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Abstract 

 
This paper provides a systematic analysis of identification in linear social networks 
models. This is both a theoretical and an econometric exercise in that it links 
identification analysis to a rigorously delineated model of interdependent decisions.  We 
develop a Bayes-Nash equilibrium analysis for interdependent decisions under 
incomplete information in networks that produces linear strategy profiles of the type 
conventionally used in empirical work and which nests linear social interactions models 
as a special case.  We consider identification of both contextual and endogenous social 
effects under alternative assumptions on the a priori information on network structure 
available to an analyst and contrast the informational content of individual-level and 
aggregated data. This analysis is then extended to an example of a two stage game in 
which networks form in the first stage and outcomes occur in the second. The effects of 
endogenous network formation on identification are then analyzed. 
 
 
JEL Codes: C21, C23, C31, C35, C72, Z13             
Keywords:  social networks, identification, incomplete information games  
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…friendship…is…most necessary with a view to living. For without friends, no 
one would choose to live, though he had all other goods; even rich men and 
those in possession of office and of dominating power are thought to need 
friends most of all; for what is the use of such prosperity without the opportunity 
of beneficence, which is exercised chiefly and in its most laudable form towards 
friends?  Or how can prosperity be guarded and preserved without friends?  
The greater it is, the more exposed is it to risk. And in poverty and in other 
misfortunes men think friends their only refuge.  It helps the young too, to keep 
from error; it aids older people by ministering to their needs and supplementing 
the activities that fail from weakness; those in the prime of life it stimulates to 
noble actions  ‘two going together’  for with friends men are more able to 
think and to act.  

 
Aristotle, Nichomachean Ethics, 8.11

 
 

 
1. Introduction 
 

The study of social influences has become a major area of economic theory, 

econometrics, and empirical work, as evidenced by the surveys in Benhabib, Bisin, and 

Jackson (2010).  Standard examples range across such disparate areas as the diffusion 

of technology (Conley and Udry (2010), Munshi (2004), Bandiera and Rasul (2006)), 

disease exposure (Miguel and Kremer (2004)), contraceptive practice (Kohler, 

Behrman, and Watkins (2001), Iyer and Weeks (2009)), smoking (Krauth (2006), 

Soetevent and Kooreman (2007), Nakajima (2007)), crime (Sirakaya (2006), Ballester, 

Calvó-Armengol, and Zenou (2010)), education (Cooley (2008), Bobonis and Finan 

(2009), Calvó-Armengol, Patacchini, and Zenou (2009), De Giorgio, Pellizzari, and 

Redaelli (2010)), the take up of public welfare programs (Bertrand, Luttmer and 

Mullainathan (2000), Aizer and Currie (2004)), labor market outcomes (Topa (2001), 

Munshi (2003), Bayer, Ross and Topa (2008)) and even obesity (Christakis and Fowler 

(2007), but see Cohen-Cole and Fletcher (2008)). This work is now broad enough to 

justify the claim that it constitutes a new field of “social economics,” a term that was 

                                                           
1Taken from The Complete Works of Aristotle, volume 2, J. Barnes ed., Princeton 
University Press, 6th printing, 1984. 
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proposed by Becker and Murphy (2001) when the consideration of social factors first 

began to play a major role in economic analyses. 

Within the broad area of social economics, the study of social networks has 

arguably become the most prominent area of research. From the perspective of 

economic theory, social network analysis is now a well established area of 

specialization; see Jackson (2008) and Goyal (2009) as well as the relevant chapters in 

Benhabib, Bisin, and Jackson (2010) for overviews of the existing theory.  Further, it is 

common for empirical papers to invoke social networks as the underlying structure by 

which social influences are transmitted; one standard example is information 

transmission.  

While the theoretical and empirical literatures on social networks have expanded 

greatly over the last decade, there has been little contact between them.  There has 

been remarkably little work on formal econometric issues pertaining to identification.  

This is especially surprising since there is now a rich literature on identification problems 

in social interactions models-a subset of social network models which assumes that 

individuals belong to predefined groups wherein all group members influence each 

other with equal intensity.2

The identification literature on social interactions has, since Manski (1993), 

demonstrated that important limits exist to identification.  In particular, the so-called 

linear-in-means model, the workhorse of empirical research on social interactions, 

raises classical simultaneity problems.

   

3  This issue was first exposed by Manski, who 

dubbed it “the reflection problem”.  The main exceptions to this absence of formal 

identification work for social networks models are Bramoullé, Djebbari, and Fortin 

(2009) and Blume, Brock, Durlauf, and Ioannides (2010).4

                                                           
2See Blume, Brock, Durlauf, and Ioannides (2010) for a review.  

  Bramoullé, Djebbari and 

3“Linear-in-means” captures the idea that an individual’s behavior depends on the 
average behavior and/or characteristics of members of his group.  
4Mention should also be made of two other approaches. First, there is a literature on 
uncovering network structure given covariances of outcomes.  The state of the art in this 
work is Drton, Foygel, and Sullivant (2011) who examine global identification of the 
parameters ija  for models of the form ω ω ε

≠

= +∑i ij j j
j i

a .  We discuss this work in Section 

5.i.  Second, Lee (2007) and Lee, Liu, and Lin (2009) use ideas from the spatial 
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Fortin provide a condition on the matrix defining social interactions which is sufficient for 

identification of the parameters in the model they consider.  They also demonstrate how 

Manski’s reflection problem can arise when their condition is not met.  Blume, Brock, 

Durlauf, and Ioannides show that the identification is generic in a precise sense in this 

class of linear models. They also begin the exploration of the identification of social 

network effects when the weighting matrix is not known.  This is certainly the case in 

most existing data sets. Finally, they provide an explicit microeconomic foundation for 

the linear-in-means model. They show that differences between the Manski and 

Bramoulle, Djebbari, and Fortin results involve the use of approximations to the 

appropriate underlying Bayes-Nash equilibrium that produces linear behavioral 

equations. Both of these papers argue that the social interactions models that have 

been the basis of the existing econometric literature are a special case of a general 

social networks structure. 

Although research on the identification problem has begun, a systematic 

investigation of the issues facing an empiricist has yet to be undertaken. Four examples 

serve to illustrate this gap. First, little thought has been given to distinct transmission 

mechanisms for endogenous social influence (i.e. the influence of expected behaviors 

of others on a given individual’s actions), and for contextual social influence (the 

influence of exogenous characteristics of others on a given individual’s choices). 

Surprisingly, existing models assume these mechanisms are sufficiently similar that 

they can be described by the same matrix of social weights. There is no reason why this 

should be so and it is easy to imagine cases where the networks would differ. Within a 

classroom, conformity effects may lead students to be more sensitive to the effort of 

those students of like ethnicity and gender, while the desire to perform well relative to 

the class distribution may induce a different contextual effect on effort based on past 

performance of other students.  Models that make distinctions between the different 
                                                                                                                                                                                           
statistics literature to model social networks and address identification problems 
pertaining to social factors.  This work takes a much more restrictive view of networks 
than we do because of the assumption that agents are located in an associated spatial 
interaction structure that generalizes the notion of a Markov process.  Conley and Topa 
(2002) propose ways of measuring proximity in social space, but construct measures 
that are used to test for spatial dependence, rather than measure social influences in  
the way in which we conceptualize them. 
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endogenous and contextual-effects transmission mechanisms are better grounded in 

theories of social influence and can have different statistical properties that provide 

alternative paths to identification.   

Second, the impact of endogenous network construction is rarely addressed in 

systematic fashion. Structural models of network formation are typically not linked to 

behavior within networks. Instead network endogeneity is addressed using instrumental 

variables are employed whose validity is often unclear when one considers network 

formation and behavior in networks as two stages of a game. 

Third, there is, to the best of our knowledge, there exists no systematic 

discussion of the informational content of aggregated data for network effects.  The few 

studies examining aggregate data, most notably Glaeser, Sacerdote and Scheinkman 

(1996) and Graham (2008), focus on the use of aggregate data to estimate particular 

parameters or provide evidence of some type of social effect rather than assess overall 

information content.  

Finally, while Blume, Brock, Durlauf and Ioannides provide examples of 

identification under partial network observability, this question has received very little 

attention in econometrics. A partial exception is Conley and Topa (2003) who explore 

mismeasurement of groups in social interactions models.  

This paper provides a systematic analysis of identification in linear social 

networks models. This is both a theoretical and an econometric exercise in that it links 

identification analysis to a rigorously delineated model of interdependent decisions.  The 

paper proceeds as follows.  Section 2 describes a social network game from which the 

linear model emerges as a unique equilibrium. This section introduces different 

mechanisms for the spread of endogenous and contextual effects through the network.  

Section 3 provides the conceptual framework which we use to study identification.  

Section 4 explores identification results when network structure is both exogenous and 

known a priori. It considers how differences in the spread of contextual and peer effects 

can aid identification.  It also addresses identification from aggregate data.  Section 5 

considers identification when the network is exogenously given but is not observed by 

the econometrician.  Section 6 examines endogenous network formation.  The 

theoretical model of Section 2 is extended to a simple network formation game.  Two 
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different models of preferences for networks are discussed, and identification conditions 

are developed.  The possibility of extending control function techniques to account for 

network endogeneity is discussed.  Section 7 concludes.  A technical appendix follows 

which contains all proofs. 

 

 

2. A social networks game 
 
In this section we provide an explicit derivation of a linear social networks model 

for individual behavior as the Bayes-Nash equilibrium for a social networks game and 

demonstrate that these linear behavioral rules are the unique descriptions for individual 

behavior.  An analogous result is developed for social interactions models in Blume, 

Brock, Durlauf, and Ioannides (2010).  As is the case for the earlier derivation, the 

unsurprising key to justifying linear social networks models as econometric 

specifications for individual behavior is to assume that individual agents possess 

quadratic payoff functions.  As such our model is a species of quadratic interaction 

games that have become popular in different contexts.   

 

i. the quadratic social networks model 
 

The social networks game we describe is a game of incomplete information.  In 

this game, each individual is described by a bundle of characteristics, some observed 

by everyone, including the econometrician, some observed by the individuals in the 

population but not by the econometrician, and some private to the individual. Individuals 

have preferences over their actions, which are the sum of a private component and a 

social component.5

                                                           
5Game-theoretic models are usually interpreted to have individual preferences over 
outcomes, which are jointly determined by player actions. Alternatively, they may be 
viewed as models of externalities, where individuals’ preferences over their own choices 
are mediated by the decisions of other players. Here we adopt the latter view. 

  The private component, which is quadratic in an individual’s own 

actions, varies across individuals.  Some part of the variation is common knowledge, 

and some is private. The social component is common to all individuals. Each 
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individual’s utility is decreasing in the distance between his action and a weighted 

average of the actions of those who influence him.  The equilibrium concept is Bayes-

Nash:  individuals choose an action to maximize their expected utility given their 

information about themselves and the public information about everyone in the 

population. Equilibrium beliefs are constructed from the individual’s strategy functions 

and the common prior belief.  Our assumptions will imply that equilibrium strategies are 

linear decision rules of the type that are standard in the empirical literature. 

The population of network participants, the set of players, is a set V  containing 

< ∞V  members.   Each individual is described by a vector of characteristics in +P 2R , a 

vector ( )ν ε, ,i i ix  where ∈ix PR  is a vector that is observable to all network participants 

and to the (presumably external) econometrician, ν ∈i R  is observable to the network 

but not to the econometrician, and ε ∈i R , i ’s private type, is observable only by 

himself.  In Bayesian games, individuals are described by types, which detail who they 

are and what they know. The vector ( )ν ε +
∈
∈ | |( ), ,i i i i V

x V P 2R  is the state of the game.  The 

type of individual i  when the game is in this state is the vector ( )ν ε= , ,i it x .6

i

   Individual 

’s type reflects his characteristics and the public knowledge he observes, namely, the 

jx ’s and ν j ’s of other individuals.  The a priori distribution of game states is exogenous, 

and is described by a probability distribution ρ .  Knowledge of ρ  is common to all 

individuals.  

Each individual chooses an ω ∈i R .  Individual i ’s utility is a function of his type, 

his action, and the actions of others in the population.  His payoff function is 

 

 

( )ω ω

φγ δ ν ε ω ω ω ω

−

= ≠

=

    
+ + + − − −         

∑ ∑ ∑
2

2

1

,

1
2 2

i i i

P
p p p p

i ij j i i i i i ij j
p j j i

u

x c x a
. (1) 

 
                                                           
6A note on notation: for any individual-level vector iz , the unsubscripted variable z  
refers to the vector  ( )i i v

z
∈  and − iz  refers to the vector obtained from z  by omitting iz . 
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This payoff function takes as special cases many of the payoff functions that have at 

least implicitly appeared in the literature.   As far as we know our analysis is the first 

fully rigorous demonstration of existence and uniqueness of an equilibrium for a general 

quadratic social networks model. 

The first two terms constitute the component of the payoff function that is 

independent of the choices of others; we call this the private component of the payoff 

function.  The marginal value of the individual’s choice depends upon his characteristics 

and a weighted average of the characteristics of others, computed with the weights .ijc  

The matrix of these weights is .C   This matrix is assumed to be nonnegative and each 

row sums to 1 this generalizes the common assumption in the social interactions 

literature that the unweighted average of individual characteristics affects each member 

of a group. The final component captures a purely social component to payoffs in that 

the component depends on the choices of others.  It is quadratic and decreasing in the 

squared distance between the individual’s choice and a weighted average of the 

choices of others, computed with weights .ija   The matrix of these weights is .A   The 

parameter φ  determines the weight placed on the public component relative to the 

private component.  Accordingly, 0.φ ≥  Note that if the values of the ijc ’s and the ija ’s 

are known a priori, there are +2 1P  utility parameters which determine choice. 

The private component includes a conventional externality, that network average 

characteristics are a kind of group capital or public good.  This is expressed in the term 

δ
=
∑ ∑

1

P
p p

ij j
p j

c x .  The literature refers to this term as the contextual effect.  Here we have 

extended the idea from groups, and group averages, to networks.  Contextual effects for 

the entire network are thus summarized by the sociomatrix C .7

                                                           
7Sociomatrix is a term from sociology. In the mathematics literature these objects are 
called weighted adjacency matrices. 

  The literature on social 

interactions presents two kinds of contextual variables: group averages of individual 

level variables, and distinct group variables. In a study of peer effects on educational 

outcome, for instance, classroom-specific average family income and teacher-specific 

variables are examples of the first and second type, respectively.  It has been known 
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since Brock and Durlauf (2001a,b) that the relationships between these variables 

determine whether identification holds.  In particular, they show in a related model that 

the presence of one individual variable whose group average is not a contextual 

variable is sufficient for identification. Since they raise no new issues here, we omit 

group variables which are not averages of individual variables. 

The social component captures the idea that deviating from the average behavior 

of one’s peers is costly. This is the source of so-called peer, or endogenous, effects.  As 

in the case of the contextual effects, the weights ija  extend uniform group averages, 

which underlie social interactions models to more general social networks, and different 

weighting schemes.  Hence, we assume 0ija ≥  and that the rows of A  sum to 1.  

Whereas the empirical literature uses simple group averages as a model of peer effects, 

the motivation for peer effects is that they measure social influence. Thus the peer-

effects network should not have self-loops.  Accordingly, we assume that the iia ’s are 0. 

This difference is pertinent for the identification of utility parameters in the linear-in-

means model. 

In the existing econometric literature, the same sociomatrix is used to average 

endogenous and exogenous variables. Here we consider other schemes. To see why 

this is plausible, consider again peer effects on educational outcomes.  Suppose that 

peer effects really are from peers. In this case, the sociomatrix averaging endogenous 

effects should measure friendships or social influence.  On the other hand, variables 

such as average family income may work at the classroom or school level.  Models like 

this have two social networks: the peer effects network through which endogenous 

interactions are transmitted, and the contextual effects network, which determines the 

contextual effects, each represented by its sociomatrix, A  and C , respectively.  Notice 

that individuals do not need to know the entire networks. They need know only to whom 

they are connected and the weights assigned to them.  In this sense, each individual 

has a payoff-relevant neighborhood.  

Since we are working in an environment with private types, we need to make 

some assumptions on unobserved and observed individual-specific heterogeneity.  In 

the following definition, x  is an V P -dimensional vector in which, for each i , the 
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observations ix  are stacked variable by variable, with the individual-specific vectors so 

created stacked as well. 

Our various assumptions may be summed up by the following axioms. 

 

Axiom 1. φ ≥ 0, A  and C  are non-negative, their row sums are 1, and for all ,i  0.iia =  

 

Axiom 2. Second moments of the marginal distribution ερ  exist. 

 

Axiom 3. Second moments of the marginal distribution νρ  exist. 

 

Axiom 4. For all i , ( ), ,  is independent of  and .i i i iE x xεε ν ε µ ε− −=
 

 
Axiom 1 restricts the payoff function.8

ρ

  The second and third axioms guarantee 

that the choice problems required of individuals by the game are well-posed, that the 

necessary expectations exist. The joint distribution  on x , ν  and ε  is the common 

prior belief on the space of types.  If Axiom 4 were false, the equilibrium strategies need 

not be linear in x .  

A strategy for individual i  is a function that assigns an action to each of his 

possible types, a function ( )1 1: .V P
if

+ + →R R   A Bayes-Nash equilibrium BNE of the game 

is a strategy profile ( ) ∈i i V
f  such that each if  maximizes ( )( )ω ω−,i i iE u  where the 

expectation is taken with respect to the strategies − if  and the common prior ρ .   

 
Theorem 1. Assume the sociomatrices satisfy Axiom 1.  For any prior distribution ρ  

satisfying Axioms 2 and 3, there exists a unique BNE. The equilibrium strategy profile 

can be written in the form 

 

                                                           
8For an example that does not fit into our framework, see Calvó-Armengol, Patacchini 
and Zenou (2009). 
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( )( )

( )

*

1
1

1

, ,

1 1
1 1 1

V

i i i

P
p p p dev

i
p

f x

I A I C xε

ν ε

φ ν µ γ δ ε
φ φ φ

=

−

=

=

  
− + + + +  + + +   

∑
 (2) 

 

where dev
i i i

εε ε µ= − .  

 

Notice that strategy profile implies distinct roles for i
εµ  and dev

iε  since only the former is 

common knowledge.  

The equilibrium strategies map types into actions; that is, strategies describe a 

map ( ): , ,f x ν ε ω→ .  This is what the empirical literature calls a reduced form. This is, 

in fact, the structural model for a game theorist insofar as what one means by a 

structural model is a model delivered from theoretical considerations. In the social 

networks and social interactions literature, what are called structural models are 

equations in which individual choices are determined by the individual choices (or 

expected choices) and characteristics of others as well as the characteristics of 

individuals.  At best, these may be first-order conditions.  In our model, for example, the 

first order conditions for utility maximization are, for all i , 

 

 
1 11 1 1 1

p pP P
p p i i
i ij j ij j i

p p
i

j j
x c x E a tγ δ φ ν εωω

φ φ φ φ= =

  +
= + + +  + + + + 
∑ ∑ ∑ ∑  (3) 

 

which, are necessary conditions for maximization satisfied by the equilibrium strategies. 

Since the empiricist typically transformations these first order conditions in order to to 

eliminate direct dependence on others’ choices (or beliefs), he refers to equation (3) as 

structural model for i , and equation (2) as the reduced form for the system. 

Regardless of the different perspectives, an interesting econometric exercise is 

to determine the parameters that describe the utility function and the network, for a 

variety of purposes, including the exploration of positive and normative effects of 

policies. To avoid confusion, we will refer to the right hand side of equation (2) neither 
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as the structural model (which it is) or a reduced form (which it is often called, but is 

not), but instead as the strategy profile of the network. We will abuse this term slightly, 

because we will also use the term strategy profile to refer to the matrix ( )1,..., PB B B=  in 

which each matrix pB  acts on the characteristics px  and is given by the function 

( ), , , ,p C Aγ δ φΒ  defined as follows: 

 

 ( ) ( )
1

1, , , , .
1 1

p p
p pB C A I A I Cφγ δ φ γ δ

φ φ

−
 

= Β = − + + + 
 (4) 

 

Notice that Axiom 1 implies that the matrix inverse on the right hand side exists for all  

φ ≥ 0 .  From equation (2) it can be seen that the matrix B  essentially characterizes the 

equilibrium strategies, and our identification exercises essentially involve determining 

what parameters can be recovered from them.  If the span of px  has dimension less 

than V , then pB  will be unique only up to its action on a lower-dimensional subspace.  

But this is an issue of identification, not one of existence or uniqueness. 

 

ii. social interactions models as special cases of the general linear social 
networks model 

 

The social interactions literature has focused on the special case where 

individuals react to the average of others in a predefined group g .  Notationally, g  

denotes a collection of indices corresponding to population members. Social 

interactions models assume that each member of a group is affected by the average 

behavior of others in the group and is unaffected by individuals who are not members of 

the group. Following Blume, Brock, Durlauf, and Ioannides (2010), the microfounded 

quadratic social interactions model is a special case of our social networks model such 

that9

                                                           
9Bramoullé, Djebbari, and Fortin refer to the case where 

  

i  is omitted from the averaging 
as exclusive averaging and associate this form of averaging with Moffitt (2001).  They 
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= ∈

= ∈ ≠
−

= =

1           if , ,

1              if , , 
1

0       otherwise

ij
g

ij
g

ij ij

c i j g
n

a i j g i j
n

c a

 (5) 

 

where gn  is the size of group g . Under these restrictions, the first order condition for an 

individual’s choice produces the first order condition (interpreted as a structural equation 

in the literature)10

 

 

 
( ) ( ) ( ) ( )

1 1

1
1 1 11 1

p pP P
p p
i j j i

p p j ig
i

j g

x x E x
n n

γ δ φ ω ε
φ φ φ

ω
φ= = ≠

= + + +
+ + ++ −∑ ∑ ∑ ∑  (6) 

 

When the population size is large, this expression becomes arbitrarily close to 

 

 
( ) ( ) ( )

1 1

1
1 1 1 1

p pP P
p p
i g g i

p p
i x x E xγ δ φ ω ε

φ φ φ φ
ω

= =

= + + +
+ + + +∑ ∑  (7) 

 

                                                                                                                                                                                           
contrast this with inclusive averaging, in which i ’s behavior is included when averaging, 
associating this form of averaging with Manski (1993). In our view, inclusive averaging 
does not make behavioral sense for endogenous effects.  We believe that the correct 
interpretation of Manski’s approach, confirmed in conversation with him, is that his 
formulation was based on the assumption that the group size was large enough that 
own effects on averages could be ignored. In contrast, inclusive averaging can make 
behavioral sense when contextual effects derive from public goods, for example. Hence, 
(5) is the appropriately microfounded social interactions analog to the social networks 
model.  We are unaware of any work in the social interactions literature that has allowed 
for exclusive and inclusive averaging to coexist in the same population. 
10We omit ν  from this specification since this term does not appear in social interactions 
models. 
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where the barred variables are group averages. This last equation defines the linear-in-

means model that has received so much attention in the econometric literature.  

 
 
3. Identification concepts 
 

In this section we provide the assumptions we append to the theoretical model as 

we move from theoretical to econometric issues.  We elucidate what we mean by 

identification, how identification results depend on an analyst’s objective, and the 

relationship between identification notions and data moments. 

 
i. basic ideas 
 

Identification is concerned with the problem of making relevant distinctions 

between different parameter values based on some observables and some a priori 

knowledge of the data-generating process. In order to do this, one must specify the 

following objects: The set of structures that could conceivably have generated the data; 

a statistic (for example, a sample moment), from which the econometrician will infer 

structure; a priori knowledge of the econometrician, which imposes restrictions on the 

set of conceivable structures which are made ex ante the observation; and finally, a 

description of the distinctions among the structures that the econometrician would like to 

draw. A structure m  is a description of a data generating process in terms of 

parameters, some of which are of interest to the econometrician. A model M  is the set 

of conceivable structures. Each structure m M∈  generates a probability distribution 

( )mΛ  on the set of values of the statistic. A priori information is represented, as 

knowledge usually is, by an information partition — in this case, of the set M  of models. 

The specification of a structure may be quite complicated, and the 

econometrician might be interested only is some part of the structure; parameters, for 

instance, that may be tuned by policy changes. The idea that we need to identify, and 

only identify, useful knowledge is as old as the notion of structural econometric models. 

Heckman (2000,2005) has reminded us of the importance of this idea, which he calls 
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Marschak’s Maxim in acknowledgement of its earliest clear statement in Marschak 

(1953). Useful knowledge can also be represented by a partition, or equivalence 

relation, on the model M . Two structures are equivalent in the sense of Marschak if 

they differ only in ways that are not of interest to the econometrician.  For example, in 

the model of Section 2 with exogenously given networks, no conceivable statement 

about the positive or normative implications of some policy experiment will involve 

anything more than means and variances of the common prior ρ , so there is no point in 

trying to identify, say, the third moments of ρ .  One way in which Marschak equivalence 

arises is when one asks if particular parameters are identified. To investigate the 

identification of parameter p  is (at least implicitly) to regard as equivalent structures 

which share a common value of parameter p , regardless of how else they may differ. 

Identification has to do with the inverse image of Λ .  Formally, if Marschak 

equivalence is represented by an equivalence relation   on the set M  of models, and if 

S  is the set of structures that are possible given the econometrician’s ex ante 

information, then identification is achieved if for any two different distributions q′  and q′′  

of the statistic, s′  and s′′  are structures in ( ) ( )1 1q q S− −′ ′′Λ Λ  , then s s′ ′′
 .  Claims 

about identification are often confused with claims about inference; for example, that if a 

parameter is identified, then it can be consistently estimated. On the contrary, 

identification is concerned with claims about the population distribution of data rather 

than with the existence of statistics with certain inferential properties. 

We now apply these ideas to the linear social network model of Section 2 

 

Definition 1. A structure is a list ( ) ε νγ δ φ µ µ ρ
=1

, , , , , , ,
Pp p

p
C A .  A model is a set of 

structures satisfying Axioms 1 through 4. Denote by M  the set of structures with the 

following properties: 

 

i. The span of x  has dimension V P . 

 

ii. For all i , ( ) 0| ,iE x νν µ= is independent of x  and i . 
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iii. i
εµ  is independent of i . 

 

iv.  For all i  and j , > 0ija  if and only if > 0jia . 

 

v. For all i  and j , there is a pair ≠i j  with > 0ijc , and > 0ijc  if and only if 

0.jic >  

 

vi. One of δ  and γ  is not 0. 

 

These properties are further assumptions on the theoretical model that address 

identification issues rather than existence and uniqueness of the equilibrium.  Recall 

that we have already assumed that εµ  is independent of x , and that the iia  are 0. 

Condition i ensures that B  is unique, that the relevant space on which strategies are 

defined is full-dimensional.  Conditions ii and iii shrink the size of the parameter space 

considerably, and can be justified as consequences of assumptions such as 

exchangeability that may be employed in any event.  Conditions iv and v of the 

definition impose the restriction that the location of 0’s in the sociomatrices is symmetric 

in a weak sense.  That is, i  influences j  if and only if j  influences i .  This is done for 

technical convenience. Notice that the influence weights can be quite different, so 

disallowing one-way influence rules out only boundary cases.  We rule out the identity 

matrix.  The purpose of condition vi is to rule out a degenerate case: if δ γ= = 0 , then 

ωi  is determined only by ε , and in this case φ  cannot be identified without further 

assumptions on the (joint) distribution of the private types.  

A priori information in this paper will mostly have to do with parameter values.  

Section 4 is concerned with identification when both sociomatrices A  and C  are known 

a priori.  Section 5 investigates the degree to which this assumption can be relaxed. In 

neither case is a priori knowledge of the common prior ρ  necessary for identification. 

When network formation is endogenous this is no longer the case. At different points we 
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will assume that first moments of ρ , conditional moments of ρ , and ρ  itself are all a 

priori knowledge.  One use of a priori knowledge assumptions is to define particular 

parameter restrictions.  For instance, in some of our theorems it is known a priori that 

0δ =  (no contextual effects). We will also be interested in generic identification. This 

too can be expressed in terms of a priori knowledge. 

 

Definition 2. The parameter p  in model M  is generically identified from the joint 

distribution of ω  and x  if and only if there is a closed and lower-dimensional set critM  

such that if the complement of critM  is known a priori, then p  is identified. 

 

The proofs identify how this set can be computed in any given instance, but we 

will not report on the description of the so-called “critical set” of models where 

identification may fail.  

Useful knowledge in this paper will be concerned with identifying which 

parameters or functions of parameters are identified. For instance, it is usually the case 

that γ δ+  is identified.  By this we mean that the model space can be partitioned so that 

two models are in the same element of the partition (the two models are equivalent) if 

and only if the sum γ δ+  is the same for both models. 

In the next section and in the remainder of the paper, we will incur no loss of 

generality and gain greater clarity by taking = 1P , that is, from assuming there is only 

one exogenous variable. 

 
ii.  sample moments and identification 
 

Given the axioms in Section 2 and the requirements imposed on a model, the 

conditional distribution of ω  given x  is described by an equation of the form 

 

 ( ) dev devm x ε νω µ µ ν ε= Β + + + +  (8) 
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In this way the parameters , , , , Aε νµ µ γ δ φ+  and C , and the distribution of devν  and 

devε , the deviations of ν  and ε  from their means, completely determine the conditional 

distribution of ω  given x ; this and the marginal distribution of x  determines the 

distribution of the pair ( )ω,x .  The identification question is whether one can recover 

these parameters from a given joint distribution of ω  and x .  

One can immediately make a couple of observations. First, given a joint 

distribution, the matrix B  can be recovered. Then the difference ( )E x Bxω −  identifies 

the sum ε νµ µ+ , and this is the best that can be done-these parameters cannot be 

separated.  Another observation comes from equation (4).   Since the row sums of A  

are all 1, so are the row sums of ( ) ( )( )φ φ φ
−− −

+ − +
11 11 1I A .  Since the row sums of C  

are 1, it follows that for any ( )∈ΒB m , the row sums of B  are γ δ+ .  The following is 

immediate. 

 

Lemma 1. The sum γ δ+  and the sum ε νµ µ+  are identified in M  from the joint 

distribution of ω  and x  without any additional a priori information.  

 

While B  is always observable from individual data, it may not be observable from 

aggregate data. We discuss this in Section 3.iv. 

 

Most often, equation (8) is estimated with a regression model; that is, ( )|E xω  is 

the object of statistical enquiry, and identification strategies involve the recovery of the 

parameters from this conditional mean.  However, there are other approaches. The fact 

that complementary network connections create correlation between actors resulting in 

excess variation is an old observation in network science (e.g. Ising (1925) and 

Dobrushin (1965)). It was first exploited in econometric models by Glaeser, Sacerdote 

and Scheinkman (1996,2003) and subsequently by Graham (2005,2008) and others. It 

is occasionally alleged that investigation of ( )2 |E xω  creates new opportunities for 

identification.  This claim is true but limited. It is apparent from eq. (8) that getting 
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something from variances requires characteristics known to the public but not to the 

econometrician 

A particular instance of this is Graham’s (2005,2008) variance-contrast method. 

Graham (2005) provides a theoretical foundation for this econometric model, which is a 

game of complete information but with individual characteristics unobservable to the 

econometrician. Imposing the parameter restrictions δ γ= = 0  in the game of section 2 

gives a game of complete information where characteristic ν  is observed by individuals 

but not by the econometrician.  (For Graham realized choices are observed by each 

agent.)  Assuming further =A C  and that the social network is the union of cliques of 

different sizes and that each individual weighs everyone in his group equally, Graham 

establishes identification of φ . 

Aside from this type of information structure, however, variance and higher-

moment methods add nothing to the possibilities for identification. Variances augment 

identification if there are some variables that ( )Β m  acts upon and which the 

econometrician does not observe.  Otherwise the econometrician is left with ( )var ε  

which reveals little of interest.  

 

 

4. Identification with known sociomatrices 
 

In this section we consider identification when both A  and C  are both known a 

priori.  The goal here is to study the traditional reflection problem, that is, identification in 

the presence of contextual effects. If =A C , the analysis with individual-level data is a 

straightforward extension of Blume, Brock, Durlauf, and Ioannides (2010).  The 

discussion of aggregation is new. 

 

i. identification with individual-level data 
 

Recall that the sums of the means of the two unobserved variables are identified 

in this and all subsequent models. This is a trivial point in light of the fact that the sum of 
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the means of the unobservables is nothing more than the constant term in the 

individuals’ strategies. 

The following lemma is useful for checking identification when the peer- and 

contextual-effects network stand in particular relationships to each other.  

 

Lemma 2. If A  and C  are a priori knowledge, if ( ) ( )′ ′′Β = Β = Βm m  and if there is a pair 

i j≠  such that 0ijc =  and 0ijb ≠ , then ( ) ( )γ φ δ γ φ δ′ ′ ′ ′′ ′′ ′′=, , , ,  

 

The next theorem gives an example of how the lemma can be employed, giving one set 

of assumptions on the primitives which fulfill the conditions of the lemma. 

 
Theorem 2.  Suppose that the following facts are known a priori: 

 

i. A  and C ; 

 

ii. the peer-effects network is connected; 

 

iii. there is no individual j  such that 0kjc =  for all k  

 

iv. there is some pair ,i j  such that 0ijc = . 

 

Then ,γ  ,δ  and φ  are generically identified from the joint distribution of ω  and x . 

 

There are many ways of extending this theorem to multiple peer effects cliques, 

especially if the peer- and contextual-effects cliques are not nested.11

                                                           
11A clique is a network in which all individuals are connected, i.e. all off-diagonal 
elements of the sociomatrix are positive.  

 In particular, 

individuals who influence a peer-effects clique through a contextual effect but are not 

themselves part of the clique identify peer effects in a manner analogous to the Brock 

and Durlauf (2001b) condition for identification, which requires the existence of an 
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individual variable whose group average is not a contextual variable. This requires 

some structure on the contextual effects network.  The network is already assumed to 

be bidirectional, that i  has a contextual effect on j  if and only if j  has a contextual 

effect on i .  We will assume in addition that the contextual effects network is transitive: 

If i  is affected by j , and j  is affected by k , then i  is directly affected by k . Formally, if 

> 0ijc  and > 0jkc , then > 0ikc . 

 

Theorem 3. Suppose that the following facts are known a priori: 

 

i. A  and C ; 

 

ii. the contextual effects network is transitive; 

 

iii. there are components 1
CV  and 2

CV  of the contextual-effects network and 

component AV  of the peer-effects network such that each .C A
iV V ≠ ∅  

 

Then γ , δ  and φ  are identified from the joint distribution of ω  and x . 

 

Bramoullé, Djebbari, and Fortin (2009) provide a powerful identification 

requirement for the traditional linear-in-means model that provides a connection 

between identification and network structure. The next result extends this to our two-

sociomatrix model. 
 
Lemma 3. Suppose that A  and C  are known a priori. 

  

i. Suppose it is known a priori that ≠A C  and ≠ ,AC A C . The matrices , , I A C  and 

AC  are linearly independent if and only γ , δ  and φ  are identified from the joint 

distribution of ω  and x . 
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ii. Suppose it is known a priori that ≠A C  and =AC C  and that the matrices ,  , I A

and AC  are linearly independent.  Then γ , δ  and φ  are identified from the joint 

distribution of ω  and x . 

 

iii. Suppose it is known a priori that =A C  and that 0γ δ+ ≠  Then a priori 

knowledge that , ,I A  and 2A  are independent is necessary and sufficient for γ , 

δ  and φ  to be identified from the joint distribution of ω  and x .  

 

The condition that 0γ δ+ =  ensures that peer and contextual effects do not cancel 

each other out. 

It can be shown that the set of pairs of sociomatrices failing to satisfy the 

independence condition Lemma 3.i is closed and lower-dimensional in the space of all 

sociomatrices satisfying our requirements.  Dependence is the existence of a non-zero 

solution in α β γ δ,  ,  and  of the following equation system: 

 

 
0 for all ,

0 for all .

ii il li
l

ij ij il li
l

c a c i

c a a c i j

α β δ

β γ δ

+ + =

+ + = ≠

∑

∑
 (9) 

 

Various cases of this system can be used to generate any number of conditions 

guaranteeing identification of M  when A  and C  are known a priori.  Here is one such 

instance, in which the separation of peer and contextual effects exposes yet another 

way in which the reflection problem is fragile.  

 
Corollary 1. Suppose A  and C  are known a priori, and also that the contextual effects 

network is a clique, and in it all weights are equal, and that there exist two pairs of 

individuals ≠i j  and ≠k l  such that ≠ij kla a .  Then γ , δ  and φ  are identified from the 

joint distribution of ω  and x . 
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ii. aggregation 
 

Classroom-level and village-level data often come aggregated. For example, an 

education data set may contain observation on mean outcome and mean characteristics 

of many classrooms.  What can be learned in this case?  The answer is, not very much.  

In general, with only mean characteristics and mean outcome data, identification will be 

complicated by the fact that there is no direct relationship between mean characteristics 

and mean outcome. A special case where there is such a relationship arises when the 

sociomatrices are bistochastic, that is column sums as well as row sums all equal one. 

Although this is a very restrictive condition, it includes the important case of equal-

weighted averages of all other individuals.  This is the case which Graham (2008) uses 

to show how φ  may be recovered from the variance in mean group outcomes, if one 

can calculate this variance for different sized groups. 

Suppose there are N  observational units such as classrooms or villages and unit 

n  has member set nV .  We suppose that if individual i  is in unit m  and individual j  is 

in unit n m≠ , then 0;ij ija c= =  the units are not connected in either the peer- or 

contextual-effects social network. Observational units are identified with superscripts.  

The n ’th observational unit has peer- and contextual-effect sociomatrices nA  and nC  

respectively.  (Note that N  may equal 1.)  Let ne  denote the vector where each element 

is 1 nV , where nV  is the number of individuals in observational unit n . The 

econometrician observes the averages ( )
1

,
Nn n n n

n
e x e ω

=
⋅ ⋅ .   

 

a. bistochastic sociomatrices 
 

As observed above, a non-negative matrix is bistochastic if its row sums and 

columns sums are both 1.  One such matrix is the sociomatrix wherein each individual 

equally weights all other individuals.  More generally, if the network is regular,12

                                                           
12All nodes have the same degree.  

 the 

weighted adjacency matrix that assigns equal weights to all individuals whose weights 
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are non-zero will be bistochastic. Inverses and products of bistochastic matrices are 

also bistochastic and in particular ( ) ( )( )( ) 111 1 nI Aφ φ φ
−−

+ − +  is bistochastic.   As 

before, let bars represent group averages. Let bars represent group averages. The 

average outcome in group n , is 

 

 ( )

( )

1

0

1 1
1 1 1

1 .
1

n

n n n n n n n dev

n dev

e e I A x C x e

x

ε

ε

ω

φµ γ δ ν ε
φ φ φ

µ ν γ δ ε
φ

−

=

 
+ ⋅ − + + + ⋅ = + + + 

+ + + +
+

 

 

The obvious result is that only the sums  0 0
ε νµ µ+  and γ δ+  are identified.   

 

Theorem 4.  If only A  and C  are known a priori, then only γ δ+  and 0 0
ε νµ µ+  are 

identified from the joint distribution of groups, average choices, and average 

characteristics. No other parameters are identified. 

 

We saw in Section 3.ii that these parameter sums are identified with individual 

observations, but this result is not generally true for models when only aggregate data 

are observed. 

 
b. exchangeable individuals 
 

The analysis of identification from aggregate data for more general classes of 

social networks will require assumptions on the relationship between characteristic 

means and the distribution of characteristics among the population.  Suppose that the 

distribution of characteristics has the following property: 

 

( ) ( )⋅ = =  :  E , , .n n nx e x z z zProperty P  
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Property P says that the conditional mean characteristic of each group member given 

the group sample mean equals the group sample mean. This property follows if the ix ‘s 

are exchangeable, among other hypotheses.  The consequence of Property P is the 

following: ( )E xω  can reveal some information, but it does not reveal ( )mΒ .  This may 

be seen in the calculation 

 

( )

( )
( ) ( )

( ) ( )

1 11

|

1
1 1

            

n n

dev

n n

dev
V V

E x

E x x E x

I A I C

E x x E x

x

ε ν

ε ν

ω

ν
φµ µ γ δ

φ φ
ν

µ µ γ δ

−

=

   
   
    

+ + − + + =    + +                       

+ + +

   

 
When Property P holds, the conditional expectation of the group mean choice given the 

group mean characteristic reveals nothing about parameter values.  By implication, the 

approach to identification taken throughout this paper fails here.  Notice, however, that 

whereas in the bistochastic case, the value of the random variable ω  is independent of 

γ , δ , and φ , here it is a conditional moment that fails to vary with parameters.  This 

leaves open the possibility that other statistics may reveal the parameters. We have 

conducted some computations with variances and discovered that sometimes φ  can be 

identified from the conditional variance, and sometimes not. Clearly there is more work 

to be done here. 

 
 
5. Identification with unknown social networks 
 
i. unknown peer-effects sociomatrices 
 



26 
 

In this section we consider cases wherein the contextual effects sociomatrix is a 

priori knowledge, but the peer-effects sociomatrix is unknown to the econometrician.  

Although it may seem surprising that one can identify the peer-effects sociomatrix 

conditional on knowledge of the contextual-effects sociomatrix, a moment’s reflection 

shows why it is plausible.  The dimension of the set of peer effects matrices is 

( )− 2V V . The dimension of the set ( )( )*:m C CΒ =  for a fixed *C  is no more than 

( )− +1 1V V , but we can show it to be no less than ( )− 2V V .  We need to recover 

( )− +2 3V V  parameters from ( )Β m .  It is certainly plausible that a necessary order 

condition is satisfied. We are searching for sufficiency, however, and we will proceed by 

direct argument rather than by trying to pin down more carefully the structure of ( )Β M . 

 
a. identification without contextual effects 
 

It is common in the theoretical econometrics literature to assume that the peer-

effects network is known, and in the empirical literature to pretend that it is. This is 

rarely the case, so it is important to see how far one can go without such knowledge.  

The first result concerns identification when it is known a priori that 0δ = ; that there are 

no contextual effects.  Our results differ from Drton, Foygel, and Sullivant (2011) 

because their analysis ignores individual and contextual influences on individual 

behavior which are at the heart of our analysis, because of our interest in generic as 

well as global identification, and because of the error structure we allow and the 

parameter constraints we impose as a consequence of the derivation of our behavioral 

equations from the Bayes-Nash equilibria we have described.13

Some empirical work in labor, public finance and health economics has been 

concerned with distinguishing peer and contextual effects. There are many natural 

economic problems, however, for which contextual effects create no identification 

 

                                                           
13Drton, Foygel, and Sullivant’s interest in global rather than generic identification stems, 
among other reasons, from a concern about the properties of likelihood ratio statistics 
when a particular class of models is tested against a broader class. As far as we can 
tell, this is not an issue that naturally arises in economic contexts. 
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problem.  Amazon’s book pricing problem concerns networks. Are patterns of book 

demand due to homophily or a network effect?  Price is a contextual variable, but since 

it is not an average of customers’ characteristics, it creates no identification problems. 

 
Theorem 5. If the econometrician knows a priori that 0δ = , then the parameter γ  is 

identified from the joint distribution of outcomes and characteristics.  If 0γ ≠ , then φ  

and A  are identified. 

 

When 0γ = ,  all variation in outcomes is due to variation in the unobservable variables. 

iν  and iε .  With further assumptions, such as independence, made on these terms, we 

conjecture that the matrix A  could perhaps be discerned. 

This theorem claims that the utility parameter φ  governing the strength of the 

social interaction is identified when the peer-effects matrix is not known.  Moreover, the 

peer-effects matrix itself is, in principle, recoverable from the data. This result is 

surprising to us, and the rest of this section will be concerned with how far this result 

can be pushed. 

 

b. identification with contextual effects 
 

When contextual effects are present and the contextual-effects sociomatrix is 

known, it will turn out that parameter values are generically identified, and even when 

they are not, φ  is identified.  We will assume it to be known a priori that I Cγ δ+  is 

invertible.  For a given C , the set of ( ),γ δ  pairs for which invertibility fails is the union of 

a finite set of one dimensional spaces. 

  

 

Theorem 6. If the sociomatrix C  and the matrix I Cγ δ+  both have full rank, are known 

a priori, then γ δ+  and φ  are identified from the joint distribution of outcomes and 

characteristics. There is a set C  of matrices whose complement in the set of all 

contextual-effects sociomatrices is closed and lower-dimensional, such that if CC∈ , 
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then γ , δ  and φ  are identified from the joint distribution of outcomes and 

characteristics. 

 

It will be clear from the proof of this Theorem that if δ  and γ  cannot be 

distinguished, the peer-effects network cannot be identified.  Nonetheless, and this is 

the surprising feature of Theorem 6, the intensity of the peer group effect can still be 

measured. 

It is worth noting that exclusion restrictions on A  can create additional identification 

opportunities because it provides more equations with which to tie down .δ   In large 

social networks where each individual is connected to a small number of neighbors, a 

priori knowledge of the location of some A ’s zeroes quickly leads to an over-identified 

system. 

 

ii. identification with unknown peer- and contextual effects sociomatrices 
 

It should be clear that if both A  and C  are unknown to the econometrician, nothing 

is identified. In this case there are ( )2 3 3V V − +  parameters to identify, and the 

dimension of ( )MΒ  is at most ( )1V V − .  In this case, one faces the classic 

simultaneous equations identification problem (Fisher (1966), Hsiao (1983)).  The 

conditions under which such systems are identified have long been well understood. 

Blume, Brock, Durlauf, and Ioannides (2010) give examples of linear and nonlinear 

coefficient restrictions that produce variants of identification.  When the sociomatrices 

are sparse, as would occur in large networks wherein each individual has only a small 

number of connections, the resulting necessary and sufficient rank and order exclusion 

condition are likely to be easily met.  

This last observation emphasizes the importance of survey data in identication of 

social network models when the analyst does not possess a priori knowledge of the 

network structure.  It also indicates important limitations to current surveys.  The 

AddHealth data set is arguably the most popular data set for the study of social network 

effects as it consists of a nationally representative sample of high school students who 
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are interviewed about their friends, among many other characteristics.  Unfortunately, 

the data set’s friendship questions are restricted in that each student is allowed to name 

up to 5 friends of each gender.  Exclusion restrictions imply that it is more useful to 

know who is not someone’s friend rather than who is. In other words, the AddHeath 

friendship questions, because they do not provide measures of friendship intensity, are 

best understood as distinguishing zero and nonzero elements in the sociomatrices for 

school populations.  However, the restriction on the number of friends means that the 

failure to identify someone as a friend does not mean that there is a corresponding zero 

in the associated sociomatrices.  While the limitation on the number of friends that could 

be named in the interviews has long been understood as inducing measurement error in 

network structure, as far as we know, the effects of this limitation on identification per se 

have not been recognized14

 One might hope that, as is the case with an unknown peer-effects, the magnitude 

of the peer effect might be identified. However, this is not the case 

. 

 

Theorem 7. Without a priori information, γ δ+  is identified from the joint distribution of 

actions and characteristics. The peer-effects parameter φ  is not identified. 

 
 
6. Endogenous network formation 
 

The endogenous creation of peer networks adds another layer of strategic 

complexity to the game of Section 2 and introduces a species of self-selection with all 

its attendant econometric issues.  One of Heckman’s seminal contributions to 

economics is the recognition that self-selection should not be treated as a nuisance, but 

rather as evidence that an additional behavior beyond the original one under study 

needs to be modeled. Here we explore the implications of endogenous network 

construction for the identification of utility parameters. In this section we will provide two 

                                                           
14Another concern is that the failure to identify someone as a friend is consistent with a 
negative entry in one or both of the sociomatrices we have employed.  While we ruled 
this possibility out in our our analysis, it obviously a possibility.  We thank Jesee Naidoo 
for this observation.  



30 
 

results on parameter identification, differing in their hypotheses about a priori 

knowledge.  We then discuss contemporary econometric techniques, control functions 

in particular but also other instrumental variable methods, within the context of these 

results.  We describe how control functions may be useful for parameter estimation, and 

also point out some potential pitfalls in the choice of instruments for interactive decision 

problems like Bayesian games. 

 

i. a group membership game 
 
There is no one obvious network formation game to study, and so we will 

demonstrate the possibilities for selection in an extended example,a two-stage 

Bayesian game of group formation. Any strategic model of group formation must first 

ask, why do groups form?  A distinguishing feature of social networks is the property of 

homophily, that similar individuals are attracted to one another.  A large body of social 

science research (see McPherson et al. 2001) has documented that individuals in a 

social network are more likely to be directly connected to similar others. The urtext of 

sociological research on homophily, Lazarsfeld and Merton (1954), distinguishes two 

types of homophily, differing in their notions of similarity of individuals: Status homophily 

is the tendency for individuals to associate with those carrying similar markers of social 

status, such as age, ethnicity, gender, race, and income. Value homophily is the 

tendency of individuals associate with those who share common beliefs and values, 

regardless of their social status. The model we present below attempts to measure both 

of these pressures for affiliation. We capture this by modifying the payoff function of 

Section 2. 

To make things concrete we will suppose that individuals can join one of two 

groups, a  or b .  (It may turn out that one group will be empty.)  The strategic situation 

of Section 2 is extended to two stages.  In the first stage, individuals observe all public 

information about types, and then simultaneously choose to join group a  or group b , 

perhaps by walking to a particular location.  At the second stage, individuals observe 

who is in their group, and then choose an action.  The econometrician observes the joint 

distribution of public characteristics, group composition and actions. 
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a. the game 
 

The player set remains, as before, V , and type space remains the same as well, 

except that we will now dispense with ν , the characteristic observable by those in the 

network but not by the econometrician.  An individual now has two choices in the game. 

In the first stage, the individual chooses a location, a  or b . In the second stage he 

plays the game described in Section 1 with everyone at his location, choosing iω  as 

before.  At the end of the first stage, a group of people has formed at each location.  We 

associate to each possible group g  the sociociomatrices gA  and gC . These are given 

exogenously, and are known a priori by the individuals in V  and by the econometrician. 

Since this is just an extended example, we will simplify the discussion by choosing a 

particular gA  and gC . We will assume for contextual effects that x  is averaged equally 

over all individuals in both groups. We will assume for peer effects that individual i  

averages equally over all individuals other than himself in his own group. Peer effects 

are group-specific but contextual effects are not. This is a case where we would expect 

all parameters to be identified were there no endogeneity problem. We will also assume 

that the status-homophily term, with coefficient β , weights according to gA . 

The payoff function for individual i  in a group with member set g V⊂  depends 

only upon the characteristics and actions of members of g , and not on the location. The 

payoff function is15
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15 For a given vector Vz∈R  and group g , gz  denotes the vector ( )i i g

z
∈

. 
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The payoff function is not yet completely specified, because it does not say what 

payoffs should be when i  is in a group of one.  We will assume that in this case, i ’s 

social payoff is what they would receive were they in the other group. In other words, 

one cannot be a group of one. 

In this payoff function there are two sources of homophily.  If β  is large relative 

to φ , affiliation will be characteristic-based. This corresponds roughly with what is 

meant by status-homophily.  If β  is small relative to φ , affiliation will be outcome based. 

Individuals who desire to behave in similar ways will be more likely to group together — 

roughly speaking, value homophily. Value-homophily as the source of endogeneity 

problems.  Fix a value of φ , and now perform the experiment of making β  very large. 

For large enough β  group membership is almost entirely determined by the direct effect 

of the publicly observable characteristics. The conditional probability distribution of 

group formation given x  converges to a point mass as β  diverges. Imagine the limit: 

For all but a measure-0 set of x  values, the participation conditions defining group 

participation hold strictly. This means that a given group is stable under small 

perturbations of x . This is enough to recover B , and identification proceeds as in 

previous sections. It is important to note that not all sources of endogeneity lead to 

identification issues. 

The action stage of the game requires a strategy profile gf  for every possible 

group that could form.  A strategy profile for the first stage is an assignment of each 

individual to a location, a map ( ) { }, ,ˆi ix a bσ ε → .  The assignment of individuals to 

locations maps each ( ), ix ε  to a partition of V  into two sets (one of which may be 

empty). We do not need to keep track of the locations, only the partition.  Define ( ),xσ ε  

to be the map to partitions defined by σ̂ .  For any partition { },g h  the set ( ) { }1, ,x g hσ −
⋅  

is a product set in VR  since each individual chooses a location seeing only his own iε .  

In the same manner, define iσ−  to be the induced partition on { }/V i , the partition of 

everyone other than i .  Furthermore, given such a map σ , we can reverse the process 
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and construct a strategy profile σ̂  which would induce it. We will call the map σ  an 

assignment, since it allocates individuals to groups. 

The interim payoff to i  for belonging to group g  when all { }/j g i∈  chosen 

according to the strategy profile gf  is 

 

 

( )

( )
{ }

( ) { }
{ }

2

2 2

/ /

,

1sup
2

, , / .
2 1

i

ig i

g
i ij j i i i

j g

g g g
i ij j j i i i ij j

j g i j g i

V x

x c x

E a f x x g i x a x
g

ω

ε

γ δ ε ω ω

φ βω ε σ ε

∈

− −
∈ ∈

=

 
+ + − − 

 
     − = + −        −    

∑

∑ ∑

(11) 

 

With interim payoffs in hand, we can define a perfect Bayes equilibrium of the 

two-stage game. 

 

Definition 3. A profile ( ) ( )( )/
, g

g P V
fσ

∈ ∅
 is a perfect Bayes equilibrium if and only if 

 

i. Each gf  is a Bayes-Nash equilibrium of the second stage game for some 

conjectured ( )i i g

εµ
∈

. 

 

ii. If g  occurs with positive probability and i g∈ , then ( )( ),i iE x gεµ ε σ ε= = . 

 
iii. For each x  and ( ) /g P V∈ ∅  containing i , on the event 

( ) { }{ }: , , /x g V gε σ ε = , ( ) { } ( ), , /, ,i g i ii V g iV x V xε ε≥


 

 

The first condition says that actual action choice in groups formed, and equilibrium 

conjectures for groups that do not form, are the Bayes-Nash equilibrium for that group 

for some conjectured assignment of individuals to groups. The second condition says 

that beliefs about the assignment have to be correct on the equilibrium path. The third 
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condition is a participation constraint. It says that no individual wants to change groups 

given the second-stage conjectures about group choices. We shall be computing 

equilbria which are symmetric in that two individuals in the same choice situation, that 

is, the same x , iε , contextual effect, and expected peer effect, will choose the same 

way. 

We will not prove existence here, but we will provide some characterization.16

g

 

The characterization lemma states that if the unconditional (first-stage) expected value 

of the average choice of group  exceeds that of group V g , and individual i  with a 

given private type prefers g  to V g , then he will prefer g  to V g  for all higher private 

types. That is, assignment rules in a stable equilibrium have a threshold property. 

 

Lemma 4. If 0ρ >  and, for individual i  in equilibrium17

 

 

/

/

g V g
ij j ij j

j g j V g
E a E aω ω

∈ ∈

   
>   

   
∑ ∑  

 

and if individual i  with type iε  weakly prefers g  to h , then individual i  with type i iε ε′ >  

will strictly prefer g  to h .  If 0φ = , individual i ’s group choice is determined solely by 

the direct homophily effect.  He will join the group with characteristics most similar to his 

own.  If 0β =  as well, then each individual is indifferent over group choice. 

 

The consequence of this Lemma is is that for each g , the set of Vε ∈R  for which 

g  forms is the product of intervals where each interval is either of the form ),g
iε ∞  or 

( , g
iε −∞  .  The source of the selection problem is similar to that which arises in discrete 

choice models.  Selection is determined by a threshold in the space of private types, 
                                                           
16In general it is hard to prove the existence of a perfect Bayes equilibrium for games 
with a continuum of types.  It is relatively straightforward to prove existence when the 
type space is finite, and also when there is no heterogeneity in publicly observable 
types (or no public observable type). 
17If { }g i= , the sum over j g∈  is replaced by cg . 
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this threshold will change as we change individuals’ observed characteristics, and so 

the mean of the private type of individual i  conditional on being in group g  will depend 

on the values of i ’s characteristics and the characteristics of the other group members. 

 
b. identification 
 

A structure for this game is a list with elements described in Definition 4 below.  

We have already described the sociomatrices above. We have added the homophily 

parameter β , and we have dispensed with ν . The model M′  of this section maintains 

properties iii and vi of Definition 1.  Unfortunately, we have, so far, found no way to 

identify all of the parameters of the model without assuming a priori knowledge of ρ .  

The definition of structures and models for this section reflects all this: 

 

Definition 4. A structure is a list , , , , , , ,C A εγ δ φ β µ ρ  satisfying Axioms 1 through 4. 

Denote by endM  the set of structures satisfying the following additional properties: 

 

i. Xρ  is finitely exchangeable. 

 

ii.  ερ  has a strictly positive density on VR . 

 
iii. iε  is an independent and identically distributed sequence. 

 

iv. For all g , 
1

1
g
ijA

g
=

−
 if i  and j i≠  are both in g , and 0 otherwise. 

 

v. 1
1ijc

V
=

−
. 

 
vi. One of γ  and δ  is not 0. 
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vii. One of φ  and β  is greater than 0. 

 

 

An observation in this model is a triple { }( ), / , ,g V g x ω  where g  and /V g  are the 

two groups that form, x  is the vector of characteristics of individuals in V  and ω  is the 

vector of their actions.  An observation is an equilibrium outcome. We will assume that 

econometricians have access to all data.  That is, econometricians see who is in which 

group, and what each individual chooses.  In other words, the econometrician sees a 

particular equilibrium assignment of individuals to groups, and the subsequent second 

stage equilibria for the (no more than) two groups that formed.  Thus the identification 

question concerns probability distributions on triples of the form { }( ), / , , .g V g x ω   

A difficulty in addressing identification in strategic models is that the equilibrium 

need not be unique.  We will assume that the econometrician knows which equilibrium 

describes the data.  The state of the art on partial identification for games with multiple 

equilibria has not yet reached games of the kind we consider here.  The following 

theorem summarizes identification in .endM  18

 

 

Theorem 8.  

 

i. If εµ  is known a priori by the econometrician, then ,γ  ,δ  and φ  are identified 

by the distribution of equilibrium outcomes.   

 

ii. If the conditional means ( ),E x gε  are known either a priori or identified by the 

distribution of equilibrium outcomes, and also known to be nonlinear, then ,γ  

,δ  and φ  are identified by the distribution of equilibrium outcomes.   

 

                                                           
18It leaves out one case: if 0ρ = , then the most that can be said about β  is whether it 
is 0 or positive, because in this case group assignment probabilities are independent of 
the (nonzero) magnitudes. 
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iii. If ρ is known a priori and 0φ > , then β  is identified. 

 

 

The difficulty with identification is recovering the matrix ( )B m , where all 

parameters except β  are hiding.  When the network is exogenous, varying the x ’s a bit 

and seeing what happens uncovers the linear relation between x  and ω , in other 

words, ( )B m , and identification proceeds from there.  When networks are endogenous, 

varying x  changes the participation constraints.  The conditional mean of iε  given x  in 

each group move with x .  Perturbations in x  perturb terms that are constants with 

exogenous networks, so picking out ( )B m  becomes a nontrivial task. When the 

unconditional ( )E ε  is known, we bypass ( )B m  and go directly for the parameter 

values.  When the conditional means ( ),E x gε  are known a priori or can be estimated 

by other means, we can subtract off their contribution to ω  and recover ( )B m . 

Heckman’s work on self-selection provides one path into estimating ( ),E x gε  when 

they are in fact identified, a question which we explore in the next section, although a 

comprehensive treatment is beyond the scope of this paper. 

 

ii. econometric approaches to identification with endogenous networks 
 

Heckman’s early classic work (Heckman (1979)) has evolved into the control 

function approach to self-selection (e.g. Heckman and Robb (1985, Section 3.4,1986)19

 

.  

Formally, we define a control function by the requirement that  

 ( ),i is E x gε∝  (12) 

 

so that for some θ , 

 
                                                           
19 See Navarro (2008) for a recent overview. 
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 i i isε θ ζ= +  (13) 

 

 

where 

 

 ( ), 0.iE x gζ =  (14) 

 

Equation (12) implies that when agent i  forms expectations of iω− , this 

expectation will differ from the case when the network is exogenous as modeled in 

Section 4.  However, the information set on which the agent conditions is the same as in 

the original model. Hence the control function approach amounts to analyzing the 

equation  

 

 ( ),
1 1 1 1

g g i
i ij j ij j i

j j
i x c x E a x g sγ δ φ ζω π

φ φ φ φ
ω = + + + +

+ + + +∑ ∑  (15) 

 

It is evident that the presence of is  as a regressor in (15) converts the equation into one 

in which the regressors are orthogonal to the regression residual.  Of course, it will be 

necessary for (12) to be nonlinear in order to avoid linear dependence on the other 

regressors in the equation. This is true outside of special cases for group formation.  

Note as well that the variables is  are not associated with contextual effects in (15). 

Hence, when they are nonzero, it is the case that ( ),jE x gω  is no longer linearly 

dependent on the set of jx ’s, j g∈  which is the source of the reflection problem when 

the sociomatrices produce equations of the form (7).  This is an example in which 

endogenous network formation produces identification when exogenous network 

formation would not; see Brock and Durlauf (2001b,2006) for more discussion.20

                                                           
20Our claim that network formation can enhance identification of network effects is 
paralleled in Heckman’s research which shows that self-selection such as failure to 
comply to a treatment contains economically relevant information.  The counterintuitive 
idea that noncompliance can aid identification is another instance of the general 

    



39 
 

We have said nothing about how to construct the control function or whether they 

even exist.  It is now understood that control function may not exist in certain contexts 

(Blundell and Matzkin (2010)).  Our goal is simply to establish how one could in principle 

use endogenous network formation to facilitate identification of our general social 

networks model, so long as the control function approach can be implemented.  Notice 

this is exactly the import of Theorem 8.ii above.  

 The idea that self-selection can aid in identification of social effects via control 

functions was first shown in Brock and Durlauf (2001b); in this case the is ’s  turn out to 

be proportional to the Heckman λ ’s from Heckman’s early work on correction for 

selection bias (Heckman (1979)).  Brock and Durlauf (2006) provide a more general 

treatment when agents select into cliques and weights are required to be equal; for this 

environment the is ’s correspond to the generalization of the original Heckman selection 

correction proposed by Lee (1983).  These papers show that the set of social networks 

models for which one can construct control functions is not empty.  Ioannides and 

Zabel’s (2008) housing market study shows that there exist contexts in which the control 

function approach can be empirically implemented.  We leave the question of the 

extension of the approach outlined here to general networks to future research.  Our 

main message is that if the control approach is implementable, then subject to standard 

conditions on regressors, identification can be achieved for endogenous networks.  

 This all said, control functions are not a panacea.  Endogeneity has a particular 

source in social interaction models.  Network formation and action on the network are 

the two parts of a multistage game.  Considerations from the underlying game suggest 

important limits on the way this procedure can be conducted.  It is important that 

equation (14) not be interpreted as a behavioral equation without consideration of the 

first stage of the game.  This is evident when one considers how the validity of equation 

(12) played a critical role in the analysis.   

                                                                                                                                                                                           
principle that choices that have traditionally been regarded as nuisances in fact encode 
information that can be exploited by the econometrician.  See Heckman (1992) and 
Heckman and Smith (1995,1997) for formalization of the principle for the case of 
noncompliance. 
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To see the import of this argument, suppose it is the case that there is additional 

information z  that affects the choice of networks in the first stage of the game but has 

no effect on the payoffs associated with the choices iω  in the second stage of the game. 

At first glance, one might believe that z  represents a set of instruments available for 

overcoming endogeneity of the group choices, that may be used to overcome the 

correlation of regression errors and regressors in an equation such as equation (3) 

when networks are endogenous.  One might even consider control functions of the form 

( ),i is E x zε∝  as candidates for instruments and go so far as to conclude that the 

1
g
ijaφ

φ+
 terms can be identified using these instruments, and so resolve the problem of 

an unobserved A  matrix.  However, such mechanical reasoning would not be 

appropriate.  The existence of z  as a set of factors that determine group selection will 

affect the form of the second stage equation for choices within a network if they are 

available to the individuals in the network.  In other words, equation (3) will not generally 

hold in the presence of z  in the first stage and so (14) would be misspecified.  Of 

course, if it were the case that the s  vector constitutes data observable by individuals 

only after they have chosen their group, there is no problem.  And finally, there is no 

reason in principle this could be data available to the econometrician but not the 

individuals in the network.  In summary, the structural model of network formation is 

needed to provide guidance for the choice of appropriate instruments, guidance that 

would not be readily apparent were one to simply consider equation in isolation. 

 

 

7. Conclusions 
 

In this paper, we have provided a theoretical and econometric characterization of 

linear social interactions models. These models represent the workhorse of much of the 

current empirical research in social economics. Our analysis provides both a clear 

description of the behavioral assumptions needed to employ these models as well as 

the conditions under which the primitive utility parameters that characterize individual 

and social influences may be recovered.  The results indicate the importance of prior 
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information on social network structure and highlight the importance of data collection 

as an integral part of efforts to identify economically interesting phenomena. At the 

same time, our analysis shows that identification is not only a function of what data are 

available, but of the features of the social networks themselves.  As such, they illustrate 

a range of cases when identification will and will not hold.  An important feature of our 

results is that we are able to specify how different aspects of socioeconomic 

environment can be identified, depending on the nature of a researcher’s a priori 

information.  Hence, we find that it is possible to identify the intensity of peer group 

effects even if the identities and averaging rule of an individual is unknown.   

In terms of future research, we see two important directions.  First, our analysis 

has explored the polar cases where the social networks that embed individuals are and 

are not observed.  The question of identification in the presence of partial observability 

has yet to be systematically studied.  We have referred to one form of partial 

observability, namely knowledge of the zeroes in the relevant sociomatrices, in our 

discussion of the Add Health data set. These work as exclusion restrictions from the 

vantage point of classical simultaneous equations theory, and as such can provide 

identification under partial observability.  But one can, for example imagine distinct 

questions involving identification when only a subset of network members are observed. 

While this problem often arises, its implications for identification have yet to be 

assessed.  Further, it would seem natural, when surveys can only obtain information 

from a subset of a population, that survey design should be constructed in order to 

facilitate identification.  Second, our analysis has not addressed the question of what 

can be uncovered when a network is evolving.  Our analysis has taken the network as 

fixed.  However, the fact that different networks may or may not be identified suggests 

that networks may evolve through periods in which behavioral parameters are and are 

not identified.  For stochastic network formation processes, this leads to the interesting 

question of the probability that the network passes through a period when identification 

is possible. 

Further, while we have addressed the question of how our identification results 

are affected by network endogeneity, we have not addressed how this endogeneity can, 

when explicitly modeled, facilitate identification, although we are hinted at this 
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possibility.    For example, if network membership is associated with prices, then prices 

can help to uncover social effects, as demonstrated in recent advances in the 

econometrics of hedonic models (Ekeland, Heckman, and Nesheim (2004), Nesheim 

(2002)).  One of the major themes in James Heckman’s research that endogeneity is 

not so much a nuisance to empirical work, but rather an additional behavior that needs 

to be modeled.  So our last suggestion is nothing more but an acknowledgement of the 

importance of this particular Heckman insight to future social networks research.   
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Technical Appendix 
 
Section 2. 
 
Proof of Theorem 1. 
 

 

( )( )
2

2

, , ,

1 , , .
2 2

i i i i

i ij j i i i i ij j i i
j j

E u x

x c x E a x

ω ω ν ε

φγ δ ν ε ω ω ω ω ν ε

− =

    
 + + + − − −        

∑ ∑
 

 

Let i i ij j i ij
x c x εψ γ δ ν µ= + + +∑  and let dev

iε  denote the deviation of ε i  from its mean. 

The common knowledge assumption implies that the vector εµ  is known to all network 

members, so it is only the deviation from the mean that is private.  Rewriting, 

 

 ( )( ) ( )
2

21, , , , , .
2 2

dev dev dev
i i i i i i i i ij j i i

j
E u x E a xφω ω ν ε ψ ε ω ω ω ω ν ε−

  
 = + − − −    
∑  

 

The first-order conditions are 

 

 ( ), , 0dev dev
i i i i ij j i

j
a E xψ ε ω φ ω ω ν ε

 
+ − − − = 

 
∑  

 

and so 

 

( )1 1, ,
1 1 1

dev
i i ij j i i

j
a E xφω ψ ω ν ε ε

φ φ φ
= + +

+ + +∑  

 

which implies 
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( ) ( )1, , .
1 1i i ij j

j
E x a E xφω ν ψ ω ν

φ φ
= +

+ + ∑  

 

Thus 

 

 ( ) φω ν ψ
φ φ

−
 

= − + + 

1
1| , .

1 1
E x I A  

 

This means that 

 

 
1

1 1 1
1 1 1 1 1

devA I Aφ φω ψ ψ ε
φ φ φ φ φ

−
 

= + − + + + + + + 
 

 

Rearranging terms, the set of choices follows  

 

 

( )( )

1

1

1 1
1 1 1

1 1
1 1 1

dev

dev

I A

I A I C x ε

φω ψ ε
φ φ φ

φ γ δ ν µ ε
φ φ φ

−

−

 
= − + = + + + 

 
− + + + + + + + 

 

 

which is therefore an equilibrium.  

Uniqueness, of equilibrium is proven by that the first order conditions define a 

contraction map on the space of strategy profiles topologized with the product 2L  norm. 

This space is not empty, and if f  is in this space, ( ) 2
,i iE f ψ ε < ∞ .  Define the operator 

 

 ( ) ( ) ( ) ( )( )1, , .
1 1i i ii

Tf E a fφψ ε ψ ε ψ ε
φ φ

= + + ⋅
+ +
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A fixed point of this map is a strategy profile that satisfies the first-order condition for 

every agent, and hence is a Bayes-Nash equilibrium. A straightforward computation 

shows that T  is a contraction mapping, and so its fixed point is unique.  

 
Section 4. 
 

Proof of Lemma 2. 
 

 From equation (4) and the hypothesis of the lemma it follows that 

 

 ( )φ φ γ δ+ − = +1 B AB I C  (16) 

 

for any ( ) ( )φ δ γ −∈Β 1, , B . Choose an ( ),i j  pair satisfying the hypothesis of the lemma. 

The right hand side of (16) is 0, and so 

 

 
[ ]

φ
φ
=

+
.

1
ij

ij

b
AB

 

 

(Note that the denominator on the right cannot be 0, or else from (16), φ = −1 which is 

satisfied by no model in M .)  Thus if ( ) ( )′ ′′Β = Β =m m B , then φ φ′ ′′= . From property ii 

of the Definition 1 for M , there is an ( ),i j  pair with ≠i j  such that ≠ 0ijc , and so from 

(16), δ δ′ ′′= , and the equation for any diagonal pair implies that γ γ′ ′′= . From these 

equalities it follows that .ν ε ν εµ µ µ µ′′′ ′ ′′+ = +   

 
Proof of Theorem 2.  

 

Suppose that ( ) ( )′ ′′Β = Β =m m B . We can write 
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( )

( )

φ γ δ
φ φ

φ φ γ δ
φ φ φ

−
′  ′ ′= − + = ′ ′+ + 

 ′ ′  ′ ′ + + + +  ′ ′ ′+ + +  


1

2
2

1
1 1

1
1 1 1

B I A I C

I A A I C

 

 

Since the peer-effects network is connected, some power of A  is strictly positive. 

Suppose that ′m  is such that φ′ > 0 . Then ( ) ( )( )( )φ φ φ
−− ′ ′− − +
111 1I A  is strictly 

positive.  The assumption on C  of no zero columns ensures that  0nA C  if 0.nA 

21

( )( )φ φ
−

′ ′− +
1

1I A C

  

Thus  is strictly positive. Choose an i  and j  for which = 0ijc . The 

set of all γ δ,  pairs that can make = 0ijb  is a 1-dimensional line in 2R .  If ( )γ δ′′ ′′,  is not 

on this line, then according to Lemma 1, ′′ ′=m m . The set of ( )φ γ δ, ,  triples for which 

= 0ijb  is a closed, two-dimensional semi-algebraic set22 ACM; the set of models in  with 

parameters outside this set is generic. Thus we have generic identification of φ , γ  and 

δ  for any ( )= ΒB m  with φ > 0 . If φ′ = 0 , then generically φ′′ = 0  (a consequence of the 

preceding argument). In this case it is straightforward to see that γ γ′ ′′=  and δ δ′ ′′= . 

Finally, in either case, if everything else is equal, it follows that .ν ε ν εµ µ µ µ′′′ ′ ′′+ = +   

 

Proof of Theorem 3.  
 

Choose i  and j  in 1
C AV V  and 2

C AV V , respectively. The matrix

( )( ) ( )( ) 1
1 1 1I Aφ φ φ

−
+ − +  is block diagonal, with strictly positive blocks corresponding 

to the different components of A .  Therefore  

 

                                                           
21  0X means that every element of the matrix X  is strictly positive. 
22See Bochnak, Coste, and Roy (1998) for a comprehensive overview of semi-
algrebraic sets.  
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2

1
1 1

1 1C Aij kjk V V

ik

b I A c
φ φ

−

∈

  
≥ −  + +   

∑


. 

 

Transitivity implies that the component 2
CV  is a clique—completely connected—and so 

this sum is positive.  But = 0ijc  by assumption ( i  is not in 2
CV ).  Thus the hypothesis of 

Lemma 2 is satisfied.  

 
Proof of Lemma 3.  

 

Identification holds if and only if, for each matrix B , ( )−Β 1 B  generically produces unique 

parameters.  So suppose ( ) ( )′ ′′Β = Β =m m B . Then 

 

 ( ) ( )φ φγ δ γ δ
φ φ

− −
′ ′′   ′ ′ ′′ ′′− + = − +   ′ ′′+ +   

1 1

,
1 1

I A I C I A I C  

 

so 

 

 ( ) ( )φ φγ δ γ δ
φ φ
′′ ′   ′ ′ ′′ ′′− + = − +   ′′ ′+ +   1 1

I A I C I A I C  

 

since the matrices commute, and so 

 

 ( ) ( ) φ φ φ φγ γ δ δ γ γ δ δ
φ φ φ φ
′ ′′ ′ ′′   ′ ′′ ′ ′′ ′′ ′ ′′ ′− + − + − + − =   ′ ′′ ′ ′′+ + + +   

0.
1 1 1 1

I C A AC (17) 

 

We specialize equation (17) to the various cases. 

 

1. If the matrices are linearly independent, then the coefficients of the four matrices 

must each be 0 . Thus γ γ′ ′′=  and δ δ′ ′′= . One of γ ′  and δ ′  is not 0, so at least one of 
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the last two terms implies that φ φ′ ′′= .  Conversely, suppose that the matrices are 

linearly dependent, and suppose that that  

 

 + + + = 0aI bC cA dAC  

 

for a , b , c  and d  not all 0. We will construct two (in fact, many) models ′m  and ′′m  

which give rise to the same B . For any φ , let ( )φ φ= +1r . If two models ′m  and ′′m  

cannot be distinguished, the following equations must be satisfied: 

 

 '

.

a
b

c r r
d r r

γ γ
δ δ

γ γ
δ δ

′′ ′= −
′′ = −
′ ′′ ′′ ′= −
′ ′′ ′′ ′= −

 

 

Choose any ′ ′′≠r r  in [0, 1). Substitute the first two equations into the last two to get 

 

 
( )
( ) ,

c r r r a

d r r r b

γ

δ

′ ′′ ′ ′= − −

′ ′′ ′ ′= − −
 

 

and so solving for γ ′  and δ ′  and working backwards gives parameters ( )γ δ φ′ ′ ′, ,  and 

( )γ δ φ′′ ′′ ′′, ,  for the two structures ′m  and ′′m . (We have the requirements that 

γ δ γ δ′ ′ ′′ ′′ ≠, 0 .  This will clearly be satisfied for generic choices of ′r  and ′′r .)  To 

complete the description, choose the same prior distribution ρ  for both models 

satisfying the requirements of Axioms 1-4 and conditions i - iii of the Definition 1 for M . 

 

2. Substitute C  for AC  and regroup the terms of (17) and suppose again that 

( ) ( )′ ′′Β = Β =m m B . If the matrices are independent, then γ γ′ ′′=  without further 

assumptions.  Since γ ′ ≠ 0  independence implies that φ φ′ ′′= .  If φ′ ≠ 0, then δ δ′ ′′=
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(since ( )φ φ′ ′′+ <1 1). If δ ′ = 0 , ( ) ( )′ ′′Β = Βm m  implies that γ δ γ δ′ ′ ′′ ′′+ = + ,I C I C  and 

identification holds.  
 

3. The case =A C  is proved in Bramoullé, Djebbari and Fortin (2009).  

 

Proof of Corollary 1.  

 

This is case 2 of Lemma 2, =AC C . The three matrices I , A  and C  are dependent if 

and only if A  is a linear combination of I  and C .  But any such linear combination has 

to have identical off-diagonal elements.  
 

Section 5.  
 
Proof of Theorem 5. 
 

Proof. Suppose ( ) ( )| , | ,E x m E x mω ω′ ′′=  on some open subset of R . Then the strategy 

profiles for structures m′  and ′′m  are described by the same matrix B . Suppose too 

that γ ≠ 0 . 

 

 
1 1

1 1 1 1
I A I Aγ φ γ φ

φ φ φ φ

− −
′ ′ ′′ ′′   ′ ′′− = −   ′ ′ ′′ ′′+ + + +   

 (18) 

 

That is, 

 

 
1 1 1 1

I A I Aγ φ γ φ
φ φ φ φ
′ ′′ ′′ ′   ′′ ′− = −   ′ ′′ ′′ ′+ + + +   

 

 

Since the diagonal elements of A′  and A′′  are 0, it follows that 
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1 1
γ γ
φ φ
′ ′′

=
′ ′′+ +

 

 

Since γ ′  is non-zero, the corresponding γ ′′  cannot equal 0, and it follows that 

 

 ,
1 1

I A I Aφ φ
φ φ
′ ′′

′ ′′− = −
′ ′′+ +

 

 

which immediately implies 

 

.
1 1

A Aφ φ
φ φ
′ ′′

′ ′′=
′ ′′+ +

 

 

From the observation that the rows of both A′  and A′′  sum to 1, one may conclude that 

φ φ′ ′′= , and therefore γ γ′ ′′= , and A A′ ′′= . Finally from these facts it follows that 
ν εµ µ+  is the same in both models.  

 

 

Proof of Theorem 6.   
 

Let 
( )( )1
C

I C
B M

γ δ −+
∈Β . It follows from equation (4) that B  has constant row sums, which 

we will call b . A computation show that b γ δ= + . Rewriting (4), 

 

 ( ) ( )φ φ δ δ− −+ − = − +1 11 I A b B CB  (19) 

 

Consider the right-hand side as a function of δ . Since A  has 0’s on the diagonal, it 

follows that there must be at least one value of δ  for which all the diagonal elements of 

the matrix on the right are equal. Since the right-hand side is linear in δ , equality of the 

diagonal elements is true for either one δ  or all δ . Choose any δ ′  for which the 
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diagonal elements are equal. Then ( )φ δ δ− − ′= − − + 
1 1

11
1 b B CB , proving the first claim 

of the theorem. Next, it is easy to verify that for generic C , the δ ′  which makes the 

diagonal elements identical is unique. This identifies δ , and then γ δ= −b .  

 

Proof of Theorem 7.  
 

A calculation shows that that γ Β, ,A CD  (The derivative map of Β  with respect to γ , A , 

and C ) is surjective for all models in the interior of M , and so the implicit function 

theorem implies that if ( ), , , ,A C Bφ γ δ′ ′ ′ ′ ′Β = , and ( ),φ δ′′ ′′  is sufficiently near to ( ), ,φ δ′′ ′′  

there are parameters γ ′′ , A′′  and C′′  such that ( ), , , ,A C Bφ γ δ′′ ′′ ′′ ′′ ′′Β = .  

 

 

Section 6 

 
Proof of Lemma 4.  
 

The direct homophily effect, scaled by β , has no effect on individuals’ preferences. Let 

1g denote the set-valued random variable whose values are the members of group 1 

realized at the end of the first stage. The value of being in a group 1 conditional on 

g g=  is 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( )

2 22 2

2

1 | 1 | 2 |
2 1

ig

i i i i i i i

j i
j g

V

E g E g E g x x

x x

φ ω ρ ρ ω ω ε ε
φ

β

− −− −

∈

=

− + + + + + −
+

−∑
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where iω−  is the average choice of members of g . (This comes from the first order 

conditions, and substituting back.) The utility difference between g and /h V g=  is 

 

 

( ) ( )( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( )

2 2

2 2

2 | |
2 1

2 | | var | var |

gh i i i

i i i i

j i j i
j g j h

V E g E h

E g E h g h

x x x x

ρ ω ω ε
ρ

ω ω ρ ω ω

β

− −

−− −− − −

∈ ∈

∆ = −
+

− − − −

 
− − − − 

 
∑ ∑

 

 

Now take expectations over g  to see that if ( ) ( )| | 0i iE g E hω ω−− −− > , then ghV∆  is 

increasing in iε , and so g  is preferred to V g  whenever iε  is large enough.   

 

Proof of Theorem 8.  
 

We prove this by solving the game for a several different choices of x , and using the 

answers together to make inferences about parameter values.  First, consider identical 

ix ’s for every individual, say 1ix ≡ .  It is straightforward to show that there is a common 

cutoff *ε  such that individuals with *
iε ε>  go to, say, location a , and the remainder go 

to b .  For the individual who choose location z , 

 

 ( ) 1
1 1i z i iEφω γ δ ε ε

φ φ
= + + +

+ +
 

 

where ( )z iE ε  is the expected value of iε  conditional on the location, that is, either 

above or below *ε . (Recall that the jε are all iid.) Compute the expected value of iω  at 

each location:  

 

 ( ) ( ).z i z iE Eω γ δ ε= + +  
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The expectations on the left are known to the econometrician. The probability of 

appearing at a  is ( )*Pr iε ε≥ . Thus we have a third equation 

 

 ( ) ( ) ( ) ( ) ( )* *Pr Pr .i a i i b i iE E Eε ε ε ε ε ε ε≥ + < =  

 

If the econometrician knows ( )iE ε , he can compute the three unknowns; the two 

conditional expectations and γ δ+ .  

Next we examine a second-stage game in which one individual, say individual 1, 

has 1x k= , and the remaining 1ix = . Again, there are thresholds *
1ε  and *

2ε  for the 

players with 1ix =  and 2, respectively, and we suppose that those above the threshold 

go to a  while those below go to location b . An equilibrium computation shows the 

following: If a group g  which includes individual 1 assembles at a , then the second 

stage equilibrium has the property that for any person 1i ≠  in g , 

 

 
( ) ( )

( ) ( ) ( )( ) ( )

1 1 1

1 1 1

| |

1
| | 1 1 ,

1

a a i

a a i

E x k E x k

g
E x k E x k k r

g r

ω ω

ε ε γ

= = − = =

−
= − = − − −

− +

 

  

where ( )1r φ φ= + , and that ( ) ( )1 1 1| |a a iE x k E x kω ω= > = . The ratio of this difference 

for two differently-sized groups with the same k  determines φ .   

Furthermore, if cg  has at least two members, we also know that for this group, 

( ) ( )1 1| |b i b iE x k E x kω γ δ ε= = + + = . Since γ δ+  has already been identified and since

( )1|b iE x kω =  is observable, ( )1|b iE x kε =  can be computed. This is the same for all 

individuals with 1x = , and is group-independent. The probability that individual i  

locates at b  is observable, and ( )iE ε  is a priori knowledge, so ( )1|a iE x kε =  is 

identified. This gives the equation 
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 ( )1 1| k
a aE x k k zε γ= − =  

 

where kz  can be computed from what is observable and the a priori knowledge of

( )iE ε . Now repeat the construction with individual 1 at location b  to get  

 

 ( )1 1| k
b bE x k k zε γ= − =  

 

Since the probability of individual 1 appearing at each location is known, expect over the 

location to derive  

 

 ( ) ( ) ( )* *
1 1 1 1 1Pr Pr ,k k

a bE k z zε γ ε ε ε ε− = ≥ + <  

 

and so γ  can be computed.  Knowing γ  gives δ , which proves the claim for endM  with 

known ( )1E ε . 

If the conditional expectations are known, take any group g  with more than 1 

person that forms with positive probability given x . Then ( ) ( )| , | ,E x g E x gω ε−  is linear 

in x . The probabilities of entry into g  are continuous in x , so this difference in fact is 

well-defined on an open set around x . From this infer g  to get ( )mΒ . The result now 

follows from the proof of theorem 2. 

The parameter β  has no role in the second stage game. It determines only the 

probabilities of group formation. Consequently β  must be identified off the participation 

constraint, that the ex-ante expected value of going to location a  is at least that of going 

to b  for those who chose to go to a , and so forth. The threshold ε  in any game is 

determined by the equality of the expectation of the interim payoffs over which groups 

will form at a  and b  given the second-stage equilibrium strategies. Consider then, a 

situation with heterogeneous ix ’s. On the one hand, *ε  is known given a priori 



55 
 

knowledge of ρ , because the probabilities of a given individual appearing at either 

location in equilibrium are known, and the distribution function of iε  is strictly increasing. 

Then the equilibrium condition defining *ε , that when *
iε ε=  the individual is indifferent 

(ex-ante) between a  and b , identifies β .  The prior belief ρ  is needed not just to 

determine *ε , but also because the participation constraints involve differences in 

variances of the iε  conditional on location, and there are not enough equations to pin 

these down even given a priori knowledge of the unconditional variance of the iε .  
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