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Abstract

We provide a comprehensive semi-parametric study of Bayesian partially identified
econometric models. While the existing literature on Bayesian partial identification
has mostly focused on the structural parameter, our primary focus is on Bayesian
credible sets (BCS’s) of the unknown identified set and the posterior distribution of its
support function. We construct a (two-sided) BCS based on the support function of the
identified set. We prove the Bernstein-von Mises theorem for the posterior distribution
of the support function. This powerful result in turn infers that, while the BCS and
the frequentist confidence set for the partially identified parameter are asymptotically
different, our constructed BCS for the identified set has an asymptotically correct
frequentist coverage probability. Importantly, we illustrate that the constructed BCS
for the identified set does not require a prior on the structural parameter. It can be
computed efficiently for subset inference, especially when the target of interest is a
sub-vector of the partially identified parameter, where projecting to a low-dimensional
subset is often required. Hence, the proposed methods are useful in many applications.

The Bayesian partial identification literature has been assuming a known parametric
likelihood function. However, econometric models usually only identify a set of moment
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�CNRS and THEMA, Université de Cergy-Pontoise - 33, boulevard du Port, 95011 Cergy-Pontoise
(France). Email: simoni.anna@gmail.com

1



inequalities, and therefore using an incorrect likelihood function may result in mislead-
ing inferences. In contrast, with a nonparametric prior on the unknown likelihood
function, our proposed Bayesian procedure only requires a set of moment conditions,
and can efficiently make inference about both the partially identified parameter and its
identified set. This makes it widely applicable in general moment inequality models.
Finally, the proposed method is illustrated in a financial asset pricing problem.

Key words: partial identification, posterior consistency, concentration rate, support func-
tion, two-sided Bayesian credible sets, identified set, coverage probability, moment inequality
models
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1 Introduction

Partially identified models have been receiving extensive attentions in recent years due
to their broad applications in econometrics. Partial identification of a structural parameter
arises when the data available and the constraints coming from economic theory only allow
to place the parameter inside a proper subset of the parameter space. Due to the limitation
of the data generating process, the data cannot provide any information within the set where
the structural parameter is partially identified (called identified set).

This paper aims at developing a semi-parametric Bayesian inference for partially iden-
tified models. A Bayesian approach may be appealing for several reasons. First, Bayesian
procedures often conduct inference through Bayesian credible sets (BCS’s), which are of-
ten relatively easy to construct thanks to the use of Markov Chain Monte Carlo (MCMC)
methods. This is particularly useful when we are concerned about marginalizing the BCS
to a low-dimensional space. In some situations, we are interested only in a projection of
the identified region for the subset inference. We demonstrate that our proposed approach
provides tractable computational tools for projecting a high-dimensional identified region to
a low-dimensional space. This has important implications for practical implementations.

Secondly, our Bayesian procedures also have comprehensive frequentist validations. In
particular, our constructed BCS of the identified set also has a correct asymptotic frequentist
coverage probability. We construct credible sets based on the support function; the latter
completely characterizes convex and closed identified sets. We also show the Bernstein-
von Mises theorem for the posterior distribution of the support function. At the best of
our knowledge this has not been studied in the literature yet. This powerful result in turn
allows us to establish the (asymptotic) equivalence between BCS’s and frequentist confidence
sets (FCS’s) for the identified set. The literature on partial identification distinguishes
between credible/confidence sets for the partially identified parameter and for the identified
set. Credible sets for the identified set play an important role not only when the target
of interest is the partially identified parameter but even when the identified set is itself
the object of interest. While focusing on the study of BCS for the identified set, we also
extend Moon and Schorfheide (2010)’s analysis for the partially identified parameter to a
semi-parametric setup, which is relevant in more general moment inequality models where
the likelihood function may be unknown. Moreover, if we admit the existence of a true value
of the structural parameter and the identified set, the corresponding posterior distributions
concentrate asymptotically in a neighborhood of the true value (set). This property is known
as the posterior consistency. It is important because it guarantees that, with a sufficiently
large amount of data, we can recover the truth accurately with large probabilities.

Third, putting a prior on the partially identified parameter can be viewed as a way of in-
corporating researchers’ beliefs. A Bayesian approach conveniently combines the information
from both the observed data and other sources of prior information. The prior information
is, for instance, information coming from historical data, information based on experience
or on previous survey data. In some applications this information is largely available, e.g.
in macroeconomics, central banking and finance. We stress that the prior information will
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not affect the boundary of the identified set, but will only play a role in determining which
areas inside the identified set are a priori “more likely” than others. On the other hand,
when specifying a prior distribution on the partially identified parameter is either difficult
or conflicting with the philosophy of partial identification, a researcher can still use our pro-
cedure and either specify a uniform prior or just construct the BCS for the identified set
for inference. The latter is due to an important feature of our procedure that the Bayesian
analysis of the identified set does not require to specify a prior on the partially identified
parameter. Therefore, we accommodate both situations where a researcher does have prior
information as well as situations where she does not.

From the posterior perspective, the Bayesian partial identification produces a posterior
distribution of the partially identified parameter whose support will asymptotically concen-
trate around the true identified set. When informative priors are available, the shape of
the posterior density may not be flat inside the identified set, and will ground on the prior
distribution even asymptotically. Therefore, the asymptotic behavior of the posterior dis-
tribution is different from that of the traditional point identified case where (in the latter
case) the information from the prior is often washed away by the data asymptotically. Thus,
the Bayesian approach to partial identification links conclusions and inferences to various
information sources – data, prior, experience, etc.– in a transparent way.

Finally, when the identified set depends on a point identified nuisance parameter, say φ,
and this is integrated out with respect to its posterior, then the prior information on the par-
tially identified parameter is completely revised by the data. Hence, the proposed procedure
also learns about the partially identified parameter based on the whole posterior distribution
of φ, which is potentially useful in finite samples. Consequently, there is a strong motivation
for us to conduct a comprehensive Bayesian study for the partially identified econometric
models.

There are in general two approaches in the literature on Bayesian partial identification.
The first approach specifies a parametric likelihood function and assumes it is known up
to a finite-dimensional parameter. This approach has been used frequently in the litera-
ture, see e.g., Moon and Schorfheide (2012), Poirier (1998), Bollinger and Hasselt (2009),
Norets and Tang (2012) among many others. In many applications, however, econometric
models usually only identify a set of moment inequalities instead of the full likelihood func-
tion. Examples are: interval-censored data, interval instrumental regression, asset pricing
(Chernozhukov et al. 2008), incomplete structural models (Menzel 2011), etc. Assuming a
parametric form of the likelihood function is ad-hoc in these applications. Once the likeli-
hood is mis-specified, the posterior can be misleading. The second approach starts from a set
of moment inequalities, and uses a moment-condition-based likelihood such as the limited
information likelihood (Kim 2002) and the exponential tilted empirical likelihood (Schen-
nach 2005). Further references may be found in Liao and Jiang (2010), Chernozhukov and
Hong (2003) and Wan (2011). This approach avoids assuming the knowledge of the true
likelihood function. However, it only studies the structural parameter, and it is hard to
construct posteriors and credible sets for the identified set. Moreover, it does not have a
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Bayesian probabilistic interpretation.
This paper proposes a pure Bayesian procedure without assuming a parametric form of

the true likelihood function. We place a nonparametric prior on the likelihood and obtain the
marginal posterior distribution for the partially identified parameter and the identified set.
A similar Bayesian procedure was recently used in Florens and Simoni (2011). As a result,
our procedure is semi-parametric Bayesian and can make inference about both the partially
identified parameter and its identified set easily. It only requires a set of moment conditions
and then it can be completely nonparametric on the data generating process. This is an
appealing feature in general moment inequality models. On the other hand, if the likelihood
function is known, our procedure continues to work and this paper is still well-motivated.
In fact, many contributions of this paper, e.g., Bayesian inference of the support function,
construction of BCS for the identified set, subset inferences, etc., are relevant and original
also for the case with a known likelihood.

There is a growing literature on Bayesian partially identified models. Besides those men-
tioned above, the list also includes Gelfand and Sahu (1999), Neath and Samaniego (1997),
Gustafson (2012), Epstein and Seo (2011), Stoye (2012), Kitagawa (2012), Kline (2011), etc.
There is also an extensive literature that analyzes partially identified models from a frequen-
tist point of view. A partial list includes Andrews and Guggenberger (2009), Andrews and
Soares (2010), Andrews and Shi (2013), Beresteanu, Molchanov and Molinari (2011), Bugni
(2010), Canay (2010), Chernozhukov, Hong and Tamer (2007), Chiburis (2009), Imbens and
Manski (2004), Romano and Shaikh (2010), Rosen (2008), Stoye (2009), among others. See
Tamer (2010) for a review.

When the identified set is closed and convex, the support function becomes one of the
useful tools to characterize its properties. The literature on this perspective has been growing
rapidly, see for example, Bontemps, Magnac and Maurin (2012), Beresteanu and Molinari
(2008), Beresteanu et al. (2012), Kaido and Santos (2013), Kaido (2012) and Chandrasekhar
et al. (2012). This paper is also closely related to the asymptotic nonparametric Bayesian
literature: Wu and Ghosal (2008), Ghosh and Ramamoorthi (2003), Ghosal and van der
Vaart (2001), Shen and Wasserman (2001), Ghosal et al. (1999), Amewou-Atisso et al.
(2003), Walker et al. (2007), van der Vaart and van Zanten (2008), Bickel and Kleijn (2012),
Jiang (2007), Choi and Ramamoorthi (2008), Castillo (2008), Freedman (1999), Rivoirard
and Rousseau (2012), among others.

The paper is organized as follows. Section 2 outlines our main results and contributions.
Section 3 sets up the model and discusses the prior specification on the underlying likelihood
function. Section 4 studies the (marginal) posterior distribution of the structural parameter.
Section 5 studies the posterior of the support function in moment inequality models. In
particular, the Bernstein-von Mises theorem and a linear representation for the support
function are obtained. Section 6 constructs the Bayesian credible sets for both the structural
parameter and its identified set. In addition, the frequentist coverages of these credible sets
are studied. Section 7 addresses the subset inference when the target of interest is only a
component of the full parameter. Section 8 shows the posterior consistency for the identified
set and provides the concentration rate. Section 9 addresses the uniformity. In particular,
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it discusses the case when point identification is actually achieved. Section 10 applies the
support function approach to a financial asset pricing study. Finally, Section 11 concludes
with further discussions. All the proofs are given in the appendix to this paper and in a
supplementary appendix.

2 Highlights of Our Contributions

This section provides a global vision of our main contributions of this paper. Formal
setup of the model starts from Section 3.

Semi-parametric Bayesian partial identification

We focus on semi-parametric models where the true likelihood function may be unknown,
which is more relevant in moment inequality models. Then there are three types of param-
eters in the Bayesian setup: θ, which is the partially identified structural parameter; φ, a
point-identified parameter that characterizes the identified set, and the unknown likelihood
F . The identified set can be written as Θ(φ). According to the Bayesian philosophy, we
treat the identified set as random, and construct its posterior distribution.

Without assuming any parametric form for the likelihood, we place a nonparametric prior
π(F ) on it. The posteriors of φ and of the identified set can then be constructed via the
posterior of F . Such a semi-parametric posterior requires only a set of moment inequalities,
and therefore is robust to the likelihood specification. Moreover, to make inference about
the partially identified θ, we place a conditional prior π(θ|φ) supported only on Θ(φ). Note
that Bayesian inference for the identified set may be carried out based on the posterior of
Θ(φ) which does not depend on π(θ|φ). So the prior specification for θ plays a role only in
the inference about θ.

For these posteriors, we show that asymptotically p(θ|Data) will be supported within
an arbitrarily small neighborhood of the true identified set, and the posterior of Θ(φ) also
concentrates around the true set in the Hausdorff distance. These are the notion of posterior
consistency under partial identification.

Support function

To make inference on Θ(φ) we can take advantage of the fact that when Θ(φ) is closed
and convex it is completely characterized by its support function Sφ(·) defined as:

Sφ(ν) = sup
θ∈Θ(φ)

θTν

where ν ∈ Sdim(θ), the unit sphere. Therefore, inference on Θ(φ) may be conveniently carried
out through inference on its support function. The posterior distribution of Sφ(·) is also
determined by that of φ. We show that in a general moment inequality model, the support
function has an asymptotic linear representation in a neighborhood of the true value of φ,
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which potentially extends the inference in Bontemps et al. (2012) to nonlinear models. Our
paper also establishes the Bernstein-von Mises theorem for the support function, that is, the
posterior distribution of Sφ(·) converges weakly to a Gaussian process. We also calculate
the support function for a number of interesting examples, including interval censored data,
missing data, interval instrumental regression and asset pricing models.

Two-sided Bayesian credible sets for the identified set

We construct two types of Bayesian credible sets (BCS’s): one for the identified set Θ(φ)
and the other for the partially identified parameter θ. In particular, the BCS for the identified
set is constructed based on the support function, is two-sided, and has an asymptotically
correct frequentist coverage probability. Specifically, we find sets Θ(φ̂)−qτ/

√
n and Θ(φ̂)qτ/

√
n,

satisfying: for level 1− τ where τ ∈ (0, 1),
Bayesian coverage:

P (Θ(φ̂)−qτ/
√
n ⊂ Θ(φ) ⊂ Θ(φ̂)qτ/

√
n|Data) = 1− τ ; (2.1)

Frequentist coverage:

PDn(Θ(φ̂)−qτ/
√
n ⊂ Θ(φ0) ⊂ Θ(φ̂)qτ/

√
n) ≥ 1− τ, (2.2)

where PDn denotes the sampling probability, and Θ(φ0) is the true identified set. In (2.1)
the random set is Θ(φ) while in (2.2) the random sets are Θ(φ̂)−qτ/

√
n and Θ(φ̂)qτ/

√
n. One

of the important features is that the BCS for the identified set does not require specifying
a prior on the partially identified parameter. The notation Θ(φ̂)−qτ/

√
n, Θ(φ̂)qτ/

√
n, φ̂ and qτ

are to be formally defined in the paper. Therefore, the constructed two-sided BCS can also
be used as frequentist confidence set for the identified set.

Furthermore, we find that in the semi-parametric Bayesian model, Moon and Schorfheide
(2012)’s conclusion about the BCS for the partially identified parameter θ still holds: it is
smaller than frequentist confidence sets in large samples. Hence, while the BCS for the
partially identified parameter does not have a correct frequentist coverage, the asymptotic
equivalence between BCS and FCS for the identified set holds. Intuitively, this is because
the prior information still plays an important role in the posterior of the partially identified
parameter even asymptotically; on the other hand, as the identified set is “point identified”,
whose BCS is independent of the prior on θ, then its prior information is “washed away”
asymptotically. Thus, the proposed inference for the identified set and the support function
is asymptotically robust to their prior specification.

Projection and subset inference

We show that with our approach it is easy to project (marginalize) onto low-dimensional
subspaces for subset inferences. This computation is fast. Suppose the dimension of θ is rel-
atively large, but we are interested in only a few components of θ, and aim to make inference
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about these components and their marginal identified set. In our approach, constructing the
identified set and BCS for the marginal components simply requires the marginalization of
a joint distribution and can be carried out efficiently thanks to the use of MCMC methods.
It is also computationally convenient to calculate the BCS for the marginal identified set.
Hence, the proposed procedure has large potentiality in many empirical applications.

Uniformity

The proposed Bayesian inference for the identified set is valid uniformly over a class of
data generating process. In particular, using specific examples, we illustrate that as the
identified set shrinks to a singleton, so that point identification is (nearly) achieved, our
Bayesian inference for the identified set carries over.

Applications

We develop a detailed application of Bayesian partial identification to financial asset
pricing, which is an example where the identified set is of direct interest. Estimation and
inference for the support function as well as for the identified set are conducted. More-
over, throughout the paper, we study in detail other typical examples including the interval
censoring, interval regression and missing data problems.

3 General Setup of Bayesian Partially Identified Model

3.1 The Model

Econometric models often involve a structural parameter θ ∈ Θ that is only partially
identified by the data generating process (DGP) on a non-singleton set, which we call iden-
tified set. The model also contains two parameters that are point identified by the DGP: a
finite-dimensional parameter φ ∈ Φ ⊂ Rdφ and the distribution function F of the observed
data, which is infinite-dimensional. Here, Φ denotes the parameter space for φ and dφ its di-
mension. The point identified parameter φ often arises naturally as it characterizes the data
distribution. In most of partially identified models, the identified set is also characterized
by φ, hence we denote it by Θ(φ) to indicate that once φ is determined, so is the identified
set. Let d = dim(θ) and Θ ⊂ Rd denote the parameter space for θ; we assume Θ(φ) ⊆ Θ.

In a parametric Bayesian partially identified model as in Poirier (1998), Gustafson (2012)
and Moon and Schorfheide (2012), F is linked with a known likelihood function to φ. How-
ever, as in the usual point identified models, in some applications assuming a known likeli-
hood function may suffer from a model specification problem, and may lead to misleading
conclusions. Instead, econometric applications often involve only a set of moment conditions
as in (3.1) below. This gives rise to the moment inequality models. A parametric form of the
likelihood function and of F can be unavailable in these models. A robust approach is to

8



proceed without assuming a parametric form for the likelihood function, but to put a prior
on (θ, φ, F ) instead. This yields the semi-parametric Bayesian setup.

We specify a nonparametric prior on data’s cumulated distribution function (CDF) F ,
which can deduce a prior for φ through a transformation φ = φ(F ), as φ often is a functional
of F . Moreover, the prior on the identified set Θ(φ) is determined through that of φ. Due
to the identification feature, for any given φ ∈ Φ, we specify a conditional prior π(θ|φ) such
that

π(θ ∈ Θ(φ)|φ) = 1.

By construction, this prior for θ puts all its mass on Θ(φ) for any φ ∈ Φ. So it takes the
form:

π(θ|φ) ∝ Iθ∈Θ(φ)g(θ),

where g(·) is some probability density function and Iθ∈Θ(φ) is the indicator function of Θ(φ).
In Section 4.1 we discuss the philosophy of specifying the prior on θ.

Our analysis focuses on the situation where Θ(φ) is a closed and convex set for each φ.
Therefore, Θ(φ) can be uniquely characterized by its support function. For any fixed φ, the
support function for Θ(φ) is a function Sφ(·) : Sd → R such that

Sφ(ν) = sup
θ∈Θ(φ)

θTν.

where Sd denotes the unit sphere in Rd. The support function plays a central role in convex
analysis since it determines all the characteristics of a convex set. Hence, it is one of the
essential objects for our Bayesian inference. In a similar way as for Θ(φ), we put a prior on
Sφ(·) via the prior on φ.

Suppose p(φ|Dn) denotes the posterior of φ, given the data Dn and a prior π(φ). It is
readily seen that (see e.g., Poirier 1998) the joint posterior of (θ, φ) is given by

p(θ, φ|Dn) ∝ π(θ|φ)p(φ|Dn).

By integrating out φ, we obtain the marginal posterior for θ. On the other hand, the
posteriors of Θ(φ) and Sφ(·) are also determined through the marginal posterior p(φ|Dn).
This also highlights an important feature of this paper: our results on Θ(φ) and the support
function do not require placing a prior on the partially identified parameter θ, because as far
as p(φ|Dn) is concerned, the prior for θ is not needed at all. Furthermore, as the identified
set and support function are “point identified”, their posteriors are asymptotically robust to
the prior specifications on φ.

Let us present a few examples that have received much attention in partially identified
econometric models literature. In the rest of the paper, we denote by X the observable
random variable for which we have n i.i.d. observations Dn = {Xi}ni=1. Let (X ,Bx, F )
denote a probability space in which X takes values and F denote the parameter space of F .

Example 3.1 (Interval censored data). Let (Y, Y1, Y2) be a 3-dimensional random vector
such that Y ∈ [Y1, Y2] with probability one. The random variables Y1 and Y2 are observed

9



while Y is unobservable (see, e.g., Moon and Schorfheide 2012). We denote: θ = E(Y )
and φ = (φ1, φ2)′ ≡ (E(Y1), E(Y2))′. Therefore, we have the following identified set for θ:
Θ(φ) = [φ1, φ2]. The support function for Θ(φ) is easy to derive:

Sφ(1) = φ2, Sφ(−1) = −φ1.

The non-parametric prior specification on the likelihood is to be discussed in Section 3.2. �

Example 3.2 (Interval regression model). The regression model with interval censoring has
been studied by, for example, Haile and Tamer (2003). Let (Y, Y1, Y2) be a 3-dimensional
random vector such that Y ∈ [Y1, Y2] with probability one. The random variables Y1 and Y2

are observed while Y is unobservable. Assume that

Y = xT θ + ε

where x is a vector of observable regressors. In addition, assume there is a d-dimensional
vector of nonnegative exogenous variables Z such that E(Zε) = 0. Here Z can be either a
vector of instrumental variables when X is endogenous, or a nonnegative transformation of
x when x is exogenous. It follows that

E(ZY1) ≤ E(ZY ) = E(ZxT )θ ≤ E(ZY2). (3.1)

We denote φ = (φ1, φ2, φ3) where (φT1 , φ
T
3 ) = (E(ZY1)T , E(ZY2)T ) and φ2 = E(ZxT ). Then

the identified set for θ is given by Θ(φ) = {θ ∈ Θ : φ1 ≤ φ2θ ≤ φ3}. Suppose φ−1
2 exists. The

support function for Θ(φ) is given by (denote (x)i as the ith component of x)1:

Sφ(ν) = νTφ−1
2

(
φ1 + φ3

2

)
+ αTν

(
φ3 − φ1

2

)
, ν ∈ Sd

where αν = (|(νTφ−1
2 )1|, ..., |(νTφ−1

2 )d|)T .
�

Example 3.3 (Missing data). Consider a bivariate random vector (Y,M) where M is a
binary random variable which takes the value M = 0 when Y is missing and 1 otherwise.
Here Y represents whether a treatment is successful (Y = 1) or not (Y = 0). The parameter
of interest is the probability θ = P (Y = 1). This problem without the missing-at-random
assumption has been extensively studied in the literature, see for example, Manski and
Tamer (2002), Manski (2003), etc. Since P (Y = 1|M = 0) cannot be recovered from the
data, the empirical evidence partially identifies θ and θ is characterized by the following
moment restrictions:

P (Y = 1|M = 1)P (M = 1) ≤ θ ≤ P (Y = 1|M = 1)P (M = 1) + P (M = 0).

1See Appendix C.1 in the supplementary material for detailed derivations of the support function in this
example. Similar results but in a slightly different form are presented in Bontemps et al. (2012).
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Here, φ = (P (M = 1), P (Y = 1|M = 1)) = (φ1, φ2). The identified set is Θ(φ) =
[φ1φ2, φ1φ2 + 1− φ1], and its support function is: Sφ(1) = φ1φ2 + 1− φ1, Sφ(−1) = −φ1φ2.

3.2 Nonparametric prior scheme for (φ, F )

When the model only specifies a set of moment inequalities, we can place a non-parametric
prior on the likelihood function through F , e.g., a Dirichlet process prior. Since φ is point
identified, we assume it can be rewritten as a measurable function of F as φ = φ(F ). The
prior distribution for φ is then deduced from that of F via φ(F ). The Bayesian experiment
is (we use the notation “∼” to mean “distributed as”)

X|F ∼ F, F ∼ π(F ), θ|φ ∼ π(θ|φ(F ))

For instance, in the interval censored data example 3.1, let F be the joint CDF of (Y1, Y2),
then (φ1, φ2) = φ(F ) = (E(Y1|F ), E(Y2|F )), and the identified set is modeled as Θ(φ) =
[φ1(F ), φ2(F )], which is a set-valued function of F .

The prior distribution π(F ) is a distribution on F . Examples of such a prior include
Dirichlet process priors (Ferguson 1973) and Polya tree (Lavine 1992). The case where π(F )
is a Dirichlet process prior in partially identified models is proposed by Florens and Simoni
(2011).

Let p(F |Dn) denote the marginal posterior of F which, by abuse of notation, can be
written p(F |Dn) ∝ π(F )

∏n
i=1 F (Xi). The posterior distributions of φ, Θ(φ), and the support

function Sφ(·) are deduced from the posterior of F , but do not depend on the prior on θ.
Moreover, it can be shown that p(θ|φ(F ), Dn) = π(θ|φ(F )). Then, for any measurable set
B ⊂ Θ, the marginal posterior probability of θ is given by, averaging over F :

P (θ ∈ B|Dn) =

∫
F
P (θ ∈ B|φ(F ), Dn)p(F |Dn)dF

=

∫
F
π(θ ∈ B|φ(F ))p(F |Dn)dF = E[π(θ ∈ B|φ(F ))|Dn]

where the conditional expectation is taken with respect to the posterior of F . The above
posterior is easy to calculate via simulation when F has a Dirichlet process prior.

An alternative prior scheme for (φ, F ) consists in putting a prior on φ directly. This is
particularly useful when there is informative prior information for φ. It models the unknown
likelihood function semi-parametrically through reformulating F as F = Fφ,η where η is an
infinite-dimensional nuisance parameter (often a density function) that is a priori indepen-
dent of φ. The prior on (φ, F ) is then deduced from the prior on (φ, η). We describe this
alternative semi-parametric prior in Appendix A.
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4 Bayesian Inference for θ

4.1 Putting priors on partially identified θ

In this section we briefly discuss the meaning of the prior π(θ|φ). As stated in Tamer
(2010): “(Partial identification) links conclusions drawn from various empirical models to sets
of assumptions made in a transparent way. It allows researchers to examine the informational
content of their assumptions and their impacts on the inferences made.”

By imposing a prior on the partially identified parameter θ, we reflect how prior beliefs
and/or assumptions can impact the associated statistical inference. To illustrate the rationale
of imposing such a prior, let us consider the missing data example (Example 3.3). Writing
α = P (Y = 1|M = 0), we then link θ with α by

θ = φ2φ1 + α(1− φ1). (4.1)

As φ is point identified, statistical inferences about θ therefore relies on the treatment of α.
On the other hand, various ways of dealing with α reflect various researchers’ prior beliefs,
which also correspond to the “informational content of their assumptions”.

From a Bayesian point of view, this is fulfilled by putting a distribution on α, as a
prior π(α) supported on [0, 1] (possibly also depending on φ). The traditional exogeneity
assumption such as missing-at-random, in this case, corresponds to a point mass prior on
α = φ2 = P (Y = 1|M = 1). The more concentrating is the prior, the stronger are the
assumptions we impose on the missing mechanism. Such a prior distribution can also come
from a previous study based on a different dataset that contain information about α where
only summarizing statistics are available instead of the complete data set. Above all, when
no informative knowledge about α is available, a uniform prior on [0, 1] is imposed for α,
which reduces to Manski’s bounds approach.

Given the imposed distribution π(α) that reflects researchers’ assumptions or beliefs
about the missing mechanism, we can deduce a conditional prior for θ through (4.1) given
φ = (φ1, φ2). As a result, putting a prior on the partially identified parameter can be viewed
as a way of incorporating researchers’ assumptions on the missing mechanisms. This varies
from the traditional exogeneity approach to the most robust bounds approach, which also
bridges point identification and partial identification.

4.2 Posterior Consistency for θ

The shape of the posterior of a partially identified parameter still relies upon its prior
distribution asymptotically, which distinguishes from the asymptotic posterior behavior in
the classical point identified case. On the other hand, the support of the prior distribution
of θ is revised after data are observed and eventually converges towards the true identified
set asymptotically. The latter corresponds to the frequentist consistency of the posterior
distribution for partially identified parameters. Posterior consistency is one of the bench-
marks of a Bayesian procedure under consideration, which ensures that with a sufficiently
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large amount of data, it is nearly possible to discover the true identified set.
We assume there is a true value of φ, denoted by φ0, which induces a true identified

set Θ(φ0), and a true F , denoted by F0. Our goal is to achieve the frequentist posterior
consistency for the partially identified parameter: for any ε > 0 there is τ ∈ (0, 1] such that

P (θ ∈ Θ(φ0)ε|Dn)→p 1, and P (θ ∈ Θ(φ0)−ε|Dn)→p (1− τ).

Here Θ(φ)ε and Θ(φ)−ε are the ε-envelope and ε-contraction of Θ(φ), respectively:

Θ(φ)ε = {θ ∈ Θ : d(θ,Θ(φ)) ≤ ε}, Θ(φ)−ε = {θ ∈ Θ(φ) : d(θ,Θ\Θ(φ)) ≥ ε}, (4.2)

with Θ\Θ(φ) = {θ ∈ Θ; θ /∈ Θ(φ)} and d(θ,Θ(φ)) = infx∈Θ(φ) ‖θ − x‖. Note that this result
still carries over when θ is point identified, in which case Θ(φ)ε is an ε-ball around θ, Θ(φ)−ε

is empty, and τ = 1.
The likelihood function is endowed with a prior through either the nonparametric prior

π(F ) as described in Section 3.2 or the semi-parametric prior π(φ) as described in Appendix
A. We assume that the priors π(F ) and π(φ) specified for F and φ are such that the
corresponding posterior distribution of p(φ|Dn) is consistent.

Assumption 4.1. At least one of the following holds:

(i) The measurable function φ(F ) : F → Φ is continuous. The prior π(F ) is such that the
posterior p(F |Dn) satisfies:∫

F
m(F )p(F |Dn)dF →p

∫
F
m(F )δF0(dF )

for any bounded and continuous function m(·) on F where δF0 is the Dirac function at
the true distribution function F0;

(ii) The prior π(φ) is such that the posterior p(φ|Dn) satisfies:∫
Φ

m(φ)p(φ|Dn)dφ→p

∫
Φ

m(φ)δφ0(dφ)

for any bounded and continuous function m(·) on Φ where δφ0 is the Dirac function at
the true φ0.

Assumptions 4.1 (i) and (ii) refer to the nonparametric and semi-parametric prior scheme
respectively, and are verified by many nonparametric and semi-parametric priors. Ex-
amples are: Dirichlet process priors, Polya Tree process priors, Gaussian process priors,
etc. For instance, when π(F ) is the Dirichlet process prior, the second part of Assump-
tion 4.1 (i) was proved in Ghosh and Ramamoorthi (2003, Theorem 3.2.7) while the con-
dition that φ(F ) is continuous in F is verified in many examples relevant for applica-
tions. For instance, in Example 3.1, φ(F ) = (E(Y1|F ), E(Y2|F ))T and in Example 3.2,
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φ(F ) = (E(ZY1|F ), E(ZXT |F ), E(ZY2|F )), which are all bounded linear functionals of F .
We refer to Ghosh and Ramamoorthi (2003) for examples and sufficient conditions for this
assumption.

Assumption 4.2 (Prior for φ). For any ε > 0 there are measurable sets A2 ⊂ A1 ⊂ Φ such
that 0 < π(φ ∈ Ai) ≤ 1, i = 1, 2 and
(i) for all φ ∈ A1, Θ(φ0)ε ∩Θ(φ) 6= ∅; for all φ /∈ A1, Θ(φ0)ε ∩Θ(φ) = ∅,
(ii) for all φ ∈ A2, Θ(φ0)−ε ∩Θ(φ) 6= ∅; for all φ /∈ A2, Θ(φ0)−ε ∩Θ(φ) = ∅.

Assumption 4.2 is satisfied as long as the identified set Θ(φ) is bounded and the prior of
φ spreads over a large support of the parameter space. This assumption allows us to prove
the posterior consistency without assuming the prior π(θ|φ) to be a continuous function of φ,
and therefore priors like Iφ1<θ<φ2 in the interval censoring data example are allowed. Under
this assumption the conditional prior probability of the ε-envelope of the true identified set
can be approximated by a continuous function, that is, there is a sequence of bounded and
continuous functions hm(φ) such that (see lemma D.1 in the appendix) almost surely in φ:

π(θ ∈ Θ(φ0)ε|φ) = lim
m→∞

hm(φ).

A similar approximation holds for the conditional prior of the ε-contraction π(θ ∈ Θ(φ0)−ε|φ).

Assumption 4.3 (Prior for θ). For any ε > 0, and φ ∈ Φ, π(θ ∈ Θ(φ)−ε|φ) < 1.

In the special case when θ is point identified (Θ(φ) is a singleton), the ε-contraction is
empty and thus π(θ ∈ Θ(φ)−ε|φ) = 0.

Assumption 4.3 is an assumption on the prior for θ, which means the identified set should
be sharp with respect to the prior information. Roughly speaking, the support of the prior
should not be a proper subset of any ε-contraction of the identified set Θ(φ). If otherwise
the prior information restricts θ to be inside a strict subset of Θ(φ) so that Assumption 4.3
is violated, then that prior information should be taken into account in order to shrink Θ(φ)
to a sharper set. In that case, the posterior will asymptotically concentrate around a set
that is smaller than the set identified by the data alone. Remark that assumption 4.3 is not
needed for the first part of Theorem 4.1 below.

The following theorem gives the posterior consistency for partially identified parameters.

Theorem 4.1. Under Assumptions 4.1 and 4.2, for any ε > 0,

P (θ ∈ Θ(φ0)ε|Dn)→p 1.

If Assumption 4.3 is further satisfied, then there is τ ∈ (0, 1] such that

P (θ ∈ Θ(φ0)−ε|Dn)→p (1− τ).
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5 Bayesian Inference of Support Function

Our analysis focuses on identified sets which are closed and convex. These sets are com-
pletely determined by their support functions, and efficient estimation of support functions
may lead to optimality of estimation and inference of the identified set. As a result, much
of the new development in the partially identified literature focuses on the support function,
e.g., Kaido and Santos (2013), Kaido (2012), Beresteanu and Molinari (2008), Bontemps et
al. (2012).

This section develops Bayesian analysis for the support function Sφ(ν) of the identified
set Θ(φ). We consider a more specific partially identified model: the moment inequality
model which is described in section 5.1 below. Bayesian inference for the support function
has two main interests. First, it provides an alternative way to characterize and perform
estimation of the identified set Θ(φ), which in many cases is relatively easy for computations
and simulations. Second, it allows us to construct a two-sided BCS for Θ(φ) that is also
asymptotically equivalent to a frequentist confidence set. In this section we first develop
a local linearization in φ of the support function. As the support function itself is “point
identified”, we prove that its posterior satisfies the Bernstein-von Mises theorem. This result
is per se of particular interest in the nonparametric Bayesian literature.

5.1 Moment Inequality Model

The moment inequality model assumes that θ satisfies k moment restrictions:

Ψ(θ, φ) ≤ 0, Ψ(θ, φ) = (Ψ1(θ, φ), ...,Ψk(θ, φ))T (5.1)

where Ψ : Θ×Φ→ Rk is a known function of (θ, φ). The identified set can be characterized
as:

Θ(φ) = {θ ∈ Θ : Ψ(θ, φ) ≤ 0}. (5.2)

Since most of the partially identified models can be characterized as moment inequality
models, model (5.1)-(5.2) has received extensive attention in the literature.

We assume each component of Ψ(θ, φ) to be a convex function of θ for every φ ∈ Φ, as
stated in the next assumption.

Assumption 5.1. Ψ(θ, φ) is continuous in (θ, φ) and convex in θ for every φ ∈ Φ.

Let us consider the support function Sφ(·) : Sd → R of the identified set Θ(φ). We restrict
its domain to the unit sphere Sd in Rd since Sφ(ν) is positively homogeneous in ν. Under
Assumption 5.1 the support function is the optimal value of an ordinary convex program:

Sφ(ν) = sup
θ∈Θ
{νT θ; Ψ(θ, φ) ≤ 0}.
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Therefore, it also admits a Lagrangian representation (see Rockafellar 1970, chapter 28):

Sφ(ν) = sup
θ∈Θ
{νT θ − λ(ν, φ)TΨ(θ, φ)}, (5.3)

where λ(ν, φ) : Sd × Rdφ → Rk
+ is a k-vector of Lagrange multipliers.

We denote by ΨS(θ, φ0) the kS-subvector of Ψ(θ, φ0) containing the constraints that are
strictly convex functions of θ and by ΨL(θ, φ0) the kL constraints that are linear in θ. So
kS+kL = k. The corresponding Lagrange multipliers are denoted by λS(ν, φ0) and λL(ν, φ0),
respectively, for ν ∈ Sd. Moreover, define Ξ(ν, φ) = arg maxθ∈Θ{νT θ; Ψ(θ, φ) ≤ 0} as the
support set of Θ(φ). Then, by definition,

νT θ = Sφ(ν), ∀θ ∈ Ξ(ν, φ).

We also denote by ∇φΨ(θ, φ) the k× dφ matrix of partial derivatives of Ψ with respect to φ,
and by ∇θΨi(θ, φ) the d-vector of partial derivatives of Ψi with respect to θ for each i ≤ k.
In addition, let

Act(θ, φ) ≡ {i ≤ k; Ψi(θ, φ) = 0}

be the set of the inequality active constraint indices. For some δ > 0, let B(φ0, δ) = {φ ∈
Φ; ‖φ− φ0‖ ≤ δ}.

We assume the following:

Assumption 5.2. The true value φ0 is in the interior of Φ, and Θ is convex and compact.

Assumption 5.3. There is some δ > 0 such that for all φ ∈ B(φ0, δ), we have:
(i) the matrix ∇φΨ(θ, φ) exists and is continuous in (θ, φ);
(ii) the set Θ(φ) is non empty;
(iii) there exists a θ ∈ Θ such that Ψ(θ, φ) < 0;
(iv) Θ(φ) belongs to the interior of Θ;
(v) for every i ∈ Act(θ, φ0), with θ ∈ Θ(φ0), the vector ∇θΨi(θ, φ) exists and is continuous
in (θ, φ) for every φ ∈ B(φ0, δ) and θ ∈ Θ(φ).

Assumption 5.3 (iii) is the Slater’s condition which is a sufficient condition for strong
duality to hold. It implies Assumption 5.3 (ii). However, we keep both conditions because
in order to establish some technical results we only need condition (ii) which is weaker.

The next assumption concerns the inequality active constraints. Assumption 5.4 requires
that the active inequality constraints gradients ∇θΨi(θ, φ0) be linearly independent. This
assumption guarantees that a θ which solves the optimization problem (5.3) with φ = φ0

satisfies the Kuhn-Tucker conditions. Alternative assumptions that are weaker than As-
sumption 5.4 could be used, but the advantage of Assumption 5.4 is that it is easy to check.

Assumption 5.4. For any θ ∈ Θ(φ0), the gradient vectors {∇θΨi(θ, φ0)}i∈Act(θ,φ0) are lin-
early independent

The following assumption is key for our analysis, and is sufficient for the differentiability
of the support function at φ0:
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Assumption 5.5. At least one of the following holds:

(i) For the ball B(φ0, δ) in Assumption 5.3, for every (ν, φ) ∈ Sd × B(φ0, δ), Ξ(ν, φ) is a
singleton;

(ii) There are linear constraints in Ψ(θ, φ0), which are also separable in θ, that is, kL > 0
and ΨL(θ, φ0) = A1θ+A2(φ0) for some function A2 : Φ→ RkL (not necessarily linear)
and some (kL × d)-matrix A1.

Assumption 5.5 is particularly important for the linearization of the support function
that we develop in Section 5.2. In fact, if one of the two parts of Assumption 5.5 holds then
the support function is differentiable at φ for every (ν, φ) ∈ Sd × B(φ0, δ), and we have a
closed form for its derivative. This assumption also plays one of the key roles in the study
of asymptotic efficiency by Kaido and Santos (2013).

The last set of assumptions will be used to prove the Bernstein-von Mises theorem for
Sφ(·) and allows to strengthen the result of Theorem 5.1 below. The first three assumptions
are (local) Lipschitz equi-continuity assumptions.

Assumption 5.6. For the ball B(φ0, δ) in Assumption 5.3, for some K > 0 and ∀φ1, φ2 ∈
B(φ0, δ):

(i) supν∈Sd ‖λ(ν, φ1)− λ(ν, φ2)‖ ≤ K‖φ1 − φ2‖;

(ii) supθ∈Θ ‖∇φΨ(θ, φ1)−∇φΨ(θ, φ2)‖ ≤ K‖φ1 − φ2‖;

(iii) ‖∇φΨ(θ1, φ0)−∇φΨ(θ2, φ0)‖ ≤ K‖θ1 − θ2‖, for every θ1, θ2 ∈ Θ;

(iv) If Ξ(ν, φ0) is a singleton for any ν in some compact subset W ⊆ Sd, and if the corre-
spondence (ν, φ) 7→ Ξ(ν, φ) is upper hemicontinous on Sd × B(φ0, δ) then there exists
ε = O(δ) such that Ξ(ν, φ1) ⊆ Ξε(ν, φ0).

Here ‖∇φΨ(θ, φ)‖ denotes the Frobenius norm of the matrix. The above conditions are
not stringent. In particular, condition (iv) is easy to understand when Ξ(p, φ) is a singleton,
that is, when the optimization problem for the support function has a unique solution, for
each φ ∈ B(φ0, δ). Then Ξ(ν, φ1) and Ξ(ν, φ0) are singletons that are close to each other,
and Ξ(ν, φ0)ε is a small ball around Ξ(ν, φ0).

We show in the following example that Assumptions 5.1-5.6 are easily satisfied.

Example 5.1 (Interval censored data - continued). The setup is the same as in Example 3.1.
Assumption 5.2 is verified if Y1 and Y2 are two random variables with finite first moments
φ0,1 and φ0,2, respectively. Moreover, Ψ(θ, φ) = (φ1 − θ, θ − φ2)T , φ = (φ1, φ2)T ,

∇φΨ(θ, φ) =

(
1 0
0 −1

)
so that Assumptions 5.1, 5.2 and 5.3 (i)-(ii) are trivially satisfied. Assumption 5.3 (iii) holds
for every θ inside (φ1, φ2); Assumption 5.3 (iv) is satisfied if φ1 and φ2 are bounded. To see
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that Assumptions 5.3 (v) and 5.4 are satisfied note that ∀θ < φ0,1 we have Act(θ, φ0) = {1},
∀θ > φ0,2 we have Act(θ, φ0) = {2} while ∀θ ∈ [φ0,1, φ0,2] we have Act(θ, φ0) = ∅. Assumption
5.5 (i) and (ii) are both satisfied since the support set takes the values Ξ(1, φ) = φ2 and
Ξ(−1, φ) = −φ1 and the constraints in Ψ(θ, φ0) are both linear with A1 = (−1, 1)T and
A2(φ0) = ∇φΨ(θ, φ0)φ0.

Assumptions 5.6 (ii)-(iii) are naturally satisfied because ∇φΦ(θ, φ) does not depend on
(θ, φ). The Lagrange multiplier is λ(ν, φ) = (−νI(ν < 0), νI(ν ≥ 0))T so that Assumption
5.6 (i) is satisfied since the norm is equal to 0. Finally, the support set Ξ(ν, φ) = φ1I(ν <
0) + φ2I(ν ≥ 0) is a singleton for every φ ∈ B(φ0, δ) and Ξ(ν, φ0)ε = {θ ∈ Θ; ‖θ − θ∗‖ ≤ ε}
where θ∗ = Ξ(ν, φ0) = φ0,1I(ν < 0) + φ0,2I(ν ≥ 0). Therefore, ‖Ξ(ν, φ) − θ∗‖ ≤ δ and
Assumption 5.6 (iv) holds with ε = δ. �

5.2 Asymptotic Analysis

The support function of the closed and convex set Θ(φ) admits directional derivatives in
φ, see e.g. Milgrom and Segal (2002). Moreover, if Assumption 5.5 holds for a particular
value (ν, φ), then Sφ(ν) is differentiable at φ and its derivative is equal to the left and right
directional derivatives. The next theorem exploits this fact and states that the support
function can be locally approximated by a linear function of φ.

Theorem 5.1. If Assumptions 5.1-5.5 hold with δ = rn for some rn = o(1), then there is
N ∈ N such that for every n ≥ N , there exist: (i) a real function f(φ1, φ2) defined for every
φ1, φ2 ∈ B(φ0, rn), (ii) a Lagrange multiplier function λ(ν, φ0) : Sd × Rdφ → Rk

+, and (iii)
a Borel measurable mapping θ∗(ν) : Sd → Θ satisfying θ∗(ν) ∈ Ξ(ν, φ0) for all ν ∈ Sd, such
that for every φ1, φ2 ∈ B(φ0, rn):

sup
ν∈Sd

∣∣(Sφ1(ν)− Sφ2(ν))− λ(ν, φ0)T∇φΨ(θ∗(ν), φ0)[φ1 − φ2]
∣∣ = f(φ1, φ2)

and f(φ1,φ2)
‖φ1−φ2‖ → 0 uniformly in φ1, φ2 ∈ B(φ0, rn) as n→∞.

We remark that the functions λ and θ∗ do not depend on the specific choice of φ1 and
φ2 inside B(φ0, rn), but only on ν and the true value φ0. The expansion can also be viewed
as stochastic when φ1, φ2 are interpreted as random variables associated with the posterior
distribution P (φ|Dn). This interpretation is particularly useful to understand Theorems 5.2
and 5.3.

With the approximation given in the theorem we are now ready to state posterior con-
sistency (with concentration rate) and asymptotic normality of the posterior distribution of
Sφ(ν). The posterior consistency of the support function is also based upon the posterior
concentration rate for φ. In a semi-parametric Bayesian model where φ is point identified,
the posterior of φ achieves a near-parametric concentration rate under proper prior condi-
tions. Since our goal is to study the posterior of Sφ(ν), we state a high-level assumption on
the posterior of φ as follows, instead of deriving it from more general conditions.
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Assumption 5.7. The marginal posterior of φ is such that, for some C > 0,

P (‖φ− φ0‖ ≤ Cn−1/2(log n)1/2|Dn)→p 1.

This assumption is a standard result in semi/non-parametric Bayesian literature. If we
place a nonparametric prior on F as described in Section 3.2, the notation used in this
assumption is a shorthand for

P (‖φ(F )− φ(F0)‖ ≤ Cn−1/2(log n)1/2|Dn)→p 1.

When the likelihood function is unknown, a formal derivation of this assumption for a semi-
parametric prior of (φ, F ) will be presented in Appendix B.

The next theorem gives the contraction rate for the posterior of the support function.

Theorem 5.2. Under Assumption 5.7 and the Assumptions of Theorem 5.1 with rn =√
(log n)/n, for some C > 0,

P

(
sup
ν∈Sd
|Sφ(ν)− Sφ0(ν)| < C(log n)1/2n−1/2

∣∣∣∣Dn

)
→p 1. (5.4)

Remark 5.1. The above result holds for both nonparametric and semi-parametric prior on

(φ, F ). The concentration rate, as given in the theorem, is nearly parametric:
√

logn
n

and is

the same as the rate in assumption 5.7. Thus, when the posterior for φ contracts at the rate
n−1/2, the same holds for the posterior of the support function. The posterior probability
in the theorem is now converging to zero, instead of being smaller than an arbitrarily small
constant. This often gives rise to the term

√
log n, which arises commonly in the posterior

concentration rate literature (e.g., Ghosal et al. 2000, Shen and Wasserman 2001). The
same rate of convergence in the frequentist perspective has been achieved by Chernozhukov
et al. (2007), Beresteanu and Molinari (2008), Kaido and Santos (2013), among others, when
estimating the identified set.

We now state a Bernstein-von Mises (BvM) theorem for the support function. This the-
orem is valid under the assumption that a BvM theorem holds for the posterior distribution
of the identified parameter φ. We denote by ‖ · ‖TV the total variation distance, that is, for
two probability measures P and Q,

‖P −Q‖TV ≡ sup
B
|P (B)−Q(B)|

where B is an element of the σ-algebra on which P and Q are defined.

Assumption 5.8. Let P√n(φ−φ0)|Dn denote the posterior distribution of
√
n(φ − φ0). We

assume
‖P√n(φ−φ0)|Dn −N (∆n,φ0 , I

−1
0 )‖TV →p 0
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where N denotes the dφ-dimensional normal distribution, ∆n,φ0 ≡ n−1/2
∑n

i=1 I
−1
0 lφ0(Xi),

lφ0 is the semi-parametric efficient score function of the model and I0 denotes the semi-
parametric efficient information matrix.

As we focus on the partial identification features, we state the above assumption as a
high-level condition instead of proving it. We refer to Bickel and Kleijn (2012) and Rivoirard
and Rousseau (2012) for primitive conditions of this assumption in semi-parametric models.
Remark that lφ0 and I0 also depend on the true likelihood function. The semi-parametric effi-
cient score function and the semi-parametric efficient information contribute to the stochas-
tic local asymptotic normality (LAN, Le Cam 1986) expansion of the integrated likelihood,
which is necessary in order to get the BvM result in Assumption 5.8. A precise definition
of lφ0 and I0 may be found in van der Vaart (2002) (Definition 2.15). In particular, they
become the usual score function (first derivative of the likelihood) and Fisher’s information
matrix when the true likelihood is fully parametric.

Below we denote P√n(Sφ(ν)−Sφ0 (ν))|Dn as the posterior distribution of
√
n(Sφ(ν)−Sφ0(ν)).

Theorem 5.3. Let Assumption 5.8 hold. If the assumptions of Theorem 5.2 and Assumption
5.6 hold with δ = rn =

√
(log n)/n, then for any ν ∈ Sd,

‖P√n(Sφ(ν)−Sφ0 (ν))|Dn −N (∆̄n,φ0(ν), Ī−1
0 (ν))‖TV →p 0,

where ∆̄n,φ0(ν) = λ(ν, φ0)T∇φΨ(θ∗(ν), φ0)∆n,φ0 and

Ī−1
0 (ν) = λ(ν, φ0)T∇φΨ(θ∗(ν), φ0)I−1

0 ∇φΨ(θ∗(ν), φ0)Tλ(ν, φ0).

The asymptotic mean and covariance matrix can be easily estimated by replacing φ0 by
any consistent estimator φ̂. Thus, θ∗(ν) will be replaced by an element θ̂∗(ν) ∈ Ξ(ν, φ̂) and
an estimate of λ(ν, φ0) will be obtained by numerically solving the ordinary convex program
in (5.3) with φ0 replaced by φ̂.

Remark 5.2. The posterior asymptotic variance of the support function Ī−1
0 is the same

as that of the frequentist estimator obtained by Kaido and Santos (2013, Theorem 3.2).
Both are derived based on a linear expansion of the support function. This implies that the
Bayesian estimation of the support function is also asymptotically semi-parametric efficient in
the frequentist sense. On the other hand, there is also a major difference between our results
and theirs because when studying the posterior distributions, we do not have an empirical
process as Kaido and Santos (2013) do. This requires us to develop a different strategy to
prove the linear expansion given in Theorem 5.1 as well as the asymptotic normalities given
in Theorems 5.3 and 5.4 below. This also achieves a more strengthened result because the
expansion in Theorem 5.1 is uniformly valid in a neighborhood of φ0.

Remark 5.3. The support function Sφ(·) is a stochastic process with realizations in C(Sd),
the space of bounded continuous functions on Sd. Despite of the pointwise convergence in
Theorem 5.3 for each fixed ν, however, the posterior distribution of the process

√
n(Sφ(·)−

20



Sφ0(·)) does not converge to a Gaussian measure on C(Sd) in the total variation distance.
Roughly speaking, the convergence in total variation would require the existence of a Gaus-
sian measure G(·) on C(Sd) such that uniformly in all Borel measurable sets B of C(Sd),

|P√n(Sφ(·)−Sφ0 (·))|Dn(B)−G(B)| →p 0, (5.5)

where P√n(Sφ(·)−Sφ0 (·))|Dn denotes the posterior distribution of the centered support function.

However, in general (5.5) does not hold uniformly in all the Borel sets B. Such a negative
result can be made rigorous, and is generally known, see e.g., Freedman (1999) or Leahu
(2011). �

On the positive side, a weak Bernstein-von Mises theorem holds with respect to the
weak topology. More precisely, let G be a Gaussian measure on C(Sd) with mean function
∆̄n,φ0(·) = λ(·, φ0)T∇φΨ(θ∗(·), φ0)∆n,φ0 and covariance operator with kernel

Ī−1
0 (ν1, ν2) = λ(ν1, φ0)T∇φΨ(θ∗(ν1), φ0)I−1

0 ∇φΨ(θ∗(ν2), φ0)Tλ(ν2, φ0), ∀ν1, ν2 ∈ Sd.

We then have the following theorem. For a set B, denote by ∂B the boundary set of B.

Theorem 5.4. Let B be the class of Borel measurable sets in C(Sd) such that G(∂B) = 0.
Under the assumptions of Theorem 5.3,

sup
B∈B

∣∣∣P√n(Sφ(·)−Sφ0 (·))|Dn(B)−G(B)
∣∣∣→p 0. (5.6)

Let ‘⇒’ denote weak convergence on the class of probability measures on C(Sd). Then equiv-
alently,

P√n(Sφ(·)−Sφ0 (·))|Dn ⇒ G(·). (5.7)

5.3 Models with moment equalities

Our analysis carries over when the model contains both moment equalities and inequal-
ities if the moment equality functions are affine functions. This case is more general than
the previous one. Suppose that the identified set writes as

Θ(φ) = {θ ∈ Θ; Ψi(θ, φ) ≤ 0, i = 1, . . . , k1 and

aTi θ + bi(φ) = 0, i = k1 + 1, . . . , k1 + k2} (5.8)

where ai is a (d× 1)-vector and bi is a continuous real-valued function of φ for all i. Let k1

denote the number of moment inequalities, k2 denote the number of moment equalities, and
k = k1 + k2. We then define Ψ(θ, φ) as the (k × 1) vector whose first k1 components are the
functions Ψi(θ, φ), i = 1, . . . , k1 and the last k2 components are the functions aTi θ + bi(φ),
i = k1 + 1, . . . , k1 + k2.
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The set Θ(φ) is closed and convex (with an empty interior) since it is the intersection of
a closed and convex set with closed hyperplanes. In this case, the support function still has
a Lagrangian representation as:

Sφ(ν) = sup
θ∈Θ
{νT θ − λ(ν, φ)TΨ(θ, φ)},

where λ(ν, φ) : Sd × Rdφ → Rk1
+ × Rk2 is a k-vector of Lagrange multipliers (see Rockafellar

1970, chapter 28). Assumptions 5.1-5.5 remain unchanged except for Assumption 5.3 (iii),
which is replaced by:

Assumption 5.3. (iii) There is some δ > 0 such that for all φ ∈ B(φ0, δ) there exists a
θ ∈ Θ such that Ψi(θ, φ) < 0, ∀i = 1, . . . , k1.

The results of Section 5.2 are still valid with minor modifications in the proofs. We detail
these modifications in Appendix E.5.

6 Bayesian Credible Sets

Inferences can be carried out through finite-sample Bayesian credible sets (BCS’s). We
study two kinds of BCS’s: credible sets for θ and credible sets for the identified set Θ(φ).

6.1 Credible set for Θ(φ)

6.1.1 Two-sided BCS

We focus on the case when the identified set is convex and closed, and aim at constructing
two-sided credible sets A1 and A2 such that

P (A1 ⊂ Θ(φ) ⊂ A2|Dn) ≥ 1− τ

for τ ∈ (0, 1), where the probability is taken with respect to the posterior of φ. Our con-
struction is based on the support function. To illustrate why support function can help, for
a set Θ(φ) recall its ε-envelope: Θ(φ)ε = {θ ∈ Θ : d(θ,Θ(φ)) ≤ ε} and its ε-contraction:
Θ(φ)−ε = {θ ∈ Θ(φ) : d(θ,Θ\Θ(φ)) ≥ ε} where ε ≥ 0. Let φ̂ be a Bayesian estimator for φ0,
which can be, e.g., the posterior mean or mode. We have, for any cn ≥ 0,

P (Θ(φ̂)−cn ⊂ Θ(φ) ⊂ Θ(φ̂)cn|Dn) = P ( sup
‖ν‖=1

|Sφ(ν)− Sφ̂(ν)| ≤ cn|Dn).

Note that the right hand side of the above equation depends on the posterior of the support
function. Let qτ be the 1− τ quantile of the posterior of

J(φ) =
√
n sup
‖ν‖=1

|Sφ(ν)− Sφ̂(ν)|
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so that

P

(
J(φ) ≤ qτ

∣∣∣∣Dn

)
= 1− τ. (6.1)

The posterior of J(φ) is determined by that of φ. Hence qτ can be simulated efficiently from
the MCMC draws from p(φ|Dn). Immediately, we have the following theorem:

Theorem 6.1. Suppose for any τ ∈ (0, 1), qτ is defined as in (6.1), then for every sampling
sequence Dn,

P (Θ(φ̂)−qτ/
√
n ⊂ Θ(φ) ⊂ Θ(φ̂)qτ/

√
n|Dn) = 1− τ.

In particular, Θ(φ̂)−qτ/
√
n is allowed to be an empty set.

Remark 6.1. It is straightforward to construct the one-sided BCS for Θ(φ) using the de-
scribed procedure. For example, let q̃τ be such that

P (
√
n sup
‖ν‖=1

(Sφ(ν)− Sφ̂(ν)) ≤ q̃τ |Dn) = 1− τ.

Then, P (Θ(φ) ⊂ Θ(φ̂)q̃τ/
√
n|Dn) = 1− τ for every sampling sequence Dn.

6.1.2 Frequentist coverage probability of BCS for Θ(φ)

The constructed two-sided BCS for the identified set has desired frequentist properties,
which follows from the Bernstein-von Mises Theorem (see Theorem 5.3) of the support
function. The frequentist coverage probability for a general (two-sided) multi-dimensional
BCS has been largely unknown in the literature before. The analysis relies on the following
assumption, which requires the asymptotic normality and semi-parametric efficiency of the
consistent estimator φ̂. Under mild conditions, it holds for many regular estimators such as
the posterior mean, mode and the maximum likelihood estimator.

Assumption 6.1. The consistent estimator φ̂ satisfies

√
n(φ̂− φ0)→d N (0, I−1

0 )

where I0 denotes the semi-parametric efficient information matrix as in Assumption 5.8.

Theorem 6.2. Consider the moment inequality model in (5.1)-(5.2). If the Assumptions of
Theorem 5.3 and Assumption 6.1 hold, then the constructed two-sided Bayesian credible set
has asymptotically correct frequentist coverage probability, that is, for any τ ∈ (0, 1),

PDn(Θ(φ̂)−qτ/
√
n ⊂ Θ(φ0) ⊂ Θ(φ̂)qτ/

√
n) ≥ 1− τ + op(1).2

where PDn(.) denote the probability measure based on the sampling distribution, fixing (θ, φ) =
(θ0, φ0).

2The result presented here is understood as: There is a random sequence ∆(Dn) that depends on Dn such

that ∆(Dn) = op(1), and for any sampling sequence Dn, we have PDn(Θ(φ̂)−qτ/
√
n ⊂ Θ(φ0) ⊂ Θ(φ̂)qτ/

√
n) ≥

1− τ + ∆(Dn). Similar interpretation applies to (6.2).
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Note that in Theorem 6.1, the random set is Θ(φ), while in Theorem 6.2 the random sets
are Θ(φ̂)−qτ/

√
n and Θ(φ̂)qτ/

√
n. The rationale of this theorem is that, because the identified

set itself is “point identified”, its prior does not depend on that of θ and is dominated by
the data asymptotically.

Remark 6.2. Note that qτ depends only on the posterior of φ. Hence Theorem 6.2 does not
rely on the prior of θ, and shows asymptotic robustness to the prior of φ. It also holds when
Θ(φ) becomes a singleton, and in that case the lower-side Θ(φ̂)−qτ/

√
n is empty. Therefore

the point identified case is also nested. We shall discuss the uniformity issue in more detail
in Section 9.

Similarly, we can show that the one-sided BCS as constructed in Remark 6.1 above has
asymptotically correct coverage probability too. For example, for q̃τ such that
P (
√
n sup‖ν‖=1(Sφ(ν)− Sφ̂(ν)) ≤ q̃τ |Dn) = 1− τ , then

PDn(Θ(φ0) ⊂ Θ(φ̂)q̃τ/
√
n) ≥ 1− τ + op(1). (6.2)

6.2 Credible set for θ

We now construct the Bayesian credible set for θ. A BCS for θ at level 1 − τ is a set
BCS(τ) such that

P (θ ∈ BCS(τ)|Dn) = 1− τ

for τ ∈ (0, 1). One of the popular choices of the credible set is the highest-probability-density
(HPD) set, which has been widely used in empirical studies and also used in the Bayesian
partially identified literature by e.g., Moon and Schorfheide (2012) and Norets and Tang
(2012).

The BCS can be compared with the frequentist confidence set (FCS). A frequentist
confidence set FCS(τ) for θ0 satisfies

lim
n→∞

inf
φ∈Φ

inf
θ0∈Θ(φ)

PDn(θ0 ∈ FCS(τ)) ≥ 1− τ.

There have been various procedures in the literature to construct a FCS(τ) that satisfies
the above inequality. One of the important FCS’s is based on a consistent estimator φ̂ of
φ0 such that Θ(φ̂) ⊂ FCS(τ). By using a known likelihood function, Moon and Schorfheide
(2012) compared the BCS with this type of FCS and showed that the BCS and FCS are
asymptotically different. As Theorem 6.3 below shows, such a comparison still carries over
under the more robust semi-parametric Bayesian setup. The following assumption is needed.

Assumption 6.2. (i) The frequentist FCS(τ) is such that, there is φ̂ with ‖φ̂− φ0‖ = op(1)

satisfying Θ(φ̂) ⊂ FCS(τ).
(ii) π(θ ∈ Θ(φ)|φ) = 1 for all φ ∈ Φ; sup(θ,φ)∈Θ×Φ π(θ|φ) <∞.

Many frequentist FCS’s satisfy condition (i), see, e.g., Imbens and Manski (2004), Cher-
nozhukov et al. (2007), Rosen (2008), Andrews and Soares (2010), etc. Condition (ii) is easy
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to verify since Θ× Φ is compact. When for every φ ∈ Φ, Θ(φ) is not a singleton, examples
of π(θ|φ) satisfying assumption 6.2 (ii) include: the uniform prior with density

π(θ|φ) = µ(Θ(φ))−1Iθ∈Θ(φ),

where µ(·) denotes the Lebesgue measure; and the truncated normal prior with density

π(θ|φ) =

[∫
Θ(φ)

h(x;λ,Σ)dx

]−1

h(θ;λ,Σ)Iθ∈Θ(φ),

where h(x;λ,Σ) is the density function of a multinormal distribution N (λ,Σ).

Theorem 6.3. Under Assumption 6.2 and the assumptions of Theorem 5.2, ∀τ ∈ (0, 1),
(i)

P (θ ∈ FCS(τ)|Dn)→p 1,

(ii)
P (θ ∈ FCS(τ), θ /∈ BCS(τ)|Dn)→p τ.

Remark 6.3. Theorem 6.3 (i) shows that the posterior probability that θ lies inside the
frequentist confidence set is arbitrarily close to one, as n → ∞. This indicates that the
posterior will asymptotically concentrate inside the FCS. On the other hand, by (ii), there
is a non-negligible probability that FCS is strictly larger than BCS. The prior information
on θ still plays a non-negligible role in the posterior as the sample size increases.

Our prior condition in Assumption 6.2 (ii) implies that Theorem 6.3 only focuses on
partial identification. It can be restrictive in the point identified case. Because our prior
is such that π(θ ∈ Θ(φ)|φ) = 1 for each φ, when Θ(φ) is a singleton π(θ|φ) becomes a
Dirac function and supθ,φ π(θ|φ) <∞ cannot be expected to hold in this case. On the other
hand, Assumption 6.2 (ii) does cover many partially identified models of interest, and it is a
prior assumption that has been used frequently elsewhere in the literature, e.g., Moon and
Schorfheide (2012) and Gustafson (2012).

7 Projection and Subset Inference

One of the important features of the proposed procedure is that it is relatively easy
to marginalize onto low-dimensional subspaces, and the computation is fast. Suppose the
dimension of θ is relatively large, but we are interested in only one component of θ, say θ1.
Then projections aim at constructing the BCS’s for θ1 and for its identified set Θ̃(φ)1.

We illustrate this by using the interval regression example (Example 3.2). Suppose the
full parameter θ is high-dimensional. Let W1 = ZY1, W2 = ZY2 and V = ZxT . Here
φ1 = EW1, φ2 = EV and φ3 = EW2. Let φ = (φT1 , vec(φ2)T , φT3 ), and e = (1, 0, ..., 0)T . The
identified set for θ1 can be expressed using the support function Sφ(·):

Θ̃(φ)1 = {θ1 : ∃ω = (θ2, ..., θd) such that (θ1, ω) ∈ Θ(φ)} = [−Sφ(−e), Sφ(e)],
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where the exact expression for Sφ(·) is given in Appendix C.1 in the supplementary material.
We place a Dirichlet process prior Dir(ν0, Q0) on the joint CDF of (W1,W2, V ). By the stick-
breaking representation (see Sethuraman 1994) the deduced posterior distribution of φ is the
distribution of the following quantity:

φ|Dn = ρ

n∑
i=1

βiDn,i + (1− ρ)
∞∑
j=1

αjξj (7.1)

where Dn,i is the ith observation of the vector (W T
1 , vec(V )T ,W T

2 ), ρ is drawn from a Beta
distribution Be(n, ν0) independently of the other quantities, (β1, . . . , βn) is drawn from a
Dirichlet distribution of parameters (1, . . . , 1) on the simplex Sn−1 of dimension (n − 1),
ξj ∼ iidQ0 and {αk}k≥1 are computed as αk = vk

∏k
l=1(1−vl) where {vl}l≥1 are independent

drawings from a beta distribution Be(1, ν0) and {vj}j≥1 are independent of {ξj}j≥1. In
practice, we can set a truncation K, so the infinite sum in the posterior representation
in (7.1) is replaced with a truncated sum (1 − ρ)

∑K
j=1 αjξj. In addition, (α1, ...αK) are

normalized so that
∑K

j=1 αj = 1.

We can place a uniform prior for θ, and draw {θ(i), φ(i)}Bi=1 from the posterior (θ, φ)|Dn.

Then {θ(i)
1 }Bi=1 are the draws from the marginal posterior of θ1. Let θ

(τ/2)
1 and θ

(1−τ/2)
1 be the

τ/2th and (1− τ/2)th sample quantiles of {θ(i)
1 }Bi=1. Then [θ

(τ/2)
1 , θ

(1−τ/2)
1 ] is the BCS(τ) of

θ1. Moreover, let qτ be the (1− τ)th quantile of the posterior of

J(φ) =
√
nmax{Sφ(e)− Sφ̂(e), Sφ(−e)− Sφ̂(−e)},

which can be approximated by the (1 − τ)th sample quantile of {J(φ(i))}Bi=1. We then

construct the BCS(τ) for Θ̃(φ)1 as [−Sφ̂(−e)− qτ√
n
, Sφ̂(e) + qτ√

n
].

We present a simple numerical result for illustration, where θ01 = 1, but the total di-
mension is high: dim(θ0) = 10. Let W1 ∼ N (0, 0.5I) and W2 ∼ N (5, I). Set ν0 = 3 and
the base measure Q0 = N (0, I). B = 100 posterior draws are sampled. While the finite
sample performance is very robust to the choice of the truncation K, we choose K following
the guidance of Ishwaran and James (2002), who obtained an approximation error of order
n exp(−(K − 1)/ν0) for truncations. Hence, in the simulation with n = 500, ν0 = 3, the
choice K = 50 gives an error of order 4 × 10−5. Table 1 summarizes the true identified set
Θ̃(φ0)1 for θ1, and the averaged BCS(0.1) for both θ1 and the projected set Θ̃(φ)1 over 50
replications. Results based on various choices of (n,B,K) are reported.

When computing the BCS for Θ̃(φ)1, it is also interesting to compare the computation
time with that of the high-dimensional projection based on the criterion function approach
as in, e.g. Chernozhukov et al. (2007), Andrews and Soares (2010) etc, because they have
the same asymptotic frequentist coverages as ours. For the moment inequalities Ψ(θ, φ) =
(φ2θ−φ3, φ1−φ2θ) ≤ 0 we employ the criterion function and construct a confidence set FCS
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Table 1: 90% Bayesian credible sets marginalized to the subset for θ1

n K B Θ̃(φ0)1 BCS for θ1 BCS for Θ̃(φ)1

500 50 100 [0, 1.667] [0.007, 1.667] [-0.174, 1.844]
50 500 [-0.008 1.666] [-0.174, 1.837]
100 100 [-0.012 1.662] [-0.181, 1.832]
100 500 [-0.000 1.667] [-0.169, 1.840]

1000 50 100 [0, 1.667] [0.023, 1.641] [-0.121, 1.789]
50 500 [0.011, 1.641] [-0.126, 1.786]
100 100 [0.036, 1.636] [-0.120, 1.781]
100 500 [0.025, 1.641] [-0.121, 1.786]

as in Chernozhukov et al. (2007):

Qn(θ) =
∑
j

max(Ψj(θ, φ̂), 0)2wj, FCS(τ) = {θ :
√
nQn(θ) ≤ cτ},

with wj = 1 and φ̂ the sample mean estimator of φ. The critical value cτ is obtained via
the bootstrap procedure proposed by Bugni (2010), which requires solving a constrained
optimization problem. We use the “fmincon” toolbox in Matlab for the numerical optimiza-
tion3, and then project FCS(τ) onto the subspace for θ1 to get the marginal confidence set
FCS1(τ). The projection is done through the following steps: generate {θ∗j}Mj=1 uniformly
from Θ. Let θ∗j,1 be the first component of θ∗j and

L(τ) = min{θ∗j,1 : θ∗j ∈ FCS(τ), j = 1, ...,M}, U(τ) = max{θ∗j,1 : θ∗j ∈ FCS(τ), j = 1, ...,M}.
(7.2)

Then [L(τ), U(τ)] forms a projected frequentist confidence interval for Θ̃(φ0)1. In the simu-
lation, we set a small parameter space Θ = ⊗10

i=1[−2, 2] in order to calculate L(τ) and U(τ)
efficiently.

Table 2 compares the computation times necessary to obtain the projected sets using
our proposed BCS and using the criterion function approach. Reported is the averaged time
for one computation over 50 replications, using the same simulated model. We see that the
proposed BCS projection computes much faster.

3We use the Matlab code of Bugni (2010), downloaded from the online supplement of Econometrica. The
optimization is solved constrained on an estimated identified set, which involves an additional parameter tn.
We set tn = log(n).
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Table 2: Computation times (in seconds) for the projected BCS and criterion-function-FCS

BCS FCS
K M

n B 50 100 500 30 50 100

500 50 0.065 0.073 0.129 9.169 10.214 10.955
100 0.128 0.142 0.248 18.963 18.893 19.496
200 0.244 0.273 0.479 37.067 36.599 37.288

1000 50 0.072 0.079 0.136 14.123 14.248 15.837
100 0.137 0.155 0.259 26 27.029 28.442
200 0.269 0.295 0.549 54.027 52.661 54.240

Proposed BCS and criterion-function-based-FCS are compared. B is the number of either posterior
draws (for BCS) or Bootstrap draws (for FCS) to compute the critical values; K is the truncation
number to approximate the Dirichlet process posterior; M is used in (7.2) for the projected FCS.
Computations are conducted using a 2.3 GHz Mac with Intel Core i7 CPU.

8 Posterior consistency for Θ(φ)

The estimation accuracy of the identified set is often measured, in the literature, by the
Hausdorff distance. Specifically, for a point a and a set A, let d(a,A) = infx∈A ‖a−x‖, where
‖ · ‖ denotes the Euclidean norm. The Hausdorff distance between sets A and B is defined
as

dH(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
= max

{
sup
a∈A

inf
b∈B
‖a− b‖, sup

b∈B
inf
a∈A
‖b− a‖

}
.

This section aims at deriving a rate rn = o(1) such that for some constant C > 0,

P (dH(Θ(φ),Θ(φ0)) < Crn|Dn)→p 1.

The above result is based upon two important features: (1) the posterior concentration rate
for φ which is stated in assumption 5.7, and (2) the continuity of the Hausdorff distance
with respect to φ.

The continuity of dH(Θ(φ),Θ(φ0)) with respect to φ in multi-dimensional models is hard
to verify. Hence, instead of assuming the continuity directly, we place a less demanding
assumption which implicitly implies the continuity but is relatively easier to verify. With
this aim, we consider the moment inequality model described in equations (5.1) - (5.2) and
place the following assumptions.

Assumption 8.1. The parameter space Θ× Φ is compact.
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Assumption 8.2. {Ψ(θ, ·) : θ ∈ Θ} is Lipschitz equi-continuous on Φ, that is, for some
K > 0, ∀φ1, φ2 ∈ Φ,

sup
θ∈Θ
‖Ψ(θ, φ1)−Ψ(θ, φ2)‖ ≤ K‖φ1 − φ2‖.

Given the compactness of Θ, this assumption is satisfied by many interesting examples
of moment inequality models.

Assumption 8.3. There exists a closed neighborhood U(φ0) of φ0, such that for any an =
O(1), and any φ ∈ U(φ0), there exists C > 0 that might depend on φ, so that

inf
θ:d(θ,Θ(φ))≥Can

max
i≤k

Ψi(θ, φ) > an.

Intuitively, when θ is bounded away from Θ(φ) (up to a rate an), at least one of the mo-
ment inequalities is violated, which means maxi≤k Ψi(θ, φ) > 0. This assumption quantifies
how much maxi≤k Ψi(θ, φ) will depart from zero. This is a sufficient condition for the partial
identification condition (4.5) in Chernozhukov, Hong and Tamer (2007). If we define

Q(θ, φ) = ‖max(Ψ(θ, φ), 0)‖ =

[
k∑
i=1

(max(Ψi(θ, φ), 0))2

]1/2

thenQ(θ, φ) = 0 if and only if θ ∈ Θ(φ). The partial identification condition in Chernozhukov
et al. (2007, condition (4.5)) assumes that there exists K > 0 so that for all θ,

Q(θ, φ) ≥ Kd(θ,Θ(φ)), (8.1)

which says that Q should be bounded below by a number proportional to the distance of
θ from the identified set if θ is bounded away from the identified set. Assumption 8.3 is a
sufficient condition for (8.1).

Example 8.1 (Interval censored data - continued). In the interval censoring data example,
Ψ(θ, φ) = (θ − φ2, φ1 − θ)T and for any φ = (φ1, φ2) and φ̃ = (φ̃1, φ̃2) we have: ‖Ψ(θ, φ) −
Ψ(θ, φ̃)‖ = ‖φ−φ̃‖. This verifies Assumption 8.2. Moreover, for any θ such that d(θ,Θ(φ)) ≥
an, either θ ≤ φ1−an or θ ≥ φ2+an. If θ ≤ φ1−an, then Ψ2(θ, φ) = φ1−θ ≥ an; if θ ≥ φ2+an,
then Ψ1(θ, φ) = θ − φ2 ≥ an. This verifies Assumption 8.3. �

The following theorem shows the concentration rate for the posterior of the identified set.

Theorem 8.1. Under Assumptions 5.7, 8.1-8.3, for some C > 0,

P (dH(Θ(φ),Θ(φ0)) > C

√
log n

n
|Dn)→p 0. (8.2)

Remark 8.1. The convergence in Hausdorff distance can be implied by that of the support
function for convex and close sets (e.g., Beresteanu and Molinari 2008). Therefore, (8.2) is
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another statement of result (5.4). However, they are obtained under different assumptions
and (8.2) is obtained directly from the perspective of the posterior of the identified set.

Remark 8.2. Recently, Kitagawa (2012) obtained the posterior consistency for Θ(φ) in
the one-dimensional case: P (dH(Θ(φ),Θ(φ0)) > ε|Dn) → 0 for almost every sampling se-
quence of Dn. This result was obtained for the case where Θ(φ) is a connected interval and
dH(Θ(φ),Θ(φ0)) is assumed to be a continuous map of φ. In multi-dimensional cases where
Θ(φ) is a more general convex set, however, verifying the continuity of dH(Θ(φ),Θ(φ0)) is
much more technically involved, due to the challenge of computing the Hausdorff distance
in multi-dimensional manifolds. In contrast, our Lipschitz equi-continuity condition in As-
sumption 8.2 and Assumption 8.3 are much easier to verify in specific examples, as they
depend on the moment conditions directly.

9 Further Illustrations and Uniformity

9.1 Missing data: coverage probabilities and prior sensitivity

This subsection illustrates the coverages of the proposed BCS in the missing data problem
(example 3.3), previously discussed by Manski (2003). Let Y be a binary variable, indicating
whether a treatment is successful (Y = 1) or not (Y = 0). However, Y is observed subject to
missing. We write M = 0 if Y is missing, and M = 1 otherwise. Hence, we observe (M,MY ).
The parameter of interest is θ = P (Y = 1). The identified parameters are denoted by

φ1 = P (M = 1), φ2 = P (Y = 1|M = 1).

Let φ0 = (φ10, φ20) be the true value of φ = (φ1, φ2). Then, without further assumption on
P (Y = 1|M = 0), θ is only partially identified on Θ(φ) = [φ1φ2, φ1φ2 + 1−φ1]. The support
function is easy to calculate and is

Sφ(1) = φ1φ2 + 1− φ1 Sφ(−1) = −φ1φ2.

Suppose we observe i.i.d. data {(Mi, YiMi)}ni=1, and define
∑n

i=1Mi = n1 and
∑n

i=1 YiMi =
n2. In this example, the true likelihood function ln(φ) ∝ φn1

1 (1− φ1)n−n1φn2
2 (1− φ2)n1−n2 is

known.
We place independent beta priors, Beta(α1, β1) and Beta(α2, β2), on (φ1, φ2). The uniform

distribution is a special case of Beta prior. Then the posterior of (φ1, φ2) is a product of
Beta(α1 + n1, β1 + n − n1) and Beta(α2 + n2, β2 + n1 − n2). If in addition, we have prior
information on θ and place a prior π(θ|φ) supported on Θ(φ), then by integrating out φ, we
immediately obtain the marginal posterior of θ.

We now present the two-sided BCS for Θ(φ) obtained by using the support function of
Θ(φ). The estimator φ̂ is taken as the posterior mode: φ̂1 = (n1 +α1− 1)/(n+α1 + β1− 2),
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and φ̂2 = (n2 + α2 − 1)/(n1 + α2 + β2 − 2). Then

J(φ) =
√
nmax

{
|φ1φ2 − φ1 − φ̂1φ̂2 + φ̂1|, |φ1φ2 − φ̂1φ̂2|

}
.

Let qτ be the 1−τ quantile of the posterior of J(φ), which can be obtained by simulating from
the Beta distributions. The lower and upper 1 − τ level BCS’s for Θ(φ) are Θ(φ̂)−qτ/

√
n ⊂

Θ(φ) ⊂ Θ(φ̂)qτ/
√
n where

Θ(φ̂)−qτ/
√
n = [φ̂1φ̂2 + qτ/

√
n, φ̂1φ̂2 + 1− φ̂1 − qτ/

√
n]

and
Θ(φ̂)qτ/

√
n = [φ̂1φ̂2 − qτ/

√
n, φ̂1φ̂2 + 1− φ̂1 + qτ/

√
n],

which are also two-sided asymptotic 1− τ frequentist confidence intervals of the true Θ(φ0).
Here we present a simple simulated example, where the true φ0 = (0.7, 0.5). This implies

the true identified interval to be [0.35, 0.65] and about thirty percent of the simulated data
are “missing”. We set α1 = α2, β1 = β2 in the prior. In addition, B = 1, 000 posterior draws
{φi}Bi=1 are sampled from the posterior Beta distribution. For each of them, compute J(φi)
and set q0.05 as the 95% upper quantile of {J(φi)}Bi=1 to obtain the critical value of the BCS
and construct the two-sided BCS for the identified set. Each simulation is repeated for 500
times to calculate the coverage frequency of the true identified interval. Table 3 presents the
results. We see that the coverage probability for the two-sided is close to the desired 95%
when sample size increases. In addition, the marginal coverages of the lower and upper sets
are close to 97.5% when sample size is relatively large.

Moreover, Figure 1 plots the five conjugate prior specifications used in this study: flat
prior, reverse J-shaped with a right tail, J-shaped with a left tail, U -shaped, and uni-mode.
These priors reflect different types of prior beliefs: the first prior is used if a researcher has
no informative prior information, the second one (resp. third one) is used if one strongly
believes that the probability of missing is low (resp. high), the fourth prior is used when
one thinks that the probability of missing is either very high or very low, and the last prior
corresponds to a symmetric prior belief centered at fifty percent. So Table 3 also provides
simple sensitivity analysis of prior specification. The results demonstrate robustness of the
coverage probabilities to conjugate prior specification.

9.2 Uniformity: from partial identification to point identification

We have been focusing on partially identified models, and the inference results achieved
are for a fixed data generating process. It is interesting to see whether they still hold uni-
formly over a class of data generating processes, including the case when point identification
is nearly achieved. This is important because in many cases it is possible that we actually
have point identification and, in that event, Θ(φ) degenerates to a singleton. For example,
in the interval censored model, when EY1 = EY2, θ = EY is point identified.

When point identification is indeed achieved, the frequentist coverage probability of the
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Table 3: Frequentist coverage probability of BCS and prior sensitivity for missing data

n α β Lower Upper Two-sided
50 1 1 0.978 0.944 0.924

1 0.1 0.964 0.944 0.912
0.1 1 0.952 0.958 0.916
0.1 0.1 0.974 0.958 0.938
2 2 0.958 0.970 0.932

100 1 1 0.982 0.96 0.948
1 0.1 0.978 0.968 0.950

0.1 1 0.968 0.968 0.948
0.1 0.1 0.972 0.972 0.944
2 2 0.956 0.978 0.944

500 1 1 0.970 0.974 0.950
1 0.1 0.978 0.978 0.958

0.1 1 0.974 0.972 0.948
0.1 0.1 0.972 0.974 0.950
2 2 0.976 0.978 0.956

Lower, Upper and Two-sided represent the frequencies of the events Θ(φ̂)−qτ/
√
n ⊂ Θ(φ0),

Θ(φ0) ⊂ Θ(φ̂)qτ/
√
n, and Θ(φ̂)−qτ/

√
n ⊂ Θ(φ0) ⊂ Θ(φ̂)qτ/

√
n over 500 replicates. The coverage

probability for the two-sided BCS is set to 95%.

Figure 1: Conjugate priors for sensitivity analysis in the missing data problem
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upper-sided BCS Θ(φ) ⊂ Θ(φ̂)qτ/
√
n and the asymptotic normality for the posterior of the

support function still hold because they are generally guaranteed by the semi-parametric
Bernstein-von Mises theorem for φ when Θ(φ) is a singleton (e.g., Rivoirard and Rousseau
2012, Bickel and Kleijn 2011). But the low-side BCS for Θ(φ) will be empty with a positive
probability. Theorem 6.3, however, does not hold anymore when θ is point identified, as we
discussed previously. We further illustrate the uniformity in two examples.

Example 9.1 (Interval censored data - continued). We show that the the upper BCS for
the identified set has a uniformly correct frequentist asymptotic coverage probability. To
simplify our illustration, we assume Y1 and Y2 are independent and follow N (φ10, 1) and
N (φ20, 1), respectively. A sequence of different φ0 are considered which includes the case
φ10 − φ20 = o(1). When φ10 = φ20, however, we suppose Y1, Y2 are sampled independently.
Suppose econometricians place independent standard normal priors on φ1 and φ2, then the
posteriors are independent, given by φi|Dn ∼ N (Ȳi

n
1+n

, 1
1+n

), i = 1, 2, and φ̂ = n
1+n

(Ȳ1, Ȳ2) is
the posterior mode of the joint distribution. The support function is Sφ(1) = φ2, Sφ(−1) =
−φ1. Let

J(φ) =
√
n sup
‖ν‖=1

(Sφ(ν)− Sφ̂(ν)) =
√
nmax

{
φ2 −

n

1 + n
Ȳ2,

n

1 + n
Ȳ1 − φ1

}
,

and let q̃τ be the 1− τ quantile of the posterior of J(φ). We now show that the frequentist
coverage of BCS(τ)= [Ȳ1

n
1+n
− q̃τ√

n
, Ȳ2

n
1+n

+ q̃τ√
n
] is valid uniformly for φ0 = (φ10, φ20) ∈ Φ,

that is,
lim inf
n→∞

inf
(φ01,φ02)∈Φ

PDn(Θ(φ0) ⊂ BCS(τ)) = 1− τ. (9.1)

We can simplify J(φ) to be
√
n/(1 + n) max{Z1, Z2} where Zi ∼ N (0, 1), i = 1, 2 and Z1

and Z2 are independent. This implies, for the standard normal’s CDF H(·),

1− τ = P (J(φ) ≤ q̃τ |Dn) = P

(
max{Z1, Z2} ≤ q̃τ

√
1 + n

n

)
= H

(
q̃τ

√
1 + n

n

)2

.

Hence, H
(
q̃τ
√

(1 + n)/n
)2

= H(q̃τ )
2 + o(1) and so H(q̃τ )

2 → 1 − τ. The event {Θ(φ0) ⊂
BCS(τ)} is equivalent to (Ȳ1 − φ10) n

1+n
≤ q̃τ√

n
+ φ10

1+n
and (Ȳ2 − φ20) n

1+n
≥ φ20

1+n
− q̃τ√

n
. Hence,

inf
φ0∈Φ

PDn(Θ(φ0) ⊂ BCS(τ)) = inf
φ0∈Φ

H

(
(
q̃τ√
n

+
φ10

1 + n
)
1 + n√
n

)
H

(
(
q̃τ√
n
− φ20

1 + n
)
1 + n√
n

)
= H(q̃τ )

2 + o(1)→ 1− τ.

This gives (9.1).
On the other hand, if φ20 − φ10 = o(1), the lower BCS for Θ(φ) is empty with a large

probability. To see this, for any fixed q, the lower BCS is A = [Ȳ1
n

1+n
+ q√

n
, Ȳ2

n
1+n
− q√

n
].

Let ∆n = φ20 − φ10, then P (A = ∅) = P ((Ȳ2 − Ȳ1) n
1+n

< 2q√
n
) = H(

√
2q −

√
n
2
∆n) + o(1).
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Suppose
√
n∆n = o(1), then P (A = ∅) → H(

√
2q). This probability is very large for many

reasonable cut-off q. For example, if q = 1.96, H(
√

2q) = 0.997.
For a numerical illustration, set φ10 = 1, φ20 = 1 + ∆n for a sequence of small ∆n that

decreases to zero, and calculate the frequency that Θ(φ0) ⊂ BCS(0.05) and A = ∅. The
model is nearly point identified, and point identification is achieved when ∆n = 0. Results
are reported in Table 4.

Example 9.2 (Missing data example - continued). Consider again the missing data example
in Section 9.1, where now the true φ10 is φ10 = 1−∆n with ∆n → 0, that is, the probability
of missing is close to zero. So the model is close to point identification. However, suppose
we still place priors on φ1 and φ2 and Θ(φ) = [φ1φ2, φ1φ2 + 1 − φ1] as before. Our result
shows that

PDn(Θ(φ0) ⊂ Θ(φ̂)q̃τ/
√
n)→ 1− τ (9.2)

when q̃τ is the 1− τ quantile of the posterior of

√
nmax

{
φ1φ2 − φ1 − φ̂1φ̂2 + φ̂1, φ̂1φ̂2 − φ1φ2

}
.

It can also be shown that the coverage (9.2) holds uniformly for φ0 inside a compact param-
eter space. It is also easy to see that, if ∆n = o(n−1/2), then for any τ ∈ (0, 1), the lower
BCS(τ) is empty with probability approaching one.

We illustrate the above discussions using a simulated example, where φ10 = 1−∆n for a
sequence of small ∆n. We use the uniform priors and compute the frequency of the events
that Θ(φ0) ⊂ Θ(φ̂)q̃0.05/

√
n and that the lower BCS is empty. We set φ20 = 0.5 so that φ̂2 has

the maximum possible variance. Therefore, our simulation also demonstrates how sensitive
the coverage frequency is to the variance of the point identified estimator. The frequency of
coverage over 500 replications are summarized in Table 4 below.

We see that the upper BCS with 95% credible level has the coverage probability for the
true identified set close to 0.95. Also, the lower BCS is empty almost all the times.

10 Financial Asset Pricing

We develop a detailed application in financial asset pricing model, where the identified
set is of direct interest.

10.1 The model

Asset pricing models state that the equilibrium price P i
t of a financial asset i is equal to

P i
t = E[Mt+1P

i
t+1|It], i = 1, . . . , N

where P i
t+1 denotes the price of asset i at the period (t+ 1), Mt+1 is the stochastic discount

factor (SDF, hereafter) and It denotes the information set at time t. In vectorial form this
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Table 4: Frequency of BCS(0.05) coverages for near point identification

∆n

n event 0.1 0.05 0.01 0

Interval censoring 50 Lower BCS= ∅ 0.966 0.94 0.972 0.956

Θ(φ0) ⊂ Θ(φ̂)q̃/
√
n 0.952 0.964 0.952 0.944

100 Lower BCS= ∅ 0.964 0.96 0.962 0.962

Θ(φ0) ⊂ Θ(φ̂)q̃/
√
n 0.962 0.966 0.958 0.95

Missing data 50 Lower BCS= ∅ 0.998 1 1 1

Θ(φ0) ⊂ Θ(φ̂)q̃/
√
n 0.95 0.952 0.942 0.944

100 Lower BCS= ∅ 0.99 1 1 1

Θ(φ0) ⊂ Θ(φ̂)q̃/
√
n 0.952 0.956 0.958 0.952

The frequencies (over 500 replications) that the lower BCS is empty and that the upper BCS
covers the true identified set are summarized. The length of the true identified set is ∆n. The

model achieves point identification when ∆n = 0.

rewrites as
ι = E[Mt+1Rt+1|It] (10.1)

where ι is the N -dimensional vector of ones and Rt+1 is the N -dimensional vector of gross
asset returns at time (t + 1): Rt+1 = (r1,t+1, . . . , rN,t+1)T with ri,t+1 = P i

t+1/P
i
t . This model

can be interpreted as a model of the SDF Mt+1 and may be used to detect the SDFs that are
compatible with asset return data. Hansen and Jagannathan (1991) have obtained a lower
bound on the volatility of SDFs that could be compatible with a given SDF-mean value and
a given set of asset return data. Therefore, the set of SDFs Mt+1 that can price existing
assets generally form a proper set.

Letm and Σ denote, respectively, the vector of unconditional mean returns and covariance
matrix of returns of the N risky assets, that is, m = E(Rt+1) and Σ = E(Rt+1 −m)(Rt+1 −
m)T . Denote µ = E(Mt+1) and σ2 = V ar(Mt+1), which are partially identified. We assume
that m, Σ, µ and σ2 do not vary with t. Hansen and Jagannathan (1991) showed that given
(m,Σ), which are point identified by the observed {Rt+1}, if the SDF Mt+1 satisfies (10.1),
then its variance σ2 should be no smaller than:

σ2
φ(µ) = (ι− µm)TΣ−1(ι− µm) ≡ φ1µ

2 − 2φ2µ+ φ3

with φ1 = mTΣ−1m, φ2 = mTΣ−1ι, φ3 = ιTΣ−1ι. (10.2)
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Therefore, an SDF correctly prices an asset only if, for given (m,Σ), its mean µ and variance
σ2 are such that σ2 ≥ σ2

φ(µ), and in this case the SDF is called admissible. Inadmissible
SDFs do not satisfy model (10.1).

Define the set of admissible SDF’s means and variances:

Θ(φ) =
{

(µ, σ2) ∈ Θ; σ2
φ(µ)− σ2 ≤ 0

}
where φ = (φ1, φ2, φ3)T and Θ ⊂ R+ × R+ is a compact set that we can choose based on
experiences. Usually, we can fix upper bounds µ̄ > 0 and σ̄ > 0 as large as we want and take
Θ = [0, µ̄]× [0, σ̄2]. In practice, µ̄ and σ̄ must be chosen sufficiently large such that Θ(φ) is
non-empty. We also point out that to be consistent with our developed theory, the parameter
space is chosen to be compact. Thus, the space for σ2 includes zero. In practice, one can
require σ2 ≥ ε for a sufficiently small ε > 0. For simplicity, we keep the current parameter
space for σ2, which is also used sometimes in the literature. Making inference on Θ(φ) allows
to check whether a family of SDF (and then a given utility function) prices a financial asset
correctly or not. Frequentist inference for this set is carried out in Chernozhukov, Kocatulum
and Menzel (2012).

Using our previous notation, we define θ = (µ, σ2) and

Ψ(θ, φ) = σ2
φ(µ)− σ2,

which gives a moment inequality model.

10.2 Support function

In this case Ψ(θ, φ) is convex in θ. More precisely, Ψ(θ, φ) is linear in σ2 and strictly
convex in µ (because Σ is positive definite so φ1 > 0). Assumptions 5.1- 5.6 are easy to verify
except for Assumptions 5.5 and 5.6(i) and (iv). However, it can be shown that the support
function is differentiable at φ0 without Assumption 5.5 being satisfied. So, our Bayesian
analysis on the support function of Θ(φ) still goes through. Assumption 5.6 (i) and (iv)
must be checked case by case (that is, for every region of values of ν) since λ(ν, φ) takes a
different expression in each case, see Appendix C.2 in the supplementary material.

We can rewrite the support function to be Sφ(ν) = Ξ(ν, φ)Tν, where

Ξ(ν, φ) = arg max
θ∈Θ

{
νT θ; Ψ(θ, φ) ≤ 0

}
= arg max

0≤µ<µ̄, 0<σ2<σ̄2

{
ν1µ+ ν2σ

2 − λ(ν, φ)(φ1µ
2 − 2φ2µ+ φ3 − σ2)

}
where ν = (ν1, ν2). The support function and Ξ(ν, φ) have explicit expressions, but they are
very long and complicated. Thus, we present them in Appendix C.2.
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10.3 Dirichlet process prior

Let F denote a probability distribution. The Bayesian model is Rt|F ∼ F and (m,Σ) =
(m(F ),Σ(F )), where

m(F ) =

∫
rF (dr), Σ(F ) =

∫
rrTF (dr)−

∫
rF (dr)

∫
rF (dr)T .

Let us impose a Dirichlet process prior for F , with parameter v0 and base probability measure
Q0 on RN . By Sethuraman (1994)’s decomposition, the Dirichet process prior induces a prior
for (m,Σ) as: m =

∑∞
j=1 αjξj, and Σ =

∑∞
j=1 αjξjξ

T
j −

∑∞
i=1 αiξi

∑∞
j=1 αjξ

T
j where ξj are

independently sampled from Q0; αj = uj
∏j

l=1(1− ul) with {ui}ni=1 drawn from Beta(1, v0).
These priors then induce a prior for φ. The posterior distribution for (m,Σ) can be calculated
explicitly:

Σ|Dn ∼ (1− γ)
∞∑
j=1

αjξjξ
T
j + γ

n∑
t=1

βtRtR
n
t

−

(
(1− γ)

∞∑
j=1

αjξj + γ
n∑
t=1

βtRt

)(
(1− γ)

∞∑
j=1

αjξj + γ
n∑
t=1

βtRt

)T

,

m|Dn ∼ (1− γ)
∞∑
j=1

αjξj + γ
n∑
t=1

βtRt, γ ∼ Beta(n, v0), {βj}nj=1 ∼ Dir(1, ..., 1).

We can set a truncation K > 0, so the infinite sums in the posterior representation are
replaced with a truncated sum. We can then simulate the posterior for φ based on the
distributions of Σ|Dn, m|Dn and (10.2).

10.4 Simulation

We present a simple simulated example. The returns Rt are generated from a 2-factor
model: Rt = Λft + ut + 2ι, where Λ is a N × 2 matrix of factor loadings. The error terms
{uit}i≤N,t≤n are i.i.d. uniform U[−2, 2]. Besides, the components of Λ are standard normal,
and the factors are also uniform U[−2, 2]. The true m = ERt = 2ι, Σ = ΛΛT + IN .

We set N = 5, n = 200. When the posterior is calculated, the DGP’s distributions
and the factor model structure are treated unknown, and we apply the nonparametric
Dirichlet Process prior on the CDF of Rt − m, with parameter v0 = 3, and based mea-
sure Q0 = N (0, 1). We use a uniform prior for (σ2, µ), and obtain the posterior distributions
for (m,Σ, φ1, φ2, φ3, σ

2, µ). More concretely, the prior is assumed to be:

π(σ2, µ|φ) = π(σ2|φ, µ)π(µ); π(σ2|φ, µ) ∼ U [σ2
φ(µ), σ̄2], π(µ) ∼ U [0, µ̄],

where µ and φ are a priori independent. We sample 1,000 draws from the posterior of
(φ, σ2, µ). Each time we first draw (m,Σ) from their marginal posterior distributions, based
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on which obtain the posterior draw of φ from (10.2). In addition, draw µ uniformly from
[0, µ̄], and finally σ2 uniformly from [σ2

φ(µ), σ̄2], where σ2
φ(µ) is calculated based on the drawn

φ and µ.
The posterior mean (φ̂1, φ̂2, φ̂3) of φ is calculated, based on which we calculate a Bayesian

estimate of the boundary of the identified set (we set µ̄ = 1.4 and σ̄2 = 6):

∂Θ(φ̂) = {µ ∈ [0, µ̄], σ2 ∈ [0, σ̄2] : σ2 = φ̂1µ
2 − 2φ̂2µ+ φ̂3},

which is helpful to compute the BCS for the identified set. In addition, we estimate the
support function Sφ(ν) using the posterior mean of φ. In Figure 2, we plot the Bayesian

estimates of the support function for two cases: ν2 ∈ [0, 1], ν1 =
√

1− ν2
2 , and ν2 ∈ [−1, 0],

ν1 = −
√

1− ν2
2 .

Figure 2: Posterior estimates of support function. Left panel is for ν2 ∈ [0, 1], ν1 =
√

1− ν2
2 ;

right panel is for ν2 ∈ [−1, 0], ν1 = −
√

1− ν2
2
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Using the support function, we calculate the 95% posterior quantile qτ for J(φ), based
on which we construct the BCS Θ(φ̂)qτ/

√
n for the identified set. The boundary of Θ(φ̂)qτ/

√
n

is given by

∂Θ(φ̂)qτ/
√
n =

{
µ ∈ [0, µ̄], σ2 ∈ [0, σ̄2] : inf

z

√
|z − µ|2 + |σ2

φ̂
(z)− σ2|2 = qτ/

√
n
}
.

In Figure 3, we plot the posterior draws of (µ, σ2), ∂Θ(φ̂), ∂Θ(φ̂)qτ/
√
n and the boundary of

the true identified set. The scatter plot of posterior draws, the estimated boundaries and
the BCS show that the true identified set is well estimated.

11 Conclusion

We propose a semi-parametric Bayesian procedure for inference about partially identified
models. Bayesian approaches are appealing in many aspects. Classical Bayesian approach
in this literature has been assuming a known likelihood function. However, in many applica-
tions econometric models only identify a set of moment inequalities, and therefore assuming
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Figure 3: 1,000 posterior draws of (µ, σ2). Solid line is the boundary of the true identified
set; dashed line represents the estimated boundary using the posterior mean; dotted line
gives the 95% BCS of the identified set. Plots are obtained based on a single set of simulated
data. The BCS also covers a part of negative values for σ2. In practice, we can truncate it
to ensure it is always positive.
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a known likelihood function suffers from the risk of misspecification, and may result in in-
consistent estimations of the identified set. On the other hand, Bayesian approaches that use
moment-condition-based likelihoods such as the limited information and exponential tilted
empirical likelihood, though guarantee the consistency, lack of probabilistic interpretations,
and do not provide an easy way to make inference about the identified set. Our approach,
on the contrary, only requires a set of moment conditions but still possesses a pure Bayesian
interpretation. Importantly, we can conveniently analyze both the partially identified pa-
rameter and its identified set. Moreover, we shed light on many appealing features of our
proposed approach such as the computational efficiency for subset inference and projections.

Our analysis primarily focuses on identified sets which are closed and convex. These sets
are completely characterized by their support function. By imposing a prior on the support
function, we construct its posterior distribution. It is shown that the support function for
a very general moment inequality model admits a linear expansion, and its posterior is
consistent. The Bernstein-von Mises theorem for the posterior of the support function is
proven.

Some researcher may argue that frequentist and Bayesian approaches are asymptotically
equivalent because the prior is “washed away” as the sample size increases. So why bother
with Bayesian asymptotics? Interestingly, this is no longer the case under partial identi-
fication. As was shown by Moon and Schorfheide (2012), when making inference about
the partially identified parameter, the BCS can be strictly smaller than the FCS. There-
fore, the two fundamental statistical methodologies provide different inferences that are not
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necessarily equivalent even asymptotically. This paper completes such a comparison. We
also establish the large-sample correspondence of the two approaches for the identified set.
It is also illustrated that the results hold in the uniform sense, in particular when point
identification is nearly achieved.
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Appendix

A Semi-parametric prior

We present in this section a prior scheme for (φ, F ) which is an alternative to the prior
scheme presented in section 3.2. The idea is to reformulate the sampling distribution F in
terms of φ and a nuisance parameter η ∈ P , where P is an infinite-dimensional measurable
space. Therefore, F = Fφ,η ∈ F = {Fφ,η;φ ∈ Φ, η ∈ P}. We denote by ln(φ, η) the model’s
likelihood function. One of the appealing features of this semi-parametric prior is that it
allows us to impose a prior π(φ) directly on the identified parameter φ, which is convenient
whenever we have good prior information regarding φ.

For example, in the interval censored data example (Example 3.1), we can write

Y1 = φ1 + u, Y2 = φ2 + v

where (u, v) are independent random variables with zero means and have unknown densities
(η1, η2). Then η = (η1, η2), and the likelihood function is

ln(φ, η) =
n∏
i=1

η1(Y1i − φ1)η2(Y2i − φ2).

We put priors on (φ, η). Examples of priors on density functions η1 and η2 include mixture
of Dirichlet process priors, Gaussian process priors, etc. (see Ghosal et al. (1999) and
Amewou-Atisso et al. (2003)). We list some commonly used priors for densities in the
examples below.

We place an independent prior as π(φ, η) = π(φ)π(η). Then the joint prior distribution
π(θ, φ, η) is naturally decomposed as π(θ, φ, η) = π(θ|φ)π(φ)π(η) and the Bayesian experi-
ment is

X|φ, η ∼ Fφ,η, (φ, η) ∼ π(φ)π(η), θ|φ, η ∼ π(θ|φ).

The posterior distribution of φ has a density function given by

p(φ|Dn) ∝
∫
P
π(φ, η)ln(φ, η)dη. (A.1)

Then the marginal posterior of θ is, for any measurable set B ⊂ Θ:

P (θ ∈ B|Dn) ∝
∫

Φ

π(θ ∈ B|φ)p(φ|Dn)dφ = E[π(θ ∈ B|φ)|Dn]

where the conditional expectation is taken with respect to the posterior of φ. Moreover,
the posteriors of Θ(φ) and Sφ(·) are deduced from that of φ. Suppose for example we are
interested in whether Θ(φ)∩A is an empty set for some A ⊂ Θ, then the posterior probability
P (Θ(φ) ∩ A = ∅|Dn) is relevant.
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Example A.1 (Interval regression model - continued). Consider Example 3.2, where φ =
(φ1, φ2, φ3) = (E(ZY1), E(ZXT ), E(ZY2)). Write ZY1 = φ1 + u1, ZY2 = φ3 + u3, and
vec(ZXT ) = vec(φ2) + u2, where u1, u2 and u3 are correlated and their joint unknown
probability density function is η(u1, u2, u3). The likelihood function is then

ln(φ, η) =
n∏
i=1

η(ZiY1i − φ1, ZiY2i − φ3, vec(ZiX
T
i )− vec(φ2)).

Many nonparametric priors can be used for π(η) in a “location-model” of this type, where the
likelihood takes the form ln(φ, η) =

∏n
i=1 η(Xi − φ), including Dirichlet mixture of normals

(Ghosal et al. 1999), random Bernstein polynomials (Walker et al. 2007), and finite mixture
of normals (Lindsay and Basak 1993).

We provide some examples of prior for the density η.

Example A.2. The finite mixture of normals (e.g., Lindsay and Basak (1993), Ray and
Lindsay (2005)) assumes η to take the form

η(x) =
k∑
i=1

wih(x;µi,Σi),

where h(x;µi,Σi) is the density of a multivariate normal distribution with mean µi and
variance Σi and {wi}ki=1 are unknown weights such that

∑k
i=1wiµi = 0. Then

∫
η(x)xdx =∑k

i=1 wi
∫
h(x;µi,Σi)xdx = 0. We impose prior π(η) = π({µl,Σl, wl}kl=1), then

p(φ|Dn) ∝
∫
π(φ)

n∏
i=1

k∑
j=1

wjh(Xi − φ;µj,Σj)π({µl,Σl, wl}kl=1)dwjdµjdΣj.

Example A.3. Dirichlet mixture of normals (e.g., Ghosal et al. (1999) Ghosal and van der
Vaart (2001), Amewou-Atisso, et al. (2003)) assumes

η(x) =

∫
h(x− z; 0,Σ)dH(z)

where h(x; 0,Σ) is the density of a multivariate normal distribution with mean zero and
variance Σ and H is a probability distribution such that

∫
zH(z)dz = 0. Then

∫
xη(x)dx = 0.

To place a prior on η, we let H have the Dirichlet process prior distribution Dα ≡ D(ν0, Q0)
where α is a finite positive measure, ν0 = α(X ) ∈ R+ and Q0 = α/α(X ) is a base probability
on (X ,Bx) such that Q0(x) = 0, ∀x ∈ (X ,Bx). In addition, we place a prior on Σ independent
of the prior on H. Then

p(φ|Dn) ∝
∫
π(φ)π(Σ)Dα(H)

n∏
i=1

∫
h(Xi − φ− z; 0,Σ)dH(z)dΣdH.
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Example A.4. Random Bernstein polynomials (e.g., Walker et al. (2007) and Ghosal
(2001)) allow to write the density function η as

η(x) =
k∑
j=1

[H(j/k)−H((j − 1)/k)]Be(x; j, k − j + 1),

where Be(x; a, b) stands for the beta density with parameters a, b > 0 and H is a random
distribution function with prior distribution assumed to be a Dirichlet process. Moreover,
the parameter k is also random with a prior distribution independent of the prior on H.
Then p(φ|Dn) ∝

∫
π(φ)

∏n
i=1 η(Xi − φ)π(H)π(k)dHdk. �

Other commonly used priors on density functions are wavelet expansions (Rivoirard and
Rousseau (2012)), Polya tree priors (Lavine (1992)), Gaussian process priors (van der Vaart
and van Zanten (2008), Castillo (2008)), etc.

B Posterior Concentration for φ

This section focuses on the case where the prior for φ is specified through the semi-
parametric prior described in Appendix A

Much of the literature on posterior concentration rate for Bayesian non-parametrics relies
on the notion of entropy cover number, which we now define as follows. Recall that for i.i.d.
data, the likelihood function can be written as ln(φ, η) =

∏n
i=1 l(Xi;φ, η), where l(x;φ, η)

denotes the density of the sampling distribution. Let

G = {l(·;φ, η) : φ ∈ Φ, η ∈ P}

be the family of likelihood functions. We assume P is a metric space with a norm ‖.‖η, which
then induces a norm ‖.‖G on G such that ∀l(·;φ, η) ∈ G,

‖l(·;φ, η)‖G = ‖φ‖+ ‖η‖η.

For instance, in the examples of intervel censoring data and interval regression, l(x;φ, η) =
η(x− φ) and ‖η‖η = ‖η‖1 =

∫
|η(x)|dx. Then in this case ‖l(., φ, η)‖G = ‖φ‖+ ‖η‖1.

Define the entropy cover number N (ρ,G, ‖.‖G) to be the minimum number of balls with
radius ρ needed to cover G. The importance of the entropy cover number on nonparametric
Bayesian asymptotics has been realized for a long time. We refer the audience to Kolmogorov
and Tikhomirov (1961) and van der Vaart and Wellner (1996) for good early references.

We first present the assumptions that are sufficient to derive the posterior concentration
rate for the point identified φ. The first one is placed on the entropy cover number.

Assumption B.1. Suppose for all n large enough,

N (n−1/2(log n)1/2, G, ‖.‖G) ≤ n.
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This condition requires that the “model” G be not too big. Once this condition holds,
then for all rn ≥ n−1/2(log n)1/2, N (rn, G, ‖.‖G) ≤ exp(nr2

n). Moreover, it ensures the exis-
tence of certain tests as given in Lemma I.2 in the supplementary appendix, and hence it
can be replaced by the test condition that are commonly used in the literature of posterior
concentration rate, e.g., Jiang (2007), Ghosh and Ramamoorthi (2003). The same condition
has been imposed by Ghosal et al. (2000) when considering Hellinger rates, and Bickel and
Kleijn (2012) when considering semi-parametric posterior asymptotic normality, among oth-
ers. When the true density η0 belongs to the family of location mixtures, this condition was
verified by Ghosal et al. (1999, Theorem 3.1).

The next assumption places conditions on the prior for (φ, η). For each (φ, η), define

Kφ,η = E

[
log

l(X;φ0, η0)

l(X;φ, η)

∣∣∣∣φ0, η0

]
=

∫
log

(
l(x;φ0, η0)

l(x;φ, η)

)
l(x;φ0, η0)dx

Vφ,η = var

[
log

l(X;φ0, η0)

l(X;φ, η)

∣∣∣∣φ0, η0

]
=

∫
log2

(
l(x;φ0, η0)

l(x;φ, η)

)
l(x;φ0, η0)dx−K2

φ,η.

Assumption B.2. The prior π(φ, η) satisfies:

π

(
Kφ,η ≤

log n

n
, Vφ,η ≤

log n

n

)
nM →∞

for some M > 2.

Intuitively, when (φ, η) is close to (φ0, η0), both Kφ,η and Vφ,η are close to zero. Hence this
assumption requires that the prior have sufficient amount of support around the true point
identified parameters in terms of the Kullback-Leibler distance. Such a prior condition has
also been commonly imposed in the literature on semi-parametric posterior concentration,
e.g., Ghosal et al. (1999 (2.10), 2000 condition 2.4), Shen and Wasserman (2001, Theorem
2) and Bickel and Kleijn (2012, (3.13)). Moreover, it has been verified in the literature using
the sieve prior (Shen and Wasserman 2001), Dirichlet mixture prior (Ghosal et al. 1999) and
Normal mixture prior (Ghosal and van der Vaart 2007).

We are now ready to present the posterior concentration rate for φ, whose proof is given
in Appendix I of the supplementary appendix.

Theorem B.1. Suppose the data X1, ..., Xn are i.i.d. Under Assumptions B.1 and B.2, for
some C > 0,

P (‖φ− φ0‖ ≤ Cn−1/2(log n)1/2|Dn)→p 1.

All the proofs are given in the supplementary appendix.

44



References

Amewou-Atisso, M., Ghosal, S. and Ghosh, J. (2003). Posterior consistency for semi-
parametric regression problems. Bernoulli, 9, 291-312.

Andrews, D. and Guggenberger, P. (2009). Validity of subsampling and plug-in asymp-
totic inference for parameters defined by moment inequalities. Econometric Theory, 25,
669-709.

Andrews, D. and Shi, X. (2013). Inference based on conditional moment inequalities.
Econometrica, 81, 609-666.

Andrews, D. and Soares, G. (2010). Inference for parameters defined by moment in-
equalities using generalized moment selection. Econometrica, 78, 119-157.

Beresteanu, A., Molchanov, I. and Molinari, F. (2011). Sharp identification regions
in models with convex moment predictions. Econometrica, 79, 1785-1821.

Beresteanu, A., Molchanov, I. and Molinari, F. (2012). Partial identification using
random set theory. Journal of Econometrics, 166, 17-32.

Beresteanu, A. and Molinari, F. (2008). Asymptotic properties for a class of partially
identified models. Econometrica, 76, 763-814.

Bickel, P. and Kleijn, B. (2012). The semiparametric Bernstein-Von Mises theorem.
Annals of Statistics, 40, 206-237.
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