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Abstract

An empirical model of �nancial crises is speci�ed and estimated using annual
data for the period 1883 to 2008. Contagion is explicitly modelled by allowing
additional linkages across countries when the number of crises reaches a threshold
level. As the data are characterised as counts of the number of countries experi-
encing a crisis within a year, a threshold integer autoregressive moving average
model (TINARMA) is speci�ed. An EMM estimator which uses Monte Carlo
simulations is proposed as estimation by maximum likelihood is infeasible. The
empirical results show strong evidence of contagion during currency and banking
crises, with additional evidence of a potential 10 year cycle.
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1 Introduction

The most common way of modelling the transmission of �nancial crises and contagion

is to measure the change in the covariability of asset returns across countries during

a crisis period (see Dungey, Fry, González-Hermosillo and Martin (2005, 2010) for

recent reviews of models of contagion). Perhaps a more intuitive way of identifying the

existence of a �nancial crisis is simply to view a �nancial crisis as having a domino-

e¤ect on countries by counting the number of countries over time that move into crisis

mode. This is the approach adopted in this paper where time series data on the number

of countries exhibiting a �nancial crisis are used to model contagion. Both currency

and banking crises are analysed using annual data covering the period 1883 to 2008.

As the data are characterised by low order counts of countries in crisis, with con-

tagion occurring as an increase in correlation during the crisis period, an alternative

class of models is speci�ed to capture explicitly these characteristics. This is especially

important where the model is used to generate coherent forecasts of the number of

countries exhibiting a �nancial crisis (McCabe and Martin (2005), Jung and Tremayne

(2006a)). Formally this involves specifying an integer autoregressive moving average

model (INARMA) where the usual operator of the ARMA class of models is replaced by

the binomial thinning operator to preserve the integer status of the dependent variable

(Al-Osh and Alzaid (1988), McKenzie (1988)). To capture the presence of contagion

during �nancial crises a threshold version of the INARMA model (TINARMA) is spec-

i�ed with the threshold determined by a prespeci�ed number of countries in a �nancial

crisis (see also Brännäs and Hellstrom (2001), Brännäs and Hall (2001), and Brännäs

and Shahiduzzaman Quoreshi (2010)).

Whilst maximum likelihood estimators are available for the INAR(1) model (Al-Osh

and Alzaid (1987)) as well as for higher-order INAR models (Bu, Hadri and McCabe

(2008)), the inclusion of a moving average component makes maximum likelihood es-

timation infeasible.1 The approach adopted here is to follow Martin, Tremayne and

Jung (2012) and use a simulation based estimator. Under certain conditions this esti-

mator is consistent and achieves the same level of e¢ ciency as the maximum likelihood

estimator. The performance of this estimator is investigated for a range of INARMA

1Other methods that have been proposed to estimate moving average parameters in integer models
include generalized methods of moments and conditional least squares (Al-Osh and Alzaid (1988);
McKenzie (1988); Brännäs and Hall (2001) and Brännäs and Shahiduzzaman Quoreshi (2010)).
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models in Martin, Tremayne and Jung (2012).

The empirical results show convincing evidence of contagion during the currency

and banking crises that have occurred over the period 1883 to 2008. An important

feature of the empirical results is that there is strong evidence of a potential 10 year

cycle in the data. The rest of the paper proceeds as follows. Section 2 provides an

initial discussion of the data used to model �nancial crises. The TINARMA model is

speci�ed in Section 3. Section 4 provides details of the EMM estimator and the methods

used to construct standard errors, which are applied in Section 5 to analysing the data

discussed in Section 2. Concluding comments and suggestions for future research are

presented in Section 6

2 Financial Crises: A First Look at the Data

The crisis data analysed consist of the total number, out of a group of 21 countries,

that experienced some �nancial crisis in a particular year, over the period 1883 to

2008, a sample of size T = 126. The countries are: Argentina; Australia; Belgium;

Brazil; Canada; Chile; Denmark; Finland; France; Germany; Greece; Italy; Japan;

Netherlands; Norway; Portugal; Spain; Sweden; Switzerland; the United Kingdom; and

the United States. Two types of �nancial crises are investigated, consisting of banking

and currency crises. See Dungey, Jacobs and Lestano (2012) as well as Appendix A

for a description of how the data are constructed.

The data are presented in Figure 1 which provides a time series plot of the total

number of countries with banking crises on the one hand and currency crises on the

other per annum over the period, as well as a combination of the two. Financial crises

were most widespread in 1931 where 14 of the 21 countries in the sample experienced

banking and currency crises. The next biggest crisis occurred in 1971 where 12 of

the 21 countries experienced a crisis in their currency. Table 1 gives a break down of

�nancial crises per country. Argentina experienced the most number of currency crises

(20), followed by Brazil (14) and the UK (11). The US has had the most number of

banking crises (10), followed by Argentina and Brazil (9 each) and Italy (8). Argentina

has experienced simultaneous currency and banking crises on 4 occasions, followed by

Brazil and Finland (3 each). A perusal of the panels of Figure 1 makes it evident

that there are periods of zero counts in both series, for example from 1910 to 1920 for
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Figure 1: Number of countries experiencing a currency or a banking crisis, per annum,
1883 to 2008.
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Table 1:

Number of currency and banking crises per country, 1883 to 2008.

Country Currency Banking Combined

Argentina 20 9 4
Australia 7 2 0
Belgium 5 5 0
Brazil 14 9 3
Canada 10 1 0
Chile 10 5 1
Denmark 8 6 2
Finland 7 5 3
France 9 6 0
Germany 5 3 1
Greece 7 1 1
Italy 8 8 1
Japan 7 4 0
Netherlands 6 3 1
Norway 4 5 1
Portugal 6 5 2
Spain 8 5 1
Sweden 5 5 2
Switzerland 4 2 0
UK 11 2 0
US 7 10 2
Total 168 101 25

currency crises and from 1940 to 1960 for banking crises. This may suggest the need

for more than a single regime to be used for modelling these data, a feature seen to be

borne out below.

Table 2 provides some descriptive statistics of the data on currency and banking

crises. For the currency, banking and combined number of crises, the data exhibit

some over-dispersion with the sample variance approximately three times as large as

the sample mean for the currency and banking crises, and approximately 5 times as

large for the combined number of crises. Also given in the table are the total number of

crises over the sample period. Of the 126 years analysed from 1883 to 2008, in nearly

55% of these years there is at least one country experiencing a currency crisis, and just

over 34% experiencing a banking crisis.
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Table 2:

Descriptive statistics on the number of countries experiencing either a currency or
banking crisis, or both, 1883 to 2008.

Statistic Currency Banking Combined

Mean 1.333 0.802 2.135
Variance 4.560 2.912 11.078

Number of years where a crisis occurs
0 57 83 47
1 30 18 23
2 19 11 16
3 10 9 15
4 3 2 10
5 1 1 4
6 2 0 3
7 1 1 1
8 1 0 3
9 0 0 0
10 0 0 2

11 0 0 0
12 1 0 1
13 0 0 0
14 1 1 0
15 0 0 0
16 0 0 0
17 0 0 0
18 0 0 0
19 0 0 0
20 0 0 0

21 0 0 0
22 0 0 0
23 0 0 0
24 0 0 0
25 0 0 0
26 0 0 0
27 0 0 0
28 0 0 1
29 0 0 0
30 0 0 0

126 126 126
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Table 3:

Estimated ACF and PACF of currency or banking crises data.

Lag Currency Banking Combined
(1 year) ACF PACF ACF PACF ACF PACF
1 0.235 0.235 0.306 0.306 0.310 0.310
2 0.027 -0.030 0.121 0.031 0.085 -0.012
3 0.037 0.040 0.083 0.042 0.040 0.019
4 0.026 0.009 0.076 0.040 0.012 -0.005
5 0.088 0.085 -0.022 -0.068 0.013 0.011

6 0.015 -0.028 0.081 0.108 0.002 -0.006
7 -0.038 -0.036 0.075 0.026 -0.035 -0.038
8 -0.010 0.003 0.187 0.166 0.074 0.106
9 0.015 0.016 0.043 -0.073 -0.005 -0.063
10 0.065 0.057 0.184 0.182 0.105 0.136

11 -0.018 -0.049 0.032 -0.098 -0.044 -0.137
12 -0.064 -0.045 -0.076 -0.105 -0.135 -0.095
13 -0.003 0.021 -0.048 0.015 -0.082 -0.012
14 0.001 -0.006 0.040 0.016 -0.030 0.007
15 -0.005 -0.012 -0.124 -0.135 -0.085 -0.073

16 -0.010 0.000 0.001 0.041 -0.048 -0.012
17 -0.010 0.007 -0.062 -0.087 -0.089 -0.050
18 0.109 0.116 -0.019 -0.022 0.046 0.075
19 -0.065 -0.136 -0.120 -0.078 -0.107 -0.155
20 -0.154 -0.119 -0.095 -0.055 -0.190 -0.135

As a preliminary analysis of the dynamic structure of the data, Table 3 contains the

sample autocorrelation function (ACF) and the sample partial autocorrelation function

(PACF) for the crisis data. The ACF and the PACF each show strong evidence of �rst

order serial dependence for both the currency and banking crises series. Also present

are longer term dynamics, especially in the case of banking crises, where there is evi-

dence of a potential ten year cycle. Though the serial correlations are not particularly

strong, the episodic nature of both series suggests it may be prudent to entertain both

autoregressive and moving average dynamics and, possibly, regime switching.
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3 A Threshold INARMA Model of Crises

The nature of the crisis data is that there is little or no activity in the series for

prolonged periods of time, that is runs of counts which may be zero or one, followed

by relatively short bursts of major crisis activity; these bursts of activity, by casual

observation, often seem to appear at around 10 year intervals. The data also exhibit

overdispersion whereby the volatility of countries in crisis mode tends to be larger the

average number.

To capture the empirical features of currency and banking crises as identi�ed in

Section 2, let yt represent the number of countries that are in crisis at time t. To

capture the transmission of crises across countries, consider the INAR(1) model (for a

recent review of integer time series models, see Jung and Tremayne (2006b))

yt = �1 � yt�1 + ut; t = 1; 2; � � �T; (1)

where the parameter �1 controls the strength of autocorrelation in yt between adjacent

time periods and �1�yt�1 is the �thinning�operator controlling the number of countries
that are no longer in crisis mode. Formally, this operator is de�ned as (Al-Osh and

Alzaid (1987, 1988), Alzaid and Al-Osh (1990))

�1 � yt�1 =
yt�1X
s=1

es;t�1; (2)

where es;t�1 is a Bernoulli random variable with probability �1 of a country remaining

in a crisis the next period. The thinning operator has the property of preserving the

integer status of the random variable yt in contrast to the usual continuous time oper-

ator of the AR(1) model for example. In the extreme case where all yt�1 countries that

are in crisis mode, stop being in crisis, all draws of the Bernoulli random variable would

equal zero. Assuming independence the probability of this occurring is (1� �1)
yt�1 :

The random variable ut allows new countries to go into crisis mode and hence add to

the existing number of crisis a¤ected countries. More formally, futg is a sequence of
iid random shocks with constant mean �: The higher is �; the higher is the expected

number of countries going into a �nancial crisis. In the case where these shocks are

equidispersed, a Poisson distribution is commonly speci�ed for ut: Alternatively, in the

case of overdispersion where the volatility of shocks is greater than �; a negative bi-

nomial distribution can be speci�ed. To allow for additional factors which can impact
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upon the transmission of crises, de�ne �t which is expressed as a function of a set of

regressors. This set may include dummy variables to account for the e¤ects of large

shock events such as the Great Crash in the early 1930s, or exogenous factors which

can speed up or even slow down, the transmission channel.

The INAR(1) model in equation (1) can capture many of the features of �nancial

crises, whereby there are periods where countries enter a crisis, so yt is positive, and

periods where there is tranquility where yt is either zero or a small number, say yt = 1.

However, a feature of the data discussed in Section 2 is that there are relatively long

periods where countries do not necessarily experience a �nancial crisis. One way to

proceed is to distinguish between two periods where one period represents a noncrisis

period and another representing a crisis period. This strategy is also commonly adopted

in the contagion literature where the e¤ects of additional shocks across countries and

�nancial markets that occur only during �nancial crises are modelled by distinguishing

between periods of crisis and noncrisis periods (Dungey, Fry, González-Hermosillo and

Martin (2010)). Formally this is modelled by assuming that two regimes operate and

that these are triggered by a threshold depending upon the value of yt�1. Thresholds

are relatively easy to model using integer data because the support for the threshold

is not the real line as it is with continuous models. In the case of the crisis data, be

it for banking or currency, the threshold would likely be 1, or, possibly, 2. It is not

di¢ cult to use hypothesis testing methods to con�rm a preferred value. Suppose the

threshold indicates regime 1 occurs for yt if yt�1 � j and regime 2 for yt�1 > j; the

threshold is designed to dichotomize the sample, but for pragmatic estimation reasons

it is necessary that there is at least a �reasonable� number of observations in each

regime. Extending the INAR(1) in equation (1) to allow for thresholds leads to the

threshold INAR model, denoted as TINAR(1), of the form

yt = �1 � yt�1 + (
1 � yt�1)dyt�1>j + ut; (3)

where dyt>j is an indicator variable which is unity if the condition is true, and zero

otherwise. Following Du and Li (1991), the two thinning operations in (3), �1�yt�1 and

1 � yt�1; are treated independently. The probability of countries remaining in a crisis
during a �nancial crisis period is �1 + 
1; while now �1 represents the corresponding

probability in a noncrisis period. As �nancial crises by de�nition occur where the

number of countries going into crisis mode and remaining in this state is widespread,
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this would suggest that 
1 > 0; resulting in an increase in autocorrelation in periods

of �nancial crises.

A further feature of the crisis data discussed in Section 2 is the episodic nature of

�nancial crises suggesting a renewal of crisis activity of approximately every 10 years.

To capture this feature a 10th lag term is also included in the crisis regime. A prototype

TINAR(10) crisis model is

yt = �1 � yt�1 + (
1 � yt�1 + 
10 � yt�10)dyt�1>j + ut: (4)

One might also make the two regimes in equation (4) even more separate by having

di¤erent entry processes, because there are more entries during times of crisis than

not. Again, this is e¤ectively a regime dummy variable regressor and is trivial to

incorporate. But it can also be appreciated that, after a noncrisis period, major crisis

activity can only be modelled with a TINAR-type structure by entries to the system

through the random variables ut. Moreover, a crisis a¤ected country may remain in the

system for a few years before the crisis period dies down again and normal activity is

resumed for that country. To emphasise this feature, it may be fruitful to add a moving

average component to the model, as adopted by Martin, Tremayne and Jung (2012).

Extending their approach to threshold integer models, a TINARMA(10,1) model is

speci�ed as

xt = �1 � xt�1 + (
i � xt�1 + 
10 � xt�10) dyt>j + ut

yt = xt�1 + �1 � ut;
(5)

where yt is the observed count variable, and xt is a latent (unobserved) count variable.

The moving average term is controlled by the parameter �1: This form of the TIN-

ARMA model is based on the speci�cation proposed by McKenzie (1988) which uses

the reversibility property of the moving average term. In the special case where �1 = 0;

equation (5) reduces to the TINAR(10) speci�cation of equation (4). Of course further

extensions can be entertained by including moving average terms in the crisis regime.

To gain some insight into the properties of the TINARMA model as a model of

�nancial crises, Figure 2 presents simulated time series data of a TINARMA(1,0) model

with negative binomial innovations to capture overdispersion. The model is given by

yt = �1 � yt�1 + (
1 � yt�1)dyt�1>j + ut;

ut � NB (�; !) ;
(6)

9



Figure 2: Simulated crises based on the TINARMA(1,0) model: e¤ect of increasing
autocorrelation during the crisis period from (a) 
1 = 0:5 to (b) 
1 = 0:7:

where the parameters for Figure 2(a) are � = f�1 = 0:1; 
1 = 0:5; � = 0:4; ! = 0:5g ;
and for Figure 2(b) are � = f�1 = 0:1; 
1 = 0:7; � = 0:4; ! = 0:5g : Figure 2(a) shows
that the noncrisis period exhibits little evidence of temporal dependence whereas during

the crisis period there is a jump in the number of crises as well as the duration of

the crises. The e¤ect of increasing the strength of this dependence during the crisis

period is highlighted in Figure 2(b) where both the number and the duration of crises

increases which occurs by increasing the crisis autocorrletion parameter from 
1 = 0:5

to 
1 = 0:7:

The e¤ect of increasing the overdispersion parameter in the INARMA(1,0) model

in equation (6) from ! = 0:5 to ! = 0:6; is demonstrated in Figure 3, with the para-

meters set for Figure 3(a) at � = f�1 = 0:1; 
1 = 0:5; � = 0:4; ! = 0:5g ; and for Figure
2(b) at � = f�1 = 0:1; 
1 = 0:5; � = 0:4; ! = 0:6g : As an increase in the overdisper-
sion parameter increases the variance at a faster rate than the mean of the innovation

distribution, the number of �nancial crises increases in both size and duration.

4 Econometric Methods

This section provides a discussion of the estimation and inferential methods applied

to the TINARMA model. In both cases simulation methods are employed. In the

case of estimation, the approach is based on an e¢ cient method of moments estimator
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Figure 3: Simulated crises based on the TINARMA(1,0) model: e¤ect of increasing
overdispersion during the crisis period from (a) !1 = 0:5 to (b) !1 = 0:6:

(EMM) as estimation by maximum likelihood is not feasible for this general class of

models. In the case of inference, simulation methods based on subsampling are adopted

to circumvent the computational problems in generating standard errors of the EMM

estimator for the TINARMA class of models.

4.1 Estimation

Whilst it is straightforward to specify a general integer time series model that allows

for arbitrary lag structures with dynamics characterised by both autoregressive and

moving average components, estimation of this class of models has proven to be prob-

lematic. Maximum likelihood is relatively straightforward for the INAR(1) model as

it is possible to derive the log-likelihood function and estimate the unknown para-

meters using a standard gradient algorithm (Al-Osh and Alzaid (1987)). For higher

order INARMA models, the log-likelihood becomes increasingly more complicated, but

nonetheless can be estimated in theory at least (Bu, Hadri and McCabe (2008)). For

INMA or mixed INARMA models, maximum likelihood is no longer feasible as it is

now not even possible to write out the log-likelihood function for this class of models

(see Jung, Ronning and Tremayne (2005) for a discussion of alternative estimators).

To circumvent this problem, Martin, Tremayne and Jung (2012) propose a simulation

based approach using an e¢ cient method of moments estimator (EMM). The motivate

behind this strategy is that even though INARMA models are di¢ cult, if not impos-
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sible, to estimate using standard econometric methods based on maximum likelihood,

these models are relatively easy to simulate. Moreover, in implementing the EMM

estimator it is necessary to be able to choose a model that provides a suitable approx-

imation of the true log-likelihood, commonly referred to as the auxiliary model. For

this class of models the continuous time ARMA class of models represents a suitable

choice. Even though this class of models ignores the integer status of the dependent

variable being analysed, nonetheless consistent and asymptotically e¢ cient parameter

estimates are obtained under certain regularity conditions using EMM by calibrating

the simulated data with the actual data via the auxiliary model (Gallant and Tauchen

(1996); Gouriéroux, Monfort, and Renault (1993); Gouriéroux and Monfort (1994)

Du¢ e and Singleton (1993) and Smith (1993)). The �nite sample performance of the

EMM estimator is investigated by Martin, Tremayne and Jung (2012) in the case of the

INARMA model using a range of Monte Carlo experiments which is compared to the

maximum likelihood estimator of Al-Osh and Alzaid (1987) and the constrained least

squares estimator of Klimko and Nelson (1978), when either of these two estimators

are feasible.

Consider the TINARMA(p; 1) class of models

xt =

pX
i=1

�i � xt�i +
pX
i=1

(
i � xt�i) dyt>j + ut

yt = xt�1 + �1 � ut (7)

ut � NB (�; !) ;

where yt is the observed count variable, xt is a latent (unobserved) count variable,

dyt>j is the indicator variable and the 2p+ 1 thinning operations in (7) are all treated

independently as before. The variable dyt>j is an indicator variable which is unity

if the condition is true, and zero otherwise. The choice of the threshold number of

countries in crises is represented by j; can be determined empirically or chosen based

on a de�nition of what constitutes a crisis situation. Let the unknown parameters be

given by

� =
�
�1; �2; � � � ; �p; 
1; 
2; � � � ; 
p; �; !; �1

	
: (8)

The steps involved to implement the EMM estimator for this class of models are as

follows. First, choose a given set of starting parameter values of the TINARMA(p,1)

model given by �(0): Second, simulate (7) for a given choice of �(0) by expressing the
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thinning operations in terms of independent uniform random numbers e(i)s;t�i; w
(i)
s;t�i; hs;t

i = 1; 2; � � � ; p; and hs;t according to

xs;t =

pX
i=1

xt�iX
s=1

e
(i)
s;t�i +

pX
i=1

xt�iX
s=1

w
(i)
s;t�idys;t>j + ut

ys;t = xs;t�1 +
utX
s=1

hs;t (9)

ut � NB (�; !) ;

where the uniform random numbers have moments

E
h
e
(i)
s;t�i

i
= �i; i = 1; 2; � � � ; p;

E
h
w
(i)
s;t�i

i
= 
i; i = 1; 2; � � � ; p;

E [hs;t] = �1:

(10)

The TINARMA model is simulated for a period of length N; where N is commonly

chosen as a factor of the length of the time series data, T . In the empirical analysis N

is set at N = 100T:

Third, specify the auxiliary model

yt = �0 +
kX
i=1

�iyt�i +
kX
i=1

�iyt�idyt�1>j + vt; (11)

which is a threshold AR(k) model with a constant term where vt is iid N (0; �2v) :

The choice of k needs to be large enough to be able to identify the p autoregressive

parameters for each regime in equation (7) and the moving average parameter �1 from

higher order lags in the auxiliary model speci�ed in (11). This choice is also motivated

by the property that a �nite moving average model can be represented by an in�nite

autoregressive model. In practice the choice of the lag length in (11) is �nite, with

the quality of the approximation improving as the lag length is increased. Martin,

Tremayne and Jung (2012) �nd that for values of k � 3 in INARMAmodels, provides a
suitable approximation to estimate moving average parameters. The (2k + 2) gradient

vector of the auxiliary model at time t is

gt =

�
vt
�2v
;
vtyt�1
�2v

; � � � ; vtyt�k
�2v

;
vtyt�1dyt�1>j

�2v
; � � � ; vtyt�kdyt�1>j

�2v
;

�
v2t
�2v
� 1
�

1

2�2v

�
; (12)

where from (11) vt = yt��0�
Pk

i=1 �iyt�i�
Pk

i=1 �iyt�idyt�1>j. The choice of the �rst

and last moment conditions in (12) are used to identify the parameters � and ! of the
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negative binomial distribution. This property of the moment condition arises because

the mean of the negative binomial distribution is �!= (1� !) ; which is captured by

the intercept term in the auxiliary model and the variance of the negative binomial

distribution is �!= (1� !)2 ; which is captured by �2v: This suggests that the following

2 equations

�0 =
�!

1� !
; �2v =

�!

(1� !)2
;

can be rearranged to identify � and ! as

! = 1� �0
�2v
; � =

�20
�2v � �0

:

Fourth, the auxiliary model in (11) is estimated by least squares using the actual

data (yt) with parameter estimates given by

b = (b�0; b�1; � � � ; b�k;b�1;b�2; � � � ;b�k; b�2v)0; (13)

and b�2v = T�1
XT

t=1
(yt � b�0 �Pk

i=1
b�iyt�i �Pk

i=1
b�iyt�iDyt�1>j); the variance of the

least squares residuals associated with equation (11). It is assumed that the data

length is T + k to allow for conditioning on the �rst k observations. These estimates

of the auxiliary model are also equivalent to the constrained least squares estimates of

Klimko and Nelson (1978).

Finally, the EMM estimator is based on solving

b� = argmin
�

G0sI
�1Gs = argmin

�
Q(�); (14)

using an iterative algorithm. The (2k + 2) vector Gs represents the gradients of the

auxiliary model in (12) with yt replaced by the simulated data ys;t; and the auxiliary

parameters are evaluated at b in (13)
Gs =

1

N

NX
i=1

gs;t; (15)

where

gs;t =

�
vs;tb�2v ; vs;tys;t�1b�2v � � � vs;tys;t�kb�2v ;

vs;tys;t�1dys;t�1>jb�2v � � �
vs;tys;t�kdys;t�1>jb�2v ;

�
v2s;tb�2v � 1

�
1

2b�2v
�
;

(16)

and

bvs;t = ys;t � b�0 � kX
i=1

b�iys;t�i � kX
i=1

b�iys;t�idys;t�1>j:
14



The (2k+2)� (2k+2) matrix I in (14) is computed as (Gallant and Tauchen (1996))

I =
1

T

TX
t=1

gtg
0
t; (17)

which is the outer product of the gradients of the auxiliary model evaluated using the

actual data.

By construction, evaluating the gradient vector Gs in (14) at the actual data yt and

not the simulated data ys;t; produces a vector of zeros. This suggests that the EMM

estimator chooses parameter values of � when the simulated data from the TINARMA

model match the actual data which occurs by minimizing Q(�): For a just-identi�ed

modelQ(b�) = 0 as there is an equal number of equations to set all gradients to zero. For
an over-identi�ed model Q(b�) > 0; but provided that the model is correctly speci�ed

the value of the objective function should not be statistically signi�cant from zero.

Formally, an overall test of the model�s speci�cation is based on Hansen�s J-test given

by

J = TQ(b�);
which is distributed asymptotically under the null hypothesis as �2r; where r is the

number of over-identifying restrictions, equal to dim ( )� dim (�).
As a result of the nonlinear structure of the model analytical solutions of the pa-

rameter estimates are not available, making it necessary to use numerical procedures.

The approach adopted here is to use a grid search method as standard gradient algo-

rithms can break down as the numerical gradients may not always be di¤erentiable at

all parameter values as a result of the integer status of the dependent variable. Martin,

Tremayne and Jung (2012) �nd that this algorithm performs very well for a broad

range of INARMA speci�cations. Some Monte Carlo evidence is given next for the

TINARMA model.

4.2 Monte Carlo Evidence

To gain some insight into the �nite sample properties of the EMM estimator for the

TINARMA model, the results of some Monte Carlo experiments are now reported.

The �rst experiment is based on the TINARMA(1,0) model with negative binomial
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innovations
yt = �1 � yt�1 + (
1 � yt�1)dyt�1>1 + vt

vt � NB (�; !) ;
(18)

where the thinning operators in (18) are assumed to be independent. The true para-

meters are set at

� = f�1 = 0:1; 
1 = 0:6; � = 0:4; ! = 0:5g :

The EMM estimator is based on simulation runs of length N = 100T; where the sample

sizes are chosen as T = f100; 200g which nest the sample size of the data used in the
empirical section. The auxiliary model is based on the threshold AR model given in

(11) where the lag structure varies from k = 1 to k = 3: In solving (14) the number of

random searches is restricted to 200: All calculations are performed using the software

GAUSS Version 10, while the random number generators are rndlcnb for the negative

binomial distribution and rndlcu for the uniform distribution, where the latter is used

in computing the thinning operations.

Table 4 provides summary statistics on the �nite sample distributions of the EMM

estimator based on 2000 replications. The estimate of the noncrisis autoregressive

parameter �1; is biased upwards while the opposite is true for the crisis autoregressive

parameter 
1; which is biased downwards. The results for the variance parameter

estimates show that the estimate of � is biased upwards whereas the estimate of !

exhibits downward biasedness. For all parameter estimates the size of the biasedness

and the RMSE decrease as the sample size is increased from T = 100 to T = 200:

There results in general are qualitatively the same as the Monte Carlo results reported

in Martin, Tremayne and Jung (2012) who �nd that for (non-threshold) INARMA

models with Poisson innovations the EMM estimator, together with other estimators

including maximum likelihood and the conditional least squares estimator of Klimko

and Nelson (1978), that the autoregressive parameters are biased downwards while

the variance parameter is biased upwards. A comparison of the mean and RMSE

sample statistics across di¤erent lag structures used in the auxiliary model of the EMM

estimator suggests that the just-identi�ed case of a lag of k = 1 tends to work best in

terms of minimizing the �nite sample bias and the RMSE.

In the second experiment the DGP in equation (18) is extended to allow for an MA

component, resulting in the following TINARMA(1,1) model with negative binomial
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Table 4:

Monte Carlo results for the EMM estimator of the TINARMA(1,0) model. Sample
means based on 2000 replications with RMSE given in parentheses. The population

parameters are � = f�1 = 0:1; 
1 = 0:6; � = 0:4; ! = 0:5g :

Aux. Model Lags b�1 b
1 b� b!
T = 100

k = 1 0:157 0:439 0:558 0:403
(0:146) (0:252) (0:275) (0:153)

k = 2 0:170 0:436 0:573 0:368
(0:165) (0:262) (0:291) (0:183)

k = 3 0:181 0:423 0:590 0:339
(0:178) (0:277) (0:306) (0:205)

T = 200
k = 1 0:140 0:501 0:515 0:435

(0:116) (0:186) (0:227) (0:119)
k = 2 0:140 0:504 0:527 0:411

(0:116) (0:190) (0:242) (0:139)
k = 3 0:156 0:489 0:553 0:386

(0:133) (0:206) (0:267) (0:162)

innovations

xt = �1 � xt�1 + (
1 � xt�1) dyt>1 + ut

yt = xt�1 + �1 � ut (19)

ut � NB (�; !) ;

The true parameters are set at

� = f�1 = 0:1; 
1 = 0:3; �1 = 0:3; � = 0:4; ! = 0:5g :

In choosing the lag structure of the auxiliary model used to compute the EMM es-

timates, the smallest lag length is of order k = 2 to be able to identify both the

autoregressive (�1) and moving average (�1) parameters in the crisis period.

The �nite sample properties of the EMM estimator based on the TINARMA(1,1)

model in equation (19) are given in Table 5. The results in the case of the autoregressive

parameters, �1 and 
1; and the variance parameters � and !; are qualitatively the same

as they are for the INARMA(1,0) model using equation (18) as the data generating
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Table 5:

Monte Carlo results for the EMM estimator of the TINARMA(1,1) model. Sample
means based on 2000 replications with RMSE given in parentheses. The population

parameters are � = f�1 = 0:1; 
1 = 0:3; �1 = 0:3; � = 0:4; ! = 0:5g :

Aux. Model Lags b�1 b
1 b�1 b� b!
T = 100

k = 2 0:143 0:428 0:309 0:606 0:343
(0:122) (0:278) (0:207) (0:306) (0:201)

k = 3 0:154 0:439 0:318 0:629 0:307
(0:136) (0:283) (0:221) (0:324) (0:228)

T = 200
k = 2 0:132 0:406 0:300 0:563 0:390

(0:095) (0:252) (0:162) (0:266) (0:154)
k = 3 0:144 0:429 0:286 0:598 0:357

(0:110) (0:272) (0:171) (0:292) (0:181)

process. Focussing on the moving average parameter �1; the results show that the

EMM estimator exhibits little biasedness showing that this parameter is well resolved.

A comparison of the �nite sample results for the case where the lag structure of the

auxiliary model is k = 2 and k = 3, shows that the performance of the EMM estimator

is best for the smaller lag structure.

4.3 Inference

An attractive feature of the EMM estimator in the present context is that it does

not require the speci�cation of a likelihood function. This would be based on the

conditional distribution of an observation, conditional on its past and is not available

whenever moving average components are included in a thinning model. Hence, rou-

tine evaluation of appropriate estimated standard errors is not possible. Following

Martin, Tremayne and Jung (2012), who encounter a similar di¢ culty, the subsam-

pling approach of Politis, Romano and Wolf (1999) (PRW) is adopted. An important

advantage of subsampling is that it is possible to derive standard errors in certain

situations where a bootstrap approach would be invalid, whilst the requirements that

must be met for it to provide a valid inference tool are mild, often requiring little more

than stationarity of the underlying data generating process. An abbreviated account

of the approach of Martin, Tremayne and Jung (2012) to estimate standard errors is
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presented here.

Suppose that y1; y2; � � � ; yT represents a sample of T observations on a stationary
time series. Usually, statistical quantities are calculated using all the observations,

apart, possibly, from end e¤ects, whereas subsampling methods are based on making

repeated computations of similar statistics based on subsamples of length B using

the observations yi; yi+1; � � � ; yi+B�1. To introduce relevant notation, let there be j =
1; 2; � � � ; NB such blocks used and suppose that a (scalar) parameter � is estimated
by b�T using the full sample and by b�T;i;B using the block of length B beginning at

observation i. ProvidedB !1 with T andB=T ! 0; the distribution of
p
B(b�T;i;B��)

is Gaussian involving an unknown long-run variance that must be estimated and a

suitable estimator of the variance of b�T ; given by
dV arT;B(b�T ) = B

TNB

NBX
j=1

(b�T;B;j � b�T;B;:)2; (20)

where b�T;B;: = N�1
B

PNB
j=1
b�T;B;j, compare PRW, equation (3.40).

Di¢ culties that remain to be addressed include: what block length B to use; how

many blocks NB to use; and how to estimate the unknown long-run variance �21; which

is also needed. PRW, Section 3.8.2 show that, in the case of a sample mean at least,

it is preferable to use the maximum available number of overlapping blocks of size B,

viz. NB = T � B + 1. This is because it can be shown that the variance estimator

based upon subsampling using all available blocks is 50%more e¢ cient, asymptotically,

than the Carlstein (1986) estimator (see equation (3.46) in PRW) and so the approach

recommended by PRW is adopted here. There remains the crucial choice of block

length B. Work relating to the sample mean indicates that B should be O(T 1=3)

and that the asymptotic mean squared error of the estimated variance in this case

is T 1=3 times a complex quantity depending on the long-run variance �21 (see PRW

equation (9.4)). For more general statistics such as the EMM parameter estimators

under consideration in this paper, not much is known about the choice of B. However,

developing arguments in Chapters 9 and 10 in PRW (see Martin, Tremayne and Jung,

2012, Section 3.2 for fuller details) we use a number of di¤erent block lengths (usually

3 or 4) to estimate the long-run variance by determining it as the estimated intercept

in a regression of the estimated values found from (20) on inverse block size for various

values of B. We combine estimates based on B in a range kT 1=3 to 8kT 1=3 with k
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about 2 and our experience leads us to believe that such choices of block length with

the crisis are likely to provide reliable estimates for asymptotic standard errors.

An exercise lending weight to this assertion is reported in Martin, Tremayne and

Jung (2012), where estimated asymptotic standard errors in an INAR(1) model are

reliably estimated for a case where the true asymptotic result is known. The standard

errors of the EMM estimates are computed using 4 block lengths B = f8; 16; 32; 64g
with T = 100, which is fairly close to the length of data realisation with the crisis data

under scrutiny here (T = 126): For each block size B the maximum number of data

subsamples is T � B + 1: The EMM estimate is computed for each subsample using

100 searches, which, in turn, is used to compute an estimate of the variance of b�100;B.
In the case of B = 8; this amounts to computing the EMM estimates 100� 8+ 1 = 93
times with the EMM objective evaluated in each case 100 times in performing the

search procedure to minimize this objective function. The long-run variance �21 is

estimated as the intercept from a regression of the estimated variances corresponding

to the four block sizes, on a constant and the regressor f1=8; 1=16; 1=32; 1=64g : The
standard errors of b�T are computed as b�1=pT where b�21 is the estimate of �21:

5 Empirical Results

The following TINARMA(10; 1)model is initially speci�ed to model the autocorrelation

structure of the currency, banking and combined crises data presented in Figure 1

xt = �1 � xt�1 + 
10 � xt�10dyt>j + ut

yt = xt�1 + �1 � ut (21)

ut � NB (�; !) :

The EMM estimates are based on solving (14) using 100; 000 searches. The lag structure

of the auxiliary model is k = 1 in (11) while the number of simulation paths used in the

EMM algorithm to simulate the time path of the number of crises is set at H = 100:

The EMM parameter estimates are given in Table 6 for the currency and banking

crises as well as for the combined crises. Standard errors are given in parentheses

based on subsampling. In computing the standard errors the block lengths chosen

are f16; 32; 64g while the number of searches carried out for each subsample is set at
100: The results are reported for two de�nitions of crises with j = 1 corresponding to a
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Table 6:

EMM estimates of TINARMA models with negative binomial innovations for the
crisis data, with bootstrap standard errors given in parentheses. Threshold values

given by j; expressed in terms of years.

Parameter Currency Banking Combined
j = 1 j = 2 j = 1 j = 2 j = 1 j = 2

�1 0.009 0.078 0.005 0.009 0.148 0.006
(0.184) (0.151) (0.128) (0.095) (0.175) (0.211)


10 0.602 0.063 0.756 0.948 0.804 0.367
(0.170) (0.194) (0.191) (0.206) (0222) (0.116)

�1 0.282 0.172 0.199 0.137 0.095 0.258
(0.189) (0.172) (0.178) (0.152) (0.249) (0.218)

� 0.354 0.463 0.161 0.209 0.411 0.438
(0.423) (0.440) (0.423) (0.428) (0.393) (0.374)

! 0.693 0.658 0.718 0.694 0.710 0.739

�nancial crisis occurring when there is more than one country in a crisis and with j = 2

corresponding to a �nancial crisis occurring when there is more than two countries in a

crisis. The magnitude of the parameter estimates are consistent across the currency and

banking crises with the noncrisis period demonstrating little autocorrelation structure

with the strength of the dependence increasing during �nancial crises. For the noncrisis

regime the autocorrelation structure is dominated by the �rst order moving average

term suggesting that the memory of the process during this regime is around one year,

although this parameter estimate is not statistically signi�cant. For the crisis regime

the results show strong evidence of a 10-year cycle, as identi�ed in Section 2, in both

the currency and banking crises.2 Finally, the estimates of ! show strong evidence of

over-dispersion.

6 Conclusions

The aim of this paper has been to construct an empirical model of crisis transmission

across countries. Both banking and currency crises were investigated using annual data

2The model was also estimated where the length of the cycle varied for lags greater than or less
than ten years. None of these alternative models improved upon the estimated model with a lag of
10 years.
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on 21 countries over the period 1883 to 2008. An important feature of the data was that

it was charcterised by low order counts corresponding to the number of countries in a

crisis at a point in time. To capture these features of the data an integer ARMA model

was used to model the dynamic transmission channels of �nancial crises. Moreover,

as it was necessary to distinguish between periods of tranquility and periods of crises,

a new class of models was developed called threshold integer ARMA models, or TIN-

ARMA. Estimation of the dynamic, low-order count model was based on Monte Carlo

methods using e¢ cient method of moments (EMM) as maximum likelihood methods

were not feasible. The �nite sample properties of this estimator were investigated using

a range of Monte Carlo experiments. Monte Carlo methods were also used to construct

standard errors of the parameter estimates using subsampling as the objective function

corresponding to the EMM estimator is not di¤erentiable everywhere for discrete time

series models based on a �nite simulation run.

The empirical results showed little evidence of autocorrelation during noncrisis pe-

riods, but strong evidence during periods of �nancial crises. An interesting result was

the presence of a sporadic 10-year cycle in the data during periods of �nancial crises

which was captured with the threshold model. The results also provided evidence of

overdisperision with the volatility of crises exceeding that of the conditional mean.

In modelling the banking and currency crises the approach was univariate with

the transmission of each crisis studied separately. This suggests that an important

extension of this analysis is to allow for dynamic interactions between the two crises

by performing a bivariate analysis. This would involve constructing a bivariate TIN-

ARMAmodel where crises would now be able to be transmitted across countries as well

as across �nancial markets. To estimate this class of models a natural approach would

be to specify a bivariate vector autoregression with threshold e¤ects as the auxiliary

model used in the computation of the EMM estimator. Having estimated a bivariate

TINARMA model the dynamical interrelationships of crises could be revealed using

impulse responses. As a result of the nonlinear features of the TINARMA model sim-

ulation based procedures could be used along the lines of generalized impulse response

analysis (Koop, Pesaran, and Potter (1996)). A further extension of the empirical

application is to investigate the predictive properties of the model by forecasting the

presence of future crises. Again a natural approach to generate coherent forecasts of
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integer processes would be to use Monte Carlo methods to simulate the model into the

future and map out probabilities associated with the number of countries in crisis at a

particular point in time (Jung and Tremayne (2006a), McCabe and Martin (2005) and

McCabe, Martin and Harris (2011)).
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A Appendix: Data Construction

The binary data for the paper are taken from Dungey, Jacobs and Lestano (2010), who

in turn collate data from published secondary sources. The sample comprises the 21

countries whose annual banking and currency crisis occurrences were collected in Bordo

et al (2001); Argentina, Australia, Belgium, Brazil, Canada, Chile, Denmark, Finland,

France, Germany, Greece, Italy, Japan, Netherlands, Norway, Portugal, Spain, Sweden,

Switzerland, UK and the US. It is worth noting that a number of these economies have

made a signi�cant transition from developing to developed since the late 19th century.

The Bordo et al (2001) data begins in 1883 and terminates in 1998. Laeven and

Valencia (2008) provide banking and currency crisis dates for 100 countries, including

those in the Bordo et al (2001) data set. We utilise their data to update the Bordo et al

(2001) data set to 2007. We provide an additional year of data by applying the Laeven

and Valencia rule to identify currency crises in 2008 and detecting banking crises using

information provided by the IMF on program applications.

A.1 Currency Crises

The Bordo et al (2001) currency crisis data are determined using an exchange market

pressure index (see Eichengreen et al, 1996 for example), which consists of a weighted

average of changes in the exchange rate against a numeraire, the interest rate di¤er-

ential against the numeraire interest rate and the relative change in reserve holdings

compared with the numeraire country. The weights are given by the inverse volatility

of each of these series to provide appropriate rescaling. The advantage of these ex-

change market pressure indices is that they detect pressure in �oating, managed and

�xed rate regimes, and are well understood in the international literature. A crisis is

determined to occur when the exchange market pressure index exceeds some critical

threshold; and the authors indicate they follow the earlier work of Eichengreen et al

(1996) and set this threshold as the being the mean plus 3 standard deviations of the

index. An unfortunate feature of this approach is that the threshold is sample speci�c,

and sensitivity analysis typically reveals that di¤erent samples may result in di¤erent

periods identi�ed as crisis due particularly to the changing volatility observed in assets

experiencing crisis conditions.

Laeven and Valencia (2008) nominate a simpler rule where currency crises for a
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country, i, are indicated by a 30 percent or greater nominal depreciation of their do-

mestic currency over the previous year, with the additional condition that the rate of

depreciation has also increased by 10 percent or more over the year before that - that

is the rate of depreciation has been accelerating rapidly over the prior two year period.

The same criteria are used for �xed exchange rate devaluations. We applied the Laeven

and Valencia rule to update the dataset for 2008, and found no additional incidents of

currency crises.

Multiple exceedances of the threshold criteria are a common problem in rules de�n-

ing currency crises, and are generally resolved by the application of windows based on

rules of thumb. This aspect seriously di¤erentiates the binary data generated in cri-

sis data sets from those generated in other literature, such as business cycle phases in

Harding and Pagan (2006), who can write down the underlying data generating process

more clearly. The windowing conventions applied in the current data set are to treat

currency crises are indicated in the �rst year of a �ve year window in which they may

occur in multiple instances - in Bordo et al (2001) this is justi�ed by reference to the

recovery period of GDP and in Laeven et al (2008) simply given as a rule of thumb.

A.2 Banking Crises

Banking crises are more di¢ cult to discern than currency crises as there is generally

less transparent data on the bank balance sheets. Bordo et al (2001) follow Caprio

and Klingebiel (1997) who provide data from the 1970s onwards. They de�ne bank

crises as the situation where the ratio of nonperforming loans to total loans of 5 to 10

percent, arguing that this is a conservative measure of the cases where bank capital

would be insu¢ cient to cover the losses from these loans in the event that they were

liquidated - that is the banking system is insolvent. Bordo et al adopt the Caprio and

Klingebiel data where appropriate and use their method to provide earlier data.

Laeven and Valencia (2008) take a slightly di¤erent measure, where they consider

the case of sharp increases in non-performing loans and exhaustion of capital in the

banking system. They combine the numerical information with quantitative indicators

to exclude episodes a¤ecting only a small number of non-systemic institutions. We

update the banking crisis data from the IMF based on the programs implemented in

each of the countries in 2008.
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