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Abstract

Does competition among persuaders increase the extent of information revealed? We study ex
ante symmetric information games where a number of senders choose what information to gather
and communicate to a receiver, who takes a non-contractible action that affects the welfare of all
players. We characterize the information revealed in pure-strategy equilibria. We consider three
ways of increasing competition among senders: (i) moving from collusive to non-cooperative play,
(ii) introducing additional senders, and (iii) decreasing the alignment of senders’ preferences.
For each of these notions, we establish that increasing competition cannot decrease the amount
of information revealed, and will in a certain sense tend to increase it.
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Such is the irresistible nature of truth that all it asks, and all it wants, is the liberty of appearing.

-Thomas Paine

1 Introduction

Does competition among persuaders increase the amount of information revealed? A long tradition

in political and legal thought holds that the answer is yes.1 This view has motivated protection of

freedom of speech and freedom of the press,2 media ownership regulation,3 the adversarial judicial

system,4 and many other policies.

We introduce a model where several senders try to persuade a third party (“Receiver”) to change

her action. The senders, who have no ex ante private information, simultaneously conduct costless

experiments that are informative about an unknown state of the world. Receiver observes the

results of these experiments and then takes a non-contractible action that affects the welfare of all

players. The state space is arbitrary but finite. Receiver and each of the senders have arbitrary,

state-dependent, utility functions.

The information revealed in an equilibrium of this game can be succinctly summarized by the

distribution of Receiver’s posterior beliefs (Blackwell 1953). We refer to such a distribution as

an outcome of the game and order outcomes by informativeness according to the usual Blackwell

criterion.

We first show that the equilibrium outcomes of our game are the same as in an alternative

model where Receiver does not observe the results of senders’ experiments directly, but senders

have the ability to send verifiable messages about the experiments and their outcomes. Our results

are therefore applicable to settings where senders gather information privately and have the ability

to conceal unfavorable results ex post.

We next establish a simple lemma that is the backbone of our main propositions: if the senders

other than i together induce some outcome τ ′, sender i can unilaterally deviate to induce some

other outcome τ if and only if τ is more informative than τ ′. The lemma captures a basic property

1Milton (1644/2006); Mill (1859/2006).
2Abrams v. United States, 250 U.S. 616 (1919); Associated Press v. United States, 326 U.S. 1 (1945).
3Federal Communications Commission (2003).
4Sward (1988).
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of information: an individual sender can unilaterally increase the amount of information being

revealed, but can never decrease it below the informational content of the other senders’ signals.

This asymmetry is the fundamental reason why competition tends to increase information revelation

in our model.

Our main characterization result provides an algorithm for finding the set of equilibrium out-

comes. Throughout the paper, we focus exclusively on pure-strategy equilibria.5 We consider each

sender i’s value function over Receiver’s beliefs v̂i and its concave closure Vi (the smallest concave

function everywhere above v̂i). Kamenica and Gentzkow (forthcoming) show that a single sender

i = 1 can benefit from providing additional information to Receiver if and only if v̂1 6= V1 at

the current belief, and consequently, any belief µ that Receiver holds in equilibrium must satisfy

v̂1 (µ) = V1 (µ). We extend this result and establish that, when there are two or more senders,

a distribution of posteriors is an equilibrium outcome if and only if every belief µ in its support

satisfies v̂i(µ) = Vi(µ) for all i. Identifying the set of these “unimprovable” beliefs for a given

sender is often straightforward. To find the equilibrium outcomes of the game, one simply takes

the intersection of these sets.

We then turn to the impact of competition on information revelation. We consider three ways

of increasing competition among senders: (i) moving from collusive to non-cooperative play, (ii)

introducing additional senders, and (iii) decreasing the alignment of senders’ preferences. Since

there are typically many equilibrium and many collusive outcomes, we state these results in terms

of set comparisons, using the strong and the weak set orders introduced by Topkis (1978). We

show that, for all three comparisons, competition never makes the set of outcomes less informative

(under either order).

Competition does not necessarily make the set of outcomes more informative, however, because

the set of outcomes with more competition T may not be comparable to the set of outcomes with

less competition T ′. If we restrict attention to comparable outcomes, however, we obtain stronger

results. Specifically, we show that for any maximal chain C, T ∩ C is more informative than

T ′ ∩ C. This relationship holds in the strong set order for the comparison of collusive to non-

cooperative play, and in the weak set order for the comparisons based on number of senders and

5In Section 4, we briefly discuss the complications that arise with mixed strategies.
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preference alignment. We also show that in the limit where two senders have completely opposed

preferences, full revelation is the unique equilibrium outcome as long as the value functions are

suitably nonlinear.

Finally, we discuss the precise sense in which our results on informativeness imply that compe-

tition increases Receiver’s welfare. We also discuss an important caveat, namely that the outcomes

under more and less competition can be Blackwell non-comparable. In this case, it is possible that

competition actually makes Receiver worse off.

Our paper contributes to two lines of research. Our model is an extension of the multiple-

senders persuasion game analyzed in Milgrom and Roberts (1986). We extend their results in two

directions. First, we allow senders to choose how much information to obtain before they play the

persuasion game; thus, the model in Milgrom and Roberts is a particular subgame of the game we

analyze. Second, Milgrom and Roberts identify restrictive preference conditions under which every

equilibrium is fully revealing. In contrast, we derive results on the exact informational content of

all equilibria without any assumptions about senders’ preferences.6

Our model is also related to a small literature that examines situations with ex ante symmetric

information where two senders with exactly opposed interests provide costly signals about a binary

state of the world (Brocas et al. 2009, Gul and Pesendorfer 2010). The main difference between our

model and those in this literature is that we assume signals are costless but consider a more general

setting, with an arbitrary state space, arbitrary preferences, and arbitrary signals. Moreover,

neither Brocas et al. nor Gul and Pesendorfer examine the impact of increased competition on

outcomes since this question is of less interest when senders’ preferences are completely opposed.7

The remainder of the paper is structured as follows. The next section presents mathematical

preliminaries. Section 3 presents the model and the equivalence to the game with verifiable signals.

Section 4 presents our main characterization result. Section 5 presents our key comparative stat-

ics. Section 6 presents applications to persuasion in courtrooms and product markets. Section 7

concludes.

6In concurrent work, Bhattacharya and Mukherjee (2011) analyze multiple-sender persuasion games when there is
uncertainty about whether each sender is informed. Under the assumption that senders’ preferences are single-peaked
and symmetric, they geometrically characterize the equilibrium strategies. They establish that Receiver’s payoff may
be maximized when senders have identical, extreme preferences rather than opposed ones.

7A separate related literature examines the impact of conflicts of interest among senders on whether there exists
a fully revealing equilibrium in cheap talk settings (e.g., Battaglini 2002).
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2 Mathematical preliminaries

2.1 State space and signals

Let Ω be a finite state space. A state of the world is denoted by ω ∈ Ω. The prior distribution on

Ω is denoted by µ0 ∈ ∆ (Ω). Let X be a random variable which is independent of ω and uniformly

distributed on [0, 1] with typical realization x. We model signals as deterministic functions of ω and

x. Formally, a signal π is a finite partition of Ω× [0, 1] s.t. π ⊂ S, where S is the set of non-empty

Lebesgue measurable subsets of Ω× [0, 1]. We refer to any element s ∈ S as a signal realization.

With each signal π we associate an S-valued random variable that takes value s ∈ π when

(ω, x) ∈ s. Let p(s|ω) = λ ({x| (ω, x) ∈ s}) and p (s) =
∑

ω∈Ω p (s|ω)µ0 (ω) where λ (·) denotes the

Lebesgue measure. For any s ∈ π, p (s|ω) is the conditional probability of s given ω and p (s) is

the unconditional probability of s.

Our definition of a signal is somewhat non-standard because we model the source of noise, the

random variable X, explicitly. This is valuable for studying multiple senders because for any two

signals π1 and π2, our definition pins down not only their marginal distributions on S but also their

joint distribution on S × S. The joint distribution is important as it captures the extent to which

observing both π1 and π2 reveals more information than observing only π1 or π2 alone. The more

common definition of a signal, which takes the marginal distribution on S conditional on ω as the

primitive, leaves the joint informational content of two or more signals unspecified.

2.2 Lattice structure

The formulation of a signal as a partition has the additional benefit of inducing an algebraic

structure on the set of signals. This structure allows us to “add” signals together and thus easily

examine their joint information content. Let Π be the set of all signals. Let D denote the refinement

order on Π, that is, π1 D π2 if every element of π1 is a subset of an element of π2. The pair (Π,D)

is a lattice. The join π1 ∨ π2 of two elements of Π is defined as the supremum of {π1, π2}. The

meet π1 ∧ π2 is the infimum of {π1,π2}. For any finite set (or vector)8 P we denote the join of all

its elements by ∨P . We write π ∨ P for π ∨ (∨P ).

8In the model we introduce below, a strategy profile will be a vector of signals π = (π1, ..., πn) and we will write
∨π for ∨{πi}ni=1.
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Note that π1 ∨ π2 is a signal that consists of signal realizations s such that s = s1 ∩ s2 for some

s1 ∈ π1 and s2 ∈ π2. Hence, π1 ∨ π2 is the signal that yields the same information as observing

both signal π1 and signal π2. In this sense, the binary operation ∨ “adds” signals together.

2.3 Distributions of posteriors

A distribution of posteriors, denoted by τ , is an element of ∆ (∆ (Ω)) that has finite support.9 A

distribution of posteriors τ is Bayes-plausible if Eτ [µ] = µ0.

Observing a signal realization s s.t. p (s) > 0 generates a unique posterior belief10

µs (ω) =
p (s|ω)µ0 (ω)

p (s)
for all ω.

Note that the expression above does not depend on the signal; observing s from any signal π leads

to the same posterior µs.

Each signal π induces a Bayes-plausible distribution of posteriors. We write 〈π〉 for the dis-

tribution of posteriors induced by π. It is easy to see that τ = 〈π〉 assigns probability τ (µ) =∑
{s∈π:µs=µ} p (s) to each µ. Kamenica and Gentzkow (forthcoming) establish that the image of the

mapping 〈·〉 is the set of all Bayes-plausible τ ’s:

Lemma 1. (Kamenica and Gentzkow forthcoming) For any Bayes-plausible distribution of poste-

riors τ , there exists a π ∈ Π such that 〈π〉 = τ .

We define a conditional distribution of posteriors 〈π|s〉 to be the distribution of posteriors

induced by observing signal π after having previously observed some signal realization s with

p (s) > 0. This distribution assigns probability
∑
{s′∈π:µs∩s′=µ}

p(s∩s′)
p(s) to each belief µ. For any

π and s with p (s) > 0, we have E〈π|s〉 [µ] = µs. Lemma 1 can easily be extended to conditional

distributions of posteriors:

Lemma 2. For any s s.t. p (s) > 0 and any distribution of posteriors τ s.t. Eτ [µ] = µs, there

exists a π ∈ Π such that τ = 〈π|s〉.
9The fact that distributions of posteriors have finite support follows from the assumption that each signal has

finitely many realizations. The focus on such signals is without loss of generality under the maintained assumption
that Ω is finite.

10For those s with p (s) = 0, set µs to be an arbitrary belief.
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Proof. Given any s s.t. p (s) > 0 and any distribution of posteriors τ s.t. Eτ [µ] = µs, let S′ be

a partition of s constructed as follows. For each ω, let sω = {x| (ω, x) ∈ s}. Now, partition each

sω into {sµω}µ∈Supp(τs) with λ (sµω) = µ(ω)τ(µ)
µs(ω) λ (sω). This is possible because Eτ [µ] = µs implies∑

µ∈Supp(τ) µ (ω) τ (µ) = µs (ω); hence,
∑

µ∈Supp(τ) λ (sµω) = λ (sω). For each µ ∈ Supp (τ), let

sµ = ∪ωsµω. Note that S′ = {sµ|µ ∈ Supp (τ)} is a partition of s. Let π = S′ ∪ {{Ω× [0, 1] \ {s}}}.

It is easy to check that τ = 〈π|s〉.

Note that Lemma 1 is a Corollary of Lemma 2 as we can set s in the statement of Lemma 2 to

equal Ω× [0, 1] so that µs = µ0.

2.4 Informativeness

We order distributions of posteriors by informativeness in the sense of Blackwell (1953). We say

that τ is more informative than τ ′, denoted τ % τ ′, if for some π and π′ s.t. τ = 〈π〉 and

τ ′ = 〈π′〉, there exists a garbling g : S × S → [0, 1] such that
∑

s′∈π′ g (s′, s) = 1 for all s ∈ π, and

p (s′|ω) =
∑

s∈π g (s′, s) p (s|ω) for all ω and all s′ ∈ π′. The relation % is a partial order. The pair

(∆ (∆ (Ω)) ,%) is a bounded lattice. We refer to its minimum element as no revelation, denoted

τ . Distribution τ places probability one on the prior. The maximum element is full revelation,

denoted τ . Distribution τ has only degenerate beliefs in its support.11

The refinement order on the space of signals implies the informativeness order on the space of

distributions of posteriors:

Lemma 3. π D π′ ⇒ 〈π〉 % 〈π′〉.

Proof. Define g (s′, s) equal to 1 if s ⊂ s′, and equal to 0 otherwise. Given any π and π′ s.t.

π D π′, we know that for each s ∈ π, there is exactly one s′ ∈ π′ s.t. s ⊂ s′. Hence, for

all s,
∑

s′∈π′ g (s′, s) = 1. Moreover, π D π′ implies that ∪{s ∈ π : s ⊂ s′} = s′. Hence, for

any ω and any s′ ∈ π′, {x| (ω, x) ∈ ∪{s ∈ π : s ⊂ s′}} = {x| (ω, x) ∈ s′}. This in turn implies

p (s′|ω) =
∑

s∈π g (s′, s) p (s|ω).

Note that it is not true that 〈π〉 % 〈π′〉 ⇒ π D π′. Note also that Lemma 3 implies 〈π1 ∨ π2〉 %

〈π1〉 , 〈π2〉.
11A belief is degenerate if it places positive probability only on a single state.
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We establish one more relationship between D and %.

Lemma 4. For any τ, τ ′, and π s.t. τ ′ % τ and 〈π〉 = τ , ∃π′ s.t. π′ D π and 〈π′〉 = τ ′.

Proof. Consider any τ, τ ′, and π s.t. τ ′ % τ and 〈π〉 = τ . By Lemma 1, there is a π̂ such that

〈π̂〉 = τ ′. Hence, by definition of %, there is a garbling g such that p (s|ω) =
∑

ŝ∈π̂ g (s, ŝ) p (ŝ|ω)

for all s ∈ π and ω. Define a new signal π′ D π as follows. For each s ∈ π, for each ω ∈ Ω, let

sω = {x| (ω, x) ∈ s}. Now, define a partition of each sω such that each element of the partition,

say s′ (s, ŝ, ω), is associated with a distinct ŝ ∈ π̂ and has Lebesgue measure g (s, ŝ) p (ŝ|ω). This

is possible since the sum of these measures is p (s|ω) = λ (sω). Let s′ (s, ŝ) = ∪ωs′ (s, ŝ, ω). Let

π′ = {s′ (s, ŝ) |ŝ ∈ π̂, s ∈ π}. For any s, ŝ, ω1, ω2, we have

p (s′ (s, ŝ) |ω1)

p (s′ (s, ŝ) |ω2)
=
g (s, ŝ) p (ŝ|ω1)

g (s, ŝ) p (ŝ|ω2)
=
p (ŝ|ω1)

p (ŝ|ω2)
,

which implies 〈π′〉 = 〈π̂〉 = τ ′.

Note that it is not true that for any τ ′ % τ and 〈π′〉 = τ ′, ∃π s.t. π′ D π and 〈π〉 = τ .

2.5 Orders on sets

We will frequently need to compare the informativeness of sets of outcomes. Topkis (1978, 1998)

introduces two orders on subsets of a lattice. Given a lattice (Y,≥), a set Y ⊂ Y is strongly above

Y ′ ⊂ Y , denoted Y ≥s Y ′ if for any y ∈ Y and y′ ∈ Y ′, we have y ∧ y′ ∈ Y ′ and y ∨ y′ ∈ Y . Set

Y is weakly above Y ′, denoted Y ≥w Y ′ if y ∈ Y implies there is a y′ ∈ Y ′ s.t. y′ ≤ y and y′ ∈ Y ′

implies there is a y ∈ Y s.t. y ≥ y′. Accordingly, given two sets of distributions of posteriors T

and T ′ we say T is strongly more informative than T ′ if T %s T
′ and T is weakly more informative

than T ′ if T %w T
′.

Both the strong and the weak order are partial. One way to extend these orders is to restrict

attention to comparable elements of the sets. A chain is a set in which any two elements are

comparable. A chain is maximal if it is not a strict subset of any other chain. We say T is strongly

(weakly) more informative than T ′ along a chain C if T ∩C is strongly (weakly) more informative

than T ′ ∩ C.12

12Comparison along chains extends the strong and the weak order in the following sense. In any lattice (Y,≥),
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Some of our results will establish that a particular set cannot be strictly less informative than

another set. To simplify the statement of those propositions, we say that T is no less informative

than T ′ if T is not strictly less informative than T ′ in the weak order. As long as T and T ′ are

not empty, as will be the case in our application, this implies that T is not strictly less informative

than T ′ in the strong order and it implies that if T and T ′ are weakly (strongly) comparable, then

T is weakly (strongly) more informative.

3 Bayesian persuasion with multiple senders

3.1 The model

Receiver has a continuous utility function u (a, ω) that depends on her action a ∈ A and the state

of the world ω ∈ Ω. There are n ≥ 1 senders indexed by i. Each sender i has a continuous utility

function vi (a, ω) that depends on Receiver’s action and the state of the world. All senders and

Receiver share the prior µ0. The action space A is compact.

The game has three stages: Each sender i simultaneously chooses a signal πi from Π. Next,

Receiver observes the signal realizations {si}ni=1. Finally, Receiver chooses an action.

Receiver forms her posterior using Bayes’ rule; hence her belief after observing the signal real-

izations is µs where s = ∩ni=1si. She chooses an action that maximizes Eµsu (a, ω). It is possible for

Receiver to have multiple optimal actions at a given belief, but for ease of exposition we suppose

that Receiver takes a single action a∗ (µ) at each belief µ. In section 4 we discuss how our results

can be restated to account for the multiplicity of optimal actions.

We denote sender i’s expected utility when Receiver’s belief is µ by v̂i (µ):

v̂i (µ) ≡ Eµvi (a∗ (µ) , ω) .

Throughout the paper, we focus exclusively on pure-strategy equilibria. We denote a strategy

Y ≥s Y
′ implies that for any chain C, Y ∩ C ≥s Y

′ ∩ C; Y ≥w Y ′ implies that for any maximal chain C s.t. Y ∩ C
has a minimum and Y ′ ∩ C has a maximum, we have Y ∩ C ≥w Y ′ ∩ C.
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profile by π = (π1, ..., πn) and let π−i = (π1, ...πi−1, πi+1, ..., πn). A profile π is an equilibrium if

E〈∨π〉v̂i (µ) ≥ E〈π′i∨π−i〉v̂i (µ) ∀π′i ∈ Π ∀i.

We refer to Receiver’s equilibrium distribution of posteriors as the outcome of the game.13 We say

a belief µ is induced in an equilibrium if it is in the support of the equilibrium outcome.

3.2 Discussion of the model

Our model makes several strong assumptions.

First, we assume that signals are costless and that each sender can choose any signal whatsoever.

This assumption would be violated if different senders had comparative advantage in accessing

certain kinds of information, if there were some information that senders could not avoid learning,

or if the experimental technology were coarse.

Second, our model implicitly allows each sender to choose a signal whose realizations are arbi-

trarily correlated, conditional on ω, with the signal realizations of the other senders. This would

not be possible if signal realizations were affected by some idiosyncratic noise. One way to motivate

our assumption is to consider a setting in which there is an exogenous set of experiments about

ω and each sender’s strategy is simply a mapping from the outcomes of those experiments to a

message space. In that case, each sender can make his messages correlated with those of other

senders. Another setting in which senders can choose correlated signals is one where they move

sequentially. In that case, each sender can condition his choice of the signal on the realizations of

the previous signals. The sequential move version of the game, however, is more cumbersome to

analyze as the outcomes depend on the order in which senders move.14

Third, it is important that senders do not have any private information at the time they choose

their signal. If they did, their choice of the signal could convey information conditional on the

signal realization, and this would substantially complicate the analysis.

13It is easy to see that Receiver’s distribution of posteriors determines the distribution of Receiver’s actions and
the payoffs of all the players. The fact that each sender’s payoff is entirely determined by the aggregate signal ∨π
provides a link between our model and the literature on aggregate games (Martimort and Stole 2010).

14There is nonetheless a connection between the simultaneous and the sequential move games. If τ is an equilibrium
outcome of the sequential move game for all orders of moves by the senders, then τ obeys the characterization from
Proposition 2.
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Fourth, we assume that Receiver is a classical Bayesian who can costlessly process all information

she receives. The main import of this assumption is that no sender can drown out the information

provided by others, say by sending many useless messages. From Receiver’s point of view, the worst

thing that any sender can do is to provide no information. Hence, unlike in a setting with costly

information processing, our model induces an asymmetry whereby each sender can add to but not

detract from the information provided by others.

The four assumptions above not only make the model more tractable, but are required for our

main results to hold. We also make several assumptions that are not necessary for the results, but

greatly simplify the exposition.

First, our model assumes that Receiver directly observes the realizations of senders’ signals.

This is a strong assumption, equivalent to allowing each sender to commit to report the realization

of his signal truthfully. As it turns out, however, all of our results hold under a weaker assumption

that senders can make verifiable claims about their signals.

To show this formally, we will refer to the game in our model as the observable signal game.

We define an alternative game, the verifiable message game, with the following stages: (i) each

sender simultaneously chooses a signal πi, the choice of which is not observed by Receiver or the

other senders; (ii) each sender privately observes the realization si of his own signal; (iii) each

sender simultaneously sends a verifiable message mi ⊂ S s.t. si ∈ mi; (iv) Receiver observes all the

messages; (v) Receiver chooses an action.

Proposition 1. The set of sequential equilibrium outcomes of the verifiable message game coincides

with the set of equilibrium outcomes of the observable signal game.

A proof of the proposition is in the Appendix.15 Proposition 1 implies that our results are

applicable even in settings where realizations of senders’ signals are not directly observable by

Receiver and senders are able to conceal unfavorable information ex post. The key assumption we

do need to make is that senders have the ability to send verifiable messages. This distinguishes our

setting from cheap talk.

15Proposition 1 is reminiscent of the unraveling results in Milgrom (1981), Grossman (1981), and Milgrom and
Roberts (1986). It is stronger in a certain sense, however, as we do not impose a monotonicity condition on senders’
preferences. The reason for the difference is that we only need to establish full revelation in the messaging game
following a signal πi which was optimal for sender i, whereas the aforementioned papers characterize the equilibrium
following a fully informative signal.
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Second, it is easy to extend our results to situations where Receiver has private information.

Suppose that, at the outset of the game, Receiver privately observes a realization r from some signal

ξ (·|ω). In that case, Receiver’s action, a∗ (s, r), depends on the realization of her private signal

and is thus stochastic from senders’ perspective. However, given a signal realization s, each sender

simply assigns the probability ξ (r|ω)µs (ω) to the event that Receiver’s signal is r and the state

is ω. Hence, sender i’s expected payoff given s is v̂i (µs) =
∑

ω

∑
r v (a∗ (s, r) , ω) ξ (r|ω)µs (ω). All

the results then apply directly with respect to the re-formulated v̂i’s.

Finally, we present the model as if there were a single Receiver, but an alternative way to

interpret our setting is to suppose there are several receivers j = 1, ..,m, each with a utility function

uj (aj , ω), with receiver j taking action aj ∈ Aj , and all receivers observing the realizations of all

senders’ signals. Even if each sender’s utility vi (a, ω) depends in an arbitrary way on the full

vector of receivers’ actions a = (a1, ..., am), our analysis still applies directly since, from senders’

perspective, the situation is exactly the same as if there were a single Receiver maximizing u (a, ω) =∑m
j=1 uj (aj , ω).

4 Characterizing equilibrium outcomes

In this section, we characterize the set of equilibrium outcomes. As a first step, consider the set of

distributions of posteriors that a given sender can induce given the strategies of the other senders.

It is immediate that he can only induce a distribution of posteriors that is more informative than

the one induced by his opponents’ signals alone. The following lemma establishes that he can

induce any such distribution.

Lemma 5. Given a strategy profile π and a distribution of posteriors τ , for any sender i there

exists a π′i ∈ Π such that 〈π′i ∨ π−i〉 = τ if and only if τ % 〈∨π−i〉.

Proof. Suppose τ % 〈∨π−i〉. By Lemma 4, there exists a π′i D ∨π−i s.t. 〈π′i〉 = τ . Since π′i =

π′i ∨ π−i, we know 〈π′i ∨ π−i〉 = 〈π′i〉 = τ . The converse follows from Lemma 3.

This lemma highlights a fundamental property of information: an individual sender can uni-

laterally increase the amount of information being revealed, but can never decrease it below the
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informational content of the other senders’ signals. This asymmetry is central to the intuitions we

develop below on why competition tends to increase information revelation.

Lemma 5 depends on our assumption that each sender can choose a signal whose realizations

are arbitrarily correlated, conditional on ω, with the signal realizations of the other senders. As a

result, when senders can choose mixed strategies, the analogue of this lemma does not hold. That

is, it is possible to construct an example where the senders other than i are playing mixed strategies

π̃−i, there is a distribution of posteriors τ % 〈∨π̃−i〉, and there is no π′i such that 〈π′i ∨ π−i〉 = τ .16

The failure of this lemma means that the analytical approach we apply in our main results below

cannot be directly extended to characterize the set of mixed strategy equilibria.

We next turn to the question of when a given sender would wish to deviate to some more

informative τ . For each i, let Vi be the concave closure of v̂i:

Vi (µ) ≡ sup {z| (µ, z) ∈ co (v̂i)} ,

where co (v̂i) denotes the convex hull of the graph of v̂i. Note that each Vi is concave by construction.

In fact, it is the smallest concave function that is everywhere weakly greater than v̂i. Kamenica

and Gentzkow (forthcoming) establish that when there is only a single sender i and the current

belief is µ, Vi(µ) is the greatest payoff that the sender can achieve.

Lemma 6. (Kamenica and Gentzkow forthcoming) For any belief µ, v̂i (µ) = Vi (µ) if and only if

Eτ [v̂i (µ′)] ≤ v̂i (µ) for all τ such that Eτ [µ′] = µ.

In light of this lemma, we refer to a belief µ such that v̂i (µ) = Vi (µ) as unimprovable for sender

i. Let Mi denote the set of unimprovable beliefs for sender i.

The lemma above establishes that, if there is a single sender, any belief induced in equilibrium

has to be unimprovable for that sender. Our main characterization result shows that when n ≥ 2,

any belief induced in equilibrium has to be unimprovable for all senders. Moreover, unlike in the

single sender case, this condition is not only necessary but sufficient: for any Bayes-plausible τ

whose support lies in the intersection M =
n
∩
i=1
Mi, there exists an equilibrium that induces τ .

16Here, we extend the notation 〈·〉 to denote the distribution of posteriors induced by a mixed strategy profile.
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Proposition 2. Suppose n ≥ 2. A Bayes-plausible distribution of posteriors τ is an equilibrium

outcome if and only if each belief in its support is unimprovable for each sender.

We provide a sketch of the proof here; a more detailed argument is in the Appendix. Suppose

that τ is an equilibrium outcome. If there were some µ ∈ Supp (τ) such that v̂i (µ) 6= Vi (µ)

for some sender i, Lemmas 5 and 6 imply that sender i could profitably deviate by providing

additional information when the realization of τ is µ. Conversely, suppose that τ is a Bayes-plausible

distribution of beliefs such that for each µ ∈ Supp (τ), v̂i (µ) = Vi (µ) for all i. Consider the strategy

profile where all senders send the same signal π with 〈π〉 = τ . No sender can then deviate to induce

any τ ′ ≺ τ . Moreover, the fact that all beliefs in the support of τ are unimprovable means that no

sender would want to deviate to any τ ′ � τ . Thus, this strategy profile is an equilibrium.

An important feature of Proposition 2 is that it provides a way to solve for the informational

content of any equilibrium simply by inspecting each sender’s preferences in turn, without worrying

about fixed points or strategic considerations. This is particularly useful because identifying the

set of unimprovable beliefs for each sender is typically straightforward. In Section 6, we will use

this characterization to develop some applications. For now, Figure 1 illustrates how Proposition

2 can be applied in a simple example with hypothetical value functions. In this example, there

are two senders, A and B. Panel (a) displays v̂A and VA, while Panel (b) displays v̂B and VB.

Panel (c) shows the sets of unimprovable beliefs MA and MB, as well as their intersection M . Any

distribution of beliefs with support in M is an equilibrium outcome. A belief such as µ1 cannot

be induced in equilibrium because sender A would have a profitable deviation. A belief such as µ2

cannot be induced in equilibrium because sender B would have a profitable deviation.

Recall that, for ease of exposition, we have been taking some optimal a∗ (·) as given and focusing

on the game between senders. Proposition 2 thus characterizes the set of equilibrium outcomes

consistent with this particular strategy by Receiver. To take the multiplicity of Receiver-optimal

strategies into account, we could define a separate set of value functions v̂αi (µ) for each Receiver-

optimal strategy α. Then, a distribution of posteriors τ is an equilibrium outcome if and only if

there is an optimal action strategy α such that the support of τ lies in ∩i {µ|v̂αi (µ) = V α
i (µ)}.

Finally, observe that full revelation is an equilibrium in the example of Figure 1 (both µ = 0

and µ = 1 are in M). This is true whenever there are multiple senders, because degenerate beliefs

14



Figure 1: Characterizing equilibrium outcomes

(a) v̂ and V functions for sender A

VAHΜL

v
ß

AHΜL

Μ

(b) v̂ and V functions for sender B

VBHΜL

v
ß

BHΜL

Μ

(c) Sets of unimprovable beliefs (µ : v̂ = V )

MA

MB

M

Μ1 Μ20 1
Μ

15



are always unimprovable. This also implies that an equilibrium always exists.17

Corollary 1. If n ≥ 2, full revelation is an equilibrium outcome.

As Sobel (2010) discusses, the existence of fully revealing equilibria under weak conditions is a

common feature of multi-sender strategic communication models. In many of these models, as in

ours, full revelation can be an equilibrium outcome even if all senders have identical preferences and

strictly prefer no information disclosure to all other outcomes – a seemingly unappealing prediction.

One response would be to introduce a selection criterion that eliminates such equilibria. Given

any two comparable equilibrium outcomes, every sender weakly prefers the less informative one.

Hence, while the appropriate selection criterion might depend on the setting, selection criteria that

always pick out a minimally informative equilibrium are appealing. We discuss the implications of

our findings under such a selection criterion in Section 5.4 below. An alternative, which we adopt

in our formal results, is to focus on set comparisons which characterize the full range of equilibrium

outcomes.

5 Competition and information revelation

5.1 Comparing competitive and collusive outcomes

One way to vary the extent of competition is to compare the set of non-cooperative equilibria to

what senders would choose if they could get together and collude. This might be the relevant

counterfactual for analyzing media ownership regulation or the effect of mergers on disclosure.

An outcome τ is collusive if τ ∈ argmaxτ ′ Eτ ′ (
∑
v̂i (µ)). Note that it is without loss of

generality to assume that, in choosing the collusive outcome, senders put equal weight on each

player’s utility; if, say due to differences in bargaining power, the collusive agreement placed weight

γi on sender i, we could simply redefine each vi as γivi.

Proposition 3. Let T ∗ be the set of equilibrium outcomes and T c the set of collusive outcomes.

T ∗ is no less informative than T c. Moreover, T ∗ is strongly more informative than T c along any

chain.
17Kamenica and Gentzkow (forthcoming) establish existence for the case n = 1. Consider an a∗ (·) where Receiver

takes a Sender-preferred optimal action at each belief. Such an a∗ (·) guarantees that v̂i is upper semicontinuous and
thus that an equilibrium exists.
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If there is a single sender, the proposition holds trivially as T ∗ = T c, so suppose throughout

this subsection that n ≥ 2. We begin the proof with the following Lemma.

Lemma 7. If τ∗ ∈ T ∗, τ c ∈ T c, and τ c % τ∗, then τ c ∈ T ∗ and τ∗ ∈ T c.

Proof. Suppose τ∗ ∈ T ∗, τ c ∈ T c, and τ c % τ∗. By Lemma 5, we know Eτc [v̂i (µ)] ≤ Eτ∗ [v̂i (µ)]

for all i; otherwise, the sender i for whom Eτc [v̂i (µ)] > Eτ∗ [v̂i (µ)] could profitably deviate to τ c.

Since τ c ∈ T c, we know Eτc (
∑
v̂i (µ)) ≥ Eτ∗ (

∑
v̂i (µ)). Therefore, Eτc [v̂i (µ)] = Eτ∗ [v̂i (µ)] for

all i which implies τ∗ ∈ T c. Now, we know τ c ∈ T ∗ unless there is a sender i and a distribution of

posteriors τ ′ % τ c s.t. Eτ ′ [v̂i (µ)] > Eτc [v̂i (µ)]. But since τ∗ ∈ T ∗, Eτc [v̂i (µ)] = Eτ∗ [v̂i (µ)], and

τ ′ % τ c % τ∗, this cannot be.

Lemma 7 establishes one sense in which competition increases the amount of information re-

vealed: no non-collusive equilibrium outcome is less informative than a collusive outcome, and no

equilibrium outcome is less informative than a non-equilibrium collusive outcome. The lemma also

plays a central role in the proof of Proposition 3:

Proof. Suppose T c %w T ∗. To establish that T ∗ is no less informative than T c, we need to show

this implies T ∗ %w T c. For any τ c ∈ T c, we know by Corollary 1 there exists τ∗ ∈ T ∗ such that

τ∗ % τ c. For any τ∗ ∈ T ∗, T c %w T
∗ implies there is a τ ′ ∈ T c s.t. τ ′ % τ∗. By Lemma 7, we must

then have τ∗ ∈ T c. Thus, there is a τ c ∈ T c, namely τ∗, s.t. τ c - τ∗.

Consider any chain C. If T ∗ ∩ C or T c ∩ C is empty, T ∗ ∩ C %s T
c ∩ C vacuously. Hence,

consider any τ∗ ∈ T ∗∩C and any τ c ∈ T c∩C. By Lemma 7, τ∗∨ τ c ∈ T ∗∩C and τ∗∧ τ c ∈ T c∩C.

Therefore, T ∗ ∩ C %s T
c ∩ C.

Note that the proposition allows for T ∗ to be non-comparable to T c. The two sets can indeed

be non-comparable in both the strong and the weak order. We will discuss the importance of these

caveats below when we analyze whether competition necessarily makes Receiver better off.

5.2 Varying the number of senders

A second way to vary the extent of competition is to compare the set of equilibria with many

senders to the set of equilibria with fewer senders. This might be the relevant counterfactual for

assessing the impact of lowering barriers to entry on equilibrium advertising in an industry.
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Proposition 4. Let T and T ′ be the sets of equilibrium outcomes when the sets of senders are J

and J ′ ⊂ J , respectively. T is no less informative than T ′. Moreover, T is weakly more informative

than T ′ along any maximal chain that intersects T ′.

The basic intuition behind this proposition is somewhat different when we consider a change

from a single sender to many senders (i.e., when |J ′| = 1) and when we consider the change from

many senders to more senders (i.e., when |J ′| > 1). The result is easiest to see when |J ′| > 1.

In that case, Proposition 2 implies that T ⊂ T ′. In other words, adding senders causes the set

of equilibrium outcomes to shrink. But, Corollary 1 implies that, even as the set of equilibrium

outcomes shrinks, full revelation must remain in the set. Hence, loosely speaking, adding senders

causes the set of equilibrium outcomes to shrink“toward”full revelation. The proof below formalizes

this intuition.

We begin with a lemma that will also be useful in establishing Proposition 5 below.

Lemma 8. Suppose T and T ′ are sets of outcomes s.t. T ⊂ T ′ and τ ∈ T . T is no less informative

than T ′. Moreover, T is weakly more informative than T ′ along any maximal chain that intersects

T ′.

Proof. Suppose T and T ′ are sets of outcomes s.t. T ⊂ T ′ and τ ∈ T . Suppose T ′ %w T . To

establish that T is no less informative than T ′, we need to show this implies T %w T ′. For any

τ ′ ∈ T ′, we know there exists τ ∈ T , namely τ , such that τ % τ ′. For any τ ∈ T , there exists a

τ ′ ∈ T ′, namely τ ∈ T ⊂ T ′, such that τ % τ ′.

Now, consider any maximal chain C that intersects T ′. Since C is maximal, it must include τ .

Moreover, τ ∈ T . Hence, for any τ ′ ∈ T ′ ∩ C there is a τ ∈ T ∩ C, namely τ , s.t. τ % τ ′. For any

τ ∈ T ∩ C there is a τ ′ ∈ T ′ ∩ C, namely τ ∈ T ∩ C ⊂ T ′ ∩ C, such that τ % τ ′.

We now turn to the proof of Proposition 4.

Proof. If J is a singleton, the proposition holds trivially, so suppose that |J | ≥ 2.

First consider the case where |J ′| = 1. Let i denote the sender in J ′. Suppose T ′ %w T . To

establish that T is no less informative than T ′, we need to show this implies T %w T
′. By Corollary

1, for any τ ′ ∈ T ′, we know there exists τ ∈ T , namely τ , such that τ % τ ′. Given any τ ∈ T ,

18



T ′ %w T implies there is a τ ′ ∈ T ′ s.t. τ ′ % τ . But, then it must be the case that τ is also

individually optimal for sender i, i.e., τ ∈ T ′; otherwise, by Lemma 5, sender i could profitably

deviate to τ ′ and hence τ would not be an equilibrium. Now, consider any maximal chain C that

intersects T ′. Since C is maximal, it must include τ . Moreover, τ ∈ T . Hence, for any τ ′ ∈ T ′ ∩ C

there is a τ ∈ T ∩ C, namely τ , s.t. τ % τ ′. It remains to show that for any τ ∈ T ∩ C there is

a τ ′ ∈ T ′ ∩ C s.t. τ % τ ′. Given any τ ∈ T ∩ C, since C is a chain, every element of T ′ ∩ C is

comparable to τ . Consider any τ ′ ∈ T ′ ∩ C. Since T ′ intersects C, there must be some such τ ′. If

τ ′ - τ , we are done. Suppose τ ′ % τ . Then, it must be the case that τ is also individually optimal

for sender i, i.e., τ ∈ T ′; otherwise, by Lemma 5, sender i could profitably deviate to τ ′ and hence

τ would not be an equilibrium.

Now consider there case where |J ′| > 1. In that case, by Proposition 2 T ⊂ T ′ and by Corollary

1 τ ∈ T . Hence, the proposition follows directly from Lemma 8.

Note that the comparative static in Proposition 4 is weaker than the one in Proposition 3 on

two counts. First, Proposition 4 utilizes the weak rather than the strong set order and second, it

only applies to comparisons along chains that are maximal.18 Both of these caveats are substantive

and provide a sense in which eliminating collusion has a stronger impact than that lowering barriers

to entry on the amount of information that is revealed.

5.3 Varying the alignment of senders’ preferences

A third way to vary the extent of the competition is to make senders’ preferences more or less

aligned. This analysis sheds lights on the efficacy of adversarial judicial systems and advocacy

more broadly (Dewatripont and Tirole 1999).

Given senders can have any arbitrary state-dependent utility functions, the extent of preference

alignment among senders is not easy to parametrize in general. Hence, we consider a specific form

of preference alignment: given any two functions f, g : A × Ω → R we let
{
vb
}
b∈R+

denote a

18The additional restriction that the chain must intersect T ′ is largely semantic. It stems from the fact that the
empty set is strongly more informative and strongly less informative than any set while it is never weakly more
informative nor weakly less informative than any set.
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collection of preferences where some two senders, say j and k, have preferences of the form

vj (a, ω) = f (a, ω) + bg (a, ω)

vk (a, ω) = f (a, ω)− bg (a, ω)

while preferences of Receiver and of other senders are independent of b. The parameter b thus

captures the extent of preference misalignment between two of the senders.

Proposition 5. Let T and T ′ be the sets of equilibrium outcomes when preferences are vb and vb
′
,

respectively, where b > b′. T is no less informative than T ′. Moreover, T is weakly more informative

than T ′ along any maximal chain that intersects T ′.

Proof. For each i, let Mi and M ′i denote the sets of unimprovable beliefs for sender i when pref-

erences are vb and vb
′
, respectively. Let M = ∩iMi and M ′ = ∩iM ′i . Let M̃ = Mj ∩Mk and

M̃ ′ = M ′j ∩M ′k. Let f̂ (µ) = Eµ [f (a∗ (µ) , ω)] and ĝ (µ) = Eµ [g (a∗ (µ) , ω)]. Consider any µ ∈ M̃ .

For any τ s.t. Eτ [µ′] = µ, we know that µ ∈ M̃j implies Eτ

[
f̂ (µ′) + bĝ (µ′)

]
≤ f̂ (µ) + bĝ (µ) and

µ ∈ M̃k implies Eτ

[
f̂ (µ′)− bĝ (µ′)

]
≤ f̂ (µ) − bĝ (µ). Combining these two inequalities, we get

f̂ (µ)−Eτ
[
f̂ (µ′)

]
≥ b |ĝ (µ)− Eτ [ĝ (µ′)]| ,which means f̂ (µ)−Eτ

[
f̂ (µ′)

]
≥ b′ |ĝ (µ)− Eτ [ĝ (µ′)]|.

This last inequality implies Eτ

[
f̂ (µ′) + b′ĝ (µ′)

]
≤ f̂ (µ) + b′ĝ (µ) and Eτ

[
f̂ (µ′)− bĝ (µ′)

]
≤

f̂ (µ) − bĝ (µ). Since these two inequalities hold for any τ s.t. Eτ [µ′] = µ, we know µ ∈ M̃ ′.

Hence, M̃ ⊂ M̃ ′. Therefore, since Mi = M ′i for all i /∈ {j, k}, we know M ⊂ M ′. This in turn

implies T ⊂ T ′. By Corollary 1, we know τ ∈ T . Hence, the proposition follows directly from

Lemma 8.

Note that proofs of both Proposition 4 and Proposition 5 rely on the fact that, as competition

increases (whether through adding senders or increasing misalignment of their preferences), the

set of equilibrium outcomes shrinks. This is worth noting since it suggests another way, not fully

captured by the propositions, in which competition increases information revelation. Specifically,

T ⊂ T ′ implies that the set of unimprovable beliefs is smaller when there is more competition;

hence, with more competition there are fewer prior beliefs such that no revelation is an equilibrium

outcome.
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Proposition 5 establishes that as preference misalignment b grows, the set of equilibrium out-

comes shrinks and the extent of information revealed in equilibrium increases. A natural conjecture,

therefore, may be that in the limit where two senders have fully opposed preferences, full revelation

becomes the only equilibrium.

Specifically, suppose there are two senders j and k s.t. vj = −vk. Does the presence of two

such senders guarantee full revelation? It turns out the answer is no. For example, if v̂j is linear,

and j and k are the only 2 senders, then Mj = Mk = ∆ (Ω) and any outcome is an equilibrium.

Moreover, it will not be enough to simply assume that v̂j is non-linear; as long as it is linear along

some dimension of ∆ (Ω), it is possible to construct an equilibrium that is not fully revealing along

that dimension.

Accordingly, we say that v̂j is fully non-linear if it is non-linear along every edge of ∆ (Ω), i.e., if

for any two degenerate beliefs µω and µω′ , there exist two beliefs µl and µh on the segment [µω, µω′ ]

such that for some γ ∈ [0, 1], v̂j (γµl + (1− γ)µh) 6= γv̂j (µl) + (1− γ) v̂j (µh).

We state Proposition 6 for a more general case of preference misalignment where vj is a positive

affine transformation of −vk.

Proposition 6. Suppose there exist senders j and k s.t. vj = c− dvk for some c and some d > 0.

If v̂j is fully non-linear, then full revelation is the unique equilibrium outcome.

The detailed proof of Proposition 6 is in the Appendix. The basic intuition is that, since v̂j is

non-linear, vj = c − dvk implies that v̂j (µ) = Vj (µ) and v̂k (µ) = Vk (µ) can simultaneously hold

only for a belief µ that is on the boundary of ∆ (Ω), i.e., on some face of ∆ (Ω). But, since v̂j

is also non-linear along this face, µ must be on the its boundary. Therefore, by induction on the

dimension of the face, any µ in Mj ∩Mk must be degenerate.

5.4 Does competition make Receiver better off?

Propositions 3, 4, and 5 establish a sense in which moving from collusion to non-cooperative play,

adding senders, and making senders’ preferences less aligned tends to increase information revela-

tion. Since more information must weakly increase Receiver’s utility, increasing competition thus

tends to make Receiver better off.
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To make this observation more precise, we can translate our set comparisons of the informative-

ness of outcomes into set comparisons of Receiver utilities. Given two lattices (Y,%) and (Z,≥),

a function f : Y → Z is increasing if y % y′ implies f (y) ≥ f (y′). If Y and Z are chains, then

for any Y, Y ′ ∈ Y and any increasing function f(·), Y %s Y
′ (Y %w Y

′) implies f (Y ) ≥s f (Y ′)

(f (Y ) ≥w f (Y ′)). By Blackwell’s Theorem (1953), the function fu : ∆ (∆ (Ω)) → R, which maps

distributions of posteriors into the expected utility of a decision-maker with a utility function u, is

increasing for any u. This implies the following result:

Remark 1. Given any chain C, if T ∩ C is strongly (weakly) more informative than T ′ ∩ C, then

the set of Receiver’s payoffs under T ∩ C is strongly (weakly) greater than the set of her payoffs

under T ′ ∩ C.

Thus, Proposition 3 implies that, if we focus on some set of mutually comparable outcomes,

the payoffs Receiver obtains in equilibria in that set must be greater (in the strong order) than the

payoffs she obtains in collusive outcomes in that set. Similarly, Propositions 4 and 5 imply that, if

we focus on some maximal set of mutually comparable outcomes, the payoffs Receiver obtains in

equilibria in that set must be greater (in the weak order) if there are more senders or if senders have

less aligned preferences. Moreover, these observations apply not only to Receiver, whom senders

are trying to influence, but also to any third-party who observes the signal realizations and whose

optimal behavior depends on ω.

An alternative to comparing sets of Receiver’s payoffs is to consider a selection criterion that

picks out a particular outcome from the overall set. As mentioned in Section 4, selection criteria that

always pick out a minimally informative equilibrium may be appealing. Under any such criterion,

there is a strong sense in which competition makes Receiver better off. Proposition 3 implies that

any minimally informative equilibrium gives Receiver a weakly higher payoff than any comparable

collusive outcome. Propositions 4 and 5 imply that any minimally informative equilibrium with

more senders or less aligned preferences gives Receiver a weakly higher payoff than any comparable

minimally informative equilibrium with fewer senders or more aligned sender preferences.

Whether we consider the entire equilibrium set or a particular selection rule, however, our

results apply only to mutually comparable outcomes. This is a substantive caveat. If the outcomes

under more and less competition are non-comparable, it is possible that the outcome with more

22



competition makes Receiver worse off.

For example, suppose there are two dimensions of the state space, horizontal and vertical.

Senders benefit by providing information only about the vertical dimension but strongly dislike

providing information about both dimensions. In this case, competition could lead to a coordina-

tion failure; there can exist an equilibrium in which senders provide only horizontal information,

even though all senders and Receiver would be strictly better off if only vertical information were

provided:

Example 1. The state space is Ω = {l, r} × {u, d}. The action space is A = {l,m, r} × {u, d}.

Denote states, beliefs, and actions by ordered pairs (ωx, ωy), (µx, µy), and (ax, ay), where the first

element refers to the l-r dimension and the second element refers to the u-d dimension. The prior

is µ0 =
(

1
2 ,

1
2

)
. Receiver’s preferences are u (a, ω) = 1

100ux (ax, ωx)+uy (ay, ωy), where ux (ax, ωx) =

2
3I{ax=m}+I{ax=ωx} and uy = I{ay=ωy}. There are two senders with identical preferences: v1 (a, ω) =

v2 (a, ω) = I{ax=m}I{ay=ωy}. A distribution of posteriors τ∗ with support on beliefs
(
0, 1

2

)
and

(
1, 1

2

)
is an equilibrium outcome. The set of collusive outcomes, T c, is the same as the set of equilibrium

outcomes with a single sender, T ′. Each of these sets consists of distributions of posteriors with

support on
([

1
3 ,

2
3

]
× {0}

)
∪
([

1
3 ,

2
3

]
× {1}

)
. It is easy to see that Receiver is strictly better off under

any outcome in T c ∪ T ′ than she is under τ∗.

6 Applications

6.1 A criminal trial

In Kamenica and Gentzkow (forthcoming), we introduce the example of a prosecutor trying to

persuade a judge that a defendant is guilty. Here, we extend that example to include two senders,

a prosecutor (p) and a defense attorney (d).

There are two states, innocent (ω = 0) and guilty (ω = 1). The prior is Pr (ω = 1) = µ0 = 0.3.

Receiver (the judge) can choose to either acquit (a = 0) or convict (a = 1). Receiver’s utility

is u (a, ω) = I{a=ω}. The prosecutor’s utility is vp (a, ω) = a. The defense attorney’s utility is

vd (a, ω) = −a.

If the prosecutor were playing this game by himself, his optimal strategy would be to choose a
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signal that induces a distribution of posteriors with support
{

0, 1
2

}
that leads 60% of defendants

to be convicted. If the defense attorney were playing this game alone, his optimal strategy would

be to gather no information, which would lead the judge to acquit everyone. Because vp + vd = 0,

all outcomes in this game are collusive outcomes.

When the attorneys compete, the unique equilibrium outcome is full revelation. This follows

directly from Proposition 6, since vp = −vd and the v̂i’s are fully non-linear. Thus, the set of

equilibrium outcomes is strongly more informative than both the set of collusive outcomes and the

outcomes each sender would implement on their own, consistent with Propositions 3 and 4. In this

example, competition clearly makes Receiver better off.

To make the analysis more interesting, we can relax the assumption that the two senders’

preferences are diametrically opposed. In particular, suppose that the defendant on trial is a

confessed terrorist. Suppose that the only uncertainty in the trial is how the CIA extracted the

defendant’s confession: legally (ω = 1) or through torture (ω = 0). Any information about the

CIA’s methods released during the trial will be valuable to terrorist organizations; the more certain

they are about whether the CIA uses torture or not, the better they will be able to optimize their

training methods. Aside from the attorneys’ respective incentives to convict or acquit, both prefer

to minimize the utility of the terrorists.

Specifically, we assume there is a second receiver, a terrorist organization.19 The organization

must choose a fraction aT ∈ [0, 1] of its training to devote to resisting torture. The organiza-

tion’s utility is uT (aT , ω) = − (1− aT − ω)2. The attorneys’ utilities are vp (a, ω) = a − cuT and

vd (a, ω) = −a − cuT . The parameter c ∈ [4, 25] captures the social cost of terrorism internalized

by the attorneys.20

If the prosecutor were playing this game alone, his optimal strategy would be to choose a signal

that induces a distribution of posteriors
{

1
2 −

1√
c
, 1

2

}
. If the defense attorney were playing this game

alone, his optimal strategy would still be to gather no information. The unique collusive outcome

is no revelation. To identify the set of equilibrium outcomes, we apply Proposition 2. Panel (a) of

Figure 2 plots v̂p and Vp. We can see that Mp = {µ|v̂p (µ) = Vp (µ)} =
[
0, 1

2 −
1√
c

]
∪
[

1
2 , 1
]
. Panel

19As discussed in section 3.2, our model is easily reinterpreted to allow multiple receivers.
20If c < 4, the outcome is the same as when c = 0; the preferences of the two senders are sufficiently opposed that

full revelation is the unique equilibrium outcome. If c > 25, both senders are so concerned about giving information
to the terrorists that neither wishes to reveal anything.
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Figure 2: Characterizing equilibrium outcomes for the criminal trial example
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(b) plots v̂d and Vd. We can see that Md = {µ|v̂d (µ) = Vd (µ)} = [0, 1
2) ∪

[
1
2 + 1√

c
, 1
]
. Hence, as

panel (c) shows, M = Mp ∩Md =
[
0, 1

2 −
1√
c

]
∪
[

1
2 + 1√

c
, 1
]
. The set of equilibrium outcomes is

the set of τ ’s whose support lies in this M .

Competition between the attorneys increases information revelation. The set of equilibrium

outcomes is strongly more informative than both the set of collusive outcomes (cf: Proposition

3) and than what either sender would reveal on his own (cf: Proposition 4). Moreover, when the

extent of shared interest by the two attorneys is greater, i.e., when c is greater, the set of equilibrium

outcomes becomes weakly less informative (cf: Proposition 5).

6.2 Advertising of quality by differentiated firms

There are two firms i ∈ {1, 2} which sell differentiated products. The prices of these products are

fixed exogenously and normalized to one, and marginal costs are zero. The uncertain state ω is a

two-dimensional vector whose elements are the qualities of firm 1’s product and firm 2’s product.

Receiver is a consumer whose possible actions are to buy neither product (a = 0), buy firm 1’s

product (a = 1), or buy firm 2’s product (a = 2) . We interpret the senders’ choice of signals as a

choice of verifiable advertisements about quality.21

There are three possible states: (i) both products are low quality (ω = (−5,−5)), (ii) firm 1′s

product is low quality and firm 2’s product is high quality (ω = (−5, 5)), or (iii) both products are

high quality (ω = (5, 5)). Let µ1 = Pr (ω = (−5, 5)) and µ2 = Pr (ω = (5, 5)).

The firms’ profits are v1 = I{a=1} and v2 = I{a=2}. Receiver is a consumer whose utility depends

on a, ω = (ω1, ω2) and privately observed shocks ε = (ε0, ε1, ε2) :22

u (a = 0, ω, ε) = ε0

u (a = 1, ω, ε) = ω1 + ε1

u (a = 2, ω, ε) = ω2 + ε2

21Note that in this setting, our model allows for firms’ advertisements to provide information about the competitor’s
product as well as their own. This is a reasonable assumption in certain industries. For example, pharmaceutical
companies occasionally produce ads that mention clinical trials that reveal a rival product has unpleasant side-effects
or delayed efficacy.

22As discussed in section 3.2, our model is easily reinterpreted to allow Receiver to have private information.
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We assume that the elements of ε are distributed i.i.d. type-I extreme value. Senders’ expected

payoffs at belief µ are thus

v̂1 (µ) =
exp [Eµ (ω1)]

1 + exp [Eµ (ω1)] + exp [Eµ (ω2)]

v̂2 (µ) =
exp [Eµ (ω2)]

1 + exp [Eµ (ω1)] + exp [Eµ (ω2)]
.

Figure 3 applies Proposition 2 to solve for the set of equilibrium outcomes. Panel (a) shows v̂1

and v̂2. Panel (b) shows V1 and V2. Panel (c) shows the sets of unimprovable beliefs M1 and M2

and their intersection M . The set of equilibrium outcomes is the set of τ ’s with supports in M .

Competition between the firms increases information revelation. The set of equilibrium out-

comes is weakly more informative than what either firm would reveal on its own (cf: Proposition

4). Although not immediately apparent from Figure 3, the set of equilibrium outcomes is also

weakly more informative than the set of collusive outcomes, and is strongly so along any chain (cf:

Proposition 3). The functional form of senders’ utilities does not allow us to apply Proposition 5.

To understand the set of equilibria in this example, it is useful to consider the following two

simpler settings. First, suppose µ1 = 0, so the only possible states are ω = (−5,−5) and ω = (5, 5).

In this case, the two firms’ preferences are aligned: they both want to convince the consumer that

ω = (5, 5). The equilibrium outcomes, which one can easily identify by looking at the µ2-edges

in panel (c), involve partial information revelation. Next, suppose µ2 = 0, so the only possible

states are ω = (−5,−5) or ω = (−5, 5). Here, senders’ preferences are opposed: sender 2 would

like to convince Receiver that ω = (−5, 5), while sender 1 would like to convince the consumer that

ω = (−5,−5). The unique equilibrium outcome, which one can easily identify by looking at the

µ1-edges in panel (c), is full revelation. This is the case even though each firm on its own would

prefer a partially revealing signal.23 Finally, suppose that µ1 + µ2 = 1, so the only possible states

are ω = (−5, 5) or ω = (5, 5). The firms’ preferences are again opposed, and the unique equilibrium

outcome, which one can read off the hypotenuses in panel (c), is again full revelation. This is the

case despite the fact that firm 1 would strictly prefer no revelation.

In the full three-state example, the equilibrium involves full revelation along the dimensions

23The gain to firm 2 from increasing µ1 is much larger than the corresponding loss to firm 1; for this reason, at the
scale of Figure 3, v̂1 appears flat with respect to µ1 despite the fact that it is actually decreasing.
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Figure 3: Characterizing equilibrium outcomes for the advertising example

(a) v̂ functions for senders 1 and 2

(b) V functions for senders 1 and 2

(c) Sets of unimprovable beliefs (µ : v̂ = V )
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where senders’ preferences are opposed and partial revelation along the dimension where they are

aligned. Consequently, the consumer learns for certain whether or not the state is ω = (−5, 5), but

may be left uncertain whether the state is ω = (−5,−5) or ω = (5, 5).

7 Conclusion

In his review of the literature on strategic communication, Sobel (2010) points out that the existing

work on multiple senders has largely focused on extreme results, such as establishing conditions

that guarantee full revelation is an equilibrium outcome in cheap talk games. He remarks that

most of these analyses stop short of fully characterizing the equilibrium set. He also argues that

the existing models do not capture the intuition that consulting more than two senders can be

helpful even if different senders do not have access to different information.

In this paper, we assume that senders can costlessly choose any signal whatsoever, that their

signals can be arbitrarily correlated with those of their competitors, and that they can send verifiable

messages to Receiver. Under these assumptions, we are able to partially address Sobel’s concerns.

We provide a simple way to identify the full set of pure-strategy equilibrium outcomes. We show that

under quite general conditions competition cannot reduce the information revealed in equilibrium,

and will in a certain sense tend to increase it. We also discuss the limitations of these results, in

particular the possibility that when outcomes with more or less competition are non-comparable,

competition can actually be harmful to Receiver.

8 Appendix

8.1 Proof of Proposition 1

In both games, Receiver may have multiple optimal actions conditional on her belief. Since the set

of optimal actions does not vary across the two games, however, we take as given some optimal

strategy for Receiver conditional on her belief.

In the observable signal game, let pi ∈ ∆ (Π) denote sender i’s strategy. In the verifiable message

game denote sender i’s signal-choice strategy by pi and his messaging strategy by σi (si). Let σ∗

denote the fully revealing messaging strategy that always reports a singleton.
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We first show that each equilibrium outcome of the observable signal game is also an equilibrium

outcome of the verifiable message game. Suppose that (p1, ..., pn) is an equilibrium of the observable

signal game. Let (v∗1, ..., v
∗
n) be the vector of senders’ payoffs in this equilibrium. We wish to show

that ((p1, σ
∗) , ..., (pn, σ

∗)) is an equilibrium of the verifiable message game. Suppose all senders

other than i are playing the proposed strategy. Since (p1, ..., pn) is an equilibrium of the observable

signal game, it is immediate that (pi, σ
∗) is a best response for sender i. It remains to establish that

σ∗ is sequentially rational for sender i following any realization s. Taking other senders’ strategies as

given, let G denote the 2-player game between sender i and Receiver. Let Gπi denote the subgame

of G that ensues if sender i chooses signal πi. Since each πi has finitely many signal realizations, a

sequential equilibrium for each Gπi exists. Note that sender i′s payoff in any sequential equilibrium

of any Gπi cannot be strictly greater than v∗i . If it were, then sender i would have a profitable

deviation in the observable message game and (p1, ..., pn) would not be an equilibrium. Next, note

that for any πi ∈ Supp (pi) sender i’s payoff in any sequential equilibrium of Gπi cannot be strictly

lower than v∗i . If it were, then sender i could profitably deviate to σ∗ and earn v∗i . Hence, we

know there is an equilibrium of G where sender i plays pi and earns v∗i . Let σ̂ be i’s messaging

strategy in this equilibrium. At any s, i’s payoff from playing σ̂ (s) cannot strictly exceed his payoff

from playing σ∗: since σ̂ (s) ≥ σ∗ (s)∀s, his payoff would otherwise strictly exceed v∗i . Hence, σ∗ is

sequentially rational.

We now show that each equilibrium outcome of the verifiable message game is also an equi-

librium outcome of the observable signal game. Suppose that ((p̂1, σ̂1) , ..., (p̂n, σ̂n)) is an equi-

librium of the verifiable message game. Let τ be the distribution of posteriors induced in this

equilibrium. There is a π1 ∈ Π s.t. ((π1, σ
∗) , (p̂2, σ̂2) , ..., (p̂n, σ̂n)) also induces τ . Moreover,

((π1, σ
∗) , (p̂2, σ̂2) , ..., (p̂n, σ̂n)) must also be an equilibrium of the verifiable message game: if (p′, σ′)

were a profitable deviation for sender i from ((π1, σ
∗) , (p̂2, σ̂2) , ..., (p̂n, σ̂n)), it would also be a prof-

itable deviation from ((p̂1, σ̂1) , ..., (p̂n, σ̂n)). Similarly, there is a π2 ∈ Π s.t.

((π1, σ
∗) , (π2, σ

∗
2) , (p̂3, σ̂3) , ..., (p̂n, σ̂n)) is an equilibrium of the verifiable message game and in-

duces τ . Defining πi in this way for each sender, ((π1, σ
∗) , ..., (πn, σ

∗)) is an equilibrium of the

verifiable message game and induces τ . Now, note that (π1, ..., πn) must be an equilibrium of the

observable signal game: if π′ were a profitable deviation for sender i from (π1, ..., πn) in the observ-
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able signal game, then (π′, σ∗) would be a profitable deviation for him from ((π1, σ
∗) , ..., (πn, σ

∗))

in the verifiable message. Finally, it is immediate that (π1, ..., πn) also induces τ .

8.2 Proof of Proposition 2

Lemma 9. For any sender i and any distribution of posteriors τ :

v̂i (µ) = Vi (µ) ∀µ ∈ Supp (τ)⇔ Eτ ′ [v̂i (µ)] ≤ Eτ [v̂i (µ)]∀τ ′ % τ.

Proof. Consider any i and any τ s.t. v̂i (µ) = Vi (µ) ∀µ ∈ Supp (τ). Consider any τ ′ % τ and

π′ such that 〈π′〉 = τ ′. For any s s.t. µs ∈ Supp (τ), consider the conditional distribution of

posteriors 〈π′|s〉. We know E〈π′|s〉 [µ] = µs. Hence, by Lemma 6, E〈π′|s〉 [v̂i (µ)] ≤ v̂i (µs). Therefore,

Eτ ′ [v̂i (µ)] =
∑

s s.t. µs∈Supp(τ) p (s)E〈π′|s〉 [v̂i (µ)] ≤
∑

s s.t. µs∈Supp(τ) p (s) v̂i (µs) = Eτ [v̂i (µ)].

Conversely, suppose ∃µs ∈ Supp (τ) such that v̂i (µs) 6= V (µs). By Lemma 6, we know there

exists a distribution of posteriors τ ′s with Eτ ′s [µ] = µs and Eτ ′s [v̂i (µ)] > v̂i (µs). By Lemma 2, there

exists a π′ s.t. τ ′s = 〈π′|s〉. Let π be any signal s.t. 〈π〉 = τ . Let π′′ be the union of π \ {s} and

{s ∩ s′ : s′ ∈ π′}. Then 〈π′′〉 % 〈π〉 = τ and E〈π′′〉 [v̂i (µ)] = p (s)Eτ ′s [v̂i (µ)]+
∑

s̃∈π\{s} p (s̃) v̂i (µs̃) >

p (s) v̂i (µs) +
∑

s̃∈π\{s} p (s̃) v̂i (µs̃) = Eτ [v̂i (µ)]

With Lemma 9, it is straightforward to establish Proposition 2.

Proof. Suppose n ≥ 2. Suppose v̂i (µ) = Vi (µ) ∀i ∀µ ∈ Supp (τ). By Lemma 1, there is a π such

that 〈π〉 = τ . Consider the strategy profile π where πi = π ∀i. Since n ≥ 2, we know that ∨π−i =

∨π. Hence, for any π′i ∈ Π we have π′i∨π−i = π′i∨π D ∨π. Hence, by Lemma 3, 〈π′i ∨ π−i〉 % 〈∨π〉.

Lemma 9 thus implies E〈∨π〉v̂i (µ) ≥ E〈π′i∨π−i〉v̂i (µ) . Hence, π is an equilibrium.

Conversely, consider any equilibrium π. Consider any τ ′ % 〈∨π〉. By Lemma 5, for any sender i

there exists π′i ∈ Π such that 〈π′i ∨ π−i〉 = τ ′. Since π is an equilibrium, this means E〈∨π〉 [v̂i (µ)] ≥

[Eτ ′ v̂i (µ)] for all i. Lemma 9 then implies that v̂i (µ) = Vi (µ) ∀i ∀µ ∈ Supp (〈∨π〉).

8.3 Proof of Proposition 6

We build the proof through the following three lemmas.
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Lemma 10. If there exist senders j and k s.t. v̂j = c− dv̂k for some c and some d > 0, then for

any belief µ∗ induced in an equilibrium, for any τ s.t. Eτ [µ] = µ∗ we have Eτ [v̂j (µ)] = v̂j (µ∗).

Proof. Suppose µ∗ is induced in an equilibrium. That implies that v̂j(µ
∗) = Vj (µ∗) and v̂k (µ∗) =

Vk (µ∗). Consider any τ s.t. Eτ [µ] = µ∗. The fact that v̂j(µ
∗) = Vj (µ∗) implies, by Lemma 6, that

Eτ [v̂j (µ)] ≤ v̂j (µ∗). Similarly, the fact that v̂k (µ∗) = Vk (µ∗) implies that Eτ [v̂k (µ)] ≤ v̂k (µ∗) ,

i.e., that Eτ [v̂j (µ)] ≥ v̂j (µ∗). Hence, Eτ [v̂j (µ)] = v̂j (µ∗).

Lemma 11. If v̂j is non-linear, for any µ∗ ∈ int (∆ (Ω)) there exists a τ s.t. Eτ [µ] = µ∗ and

Eτ [v̂j (µ)] 6= v̂j (µ∗).

Proof. If v̂j is non-linear, there exist {µt}Tt=1 and weights βt s.t.
∑
βtv̂j (µt) 6= v̂j (

∑
t βtµt). Con-

sider any µ∗ ∈ int (∆ (Ω)). There exists some µl and γ ∈ [0, 1) s.t. µ∗ = γµl + (1− γ)
∑
βtµt.

If v̂j (µ∗) 6= γv̂i (µl) + (1− γ)
∑
βtv̂j (µt), we are done. So, suppose that v̂j (µ∗) = γv̂j (µl) +

(1− γ)
∑
βtv̂i (µt). Now, consider the distribution of posteriors τ equal to µl with probability

γ and equal to belief
∑
βtµt with probability 1 − γ. We have that Eτ [µ] = µ∗ and v̂j (µ∗) =

γv̂j (µl) + (1− γ)
∑
βtv̂j (µt) 6= γv̂j (µl) + (1− γ) v̂j (

∑
βtµt) = Eτ [v̂j (µ)].

Lemma 12. If v̂j is fully non-linear, then the restriction of v̂j to any n-dimensional face of ∆ (Ω)

is non-linear if n ≥ 1.

Proof. The definition of fully non-linear states that the restriction of v̂j to any 1-dimensional face

of ∆ (Ω) is non-linear. For any n ≥ 1, every n-dimensional face of ∆ (Ω) includes some (n− 1)-

dimensional face of ∆ (Ω) as a subset. Hence, if the restriction of v̂j to every (n− 1)-dimensional

face is non-linear, so is the restriction of v̂j to every n-dimensional face. Hence, by induction on n,

the restriction of v̂j to any n-dimensional face of ∆ (Ω) is non-linear if n ≥ 1.

With these lemmas, the proof of Proposition 6 follows easily.

Proof. Suppose there exist senders j and k s.t. vj = c − dvk for some c and some d > 0. This

implies that v̂j = c − dv̂k. Suppose that v̂j is fully non-linear. Let µ∗ be a belief induced in an

equilibrium. Lemmas 10 and 11 jointly imply that µ∗ must be at the boundary of ∆ (Ω). Hence,

µ∗ is on some n-dimensional face of ∆ (Ω) . But, by Lemma 12, if n > 0, the restriction of v̂j to this
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n-dimensional face is non-linear. Hence, Lemmas 10 and 11 imply that µ∗ must be on the boundary

of this n-dimensional face, i.e., it must be on some (n− 1)-dimensional face. Since this holds for

all n > 0, we know that µ∗ must be on a zero-dimensional face, i.e., it must be an extreme point,

of ∆ (Ω). Hence, any belief induced in an equilibrium is degenerate.
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