bound in a stopping game

equals to the stackelberg payoff, when the uninformed players’ learning speed is slow in

the limit. This reputation bound does not require the informed player to be extremely

patient. Besides, I complement the common belief and common learning literature, by

defining and applying the common belief and the common learning in an economy consisting

of a continuum of players.

From an applied perspective, I demonstrate that the transparency of a government

has significant effects on the outcome of defending the policy against speculative attacks.

The more transparent the government is, the faster the speculators learn the government’s

private information. Consequently, the policy established by the government is more likely

to be attacked.
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A Omitted Proofs

This section includes proofs of Propositions and Lemmas, which are stated in the text but

not proved.

Proof of Lemma 1:

Suppose first, in the equilibrium, At(L) ≥ L implies qt ≥ 1 − c. Then any speculator

i’s payoff from attacking in period t is

(1− qt)ρµt(hti)− c < c− c = 0.

The strict inequality is due to the common support assumption of private signals with respect

to θ. Therefore, any speculator who is attacking would like to deviate to not attack. This

implies At = 0, which leads to a contradiction.

Now suppose qt = 0, that is, the weak policy maker abandons the status quo for sure

when the defending cost is larger than or equal to the flow payoff. Consider a deviation

to maintain the status quo for sure in all periods τ ≥ t. Because the strong policy maker

defends against any attack, no regime change in period t implies µt+1 = 0. That is, since this

deviation is not observable by speculators, the public belief about θ = H shifts to 1. Then no

speculator wants to attack in any period τ > t. Therefore, the weak policy maker’s average

discounted payoff in period t is (note if the public belief about θ = H is 1, no speculator

wants to attack ever again):

(1− δ)[(L− At(L)) +
∞∑
τ=1

δτL]

> (1− δ)[ L

1− δ
− 1]

= L− (1− δ)

> 0.

So this deviation is profitable, which implies that qt = 0 when At(L) ≥ L is not a part of an

equilibrium.

Q.E.D.

Proof of Lemma 2:

Let’s first show that in any equilibrium, speculators employ symmetric strategies. In

any period t with the public belief µt. Given all other speculators’ strategies, conditional

on θ, the total measure of attack in period t is a deterministic number. Therefore, the

probability of the regime change is χ(At(L) ≥ L)(1 − q) which is exogenously given to all
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speculators. If χ(At(L) ≥ L)(1− q) ≤ c, no matter what the private history is, a speculator

will choose not to attack. If χ(At(L) ≥ L)(1 − q) > c, any speculator i chooses to attack

if and only if ρµt(hti) ≥ c
1−q . Since two speculators with the same private history will form

the same posterior belief, they will make the same choice. As a result, in any equilibrium,

speculators employ symmetric strategies.

Now, in an equilibrium, because any individual actions cannot publicly observed, a

speculator’s past actions are not informative about θ. Hence, a speculator forms his posterior

belief only based on his private signals. By the standard Gaussian updating formula, for any

speculator i, in any period t given µt, z
t
i and xit lead to the same posterior belief. Therefore,

ρµt(hti) = ρµt(xit). Because

ρµ1(xi1) =
µ1φ(
√
β1(xi1 − L))

µ1φ(
√
β1(xi1 − L)) + (1− µ1)φ(

√
β1(xi1 −H))

,

the monotone likelihood ratio property implies that ρµt(xit) is strictly decreasing in xit. As

a result, if χ(At(L) ≥ L)(1− q) ≤ c which is equivalent to χ(At(L) < L) because 1− q > c,

all speculators will choose not to attack. That is, any speculators attack if and only if

xit ≤ x∗t = −∞. If χ(At(L) ≥ L)(1 − q) > c, there is an x∗t ∈ R such that any speculator i

attacks if and only xit ≤ x∗t .

Q.E.D.

Proof of Lemma 3:

Suppose there is an equilibrium in which the public belief in period t is µt and condi-

tional on τ̂ ≥ t, At > 0. According to the exogenous regime change rule, conditional on θ, if

At(θ) < θ, Pr(τ̂ = t|τ̂ ≥ t) = 0. Hence, any speculator i’s problem in period t is

max
a∈[0,1]

[χ(At(L) ≥ L)(1− qt)ρµt(xit)− c]a.

If At(L) < L, speculator i will choose not to attack, no matter what his private sufficient

statistic is. Therefore, if At(L) < L, At(L) = 0. Equivalently, At(L) > 0 implies At(L) ≥ L.

From Lemma 2, any speculator i attacks in period t if and only if xit ≤ x∗t . Hence, the

speculator with private sufficient statistic x∗t will receive 0 expected payoff from attacking.

That is, ρµt(x∗t ) = c
1−qt . So for At(L) ≥ L, Pr(xt ≤ x∗t |θ = L) ≥ L = Pr(xt ≤ x̃t|θ = L). So

x∗t ≥ x̃t. Because ρµt(xt) is a strictly decreasing function of xt, ρ
µt(x̃t) ≥ c

1−qt .

Q.E.D.

Proof of Lemma 4:

I prove this lemma by construction. Let’s consider the strategy profile in which no

speculator chooses to attack until period t. Because Aτ (L) = Aτ (H) = 0 for all τ < t, τ̂ ≥ t
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no matter θ = H or θ = L. Then µt = µ1. So ρµt(x̃t) = ρµ1(x̃t) ≥ c
1−qt . Since ρµt(x) is

continuous in x and lim
x→∞

ρµt(x) = 0, ∃x∗t ∈ [x̃t,∞) such that ρµt(x∗t ) = c
1−qt . Then in period

t, any speculator i attacks if and only if xit ≤ x̃t. If attacks in period t fail, no speculator

attacks ever again.

Let’s verify the constructed strategy profile is an equilibrium. In all periods τ 6= t, since

Aτ = 0, Pr(τ̂ = t|τ̂ ≥ t) = 0. Therefore, refraining from attacking is the best response of

any speculator. In period t, consider any speculator i. Since other speculators use the cutoff

rule with the threshold point x∗t ∈ [x̃t,∞), Pr(xt ≤ x∗t |θ = L) ≥ Pr(xt ≤ x̃t|θ = L) = L.

So χ(At(L) ≥ L) = 1. In addition, ρµt(xit) ≥ ρµt(x∗t ) = c
1−q if and only if xit ≤ x∗t . Hence,

speculator i attacks if and only if xit ≤ x∗t . Therefore, the constructed strategy profile is an

equilibrium.

Q.E.D.

Proof of Lemma 5:

Without losing any generalization, I prove that θ = L is individually learned if and

only if lim
t→∞

βt = +∞. First suppose lim
t→∞

βt = β̄ < +∞. Note ρµ1(xit) ≥ p is equivalent to

xit ≤
ln[(1− p)µ1]− ln[(1− µ1)p]

βt(H − L)
+
H + L

2
.

Fix any p sufficiently close to 1,

Pr(Bp
it(L)|L)

= Pr({xit : ρµ1(xit) ≥ p}|L)

= Pr

({
xit :

ln[(1− p)µ1]− ln[(1− µ1)p]

βt(H − L)
+
H + L

2

}
|L
)

= Φ

[
ln[(1− p)µ1]− ln[(1− µ1)p]√

βt(H − L)
+
√
βt
H − L

2

]
< Φ

[
ln[(1− p)µ1]− ln[(1− µ1)p]√

β̄(H − L)
+

√
β̄
H − L

2

]
< p.

That is, for p sufficiently close to 1, Pr(Bp
it(L)|L) < p for all t. As a result, no speculator

can individually learn θ = L. Put differently, if speculators can individually learn θ = L,

lim
t→∞

βt = +∞.

32



Now suppose lim
t→∞

βt = +∞. Fix any p ∈ (0, 1),

Pr(Bp
it(L)|L)

= Pr({xit : ρµ1(xit) ≥ p}|L)

= Pr

({
xit :

ln[(1− p)µ1]− ln[(1− µ1)p]

βt(H − L)
+
H + L

2

}
|L
)

= Φ

[
ln[(1− p)µ1]− ln[(1− µ1)p]√

βt(H − L)
+
√
βt
H − L

2

]
.

Because lim
t→∞

[
ln[(1−p)µ1]−ln[(1−µ1)p]√

βt(H−L)
+
√
βt

H−L
2

]
= +∞, there is T such that

Φ

[
ln[(1− p)µ1]− ln[(1− µ1)p]√

βT (H − L)
+
√
βT
H − L

2

]
> p.

. Since Φ
[

ln[(1−p)µ1]−ln[(1−µ1)p]√
βt(H−L)

+
√
βt

H−L
2

]
is increasing in βt, for all t > T ,

Φ

[
ln[(1− p)µ1]− ln[(1− µ1)p]√

βt(H − L)
+
√
βt
H − L

2

]
> Φ

[
ln[(1− p)µ1]− ln[(1− µ1)p]√

βT (H − L)
+
√
βT
H − L

2

]
> p.

So if lim
t→∞

βt = +∞, speculators individually learn θ = L.

Q.E.D.

Proof of Lemma 6:

In Proposition 1, I show that a common (L, c
1−qT

)-belief among speculators in period

T is equivalent to the inequality (1 − qT )ρµT (x̃T ) ≥ c. Therefore, fix public belief µt = µ1

for all t, then

(1− qt)ρµ1(x̃t)

= (1− qt)
µ1φ[Φ−1(L)]

µ1φ[Φ−1(L)] + (1− µ1)φ[Φ−1(L)− (H − L)
√
βt]
.

Because speculators individually learn Θ, lim
t→∞

βt = +∞, which implies that lim
t→∞

ρµ1(x̃t) = 1.

Since there is a subsequence of {qt}t which is bounded above by q̃ < 1 − c, there is T such

that (1− qT )ρµ1(x̃T ) ≥ c.

Q.E.D.

Proof of Proposition 2:
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The first part is trivial and directly follows from the continuum speculators assumption

and the exogenous regime change rule.

For the second part, Lemma 6 shows that individual learning is sufficient for common

learning in some period t. Therefore, there is an equilibrium with attacks. But after some

period T , speculators just choose the pure “not attack” strategy, which leads to no attack

after period T .

For the third part, because individual learning implies common learning in some period

for any prior belief µ1 ∈ (0, 1), there is an equilibrium in which attacks happen. If attacks

fail in some period T , µT < µ1, but µT ∈ (0, 1). Therefore, speculators (L, c)-commonly

learn θ = L by some period t > T . Therefore, attacks can happen again in or after period t.

Q.E.D.

Proof of Proposition 4:

Suppose a sequence of {βt}t is constructed according to the algorithm and leads to

an equilibrium consisting of sequences {µt}t, {x∗t}, and {qt}t. Then Lemma 8 implies the

necessity of Tn+1 − Tn ≤ K̄ for all Tn, Tn+1 ∈ Q.

Now suppose that Tn+1 − Tn ≤ K̄ for all Tn, Tn+1 ∈ Q, we want to show that the

constructed sequence of {βt}t exists, and that the associated sequences {µt}t, {x∗t}, and

{qt}t constitute an equilibrium. Since T2 − T1 ≤ K̄ and δ ∈ (1 − L, 1), AT1 is well defined.

Because µT1 = µ1 ∈ (0, 1), and

lim
β→∞

µT1φ[Φ−1(AT1(L))]

µT1φ[Φ−1(AT1(L))] + (1− µT1)φ[Φ−1(AT1(L))− (H − L)
√
β]

= 1 > c,

βT1 is well defined. Then x∗T1
∈ R and qT1 ∈ (0, 1 − c) are uniquely determined. Therefore,

µT2 can be calculated from Bayes’ rule. The rest of the proof follows from the induction.

Q.E.D.
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