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Abstract

We develop a Bayesian analysis of the sharp and fuzzy RD designs in which the un-
known functions of the forcing variable and the other covariates are modeled by penalized
natural cubic splines, and the errors are distributed as either Gaussian or Student-t. Sev-
eral novel ideas are employed. First, in estimating the functions of the forcing variable,
we include a knot at the threshold, which is not in general an observed value of the forcing
variable, to allow for curvature in the estimated functions from the breakpoint to the near-
est values on either side of the breakpoint. Second, we cluster knots close to the threshold
with the aim of controlling the approximation bias. Third, we introduce a new second-
difference prior on the spline coefficients that can deal with many unequally spaced knots.
The number of knots and other features of the model are compared through marginal like-
lihoods and Bayes factors. Fourth, we develop an analysis of the fuzzy RD design based
on a new model that utilizes the principal stratification framework, adapted to the RD de-
sign. In this model, the sharp RD model holds for compliers, while the outcome models
for never-takers and always-takers are assumed to satisfy the usual exclusion rule with
respect to the forcing variable. In each design, posterior computations are straightforward
and are implemented in two R-packages that may be downloaded. Calculations with
simulated data show that the frequentist RMSE of the Bayes ATE estimate (in the sharp
model) and the Bayes ATE for compliers (in the fuzzy model) are smaller than that of the
frequentist local ATE estimate in all examples, in several cases by a significant factor.
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1 Introduction

The sharp and fuzzy regression discontinuity (RD) designs are simple but powerful quasi-

experimental designs for conducting causal inferences with observational data. Interest in

these designs has grown substantially in recent years following the realization that many

cause-effect problems in such fields as economics, finance, political science and other fields

can be viewed in terms of one or the other RD design (Imbens and Lemieux, 2008, Lee and

Lemieux, 2010).

At their core, these designs rely on the fact that treatment assignment in some problems is

determined by an exogenously specified rule. The rule is characterized by a forcing variable

z and a known break-point τ . In the sharp RD design, subjects with a value of z less than

or equal to τ receive the control treatment x = 0, while those with z value greater than the

break-point are the treated and receive the treatment x = 1. Thus, in this case, treatment

assignment is a deterministic function of the forcing variable. In contrast, in the fuzzy RD

design, treatment assignment is a non-deterministic function of the forcing variable but with

the property that the treatment probability changes discontinuously at the break-point. As a

result, some subjects to the left of the break-point, though more likely to be non-treated, can

receive the treatment, and some subjects to the right of the break-point, though more likely to

be treated, can be non-treated. In effect, in the fuzzy RD design, the forcing variable along

with the assignment rule is an instrument.

Such rules can be exploited to find the relevant RD treatment effects. Let y be the outcome

of interest, and suppose for concreteness that it is continuous. If it can be assumed that z is

not manipulable and that the distributions of z and other observed confounders w is smooth

around τ , then, in the sharp design, the RD average treatment effect is given by the size of the

discontinuity in the relation between y and z at τ , and it can be consistently estimated (Hahn

et al., 2001). In the fuzzy RD design, these and additional assumptions imply the consistency

and identification of the LATE estimator, a version of the instrumental variable treatment effect

(Hahn et al., 2001).

In this paper, we provide the first Bayesian analysis of these designs. We employ non-

parametric modeling and use flexible and novel priors for the non-parametric functions. Let
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yj denote the potential outcome when x = j, for j = 0, 1. The observed outcome is y =

(1 − x)y0 + xy1. Let w denote a single continuous confounder (for simplicity), and let v

denote q categorical and linear confounders not including an intercept. Then, in the sharp RD

design, the model we analyze assumes that the potential outcomes yj conditioned on (z, w, v)

are generated as

yj = gj(z) + v′γ + h(w) + εj, (1.1)

where gj(·) are smooth unknown functions of z, one for each value of value of x, h(·) is a

smooth function that depends on w but not x, and εj is the random noise that is independent

of z. We assume that the distribution of the noise is Gaussian or Student-t with degrees of

freedom not less than two. We refrain from modeling the noise distribution non-parametrically

to focus on the main features of our approach, but it is straightforward to extend our analysis

to a fully non-parametric model. Given this model and a random sample of data on n subjects,

we show how to estimate the posterior distribution of the RD ATE

E[y1|z = τ, w, v]− E[y0|z = τ, w, v] = g1(τ)− g0(τ). (1.2)

In our approach, we do not limit the data to a window around the threshold, as is done in

the local linear regression method of Imbens and Kalyanaraman (2012). Our modeling of

the unknown functions is by penalized splines. These are a compromise between regression

splines, which have fewer knots than data points and no penalty, and smoothing splines, which

have one knot for each data point and a penalty for roughness of the fit (Ruppert et al., 2003).

We employ splines because they are flexible and easy to work with, and they have known

asymptotic properties Zhou et al. (1998), Claeskens et al. (2009).

Our choice of the number of knots is guided by a result in Claeskens et al. (2009) that fewer

knots provide better asymptotic rates and lower mean-squared errors than a large number of

knots. We allow the number of knots to grow moderately with the sample size, according to

the rates in Claeskens et al. (2009), but the distribution of knots, for any given sample size,

is tailored to the specifics of the RD model. A key idea in our approach is to have a knot at

τ in the basis expansion of each gj(·) function. This allows the estimated functions to have

curvature from τ to the nearest z value on either side of τ . We also recognize the special

importance of the region near the threshold by dividing the support of the g0 function into two
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regions, one close to τ and one further away. Analogously, we divide the support of g1 into

two regions. We then cluster some knots in the regions that are proximate to τ , subject to the

requirement that there is at least one observation between each pair of knots. We also impose

this requirement on knots placed in the regions farther away from τ .

The cubic spline basis we use is described in Chib and Greenberg (2010), where its value

for Bayesian function smoothing is highlighted. An attractive property of this basis is that its

coefficients are interpretable as function ordinates at the knots, which is useful in constructing

priors. In this paper, we develop a new prior on the basis coefficients. We suppose that

the function values, conditioned on the first two ordinates and precision (penalty) parameters

λj , arise from a discrete second-order Ornstein–Uhlenbeck (O-U) process. This formulation

is essentially a generalization of the second-difference penalty in Eilers and Marx (1996) to

the case of unequally spaced knots. In the next step, the two initial ordinates of each gj

function are modeled by Zellner’s g-prior, in the first use of this prior in this context. The final

element of this prior is a flexible distribution on the penalty parameters to promote data-driven

smoothness. It is worth noting that this prior requires only a small number of inputs and can

be implemented in a default way.

Our analysis of the fuzzy RD design is based on a new model that utilizes the principal

stratification framework of Frangakis and Rubin (2002), adapted to the RD design. In this

model, the mismatch between the treatment implied by the forcing variable, and the treatment

actually observed, is explained by a discrete confounder variable s that represents one of three

subject types (or strata): compliers, never-takers and always-takers, that are distributed a priori

as

Pr(s = k) = qk, k ∈ {c, n, a} , (1.3)

with qc+qn+qa = 1. For subjects of the type s = c, the compliers, the sharp RD model holds

precisely, that is, as z passes the break-point τ , the treatment state changes from 0 to 1 with

probability one:

Pr(x = 0|z ≤ τ, s = c) = 1 and Pr(x = 1|z > τ, s = c) = 1 (1.4)

On the other hand, for subjects of the type s = n, the never-takers, the probability that x = 0
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is one regardless of the value of the forcing variable,

Pr(x = 0|z, s = n) = 1 (1.5)

and for subjects with s = a, the always-takers, the probability that x = 1 is one regardless of

the value of the forcing variable

Pr(x = 1|z, s = a) = 1 (1.6)

For compliers, therefore, we can assume that the sharp RD model holds. On the other hand, for

never-takers and always-takers, the outcome models are assumed to satisfy the usual exclusion

rule with respect to z. In detail, by subject type, our assumption is that outcomes are generated

as

s = c : yj = gj(z) + v′γ + h(w) + εj,

s = n : y0n = [1, v′]γn + hn(w) + ε0n,

s = a : y1a = [1, v′]γa + ha(w) + ε1a, (1.7)

where ε0n is either Gaussian or Student-t with dispersion σ2
n, and ε0a is either Gaussian or

Student-t with dispersion σ2
a. We include intercepts in the n and a models because v is as-

sumed to be free of an intercept. Under these assumptions, the fuzzy RD ATE is again the

difference g1(τ)− g0(τ) which we can interpret as the ATE for compliers (ATEC) at τ :

ATEC = E[y1|z = τ, w, v, s = c]− E[y0|z = τ, w, v, s = c]

= g1(τ)− g0(τ). (1.8)

We note that although the principal stratification model has been used in many different

situations, this is the first use of the model to describe the fuzzy RD problem. It is interesting

to see how this model straightforwardly generalizes the sharp RD model. Fitting of this model

takes advantage of the usual Bayesian techniques for mixtures and involves the augmentation

and sampling of the latent variables si (i ≤ n). Label switching does not occur in this model,

even with a non-informative prior, because of three reasons: one, the exclusion restriction

ensures that the distributional component for compliers is distinct from the other two compo-

nents in the mixture; second, information from the observations with z > τ and x = 0 supply
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a revision of the prior distribution of the parameters of the n model without contamination by

compliers; and, third, information from the z ≤ τ and x = 1 observations provide an update

of the a model, again without contamination by compliers.

Posterior computations for each model, which are described below, have been coded in two

R-packages and are available for download on request. We use these packages to examine the

performance of our methods in both Bayesian and frequentist terms. Comparisons of results

with simulated data show that the frequentist root mean squared error (RMSE) of our ATE

estimates in each case are smaller than of the frequentist local ATE estimate, in several cases

by a significant factor. The frequentist coverage of the Bayesian interval estimate of the ATE

is often closer to the nominal value than that of the corresponding frequentist interval ATE

estimate. These superior frequentist properties of the Bayes point and interval estimators may

be due to the principled way in which we take advantage of the full Bayesian apparatus to

address the particular challenges that arise in the RD problem.

The rest of the article is organized as follows. In Section 2, we specify the data generation

process and the cubic spline formulation. Section 3 contains the prior specification, and Sec-

tion 4 presents the posterior distributions and summarizes an MCMC algorithm to sample the

posterior distributions. Sections 5 and 6 contains examples of simulated data for the sharp and

fuzzy RD designs, respectively, and Section 7 contains our conclusions. Details of the basis

functions are contained in Appendices A and B.

2 Modeling gj(z), basis expansions and likelihoods

We begin by describing our modeling of the unknown g0(z), g1(z), h(w), hn(w) and ha(w)

functions. Our approach is based on penalized natural cubic splines. A natural cubic spline is

a smooth curve constructed from sections of cubic polynomials joined together at knot points

under the constraints that the function has continuous second derivatives at the knot points and

that the second derivatives are zero at the end knots. The cubic splines are expressed as affine

functions of basis functions. The specific basis we use is explained in Chib and Greenberg

(2010) and described in Appendix A. We favor this basis, as opposed to others, for example,

the B-spline basis, because of the interpretability of its basis coefficients. The modeling is
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further characterized by an approach for placing the knots that has been tailored to the RD

problem, and a new regularizing prior on the basis coefficients.

2.1 Data

The available data are n independent observations on (y, x, z, w, v). These are indicated by

(yi, xi, zi, wi, vi), i ≤ n, where yi is y0i when xi = 0 and y1i when xi = 1. In the sharp RD

case, denote the number of observations to the left of τ by n0 and the number of observations

to the right of τ by n1, with n = n0 + n1. For convenience, rearrange the data so that the first

n0 observations correspond to those for xi = 0 and the next n1 to those for xi = 1. Let the

vector of observations on (y, z) to the left of τ be assembled as

y0 = (y1, . . . , yn0) (n0 × 1), z0 = (z1, . . . , zn0) (n0 × 1),

and those to the right of τ as

y1 = (yn0+1, . . . , yn) (n1 × 1), z1 = (zn0+1, . . . , zn) (n1 × 1),

and similarly for the observations on (w, v). For later reference, define

zj,min = min(zj), zj,max = max(zj), (j = 0, 1),

and the pth quantile of zj by zj,p.

In the fuzzy RD design, these data structures are modified appropriately. In particular,

since observations on either side of τ can be controls or treated, the data is arranged in se-

quence in four cells, defined by I00 = {i : zi ≤ τ, xi = 0}, I10 = {i : zi > τ, xi = 0},

I01 = {i : zi ≤ τ, xi = 1} and I11 = {i : zi > τ, xi = 1}, as

x = 0 x = 1
z ≤ τ y00, z00, w00 y01, z01, w01

z > τ y10, z10, w10 y11, z11, w11

(2.1)

The number of observations in these cells is denoted by nlj (l, j = 0, 1). The outcome data in

cell I00 is indicated by y00 and consists of those outcomes for which zi ≤ τ and xi = 0 and

the outcome data in cell I11 is indicated by y11 and consists of outcomes for which zi > τ and

xi = 1. Similarly, the w data in the Iij cells is indicated by wij , a vector of size nij × 1.
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2.2 Knots and basis matrices: sharp RD

Normally, it is enough to place knots equally-spaced through the range of the data or at partic-

ular quantiles of the data. For estimating the g0 and g1 functions, however, it is advantageous

to place the knots more strategically. Because interest is centered on the difference of the two

g functions at τ , we propose a procedure that clusters some knots in the regions around τ .

Partition the intervals [z0,min, τ ] and [τ, z1,max] into intervals that are proximate and far from τ .

Let these four intervals be determined by the quantiles

z0,p0 and z1,p1

for specific values of p0 and p1, for example, (p0, p1) = (0.9, 0.1). A particular distribution of

knots is shown in Figure 1.

z0,min κ0,2 κ0,3 κ0,4 κ0,5 κ0,6

z 0
,p

0
κ
0
,7

κ
0
,8

κ
0
,9

τ

τ κ
1
,2

κ
1
,3

z 1
,p

1

κ1,4 κ1,5 κ1,6 z1,max

Figure 1: SVG drawing
Figure 1: Example of knot locations in the basis expansions of g0 (top panel) and g1 (bottom
panel), determined by mz = (6, 5), mz,τ = (5, 5). Note that the no empty interval constraint
meant that the number of knots is smaller than what is implied by these choices. The circled
points are the p0 an p1 quantiles of z0 and z1, respectively. Both g0 and g1 have a knot at τ .

Knots are now allocated to each of the four segments with the provision that there is at least

one observation between each successive pair of knots. In placing these knots, we first place

a knot at τ for each gj function. Even though τ is not an observed value of z in general, this

key idea allows the estimated g functions to have curvature from the breakpoint to the nearest

z value on either side of it. Otherwise, the functions are linear over those intervals. We then

place mz,0,τ and mz,1,τ knots in the intervals proximate to τ . Finally, we place mz,0 and mz,1

knots in the intervals that are further away from τ . It is convenient to define mz = (mz,0,mz1)

and mz,τ = (mz,0,τ ,mz,1,τ ).
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Setting up an algorithm that places the desired number of knots under the constraint of

no-empty intervals can be a bit tricky, especially when the data is sparse. One algorithm,

which may be characterized as ‘propose-check-accept-extend,’ is simple to implement and

ensures that the number of knots produced is close to, but not necessarily equal to, the desired

numbers. It proceeds in the following way: For the two intervals to the left of τ , place a knot

at τ and let ∆τ = (τ − z0,p0)/(mz,0,τ − 1) be the initial spacing for the remaining knots in the

interval proximate to τ . Propose the next knot at τ −∆τ , and accept it as a knot if it produces

a non-empty interval. Otherwise, propose a knot at τ − 2∆τ , check for a non-empty interval,

accept or extend the interval, and continue in this way until either z0,p0 is reached or exceeded.

Then calculate the spacing ∆0 = (z0,p0− z0,min)/mz,0 and proceed from the last accepted knot

in the same way as before, making sure that z0,min is a knot at the end of this stage. The same

propose-check-accept-extend approach is applied to the right of τ after placing the first knot

at τ and ending with a knot at z1,max. Let

{z0,min, κ0,2, . . . , κ0,m0−1, τ} (2.2)

denote the m0 knots to the left of τ determined by this procedure, and let

{τ, κ1,2, . . . , κ1,m1−1, z1,max} (2.3)

denote the m1 knots to the right of τ . An example is shown in Figure 1, where m0 = 10 and

m1 = 7. When using this algorithm, note that

m0 ≤ mz,0 + mz,0,τ

and

m1 ≤ mz,1,τ + mz,1

and that, in general, the knots are not equally-spaced.

In specifying the number of knots, mj can be selected to be cnνj , for some constant c and

ν ≥ 1
5
, following the rate derived in Claeskens et al. (2009). To choose the values of pj ,

mz,j , and mz,j,τ , the observed z0 and z1 can be examined, placing more knots where there is a

greater concentration of observations. These choices can then be adjusted on the basis of the

marginal likelihoods of various models, as discussed below.
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Given the knots and the basis functions, the unknown function ordinates g0 and g1 at z0

and z1

g0(z0) =


g0(z1)
g0(z2)
...
g0(z0)

 and g1(z1) =


g1(zn0+1)
g1(zn0+2)
...
g1(zn)

 , (2.4)

respectively, can now be expressed in terms of the knots and the basis functions in the appendix

as

g0(z0) = B0α

and

g1(z1) = B1β,

where Bj : nj ×mj are the basis matrices and α, and β are the basis coefficients. Since the

basis coefficients, as noted above, are the function values at the knots, the components of α

and β are explicitly,

α
(m0×1)

=



g0(z0,min)
g0(κ0,2)

...
g0(κ0,m0−1)
g0(τ)

 , β
(m1×1)

=



g1(τ)
g1(κ1,2)

...
g1(κ1,m1−1)
g1(z1,max)

 , (2.5)

which implies that the ATE under our parameterization is the first component of β minus the

last component of α:

ATE = β[1] − α[m0]. (2.6)

Knot placement for the function h(w) needs little comment. One can provisionally allocate

mw equally-spaced knots on the interval [wmin, wmax], again under the constraint that there are

no empty intervals. The value mw can be chosen to be cwnν , for some constant cw and ν ≥ 1
5
.

The function ordinates

h(w) = (h(w1), h(w2), · · · , h(wn))′

can then be expanded as

h(w) = Bwδ

where the basis matrix Bw has one column less than the number of knots because of an iden-

tifiability condition (see Chib and Greenberg, 2010).
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2.3 Knots and basis matrices: fuzzy RD

In dealing with the fuzzy RD design, the knots are selected as above, except that the data used

is the one that is relevant for that function. For instance, in dealing with the g0 function, one

takes the data z00, padded with τ at the right, to locate the knots, so that

g0(z00) = (g0(z1), g0(z2), · · · , g0(zn00))′

can be expressed as

g0(z00) = B00α,

where we use the notation B00 to emphasize that this basis matrix is constructed from the z

data in the I00 cell. Similarly, from the z11 data, padded with τ at the left, we express the g1

function values

g1(z11) = (g1(zn0+n01+1), g1(zn0+n01+2), · · · , g1(zn))′

as

g1(z11) = B11β.

Notice that we abuse notation in denoting the basis coefficients by the same symbols as in the

sharp RDD model. This is done to emphasize the correspondence with the sharp model. The

ATEC is again

ATEC = β[1] − α[m0]. (2.7)

For the h function in the model for compliers, the knots are computed from the data (w00, w11),

and

h(w) = (h(w1), · · · , h(wn00), h(wn0+n01+1), · · · , h(wn))′

has the expansion

h(w) = B00,11δ ,

where we employ the somewhat cumbersome (but informative) subscripting to clarify that

this basis matrix is based on the w data in the I00 and I11 cells. In the same manner, the basis

expansion of the hn function makes use of the data (w00, w10) so that

hn(w) = (hn(w1), · · · , hn(wn00), hn(wn00+1), · · · , hn(wn0))′
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is expressed as

hn(w) = B00,10δn.

Finally, for the ha function in the fuzzy model, we base the knots on (w01, w11) and express

ha(w) =
(
ha(wn0+1) ha(wn0+2) · · · ha(wn)

)′
as

ha(w) = B00,10δα.

2.4 Likelihood: sharp RD

With the basis expansions in hand, we can express the sharp RD model yj = gj(z) + v′γ +

h(w) + εj in a form convenient for computing by collecting all n observations as:

 y0
(n0×1)
y1

(n1×1)

 =

(
B0 0 Bw,1:n0 V1:n0

0 B1 Bw,n0+1:n Vn0+1:n

)
α
β
γ
δ

+

 ε0
(n0×1)
ε1

(n1×1)

 , (2.8)

where the notation Bw,1:n0 is shorthand for the first n0 rows of Bw, and the notation Bw0+1:n

for its last n1 rows, and V is the matrix of observations on v, partitioned conformably. In

abbreviated form, this model can be written as

y = Xθ + ε,

where ε = (ε0, ε1) are the independently distributed errors, and

θ = (α, β, γ, δ)

is the regression parameter of length k = (m0 + m1 + mw − 1 + q). Therefore, the Gaussian

likelihood is

y|θ, σ2 ∼ N (Xθ, σ2In), (2.9)

where In is the identity matrix of order n, and the Student-t likelihood is

y|θ, σ2, ν ∼ tν(Xθ, σ2In) (2.10)

for given degrees of freedom ν ≥ 2.
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2.5 Likelihood: fuzzy RD

The likelihood function in the fuzzy RD model is that of a mixture model. Consider for

simplicity the Gaussian case. Let B00,i denote the ith row of B00, with similar notation for the

other basis matrices. Then, the likelihood contribution of the ith observation by cell are

L00,i = qcN(yi|B00,iα + viγ + B00,11,iδ, σ
2) + qnN(yi|[1, vi]γn + B00,10,iδn, σ

2
n),

L10,i = qnN(yi|[1, vi]γn + B00,10,iδn, σ
2
n),

L01,i = qaN(yi|[1, vi]γa + B01,11,iδa, σ
2
a),

L11,i = qcN(yi|B11,iβ + viγ + B00,11,iδ, σ
2) + qaN(yi|[1, vi]γa + B01,11,iδa, σ

2
a), (2.11)

and the likelihood function is the product of these contributions over all the observations:

L =
∏
i∈I00

L00,i ×
∏
i∈I10

L10,i ×
∏
i∈I01

L01,i ×
∏
i∈I11

L11,i. (2.12)

3 Prior distribution

In spline estimation with no regularizing penalty, there is a trade-off between the model fit and

the smoothness of the function estimates. As the model fit is improved by adding knots, the

function estimates tend to become less smooth. In non-Bayesian penalized spline estimation,

the smoothness of the function is controlled by adding an l2-based roughness penalty to the

negative log-likelihood, or least squares, objective function. A commonly chosen penalty

is the integrated squared second-order derivative of the spline function, which, because the

function is linear in the basis parameters, is a quadratic form in the basis parameters.

Our approach to specifying this penalty is through a novel prior distribution. Consider

the sharp RD model for specificity. The parameter of interest in the mean function is θ =

(α, β, γ, δ). The prior we construct is conditioned on four positive penalty parameters, namely

λ = (λ0, λ1, λw, λa), and the error variance σ2. It has the form

π(θ|λ0, λ1, λγ, λδ, σ2) = π0
(
α|λ0, σ2

)
π1
(
β|λ1, σ2

)
πγ
(
γ|λγ, σ2

)
πδ
(
δ|λδ, σ2

)
where each of the distributions on the right-hand side is Gaussian, and except for the distribu-

tion πγ , is of a form that has not been used before. The other three distributions, π0, π1 and
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πδ, which are the distributions of the basis parameters in the expansions B0α, B1β and Bwδ,

respectively, are constructed by supposing that the basis parameters (the function ordinates

at the knots) are each realizations of mutually independent discrete, second-order Ornstein–

Uhlenbeck (O-U) processes. Our approach naturally handles unequally-spaced knots and pro-

duces a proper distribution, unlike the prior in Eilers and Marx (1996).

In continuous time, the second-order O-U process for a diffusion {ϕt} can be defined

through the stochastic differential equation

d2ϕt = −a(dϕt − b)dt + s dWt,

where a > 0, and {Wt} is the standard Wiener process. We propose to use this process in

its Euler discretized form as a prior for the ordinates of the non-parametric functions at their

respective knots. One simple possibility is to let a = 1, µ = 0 and s = σ/
√
λ, where λ is

equal to λj for the gj functions or λδ for the h function. Furthermore, in discrete time, dt is

the spacing between successive knots. This discrete second order O-U process is the basis of

the prior on the unknown function ordinates.

3.1 Prior of α

Consider the situation shown in Figure 2 for values of g0 computed at three successive knots,

τ z

αi = g0(κ0,i) βj = g1(κ1,j)

κ0,i−2 κ0,i−1 κ0,i κ1,j κ1,j+1 κ1,j+2

αi−2 αi−1
αi

βj βj+1

βj+2

h0,i h1,j+1

Figure 2: Function ordinates and prior formulation.
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represented by αi = g0(κ0,i), αi−1 = g0(κ0,i−1) and αi−2 = g0(κ0,i−2). Let

∆2αi = (αi − αi−1)− (αi−1 − αi−2) , i > 2

and define the spacings between knots by

h0,i = κ0,i − κ0,i−1

as shown in Figure 2. Then, in the Gaussian error model, our prior assumption on (α3, α4, . . . , αm0)

conditioned on (α1, α2) is that

∆2αi = −(αi−1 − αi−2)h0,i + u0i, (3.1)

u0i|σ2, λ0 ∼ N
(

0,
σ2

λ0
h0,i

)
, (3.2)

where (αi−1 − αi−2)h0,i introduces mean reversion and λ0 is an unknown penalty parameter.

Note that the assumed dependence between the spline coefficients and σ2 is uncommon, but

requiring conditional conjugacy with respect to σ2 is also quite reasonable. In the Student-

t error model, on the other hand, conditional prior conjugacy with respect to σ2 cannot be

achieved, and it is more reasonable to suppose that the spline coefficients and σ2 are a priori

independent.

Next consider the starting ordinates, (α1, α2). Instead of an improper prior as in Lang and

Brezger (2004) and Brezger and Lang (2006), we specify a proper g-type prior that smoothly

avoids any elicitation difficulties. We let

T−1α,1:2 = (B′0B0)1:2

denote the first two rows and columns of B′0B0 and then suppose that(
α1

α2

)
=

(
g0(z0,min)
g0(κ0,2)

)
∼ N

((
α1,0

α2,0

)
,
σ2

λ0
Tα,1:2

)

where α1,0 and α2,0 are 2 free hyperparameters that we roughly set to equal the prior means

of g0, if such information is available, otherwise, we set them to zero. In our experience,

posterior inferences are quite robust to the choice of these values.

By straightforward calculations it can be shown that these assumptions imply that

π0(α|σ2, λ0) = N
(
α|D−1α α0,

σ2

λ0
D−1α TαD

−1′
α

)
(3.3)
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where

α0 = (α1,0, α2,0, 0, . . . , 0)′ : m0 × 1,

Dα is a tri-diagonal matrix (given in Appendix B) that depend entirely on the spacings, and

Tα = blockdiag(Tα,1:2, Im0−2) : m0 × 1

Thus, the penalty matrix of the g0 function is λ0DαT
−1
α D′α.

3.2 Prior of β

Our prior π1 (β|λ1, σ2) on β is constructed in a way analogous to π0(α|σ2, λ0) but with the

key difference that the O-U process is oriented for knots going from right to left. Consider

again Figure 2 and now consider the three successive values of g1, ordered from right to left,

and represented by βj = g1(κ1,j), βj+1 = g1(κ1,j+1) and βj+2 = g1(κ1,j+2). Our proposal is

to imagine the specific second differences

∆2βj = (βj − βj+1)− (βj+1 − βj+2) , j < m1 − 1

with spacings between knots given by

h1,j+1 = κ1,j+1 − κ1,j,

conditioned on the right end-points (βm1−1, βm1), as following the process

∆2βj = −(βj+1 − βj+2)h1,j+1 + uji, (3.4)

uji|σ2, λ1 ∼ N
(

0,
σ2

λ1
h1,j+1

)
, (3.5)

where λ1 is another unknown penalty parameter.

We orient the β process in this way to circumvent the direct specification of a distribution

on β1 = g1(τ), which can be both difficult and consequential. In our approach, the prior

on g1(τ) is determined by the O-U process, in the same way that the prior on the other key

parameter αm0 = g0(τ) is determined by the α O-U process. Our experiments have indicated

that this formulation helps to reduce the extent of the shrinkage-bias for αm0 and β1.
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The distribution of the initial values (βm1−1, βm1) is once again a type of g-prior. Let

T−1β,m1−1:m1
= (B′1B1)m1−1:m1

denote the last two rows and columns of B′1B1 , then our assumption is that(
βm1−1
βm1

)
=

(
g1(z1,m1−1)
g0(κ1,m1)

)
∼ N

((
βm1−1,0
βm1,0

)
,
σ2

λ1
Tβ,m1−1:m1

)
.

These two assumptions immediately imply that

π1(β|σ2, λ1) = N
(
D−1β β0,

σ2

λ1
D−1β TβD

−1′
β

)
, (3.6)

where

β0 = (0, . . . 0, βm1−1,0, βm1,0)′ : m1 × 1,

Dβ is the tri-diagonal matrix in Appendix B, and

Tβ = blockdiag(Im1−2, Tβ,m1−1:m1) : m1 × 1.

Thus, the penalty matrix for the g1 function is λ1DβT
−1
β D′β .

3.3 Prior of γ and δ

For the linear parameters γ our proposed prior is a semi-conjugate g-prior with a prior mean

of γ0 and precision matrix equal to σ−2λvV ′V . Specifically,

πγ(γ|λγ, σ2) = N
(
γ|γ0,

σ2

λv
(V ′V )−1

)

where we generally set γ0 to equal zero.

Finally, for the basis parameters δ, the prior construction proceeds entirely analogously to

that of α. Omitting details,

πδ
(
δ|λδ, σ2

)
= N

(
δ|D−1w δ0,

σ2

λδ
D−1w TwD

−1′
w

)

where the matrices Dw and Tw are those given in the appendix.

We remark that in the fuzzy model, the preceding prior is the prior on the parameters of

the complier model, where the penalty matrices are computed from the data in the cells I00

and I11. The prior on the parameters of the n and a models is constructed analogously to that

of (γ, δ) in the complier model. Because the details are clear, they are omitted.
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3.4 Prior of σ2 and λ

The prior on σ2 is of the usual form. Independent of the precision parameters, we suppose that

σ2 ∼ IG

(
ν0
2
,
δ0
2

)
,

where ν0 and δ0 are chosen to reflect the researcher’s views about the mean and standard

deviation of σ2. We have a similar prior on σ2
n and σ2

a in the fuzzy model. In the sharp

model, this leaves us with the parameters λ = (λ0, λ1, λγ, λδ) and with the parameters λ =

(λ0, λ1, λγ, λδ, λγn , λδn , λγa , λδa) in the fuzzy model. Specifying a general prior assumption

about these parameters is not easy. In the frequentist interpretation of the penalized smoothing

spline, for fixed n, λj → 0 implies an unpenalized regression spline, and λj → ∞ implies

piece-wise linearity. Also, in that interpretation, the size of λ increases with n. For our setting,

Claeskens et al. (2009) derive the optimal rate λ = O(n1/5).

In our Bayesian formulation, λ helps determine the prior variances of θ, which may be

regarded as a measure of the strength of our belief in the specification of the prior mean.

The prior variances of the elements of α, for example, are equal to the diagonal elements of

(σ2/λ0)D−1α TαD
−1′
α . These variances depend on σ2, λ0 and the h0,k, which vary from problem

to problem. We consider two methods of choosing the hyperparameters of the distribution of

λ0. One is simply to specify prior values of E(λ0) and sd(λ0) and match a Gamma distribution

to these choices. The second idea is to choose E(λ0) to make the smallest diagonal element of

the variance matrix equal to one, that is, choose E(λ0) so that

min

{
diag

(
E(σ2)

E(λ0)
D−1α TαD

−1′
α

)}
= 1,

and let sd(λ0) be a multiple of the prior mean. For specificity, in the sharp model, the same

approach can be taken for λ1, λv and λw. Given the prior mean and standard deviation, we can

find the matching Gamma distributions, which are denoted as

λj ∼ Gamma

(
aj0
2
,
bj0
2

)
, j = 0, 1, γ, δ

and assumed to be distributed independently. An identical approach can be employed in the

fuzzy model. Note that we obtain a result comparable to an unpenalized regression spline

model by letting the prior mean of λj (j = 0, 1, γ, δ) be small and the prior standard deviation
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be even smaller. In the Bayesian interpretation, these settings have the effect of enforcing a

small precision on the prior distribution of (α, β, γ, δ).

3.5 Prior of q

In the fuzzy RD model, a prior distribution on the probabilities q = (qc, qn, qa) is needed.

Following the usual custom, this prior is taken to be Dirichlet with parameters (n0c, n0n, n0a).

We normally set these hyperparameters to reflect the belief that half the sample consists of

compliers, and that the remaining half is equally divided between never-takers and always-

takers.

4 Posterior Distributions and MCMC Sampling

We begin with the sharp RD design and then show how to modify it for the fuzzy case.

4.1 Sharp RD design
4.1.1 Gaussian error

Consider first the Gaussian error model which has the form

y|θ, σ2 ∼ Nn(Xθ, σ2In),

θ|σ2, {λj} ∼ Nk
(
θ0, σ

2A0

)
,

σ2 ∼ IG

(
ν00
2
,
δ00
2

)
,

λj ∼ Gamma

(
aj0
2
,
bj0
2

)
, (j = 0, 1, γ, δ)

where

θ0 =
(
D−1α α0, D

−1
β β0, γ0, D

−1
w δ0

)′
,

and

A0 = blockdiag

(
1

λ0
D−1α TαD

−1′
α ,

1

λ1
D−1β TβD

−1′
β ,

1

λγ
(V ′V )−1,

1

λδ
D−1w TwD

−1′
w

)
The posterior distribution of the parameters of this model can be sampled by the following

MCMC algorithm, which is iterated n0+m times, where n0 is the number of burn-in iterations

and m is the number of iterations retained:
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• Given (y, {λj}), sample (θ, σ2) from the updated normal-inverse gamma distribution:

π(θ, σ2|y, {λj}) = π(θ|σ2, y, {λj}) π(σ2|y, {λj})

∼ Nk(θ1, σ
2A1) IG(ν1/2, δ1/2),

where

θ1 = A1(X ′y + A−10 θ0),

A1 = (X ′X + A−10 )−1,

ν1 = ν00 + n,

δ1 = δ00 + y′y + θ′0A
−1
0 θ0 − θ′1A−11 θ1

• Given (α, σ2), sample λ0 from

an updated Gamma distribution, independent of y:

π(λ0|α, σ2) ∼ Gamma(a01/2, b01/2),

where

a01 = a00 + m0,

b01 = b00 +
(Dαα− α0)′T−1α (Dαα− α0)

σ2
.

• Given (β, σ2), sample λ1 from an updated Gamma distribution, independent of y:

π(λ1|β, σ2) ∼ Gamma(a11/2, b11/2),

where

a11 = a10 + m1,

b11 = b10 +
(Dββ − β0)′T−1β (Dββ − β0)

σ2
.

• Given (γ, σ2), sample λγ from an updated Gamma distribution, independent of y:

π(λγ|γ, σ2) ∼ Gamma(aγ1/2, bγ1/2),
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where

aγ1 = aγ0 + q,

bγ1 = bγ0 +
(γ − γ0)′(V ′V )−1(γ − γ0)

σ2
.

• Given (δ, σ2), sample λδ from an updated Gamma distribution, independent of y:

π(λδ|γ, σ2) ∼ Gamma(aδ1/2, bδ1/2),

where

aδ1 = aδ0 + mw,

bδ1 = bδ0 +
(Dwδ − δ0)′T−1w (Dwδ − δ0)

σ2
.

• After the burn-in iterations, extract the last element of α and the first element of β to

obtain drawings of the ATE from its posterior distribution.

4.1.2 Student-t error

The Student-t error model differs from the Gaussian model for only two distributions

y|θ, σ2 ∼ tν(Xθ, σ2In)

θ|{λj} ∼ Nk (θ0, A0) ,

since the prior distributions of σ2 and {λj} are the same. The posterior distribution of the

parameters in this model are easily sampled by using the well known representation of the

Student-t distribution as a gamma scale mixture of normals:

εi|σ2, ξi ∼ N (0, σ2/ξi),

ξi ∼ Gamma(
ν

2
,
ν

2
) , i ≤ n.

Then, by augmenting the posterior distribution of θ by the {ξi}, MCMC sampling proceeds

in much the same way as above, except that θ is sampled conditioned on both σ2 and {ξi},

σ2 is sampled conditioned on θ and {ξi}, and a layer is added in which the {ξi} are sampled

conditioned on θ and σ2.
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4.2 Fuzzy RD design

Estimation of the fuzzy RD model relies on the usual augmentation of the mixture indicators,

here the type variables si (i ≤ n). Conditioned on the parameters, these type variables have

to be sampled only in the cells I00 and I11 (because the subjects in cells I10 and I10 are nec-

essarily of types n and a, respectively). From the likelihood contributions given above, for

observations in cell I00

Pr(si = c|yi, θ) =
qcN(yi|B00,iα + viγ + B00,11,iδ, σ

2)

qcN(yi|B00,iα + viγ + B00,11,iδ, σ2) + qnN(yi|[1, vi]γn + B00,10,iδn, σ2
n)

Pr(si = n|yi, θ) = 1− Pr(si = c|yi, θ)

and for observations in cell I11

Pr(si = c|yi, θ) =
qcN(yi|B11,iβ + viγ + B00,11,iδ, σ

2)

qcN(yi|B11,iβ + viγ + B00,11,iδ, σ2) + qaN(yi|[1, vi]γa + B01,11,iδa, σ2
a)

Pr(si = a|yi, θ) = 1− Pr(si = c|yi, θ)

Suppose that in a particular MCMC iteration, the sampling of {si} with these probabilities

produces nc00 compliers and nn00 = n00 − nc00 never-takers in cell I00. Similarly, suppose that

the sampling produces nc11 compliers and na11 = n11 − nc11 always-takers in cell I11. Given

the sampled types, the probabilities q = (qc, qn, qa) are sampled from an updated Dirichlet

distribution with parameters

(n0c + nc00 + nc11, n0n + nn00 + n10, n0a + n01 + na11).

Again, conditioned on the sampled types, the model decomposes into three separate mod-

els, one for each type. Then, we can write


yc00

(nc00×1)

yc11
(nc11×1)

 =


Bc

00
(nc00×m0)

0 Bc
00,11

(nc00×mw−1)
V c
00

0 Bc
11

(nc11×m1)

Bc
00,11

(nc11×mw−1)
V c
11



α
β
γ
δ

+


εc00

(nc00×1)

εc11
(nc11×1)

 , (4.1)

where the c superscript indicates the sub-vectors and sub-matrices consisting of the rows (ob-

servations) sampled as compliers in the indicated cells. This is analogous to (2.8) in the sharp

RD model. Therefore, the parameters (α, β, γ, δ), (λ0, λ1, λγ, λδ) and σ2 can be sampled ac-

cording to one step of the sharp RD MCMC algorithm.
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Similarly, given the nn00 observations sampled as never-takers in the cell I00, we can write
yn00

(nn00×1)

y10
(n10×1)

 =


V n
00 Bn

00,10
(nn00×mnw−1)

V10 B00,11
(n10×mw−1)


(
γn
δn

)
+


εn00

(nn00×1)

εn11
(n10×1)

 , (4.2)

where V00 and V10 contain an intercept, and Bn
00,10 consists of the rows of B00,11 in cell I00 that

are classified as never-takers. This model again is similar in structure to the sharp RD model

and, therefore, its parameters (γn, δn), (λγn , λδn) and σ2
n can be sampled using one step of the

sharp RD MCMC algorithm.

Next, given na11 observations classified as always-takers in the cell I11, we have
y01

(n01×1)
ya11

(na11×1)

 =


V01 B01,11

(n01×maw−1)
V a
11 Ba

01,11
(na11×maw−1)


(
γα
δa

)
+


εa01

(n01×1)
εa11

(na11×1)

 (4.3)

where V01 and V a
11 contain an intercept, and Ba

01,11 consists of the rows of B01,11 in cell I11

that are classified as always-takers. Its parameters (γa, δa), (λγa , λδa) and σ2
a can likewise be

sampled as above.

These steps, which constitute one iteration of the MCMC sampling in the fuzzy RD model,

are repeated, and sampled values beyond the burn-in are retained for analysis, just as in the

sharp MCMC algorithm above.

4.3 Marginal likelihood computation

For both these models, the procedure of Chib (1995) can be used to calculate the marginal

likelihood. We use the marginal likelihood to compare models that differ in the value of p

and in the number of knots in the four regions implied by a given p. We also use marginal

likelihoods to compare the Gaussian and Student-t assumptions, and the Student-t model with

different degrees of freedom.

5 Simulated Data: Sharp RD Design

5.1 Gaussian errors

This section examines the performance of our method in both Bayesian and frequentist terms

using simulated data with a Gaussian error. The first goal is to investigate the posterior esti-
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mates of the ATE as a function of sample size. The second goal is to examine the sampling

properties of the posterior ATE estimates, again as a function of sample size. The perfor-

mance is benchmarked against those of the frequentist estimator of Imbens and Kalyanaraman

(2012) as implemented in the R package rdd. As will be seen, these side-by-comparisons

show that the frequentist RMSE of the Bayes ATE estimate is smaller than of the frequentist

ATE estimate, in several cases by a significant factor. The coverage of the Bayes ATE estimate

is also better than that of the frequentist ATE estimate. All results are calculated and easily

reproduced from an R package that is available from us on request.

5.1.1 Data generating process

The data generating process (DGP) is similar to that of Rau (2011), but the g0 and g1 used

here have derivatives up to second order throughout their support. We also include control

variables W and V in the DGP. In detail,

g0(z) = z + z2 + z3 + sin(30z),

g1(z) = z + z2 + z3 + 5 sin(10z) + 1,

h(W ) =
sin(πW/2)

1 + W 2(sign(W ) + 1)
,

V ∼ U(0, 1), δ = 1,

ε ∼ N (0, 1),

τ = 0.

The true value of the ATE is one. A particular data set of n = 500 observations drawn from

this design is shown in Figure 3. It can be seen from this figure that the range of the outcome

data is quite large relative to the size of the ATE and that the g0 and g1 functions have quite

different cycles and amplitudes. The outcome data is also noisy.

In the analysis that follows, this design is called Design 1. It is used to generate 10,000

data sets for each of the sample sizes n = 500, 1000, 2000 and 4000.

5.1.2 Knots and prior distribution

We define the two regions proximate to τ = 0 through the quantiles p = (.8, .2). In estimating

the model when n = 500, the number of knots is selected from a small marginal likelihood
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Figure 3: Simulated data - Design 1, n = 500: True functions and sample data. Bottom panel
is a zoom plot of the plot in the top panel.

comparison of alternative models. This yields the values mz = (30, 20), mz,τ = (5, 5) and

mw = 5. For the remaining sample sizes, the number of knots is increased moderately from

these values: when n = 1000, mz = (32, 22), mz,τ = (8, 8), and mw = 10; when n = 2000,

mz = (35, 30), mz,τ = (9, 9), and mw = 15; and when n = 4000, mz = (40, 35), mz,τ =

(10, 10), and mw = 18.

The prior means of the first two ordinates of g0, the last two of g1 and the first two of h are

assumed to be

α1,0 = α2,0 = −15, βm1−1,0 = βm1,0 = 30, γ1,0 = γ2,0 = 0,

respectively. The prior mean of δ is assumed to be 0. The hyperparameters ν0 and δ0 are

chosen so that E(σ2) = 2 and sd(σ2) = 20. Finally, the hyperparameters aj0 and bj0 for each

of the four λ’s are chosen to make E(λj) = 1 and sd(λj) = 10. This same prior distribution is

used for all the data sets generated in this section.

5.1.3 Conditional analysis

Consider first a conditional analysis of this model for varying sample sizes. All results are

based on a burn-in of 1,000 iterations and a retained sample of 10,000 iterations.
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Figure 4 contains the posterior mean of the gj functions along with the 95% point-wise

credibility bands. The true values of the functions are indicated by squares, and the outcome

observations are indicated by open circles. For better clarity and to see how the functions are

estimated near τ , a zoom plot is provided in the bottom panel of Figure 4. These results show

that the method closely tracks the functions even with a relatively small sample size.
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Figure 4: Simulated data - design 1, n = 500: Posterior mean of the gj functions along with
the 95% point-wise credibility bands. True function values indicated by squares. The outcome
data is indicated by open circles. Zoom plot in the bottom panel.

The posterior results for the ATE by sample size are given in Table 1 and Figure 5. As

Bayes Frequentist
n Mean sd Estimate se
500 1.69 0.90 3.03 0.70

1000 0.75 0.61 2.12 0.65
2000 1.67 0.50 2.48 0.57
4000 1.34 0.46 1.38 0.39

Table 1: Simulated data - Design 1: Summary of the ATE estimates, conditional on a given
sample, by sample size. The true value of the ATE is one.

expected, the posterior standard deviation of the ATE declines with the sample size. A com-

parison with the estimates from the Imbens and Kalyanaraman (2012) method shows that, at
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least for this data set, the Bayes posterior mean is closer to the true value than the frequentist

estimate for each sample size.
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Figure 5: Simulated data - Design 1: Posterior pdf of the ATE conditional on a given sample,
by sample size. True value of one is indicated by a vertical line.

5.1.4 Sampling performance

Further information about the Bayesian method can be generated by evaluating the frequentist

properties of the Bayesian point and interval estimators. By repeating the estimation 10,000

times for each sample size, we obtain Monte Carlo estimates of the frequentist bias, the RMSE,

and the coverage behavior of the Bayesian credibility interval. These properties can be con-

trasted with those of the corresponding frequentist estimators. The sampling results reported

in Table 2 are striking. They show that the sampling behavior of the Bayesian point and inter-

val estimates is superior to that of the frequentist estimators. The sampling distribution of the

posterior mean shows faster convergence to the true value and substantially smaller RMSEs,

especially for the first three sample sizes. The coverage properties of the Bayesian interval

estimator is also close to that of the nominal value for every sample size.
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Bayes Frequentist
ATE coverage RMSE ATE coverage RMSE

n = 500
mean 1.4847 0.9328 0.9499 2.791 0.427 2.1211
q.025 0.9438 1.0000 2.053 0.0000
q.975 2.0104 1.0000 3.413 1.0000

n = 1000
mean 1.1371 0.9675 0.7279 2.3589 0.4122 1.6006
q.025 0.6754 1.0000 1.8223 0.0000
q.975 1.6131 1.0000 2.8303 1.0000

n = 2000
mean 1.0599 0.9618 0.5560 1.7589 0.6043 0.9874
q.025 0.6939 1.0000 1.3477 0.0000
q.975 1.4243 1.0000 2.1700 1.0000

n = 4000
mean 1.0215 0.9534 0.4305 1.2642 0.8627 0.5307
q.025 0.7318 1.0000 0.9602 1.0000
q.975 1.3145 1.0000 1.5764 1.0000

Table 2: Simulated data - Design 1: Summary of the ATE sampling distributions from 10,000
repeated samples. The true value of the ATE is one.

5.2 Student-t error

In this section, we consider the performance of the Bayes method using a second design, this

one based on Imbens and Kalyanaraman (2012), that has features that are not present in the

preceding example. In particular, under this design, the data around τ is sparse, and only about

10% of the observations are treated. We introduce another dimension of complexity into the

model by assuming that the errors are distributed as Student-t with 2 degrees of freedom. This

allows us to examine the impact, if any, of a thick-tailed error distribution on inferences about

the ATE. There are no controls in the design other than z.

5.2.1 Data generating process

The design, which we call Design 2, is defined by

g0(z) = 0.48 + 1.27z + 7.18z2 + 20.21z3 + 21.54z4 + 7.33z5,

g1(z) = 0.52 + 0.84z − 3.00z2 + 7.99z3 − 9.01z4 + 3.56z5,

z ∼ 2× Beta(2, 4)− 1,
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ε ∼ t2(0, 1),

τ = 0.

The true ATE for this model is 0.04. In Figure 6, we plot a particular sample of 500 obser-

vations drawn from this design. The sparseness around τ and the small number of treated

observations are apparent in the plot.
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Figure 6: Simulated data - design 2, n = 500: True functions and sample data. Bottom panel
is data in the top panel plot restricted to the quantiles p = (.9, .2).

5.2.2 Conditional analysis

As before, the analysis and results below are obtained from our R package and are there-

fore easily reproduced. Our computational strategy for determining the size of the proximate

intervals around τ and the number of knots is to perform a marginal likelihood comparison

of a limited number of models around the starting specifications p = (.8, .2), mz = (4, 4),

mz,τ = (2, 2) with Gaussian and Student-t errors. The starting specification is our standard

default. We then consider nearby models by adding knots in the various regions, as shown in

Table 3. We do not consider models far from the default, because those models are not com-

petitive in the marginal likelihood comparison, which is reasonable in the case of estimating

fifth-degree polynomials. The degrees of freedom of the t-distribution are allowed to take the

values 4 and 8. The value 2 is intentionally omitted to avoid considering the true model. In
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Dist. mz mz,τ p log ML
n = 500
t4 4 3 2 2 0.9 0.2 -78.674
t4 4 4 2 2 0.8 0.2 -78.702
t8 4 3 2 2 0.9 0.2 -129.022
Gaussian 4 3 2 2 0.9 0.2 -478.017
n = 1000
t4 4 3 2 2 0.9 0.1 -7.150
t4 5 3 3 2 0.9 0.1 -9.571
t4 5 3 2 2 0.9 0.1 -8.552
t4 4 4 2 2 0.8 0.2 -7.497
t8 4 3 2 2 0.9 0.1 -79.060
t8 5 3 3 2 0.9 0.1 -81.382
Gaussian 4 3 2 2 0.9 0.1 -672.978
n = 2000
t4 4 3 2 2 0.9 0.1 23.780
t4 5 3 3 2 0.9 0.1 20.609
t4 5 3 2 2 0.9 0.1 21.744
t4 4 4 2 2 0.8 0.2 21.599
t8 4 3 2 2 0.9 0.1 -116.907
t8 5 3 3 2 0.9 0.1 -120.266
Gaussian 4 3 2 2 0.9 0.1 -1116.926
n = 4000
t4 4 4 2 2 0.9 0.1 121.110
t4 5 4 3 2 0.9 0.1 117.953
t4 5 3 2 2 0.9 0.1 120.183
t4 4 4 2 2 0.8 0.2 121.492
t8 4 4 2 2 0.9 0.1 -152.629
t8 5 4 3 2 0.9 0.1 -155.468
Gaussian 4 4 2 2 0.9 0.1 -1856.054

Table 3: Simulated data - Design 2: Marginal likelihoods for selected models.

the fitting, we suppose that the four hyperparameters in the prior of θ equal 0, that the prior

mean of σ2 equals 0.3 and its prior standard deviation equals 2, and that the prior means and

standard deviations of the λj equal 1. This prior is relatively benign.

Results of the marginal likelihood comparison are contained in Table 3. The model spec-

ifications that yield the largest value of the marginal likelihoods are in bold. It is noteworthy

that the marginal likelihood is informative about the length of the proximate region around τ

and that it strongly prefers the Student-t model with 4 degrees of freedom to the model with

30



8. Furthermore, the support for the Student-t assumption over the Gaussian is overwhelming.

5.2.3 Comparison

Consider now the models that are picked in Table 3. It is worthwhile to compare the Bayesian

and frequentist estimates of the ATE (the latter computed by the Imbens and Kalyanaraman

(2012) method), by sample size. These results, given in Table 4, show that for these data the

Bayes Frequentist
n Mean sd Estimate sd
500 0.029 0.104 0.172 0.114

1000 0.034 0.097 0.001 0.077
2000 0.178 0.063 0.164 0.083
4000 0.060 0.033 0.005 .053

Table 4: Simulated data - Design 2: Bayes and Frequentist ATE estimates, conditional on a
given sample, by sample size. The true value of the ATE is 0.04.

Bayes posterior mean is closer to the true value, except in the n = 2000 sample. In addition,

the posterior standard deviations are smaller than the frequentist standard errors for every

sample size.

It remains now to discuss the results from the sampling investigation of the Bayesian

and frequentist point and interval estimates of the ATE. The RMSE and coverage estimates

are again based on 10,000 data sets for each sample size. The results, reported in Table 5,

demonstrate that, even in this rather complex setting, the sampling distribution of the Bayes

posterior mean is less biased and has substantially smaller frequentist RMSE than the frequen-

tist estimator, for all sample sizes. The frequentist coverage of the Bayesian and frequentist

ATE interval estimates is similar in this design though the frequentist coverage tends to be

smaller than the nominal value.

6 Simulated Data: Fuzzy RD Design

This section is devoted to a study of our approach for the fuzzy RD design. The intent, as

above, is to document both the conditional and sampling behavior of the Bayesian estimate of

the RD ATE (specifically, the RD ATE for compliers) in comparison with the corresponding
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Bayes Frequentist
ATE coverage RMSE ATE coverage RMSE

n = 500
mean 0.042 0.968 0.096 0.043 0.926 0.570
q.025 -0.021 1.000 -0.051 1.000
q.975 0.106 1.000 0.154 1.000

n = 1000
mean 0.039 0.967 0.086 0.049 0.934 0.238
q.025 -0.018 1.000 -0.031 1.000
q.975 0.095 1.000 0.132 1.000

n = 2000
mean 0.041 0.966 0.061 0.046 0.942 0.148
q.025 0.001 1.000 -0.019 1.000
q.975 0.082 1.000 0.111 1.000

n = 4000
mean 0.040 0.964 0.042 0.043 0.937 0.112
q.025 0.011 1.000 0.960 1.000
q.975 0.068 1.000 1.576 1.000

Table 5: Simulated data - design 2: Summary of the Bayesian and frequentist ATE sampling
distributions from 10,000 samples. The true value of the ATE is 0.04.

frequentist estimator of Imbens and Kalyanaraman (2012) as implemented in the R package

rdd. The latter estimator is a version of the standard IV estimator, adapted to the specifics of

the fuzzy RD design. Surprisingly, the performance of the freqentist fuzzy RD estimator has

not been examined before in any simulation experiment.

6.1 Data generating process

Our data is generated by simulating s for each observation with probabilities of type in (1.3)

given by

q = (.5, .25, .25)

and supposing, as in the previous designs, that

z ∼ 2Beta(2, 4)− 1

and τ = 0. Given the type and z for any observation, x is generated according to the as-

signment model in (1.4)-(1.6). We then generate the continuous and nonlinear confounders
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as

w ∼ N(0, 1), v ∼ U(0, 1),

and then given the sampled type s and treatment x, we generate the outcome from the appro-

priate model in (1.7) where we suppose that the model for compliers is the same as the one

above. Specifically, we suppose that

g0(z) = 0.48 + 1.27z + 7.18z2 + 20.21z3 + 21.54z4 + 7.33z5,

g1(z) = 0.52 + 0.84z − 3.00z2 + 7.99z3 − 9.01z4 + 3.56z5,

h(w) =
sin(πw/2)

1 + w2(sign(w) + 1)
,

hn(w) =
sin(πw/2)

2 + w2(sign(w) + 1)
,

ha(w) =
sin(πw/2)

3 + w2(sign(w) + 1)
,

γ = 1, γn = 3, γa = 4,

σ2 = 0.12952, σ2
n = σ2

a = 0.12

The true value of ATEC is 0.04. In the experiments, we use this DGP to create data sets with

sample sizes of n = 500, 1000, 2000 and 4000.

6.2 Knots and prior distribution

As before, the analysis is conducted under our default preferences: the two regions proximate

to τ = 0 are defined by the quantile values p = (0.9, 0.2) when n = 500 and p = (0.9, 0.1)

for the other values of n. The number of knots in the expansion of the g0 and g1 functions are

defined as mz = (4, 3) and mz,τ = (2, 2), for n = 500, 1000, 2000, and by mz = (4, 4) and

mz,τ = (3, 3), for n = 4000. Each of the three h functions, namely h, hn and ha, has a basis

expansion with and mw = 5 knots, for each sample size.

The prior distribution is likewise specified in a default way. The prior means of the first

two ordinates of g0, the last two of g1, and the first two of h, hn, and ha, are assumed to

be zero. The prior means of γ, γn and γa are also assumed to be 0. The prior means of

σ2, σ2
n, and σ2

a are each assumed to be 0.3 with a prior standard deviation of 3.0. The prior

mean of each of (λ0, λ1, λγ, λδ) in the complier model, each of (λγn , λδn) in the never-takers
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model, and each of (λγa , λδa) in the always-takers model, is assumed to be one with a prior

standard deviation of 1. Finally, the Dirichlet prior of q is defined by the hyperparameters

(n0c, n0n, n0a) = (5, 2, 2). This same prior is used for each sample size.

6.3 Conditional analysis

For brevity, we focus attention only on the conditional results as they pertain to the ATEC, for

each of the four sample sizes. These are given in Figure 7 and are based on output from our

MCMC sampling on a burn-in of 1,000 iterations and a retained sample of 10,000 iterations.

Once again we observe the tendency of the posterior distribution to concentrate on the true

value as the sample size increases.
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Figure 7: Simulated data - Fuzzy design: Posterior pdf of the ATEC conditional on a given
sample, by sample size. True value of 0.04 is indicated by a vertical line.

Next, in Table 6, we compare the Bayesian posterior mean and posterior standard deviation

of the ATEC, by sample size, against the corresponding frequentist estimates. We observe that

the Bayes estimates are closer to the true ATEC except in the first case.

6.4 Sampling performance

We conclude by providing the frequentist properties of the Bayesian and frequentist point and

interval estimates of the ATEC. The RMSE and coverage estimates are based on 10,000 data

sets for each sample size. The numbers of knots and prior parameters are those specified
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Bayes Frequentist
n Mean sd Estimate sd
500 0.0724 0.1553 0.0457 0.5364

1000 0.0917 0.0992 -0.0670 0.4534
2000 0.0807 0.0942 -0.2271 0.2359
4000 0.0449 0.1198 0.3383 0.1823

Table 6: Simulated data - fuzzy design: Bayes and frequentist ATEC estimates, conditional on
a given sample, by sample size. The true value of the ATEC is 0.04.

in Section 6.2. It is evident from the results in Table 7 that, for each sample size, the sam-

Bayes Frequentist
ATEC coverage RMSE ATEC coverage RMSE

n = 500
mean 0.033 0.968 0.157 0.057 0.958 0.648
q.025 -0.052 1.000 -0.289 1.000
q.975 0.123 1.000 0.438 1.000

n = 1000
mean 0.030 0.955 0.143 0.071 0.952 0.399
q.025 -0.057 1.000 -0.172 1.000
q.975 0.116 1.000 0.325 1.000

n = 2000
mean 0.036 0.945 0.109 0.072 0.944 0.277
q.025 -0.030 1.000 -0.103 1.000
q.975 0.105 1.000 0.255 1.000

n = 4000
mean 0.036 0.940 0.079 0.075 0.942 0.192
q.025 -0.011 1.000 -0.044 1.000
q.975 0.087 1.000 0.196 1.000

Table 7: Simulated data - Fuzzy design: Summary of the Bayesian and frequentist ATE sam-
pling distributions from 10,000 samples. The true value of the ATEC is 0.04.

pling distribution of the Bayes ATEC estimate is less biased and has smaller RMSE than the

frequentist ATEC estimate, paralleling the results seen in the sharp RD cases.

7 Conclusions

In this paper, we have introduced several novel ideas in the analysis of the sharp and fuzzy

RD designs. First, we specify a new second-difference prior on the spline coefficients that
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is capable of handling the situation of many unequally spaced knots. Second, we include a

knot at the threshold, which is not in general an observed value of z, to allow for curvature

in the estimated function from the breakpoint to the nearest z value on either side of the

breakpoint. Third, our procedure allows for the clustering of knots close to the threshold with

the aim of controlling the approximation bias. The number of knots and other features of the

model can be compared through marginal likelihoods and Bayes factors. Our methods are

also easily implemented through available R packages, and examples show that the Bayesian

RD ATE and RD ATEC estimates have superior frequentist properties than the corresponding

frequentist estimates.

Extensions of the method are possible. For instance, the method of Albert and Chib (1993)

can be easily embedded in the approach to fit RD models with binary and categorical out-

comes. The approach can also be extended to multivariate outcomes and multiple thresholds.

These extensions are ongoing and will be reported elsewhere.

A Appendix: Basis functions

In this appendix, we let g(·) denote any function that is to be represented by a cubic spline and

let z denote its argument. For any point z ∈ R and the set of knots κj , j = 1, . . . ,m, the basis

functions are the collections of cubic splines {Φj(z)}mj=1 and {Ψj(z)}mj=1, where

Φj(z) =


0, z < κj−1,

−(2/h3j)(z − κj−1)2(z − κj − 0.5hj), κj−1 ≤ z < κj,

(2/h3j+1)(z − κj+1)2(z − κj + 0.5hj+1,), κj ≤ z < κj+1,

0, z ≥ κj+1,

(A.1)

Ψj(z) =


0, z < κj−1,

(1/h2j)(z − κj−1)2(z − κj), κj−1 ≤ z < κj,

(1/h2j+1)(z − κj+1)2(z − κj), κj ≤ z < κj+1,

0, z ≥ κj+1,

(A.2)

and hj = κj − κj−1 is the spacing between the (j − 1)st and jth knots. Note that Φ1 and Ψ1

are defined by the last two lines of equations (A.1) and (A.2), respectively, and that Φm and

Ψm are defined by only the first two lines. In both cases the strong inequality at the upper limit

should be replaced by a weak inequality.
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The representation of g(z) as a natural cubic spline is given by

g(z) =
m∑
j=1

(Φj(z)fj + Ψj(z)sj) , (A.3)

where

f = (f1, . . . , fm)′ and s = (s1, . . . , sm)′

are the coefficients of this cubic spline. Conveniently, fj = g(κj) is the function value at the

jth knot, and sj = g′(κj) is the slope at the jth knot.

The fact that g(z) is a natural cubic spline implies that g′′(κ1) = 0 = g′′(κm) and that the

second derivatives are continuous at the knot points. These conditions place restrictions on

the sj . If we define ωj = hj/(hj + hj+1), and µj = 1 − ωj for j = 2, . . . ,m, then Lancaster

and Šalkauskas (1986, Sec. 4.2) show that the ordinates and slopes are related by the relations

Cf = As, or

s = A−1Cf,

where

A =


2 1 0 0 0 ... 0 0 0
ω2 2 µ2 0 0 ... 0 0 0
0 ω3 2 µ3 0 ... 0 0 0

... ...
. . . . . . . . . ...

...
...

...
0 0 0 0 0 ... ωm−1 2 µm−1

0 0 0 0 0 ... 0 1 2

 ,
and

C = 3



− 1
h2

1
h2

0 0 ... 0 0 0

−ω2
h2

ω2
h2
−µ2
h3

µ2
h3

0 ... 0 0 0

0 −ω3
h3

ω3
h3
−µ3
h4

µ3
h4

... 0 0 0

...
...

...
... ... 0 0 0

0 0 0 0 ... −ωm−1
hm−1

ωm−1
hm−1

−µm−1
hm

µm−1
hm

0 0 0 0 ... 0 − 1
hm

1
hm


.

For any observation of z, zi, it follows that g(zi) in (A.3) can be re-expressed as

g(zi) =
m∑
j=1

(Φj(zi)fj + Ψj(zi)sj)

=
(

Φ(zi)
′ + Ψ(zi)

′A−1C
)
f

= b′if,

where

Φ(zi)
′ = (Φ1(zi), . . . ,Φm(zi)) ,
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Ψ(zi)
′ = (Ψ1(zi), . . . ,Ψm(zi)) ,

and

b′i = Φ(zi)
′ + Ψ(zi)

′A−1C

which implies the following representation for the n×m basis matrix:

B(z) = (b1, . . . , bm).

B Appendix: Dα and Dβ

Suppose that m is the dimension of α and β. Then, the matrices Dα and Dβ in equations (3.3)

and (3.6) take the following forms:

Dα =



1 0 0 0 ... 0 0 0
0 1 0 0 0 ... 0 0

(1−h0,3)√
h0,3

(h0,3−2)√
h0,3

1√
h0,3

0 0 0 ... 0

0
(1−h0,4)√

h0,4

(h0,4−2)√
h0,4

1√
h0,4

0
. . . . . . ...

... . . . . . . . . . . . . . . . . . . ...
0

. . . . . . . . . . . . . . . . . . ...
0 0 0 0

(1−h0.m−1)√
h0,m−1

(h0,m−2)√
h0,m−1

1√
h0,m−1

0

0 0 0 0 0
(1−h0,m)√

h0,m

(h0,m−2)√
h0,m

1√
h0,m



.

and

Dβ =



1√
h1,2

(h1,2−2)√
h1,2

(1−h1,2)√
h1,2

0 ... 0 0 0

0 1√
h1,3

(h1,3−2)√
h1,3

(1−h1,3)√
h1,3

0 ... 0 0

0 0 1√
h1,4

(h1,4−2)√
h1,4

(1−h1,4)√
h1,4

0 ... 0

... . . . . . . . . . . . . . . . . . . ...

... . . . . . . . . . . . . . . . . . . ...
0

. . . . . . . . . . . . 1√
h1,m−1

(h1,m−1−2)√
h1,m−1

(1−h1,m−1)√
h1,m−1

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



,

respectively.
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