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Abstract

This paper shows that all-discrete dynamic choice models with hidden state provide for
general, yet tractable structural models of single-agent dynamic choice with unobserved
persistence. I call such models hidden Rust models and I study their econometrics.
First, I prove that hidden Rust models and more general dynamic discrete models have
a generic identification structure, in a strong technical sense, as well as a stable one.
Generic implies that checking identification at one parameter value is enough to get
identification at almost every parameter value and I provide the tools to do so. Second,
I prove that hidden Rust models have good time-series asymptotic properties despite
their complicated dynamic structure. Third, I show that both the maximum likelihood
estimator and Bayesian posteriors can be efficiently computed by carefully exploiting
the structure of the model. These results are applied in a model of dynamic financial
incentives inspired by Duflo, Hanna and Ryan (2012). Several lessons carry over to
other dynamic discrete models with unobserved components.
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1 Introduction

1.1 Overview

The single-agent theory of dynamic discrete choice has been consolidating around a common
framework often associated with John Rust’s seminal paper (Rust, 1987) and based on earlier
work by Wolpin (1984), Miller (1984), Pakes (1986) and others. Rust models have several
advantages. They are fully structural: they are built on economically meaningful parameters
and allow for simulation and counterfactual experiments. They are flexible, with a versatile
state variable formalism and the possibility of both panel data and times series, as well as
both finite and infinite horizons. They are also empirically tractable, and OLS-like estima-
tion is often possible. For these reasons, Rust models have been applied in many different
contexts: three examples in three different fields are Keane et al. (2011) in labor economics,
Duflo et al. (2012) in development economics and Diermeier et al. (2005) in political econ-
omy. There are many more.

Unfortunately, unobserved persistence, regime switching, structural breaks and heterogene-
ity are not part of the classical Rust model world. The challenge1 is to find a framework
that would allow for these important economic features while maintaining the structural
character, the flexibility and the empirical tractability of classical Rust models.

In this paper, I show that a family of all-discrete dynamic choice models with hidden states,
which I call hidden Rust models, provides such a framework.

Section 2 describes hidden Rust models. Hidden Rust models can be thought of as partially
observed Rust models: agents make decisions exactly as in Rust models but the econome-
trician observes only part of the state variable. More specifically, agents make decisions
at according to a stationary infinite-horizon dynamic discrete choice model with discrete
state kt = (xt, st). The econometrician observes at and st but not xt. The infinite-horizon
assumption is without loss of generality, as explained in section 2.3. When it comes to
computing estimators in section 5, the random utility shocks are further assumed to be ad-
ditively separable and independent identically Gumbel distributed, as in Rust (1987). Since
the decision-making process is the same in classical dynamic discrete choice models and in
hidden Rust models, the familiar conditional choice probabilities are present. However, they

1Working paper versions of Duflo et al. (2012) used to say: “Allowing for serial correlation and het-
erogeneity considerably complicates the estimation procedure, but we show that these features are very
important in this application.”

2



are not directly observed “in data”: there is an additional stage between the conditional
choice probabilities and the distribution of the observables, corresponding to the marginal-
ization of the unobserved state variable xt.

The observed data (st, at) is not Markovian of any order in a hidden Rust model. Because
of this, the econometric theory of classical Rust models does not carry over to hidden Rust
models. This is explained in more detail in section 2.2. Issues of identification, asymptotics
and estimation must be studied anew. This is what I do in this paper.

In section 3, I examine the question of identification in hidden Rust models. It is well-known
that models with unobserved variables can suffer from loss of identification, meaning that
different structural parameters might generate observationally equivalent distributions for
the data. I cast the question of identification in hidden Rust models in terms of multivariate
systems of polynomials and I study the corresponding zero-sets from an algebro-geometric
point of view. The results are motivated by hidden Rust models but valid generally for any
discrete model (Theorem 1) and any dynamic discrete model (Theorem 2), respectively.

Theorem 1 says that discrete models have the same identification structure almost every-
where on the parameter space, specifically outside of the zero-set of a polynomial system.
Such zero-sets are very small (Corollary 2). A particular case is when the model is globally
identified for almost every parameter value; then I say that the model is generically identified.

A spectrum of methods can be used to compute identification in a particular model. At
one extreme, there are computationally intensive algorithms to compute a minimal singular
region along with the generic identification structure. On the other side of the spectrum,
global identification at a randomly drawn parameter value implies generic identification.

Another identification theorem (Theorem 2) says that the identification structure of dynamic
discrete models stabilizes after some finite time horizon. A corollary of Theorem 2 is that
if a dynamic discrete model is identified from its infinite-horizon joint distribution, then it
is identified from a finite-horizon set of marginals (Corollary 3). An example of a smooth
but non-discrete dynamic model identified from its infinite-horizon joint distribution but
not from any finite-horizon set of marginals (Remark 1) shows that Theorem 2 captures a
phenomenon specific to dynamic discrete models.

3



Next, in section 4, I study the asymptotics of hidden Rust models. The panel-data asymp-
totics with many independent and identically distributed individuals and a fixed time hori-
zon, usually considered in the literature, are standard random sampling asymptotics. I focus
on the (non-Markovian) time-series asymptotics, with one individual and many successive
observations. The results carry over directly to a fixed number of individuals and many suc-
cessive observations. Time-series asymptotics are the relevant asymptotic framework in the
empirical application of this paper, inspired by Duflo et al. (2012) and presented in section 6.

Theorem 3 shows that hidden Rust models are locally asymptotically normal. This is a
regularity property: smooth, independent and identically distributed models are the typical
locally asymptotically normal models. This means that the time-series properties of hidden
Rust models are not irregular the way unit-root asymptotics are. Theorem 4 shows that
the maximum likelihood estimator is consistent and asymptotically normal. Theorem 5 is
a Bernstein–von Mises theorem, a result about the asymptotic behavior of Bayesian poste-
riors from a frequentist point of view. Two consequences of Theorem 5 are that Bayesian
posterior estimates, such as the posterior mode, are asymptotically equivalent to the maxi-
mum likelihood estimator and that confidence intervals can be obtained from the posterior
variance. Theorem 5 is obtained by applying the general weakly dependent Bernstein–von
Mises theorem of Connault (2014) to hidden Rust models. A direct consequence of local
asymptotic normality (Theorem 3) is that the maximum likelihood estimator and Bayesian
posterior estimates are statistically efficient in the strong sense of the Le Cam convolution
theorem, meaning they will behave better than any other reasonable estimator under any
reasonable loss function.

In section 5, I look at the practical issue of estimating hidden Rust models and I show that
they remain very tractable.

I explain how the likelihood can be evaluated in an efficient way by building on the statistical
structure of a hidden Rust model. There are two stages. In the first stage, a dynamic pro-
gram exactly similar to the dynamic program of a classical Rust model needs to be solved. I
recommend using an off-the-shelf numerical solver on a dynamic program parameterized in
expected value function. This is often faster than the usual fixed-point algorithm and the
technique automatically takes advantage of the sparsity structure commonly found in these
models. In the second stage, a “discrete filter” can be used to integrate the contribution of
the unobserved state variables out of the likelihood. This is similar in spirit to the Kalman
filter for Gaussian state-space models.
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Tractable evaluation of the likelihood means both the maximum likelihood estimator and
Bayesian posteriors can be computed in an efficient way. The maximum likelihood estimator
can be computed by optimizing over the parameter space in an outer loop while evaluating
the likelihood in an inner loop in two stages, as described above. This inner-outer algorithm
is similar in spirit to Rust’s original nested fixed-point algorithm — without the fixed-point
part and with the discrete filter taking care of the unobserved state variable. Bayesian pos-
teriors can be simulated via Markov chain Monte Carlo methods. This is also an inner-outer
algorithm, not very different from maximum likelihood. The inner loop is the same. The
outer loop “samples” from the likelihood as opposed to finding its maximum. These two
estimation methods belong to the tradition of Rust’s nested fixed-point algorithm. I also
comment about the possibility of constrained optimization approaches, as in Su and Judd
(2012), and 2-step estimators in the spirit of Hotz and Miller (1993).

In section 6, the tools developed in this paper are applied to a structural model of financial
incentives inspired by Duflo et al. (2012). Teacher attendance data was collected by the
authors in a region of rural India where teacher absenteeism is a significant issue. I use the
attendance data on a group of teachers treated with a progressive pay scheme. The data
Following the authors’ observation that the data has important unobserved persistence fea-
tures, I set up a hidden Rust model whose unobserved state captures dynamic heterogeneity
in the teachers’ unobserved willingness to work. Fast2 full-information3 estimation of the un-
observed state transition matrix provides interesting insights into the dynamic heterogeneity
structure.

Going beyond hidden Rust models, I argue in section 7 that many of this paper’s ideas
can be applied to more general “hidden structural models.” On the identification front, the
identification results of this paper have already been stated for general discrete and dynamic
discrete models. On the asymptotic front, the results apply directly to other dynamic discrete
models with dynamics similar to those of hidden Rust models. On the estimation front,
marginalization of the unobserved state variable via the discrete filter applies to any dynamic
discrete model. If there is no tractable equivalent to “solving the dynamic program” in the
hidden structural model of interest, constrained optimization as in Su and Judd (2012) can
be used.

2The MLE is computed in around three seconds on an average 2013 desktop computer.
3Duflo et al. (2012) uses an alternative model of unobserved persistence, with autoregressive random

utility shocks. The model has to be estimated by simulated moments on a subset of moments.
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1.2 Literature review

Some econometric aspects of dynamic discrete choice models with hidden state have been
considered previously in the literature. In terms of identification and asymptotics, there are
also relevant results in the statistical literature on hidden Markov models.

On the identification side, a potentially useful approach to identification can be found in
Hu and Shum (2012) and An et al. (2014) (see also Kasahara and Shimotsu (2009) for the
particular case of heterogeneity, i.e., static mixing). Both papers give sufficient conditions
for global identification that require checking the invertibility of a number (as many as the
dimension of the observed state) of square4 matrices of marginal probabilities. In the origi-
nal papers, the conditions must be checked for all parameter values θ. Invoking this paper’s
Theorem 1, if the conditions are verified at a randomly drawn parameter θ?, then generic
identification follows.

Hu and Shum’s (2012) and An et al.’s (2014) results apply only to models with some level
of regularity,5 whereas hidden Rust models can be very singular in applications, because of
assumptions such as structural zero transition probabilities and conditional independences.6

In Rust’s (1987) famous bus example, 97% of the coefficients of the conditional state tran-
sition matrix are structural zeros because a bus’s mileage can increase by zero, one or two
brackets on each trip, out of 90 possible mileage brackets observed in the sample. Figure 9
in appendix section A14 pictures the structure of the conditional state transition matrices
in the model of section 6; the sparsity is even higher at 98%.

Discrete models have generic identification features. This is a well-identified phenomenon in
the algebraic statistics literature (Allman et al. (2009)). Structural assumptions can interact
with these features, making one-size-fits-all sufficient conditions for identification hard to en-
vision. This is a major motivation for developing a convenient, systematic, model-by-model

4In the discrete context, the theorems apply to models where the unobserved variable xt and the observed
variable yt have equal dimension. In a hidden Rust model typically dx � dy, but one can try to check the
sufficient conditions for an aggregate observed variable g(yt), dim(g(y)) = dim(x). There is a combinatorial
explosion in the possible ways of aggregating g(yt).

5For instance, under Hu and Shum’s (2012) Theorem 1, a stationary model is identified from 4 time
periods, whereas it is known that particular stationary hidden Markov models may require an arbitrary
number of time periods to be identified (Gilbert, 1959).

6For instance hidden Rust models fall badly on the singular region of Petrie’s (1969) classical generic
identification theorem for hidden Markov models. One of the sufficient conditions for identification in Petrie
(1969) is that the transition probabilities from non-observables to observables be non-zero for all possible
pairs of values. In a hidden Rust model cast as a hidden Markov model with “unobservable” zt = (xt, st, at)
and observable yt = (st, at), the relevant transition probabilities are zero for most pairs of values.
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approach to identification analysis. This paper’s results are a first step in this direction.

Gilbert (1959) gives an explicit bound7 for stable identification in the case of stationary hid-
den Rust models. Theorem 2 applies to much more general models, including non-stationary
hidden Rust models.

On the asymptotic theory side, Baum and Petrie (1966) proved consistency and asymptotic
normality of the maximum likelihood estimator for strict hidden Markov models (see Figure
1) under a uniform lower bound assumption on the transition matrix coefficients. Baum and
Petrie (1966) introduced the “infinite-past” proof strategy, which is the strategy I use in this
paper (see section 4.4 for an outline). More recent papers have focused on extending the
results of Baum and Petrie (1966) to continuous observables. Many of those also use the
“infinite-past” strategy; see, in particular, Bickel and Ritov (1996), Bickel et al. (1998), Douc
et al. (2004) and Douc et al. (2011). Douc et al. (2004) in particular studies autoregressive
hidden Markov dynamics with a continuous state and a uniform lower bound on the observed
state’s conditional transition density. By contrast, hidden Rust models have autoregressive
hidden Markov dynamics with discrete state but potentially very sparse conditional transi-
tion matrices.

Figure 1: Autoregressive (left) and strict (right) hidden Markov dynamics. Unobserved
variables are shaded.

72(dxdy − dy + 1) where xt is the unobserved state and yt the observed variable (observed state and
decision).
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On the estimation side, Arcidiacono and Miller (2011) considers models slightly less gen-
eral but very related to the models of section 5. Whereas I develop estimators in the Rust’s
(1987) nested fixed-point tradition, Arcidiacono and Miller (2011) takes a different approach,
developing estimation methods where no dynamic-program solving is required. I come back
to Arcidiacono and Miller’s (2011) estimators in section 5. Norets (2009) focuses on the issue
of computing Bayesian posteriors in a more general but less tractable model of unobserved
persistence for dynamic discrete choice.

The recursive algorithm used in the discrete filter to marginalize out the unobserved state
is known in various fields dealing with dynamic discrete models; see, for instance, Zucchini
and MacDonald (2009).

2 Hidden Rust models

The underlying model of dynamic decision making is identical in a hidden Rust model and in
a classical dynamic discrete choice model. An economic agent makes repeated decisions un-
der a changing economic environment. His choices partially influence the otherwise random
evolution of the economic environment. He takes this impact into account in his rational
decision-making. A hidden Rust model can be thought of as a partially observed dynamic
discrete choice model: the econometrician observes the decision but only part of the state.

Section 2.1 describes hidden Rust models. Section 2.2 explains why the econometric theory
of classical dynamic discrete choice models does not carry over to hidden Rust models and
why they need to be reconsidered — which is what I do in this paper. Section 2.3 comments
about a number of assumptions maintained throughout the paper.
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2.1 Model description

An agent makes dynamic decisions following a stationary infinite-horizon8 dynamic discrete
choice model with discrete state. at ∈ {1, . . . , da} are the choices made by the agent and
a state variable kt ∈ {1, . . . , ds} characterizes the economic environment. The choices
are observed by the econometrician. The state kt = (xt, st) has an observed component
st ∈ {1, . . . , ds} and an unobserved component xt ∈ {1, . . . , dx}. I assume autonomous
Markov dynamics for the unobserved state and no direct feedback from the unobserved state
to the observed state, as in Figure 2.9 I use these specifc dynamics for the time-series asymp-
totic analysis in section 4 (see also section 7 for comments about asymptotic results under
more general dynamics). The estimation techniques of section 5 are valid for more general
dynamics where the state kt is Markov conditionally on at, without further restriction. The
identification results of section 3 are valid much more generally, for any dynamic discrete
model.

Figure 2: A hidden Rust model (unobserved variables are shaded).

The distribution of the data is fully specified by some initial distribution and the following
transition matrices: the transition matrix Q for the unobserved state, the conditional state
transition matrices Πa, Πa,ss′ = P(s′|s, a), and the conditional choice probability matrix
P , Pka = P(a|k). The conditional choice probabilities must be compatible with rational
decision-making, typically indexed by a structural utility parameter θu. Other transition
matrices may be parameterized structurally or simply by their coefficients. All parameters

8Section 2.3 shows that the infinite-horizon assumption is without loss of generality.
9All dynamic assumptions can be stated formally in terms of conditional independence statements such as

P((x, s, a)t+1|(x, s, a)1:t) = P((x, s, a)t+1|(x, s, a)t). Alternatively, a graphical model such as Figure 2 specifies
without ambiguity all the conditional independences. See Jordan and Weiss (2002) for an introduction to
graphical models.
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including θu are grouped in the model’s structural parameter θ. The resulting two-level
structure is leveraged throughout the paper:

structural parameters → transition matrices

→ distribution of the observables

Although the economic variables zt = (xt, st, at) follow a Markov chain, the observed data
yt = (st, at) is not Markovian of any order. The log-likelihood can be written:

LT (θ) = LnpT (P (θ), Q(θ),Π(θ))

where Lnp is a “non-parametric” log-likelihood:

LnpT (P,Q,Π) = 1
T

logP((st, at)2:T |s1, a1;P,Q,Π)

= 1
T

log
∑
x1:T

P(x1|s1, a1)P((s, x, a)2:T |(s, x, a)1;P,Q,Π)

As far as identification and asymptotics are concerned, the specific form of the mapping from
structural parameters to transition matrices does not matter. When it comes to computing
estimators in section 5, I will make the assumption of discounted utilities with additively
separable random utility Gumbel shocks, as in Rust (1987). Since the decision-making is
identical in the fully and partially observed models, standard results aboout the Rust model
will apply: Bellman equation, logit form of the conditional choice probabilities, etc. To make
the paper self-contained, the relevant facts will be recalled in section 5.

Example: In section 6, I consider a model of financial incentives inspired by Duflo et al.
(2012). Teachers decide whether to go to work (at = 1) or not (at = 2) every day. On the
last day of the month, they are paid a wage w(st) based on the number of days they have
worked during the month. On a given day, the observed state st includes the number of days
worked so far during the month as well the number of days left in the month. As stressed
in Duflo et al. (2012), the financial incentive structure does not account for the observed
dynamic patterns: there seem to be important unobserved persistence factors. I use a hidden
Rust model to account for the unobserved persistence. xt will be a general willingness-to-
work variable, which can capture unobserved dynamic effects at various frequencies such as
health accidents, the need to travel, a dynamic type heterogeneity across teachers, etc. The
structural parameters include the unobserved state transition matrix and utility parameters.
We can estimate, in rupees, the value of leisure at different willingness-to-work levels.
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2.2 The econometrics of hidden Rust models require new argu-
ments

Figure 3: A classical dynamic discrete choice model.

In a classical dynamic discrete choice model, the econometrician observes zt = (kt, at) =
(st, at) in full. The good econometric properties of these models are well-known; see, for in-
stance, Aguirregabiria and Mira (2010). The fact that the observed data zt is Markov plays
a central role. In terms of identification, the model is identified as soon as the transition
matrices (P,Π) are identified, that is to say, as soon as the mapping θ → (P,Π) is injective.
In terms of asymptotics, the time-series asymptotic properties are relatively straightforward
thanks to the Markov structure. In terms of computing estimators, there are two popular
methods. The maximum likelihood estimator computed with Rust’s nested fixed-point al-
gorithm relies on the fact that the probability of a sequence of observations is the product
of the transition probabilities. Two-step estimators in the spirit of Hotz and Miller (1993)
rely on the fact that transition probabilities can be consistently estimated by counting the
transitions “in data.”

Classical dynamic discrete choice models achieve a rare combination of being fully struc-
tural and very tractable. Their one major shortcoming is that all the variables relevant to
decision-making must be observed; in particular, there can be no unobserved persistence or
heterogeneity.

Hidden Rust models correct this shortcoming by allowing unobserved persistence patterns
to be carried by the unobserved state variable. At the same time, hidden Rust models
remain fully structural and this paper shows that they also have good econometric properties.
However, new arguments are needed. In terms of identification, two different sets of transition
matrices (P,Q,Π) could give rise to the same distribution of the observables. In terms
of asymptotics, the observed data is not Markovian of any order, making the asymptotic
analysis much harder. For instance, the log-likelihood cannot even be written as an ergodic
sum. In terms of computing estimators, path probabilities cannot be computed by just
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following the transition probabilities along an observed path and we cannot form consistent
estimates of P and Q because we do not observe transitions in data.

2.3 Discussion about some assumptions

This paper focuses on stationary infinite-horizon models without loss of generality. Under
the additively separable Gumbel assumption, any finite-horizon model can be formally cast
as an equivalent stationary infinite-horizon model. If you optimize over your yearly savings
and consumption in this life, it does not matter if you have infinitely many similar lives
waiting for you after the current one or none at all, as long as this life’s choices have no im-
pact on the next. In practice, this is done by adding time to the state variable and infinitely
repeating the finite-horizon model, drawing the initial state randomly at each renewal. See
appendix section A10 for an example. The resulting stationary infinite-horizon model will
have very sparse transition matrices, something that the technique described in section 5.2
takes advantage of for efficient likelihood evaluation. See the discussion in section 5.2.

Another assumption is that the state variable is discrete. There are at least two reasons for
making this assumption. First, discreteness is a central feature in many economic models
and as such deserves to be examined carefully in and for itself. For example, state variables
are often restricted to evolve from one value to only a handful of other values in one pe-
riod. This results in transition matrices with many zeros, which is an opportunity when it
comes to solving the dynamic program (see section 5) but a challenge for identification and
asymptotics (sections 3 and 4). Second, many insights carry over from discrete models to
continuous ones: discreteness allows us to focus on statistical issues, without worrying about
issues of numerical approximation of continuous quantities by discrete ones in computers.
On the other hand, this paper is not taking advantage of the fact that transition probabilities
are likely to vary smoothly as functions of the state variables. The extension of hidden Rust
models to various continuous settings is an interesting research question.

Two other assumptions are that the model is well-specified and that the number of un-
observed states is known. From one point of view, the unobserved state is here to carry
unobserved persistence patterns in the data and has no literal real-world counterpart; then
thinking about misspecification is relevant. From an opposite point of view, consistently
selecting the true dimension of the unobserved state variable matters. These two points of
view are not strictly incompatible. Both directions would be interesting to pursue.
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3 Identification

This section studies identification in hidden Rust models and discrete econometric models
in general. The results are obtained from an algebro-geometric point of view after the ques-
tion of identification in discrete models (such as hidden Rust models) is cast as a system of
multivariate polynomial equations. All proofs are in appendix section A11. A fully worked
out example of a generically identified model, complete with an explicit minimal singular
region, is given in appendix section A11.5.

Section 3.1 casts the issue of identification in hidden Rust models as a polynomial system.
Section 3.2 shows that discrete models have a generic identification structure (Theorem
1). Section 3.3 shows that dynamic discrete models have a stable identification structure
(Theorem 2). Section 3.4 looks at practical issues of computing identification in particular
models.

3.1 Identification in discrete models as a polynomial system

In a hidden Rust model the mapping from structural parameters θu to conditional choice
probabilities is usually not polynomial; however, the mapping from transition matrices
(P,Q,Π) to the probability distribution of the observables is polynomial in the individ-
ual coefficients of (P,Q,Π), or at least rational. Indeed, the probability of observing a given
path y1:T = (s1:T , a1:T ) is the sum of the probabilities of all possible paths (x1:T , y1:T ), and the
probability of a path (x1:T , y1:T ) is the product of initial and transition probabilities along
the path:

P(y1:T ) =
∑
x1:T

P(y1:T , x1:T ) =
∑
x1:T

P(x1, s1, a1)
T−1∏
t=1

Qxtxt+1Πat,stst+1Pkt+1at+1

There are three cases. If the initial distribution is known, then P(y1:T ) is a polynomial func-
tion of the coefficients of (P,Q,Π). If the initial distribution is estimated, then P(y1:T ) is a
polynomial function of the coefficients of (P,Q,Π) and the initial distribution. If the initial
distribution is assumed to be the stationary distribution, then it is a rational function of the
coefficients of (P,Q,Π) (as an eigenvalue) and thus P(y1:T ) is a rational function of the coef-
ficients of (P,Q,Π). In all cases, P(y1:T ) is a rational mapping f(θnp;y1:T )

g(θnp;y1:T ) of a “non-parametric
parameter” θnp, which contains the non-zero coefficients of (P,Q,Π) and those of the initial
distribution when applicable.
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If ΦT is the mapping from θnp to the distribution of Y1:T , i.e. to all dTy probabilities P(y1:T ),
then for any θnp, θ̄np:

ΦT (θnp) = ΦT

(
θ̄np
)
⇐⇒ ∀y1:T ,

f (θnp; y1:T )
g (θnp; y1:T ) =

f
(
θ̄np; y1:T

)
g
(
θ̄np; y1:T

)
⇐⇒ ∀y1:T , f (θnp; y1:T ) g

(
θ̄np; y1:T

)
= f

(
θ̄np; y1:T

)
g (θnp; y1:T )

⇐⇒ FT
(
θnp, θ̄np

)
where FT is a system of dTy multivariate polynomial equations.

A hidden Rust model is (non-parametrically) identified at θ̄np if:

∀θ̄, ΦT (θnp) = ΦT

(
θ̄np
)

=⇒ θnp = θ̄np

This means we can study non-parametric identification of a hidden Rust model by studying
the set of solutions to a polynomial system, which is what I do in this paper.

Non-parametric identification is not the same as identification at the structural level. There
are at least three reasons why studying identification at the non-parametric level is inter-
esting. First, generic identification at the non-parametric level as in Theorem 1 is expected
to carry back to generic identification at the structural level. Once a specific mapping from
structural parameters to transition matrices is specified (for instance, with the assumption
of additively separable Gumbel shocks), it is a matter of showing that the image of this
mapping10 intersects cleanly with any variety in the space of transition matrices. Second,
the non-parametric level is where we have the best theoretical and computational tools to
attack11 the issue of identification. Third, non-parametric identification is key from a 2-step
estimation perspective, where the transition matrices are estimated in a first step and then
projected on the structural parameter space.

10Although this is not enough to conclude, note that, under the assumption of additively separable Gumbel
shocks, a direct argument already shows that the mapping cannot be polynomial (suppose it is and derive a
contradiction using the dynamic program equation (DPv) in section 5).

11It is not a coincidence that the identification results of Kasahara and Shimotsu (2009) or Hu and Shum
(2012) are obtained at the non-parametric level. Although the approach is not explicitly algebro-geometric,
all the sufficient conditions in these two papers can be formulated as “if Fs(θnp) 6= 0 then the model is
identified,” where Fs is a polynomial function in transition matrix coefficients. In section 3.2, it will become
apparent that these are explicit but weaker (the singular region might be too large) occurences of Theorem
1 in particular discrete models.

14



3.2 Discrete models have a generic identification structure

Motivated by the example of hidden Rust models, I define a discrete model as any mapping Φ
from a parameter space Θ to the distribution of some observable such that the identification
equation can be written as a (not necessarily finite) system F of polynomials:

Φ(θ) = Φ (θ?) ⇐⇒ F (θ, θ?) = 0

This definition includes the usual “discrete models,” such as discrete mixtures of discrete
random variables, but also many parametric families of continuous random variables.

The results of this section apply to all discrete models. All proofs are in appendix section A11.

Theorem 1: Generic identification structure
Let Φ be a discrete model. There is a unique minimal singular
region Θs such that:

(i) if θ?1 6∈ Θs and θ?2 6∈ Θs, then θ?1 and θ?2 have the same
identification structure.

(ii) Θs is the zero-set of a non-zero polynomial system.

Minimality is for the inclusion.

Θ

Θs

Θg

We call the complement of the singular region the generic region Θg = Θ \Θs.

The meaning of “having the same identification structure” is technical12 and is explained
in more detail in appendix section A11. The case of particular interest is when the model
is generically identified. To handle cases of label-switching, suppose we know there are nls
observationally equivalent parameter values, meaning Φ(θ) = Φ (θ?) has at least nls known
solutions. nls = 1 when there is no label-switching.

Corollary 1: Generically identified models
If the model is identified at any θ? in the generic region, meaning Φ(θ) = Φ (θ?) has exactly
nls complex solutions, then it is identified everywhere in the generic region. In this case the
model is said to be generically identified.

12I say that θ?
1 and θ?

2 have the same identification structure when the sets of θ-solutions to Φ(θ) =
Φ (θ?

1) and Φ(θ) = Φ (θ?
2) seen as Zariski topological sets have equally many irreducible components of each

topological dimension. See Definition 1 and Example 1 in appendix section A11.
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The genericness statement of Theorem 1 is a very strong one: we know that the singular
region is the zero-set of a polynomial system. This is stronger than the two most common
technical definitions of genericness:

Corollary 2:
Suppose Θ = [0, 1]dθ . Then:

(i) Θg is open dense in Θ.

(ii) Θs has Lebesgue measure zero in Θ.

3.3 Dynamic discrete models have a stable identification structure

In this section, again motivated by hidden Rust models, I add a dynamic dimension to the
set-up of the previous section. I define a dynamic structural model as any mapping Φ from
a parameter space Θ to the distribution of a sequence of observables Y1:∞ such that, for any
T , the marginal model ΦT for Y1:T is discrete in the sense of section 3.2, i.e., there is a (not
necessarily finite) system FT of polynomials such that:

ΦT (θ) = ΦT (θ?) ⇐⇒ FT (θ, θ?) = 0

By definition of the product measure, the identification equation for Φ can be written as:

Φ(θ) = Φ (θ?) ⇐⇒ ∀T, ΦT (θ) = ΦT (θ?)

In particular Φ itself is a discrete model in the sense of section 3.2, with associated identifi-
cation polynomial system F = ⋃

T FT . By Φ∞ I will mean Φ.

The results of this section apply to all dynamic discrete models. All proofs are in appendix
section A11.

Theorem 2: Stable identification structure
There is a smallest T0 <∞ such that for any θ?, the set of θ-solutions to ΦT (θ) = ΦT (θ?)
is constant for T0 ≤ T ≤ ∞.

Corollary 3: Infinite-horizon identification implies finite-horizon identification.
If Φ is globally identified for every θ? in a region Θ̄ ⊂ Θ, then there is T0 <∞ such that for
any T ≥ T0, ΦT is globally identified for every θ? in Θ̄.
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Remark 1: Theorem 2 and Corollary 3 capture a phenomenon specific to discrete models.
I give an example of a smooth dynamic model that is identified from an infinite number of
marginals but not from a finite number of them. This shows that Corollary 3 cannot be
generalized beyond discrete models. Consider a sequence Y1:∞ of 0’s and 1’s. Suppose Y1:∞

always has the following structure: a sequence of 1’s (empty, finite or infinite) followed by
a sequence of 0’s (infinite, infinite or empty, respectively). The distribution of Y1:∞ is fully
specified by the decreasing sequence of numbers qT := P(Y1:T = (1, . . . , 1)). Now consider a
model for Y1:∞ from parameter space Θ = [0, 1] as follows: qT (θ) = 1 for 0 ≤ θ ≤ 1/(T + 1),
qT (θ) = 0 for 1/T ≤ θ ≤ 1 and θ → qT (θ) is smooth (infinitely differentiable). Then θ? = 0
is identified from the distribution of the whole sequence (all Yt’s are 1 with probability 1 iff
θ = 0) but not from any set of finite marginals (all 0 ≤ θ ≤ 1/(T + 1) are compatible with
P(Y1:T = (1, . . . , 1)) = 1).

A model can be generically identified before its identification structure stabilizes. The fol-
lowing fact is true for any dynamic econometric model (not only discrete ones):

Fact 1: “more marginals, more identified”
If ΦT1 is globally identified at θ?, then ΦT is globally identified at θ? for every T ≥ T1.

Proof. A system with more equations can only have fewer solutions.

In the particular case of dynamic discrete models, if ΦT1 is generically identified, then
Θg(T ) ⊂ Θg(T ′) for any T1 ≤ T ≤ T ′. If Tg is the smallest T1 such that ΦT1 is generi-
cally identified (Tg can be infinite), then Tg can be arbitrarily smaller, equal or arbitrarily
bigger than T0.

3.4 Computing identification in practice

A complete identification analysis in a given discrete model consists of computing both the
minimal singular region and the generic identification structure. The algebro-geometric point
of view, which was I use as a theoretical basis to obtain the identification results of sections
3.2 and 3.3, also provides computational tools. Some of these tools are surveyed in appendix
section A11.4. See also appendix section A11.5, where the minimal singular region and the
generic identification structure are computed in a toy model. To put it in a nutshell, there
are techniques to compute exactly the minimal region, a singular region close to the minimal
region, and a singular region potentially much larger than the minimal one, in decreasing
order of computational complexity. These methods are very computationally intensive.
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Theorem 1 suggests an alternative approach to identification analysis. If the model is iden-
tified at a randomly drawn parameter value, then it is generically identified. Symbolic or
numerical methods to solve systems of polynomial equations may be used to solve the equa-
tion Φ(θ) = Φ (θ?) for a fixed random θ?. The computational complexity is less than in the
previous paragraph, where the solution set of Φ(θ) = Φ (θ?) must be considered jointly in
θ and θ?. Alternatively, known identification conditions, as in, e.g., Hu and Shum (2012),
might be checked for a fixed random θ?.

The polynomial structure of the model can be leveraged to check local identification. The
Jacobian of the polynomial mapping from parameters to the distribution of the observables
can be computed symbolically in order to check that it has full rank. However, the results
of this paper do not imply that local identification implies gobal identification. What they
do imply is that if θ? is an isolated θ-solution to Φ(θ) = Φ (θ?), for a random draw of θ?,
then the θ-solution-set of Φ(θ) = Φ (θ?) will have an isolated solution13 for almost every θ?.

4 Asymptotics

This section studies the time-series asymptotics of hidden Rust models for one individual.
The results carry over easily to a fixed number of individuals and many time periods.

Section 4.1 defines the merging time of a Markov chain. Section 4.2 states the assumptions
used in the asymptotic analysis. Section 4.3 states local asymptotic normality of the model
(Theorem 3), consistency and asymptotic normality of the maximum likelihood estimator
(Theorem 4) and a Bernstein–von Mises theorem for Bayesian posteriors (Theorem 5). All
proofs are in appendix section A12.

4.1 Definition: Merging and the merging time

The so-called merging properties of Markov chains (sometimes called weak ergodicity prop-
erties) play an important role at various stages of the asymptotic analysis. Here I give only
the definitions needed to state the assumptions of section 4.2. Appendix section A12.1 con-
tains a motivated introduction to merging and a description of the role of merging in the
asymptotic analysis of hidden Rust models.

13Generic local identification is not, striclty speaking, guaranteed. In extremely pathological cases it is
possible that Φ(θ) = Φ (θ?)’s isolated solution may be θ′ 6= θ? and that θ? is part of a non-zero-dimensional
component of the generic identification structure!

18



A finite-state Markov chain z is merging if there is a distribution µ�, necessarily unique, such
that:

∀z1, dTV (L(Zt|Z1 = z1), µ�) −−−→
t→∞

0

The ε-merging time τz(ε) of a merging Markov chain is defined as follows, for 0 < ε < 1:

τz(ε) = min
{
t : max

z1
{dTV (L(Zt|Z1 = z1), µ�)} < ε

}

The absolute merging time, or simply the merging time, is (the definition is motivated in
appendix section A12.1):

τz = inf
0≤ε<1

τz(ε/2)
(1− ε)2

A recurrent chain is merging if and only if it is aperiodic. Remember that the recurrent
aperiodic chains are the “nice” chains with fully supported unique stationary distributions
and no periodic behavior at equilibrium.

4.2 Assumptions

zt = (xt, st, at) is generated by an arbitrary initial distribution µ? along with transition
matrices P (θ?), Q (θ?) and Π (θ?). Θ is a compact subspace of Rdθ and θ? is in the interior
of Θ. The econometrician observes yt = (st, at) for 1 ≤ t ≤ T . There is no hope of estimating
the initial distribution from just one time series, and the econometrician is not likely to know
µ?: I allow misspecification of the initial distribution. The log-likelihood14 is computed under
the assumption that the data are generated with some arbitrary initial distribution µ:

LT (θ) = 1
T

logPθ,µ (Y2:T |Y1)

The observed data Y1:T have non-Markovian dynamics. It is not clear a priori that the model
and estimators have good time-series asymptotic properties. For instance, the log-likelihood
cannot be written as an ergodic sum. Successive conditioning gives only:

LT (θ) = 1
T

T−1∑
t=1

logPθ,µ (Yt+1|Y1:t)

The theorems of section 4.3 show that the model does have good time-series asymptotic prop-
erties, and section A12.3 explains how the log-likelihood can be asymptotically approximated
by an ergodic sum using an “infinite-past” strategy.

14I use the conditional log-likelihood for convenience. This is without consequence in the time-series
context.
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I make the following assumptions:

Assumption (A1): Compactness of Θ and smoothness of the model
Θ is a compact subspace of Rdθ and the functions θ → P (θ), θ → Q (θ) and θ → Π (θ) are
three times continuously differentiable.

Assumption (A2): z is merging
For any θ ∈ Θ, z is recurrent and merging (equivalently: recurrent and aperiodic).

Assumption (A3): Identification15

If θ, θ′ ∈ Θ induce the same joint stationary16 distribution on Y−∞:∞, then θ = θ′.

Assumption (A4): Mixing properties of the unobserved state x
The transition matrix Q for the unobserved state has full support.

Assumption (A5): Prior mass
The prior is absolutely continuous with respect to the Lebesgue measure in a neighborhood of
θ?, with a continuous positive density at θ?.

(A2) together with (A1) has the important consequence that z is uniformly merging over Θ,
in the sense that the merging time τz(θ) is uniformly bounded over Θ (see appendix section
A12.2). Recurrence in (A2) is not used for any other purpose than bounding uniformly τz(θ).
If needed, (A2) could be relaxed to z being merging without being necessarily recurrent, as
long as z remains uniformly merging. It is even possible that merging and compactness are
already sufficient conditions for uniform merging, without recurrence — although I do not
know a proof of this.

Along with smoothness and compactness (assumption (A1)), assumption (A4) implies that
the coefficients of Q are uniformly lower bounded by some q > 0. This is used in the proofs
of the limit theorems for the log-likelihood, score and information under stationarity (in
appendix section A12.4). Assumption (A4) could probably be relaxed to weaker mixing
properties with some work; see comments in section 7.

15In the context of section 3, assumption (A3) says that the model is generically identified (in the sense
of Corollary 1) and that Θ is a subset of the generic region.

16(A2) implies that z has a unique marginal stationary distribution µ�(θ) under θ. µ�(θ) along with
P (θ), Q (θ) and Π (θ) induces a stationary distribution on the Markov chain Zt = (Xt, Yt). Note that
the identification assumption bears on the stationary distribution, although the true distribution of Yt is
not necessarily the stationary one. This is enough, thanks to the fact that Yt will merge to its stationary
distribution as T increases.
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4.3 Asymptotic theorems

I state three asymptotic theorems and I comment on their implications. Theorem 3 shows
that hidden Rust models are uniformly locally asymptotically normal, meaning the log-
likelihood has a certain asymptotic stochastic quadratic approximation around the true pa-
rameter value. Local asymptotic normality is a regularity property of hidden Rust models,
which holds independently of the estimation strategy. In particular, it is stated with respect
to the true initial distribution µ? and not the econometrician’s misspecified µ. Theorem
4 shows that the maximum likelihood estimator is well-behaved asymptotically. Theorem
5 shows that Bayesian posteriors are also well-behaved asymptotically, from a frequentist
perspective.

Let `T (θ) = logPθ,µ?(Y2:T |Y1) be the non-scaled, well-specified log-likelihood, σT = ∇θ?`T (θ)
the non-scaled score and ∆T = σT/

√
T . Under (A1) to (A4):

Theorem 3: Uniform local asymptotic normality
∆T

θ? N (0, I) where I is invertible, and for any sequence of random variables hT
Pθ?−−→ h:

`T
(
θ? + hT/

√
T
)

= `T (θ?) + h′∆T −
1
2h
′Ih+ oθ?(1)

Let θ̂T = argmax
θ∈Θ

LT (θ) be the maximum likelihood estimator. Under (A1) to (A4):

Theorem 4: Consistency and asymptotic normality of the maximum likelihood
θ̂T is strongly consistent:

θ̂T
θ? as−−−→ θ?

Furthermore, θ̂T is asymptotically normal:

√
T
(
θ̂T − θ?

)
θ? N (0, I−1)

Let qT be the Bayesian posterior distribution. Under (A1) to (A5):

Theorem 5: Bernstein-von Mises theorem

dTV
(
qT ,N

(
θ̂T , I

−1/T
))

Pθ?−−→ 0

Proof. See section 4.4 for an outline and appendix section A12 for complete proofs.

21



Local asymptotic normality (Theorem 3) is before all17 a regularity property. The typical lo-
cally asymptotically normal models are the smooth, independent and identically distributed
models. In a times-series context, non-unit-root autoregressive models are locally asymp-
totically normal, but unit-root models are not locally asymptotically normal. An important
consequence of Theorem 3 is that the maximum likelihood estimator is statistically efficient
in the strong sense of the Le Cam convolution theorem, meaning that the maximum likeli-
hood estimator is optimal against a large class of loss functions. This is much stronger than
having the smallest asymptotic variance among all the asymptotically normal estimators.
Theorem 3 is also a key technical step toward Theorem 4 and Theorem 5 (see the proof out-
line, section 4.4). See van der Vaart (1998) for more information about the local asymptotic
normality property.

Bayesian posteriors can be thought of as functions from the data to the distributions on Θ,
as much as standard estimators are functions from the data to the points in Θ. From this
perspective, their asymptotic properties can be studied exactly similar to the way we study
the asymptotic properties of the maximum likelihood or other classical estimators. This is
what the Bernstein–von Mises theorem (Theorem 5) does. Theorem 5 says that Bayesian
posteriors will be asymptotically Gaussian, centered at the maximum likelihood estimator
and with a variance-covariance matrix 1/T times the asymptotic variance-covariance ma-
trix of the maximum likelihood estimator. This is a well-known phenomenon in smooth
independent and identically distributed models. As a consequence of Theorem 5, posterior
statistics such as the mean,18 mode or median are asympotically equivalent to the maximum
likelihood estimator. Consistent confidence intervals can be obtained from computing the
Bayesian posterior variance. The fact that the asymptotic behavior of Bayesian posteriors
does not depend on the prior shows that the influence of the prior fades away with time.

17At a literal level, Theorem 3 says that the log-likelihood admits an asymptotic stochastic quadratic
approximation around the true parameter value, in a suitably uniform sense apparent in the fact that the
sequence hn can be data-driven (random). Uniformity is used to show asymptotic normality of the maximum
likelihood estimator. Local asymptotic normality is obtained via a Taylor expansion of the log-likelihood,
similar to the smooth independent and identically distributed theory. The difficulty is to show that the
relevant limit theorems hold in the time-series context of hidden Rust models.

18Because Θ is compact, all posterior moments exist.
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4.4 Outline of the proofs

This section describes the five steps involved in proving Theorem 3, Theorem 4 and Theorem
5. The proofs themselves are given in full in appendix section A12.

First, I prove three limit theorems assuming the data is stationary but allowing for a slightly
misspecified likelihood computed with a wrong initial distribution µ, instead of the station-
ary µ�. The three limit theorems are a uniform law of large numbers for the log-likelihood,
a central limit theorem for the score and a uniform law of large numbers for the observed
information. This first step is where most of the technical work is done. The general “infinite-
past” strategy I use is described in appendix section A12.3. A point of particular interest is
the use of a vector ergodic theorem, valid for random vectors taking value in seperable met-
ric spaces, to obtain a uniform law of large numbers directly rather than through pointwise
limits and stochastic equicontinuity type arguments.

Second, I extend these limit theorems to the case where the data is nonstationary. I use an
argument based on the merging properties of the chain. As far as I know, this argument
is new. It can be used to extend stationary limit theorems to nonstationary ones in gen-
eral Markovian contexts. I motivate this new argument in detail in appendix section A12.5.1.

Third, uniform local asymptotic normality of the model (Theorem 3) follows from the central
limit theorem for the score and the uniform law of large numbers for the observed information.

Fourth, I show that the maximum likelihood estimator is consistent. Asymptotic normality
of the maximum likelihood estimator follows from the consistency and uniform local asymp-
totic normality of hidden Rust models (Theorem 4).

Fifth, I prove Theorem 5 by checking that the assumptions of the general weakly dependent
Bernstein–von Mises theorem from Connault (2014) are verified. The main assumptions of
that theorem are local asymptotic normality19 and the existence of a uniformly consistent
estimator. Stable identification (Theorem 2) implies that hidden Rust models are identified
from the marginals at some finite horizon T0. I show that a frequency estimator is uniformly
consistent for these marginals using concentration inequalities for Markov and hidden Markov
chains recently derived in Paulin (2014).

19One major motivation in writing Connault (2014) was to obtain a Bernstein–von Mises theorem valid
under little more than local asymptotic normality, in the spirit of Le Cam’s (1986) theorem for smooth
independent and identically distributed models (see also van der Vaart (1998)).
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5 Estimation

This section shows how to efficiently compute the maximum likelihood estimator and Bayesian
posteriors in hidden Rust models. I assume that choices are made based on flow utilities
discounted with additively separable Gumbel shocks, as in Rust (1987). The high tractabil-
ity of hidden Rust models is a major advantage compared to other models of unobserved
persistence for dynamic discrete choice. The structure of the likelihood reflects the 2-level
structure of hidden Rust models:

structural parameters → transition matrices

→ distribution of the observables

The first level requires solving a dynamic program exactly as in a classical Rust model. At
the second level, the unobserved state can be marginalized out of the likelihood efficiently,
thanks to a recursive algorithm similar in spirit to the Kalman filter.

In this section, I relax the state dynamic assumption made in section 2. I allow for the general
dynamics usually found in dynamic discrete choice models, namely the state kt = (xt, st) is
Markov conditional on choice at. This includes as a particular case the dynamics considered
in Arcidiacono and Miller (2011). I call Ma the conditional state transition matrix. Under
the dynamic assumptions of section 2, using a reverse lexicographical order on the state
k = (x, s) = (1, 1), (2, 1), etc., Ma has the following expression:

Ma = Πa ⊗Q

The identification results of section 3 apply to the more general dynamics, but not the time-
series asymptotic results of section 4, although I expect them to remain true under the more
general dynamics; see comments in section 7. Of course, in the case of many independent
and identically distributed individuals and a fixed time horizon, usually considered in the
literature, the dynamic assumption does not matter and the maximum likelihood estimator
is consistent, asymptotically normal and statistically efficient under identification.

I recall some standard facts from dynamic discrete choice theory in section 5.1. I explain
how to evaluate the likelihood efficiently in section 5.2. Maximum likelihood and Bayesian
estimation follow in section 5.3. Two-step estimation and maximum likelihood estimation
by constrained optimization are also possible, although I do not recommend their use in a
typical hidden Rust model (section 5.4).
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5.1 Dynamic discrete choice models with the Rust assumption

For estimation purposes, we assume the agent makes decisions as in Rust (1987). Classical
results from dynamic dicrete choice theory apply: as explained in the introduction, from
the agent’s point of view, it does not matter which variables the econometrician observes.
Tools developed with classical dynamic discrete choice models in mind may be used to re-
lax the additively separable Gumbel assumption. See, for instance, Chiong et al. (2014) for
the Gumbel assumption and Kristensen et al. (2014) for the additive separability assumption.

In this section, I recall some relevant facts from classical dynamic discrete choice theory. All
results are well-known; see, for instance, Aguirregabiria and Mira (2010).

We assume the agent derives an instantaneous payoff equal to the sum of a deterministic
flow utility component ukt,at and a random utility shock εt,at . The agent forms discounted
utilities v based on current flow utilities and expected future realizations of flow utilities and
shocks. The future is discounted with a known factor β:

vkt,at = ukt,at + E
[ ∞∑
s=t+1

βs−t(uks,as + εs,as)
]

At time t, the agent chooses an action at by maximizing his discounted payoff:

at = argmax
a
{vkt,a + εt,a} (1)

The discounted utility matrix v is a stationary, non-random quantity that can be expressed
as the solution of a fixed-point equation. Indeed, it is the unique solution of the standard
dynamic program:

vk,a = uk,a + βE
[
E
[
max
a′
{vk′,a′ + εa′}

∣∣∣∣k′]∣∣∣∣k] (2)

Under the assumption that the shocks are independent and identically distributed across
time and choices, with a centered extreme value Gumbel distribution, the expected utility
before the shocks are realized Vk = E [maxa{vk,a + εa}] (sometimes called the ex-ante or
interim value function) has a closed-form expression:

Vk = E
[
max
a
{vk,a + εa}

]
= log

(∑
a

evk,a
)

Thanks to at and kt being discrete, the dynamic program (2) can be written in vector/matrix
notation. Let va be the ath column of v, corresponding to the choice a. Let us use the
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convention that functions are applied coefficient-wise where it makes sense, so that, for
instance, eva and log (∑a e

va) are dk × 1 column vectors. The dynamic program (2) is
equivalent to:

va = ua + βMa log
(∑

a′
eva′

)
(DPv)

The decision-making rule (1) implies that choices at are made with constant conditional
probabilities P(at = a|kt = k) = P(a|k). The matrix P , Pka = P(a|k), is the conditional
choice probability matrix. The Gumbel distribution assumption on shocks implies the usual
logit expression for the conditional choice probabilities:

Pa = eva∑
a eva

From an econometric point of view and given a parameterization of flow utilities, the above
steps induce mappings θu → u→ v → P . The image of the resulting mapping θu → P con-
tains the transition matrices compatible with rational decision-making as specified by the
model. Computing θu → P is the first stage of evaluating the likelihood, the second stage
being the marginalization of the unobserved state component. u→ v is the computationallly
expensive part of computing θu → u→ v → P and is usually solved by fixed-point iteration,
using the fixed-point structure of the dynamic program (DPv).

There is an alternative route θu → u → V → P to computing θu → P . Indeed, V is the
unique solution to the following equation, which I call the dynamic program20 parameterized
in V : ∑

a

eua+(βMa−I)V = 1 (DPV)

Proof. (i) V is a solution. V = log (∑a e
va) implies eV = ∑

a e
va = ∑

a e
ua+βMaV or equiva-

lently ∑a e
ua+(βMa−I)V = 1.

(ii) V is the unique solution. Let Ṽ be any solution of (DPV). Let us show Ṽ = V .
Define ṽa = ua + βMaṼ . ∑

a e
ua+(βMa−I)Ṽ = 1 implies Ṽ = log (∑a e

ṽa) implies ṽa =
ua + βMa log (∑α e

ṽα). Then ṽa = va because (DPv) has a unique solution and finally
Ṽ = log (∑a e

va) = V .

The conditional choice probabilities are then given by Pa = eua+(βMa−I)V .

20By abuse of language; this is not a Bellman equation.
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5.2 Evaluating the likelihood

Evaluating the likelihood involves two steps: solving the dynamic program and marginalizing
out the unobserved state.

To solve the dynamic program, i.e., to compute P at a given value of θu, I recommend solving
for V in (DPV) seen as a system of nonlinear equations:

F (V ) =
∑
a

eua+(βMa−I)V − 1 = 0

Then Pa = eua+(βMa−I)V . The Jacobian is easily computed. If diagm(W ) is the diagonal
matrix whose diagonal is the vector W :

Ḟ (V ) =
∑
a

diagm
(
eua+(βMa−I)V

)
(βMa − I)

An off-the-shelf numerical solver can be used. Convergence will usually be faster than with
the usual fixed-point iteration method, especially for values of β close to 1. The applicability
of the nonlinear system point of view for dynamic programming is well-known (Rust, 1996),
but, as far as I know, has never been used in the dynamic discrete choice context. This
approach can be used in classical Rust models, since the dynamic program is identical.

A major advantage of the nonlinear system point of view is that it will automatically take
advantage of the sparsity structure of M . In applications, M is often extremely sparse. For
example, it is 97% sparse in Rust (1987) and 98% sparse in Duflo et al. (2012) (see section
6 and Figure 9 in appendix section A14). Not only will evaluating F and Ḟ involve one
sparse matrix multiplication21, but the Jacobian Ḟ itself will inherit (βMa − I)’s sparsity
structure. Numerical solvers take advantage of sparse Jacobians. In the empirical model
of section 6 (dk = 756, da = 2), it takes around 10 milliseconds to solve F (V ) = 0 with
numerical precision 10−8.

The nonlinear system point of view can also be applied to (DPv), although (DPV) is a sytem
of size dk and (DPv) is a system of size dkda, or dk(da − 1) when solved in ∆va = va − v1,
a > 1 (the ∆va’s are enough to compute P ). A drawback of the nonlinear system point of

21Rust (1987) mentions, in a nested fixed-point context, the possibility of using “special band-matrix
linear algebra routines” when applicable. Even greater efficiency can be expected from leveraging the specific
sparsity structure, such as the band structure in Rust’s (1987) example or the Kronecker structure in a hidden
Rust model with Ma = Πa⊗Q. I recommend going beyond the widely available sparse matrix routines only
if it is clear that solving the dynamic program is the computational bottleneck.
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view is that convergence is not guaranteed as it is for the iterated fixed-point algorithm.

As explained in section 2.3 (see also an example in appendix section A10), finite-horizon mod-
els can be cast as stationary infinite-horizon models. For finite-horizon models, backward-
solving algorithms can usually be written to compute P faster than by solving (DPV) in
the equivalent stationary infinite-horizon model. In the empirical model of section 6, a
backward-solving algorithm is 10 times faster. Writing backward-solving algorithms can
require a substantial amount of work. There is a trade-off between using a fast custom back-
ward solving algorithm or an off-the-shelf slightly slower solver. Again, my recommendation
is to turn to backward-solving only when it is clear that the dynamic program stage is the
computational bottleneck.

Turning to marginalizing out the contribution of the unobserved state to the likelihood,
note that a naïve approach would require computing a sum over an exponentially increasing
number of paths as T increases:

LT (θ) = 1
T

log
∑
x1:T

P(x1|s1, a1)
T−1∏
t=1

P((s, x)t+1|(s, x, a)t;M(θ)) P(at+1|(s, x)t+1;P (θ))

The discrete filter is a recursive algorithm that brings down the computational cost to a
linear function of T . It is a recursive algorithm on a particular vector of joint probabilities.
πt is the row vector whose xth coordinate is the joint probability of xt = x together with the
observed data (a, s)1:t, πt,x = P((s, a)1:t, xt = x). πt obeys the following recursive formula:

πt+1 = πtHt+1 where Ht+1,xx′ = P(xt+1 = x′, (s, a)t+1|xt = x, (s, a)t)

In terms of transition matrices,Ht+1,xx′ = Mat,(x,st)(x′,st+1)P(x′,st+1)at+1 under general dynamics
and Ht+1,xx′ = Qxx′Πat,stst+1P(x′,st+1)at+1 under the dynamics of section 2.

Proof.

P((s, a)1:t+1, xt+1) =
∑
xt

P((s, a)1:t+1, xt+1, xt)

=
∑
xt

P((x, s, a)t+1|(s, a)1:t, xt)P((s, a)1:t, xt)

=
∑
xt

P((x, s, a)t+1|(x, s, a)t)P((s, a)1:t, xt) by the Markov property

28



See Zucchini and MacDonald (2009) for uses of the discrete filter in hidden Markov models.

π1 is initialized according to an initial distribution assumption. As proved in section 4, it
does not matter which initial distribution is used in a time-series context. In panel-data
asymptotics, however, the influence of the initial distribution will not fade away with time
and a misspecified initial distribution can induce a failure of consistency.

The value of P((s, a)1:T ) is simply the sum of the coefficients of πT . Thus, the log-likelihood
can be computed from P and M by doing T matrix multiplications. In practice, because
the probabilities of long paths are typically very small, a variant of the algorithm must be
used for numerical stability; see appendix section A13.

5.3 Tractable estimation of hidden Rust models

The maximum likelihood estimator can be computed by an inner-outer algorithm. The “in-
ner loop” is the evaluation of the likelihood at a given value of the structural parameter θ, as
described in section 5.2. The “outer loop” is optimization over the parameter θ. Gradient-
free or numerical-gradient methods must be used, since the discrete filter of section 5.2 allows
for efficient evaluation of the likelihood but not of its Jacobian. The resulting inner-outer
algorithm is a direct analog to Rust’s (1987) nested fixed-point algorithm, although it does
not use a fixed-point method in its inner loop and, of course, it includes the marginalization
of the unobserved state, absent from a classical Rust model.

Bayesian posteriors can also be computed. A Bayesian posterior can be used in two ways.
The first way is the standard Bayesian interpretation. The second way is as a device to obtain
classical estimators, by considering a posterior statistic such as the mean, mode or median. A
consequence of the Bernstein–von Mises theorem (Theorem 5) is that such posterior estima-
tors will be asymptotically equivalent to the maximum likelihood estimator. Furthermore,
consistent confidence intervals can be obtained from the posterior variance. Since structural
parameters are economically meaningful, priors are easily formulated. Their influence will
fade away as more data come in. A Markov chain Monte Carlo algorithm can be used to ob-
tain a numerical approximation of the Bayesian posterior. For example, under the dynamic
assumptions of section 2, if Π is known and Q is parameterized by its coefficients, a Gibbs
sampler can be used. There are two Gibbs blocks, for each of θu and Q. The θu block can
be updated by a Metropolis-within-Gibbs step with a Gaussian proposal. The Q block can
be updated by a Metropolis-Hastings-within-Gibbs step with a Dirichlet proposal for each
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row of Q.

5.4 Other estimation approaches for hidden Rust models

The estimators I recommend in section 5.3 belong to the tradition of Rust’s nested fixed-
point estimator. Other approaches have proved useful in classical Rust models. Two-step
estimators as in Hotz and Miller (1993) and constrained optimization approaches as in Su
and Judd (2012) can be generalized to hidden Rust models. Arcidiacono and Miller’s (2011)
estimator, which combines ideas from both 2-step and constrained optimization estimation,
is also applicable.

There are at least two different ways of generalizing a 2-step approach to hidden Rust models.

First, the essence of a 2-step approach consists of forming “non-parametric” maximum likeli-
hood estimates of the transition matrices in a first step, and projecting them to a structural
parameter space in a least-squares way in a second step. In a classical Rust model, those
“non-parametric” maximum likelihood estimates are available in closed form by counting
transitions in data. This is not the case anymore in hidden Rust models where part of the
state is unobserved. However, the likelihood can still be numerically maximized at the tran-
sition matrix level. The standard technique for this is known as the Baum-Welch algorithm,
which is a combination of the EM algorithm and the discrete filter (see, e.g., Zucchini and
MacDonald (2009)). This 2-step approach to hidden Rust models is identical to Arcidiacono
and Miller’s (2011) section 6 estimator. Two-step estimation is statistically efficient with a
suitable choice of weighting matrix, but, as Arcidiacono and Miller (2011) points out, it is
known to suffer from poor finite sample performances.

Second, the essence of a 2-step approach consists of projecting a set of observed marginals to
a structural parameter space; basically, a method of moments in a parametric context. The
stable identification theorem (Theorem 2) implies that there is always a finite identifying set
of marginals. In theory, such an approach would be possible. In practice, it is not clear how
to select a good set of marginals. Furthermore, such an estimation approach would likely
have problematic short-sample properties and would not be statistically efficient in general.

Su and Judd’s (2012) constrained optimization approach to computing the maximum like-
lihood estimator has a direct analog in hidden Rust models. Let LnpT (M,P ) be the “non-
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parametric” likelihood parameterized in transition matrices. The following constrained op-
timization program computes the maximum-likelihood estimator:

(
θ̂, M̂ , P̂

)
= argmax

θ,M,P
LnpT (M,P )

such that: F (θ,M, P ) = 0

The discrete filter is used at each iteration to evaluate LnpT (M,P ). F (θ,M, P ) = 0 can be
any constraint that expresses the condition “where M and P are the transition matrices
compatible with θ.” For instance, a constraint could be used based on (DPv) or (DPV).
The crucial property that F (θ,M, P ) = 0 must have is uniqueness of the (M,P ) solution
for each θ. In experiments, the constrained optimization approach did not perform as well
as the direct approach of section 5.3. However, see section 7 for applications in models with
computationally expensive or multiple-solution dynamic programs.

Arcidiacono and Miller’s (2011) section 5 suggests an alternative way of computing the
maximum likelihood estimator based on a constrained EM algorithm. The EM algorithm at
the transition matrix level is modified to take into account a structural constraint, bringing
together 2-step and constrained optimization ideas. An advantage of the constrained EM
algorithm is that it computes the maximum likelihood estimator when it converges. However,
it is not clear that it keeps the increasing-likelihood property of the original EM algorithm.
It would be interesting to study the convergence property of the algorithm. The discrete
filter of section 5.2 could speed up some of the moves in the constrained EM algorithm.
Similar to plain constrained optimization approaches, one must be careful to use a constraint
expressing the “where M and P are the transition matrices compatible with θ” condition.
If the constraint has extraneous solutions, a highest-likelihood selection mechanism will not
rule out selecting transition matrices that do not belong to the model.
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6 A structural model of dynamic financial incentives

One-teacher schools may be hard to monitor in sparsely populated regions. When this is
the case, teacher absenteeism may be a serious issue. To study the effect of financial and
monitoring incentives in this context, Duflo et al. (2012) conducted a randomized experi-
ment in the area of Udaipur, Rajasthan, starting in the summer of 2003. Sixty teachers
were drawn randomly from a population of 120. Their wage was changed from a flat wage
of 1000 rupees22 to a fixed plus variable structure of 500 rupees plus 50 rupees for every day
of work beyond ten days. At the same time, they were given a camera and instructed to
take a picture of themselves with their students at the beginning and the end of each day of
class and to send the pictures to the NGO in charge of the schools. The camera effectively
provided a presence-monitoring device.

The randomized control experiment framework cannot disentangle the monitoring effect from
the financial incentive effect. A structural model is called for. This is what I focus on by
estimating a hidden Rust model as an alternative to Duflo et al.’s (2012) structural model
specifications. Other steps in Duflo et al.’s (2012) empirical study include a reduced-form
analysis of the experiment’s results as well as an examination of the experiment’s effects on
outcomes such as student learning. The conclusion of the paper is that incentives work and
that financial incentives are able to explain most of the observed change in behavior.

Consider a baseline fully observed classical Rust model, as in section 5.1, with choices at = 2
(the teacher works) or at = 1 (the teacher does not work), observed state st including the
number of days left in the month and the number of days worked in the month so far, and
flow utilities with two additively separable components for leisure and money:

u(st, at) = ul · 1[at = 1] + uw · w(st, at) (3)

w(·) is the wage, 500 rupees plus 50 rupees for each day after ten days, paid on the last day
of the month. The authors show that such a baseline model cannot explain the correlation
patterns in the data (see p. 1259 and Appendix Table 1 there, or see Figure 5 below for a
likelihood-based argument). They consider two families of models that add serial correlation
to this baseline model. The first family (models III, IV and V in Duflo et al. (2012), or “AR”
models) are models of unobserved persistence. The unobserved persistence is modelled with
AR(1) random utility shocks hitting flow utilities as in (3). The second family (models

22At the time of the experiment, 1000 rupees were $23 at the real exchange rate, or about $160 at
purchasing power parity.
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VI, VII and VIII, or “shifter” models) are models of observed persistence:23 classical Rust
models where the utility of leisure is higher after a previous day of leisure. Yesterday’s
decision enters the state and the flow utilities are given by:

u (s̃t = (at−1, st), at) = ul1 · 1[at = 1] + ul2 · 1[at−1 = 1] + uw · w(st, at)

While the shifter models are classical Rust models for which the maximum likelihood es-
timator is easily computed with a nested-fixed-point or related algorithm, the AR models
are much less tractable and are estimated in Duflo et al. (2012) by a method of simulated
moments, using a subset of the model’s moments.

Hidden Rust models are alternative, much more tractable models of unobserved persistence.
I estimate a hidden Rust model on Duflo et al.’s (2012) data.24 There are data for 54
teachers, with between 560 and 668 days of data for each teacher. The number of observed
states (ordered pairs of days left and days worked) is 378. Different months have different
numbers of work days, and teachers may get worked days for free in some months. This
gives a little randomness at the start of a new month; otherwise, the evolution of the state
is deterministic. As a consequence, the conditional state transition matrices are 98% sparse.
Figure 9 in appendix section A14 pictures the structure of the conditional state transition
matrices. Figure 4 pictures the evolution of the state in a typical month.
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Figure 4: Teacher 22, month 16.

23In principle, there is a major testable difference between the unobserved-persistence and the observed-
persistence models. The observed data is Markovian in the latter case but not in the former. In practice, the
individual time-series lengths are too short to carry this test here. Using a hidden Rust model for unobserved
persistence, I can select the unobserved persistence hypothesis over the observed persistence one by looking
at the likelihood, which is impossible with an AR model whose likelihood is intractable. See below.

24The data are available at http://dspace.mit.edu/handle/1721.1/39124.
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I estimate hidden Rust models with dx = 2, 3, 4 or 7 unobserved states. The dynamic
assumptions are as in section 2.1, meaning the unobserved states have independent Markov
dynamics. I use a daily discount factor of β = .9995. Teachers have unobserved state specific
leisure utilities, meaning the flow utilities are as follows:

u(xt, st, at) = uxt · 1[at = 1] + uw · w(st, at)

The case dx = 1 is simply the baseline model (3).

Figure 5 represents the maximized likelihood of hidden Rust models with 1 (baseline model),
2, 3, 4 or 7 unobserved states, along with the maximized likelihoods of the shifter model
described above and of a fixed-effects model where the baseline model is estimated separately
for each teacher. These models are not nested but they are all nested by a super-model that
allows for switching among 54 types and a shifter utility component, making the likelihood
comparison meaningful. A hidden Rust model with two unobserved state components al-
ready fits the data better than the fixed-effects model. The fact that a hidden Rust model
with two unobserved states (five statistical parameters) and the shifter model (three param-
eters) fit the data better than a fixed-effects model with 108 parameters demonstrates the
importance of serial correlation.

hidden Rust models

shifter

fixed effects
−2.1×104

−2.05×104

−2×104

−1.95×104

−1.9×104

−1.85×104
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e
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1 2 3 4 5 6 7
number of unobserved states

Figure 5

The estimation results for dx = 2, 3, 4 and 7 are presented on the next page.
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−242.53
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Figure 6: Hidden Rust models estimated for 2, 3, 4 and 7 unobserved states.

Graphical representation of the transition matrices for the unobserved state. The area of each circle is
proportional to the corresponding transition probability. Numerical values of the transition probabilities are
given in Table 4 in appendix section A14. Unobserved state specific leisure utilities are given on the left of
the transition matrices, measured in rupees by normalizing by the estimated utilities of money.

The likelihood always selects a clustered dynamic heterogeneity structure. Note that the
model does not restrict the shape of the transition matrix whatsoever. I have ordered the
sates according to the apparent cluster structure. For instance, with 7 unobserved states,
there are three clusters: {1}, {2, 3, 4} and {5, 6, 7}, with very rare transitions between clus-
ters but relatively frequent switching within the cluster. The fact that the corresponding
leisure utilities are not ranked monotonically indicates that the unobserved dynamic hetero-
geneity structure goes beyond unobserved persistence. The likelihood (Figure 5) also tells
us that the clustered structure is not explained by pure static heterogeneity (fixed effects):
the high and low frequency transitions are important in explaining the data.
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In all cases, one unobserved state is spent on a negative leisure utility state. Negative leisure
utility can be interpreted as a taste for work or fear of being fired. It is an important feature
of the data. This is necessary in order to correctly predict teacher presence in the out-of-
sample control group, which does not have financial incentives. Hidden Rust models pass
this model validation test; see Table 2 below.

As the number of unobserved states grows, so does the magnitude of the estimated leisure
utilities. With seven unobserved states, one day of leisure is worth up to almost ten days
of work (500 rupees). This is mostly due to the estimated utility of money being close to
zero. This may be an artifact due to overfitting the variability of the data to increasingly
open unobserved dynamics. The number of statistical parameters grows like d2

x + 1 with the
number of unobserved states (dx leisure utilities + 1 money utility + dx(dx − 1) transition
probabilities). For this reason, my favorite specification is a hidden Rust model with dx = 3
unobserved states. From now on I focus on this model. See Table 4 in appendix section A14
for the numerical values of the estimated transition matrices for dx = 2, 4 and 7.

Table 1 presents the estimation results with three unobserved states, along with confidence
intervals obtained by computing 200 parametric bootstrap draws.25

Table 1: Hidden Rust model with three unobserved states

utilities (in shock s.d.) leisure utilities (in rupees) transition matrix

u1 u2 u3 uw u1/uw u2/uw u3/uw Q

10.8
(0.34)

8.02
(0.33)

−1.92
(0.64)

0.165
(0.006)

65.4
(1.6)

48.6
(0.31)

−11.6
(4.2)


94%
(0.044)

5%
(0.044)

1%
(0.002)

3%
(0.015)

67%
(0.031)

30%
(0.033)

0%
(0.0006)

19%
(0.043)

81%
(0.043)



Two validation exercises can be carried out. A flat wage of 1000 rupees should predict
behavior in the control group. Furthermore, after the experiment was over the wage structure
of the treatment group was changed to 700 rupees plus 70 rupees after 12 days. Duflo
et al. (2012) reports the average presence in both cases. Table 2 presents the corresponding

25In this hidden Rust model, computing the maximum likelihood with numerical precision 10e-8 takes
typically between 2 and 4 seconds on an average 2013 desktop computer.
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counterfactual attendance probabilities, computed at the maximum likelihood estimate of the
structural parameters. Results from Duflo et al.’s (2012) model V are given for comparison,
although model selection there was based on matching these statistics.

Table 2: Model validation

Hidden Rust model data Model V

wage (rupees) presence
(% of days)

days
(out of 25)

days days

factual 500 + 50 > 10 68.1% 17.0 17.16 16.75
counterfactual 1000 45.8% 11.5 12.9 12.9
counterfactual 700 + 70 > 12 85.7% 21.4 17.39 17.77

The elasticity of labor supply can be computed with respect to a 1% increase in the bonus
wage and with respect to an increase of one day in the minimum number of days before the
bonus starts to apply. This is done in Table 3, along with bootstrap confidence intervals.
While the signs coincide with those of Duflo et al. (2012), I estimate bigger elasticities.

Table 3: Elasticities

Hidden Rust model Model V

wage (rupees) presence
(% of days)

elasticity elasticity

factual 500 + 50 > 10 68.1% – –
counterfactual 500 + 50.5 > 10 68.8% 1.25%

(0.39%)
0.20%
(0.053%)

counterfactual 500 + 50 > 11 66.9% −2.77%
(1.89%)

−0.14%
(0.14%)

Many other counterfactual exercises could be conveniently carried out. Counterfactual dis-
tributions are computed exactly (not simulated) by computing the stationary distribution
of the hidden Rust model at the maximum likelihood value of the structural parameters.
As discussed in section 2.3, this applies to finite as well as infinite-horizon models. For this
reason, computing counterfactuals is very tractable and optimization over counterfactual
policies in order to achieve a given policy objective is easily implemented.
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Specific to hidden Rust models, a maximum likelihood path for the unobserved state variable
can be computed at the maximum likelihood value of the structural parameters, providing
additional insight into the cross-section and dynamic heterogeneity patterns present in the
data. This can be done using an efficient recursive algorithm similar to the discrete filter
of section 5 and known as the Viterbi algorithm; see Zucchini and MacDonald (2009). See
how the Viterbi algorithm picks up outliers in a larger sample of 60 teachers in Figure 10,
appendix section A14.

In this model of dynamic financial incentives, a hidden Rust model is able to account for
cross-section and dynamic heterogeneity patterns in a flexible way. At the same time, it
keeps all the advantages of a fully structural model and is very tractable, both in terms of
maximum likelihood estimation and counterfactual compuations.

7 More general models

Remember the 2-level structure of a hidden Rust model:

structural parameters → transition matrices

→ distribution of the observables

Most of the results of this paper focus on the transition matrices → distribution level of the
model, with a particular emphasis on accommodating structural assumptions such as zero
transition probabilities at the transition matrix level. I used little beyond a reasonable degree
of smoothness for the mapping from parameters to transition matrices. As a consequence,
most of the results of this paper hold directly or are expected to hold for more general
“hidden structural models.” An example of such a hidden structural model is a dynamic
game with n players, unobserved state xt (which might include both private information and
public information unobserved by the econometrician) and public signal st, as in Figure 7.
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Figure 7: Graphical model for a dynamic game.

Resuls on identification, asymptotics and estimation will all apply to more general hidden
structural models, to some extent.

I proved the identification results of section 3 under very general assumptions that any hid-
den structural model will verify.

The time-series asymptotic results of section 4 will hold for any hidden structural model with
autoregressive hidden Markov dynamics, under assumption (A4) that the transition matrix
for the unobserved state has full support. I expect the results to hold beyond assumption
(A4) and also beyond autoregressive hidden Markov dynamics. The dynamic game model
represented in Figure 7 does not have autoregressive hidden Markov dynamics. I believe the
argument in appendix section A12.4 may be extended beyond assumption (A4) with a little
bit of work, but the more interesting question of isolating sufficient conditions for general
dynamic discrete models to have good time-series asymptotic properties will probably re-
quire new arguments

The estimation approach of section 5 closely matches the 2-level structure of the model.
The discrete filter can marginalize out the unobserved state in any dynamic discrete model.
On the other hand, how structural parameters map to transition matrices is specific to the
economic model. Econometric tractability is an incentive for designing theoretical models
with good computational properties at this level. See, for instance, the model of industry
dynamics in Abbring et al. (2013).
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8 Conclusion

Hidden Rust models provide a solution for adding unobserved persistence features to the
dynamic discrete choice framework while maintaining structurality and tractability. I stud-
ied their identification and time-series-asymptotic properties, paying particular attention
to the role of structural assumptions such as zero transition probabilities. I explained how
identification can be attacked at the transition matrix level, and I proved a generic identifica-
tion theorem that provides a theoretical basis for a convenient model-by-model approach to
identification analysis. I proved that hidden Rust models have good time-series asymptotic
properties under weak assumptions. I explained how to compute the maximum likelihood
estimator via an inner-outer algorithm in the spirit of Rust’s (1987) nested fixed-point algo-
rithm.

This paper raises several interesting technical questions. I mentioned some of them in pre-
vious sections. Better tools for computing identification may be designed. The time-series
asymptotic results may be extended to general dynamic discrete models with potentially
sparse structure. For estimation, various model assumptions may be relaxed, in some cases
using existing tools from the dynamic discrete choice literature. More general dynamic dis-
crete models, such as dynamic games, may be considered. There are also interesting issues
I did not touch upon. For example, it would be interesting to investigate the finite-sample
statistical properties of hidden Rust models, as well as the weak identification features in-
duced by failure of identification on the singular region of a generically identified model.

The most interesting challenges for hidden Rust models are empirical. To mention a spe-
cific example, one use of structural models is to make predictions. A hidden Rust model
leaves enough room for economic agents to be rational (the observed state enters a dynamic
optimization program) but not too rational (the unobserved state can account for a wide
range of behaviors). Can this give hidden Rust models an edge over non-economic statistical
models in some situations? For individuals? For firms? Should the decision-making model
be modified, and, if yes, how so? These are all open questions that empirical studies will
help answer.

November 18, 2014
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APPENDICES

A10 Appendix for section 2: Hidden Rust models

I show how a finite-horizon Rust model can be cast as a stationary infinite-horizon Rust
model in a toy example. See section 5.1 for notation.

There are two fishing spots: Close and Far. Bob the fisherman usually fishes at Close but
he keeps an eye on his two private beacons, which tell him exactly how much fish there is
at both spots. Most of the times there is approximately as much fish at Close as at Far
(kt = 1), but sometimes a particularly big shoal shows up at Far (kt = 2). Bob’s average
utility from fishing at Close (at = 1) is normalized to zero, and he derives us > 0 utility on
average from fishing at Far (at = 2) when the shoal is there. There is also a disutility −uf ,
uf > 0, for taking his boat to Far.

u =

0 −uf

0 us − uf


Even when there is no shoal at Far, there might be sufficiently more fish at Far than at Close
for Bob to take his boat to Far. Reciprocally, if a small shoal shows up, Bob might want to
stay at Close, especially if he is afraid of frightening the shoal away for the next time he goes
fishing. In Bob’s country, the fishing season lasts two months. If the shoal shows up in the
first month and Bob goes to Far, there is little chance he will see the shoal again. Otherwise
the chances are somewhat better.

M1 =

2/3 1/3

2/3 1/3

 M2 =

2/3 1/3

5/6 1/6


One way to compute Bob’s discounted utilities is by backward solving. In the second month
the discounted utilities v2 are simply the flow utilities.

With us = 1 and uf = 0.2, we find that in the first month v1 =

0.394 0.194

0.394 1.146

. The

corresponding conditional choice probabilities in the first month and in the second month
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are:

P 1 =

0.550 0.450

0.320 0.680

 P 2 =

0.550 0.450

0.310 0.690


There is a small dynamic effect: Bob goes after the shoal more frequently in the second
month (69.0% rather than 68.0%).

Now suppose that Bob is an immortal fisherman with infinitely many fishing seasons ahead
of him. At the beginning of a new fishing season, the shoal shows up with probability 1/2.
Increase the state variable by including the current month so that this is now a stationary
infinite-horizon Rust model with:

k =



first month, no shoal

first month, shoal

second month, no shoal

second month, shoal


u =



0 −uf

0 us − uf

0 −uf

0 us − uf



M1 =



0 0 2/3 1/3

0 0 2/3 1/3

1/2 1/2 0 0

1/2 1/2 0 0


M2 =



0 0 2/3 1/3

0 0 5/6 1/6

1/2 1/2 0 0

1/2 1/2 0 0


Section 5.2 explains how to compute the corresponding stationary discounted utilities. Note
how M1 and M2 have entire blocks of zeros — the techniques of section 5.2 are particularly
fast when this is the case. We find:

v =



0.816 0.616

0.816 1.568

0.842 0.642

0.842 1.642


P =



0.550 0.450

0.320 0.680

0.550 0.450

0.310 0.690



While the value matrix v is different from

v1

v2

, the conditional choice probability matrix
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P is exactly

P 1

P 2

. This is because the expected values are all the same for the next fishing

seasons beyond the second month. When deciding a course of action, only the current season
matters. Said differently, the choices made during the current fishing season have no impact
on the next ones.

Of course, both models are observationally equivalent and one could compute P 1 and P 2

in the finite-horizon model by pretending that it is only the first of infinitely many fishing
seasons. Although this is not the case for Bob, the flow utilities could also perfectly depend
on the month. In particular, one could discount differently within a season and between
seasons, or not discount within a season as is sometimes done in finite-horizon programs.

A11 Appendix for section 3: Identification

As explained in section 3.1, the question of identification can be cast as a polynomial system
in discrete models. The mathematical field that studies the zero-sets of polynomials is known
as algebraic geometry. I use algebraic geometry to prove the identification results of section
3. Theorem 1 is proved in section A11.2, and the other results are proved in section A11.3.
Algebraic geometry also provides some computational tools that can be used to compute
identification in particular models. I mention some of them in section A11.4. In section
A11.5, I compute the minimal singular region and the generic identification structure in a
toy discrete model, using computational algebraic geometry tools.

In section A11.1, I state the standard definitions and facts from algebraic geometry that I
need in the other sections. This includes the definition of two parameter values “having the
same identification structure” (Definition 1).

The fundamental reason why discrete models have a generic identification structure (i.e., why
Theorem 1 holds) is that zero-sets of systems of polynomial equations are small in ambient
space, which is not necessarily the case for systems of other types of equations (even very
smooth).

A11.1 Relevant notions and facts from algebraic geometry

Algebraic geometry is the study of some geometric objects — such as zero-sets of polynomi-
als — by algebraic means, as well as the study of algebraic objects — such as rings — by
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geometric means. This subsection introduces the concepts and states the facts relevant to
section 3.

Section A11.1.1 covers geometric aspects. The generic identification structure for economet-
ric models, Theorem 1 and corollaries in section 3.2, is obtained mostly through geometric
techniques. Section A11.1.2 covers algebraic aspects. The stable identification structure for
dynamic econometric models, Theorem 2 and corollaries in section 3.3, is obtained mostly
through algebraic techniques. Section A11.1.3 brings together geometric and algebraic as-
pects.

Appendix section A11.5 carries identification analysis in a toy econometric model. It pro-
vides a down-to-earth illustration of the concepts introduced in this section.

See Reid (1988) for an introduction to algebraic geometry. All definitions and facts in this
section are standard. Those facts not proven in Reid (1988), in particular, some of the
properties of the Zariski topology, can be found in the first chapter of Görtz and Wedhorn
(2010).

A11.1.1 The Zariski topology

This subsection covers geometric aspects. The generic identification structure for economet-
ric models, Theorem 1 and corollaries in section 3.2, is obtained mostly through geometric
techniques. In particular, the “generic identification structure” of Theorem 1 is to be under-
stood in the sense of Fact 2 below.

Let K be a field — such as R or C — and K[z] = K[z1, . . . , zn] the set of polynomials in
n variables with coefficients in K. For F = (fi)i an arbitrary collection of polynomials, let
V (F ) denote the sets of zeros of F :

V (F ) = {z ∈ Kn | ∀i, fi(z) = 0}

As F varies in K[z], the sets of zeros V (F ) have all the properties of the closed sets of a
topology. As such they define a topology on Kn called the Zariksi topology. Kn with its
Zariksi topology is called the affine space and is written An(K) or simply A. By a Zariski
topological space I mean a subset of an affine space with its induced Zariski topology.

By the dimension of a Zariski topological space, I will simply mean its topological dimen-
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sion. Dimension is well-behaved for Zariski closed subsets of the affine space. An(K) has
dimension n, points have dimension 0, the zero-set of a non-zero polynomial has dimension
n− 1 (“hypersurface”), etc. A non-empty topological space is called irreducible if it cannot
be written as a union of two closed proper subsets. Among the irreducible closed subsets of
the affine space, those of dimension 0 are the points.

Zariski topological spaces have the following property:

Fact 2: Decomposition in irreducible components
Any Zariski topological space W can be written as a finite union of irreducible components
W = V1 ∪ . . . ∪ VM . This decomposition is unique up to renumbering under the condition
that no Vm is included in another Vm′.

In the context of discrete econometric models (see section 3), I make the following definition:

Definition 1: θ?1 and θ?2 have the same identification structure
θ?1 and θ?2 have the same identification structure if Vθ (F (·, θ?1)) and Vθ (F (·, θ?2)), seen as
Zariski topological spaces, have equally many irreducible components of each dimension.

When the model is identified at θ?, Vθ (F (·, θ?)) has 1 “irreducible component of dimension
zero” (i.e. 1 point, namely θ?) and no other irreducible component, or more generally nls
“irreducible components of dimension zero” when there is label-switching.

Example 1: Consider a model without label-switching. LetWi = Vθ (F (·, θ?i )) for 1 ≤ i ≤ 5.
Suppose the Wi’s have the following decompositions in irreducible components (all Vj’s of
dimension 2):

W1 = {θ?1} W2 = {θ?2} ∪ {θ?3} W3 = {θ?2} ∪ {θ?3} W4 = V4

W5 = {θ?5} ∪ V5 W6 = {θ?6} ∪ V6 W7 = {θ?7} ∪ V7 ∪ V ′7 W8 = {θ 6= θ?8} ∪ V8

The model is (globally) identified at θ?1. θ?2 and θ?3 are observationally equivalent and the
model is locally identified at θ?2 and θ?3. If we were anticipating a label-switching feature
between θ?2 and θ?3, we could consider the model to be globally identified at θ?2 and θ?3. The
model is not locally identified at θ?4. The model is locally identified at θ?5, θ?6 and θ?7, but
not globally identified. θ?5 and θ?6 have the same identification structure but not θ?7. θ?8 is
somewhat of a pathological case with an isolated solution that is not θ?8 (θ?8 must belong to
V8). The model is not locally identified at θ?8, but θ?8 has the same identification structure as
θ?5 and θ?6.
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The Zariski topology has unusual properties. Here is one of them (compare with ]0, 1[ in R
with the Euclidean topology):

Fact 3:
Any non-empty open set is dense in an irreducible Zariski topological space.

The following fact compares the Zariski and the Euclidean topologies if K = R or C.

Fact 4:
If K = R or C, any Zariski open (resp. closed) set is Euclidean open (resp. closed). Non-
empty open sets of An(C) are dense in Cn and Rn. Non-empty open sets of An(R) are dense
in Rn. Proper closed subsets of An(C) have Lebesgue measure 0 in Cn and Rn. Proper closed
subsets of An(R) have Lebesgue measure 0 in Rn. On Rn, the subspace topology inherited
from An(C) and the An(R) topology coincide.

A word about terminology: Zariksi closed subsets of A and irreducible Zariski closed subsets
of A are sometimes called affine algebraic sets and irreducible affine algebraic sets, respec-
tively, or sometimes affine algebraic sets and affine varieties, respectively, or sometimes affine
varieties and irreducible affine varieties, respectively.

A11.1.2 Polynomial ideals

This subsection covers algebraic aspects. The Noetherianity of K[z] (see below) is key to
proving Theorem 2 in section 3.3, about stable identification structure for dynamic econo-
metric models. The correspondance between geometric and algebraic objects, as detailed in
the next subsection, section A11.1.3, is also needed to follow the proofs of section 3.3.

K[z] has a ring structure. The ideals of K[z] are called the polynomial ideals. Remember
that a subset I of a ring R is an ideal of R if it is a subgroup for the addition and if is
absorbing for the multiplication, meaning for any f ∈ I and g ∈ R, fg ∈ I. An arbitrary
family of elements F = (fi)i generates an ideal, written 〈F 〉, as follows:

〈F 〉 = {fi1g1 + . . .+ fiMgM | M ∈ N, gm ∈ R}

For instance in R[z1], 〈1 + z2
1〉 is all the polynomials of which (1 + z2

1) is a factor. Note that
{0} = 〈0〉 and K[z] = 〈1〉 are ideals and that for any ideal I of K[z], 〈0〉 ⊂ I ⊂ 〈1〉.

The Hilbert basis theorem says that K[z] is a Noetherian ring. A ring R is Noetherian if
and only if any ideal I of R is finitely generated, meaning there is f1, . . . , fm ∈ R such that
I = 〈f1, . . . , fm〉. We will use the apparently slightly stronger but in fact equivalent result:
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Fact 5:
A ring R is Noetherian if and only if for any (not necessarily finite) family fi ∈ R there is
a finite subfamily (fi1 , . . . , fim) such that:

〈fi〉 = 〈fi1 , . . . , fim〉

Two types of ideals play an important role in the theory of polynomial rings: radical ideals
and prime ideals. Being prime is a stronger property than being radical: prime ideals are
radical.

The radical
√
I of an ideal I is

√
I = {f | ∃n : fn ∈ I}. Radicals remove multiplicities: for

instance,
√
〈(1 + z1)2〉 = 〈1 + z1〉. Of course, in general

√
I ⊂ I. I is radical if

√
I = I.

I is prime if: for any f1, f2 ∈ R, if f1f2 ∈ I then f1 ∈ I or f2 ∈ I.

In a Noetherian ring such as K[z], any radical ideal I admits a unique decomposition in
prime ideals (up to renumbering and under the condition that no Im is included in another
Im′):

I = I1 ∩ . . . ∩ IM

A11.1.3 Ideals and Zariski closed sets

We can now bring geometric aspects and algebraic aspects together.

For any set F of polynomials, the zero-set V (F ) of F is equal to the zero-set V
(√
〈F 〉

)
of√

〈F 〉. The fact that V (F ) is equal to V (〈F 〉) is easy to see, and the passage to the radical
has to do with the fact that the zero-sets do not remember multiplicities. For instance, the
zero-set of 〈(1− z1)2〉 in R[z1] is just {1}, which is also the zero-set of 〈1− z1〉.

Reciprocally, we can introduce the vanishing ideal of an arbitrary subset S of A, which is
the set of all polynomials that cancel at every point of S (easily seen to be an ideal):

I(S) = {f ∈ K[z] | ∀z? ∈ S, f (z?) = 0}

It can be shown that I(S) is equal to the vanishing ideal of the Zariski closure of S,
I(S) = I

(
S̄
)
, and that I(S) is always radical.
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Thus, a strong relationship between radical ideals and Zariski closed sets is already appar-
ent. In fact, the relationship is even stronger: the mapping V ◦ I is the identity mapping
on the Zariski closed sets. The inclusion reversing relationship can be summarized as follows:

varieties ∅ ⊂ V1 ⊂ V1 ∪ V2 ⊂ A = Kn

I(·) ↓ ↑ V (·) more zeros−−−−−−−−−→
less polynomials

ideals 〈1〉 = K[z] ⊃ I(V1) ⊃ I(V1) ∩ I(V2) ⊃ 〈0〉 = {0}

If K is not algebraically closed, I fails to be surjective and V fails to be injective. For in-
stance, in R[z1], V (〈1 + z2

1〉) = V (〈1 + z4
1〉).

When K is algebraically closed, Hilbert’s famous Nullstellensatz implies that there is a 1-to-1
relationship between radical ideals and Zariski closed sets, given by V and its inverse I. For
this reason, algebraic geometry is much nicer in An(C) than in An(R). For instance, if K is
algebraically closed, there is a 1-to-1 relationship between the irreducible decomposition of
a Zariski closed set and the prime decomposition of the corresponding radical ideal.

For this reason, Theorem 1 about the generic identification structure is a theorem over C.
However, thanks to the unusual features of the Zariski topology, the genericity carries over
to, e.g., the real numbers between 0 and 1, as stated in Corollary 2.

A11.2 Proof of Theorem 1

First, we prove the existence part of Theorem 1, i.e., that there is some singular region Θs

satisfying conditions (i) and (ii). The uniqueness part (the fact that there is a unique such
singular region minimal for the inclusion) will follow easily.

We will obtain the θ̄-generic structure of the θ-solution set of F
(
θ, θ̄

)
= 0 from the structure

of the joint
(
θ, θ̄

)
-solution set of F

(
θ, θ̄

)
= 0.

Let A = A2dθ(C) be the joint affine space for
(
θ, θ̄

)
and let W be the zero set of F

(
θ, θ̄

)
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jointly in both variables:

W = V (F ) =
{(
θ, θ̄

)
∈ A

∣∣∣F (θ, θ̄) = 0
}

Let Ā = Adθ(C) be the affine space for θ̄ only and π : W → Ā the restriction of the coordinate
projection π

(
θ, θ̄

)
= θ̄ to W . For any θ̄?, write W

(
θ̄?
)
for the fiber of π at θ̄?:

W
(
θ̄?
)

= π−1
(
θ̄?
)

=
{(
θ, θ̄?

)
∈ C3 × {θ̄?}

∣∣∣F (θ, θ̄?) = 0
}

Thus, W
(
θ̄?
)
is the set of solutions in θ to the system of equations F

(
θ, θ̄?

)
= 0 at a specific

θ̄? ∈ Ā: this is exactly the system that needs to be solved for identification analysis.

An equivalent statement of the existence part of Theorem 1 is that W
(
θ̄?
)
has a generic

structure for θ̄? ∈ Ū where Ū is a (Zariski) open dense subset of Ā. To see that this is an
equivalent statement, let F̄ be a non-zero system of polynomials such that Θs = V

(
F̄
)
as in

Theorem 1. Remember that the zero-sets form the closed sets of the Zariski topology on Ā:
saying that a property holds outside of V

(
F̄
)
is equivalent to saying that it holds on an open

set Ū , the complement of V
(
F̄
)
. Ū is non-empty because F̄ is not {0}. Any non-empty

open set is dense in the Zariski topology. Thus, the statements are indeed equivalent.

To prove this equivalent statement we relate the generic structure of W
(
θ̄?
)
to the generic

structure of W , the “joint” zero-set. Consider the decompositions in irreducible components
of W and of W

(
θ̄?
)
, for any θ̄?:

W =
M⋃
m=1

Vm and W
(
θ̄?
)

=
J(θ̄?)⋃
j=1

Vj
(
θ̄?
)

We can use Theorem A.14.10 p. 349 from Sommese and Wampler (2005), adapted to our
context:

Theorem: Theorem A.14.10 in Sommese and Wampler (2005)
There is a (Zariski) open dense set Ū ⊂ Ā such that for any θ̄? ∈ Ū , and any 1 ≤ m ≤ M ,
if Vm is an irreducible component of W of dimension dm, then Vm ∩W

(
θ̄?
)
is the union of

a fixed number nm (nm independent of θ̄?) of irreducible components Vj
(
θ̄?
)
of W

(
θ̄?
)
of

dimension dm − dθ.

In particular, for any θ̄? ∈ Ū , W
(
θ̄?
)
has a fixed number of irreducible components of each

dimension, which proves the existence statement of Theorem 1.
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Example:
Here is a figurative example that illustrates the above. Consider:

W = V1 ∪ V2︸ ︷︷ ︸
dimension dθ

∪ V3︸︷︷︸
dimension dθ+1

∪ V4︸︷︷︸
dimension dθ+2

The generic structure of the fiber might be: 3 components of dimension 0 (points) and 1
component of dimension 2:

W
(
θ̄?
)

= V1
(
θ̄?
)
∪ V2

(
θ̄?
)
∪ V3

(
θ̄?
)

︸ ︷︷ ︸
dimension 0

∪ V4
(
θ̄?
)

︸ ︷︷ ︸
dimension 2

Each Vm ∩W
(
θ̄?
)
must have the same number of components Vm

(
θ̄?
)
. For instance, for

some value θ̄?, we might have:

V1 ∩W
(
θ̄?
)

= V1
(
θ̄?
)
∪ V2

(
θ̄?
)

V2 ∩W
(
θ̄?
)

= V3
(
θ̄?
)

V3 ∩W
(
θ̄?
)

= ∅ V4 ∩W
(
θ̄?
)

= V4
(
θ̄?
)

While for some other value θ̄�, we might have:

V1 ∩W
(
θ̄�
)

= V1
(
θ̄�
)
∪ V3

(
θ̄�
)

V2 ∩W
(
θ̄�
)

= V2
(
θ̄�
)

V3 ∩W
(
θ̄�
)

= ∅ V4 ∩W
(
θ̄�
)

= V4
(
θ̄�
)

See section A11.5 for an actual example in a toy econometric model.

Note that F̄ such that Θs = V
(
F̄
)
could include polynomials with coefficients in C. In fact,

we can do better and show that Θs∩Rdθ is the zero-set of a finite number of real polynomials.
Indeed, Θs∩Rdθ is a closed subset of Rdθ with the subtopology inherited from Adθ(C), which
coincides with Adθ(R) (Fact 4).

Turning to the uniqueness part of Theorem 1, consider the union Θg of all Ū , such that the
existence statement holds for Ū . Θg is open and dense. Θg satisfies the existence statement
and contains by definition all the open dense sets that do, i.e., Θg is maximal for the inclusion.
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A11.3 Proof of other results

Proof of Corollary 1. This is a particular case of Theorem 1 where the generic identifica-
tion structure has nls irreducible components of dimension zero and no component in other
dimensions.

Proof of Corollary 2. (i) Θg is Zariksi open in Cdθ implies Θg is Euclidean open in Cdθ (Fact
4) implies Θg ∩ [0, 1]dθ is Euclidean open in [0, 1]dθ (subspace topology). For the Euclidean
topology, Θg is dense in Rdθ (Fact 4) implies Θg is dense in ]0, 1[dθ implies Θg is dense in
[0, 1]dθ . Thus Θg is Euclidean open dense in [0, 1]dθ .
(ii) Θs has Lebesgue measure zero in Rdθ (Fact 4) and thus has Lebesgue measure zero in
[0, 1]dθ .

Proof of Theorem 2. 〈F 〉 is generated by a finite number of elements of F (Fact 5). Fix
F̃ such a set. There is necessarily T0 such that F̃ ⊂ FT0 . Then for any T0 ≤ T ≤ ∞,
〈FT0〉 ⊂ 〈FT 〉 ⊂ 〈F 〉 = 〈FT0〉. Then also Vθ,θ?(FT ) = Vθ,θ?(FT0) and in particular for any θ?,
Vθ (FT (·, θ?)) = Vθ (FT0 (·, θ?)).

Proof of Corollary 3. This is a direct consequence of Theorem 2.

A11.4 Computing identification with computational algebraic ge-
ometry

Computational algebraic geometry is an academic field in itself. Methods for solving systems
of polynomial equations play a central role, but there are also algorithms for computing radi-
cals, primary decompositions, etc. Those can also be useful for a computational approach to
identification analysis. A complete survey is beyond the scope of this paper. See Cox et al.
(2005) for an entry point to computational algebraic geometry. Several specialized computer
algebra systems implement algorithms for computational algebraic geometry. I use Singular
(Decker et al., 2014) to compute identification in section A11.5.

A complete identification analysis in a given discrete model consists of computing both the
minimal singular region as well as the generic identification structure. This means we need
to look at the identification equation F (θ, θ?) = 0 jointly in θ and θ?, somewhat similar to
the strategy I used to prove Theorem 1 and Theorem 2. One way to compute the minimal
singular region in a generically identified model is as follows:

1. Compute the prime decomposition of
√
〈F 〉. If the model is generically identified,

Theorem 1 tells us it will have one irreducible component of dimension dθ (namely
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V (〈θ − θ?〉) = {{θ, θ?} , θ ∈ Θ} and other irreducible components Vi’s of higher di-
mension. The singular region is (the Zariski closure of) the intersection of Ws = ∪iVi
with the θ? space, since for these values of θ?, F (θ, θ?) = 0 will have more solutions
than just {θ}.

2. The intersection of Ws = ∪iVi with the θ? space (the affine space Ā) is not Zariski
closed in general, but its Zariski closure is the minimal singular region. This operation
is the familiar “elimination of variables” procedure. There are algorithms to eliminate
variables.

See section A11.5 for an application of this method. Unfortunately, the joint perspective
in θ and θ? makes this approach particularly computationally intensive. Computing prime
decompositions is also a computationally intensive task.

An alternative approach is to find a singular region Θ̃s ⊃ Θs. In generically identified mod-
els, this corresponds to finding sufficient conditions for identification rather than necessary
and sufficient conditions: outside of Θ̃s, the model is identified. A naïve way to do this is
to look at F (θ, θ?) = 0 as polynomials in θ, with coefficients in K[θ?] (the polynomials in
θ?) rather than K. Then one can try to solve the system by any standard method, putting
aside all values of θ? that cancel a denominator along the way. This will be much faster
than the technique of the previous paragraph, but Θ̃s might be much too big. There are
better ways to use the K (θ?) [θ] perspective (known in computational algebraic geometry as
the “parametric polynomial system” perspective) to compute a Θ̃s that is very close to the
actual Θs; see, e.g., Montes and Wibmer (2010).

Finally, Theorem 1 suggests the following approach to computing identification: draw a
random parameter value θ?, and check identification at θ? by solving F (θ, θ?) = 0. This
gives generic identification, although not an explicit expression for the singular region: the
economist must be willing to rule out all singularities beyond those she chose to include in
her model to start with. Any tool for solving plain systems of polynomials can be used to
solve F (θ, θ?) = 0.

The methods of computational algebraic geometry are all symbolic. There are other com-
putational approaches to solving systems of polynomials that might be useful, such as the
methods of semi-algebraic geometry (real solutions to polynomial systems) and homotopy
methods in numerical computational algebraic geometry.
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None of the methods outlined in this section takes into account the specific structure of
F (θ, θ?) = 0. F is not any system of polynomial equations, but one that is generated by
the transition matrices and initial distribution of the model. The specific structure might
be leveraged both for theoretical and computational purposes. The symbolic computational
approach is the most promising one in this respect.

A11.5 Identification analysis in a toy model

This subsection carries a detailed identification analysis in a toy model. The model retains
all the interesting features of a hidden Rust model, except for the dynamic aspects. It is a
good opportunity to illustrate:

• General algebraic-geometric concepts such as the decomposition in irreducible compo-
nents of a Zariski topological set.

• The mechanism behind Theorem 1.

• The advantage of automatic methods to compute the generic identification structure
as well as the minimal singular region.

Computations are carried in Singular (see section A11.4).

Consider an unobserved discrete random variable X ∈ {a, b} and an observed discrete ran-
dom variable Y ∈ {0, 1, 2, 3}. X = b with probability p and X = a with probability 1 − p.
If X = a, Y is binomial B(3, pa) — the sum of three biased coin flips — and if X = b, Y is
binomial B(3, pb).

In an identification context, we ask if the statistical parameter θ = (p, pa, pb) is identified
from the distribution of Y given by:

P(Y = 0) = (1− p)(1− pa)3 + p(1− pb)3

P(Y = 1) = (1− p)3(1− pa)2pa + p3(1− pb)2pb

P(Y = 2) = (1− p)3(1− pa)p2
a + p3(1− pb)p2

b

P(Y = 3) = (1− p)p3
a + pp3

b

With θ̄ = (q, qa, qb), the identification system can be written:

F
(
θ, θ̄

)
= 0
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⇐⇒

(1− p)(1− pa)3 + p(1− pb)3 = (1− q)(1− qa)3 + q(1− qb)3

(1− p)3(1− pa)2pa + p3(1− pb)2pb = (1− q)3(1− qa)2qa + q3(1− qb)2qb

(1− p)3(1− pa)p2
a + p3(1− pb)p2

b = (1− q)3(1− qa)q2
a + q3(1− qb)q2

b

(1− p)p3
a + pp3

b = (1− q)q3
a + qq3

b

In this simple example, we can solve the system “by hand,” keeping track of the forbidden
divisions by zero as we proceed. We might find, for instance, that as long as g

(
θ̄
)

=
(qb − qa)q(1− q)(1− 2q) 6= 0, F

(
θ, θ̄

)
= 0 is equivalent to:


p(1− p) = q(1− q)

pa = qa
1−q−p
1−2q + qb

p−q
1−2q

pb = qb
1−q−p
1−2q + qa

p−q
1−2q

Thus, the system is identified outside of the singular region g
(
θ̄
)

= 0 (up to label-switching).

Now, in order to illustrate the mechanism behind Theorem 1, we would like to compute the
decomposition of W = V (F ), the zero-set of F

(
θ, θ̄

)
jointly in

(
θ, θ̄

)
. While this geometric

decomposition is hard to compute directly, we can rely on the strong correspondance between
geometry and algebra that lies at the core of algebraic geometry, and carry an algebraic
computation. Remember from section A11.1 that V (F ) = V

(√
〈F 〉

)
where

√
〈F 〉 is the

radical of the ideal generated by F , and that the irreducible decomposition of W is 1-to-1
with the decomposition of

√
〈F 〉 in primes. We can compute the prime decomposition of√

〈F 〉 with Singular (this is instantaneous). It has 11 components:

√
〈F 〉 = 〈pb − qb, pa − qa, p− q〉 ∩ 〈pb − qa, pa − qb, (1− p)− q〉 I1

∩ 〈pb − qb, pa − qa, qa − qb〉 I2

∩

〈pb − qb, qa − qb, p〉 ∩ 〈pb − qb, pa − qb, q〉∩ 〈pa − qb, qa − qb, p− 1〉 ∩ 〈pb − qa, pa − qa, q − 1〉
I3

∩

〈q − 1, p, pb − qa〉 ∩ 〈q, p, pb − qb〉

∩ 〈q − 1, p− 1, pa − qa〉 ∩ 〈q, p− 1, pa − qb〉
I4
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Correspondingly:

W = V (I1)︸ ︷︷ ︸
generic region

∪V (I2) ∪ V (I3) ∪ V (I4)︸ ︷︷ ︸
singular region

= Vg + Vs

V (I1) is the “nice” region, which contains the identified parameter values θ = θ̄ as well as
their label-switched versions. V (I2) contains parameter values for which coin flips happen
with the same probability regardless of being in a/b or in θ/θ̄. Of course, the first stage
probabilities are not identified when this is the case. V (I3) contains parameter values for
which in one θ/θ̄ world, one of the flips is never observed, and in the other world, both
flips happen but are indistinguishable due to having the same flipping probability. There
are four subcomponents by symmetry and label-switching. V (I4) contains parameter values
for which only one flip happens in both θ/θ̄ worlds. There are also four subcomponents by
symmetry and label-switching.

In this simple model, we can tell by eyeballing that Vg = V (I1) makes up the generic
component of W , while Vs = V (I2) ∪ V (I3) ∪ V (I4) makes up its singular component. The
singular region in θ̄ space is simply the intersection of Ā with the singular points Vs of W .
The geometric object Vs ∩ Ā is not necessarily a closed set, but once more, we can use
algebraic methods to compute its closure. We find:

Θs = Vs ∩ Ā = V (< (qb − qa)q(1− q) >)

We were not too far-off in our computation “by hand” above. The only difference is
that q = 1/2 does not appear in the singular region — indeed if q = 1/2, there are
as many solutions as at other points of the generic region: (p, pa, pb) = (1/2, qa, qb) and
(p, pa, pb) = (1/2, qb, qa).

The advantage of automatic methods to compute the generic identification structure as well
as the minimal singular region becomes quickly apparent in slightly more involved examples,
although computational issues arise when the number of variables, as well as the number
and degree of polynomials, increases.
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A12 Appendix for section 4: Asymptotics

A12.1 Preamble: Merging Markov chains

This section defines merging and the merging time of a finite-state Markov chain, and states
concentration inequalities for hidden Markov models from Paulin (2014).

In this paper, merging is used at various stages of the asymptotic analysis. Non-homogeneous
merging of various conditional Markov chains is key in showing limit theorems for the log-
likelihood, score and information under stationarity (in appendix section A12.4). Merging
of the observed variables yt = (st, at) is also used to extend these stationary limit theorems
to their nonstationary versions (in appendix section A12.5), and in a similar fashion to build
uniformly consistent tests under non-stationarity from their stationary analogs (in appendix
section A12.7). Finally, the asymptotic study of the Bayesian posterior uses concentration
inequalities from Paulin (2014), valid for merging chains and stated with concentration con-
stants proportional to the merging time ((4), (5) and (6)). See also sections 4.4 to A12.5.1
for an overview of some of these proofs.

This section does not contain original results. Most of the definitions are standard, although
the terminology might vary. General facts about finite-state Markov chains, including merg-
ing properties, can be found in Seneta (2006). I define the merging time following the slighlty
nonstandard definition of Paulin (2014), which is motivated by the concentration bounds (4)
- (6).

The following terminology is used. A non-homogeneous Markov chain is a chain whose
transition matrix changes with time. For homogeneous chains, an aperiodic chain is always
irreducible and an irreducible chain is always recurrent.

A not necessarily homogeneous chain Zt is merging when the total variation distance between
the distributions of two independent chains started at arbitrary points goes to zero with time
— the chains “merge”:

∀s, zs, z′s, dTV (L(Zt|Zs = zs),L(Zt|Zs = z′s)) −−−→t→∞
0

We can think of merging as the influence of the initial distribution fading away with time.
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If Zt is homogeneous and merging, there is a distribution µ�, necessarily unique, such that:

∀z1, dTV (L(Zt|Z1 = z1), µ�) −−−→
t→∞

0

Furthermore µ� is the unique stationary distribution of Zt and the convergence happens
geometrically fast: there is ρ < 1 and c > 0 such that:

∀z1, dTV (L(Zt|Z1 = z1), µ�) ≤ cρt

The distribution of Zt “merges” to µ� regardless of the chain’s initial distribution. This is
a familiar phenomenon for anyone who has seen traceplots of Markov chain Monte Carlo
algorithms started far from equilibrium.

If Zt is homogeneous and merging, under the minor additional assumption that Zt has no
transient states, or by ignoring the transient states (which correspond to zeros in µ�), Zt is
also aperiodic. Conversely, an aperiodic chain is recurrent and merging.

The (joint) stationary distribution of a merging chain has very strong ergodic properties
(so-called mixing properties), although we will not use these beyond ergodicity.

The merging time is a quantity used to measure the merging speed. The ε-merging time
τz(ε) of a merging Markov chain z is defined as follows, for 0 < ε < 1:

τz(ε) = min{t : max
z
{dTV (L(Zt|Z1 = z1), µ�)} < ε}

The absolute merging time, or simply merging time, is:

τz = inf
0≤ε<1

τz(ε/2)
(1− ε)2

This seemingly ad-hoc definition is the convenient one for stating concentration inequalities
where the concentration constant is directly proportional to the merging time.

I state McDiarmid inequalities for (not necessarily stationary) hidden Markov models from
Paulin (2014) (corollary 2.14 p.12):

Lemma 1: Concentration inequalities for HMMs
For (x, y) a HMM, write τx for the merging time of the Markov chain x. Let f be a function
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of T arguments with bounded differences:

f(y1, ..., yT )− f(y′1, ..., y′T ) ≤
T∑
t=1

ct1[yt 6= y′t]

Then the following one-sided and two-sided concentration inequalities hold:

P (f < E [f ]− u) ≤ exp
(
−1

2
u2

τx
∑T
t=1 c

2
t

)
(4)

P (f > E [f ] + u) ≤ exp
(
−1

2
u2

τx
∑T
t=1 c

2
t

)
(5)

P (|f − E[f ]| > u) ≤ 2 exp
(
−1

2
u2

τx
∑T
t=1 c

2
t

)
(6)

According to 4, concentration is “4τx times slower” for a merging Markov chain than for a
sequence of independent and identically distributed random variables.

Finally, I will use the following lemma (see, e.g., theorem 4.9 p.141 in Seneta (2006)):

Lemma 2: Merging for (non-homogeneous) Markov chains under minorization
If the transition probabilities of a (not necessarily homogeneous) Markov chain Zt are uni-
formly minorized in the sense that there are probability distributions νt and a constant a > 0
such that for any values of the chain zt and zt+1:

P (zt+1|zt) ≥ aνt(zt + 1)

Then Zt satisfies merging: for any two initial distributions µ1 and µ2:

dTV (L(Zt|Z0 ∼ µ1),L(Zt|Z0 ∼ µ2)) < (1− a)t

A word of caution on terminology. Merging properties are sometimes referred to as “weak
ergodicity” properties and the merging time is usually called the “mixing time.” We keep
“ergodicity” and “mixing” for properties that stationary distributions can have. The merging
time is also more usually defined as τz(ε) for an arbitrary value of ε, traditionally 1/4. This
is because in other contexts the arbitrary choice of ε does not matter (see Levin et al. (2009)
for a textbook treatment of the theory of merging times).
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A12.2 z is uniformly merging

We know that Θ is compact and that for any θ, z is recurrent and merging. We want to
show that z is uniformly merging, in the sense that the merging time is uniformly bounded:
there is τ̄z <∞ such that:

∀θ ∈ Θ, τz(θ) < τ̄z

It is not clear that τz itself is a continuous function of the transition matrix but we will use
a bound from Paulin (2014).

Because z is merging, z has a unique marginal stationary distribution, which we write µ�(θ).
Because z is recurrent, µ�(θ) > 0.

Define λ(θ) as the second biggest eigenvalue of the multiplicative reversibilization P̃z of the
transition matrix Pz of z (see Fill (1991)). P̃z is a continuous function of Pz, and P̃z is
recurrent merging because Pz is.

A consequence of bound (3.12) p. 16 together with bound (2.9) p. 10 in Paulin (2014) is:

τz(θ) ≤ 41 + 2 log 2 + log 1/µ�min(θ)
1− λ(θ)

Stationary distributions and eigenvalues are continuous functions of matrix coefficients. As
a consequence, λ(θ) is bounded away from 1 and µ�(θ) is bounded away from zero on Θ.
The conclusion follows. We call τz the lowest uniform upper bound:

τz = sup
θ∈Θ

τz(θ) <∞

For the same reasons, blocks of z’s are also uniformly merging. Let R be any natural num-
ber ≥ 1 and ẑs be non-overlapping consecutive blocks of R zt’s: ẑ1 = (z1, . . . , zR), ẑ2 =
(zR+1, . . . , z2R), etc. ẑ is merging because z is merging and consequently ẑ is uniformly
merging for the same reason z is uniformly merging. We write τẑ for the corresponding
uniform merging time (τẑ can depend on R).

A12.3 The infinite-past strategy

All three limit theorems are based on an infinite-past strategy where taking some condi-
tional expectations to the infinite past plays a key role. In order for the infinite-past to make

59



sense, stationarity is key. The infinite-past strategy is best illustrated with the log-likelihood.

First, I write LT (θ) as the sum of the auxiliary processes U1t:

LT (θ) = 1
T

T−1∑
t=1

U1t(θ) where U1t(θ) = logPθ(Yt+1|Y1:t)

Second, I take the auxiliary process Umt(θ) = logPθ(Yt+1|Ym:t) to its infinite past m→ −∞.
I can think of the infinite-past limit Ut(θ) = U−∞t(θ) as logPθ(Yt+1|Y−∞:t), although care is
needed (see appendix section A12). To take the infinite-past limit, I show that Umt(θ) is θ?

almost surely Cauchy, uniformly in θ. The uniform lower bound q on the unobserved state
transition matrix Q is used to obtain non-homogeneous merging of the conditional Markov
chain (Xt|ym:T )t≥m. This is a key step. See appendix section A12.1 for an introduction to
merging and an overview of how it is used at different stages of the proof.

Third, I show that
∥∥∥LT (θ)− 1

T

∑T−1
t=1 Ut(θ)

∥∥∥ θ? as−−−→ 0. This follows directly from some bounds
derived to show the Cauchy property.

Fourth, I am left with showing a uniform law of large numbers for Ut, which is now an ergodic
sum: ∥∥∥∥∥ 1

T

T−1∑
t=1

Ut(θ)− L(θ)
∥∥∥∥∥ θ? as−−−→ 0

For this I use a vector ergodic theorem valid for random vectors taking value in separable
metric spaces from Krengel (1985). Ut(θ) inherits continuity from Umt(θ), thanks to the al-
most surely uniform Cauchy property. As a consequence Ut can be seen globally as a random
vector taking value in C(Θ), which is separable because Θ is compact.

The same general infinite-past strategy is used for the score sT = ∇θ?LT (θ) and the observed
information hT = ∇2

θLT (θ), although new complications arise, such as making sure that some
infinite sums are almost surely summable as we take m to −∞.

A12.4 Limit theorems for stationary hidden Rust models

In this section, assume (Xt, Yt) are distributed according to the stationary distribution
induced by θ? (recall that, by the merging assumption (A2), each θ induces a unique
marginal stationary distribution µ�(θ)). Under this assumption, (Xt, Yt) can be extended to
(X, Y )−∞:+∞.
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The log-likelihood is:
LT (θ) = 1

T
logPθ,µ (Y2:T |Y1)

Pθ,µ means the value of the probability under transitions indexed by θ and initial distribution
(for the earliest index appearing in Pθ,µ(·)) µ. In particular µ is not necessarily equal to µ�(θ);
thus, the likelihood can be misspecified with respect to the initial distribution. In fact, µ
plays no role in the proof and is suppressed from notation for simplicity. It is probably easier
at a first reading to assume µ = µ�(θ?), in which case Pθ is well-specified.

A12.4.1 Uniform law of large numbers for the log-likelihood

This section shows a uniform law of large numbers for the log-likelihood:

‖LT (θ)− L(θ)‖ θ? as−−−→ 0

where L(θ) can be thought of as Eθ? [logPθ (Y1|Y−∞:0)]. The precise meaning of this notation
is made clear below.

The following decomposition is used:

LT (θ) = 1

T

∑T−1
t=1 U1t(θ)∥∥∥ 1

T

∑T−1
t=1 U1t(θ)− 1

T

∑T−1
t=1 Ut(θ)

∥∥∥ θ? as−−−→ 0∥∥∥ 1
T

∑T−1
t=1 Ut(θ)− L(θ)

∥∥∥ θ? as−−−→ 0

We define the auxiliary process Umt(θ) = logPθ (Yt+1|Ym:t). Ut(θ) will be defined as the
limit of Umt(θ) as m → −∞, which will be shown to exist. Ut(θ) can be thought of as
logPθ (Yt+1|Y−∞:t) both in a moral sense and in a technical sense to be made precise. This
is why we speak of an “infinite-past” proof strategy. Ut(θ) will also be seen to be stationary
ergodic. Of course, L(θ) = Eθ? [U0(θ)].

There are three steps in the proof:

1. Umt(θ) is an (almost surely) Cauchy sequence in m → −∞, uniformly in θ. We call
Ut(θ) its limit and we explain in which sense Ut(θ) = logPθ (Yt+1|Y−∞:t).

2.
∥∥∥ 1
T

∑T−1
t=1 U1t(θ)− 1

T

∑T−1
t=1 Ut

∥∥∥ (θ) θ? as−−−→ 0.

3.
∥∥∥ 1
T

∑T−1
t=1 Ut(θ)− L(θ)

∥∥∥ θ? as−−−→ 0.
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Step 1: Umt is θ? almost surely uniform Cauchy

We want to define Ut(θ) = U−∞t(θ) and show the following θ? almost sure geometric bound,
valid for any −∞ ≤ m < m′ ≤ 1 and uniform in θ:

|Um′t(θ)− Umt(θ)| ≤ Kρt−m
′ (7)

First, we show (7) for −∞ < m < m′ ≤ 1. Note that because | log x− log y| ≤ |x−y|
x∧y :

| logPθ(yt+1|ym′:t)− logPθ(yt+1|ym:t)| ≤
|Pθ(yt+1|ym′:t)− Pθ(yt+1|ym:t)|
Pθ(yt+1|ym′:t) ∧ Pθ(yt+1|ym:t)

A lower bound for the denominator is easy to find. Note that:

Pθ(yt+1|ym:t) =
∑

xt+1,xt

Pθ(yt+1|xt+1, yt)Pθ(xt+1|xt)Pθ(xt|ym:t)

So that:
Pθ(yt+1|ym:t) ≥ q

∑
xt+1

Pθ(yt+1|xt+1, yt)

Let us turn to the numerator. By conditional independence, (Xt|ym:T )t≥m is (non-homogeneous)
Markov. We show that it satisfies a merging property uniformly in θ (see section A12.1 for
an introduction about merging):

Lemma 3: Uniform merging for (Xt|ym:T )t≥m
There is ρ < 1 such that for any m, for any two initial distributions µ1 and µ2 on Xm, for
any θ, the following inequality holds (for any ym:T with positive probability):

dTV (Lθ(Xt|ym:T ;µ1),Lθ(Xt|ym:T ;µ2)) < ρt−m

Proof. For any t ≥ m, any (xt, ym:T ) with positive probability:

Pθ(xt+1|xt, ym:T )Pθ(yt+1:T |xt, ym:t) = Pθ(xt+1, yt+1:T |xt, ym:t)

= Pθ(yt+1:T |xt+1, xt, ym:t)Pθ(xt+1|xt, ym:t)

= Pθ(yt+1:T |xt+1, yt)Pθ(xt+1|xt)

Pθ(xt+1|xt, ym:T ) = Pθ(yt+1:T |xt+1, yt)Pθ(xt+1|xt)∑
xt+1 Pθ(yt+1:T |xt+1, yt)Pθ(xt+1|xt)

≥ q
Pθ(yt+1:T |xt+1, yt)∑
xt+1 Pθ(yt+1:T |xt+1, yt)
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νt(xt+1; θ) := Pθ(yt+1:T |xt+1,yt)∑
xt+1

Pθ(yt+1:T |xt+1) defines a probability distribution on Xt+1, and the above
inequality is a uniform minorization of the transition probabilities by νt(θ):

Pθ(xt+1|xt, ym:T ) ≥ qνt(xt+1; θ)

By Lemma 2 in section A12.1:

dTV (Lθ(Xt|ym:T ;µ1),Lθ(Xt|ym:T ;µ2)) < (1− q)t−m

Coming back to bounding the numerator, remember that for any two probabilities µ1 and
µ2 and any f , 0 ≤ f ≤ 1:

|µ1f − µ2f | ≤ dTV (µ1, µ2) (8)

Then, for any ym:T with positive probability:

|Pθ(yt+1|ym′:t)− Pθ(yt+1|ym:t)|

=

∣∣∣∣∣∣
∑

xt+1,xt

Pθ(yt+1|xt+1, yt)Pθ(xt+1|xt)(Pθ(xt|ym′:t)− Pθ(xt|ym:t))

∣∣∣∣∣∣
≤
∑
xt+1

Pθ(yt+1|xt+1, yt)
∣∣∣∣∣∑
xt

Pθ(xt+1|xt)(Pθ(xt|ym′:t)− Pθ(xt|ym:t))
∣∣∣∣∣

≤
∑
xt+1

Pθ(yt+1|xt+1, yt)

∣∣∣∣∣∣
∑
xt

Pθ(xt+1|xt)
Pθ(xt|ym′:t)−∑

xm′

Pθ(xt|ym′:t, xm′)Pθ(xm′ |ym:t)
∣∣∣∣∣∣

≤
∑
xt+1

Pθ(yt+1|xt+1, yt)dTV (Lθ(Xt|ym′:t;xm′ |ym′:t),Lθ(Xt|ym′:t;xm′ |ym:t)) by (8)

≤ ρt−m
′ ∑
xt+1

Pθ(yt+1|xt+1, yt) by merging, lemma 3

Putting bounds for the numerator and denominator together, for −∞ < m < m′ ≤ 1 we
have (almost surely):

| logPθ (Yt+1|Ym′:t)− logPθ (Yt+1|Ym:t) | ≤
ρt−1∑

xt+1 Pθ (Yt+1|Xt+1, Yt)
q
∑
xt+1 Pθ (Yt+1|Xt+1, Yt)

= ρt−m
′

q
(9)

Note that we can collect all the (countable) null sets of (9) so that the precise statement
is that the inequality holds “almost surely: for all m and m′” and not “for each m and m′:
almost surely.” This implies that Umt(θ) is almost surely a Cauchy sequence as m → −∞.
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As a consequence there is Ut such that (almost surely):

Umt(θ) −−−−→
m→−∞

Ut(θ)

Note that Ut(θ) = logPθ (Yt+1|Y−∞:t) in the following sense: if g(Y−∞:t+1) = Eθ[Yt+1|Y−∞:t]
is a version of Kolmogorov’s conditional expectation under θ, then Ut(θ) = g(Y−∞:t+1) where
Y−∞:t+1 is distributed according to θ?.

By continuity, (7) holds for m = −∞ too.

Step 2:
∥∥∥ 1
T

∑T−1
t=1 U1t(θ)− 1

T

∑T−1
t=1 Ut(θ)

∥∥∥ θ? as−−−→ 0

From the (almost sure) geometric bound (7) (with m = −∞ and m′ = 1), we have (almost
surely):

∣∣∣∣∣ 1T
T−1∑
t=1

logPθ (Yt+1|Y1:t)−
1
T

T−1∑
t=1

logPθ (Yt+1|Y−∞:t)
∣∣∣∣∣

≤ 1
T

T−1∑
t=1
|logPθ (Yt+1|Y1:t)− logPθ (Yt+1|Y−∞:t)|

≤ 1
T

1
q

T−1∑
t=1

ρt−1

≤ 1
T

1
q

1
1− ρ

which implies: ∥∥∥∥∥ 1
T

T−1∑
t=1

U1t(θ)−
1
T

T−1∑
t=1

Ut(θ)
∥∥∥∥∥ θ? as−−−→ 0

Step 3:
∥∥∥ 1
T

∑T−1
t=1 Ut(θ)− L(θ)

∥∥∥ θ? as−−−→ 0

This is a consequence of the almost sure ergodic theorem in function space. To see this, note
that θ → Umt(θ) is (almost surely) continuous because Pθ (yt+1|ym:t) is a rational function
of the transition matrices’ coefficients. The results of the first step imply that θ → Ut(θ)
is (almost surely) continuous as a uniform Cauchy limit. Thus we can consider all of them
to be everywhere continuous without loss of generality. Now define C(Θ) to be the set of
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continuous functions from Θ to R and:

s :YZ −→ YZ (the shift operator)

(yt)t∈Z −→ (yt+1)t∈Z
l :YZ −→ C(Θ)

(yt)t∈Z −→ U0(θ) = Pθ(y1|y−∞:0)

Using the standard notation:
stl = l ◦ s ◦ . . . ◦ s︸ ︷︷ ︸

t times

we can rewrite:
1
T

T−1∑
t=1

logPθ (Yt+1|Y−∞:t) = 1
T

T−1∑
t=1

stl (Y )

Y is stationary ergodic: this is exactly the setting of the ergodic theorem. In the most
familiar case, l would be a measurable function from YZ to R, which is not the case here.
However, (C(Θ), ‖·‖∞) is separable because Θ is compact: a vector almost sure ergodic the-
orem holds, exactly similar to the scalar case (see theorem 2.1 p.167 in Krengel (1985)).

Thus: ∥∥∥∥∥ 1
T

T−1∑
t=1

Ut(θ)− L(θ)
∥∥∥∥∥ θ? as−−−→ 0

where:
L = Eθ? [l (Y )] = Eθ? [logPθ (Y1|Y−∞:0)] ∈ C(Θ)

A12.4.2 Central limit theorem for the score

Let sT = ∇θ?LT (θ) be the (observed) score. This section shows a central limit theorem
(pointwise at θ?) for the score: there is I such that:

√
TsT

θ? N (0, I)

Similar to the proof of the uniform law of large numbers for the log-likelihood (section
A12.4.1), the following decomposition is used:


sT = 1

T

∑T−1
t=1 V1t + oθ?

(
1√
T

)
∣∣∣√T 1

T

∑T−1
t=1 V1t −

√
T 1
T

∑T−1
t=1 Vt

∣∣∣ θ? as−−−→ 0
√
T 1
T

∑T−1
t=1 Vt

θ? N (0, I)
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Vt is the “infinite-past” limit of an auxiliary process Vmt (to be defined shortly) as m→ −∞.

In order to define the auxiliary process Vmt, note an identity of Louis (1982) (equation (3.1)
p. 227), which says in substance:

∇θ? logPθ(Y ) = Eθ? [∇θ? logPθ(Y,X)|Y ] (10)

Here:

sT = 1
T
∇θ? logPθ (Y2:T |Y1)

= 1
T
Eθ? [∇θ? logPθ (Y2:T , X1:T |Y1)|Y1:T ] by (10)

= 1
T
Eθ?

[
∇θ?

(
T−1∑
s=1

logPθ (Ys+1|Xs+1) + logPθ (Xs+1|Xs)
)∣∣∣∣∣Y1:T

]

+ 1
T
Eθ? [∇θ? logPθ (X1|Y1)|Y1:T ]︸ ︷︷ ︸

θ? as−−−→Eθ? [·|Y1:+∞]︸ ︷︷ ︸
=oθ?

(
1√
T

)
by conditional independence

Now write:
Js = ∇θ? logPθ (Ys+1|Xs+1) +∇θ? logPθ (Xs+1|Xs)

and consider the telescopic sum:

Eθ?
[
T−1∑
s=1

Js

∣∣∣∣∣Y1:T

]
= Eθ?

[
T−1∑
s=1

Js

∣∣∣∣∣Y1:T

]
− Eθ?

[
T−2∑
s=1

Js

∣∣∣∣∣Y1:T−1

]
(= V1,T−1)

+Eθ?
[
T−2∑
s=1

Js

∣∣∣∣∣Y1:T−1

]
− Eθ?

[
T−3∑
s=1

Js

∣∣∣∣∣Y1:T−2

]
(= V1,T−2)

+ . . .

+Eθ? [J1|Y1:2] (= V1,1)

Finally introduce the auxiliary process:

Vmt = Eθ?
[

t∑
s=m

Js

∣∣∣∣∣Ym:t+1

]
− Eθ?

[
t−1∑
s=m

Js

∣∣∣∣∣Ym:t

]

= Eθ? [Jt|Ym:t+1] +
t−1∑
s=m

(Eθ? [Js|Ym:t+1]− Eθ? [Js|Ym:t])
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As announced:
sT = 1

T

T−1∑
t=1

V1t + oθ?

(
1√
T

)

The remainder of the proof proceeds in three steps:

1. Vmt is a (θ? almost-sure) Cauchy sequence for m→ −∞. We call Vt its limit.

2.
∣∣∣√T 1

T

∑T−1
t=1 V1t −

√
T 1
T

∑T−1
t=1 Vt

∣∣∣ θ? as−−−→ 0.

3.
√
T 1
T

∑T−1
t=1 Vt

θ? N (0, I).

Step 1: Vmt is θ? almost surely Cauchy

Similar to step 1 in section A12.4.1, we want to define Vt = V−∞t and show the following θ?

almost sure inequality for −∞ ≤ m < m′ ≤ 1:

|Vm′t − Vmt| < Kρt−m
′ (11)

For now fix −∞ < m < m′ ≤ 1. We split the sum |Vm′t − Vmt| into four regions. Call
k = bm′+t2 c.

|Vm′t − Vmt| =
∣∣∣∣∣
(
Eθ?

[
t∑

s=m′
Js

∣∣∣∣∣Ym′:t+1

]
− Eθ?

[
t−1∑
s=m′

Js

∣∣∣∣∣Ym′:t
])

−
(
Eθ?

[
t∑

s=m
Js

∣∣∣∣∣Ym:t+1

]
− Eθ?

[
t−1∑
s=m

Js

∣∣∣∣∣Ym:t

])∣∣∣∣∣
≤

t∑
s=k
|Eθ? [Js|Ym′:t+1]− Eθ? [Js|Ym:t+1]|+

t−1∑
s=k
|Eθ? [Js|Ym′:t]− Eθ? [Js|Ym:t]|

+
k−1∑
s=m′
|Eθ? [Js|Ym′:t+1]− Eθ? [Js|Ym′:t]|+

k−1∑
s=m
|Eθ? [Js|Ym:t+1]− Eθ? [Js|Ym:t]|

The geometric bound (11) for Vmt is then a consequence of the following θ? almost sure
geometric bounds, one for each region:

|Eθ? [Js|Ym′:t+1]− Eθ? [Js|Ym:t+1]| ≤ Kρs−m
′ (12)

|Eθ? [Js|Ym′:t]− Eθ? [Js|Ym:t]| ≤ Kρs−m
′ (13)

|Eθ? [Js|Ym′:t+1]− Eθ? [Js|Ym′:t]| ≤ Kρt−s (14)

|Eθ? [Js|Ym:t+1]− Eθ? [Js|Ym:t]| ≤ Kρt−s (15)

67



Bounds (12) and (13) are a consequence of the merging properties of (Xt|ym:T )t≥m, which
were proven in lemma 3. Bounds (14) and (15) are a consequence of the merging properties
of another Markov chain, namely (XT−t|ym:T )0≤t≤T−m (note the reverse time). The merging
of (XT−t|ym:T )0≤t≤T−m as well as the bounds (12), (13), (14) and (15), is proven similarly to
the corresponding results in the log-likelihood section (section A12.4.1 lemma 3 and bound
(7)). The proofs are omitted for brevity.

Note that (12), (13) and (15) extend to m = −∞ because:

Eθ? [Js|Ym:t] θ? as−−−→ Eθ? [Js|Y−∞:t]

As a consequence, Eθ? [Js|Y−∞:t+1]−Eθ? [Js|Y−∞:t] is (almost surely) absolutely summable in
s→ −∞ and ∑t−1

s=−∞ (Eθ? [Js|Y−∞:t+1]− Eθ? [Js|Y−∞:t]) is well-defined. We can legitimately
define:

Vt = V−∞t = Eθ? [Jt|Y−∞:t+1] +
t−1∑

s=−∞
(Eθ? [Js|Y−∞:t+1]− Eθ? [Js|Y−∞:t])

(In a few lines it will be shown that Vt = V−∞t is the (almost sure) limit of Vmt as m→ −∞.)

With this definition, the inequality:

|Vm′t − Vmt| ≤
t∑

s=k
|Eθ? [Js|Ym′:t+1]− Eθ? [Js|Ym:t+1]|+

t−1∑
s=k
|Eθ? [Js|Ym′:t]− Eθ? [Js|Ym:t]|

+
k−1∑
s=m′
|Eθ? [Js|Ym′:t+1]− Eθ? [Js|Ym′:t]|+

k−1∑
s=m
|Eθ? [Js|Ym:t+1]− Eθ? [Js|Ym:t]|

is valid for m = −∞ too, and by (12), (13), (14) and (15):

|Vm′t − Vmt| ≤
t∑

s=k
cρs−m

′ +
t−1∑
s=k

cρs−m
′ +

k−1∑
s=m′

cρt−s +
k−1∑
s=m

cρt−s

≤ c(ρk−m′ + ρk−m
′ + ρt−k + ρt−k)

≤ c
√
ρt−m

′

In particular, Vmt → Vt as m→ −∞.

Step 2:
∣∣∣√T 1

T

∑T−1
t=1 V1t −

√
T 1
T

∑T−1
t=1 Vt

∣∣∣ θ? as−−−→ 0

From the geometric bound (11) (with m = −∞ and m′ = 1), we have (almost surely):
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∣∣∣∣∣√T 1
T

T−1∑
t=1

V1t −
√
T

1
T

T−1∑
t=1

Vt

∣∣∣∣∣ ≤ √T 1
T

T−1∑
t=1
|V1t − Vt|

≤ K
√
T

1
T

T−1∑
t=1

ρt−1

≤ K
√
T

1
T

1
1− ρ

−−−→
T→∞

0

Step 3: 1
T

∑T−1
t=1 Vt

θ? N (0, I)
Remember that:

Vt = Eθ? [Jt|Y−∞:t+1] +
t−1∑

s=−∞
(Eθ? [Js|Y−∞:t+1]− Eθ? [Js|Y−∞:t])

Vt is immediately ergodic stationary because (X, Y ) is. We show that it is also a martingale
difference sequence with respect to the σ (Y−∞:t+1) filtration. Note that for m > −∞:

Eθ?
[
t−1∑
s=m

(Eθ? [Js|Y−∞:t+1]− Eθ? [Js|Y−∞:t])
∣∣∣∣∣Y−∞:t

]
=

t−1∑
s=m

(Eθ? [Js|Y−∞:t]− Eθ? [Js|Y−∞:t])

= 0

Thus by dominated convergence:

Eθ?
[

t−1∑
s=−∞

(Eθ? [Js|Y−∞:t+1]− Eθ? [Js|Y−∞:t])
∣∣∣∣∣Y−∞:t

]
= 0

So that:

Eθ? [Vt|Y−∞:t] = Eθ? [Jt|Y−∞:t] + 0

= Eθ? [Eθ? [d logP (Xt+1, Yt+1|Xt, Yt)|Xt, Yt]|Y−∞:t]

= 0 (expectation of the conditional score)

By the central limit theorem for ergodic stationary martingale difference sequences:

√
T

1
T

T−1∑
t=1

Vt
θ? N (0, I) where I = Eθ? [V1V

′
1 ]
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A12.4.3 Uniform law of large numbers for the observed information

Let iT (θ) = −∇2
θLT (θ) be the (observed) information. This section shows a uniform law of

large numbers for the information:

‖iT (θ)− i(θ)‖ θ? as−−−→ 0

where i(θ) will be defined below and i(θ?) = I is the asymptotic variance of the score (see
section A12.4.2).

Similar to the proofs of the uniform law of large numbers for the log-likelihood (section
A12.4.1) and of the central limit theorem for the score (section A12.4.2), the following
decomposition is used:



iT (θ) = 1
T

∑T−1
t=1 W

e
1t(θ) + 1

T

∑T−1
t=1 W

v
1t(θ) + 1

T

∑T−1
t=1 W

c
1t(θ) + oθ?(1)∥∥∥ 1

T

∑T−1
t=1 W

e
1t(θ)− 1

T

∑T−1
t=1 W

e
t (θ)

∥∥∥ θ? as−−−→ 0∥∥∥ 1
T

∑T−1
t=1 W

v
1t(θ)− 1

T

∑T−1
t=1 W

v
t (θ)

∥∥∥ θ? as−−−→ 0∥∥∥ 1
T

∑T−1
t=1 W

c
1t(θ)− 1

T

∑T−1
t=1 W

c
t (θ)

∥∥∥ θ? as−−−→ 0∥∥∥ 1
T

∑T−1
t=1 W

e
t (θ)− ie(θ)

∥∥∥ θ? as−−−→ 0∥∥∥ 1
T

∑T−1
t=1 W

v
t (θ)− iv(θ)

∥∥∥ θ? as−−−→ 0∥∥∥ 1
T

∑T−1
t=1 W

c
t (θ)− ic(θ)

∥∥∥ θ? as−−−→ 0

W e
t (θ), W v

t (θ) and W c
t (θ) are the uniform Cauchy “infinite-past” limits of the auxiliary pro-

cesses W e
mt(θ), W v

mt(θ) and W c
mt(θ) (to be defined shortly) respectively, as m→ −∞.

In order to define the auxiliary processes W e
mt(θ), W v

mt(θ) and W c
mt(θ), note another identity

of Louis (1982) (equation (3.2) p. 227), which says in substance:

∇2
θ? logPθ(Y ) = Eθ? [∇2

θ? logPθ(Y,X)|Y ] + Vθ? [∇θ? logPθ(Y,X)|Y ] (16)

Define:
Js(θ) = ∇θ logPθ (Ys+1|Xs+1) +∇θ logPθ (Xs+1|Xs)

Hs(θ) = ∇2
θ logPθ (Ys+1|Xs+1) +∇2

θ logPθ (Xs+1|Xs)

(In particular, Js in the previous section is Js(θ?) according to this definition.)

We use the following convention as a notation for conditional expectations defined under one
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measure but evaluated under a different measure. Suppose g(Z2) = Eθ[Z1|Z2] is a version of
Kolmogorov’s conditional expectation under θ. We will write Eθ[Z1|Z2] for g(Z2) where Z2

can be distributed according to θ? 6= θ. Note that this is well-defined as long as θ and θ? are
probabilities defined on the same background σ-field, in the sense that g’s Z2-measurability
depends only on the σ-fields. We follow the same convention for conditional variances.

Now by (16) and conditional independence:

iT (θ) = 1
T
∇2
θ logPθ (Y2:T |Y1)

= 1
T
Eθ
[
∇2
θ logPθ (Y2:T , X1:T |Y1)

∣∣∣Y1:T
]

+ 1
T
Vθ [∇θ logPθ (Y2:T , X1:T |Y1)|Y1:T ]

= 1
T
Eθ

[
T−1∑
s=1

Hs(θ)
∣∣∣∣∣Y1:T

]
+ 1
T
Vθ

[
T−1∑
s=1

Js(θ)
∣∣∣∣∣Y1:T

]
+ 1
T
Eθ
[
∇2
θ logPθ (X1|Y1)

∣∣∣Y1:T
]

+ 1
T

2Covθ
[
T−1∑
s=1

Js(θ),∇θ logPθ (X1|Y1)
∣∣∣∣∣Y1:T

]
+ 1
T
Vθ [∇θ logPθ (X1|Y1)|Y1:T ]

Eθ [∇2
θ logPθ (X1|Y1)|Y1:T ] and Vθ [∇θ logPθ (X1|Y1)|Y1:T ] converge to some “infinite-past”

limit by Cauchy-ness, using the same proof strategy we have used repeatedly, so that:

1
T
Eθ
[
∇2
θ logPθ (X1|Y1)

∣∣∣Y1:T
]

+ 1
T
Vθ [∇θ logPθ (X1|Y1)|Y1:T ] = oθ?(1)

We introduce the auxiliary processes:

W e
mt(θ) = Eθ

[
t∑

s=m
Hs(θ)

∣∣∣∣∣Ym:t+1

]
− Eθ

[
t−1∑
s=m

Hs(θ)
∣∣∣∣∣Ym:t

]

W v
mt(θ) = Vθ

[
t∑

s=m
Js(θ)

∣∣∣∣∣Ym:t+1

]
− Vθ

[
t−1∑
s=m

Js(θ)
∣∣∣∣∣Ym:t

]

W c
mt(θ) = Covθ

[
t∑

s=m
Js(θ),∇θ logPθ (X1|Y1)

∣∣∣∣∣Ym:t+1

]
− Covθ

[
t−1∑
s=m

Js(θ),∇θ logPθ (X1|Y1)
∣∣∣∣∣Ym:t

]

Using telescopic sums similar to what was done for the score in section A12.4.2, we have, as
announced:

iT (θ) = 1
T

T−1∑
t=1

W e
1t(θ) + 1

T

T−1∑
t=1

W v
1t(θ) + 1

T

T−1∑
t=1

W c
1t(θ) + oθ?(1)

The remainder of the proof proceeds in three steps:

1. W e
mt, W v

mt and W c
mt are θ? almost sure uniform Cauchy sequences as m → −∞. We

call W e
t (θ), W v

t (θ) and W c
t (θ) their limits.
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2.
∥∥∥ 1
T

∑T−1
t=1 W

e
1t(θ)− 1

T

∑T−1
t=1 W

e
t (θ)

∥∥∥ θ? as−−−→ 0,
∥∥∥ 1
T

∑T−1
t=1 W

v
1t(θ)− 1

T

∑T−1
t=1 W

v
t (θ)

∥∥∥ θ? as−−−→ 0
and

∥∥∥ 1
T

∑T−1
t=1 W

c
1t(θ)− 1

T

∑T−1
t=1 W

c
t (θ)

∥∥∥ θ? as−−−→ 0.

3.
∥∥∥ 1
T

∑T−1
t=1 W

e
t (θ)− ie(θ)

∥∥∥ θ? as−−−→ 0,
∥∥∥ 1
T

∑T−1
t=1 W

v
t (θ)− iv(θ)

∥∥∥ θ? as−−−→ 0
and

∥∥∥ 1
T

∑T−1
t=1 W

c
t (θ)− ic(θ)

∥∥∥ θ? as−−−→ 0.

Step 1.1: W e
mt(θ) is θ? almost surely uniform Cauchy

Similar to step 1 in the log-likelihood section (section A12.4.1) and step 1 in the score
section (section A12.4.2), we defineW e

t (θ) = W e
−∞t(θ) and show the following θ? almost-sure

inequality, valid for any −∞ ≤ m < m′ ≤ 1 and uniform in θ:

|W e
m′t(θ)−W e

mt(θ)| < Kρt−m
′ (17)

The proof follows the same lines of step 1 in the score section (section A12.4.2). The
only difference is that we cannot use Eθ? [·|Ym:t+1] θ? as−−−→ Eθ? [·|Y−∞:t+1] when dealing with
Eθ [·|Ym:t+1] instead of Eθ? [·|Ym:t+1]. We have to first use Cauchy-ness to take the limit and
then extend the geometric bound of interest to the limit, exactly similar to what is done in
step 1 in the log-likelihood section (section A12.4.1) and in the next step (step 1.2) for W v

mt.
The proof is omitted for brevity.

Step 1.2: W v
mt(θ) is θ? almost surely uniform Cauchy

Similar to step 1 in the log-likelihood section (section A12.4.1), step 1 in the score section
(section A12.4.2) and step 1.1 forW e

mt(θ), we defineW v
t (θ) = W v

−∞t(θ) and show the following
θ? almost-sure inequality, valid for any −∞ ≤ m < m′ ≤ 1 and uniform in θ:

|W v
m′t(θ)−W v

mt(θ)| < Kρt−m
′ (18)

The following θ? almost-sure bounds hold for any −∞ < m ≤ m′ ≤ r ≤ s ≤ t, uniformly in
θ:

|Covθ [Jr(θ), Js(θ)|Ym′:t]− Covθ [Jr(θ), Js(θ)|Ym:t]| ≤ Kρr−m
′ (19)

|Covθ [Jr(θ), Js(θ)|Ym:t+1]− Covθ [Jr(θ), Js(θ)|Ym:t]| ≤ Kρt−s (20)

|Covθ [Jr(θ), Js(θ)|Ym′:t]| ≤ Kρs−r (21)

The proofs of the bounds (19), (20) and (21) follow from the merging properties along the
same lines of bounds (12), (13), (14) and (15) in the score section (section A12.4.2) and
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bound (7) in the log-likelihood section (section A12.4.1). They are omitted for brevity.

Note that for any −∞ < m < m′ ≤ 1:

W v
m′t(θ)−W v

mt(θ) =
(

t∑
r=m′

t∑
s=m′

Covθ [Jr(θ), Js(θ)|Ym′:t+1]−
t−1∑
r=m′

t−1∑
s=m′

Covθ [Jr(θ), Js(θ)|Ym′:t]
)

−
(

t∑
r=m

t∑
s=m

Covθ [Jr(θ), Js(θ)|Ym:t+1]−
t−1∑
r=m

t−1∑
s=m

Covθ [Jr(θ), Js(θ)|Ym:t]
)

(22)

The bounds (19), (20) or (21) apply to different ways of grouping the terms in the sum
(22). The idea is to split the sums into different regions, and then apply the sharpest bound
available in each region. This is what was done explictly in the log-likelihood and score
sections; the “region management” becomes too cumbersome here. We use a higher level
approach. Fix m,m′ and t and partition A = m ≤ r ≤ t,m ≤ s ≤ t as A1∪A2∪A3∪A4 (see
also figure 8) where:

A1 = {m ≤ r < m′,m ≤ s ≤ t− 1} ∪ {m ≤ r ≤ t− 1,m ≤ s < m′}

A2 = {m′ ≤ r ≤ t− 1,m′ ≤ s ≤ t− 1}

A3 = {r = t,m′ ≤ s ≤ t} ∪ {m′ ≤ s ≤ t, s = t}

A4 = {r = t,m ≤ s < m′} ∪ {m ≤ r < m′, s = t, }
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A1

A2

A3

A4

A4

r=t

s=t

s=t-1

s=m

s=m’

r=t-1r=m’r=m
r

s

Figure 8: Partition of A

Note that:

W v
m′t(θ)−W v

mt(θ) =
∑
A1

(Covθ [Jr(θ), Js(θ)|Ym:t+1]− Covθ [Jr(θ), Js(θ)|Ym:t])

+
∑
A2

((Covθ [Jr(θ), Js(θ)|Ym′:t+1]− Covθ [Jr(θ), Js(θ)|Ym′:t])

− (Covθ [Jr(θ), Js(θ)|Ym:t+1]− Covθ [Jr(θ), Js(θ)|Ym:t]))

+
∑
A3

(Covθ [Jr(θ), Js(θ)|Ym′:t+1]− Covθ [Jr(θ), Js(θ)|Ym:t+1])

+
∑
A4

Covθ [Jr(θ), Js(θ)|Ym:t+1]
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By the bounds (19), (20) and (21):

|W v
m′t(θ)−W v

mt(θ)| ≤
∑
A1

Kρt−r∨s ∧ ρr∨s−r∧s +
∑
A2

Kρt−r∨s ∧ ρr∨s−r∧s ∧ ρr∧s−m′

+
∑
A3

Kρr∨s−r∧s ∧ ρr∧s−m′ +
∑
A4

Kρr∨s−r∧s

Furthermore:

• On A1, r ∧ s−m′ ≤ 0 ≤ r ∨ s− r ∧ s.

• On A3, t− r ∨ s = 0 ≤ r ∨ s− r ∧ s.

• On A4, t− r ∨ s = 0 ≤ r ∨ s− r ∧ s and r ∧ s−m′ ≤ 0 ≤ r ∨ s− r ∧ s.

So that:

|W v
m′t(θ)−W v

mt(θ)| ≤ K
∑

A1∪A2∪A3∪A4

ρt−r∨s ∧ ρr∨s−r∧s ∧ ρr∧s−m′

= K
t∑

r=m

t∑
s=m

ρ(t−r∨s)∨(r∨s−r∧s)∨(r∧s−m′)

Define n = t−m+ 1, ρn = ρn, a = m′−m+1
t−m+1 and the function g(r, s) := (1− r ∨ s) ∨ (r ∨ s−

r ∧ s) ∨ (r ∧ s− a) for (r, s) ∈ [0, 1]× [0, 1]. Then:

t∑
r=m

t∑
s=m

ρ(t−r∨s)∨(r∨s−r∧s)∨(r∧s−m′)

= n2 1
n2

n∑
r=1

n∑
s=1

ag(
r
n
, s
n)

≤ n2
∫

0≤r≤1

∫
0≤s≤1

ag(r,s)drds because x→ ax is decreasing

= n263a1/3 − 4a1/2 + a

log2 a

≤ n26 3a1/3

log2 a
because a− 4

√
a < 0 when 0 < a < 1

= 18K
ρ

n2 1
n2 log2 ρ

ρn/3

≤ 18K
ρ log2 ρ

(
ρ1/3

)t−m′

This proves (18) for −∞ ≤ m < m′ ≤ 1. As a consequence W v
mt(θ) is θ? almost surely a

uniform Cauchy sequence, and as such converges to a limit W v
t (θ) = W v

∞t(θ) as m → −∞.
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(18) extends to m = −∞ by continuity.

In order to give an explicit “infinite-past” representation for W v
t (θ) which will be used to

apply the ergodic theorem in step 3.2, note that (19) implies that:

Covθ [Jr(θ), Js(θ)|Ym:t+1] θ? as−−−→ Covθ [Jr(θ), Js(θ)|Y−∞:t+1]

Then bounds (19), (20) and (21) extend tom = −∞ and imply that Covθ [Jr(θ), Js(θ)|Y−∞:t+1]−
Covθ [Jr(θ), Js(θ)|Y−∞:t] is (doubly) absolutely summable in r → −∞ and s → −∞, and
Covθ [Js(θ), Jt(θ)|Y−∞:t+1] is absolutely summable in s→ −∞. Rewrite W v

mt:

W v
mt(θ) =

t∑
r=m′

t∑
s=m′

Covθ [Jr(θ), Js(θ)|Ym′:t+1]−
t−1∑
r=m′

t−1∑
s=m′

Covθ [Jr(θ), Js(θ)|Ym′:t]

=
t∑

s=m
Covθ [Js(θ), Jt(θ)|Ym:t+1] +

t−1∑
s=m

Covθ [Js(θ), Jt(θ)|Ym:t+1]

+
t−1∑
r=m

t−1∑
s=m

(Covθ [Jr(θ), Js(θ)|Ym:t+1]− Covθ [Jr(θ), Js(θ)|Ym:t])

By taking m to −∞ we get the “infinite-past” representation of W v
mt(θ):

W v
t (θ) = W v

−∞t(θ) =
t∑

s=−∞
Covθ [Js(θ), Jt(θ)|Y−∞:t+1] +

t−1∑
s=−∞

Covθ [Js(θ), Jt(θ)|Y−∞:t+1]

+
t−1∑

r=−∞

t−1∑
s=−∞

(Covθ [Jr(θ), Js(θ)|Y−∞:t+1]− Covθ [Jr(θ), Js(θ)|Y−∞:t])

Step 1.3: W c
mt(θ) is θ? almost surely uniform Cauchy

Similar to step 1 in the log-likelihood section (section A12.4.1), step 1 in the score section
(section A12.4.2), step 1.1 for W e

mt(θ) and step 1.2 for W v
mt(θ). We define W c

t (θ) = W c
−∞t(θ)

and show the following θ? almost-sure inequality, valid for any −∞ ≤ m < m′ ≤ 1 and
uniform in θ:

|W c
m′t(θ)−W c

mt(θ)| < Kρt−m
′ (23)

Along the same lines as steps 1.1 and 1.3 and omitted for brevity.
Step 2.1:

∣∣∣ 1
T

∑T−1
t=1 W

e
1t(θ)− 1

T

∑T−1
t=1 W

e
t (θ)

∣∣∣ θ? as−−−→ 0.
Step 2.2:

∣∣∣ 1
T

∑T−1
t=1 W

v
1t(θ)− 1

T

∑T−1
t=1 W

v
t (θ)

∣∣∣ θ? as−−−→ 0.
Step 2.3:

∣∣∣ 1
T

∑T−1
t=1 W

c
1t(θ)− 1

T

∑T−1
t=1 W

c
t (θ)

∣∣∣ θ? as−−−→ 0.
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These three steps follow from the geometric bounds (17), (18) and (23) similarly to step 2 in
the log-likelihood section (section A12.4.1) and step 2 in the score section (section A12.4.2).

Step 3.1:
∥∥∥ 1
T

∑T−1
t=1 W

e
1t(θ)− ie(θ)

∥∥∥ θ? as−−−→ 0.
Step 3.2:

∥∥∥ 1
T

∑T−1
t=1 W

v
1t(θ)− iv(θ)

∥∥∥ θ? as−−−→ 0.
Step 3.3:

∥∥∥ 1
T

∑T−1
t=1 W

c
1t(θ)− ic(θ)

∥∥∥ θ? as−−−→ 0.

These two steps follow by the functional ergodic theorem. Their infinite-past representations
show that W e

1t(θ), W v
1t(θ) and W c

1t(θ) are ergodic, and continuity follows from the uniform
limits. The functional ergodic theorem applies exactly as in step 3 of the log-likelihood sec-
tion (section A12.4.1).

Note that i(θ?) = I, for the usual reason, namely:

TiT (θ) = −∇2
θ logPθ(Y2:T |Y1)

= −∇
2
θPθ(Y2:T |Y1)
P 2
θ (Y2:T |Y1) + ∇θPθ(Y2:T |Y1)∇′θPθ(Y2:T |Y1)

P 2
θ (Y2:T |Y1)

TEθ? [iT (θ?)|Y1] = −
∑
y2:T

∇2
θ?Pθ?(y2:T |Y1)︸ ︷︷ ︸

=∇2
∑

=∇21=0

+T 2Eθ? [sT s′T |Y1]

Eθ? [iT (θ?)]→ i(θ?)

and Eθ? [iT (θ?)] = TEθ? [sT s′T ]→ I

A12.5 Hidden Rust models are uniformly locally asymptotically
normal (proof of Theorem 3)

Under stationarity, I proved a central limit theorem for the score in appendix section A12.4.2
and a uniform law of large numbers for the observed information in appendix section A12.4.3.
(Uniform) local asymptotic normality (Theorem 3) is a standard consequence of these two
theorems (see van der Vaart (1998)).

By extending these two limit theorems to their non-stationary versions one gets (uniform)
local asymptotic normality (Theorem 3) under non-stationarity too. In A12.5.2 I do so for
the central limit theorem for the score. The uniform law of large numbers for the observed
information can be extended to non-stationary data along the same lines.

77



A12.5.1 Limit theorems under non-stationarity

The limit theorems proved under stationarity need to be extended to non-stationarity, when
the true initial distribution µ? is different from the stationary one µ�. Let us consider the
case of the central limit theorem.

For Markov chains, non-stationary central limit theorems such as:

√
T

1
T

T∑
t=1

(f(Yt)− E[f(Yt)])⇒ N (0, ω2)

are usually proven using regeneration arguments. By splitting the sequence of observations
into consecutive blocks starting and ending at a distinguished value, the problem is reduced
to an independent identically distributed central limit theorem for averages of blocks of ob-
servations. The blocks have random length but the length is finite with probability one.

There are two issues with this approach. First, it is not obvious how to extend it to the
score, which is a non-additively-separable function of Y1:T . Second, and more interestingly, it
seems that the qualitative link between the stationary and the non-stationary distributions
should be captured by the merging properties rather than regeneration or similar lower-level
phenomena. After all, regeneration is one of several lower-level arguments that can be used
to show merging in the first place.

In appendix section A12.5.2 I give a proof of the non-stationary central limit theorem for
the score using merging and the bounded differences property of the score. Let σiT be the
ith coefficient of the unscaled score TsT . σiT has bounded differences uniformly in T and t,
meaning that there is ci such that for any y1:T , any ŷt:

σiT (y1, . . . , yt−1, yt, yt+1, . . . , yT )− σiT (y1, . . . , yt−1, ŷt, yt+1, . . . , yT ) ≤ ci

This follows from almost-sure Cauchy bounds, as done repeatedly in appendix section A12.4.

Bounded differences conditions are typically26 used as sufficient conditions for the concen-
tration of non-additively-separable functions.

26Including in this paper, where I use the bounded differences property of the score in this concentration
context in order to verify one of the assumptions for the Bernstein-von Mises theorem; see appendix section
A12.7.4.
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Heuristically, merging and bounded differences seem to be reasonable sufficient conditions to
take a stationary limit theorem to its non-stationary version. Observations are distributed
more and more according to the stationary distribution, and no single observation has an
overwhelming influence on the score. Appendix section A12.5.2 makes this intuition precise.

The argument of appendix section A12.5.2 is of general interest. It can be used to show
non-stationary central limit theorems for Markov chains or other merging processes such
as hidden Markov models. One advantage is that it can handle non-additively-separable
functions in addition to the more usual averages 1

T

∑T
t=1 f(Yt).

I use a somewhat similar argument in appendix section A12.7.2 to show that a uniformly
consistent estimator under stationarity is also uniformly consistent under non-stationarity
in order to check one of the assumptions of the Bernstein-von Mises theorem, see appendix
section A12.7.2.

A12.5.2 Non-stationary central limit theorem for the score

Let Ỹt be the sequence under stationarity and Yt under any initial distribution. Write
Y = Y1:T , Ỹ = Ỹ1:T , Y−t = Y1:t−1,t+1,T and Ỹ−t = Ỹ1:t−1,t+1,T . Ỹ and Y do not have to live on
the same probability space; this will be made more precise below. Let sT = 1

T
σT (Y1:T ) be the

score for the non-stationary model and s̃T = 1
T
σT
(
Ỹ1:T

)
the score for the stationary model,

both computed under the potentially misspecified assumption that the data are generated
with some arbitrary initial stationary distribution µ, as in section A12.3. In section A12.4.2
I have shown that the slight misspecification does not matter in asymptotics and that the
following central limit theorem for the score holds under stationarity:

√
T s̃T ⇒ N (0, I)

Now I want to show: √
TsT ⇒ N (0, I)

Let dTV (Z1, Z2) be the notation for the total variation distance between the distributions of
any two random variables Z1 and Z2.

Recall that Y satisfies merging, i.e., there is ρ < 1, c > 0 such that:

dTV
(
Yt, Ỹ1

)
< cρt
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Assume that s is scalar for simplicity.

For P1 and P2 probability distributions on R, write P1⊗P2 for the space of measures on R2

whose marginals are P1 and P2 (not to be confused with the product measure P1×P2). Let
W be the Wasserstein metric between probability distributions on R:

W (P1, P2) = inf
P∈P1⊗P2

(∫
(z1 − z2)2P (dz)

)1/2

It is well-known that W metrizes weak convergence.

For any two random variables Z1 and Z2, let W (Z1, Z2) be the notation for W (PZ1 , PZ2).
Then:

W (Z1, Z2) = inf
P∈PZ1⊗PZ2

EP
[
(Z1 − Z2)2

]1/2
In particular: for a > 0:

W (aZ1, aZ2) = inf
P∈PZ1⊗PZ2

EP
[
(aZ1 − aZ2)2

]1/2
= aW (Z1, Z2)

Consider the following inequality where on each line Y1:t−1, Yt, Ỹt, Ỹt+1:T must have any joint
distribution respecting the marginal distributions of Y and Ỹ , but these joint distributions
do not have to be compatible between lines:

W (sT , s̃T ) = W
( 1
T
σT (Y1, . . . , YT ) , 1

T
σT
(
Ỹ1, . . . , ỸT

))
= 1
T
W
(
σT (Y1, . . . , YT ) , σT

(
Ỹ1, . . . , ỸT

))
≤ 1
T

(
W
(
σT (Y1, . . . , YT ) , σT

(
Y1, . . . , YT−1, ỸT

))
+W

(
σT
(
Y1, . . . , YT−1, ỸT

)
, σT

(
Y1, . . . , YT−2, ỸT−1, ỸT

))
+ . . .

+W
(
σT
(
Y1, Y2, Ỹ3, . . . , ỸT

)
, σT

(
Y1, Ỹ2, . . . , ỸT

))
+W

(
σT
(
Y1, Ỹ2, . . . , ỸT

)
, σT

(
Ỹ1, . . . , ỸT

)))

Let us bound each term separately. Fix t and define:

h(yt) = σT
(
Y1, . . . , Yt−1, yt, Ỹt+1, . . . , ỸT

)

80



Fix P ∈ PY ⊗ PỸ :

EP
[(
h (Yt)− h

(
Ỹt
))2

]
≤ EP

[
c21

[
Yt 6= Ỹt

]]
by bounded differences of the score

= c2P
(
Yt 6= Ỹt

)
And:

W
(
h (Yt) , h

(
Ỹt
))2

= inf
P∈PY ⊗PỸ

EP
[(
h (Yt)− h

(
Ỹt
))2

]
≤ inf

P∈PY ⊗PỸ
c2P

(
Yt 6= Ỹt

)
Looking only at the marginal at time-horizon t, it is well-known that there is P ?

t ∈ PYt ⊗PỸt
such that:

inf
P∈PYt⊗PỸt

P
(
Yt 6= Ỹt

)
= min

P∈PYt⊗PỸt
P
(
Yt 6= Ỹt

)
= P ?

t

(
Yt 6= Ỹt

)
= dTV

(
Yt, Ỹt

)

We want to extend this property to the joint probabilities on 1 : T . Fix P ?
t as above. Let

P ? ∈ PY ⊗ PỸ such that
(
Y ?
t , Ỹ

?
t

)
∼ P ?

t , Y ?
−t and Ỹ ?

−t are independent conditionally on(
Y ?
t , Ỹ

?
t

)
, Y ?
−t|Y ?

t ∼ PY−t|Yt and Ỹ ?
−t|Ỹ ?

t ∼ PỸ−t|Ỹt . Then:

P ?
(
Yt 6= Ỹt

)
= P ?

t

(
Yt 6= Ỹt

)
= dTV

(
Yt, Ỹt

)
(Although we don’t need it for boundingW , in fact P ? achieves inf

P∈PY ⊗PỸ
P
(
Yt 6= Ỹt

)
because

for any P , dTV
(
Yt, Ỹt

)
≤ P

(
Yt 6= Ỹt

)
.)

As a consequence:
W
(
h (Yt) , h

(
Ỹt
))2
≤ c2 dTV

(
Yt, Ỹt

)
And thanks to merging:

W
(
h (Yt) , h

(
Ỹt
))
≤ c
√
ρT

Putting all the terms back together:

W (sT , s̃T ) ≤ 1
T
c(1 +√ρ+ . . .+√ρT ) ≤ 1

T
c

1
1−√ρ

So that finally:

W
(√

TsT ,N (0, I)
)
≤ W

(√
TsT ,

√
T s̃T

)
+W

(√
T s̃T ,N (0, I)

)
→ 0
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ie
√
TsT ⇒ N (0, I)

A12.6 Asymptotic distribution of the maximum likelihood esti-
mator (proof of Theorem 4)

A12.6.1 Consistency of the maximum likelihood estimator

We show that θ? is the unique maximum of L(θ) = Eθ? [logPθ (Y1|Y−∞:0)] in two steps.

Step 1: Pθ (Y1:T |Y−∞:m) θ? as−−−→ Pθ(Y1:T ) when m→ −∞

Note that this is yet another “infinite-past” statement, although of a different kind compared
to the limit theorems of appendix section A12.4. We use the merging property of zt = (xt, yt)
directly:

|Pθ(y1:T )− Pθ (y1:T |y−∞:m) |

≤
∣∣∣∣∣∑
x0,y0

Pθ(y1:T |x0, y0)Pθ(x0, y0)−
∑
x0,y0

Pθ(y1:T |x0, y0)Pθ(x0, y0|y−∞:m)
∣∣∣∣∣

≤
∑
x0,y0

Pθ(y1:T |x0, y0)

∣∣∣∣∣∣
∑

xm+1,ym+1

Pθ(x0, y0|xm+1, ym+1)(Pθ(xm+1, ym+1)− Pθ(xm+1, ym+1|y−∞:m))

∣∣∣∣∣∣
≤
∑
x0,y0

Pθ(y1:T |x0, y0)cρm by merging

≤ dxdycρ
m

−−−−→
m→−∞

0

Step 2: θ? is the unique maximum of L(θ)

Let us show by contradiction that, for θ 6= θ?, Pθ (Y1|Y−∞:0) is not θ? almost surely equal
to Pθ? (Y1|Y−∞:0). Suppose it is. Then by the law of iterated expectations and station-
arity, Pθ (Y1:T |Y−∞:0) = Pθ? (Y1:T |Y−∞:0) (θ?-as) for any T ≥ 1; and by integration and
stationarity: Pθ (Y1:T |Y−∞:m) = Pθ? (Y1:T |Y−∞:m) (θ?-as) for any T ≥ 1 ≥ m. Then by step
1, Pθ (Y1:T ) = Pθ? (Y1:T ) for any T ≥ 1, which contradicts the identification assumption (A3).

82



Then by the strict Jensen inequality:

Eθ?
[
log Pθ (Y1|Y−∞:0)

Pθ? (Y1|Y−∞:0)

]
< logEθ?

[
Pθ (Y1|Y−∞:0)
Pθ? (Y1|Y−∞:0)

]

= logEθ?
[
Eθ?

[
Pθ (Y1|Y−∞:0)
Pθ? (Y1|Y−∞:0)

]∣∣∣∣∣Y−∞:0

]
= 0

Thus:
L(θ) < L (θ?)

The continuity of L and the compactness of Θ imply that θ? is a well-separated maximum
and the uniform law of large numbers for LT implies consistency.

A12.6.2 Asymptotic normality of the maximum likelihood estimator

I is invertible by identification (section A12.6.1). Asymptotic normality of the maximum
likelihood estimator is a standard consequence of the uniform local asymptotic normality
property (Theorem 3) and consistency.

A12.7 Asymptotic distribution of the Bayesian posterior: Bernstein–
von Mises theorem (proof of Theorem 5)

I apply the weakly dependent Bernstein–von Mises of Connault (2014).

In a hidden Rust model, the domination assumption (A1) is verified. Local asymptotic
normality (A4) is of course Theorem 3. Assume that a prior that verifies the support
assumption (A2) is used. Assumptions (A3) (uniformly consistent tests), (A5) (a local
linear lower bound for the score), (A6) (a large deviation inequality for the score) and (A7)
(a large deviation inequality for blocks of data) remain to be checked .

A12.7.1 Uniformly consistent estimators

Uniformly consistent estimators can be used to build uniformly consistent tests (thus check-
ing assumption (A3)). By uniformly consistent estimators, I mean estimators θ̂T such that,
for some distance d:

∀ε, sup
θ
Pθ
(
d
(
θ̂T , θ

)
≥ ε

)
→ 0
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d can be any distance as long as it is locally stronger than the reference Euclidean distance
around θ?, i.e.:

∀ε > 0, ∃η > 0 : ‖θ − θ?‖ > ε =⇒ d (θ, θ?) > η

See section A12.7.2 for why we need d to be locally stronger than the Euclidean distance.

θ̂T is not an estimator that is meant to be used in practice. It is used only as a technical
device in the proof of the Bernstein–von Mises theorem. It does not matter if θ̂T has terrible
short-sample properties or is not statistically efficient, as long as it is uniformly consistent.
An idea is to construct θ̂T using the dynamic structure of the model regardless of the eco-
nomic structure. For instance, in the independent identically distributed case, one could
use non-parametric estimators of the marginal distribution, or non-constructively prove that
there exist uniformly consistent estimators of the marginal distribution as is done in van der
Vaart (1998).

For hidden Rust models, the comments of the previous paragraph are valid but the situation
is complicated by the weakly dependent dynamics. I rely on Theorem 2 of section 3 about
identification. By assumption (A3), the model is identified under stationarity. By merging,
this implies it is also identified under a different initial distribution (any marginal can be
arbitrarily well approximated by waiting long enough). By Theorem 2, let T0 be a time
horizon such that the marginal stationary distribution of T0 consecutive y’s identify θ. Let π
be the corresponding marginal, i.e., the distribution of y1:T0 under stationarity. Let (x̂s, ŷs)
be non-overlapping blocks of T0 consecutive (xt, yt)’s and S = bT/T0c. Let θ̂T = π̂T be the
empirical distribution estimator of π defined by:

π̂T (Y1:T ; ŷ = y1:T0) = 1
S

S∑
s=1

1
[
Ŷs = ŷ

]

Finally let dTV be the total variation distance. Because the model is identified, dTV (π̂T , π) is
a particular choice of distance d

(
θ̂T , θ

)
. I show that π̂T is a uniformly consistent estimator.

∀ε, sup
θ
Pθ (dTV (π̂T , π) ≥ ε)→ 0 (24)

The heuristic reason why we expect (24) to hold is as follows. (24) looks exactly like a
uniform Glivenko-Cantelli theorem. Indeed if A is the underlying σ-algebra, dTV can be
expressed as dTV (p1, p2) = supA∈A |p1(A)− p2(A)|. Here yt is discrete and A is the set of all
subsets of {1, . . . , dy}T0 . In particular A has finite Vapnik-Chervonenkis dimension. There
are two well-known Glivenko-Cantelli results under finite Vapnik-Chervonenkis dimension.
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First, a uniform Glivenko-Cantelli theorem supP P (dTV (π̂T , π) ≥ ε) → 0 holds under in-
dependent identically distributed assumption for P . Second, a universal Glivenko-Cantelli
theorem ∀P, P (dTV (π̂T , π) ≥ ε) P−→ 0 holds under suitable mixing assumptions for P . Since
hidden Rust models are “uniformly mixing,” we can expect the uniform statement (24) to
hold.

To prove (24) we show a Dvoretzky-Kiefer-Wolfowitz type inequality, that is a quantitative
bound going to zero with the time-series length: there is a sequence α(T ) −−−→

T→∞
0 such that:

∀θ, Pθ (dTV (π̂T , π) ≥ ε) ≤ α(T ) (25)

(25) follows in turn from a concentration bound for dTV (π̂T , π) around its expectation, and
a separate bound for its expectation.

Step 1: concentration bound for dTV (π̂T , π).

We want to apply the concentration inequality (5). Let us check that dTV (π̂T , π) verifies a
suitable bounded differences condition. By definition:

dTV (π̂T , π) = 1
2
∑
ŷ

|π̂T (ŷ)− π (ŷ)|

For any sequence of observations y1:T and ỹ1:T :

dTV (π̂T (y1:T ) , π)− dTV (π̂T (ỹ1:T ) , π)

≤ 1
2
∑
ŷ

|π̂T (y1:T ; ŷ)− π̂T (ỹ1:T ; ŷ)| by triangle inequality

≤ 1
2

1
S

S∑
s=1

1
[
ŷs 6= ˆ̃ys

]

≤ 1
2

1
S

T0∑
t=1

1 [yt 6= ỹt]

≤ 1
2

1
T − T0

T∑
t=1

1 [yt 6= ỹt]

Thus dTV (π̂T , π) verifies a bounded differences condition with ct = 1
2

1
T−T0

and we can apply
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(5) as announced:

Pθ,µ (dTV (π̂T , π) > Eθ,µ [dTV (π̂T , π)] + u) ≤ exp

−1
2

u2

τx(θ)
∑T
t=1

(
1
2

1
T−T0

)2


≤ exp

−1
2

u2

τx
T

4(T−T0)2


Step 2: bounding Eθ,µ [dTV (π̂T , π)].

To bound the expectation under an arbitrary non-stationary initial distribution I show a
bound under the stationary distribution and I take it to the non-stationary case using merg-
ing properties. This is similar to the way I show a non-stationary central limit theorem
for the score from a stationary central limit theorem using merging, in the local asymptotic
normality section (section A12.5).

Step 2.1: bounding Eθ [dTV (π̂T , π)] := Eθ,µ�(θ) [dTV (π̂T , π)].

Paulin (2014) gives a bound under stationarity for the empirical distribution estimator of the
one-dimensional marginal of a Markov chain (bound (3.31) p.21). We can apply this bound to
the block Markov chain (x̂, ŷ)s. Write λ for the joint distribution of (x̂, ŷ)1 = (x, y)1:T0 under
stationarity and λ̂T for the corresponding empirical distribution estimator. A consequence
of (3.31) from Paulin (2014) is that for T big enough:

Eθ
[
dTV

(
λ̂T , λ

)]
≤
√

1
Sγ(x̂,ŷ)(θ)

∑
ŷ

√
λ (ŷ)

Let d̂ = dŷ = dT0
y . Remember the general inequality between `p norms:

‖λ‖1/2 ≤ d̂
1

1/2−
1
1 ‖λ‖1 = d̂

So that:

Eθ
[
dTV

(
λ̂T , λ

)]
≤

√√√√ d̂

(T − T0)γ(x̂,ŷ)

Now consider the projection function hy (x̂, ŷ) = ŷ, which takes the joint Markov chain (x̂, ŷ)s
to its observable component ŷs. Then π̂T and π are the distributions of hy (x̂, ŷ) under λ̂T
and λ, respectively (i.e., π̂T = λ̂T ◦ h−1

y and π̂T = λ̂T ◦ h−1
y ). Now if dTV (Z1, Z2) means the

total variation distance between the distributions of two arbitrary random variables Z1 and
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Z2 and h is any function, dTV satisfies dTV (h(Z1), h(Z2)) ≤ dTV (Z1, Z2). In the case at hand:

Eθ [dTV (π̂T , π)] ≤ Eθ
[
dTV

(
λ̂T , λ

)]
≤

√√√√ d̂

(T − T0)γ(x̂,ŷ)

Step 2.2: bounding Eθ,µ [dTV (π̂T , π)].

Remember that Yt satisfies merging uniformly in θ and µ by assumption: there is ρ < 1,
c > 0 such that:

dTV (Yt, µ�) ≤ cρt

Somewhat similar to what I do in section A12.5 to show a nonstationary central limit theorem
for the score, I show that Eθ,µ [dTV (π̂T , π)]−Eθ [dTV (π̂T , π)] goes to zero using the bounded
differences property of dTV (π̂T , π) together with merging. Let (Yt)t be distributed according
to θ and µ (nonstationary) and

(
Ỹt
)
t
be distributed according to θ and stationary. Y and Ỹ

do not have to live on the same probability space. Consider the following inequality where
on each line Y1:t−1, Yt, Ỹt, Ỹt+1:T must have any joint distribution respecting the marginal
distributions of Y and Ỹ , but these joint distributions do not have to be compatible between
lines:

|Eθ,µ [dTV (π̂T , π)]− Eθ [dTV (π̂T , π)]|

=
∣∣∣E [dTV (π̂T (Y1, . . . , YT ) , π)]− E

[
dTV

(
π̂T
(
Ỹ1, . . . , ỸT

)
, π
)]∣∣∣

≤
∣∣∣E [dTV (π̂T (Y1, . . . , YT ) , π)]− E

[
dTV

(
π̂T
(
Y1, . . . , YT−1, ỸT

)
, π
)]∣∣∣

+
∣∣∣E [dTV (π̂T (Y1, . . . , YT−1, ỸT

)
, π
)]
− E

[
dTV

(
π̂T
(
Y1, . . . , YT−2, ỸT−1, ỸT

)
, π
)]∣∣∣

+ . . .

+
∣∣∣E [dTV (π̂T (Y1, Y2, Ỹ3, . . . , ỸT

)
, π
)]
− E

[
dTV

(
π̂T
(
Y1, Ỹ2, . . . , ỸT

)
, π
)]∣∣∣

+
∣∣∣E [dTV (π̂T (Y1, Ỹ2, . . . , ỸT

)
, π
)]
− E

[
dTV

(
π̂T
(
Ỹ1, . . . , ỸT

)
, π
)]∣∣∣

Let us bound each term separately. Fix t, 1 ≤ t ≤ T .
∣∣∣E [dTV (π̂T (Y1:t−1, Yt, Ỹt+1:T

)
, π
)]
− E

[
dTV

(
π̂T
(
Y1:t−1, Ỹt, Ỹt+1:T

)
, π
)]∣∣∣

≤ E
[
dTV

(
π̂T
(
Y1:t−1, Yt, Ỹt+1:T

)
, π̂T

(
Y1:t−1, Ỹt, Ỹt+1:T

))]
by triangle inequality

= E
[ 1
S

21
[
Yt 6= Ỹt

]]

Exactly as in section A12.5, we can build P ? such that
(
Y, Ỹ

)
∼ P ? and P ?

(
Yt 6= Ỹt

)
=
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dTV
(
Yt, Ỹt

)
. Hence the bound:

∣∣∣E [dTV (π̂T (Y1:t−1, Yt, Ỹt+1:T
)
, π
)]
− E

[
dTV

(
π̂T
(
Y1:t−1, Ỹt, Ỹt+1:T

)
, π
)]∣∣∣

≤ 2
T − T0

dTV
(
Yt, Ỹt

)
≤ 2c
T − T0

ρt

Putting back all the terms together, we get the bound:

|Eθ,µ [dTV (π̂T , π)]− Eθ [dTV (π̂T , π)]| ≤ 2c
T − T0

(1 + ρ+ . . .+ ρT ) ≤ 2c
(T − T0)(1− ρ)

And with step 2.1:

Eθ,µ [dTV (π̂T , π)] ≤ 2c
(T − T0)(1− ρ)

√√√√ d̂

(T − T0)γ(x̂,ŷ)

Finally, putting steps 1 and 2 together:

Pθ,µ (dTV (π̂T , π) ≥ ε) = Pθ,µ (dTV (π̂T , π) ≥ E [dTV (π̂T , π)] + (ε− Eθ,µ [dTV (π̂T , π)]))

≤ exp
−1

2
(ε− Eθ,µ [dTV (π̂T , π)])2

τx
T

4(T−T0)2


This is of the form (25) (for a fixed ε and T big enough) and shows that θ̂T = π̂T is a
uniformly consistent estimator as in (24).

A12.7.2 Uniformly consistent tests (checking assumption (A3))

Let θ̂T be any uniformly consistent estimator in the sense of section A12.7.1 (π̂T is such an
estimator by section A12.7.1). Let ε > 0. Recall that by definition of a uniformly consistent
estimator (section A12.7.1), there is η > 0 such that:

‖θ − θ?‖ > ε =⇒ d (θ, θ?) > η

Let us show that φT = 1
[
d
(
θ̂T , θ

?
)
≥ η/2

]
is a uniformly consistent test for ε.

First,
Eθ? [φT ] = Pθ?

(
d
(
θ̂T , θ

?
)
≥ η/2

)
→ 0 by consistency
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Second,

Eθ[1− φT ] = Pθ(φT = 0)

= Pθ
(
d
(
θ̂T , θ

?
)
< η/2

)
≤ Pθ

(
d (θ, θ?)− d

(
θ̂T , θ

)
< η/2

)
by triangle inequality

= Pθ
(
d
(
θ̂T , θ

)
> d (θ, θ?)− η/2

)
So that:

sup
‖θ−θ?‖>ε

Eθ[1− φT ] ≤ sup
‖θ−θ?‖>ε

Pθ
(
d
(
θ̂T , θ

)
> η/2

)
→ 0 by uniform consistency

A12.7.3 Local linear lower bound for the score (checking assumption (A5))

We can rely on the smoothness of θ → Eθ [sT ] on Θ. Note that as usual:

∇θ?Eθ [sT ] =
∑
ỹ1:T

sT∇θ?Pθ(ỹ2:T |ỹ1)P (ỹ1)

=
∑
ỹ1:T

sT
∇θ?Pθ(ỹ2:T |ỹ1)
Pθ?(ỹ2:T |ỹ1) Pθ?(ỹ2:T |ỹ1)P (ỹ1)

= TEθ? [sT s′T ]

= Eθ? [iT (θ?)] (see the end of section A12.4.3)

Write h(θ) = ∇2
θEθ [sT ]. Consider a second-order Taylor expansion around θ? with Lagrange

remainder: there is θ̄, θ?i ≤ θ̄i ≤ θi, such that:

Eθ [sT ] = Eθ? [sT ] + Eθ? [iT (θ?)](θ − θ?) + (θ − θ?)′h
(
θ̄
)

(θ − θ?)

Since Eθ? [iT (θ?)] −−−→
T→∞

I (see section A12.4), I is invertible by assumption and h is bounded
over Θ by smoothness and compactness, there is T0, δ < 1 and c such that for any ‖θ − θ?‖ ≤
δ, T > T0:

‖Eθ [sT ]− Eθ? [sT ]‖ ≥ c ‖θ − θ?‖
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A12.7.4 Large deviation inequality for the score (checking assumption (A6))

Let σiT be the ith coefficient of the unscaled score TsT . The score has bounded differences;
see section A12.5. We can apply the concentration inequality (6): for any θ:

Pθ
(∣∣∣σiT/T − Eθ

[
σiT/T

]∣∣∣ > u
)
≤ 2 exp

(
−1

2
u2

τx(θ)
∑T
t=1(ci/T )2

)

≤ 2 exp
(
−1

2
u2

τxci/T

)

To conclude, note that for a general random vector X:

P (‖X‖2 > u) < dX max
i
P

(
|Xi| >

u√
dX

)

So that if c̄ = max1≤i≤dθ ci:

Pθ (‖sT − Eθ [sT ]‖ > u) ≤ 2 exp
(
−1

2
u2

τxc̄/T

)

Thus assumption (A6) holds with c = τxc̄

A12.7.5 Large deviation inequality for blocks (checking assumption (A7))

Let R ∈ N and define blocks (x̂s, ŷs) to be non-overlapping blocks of R consecutive (xt, yt)’s.
(x̂s, ŷs) itself is a hidden Markov model and satisfies the concentration inequalities of Paulin
(2014). In particular, for any g, 0 ≤ g ≤ 1, applying the one-sided inequality (4) to
f (ŷ1, . . . , ŷS) = 1

S

∑S
s=1 gs where gs = g (ŷs) and we have:

Pθ

(
1
S

S∑
s=1

gs < E
[

1
S

S∑
s=1

gs

]
− u

)
≤ exp

(
−1

2
u2

τx̂(θ)/S

)

≤ exp
(
−1

2
u2

τx̂/S

)

Thus, assumption (A7) holds with cR = τx̂.

A13 Appendix for section 5: Estimation

The discrete filter cannot be implemented directly in practice due to numerical precision
issues. The probability of a long path (s, a)1:T is typically very small. Probabilities getting
small is a classical numerical issue usually resolved by taking logarithms. Here logarithms
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are not directly compatible with the linear recursive formula πt+1 = πtHt+1. The algorithm
needs to be augmented with the log of a normalization factor for πt, say ρt .

initialization:

π̃1 = π1 = µ?(s1, x1, a1)

log ρ1 = 0

iteration:


πt+1 = π̃tHt+1

π̃t+1 = πt+1

‖πt+1‖1

log ρt+1 = log ρt + log ‖πt+1‖1

At the end of the recursion, ρT is directly logP((s, a)1:T ).

A14 Appendix for section 6: A structural model of
dynamic financial incentives

Figure 9: Conditional state transition matrices. Blue: non-zero coefficients. Light gray: zero
coefficients. Sparsity: 98%.
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Table 4 presents the estimated values of the transition probabilities for dx = 2, 3, 4 and 7.
Those are the numerical values used to create the bubble representation of the transition
matrices, Figure 6 in section 6.

Table 4: Estimated transition matrices

dx Q

2
87.5% 12.5%

13.7% 86.3%



3


93.9% 5.5% 0.6%
2.7% 66.9% 30.4%
0.1% 18.9% 81.0%



4


98.2% 0.5% 0.6% 0.7%
0.1% 72.7% 24.6% 2.6%
0.0% 0.2% 20.4% 79.4%



7



98.7% 0.2% 0.8% 0.1% 0.1% 0.1% 0.0%
0.0% 0.0% 99.7% 0.1% 0.1% 0.1% 0.0%
0.0% 68.6% 1.1% 29.8% 0.3% 0.2% 0.0%
0.8% 0.3% 8.6% 88.4% 0.6% 1.0% 0.3%
0.0% 0.0% 0.0% 0.0% 86.4% 12.9% 0.7%
0.0% 0.0% 0.0% 2.4% 60.4% 36.9% 0.3%
0.0% 0.0% 0.0% 0.0% 0.0% 11.9% 88.1%
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A maximum likelihood path for the unobserved state variables can easily be computed at
the maximum likelihood value of the structural parameters. As an illustration, I estimated
a hidden Rust model with seven unobserved state variables on a larger sample of teachers
that includes six additional teachers who never or almost never work, and I computed the
most likely paths for the unobserved state variables. Figure 10 represents the corresponding
proportion of periods spent in each of the seven unobserved states. The teachers are ranked
according to their attendace rate in sample. Unobserved state specific leisure utilities, mea-
sured in rupees, are given on the right column. The likelihood spends one unobserved state
(state 1, with very high leisure utility) to account for the outlier teachers.
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Figure 10: Most likely unobserved path.

Top: attendance rate. Bottom: periods spent in each unobserved state at the Viterbi path. The area of
each circle is proportional to the proportion of periods spent in the corresponding state. Unobserved state
specific leisure utilities are given on the right column, measured in rupees by normalizing by the estimated
utilities of money.
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