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SUMMARY 15

We develop uniformly valid confidence regions for regression coefficients in a high-dimensional sparse least ab-
solute deviation/median regression model. The setting is one where the number of regressors p could be large in
comparison to the sample size n, but only s� n of them are needed to accurately describe the regression func-
tion. Our new methods are based on the instrumental median regression estimator that solves the optimal estimating
equation assembled from the output of the post `1-penalized median regression and post `1-penalized least squares 20

in an auxiliary equation. The estimating equation is immunized against non-regular estimation of nuisance part of
the median regression function by using Neyman’s orthogonalization. We establish that in a homoscedastic regres-
sion model, the instrumental median regression estimator of a single regression coefficient is asymptotically root-n
normal uniformly with respect to the underlying sparse model. The resulting confidence regions are valid uniformly
with respect to the underlying model. We illustrate the value of uniformity with Monte-Carlo experiments which 25

demonstrate that standard/naive post-selection inference breaks down over large parts of the parameter space, and the
proposed method does not. We then generalize our method to the case where p1 � n regression coefficients are of
interest in a non-smooth Huber’s Z-estimation framework with approximately sparse nuisance functions, containing
median regression with a single target regression coefficient as a very special case. We extend Huber’s results on
asymptotic normality from p1 � n to p1 � n setting, demonstrating uniform asymptotic normality over recangles, 30

in particular, constructing simultaneous confidence bands on all p1 coefficients and establishing their uniform validity
over the underlying approximately sparse models.

Some key words: uniformly valid inference, instruments, Neymanization, optimality, sparsity, model selection

1. INTRODUCTION

We consider the following regression model 35

yi = diα0 + xT
i β0 + εi (i = 1, . . . , n), (1)

where di is the main regressor of interest, whose coefficient α0 we would like to estimate and
perform (robust) inference on. The (xi)

n
i=1 are other high-dimensional regressors or controls.
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The regression error εi is independent of di and xi and has median 0. The errors (εi)
n
i=1 are

independent and identically distributed with distribution function Fε(·) and probability density
function fε(·) such that Fε(0) = 1/2 and fε(0) > 0. The assumption on the error term motivates40

the use of the least absolute deviation (LAD) or median regression, suitably adjusted for use in
high-dimensional settings.

The dimension p of controls xi is large, potentially much larger than n, which creates a chal-
lenge for inference on α0. Although the unknown true parameter β0 lies in this large space,
the key assumption that will make estimation possible is its sparsity, namely T = supp(β0) has45

s < n elements (where s can depend on n; we shall use array asymptotics). This in turn motivates
the use of regularization or model selection methods.

A standard (non-robust) approach towards inference in this setting would be first to perform
model selection via the `1-penalized LAD regression estimator

(α̂, β̂) ∈ arg min
α,β

En(|y − dα− xTβ|) +
λ

n
‖Ψ(α, βT)T‖1, (2)

where λ is a penalty parameter and Ψ2 = diag{En(d2),En(x21), . . . ,En(x2p)} is a diagonal50

matrix with normalization weights, where the notation En(·) denotes the average over index
1 ≤ i ≤ n. Then, one would use the post-model selection estimator

(α̃, β̃) ∈ arg min
α,β

{
En(|y − dα− xTβ|) : βj = 0 if β̂j = 0

}
(3)

to perform usual inference for α0.
This standard approach is justified if (2) achieves perfect model selection with probability

approaching 1, so that the estimator (3) has the oracle property. However conditions for per-55

fect selection are very restrictive in this model, in particular, requiring significant separation of
non-zero coefficients away from zero. If these conditions do not hold, the estimator α̃ does not
converge to α0 at the n1/2-rate – uniformly with respect to the underlying model – which im-
plies that usual inference breaks down and is not valid. We shall demonstrate the breakdown of
such naive inference in the Monte-Carlo experiments where non-zero coefficients in β0 are not60

significantly separated from zero.
The breakdown of inference does not mean that the aforementioned procedures are not suit-

able for prediction purposes. Indeed, the `1-LAD estimator (2) and post `1-LAD estimator (3)
attain essentially optimal rates {(s log p)/n}1/2 of convergence for estimating the entire median
regression function, as has been shown in Belloni & Chernozhukov (2011); Kato (2011); Wang65

(2013). This property means that while these procedures will not deliver perfect model recovery,
they will only make moderate model selection mistakes (omitting only controls with coefficients
local to zero).

To construct uniformly valid inference, we propose a method whose performance does not
require perfect model selection, allowing potential moderate model selection mistakes. The lat-70

ter feature is critical in achieving uniformity over a large class of data generating processes,
similarly to the results for instrumental regression and mean regression studied in Belloni et al.
(2012), Belloni et al. (2013a), Zhang & Zhang (2014), Belloni et al. (2014a). This allows us to
overcome the impact of (moderate) model selection mistakes on inference, avoiding (in part) the
criticisms in Leeb & Pötscher (2005), who prove that the oracle property sometime achieved75

by the naive estimators necessarily implies the failure of uniform validity of inference and their
semiparametric inefficiency (Leeb & Pötscher, 2008).

In order to achieve robustness with respect to moderate model selection mistakes, it will be
necessary to construct orthogonal estimating equation for the target parameter. Towards that goal
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the following auxiliary equation plays a key role (in the homoscedastic case): 80

di = xT
i θ0 + vi, E(vi | xi) = 0 (i = 1, . . . , n); (4)

describing the relevant dependence of the regressor of interest di to the other controls xi. We
shall assume the sparsity of θ0, namely Td = supp(θ0) has at most s < n elements, and estimate
the relation (4) via Lasso or post-Lasso least squares methods described below.

Given vi, which partials out the effect of xi from di, we shall use it as an “instrument” in the
following estimating equations for α0: 85

E{ϕ(yi − diα0 − xT
i β0)vi} = 0 (i = 1, . . . , n), (5)

where ϕ(t) = 1/2− 1(t ≤ 0). We shall use the empirical analog of this equation to form an in-
strumental median regression estimator of α0, using a plug-in estimator for xT

i β0. The estimating
equation above has the following orthogonality property:

∂

∂β
E{ϕ(yi − diα0 − xT

i β)vi}
∣∣∣∣
β=β0

= 0 (i = 1, . . . , n). (6)

As a result, the estimator of α0 will be immunized against crude estimation of xT
i β0, for example,

via a post-selection procedure or some regularization procedure. Such orthogonalization ideas 90

can be traced back to Neyman (1959, 1979).
Our estimation procedure has the following three steps: (i) estimation of the confounding

function xT
i β0 in (1); (ii) estimation of the “instruments” vi in (4); (iii) estimation of the target

parameter α0 via empirical analog of (5). Each step is computationally tractable, involving solu-
tions of convex problems and a one-dimensional search, and relies on a different identification 95

condition which in turn requires a different estimation procedure.
Step (i) constructs an estimate for the nuisance function xT

i β0 and not an estimate for α0. Here
we do not need a n1/2-rate consistency for the estimates of the nuisance function; slower rate
like o(n−1/4) will suffice. Thus, this can be based either on the `1-LAD regression estimator (2)
or the associated post-model selection estimator (3). 100

Step (ii) estimates the residuals vi in the decomposition (4). In order to estimate vi we rely ei-
ther on heteroscedastic Lasso (Belloni et al., 2012), a version of the Lasso estimator of Tibshirani
(1996):

θ̂ ∈ arg min
θ

En{(d − xTθ)2}+
λ

n
‖Γ̂θ‖1 and set v̂i = di − xT

i θ̂ (i = 1, . . . , n), (7)

where λ and Γ̂ are the penalty level and data-driven penalty loadings described in Belloni et al.
(2012) (restated in Appendix D), or the associated post-model selection estimator (Post-Lasso) 105

(Belloni & Chernozhukov, 2013; Belloni et al., 2012), defined as

θ̃ ∈ arg min
θ

{
En{(d − xTθ)2} : θj = 0 if θ̂j = 0

}
and set v̂i = di − xT

i θ̃. (8)

Step (iii) constructs an estimator α̌ of the coefficient α0 via an instrumental LAD regression
proposed in Chernozhukov & Hansen (2008), using (v̂i)

n
i=1 as instruments, defined formally by

α̌ ∈ arg min
α∈Â

Ln(α), with Ln(α) =
4|En{ϕ(y − xTβ̂ − dα)v̂}|2

En(v̂2)
, (9)

where ϕ(t) = 1/2− 1{t ≤ 0} and Â is a (possibly stochastic) parameter space for α0. We use
Â = [α̂± 10/({En(d2)}1/2 log n)], though other choices for Â are possible. 110
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Our main result establishes, that under homoscedasticity, provided that (s3 log3 p)/n→ 0 and
other regularity conditions hold, despite possible model selection mistakes in Steps 1 and 2, the
estimator α̌ obeys

σ−1n n1/2(α̌− α0) N(0, 1), (10)

where σ2n = 1/{4f2ε E(v2)} with fε = fε(0) is the semi-parametric efficiency bound for regular
estimators of α0. An alternative, and more robust for practice, expression for σ2n is given by115

Huber’s sandwich:

σ2n = J−1ΩJ−1, where Ω = E(v2)/4 and J = E(fεdv). (11)

We recommend to estimate Ω by the plug-in method and to estimate J by Powell’s method
(Powell, 1986). Furthermore, we show that the criterion function at the true value α0 in Step 3
has the following pivotal behavior

nLn(α0) χ2(1). (12)

This allows the construction of a confidence region Âξ with asymptotic coverage 1− ξ based on120

the statistic Ln,

pr(α0 ∈ Âξ)→ 1− ξ where Âξ = {α ∈ Â : nLn(α) ≤ (1− ξ)-quantile of χ2(1)}. (13)

Importantly, the robustness with respect to moderate model selection mistakes, which occurs
because of (6), allows the results (10) and (12) to hold uniformly over a large range of data
generating processes, similarly to the results for instrumental regression and partially linear mean
regression model established in Belloni et al. (2012, 2014a). One of our proposed algorithms125

explicitly uses `1-regularization methods, similarly to Belloni et al. (2012) and Zhang & Zhang
(2014), while the main algorithm we propose uses post-selection methods, similarly to Belloni
et al. (2012, 2014a).

Throughout the paper, we use array asymptotics – asymptotics where the model changes with
n – to better capture some finite-sample phenomena such as small coefficients that are local130

to zero. This ensures the robustness of conclusions with respect to perturbations of the data-
generating process along various model sequences. This robustness, in turn, translates into uni-
form validity of confidence regions over substantial regions of data-generating processes.

In Section 3 we generalize the LAD regression to a more general setting by (i) allowing
p1-dimensional target parameters defined via Huber’s Z-problems are of interest, with dimen-135

sion p1 potentially much larger than the sample size n, and (ii) also allowing for approxi-
mately sparse models instead of exactly sparse models. This framework covers a wide vari-
ety of semi-parametric models, including those with smooth and non-smooth score functions.
We provide sufficient conditions to derive a uniform Bahadur representation, and we estab-
lish uniform asymptotic normality, using central limit theorems and bootstrap results of Cher-140

nozhukov et al. (2013), for the entire p1-dimensional vector. The latter result holds uniformly
over high-dimensional rectangles of dimension p1 � n and over an underlying approximately
sparse model, thereby extending prior results of Huber (1973), Portnoy (1984, 1985), He & Shao
(2000) from p1 � n to p1 � n.

1·1. Notation and convention145

The notation En(·) denotes the average over index 1 ≤ i ≤ n, that is, it simply abbreviates
n−1

∑n
i=1(·). For example, En(x2j ) = n−1

∑n
i=1 x

2
ij . The `2- and `1- norms are denoted by ‖ · ‖

and ‖ · ‖1, respectively, and the `0-“norm”, ‖ · ‖0, denotes the number of non-zero components
of a vector. We write the support of a vector δ ∈ Rp as supp(δ) = {j ∈ {1, . . . p} : δj 6= 0}. We
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use the notation a ∨ b = max{a, b}, a ∧ b = min{a, b}, and the arrow denotes convergence 150

in distribution. Denote by Φ(·) the distribution function of the standard normal distribution. We
assume that the quantities such as p (the dimension of xi), s (a bound on the numbers of non-zero
elements of β0 and θ0), and hence yi, xi, β0, θ0, T and Td are all dependent on the sample size
n, and allow for the case where p = pn →∞ and s = sn →∞ as n→∞. However, for the
notational convenience, we shall omit the dependence of these quantities on n. 155

For a class of measurable functions F , let N(ε,F , ‖ · ‖Q,2) denote its ε-covering number
with respect to the L2(Q) seminorm ‖ · ‖Q,2, where Q is finitely discrete, and let ent(ε,F) =
log supQN(ε‖F‖Q,2,F , ‖ · ‖Q,2) denote the uniform entropy number where F = supf∈F |f |.

2. THE METHODS, CONDITIONS, AND RESULTS

2·1. The methods 160

Each of the steps outlined before uses a different identification condition. Several combina-
tions are possible to implement each step, two of which are the following.

Algorithm 1 (Based on Post-Model Selection estimators).
1. Run Post-`1-penalized LAD (3) of yi on di and xi; keep fitted value xT

i β̃.
2. Run Post-Lasso (8) of di on xi; keep the residual v̂i = di − xT

i θ̃. 165

3. Run Instrumental LAD regression (9) of yi − xT
i β̃ on di using v̂i as the instrument for di to

compute the estimator α̌. Report α̌ and/or perform inference based upon (10) or (13).

Algorithm 2 (Based on Regularized Estimators).
1. Run `1-penalized LAD (2) of yi on di and xi; keep fitted value xT

i β̂.
2. Run Lasso of (7) di on xi; keep the residual v̂i = di − xT

i θ̂. 170

3. Run Instrumental LAD regression (9) of yi − xT
i β̂ on di using v̂i as the instrument for di to

compute the estimator α̌. Report α̌ and/or perform inference based upon (10) or (13).

Remark 1 (Penalty Levels). In order to perform `1-LAD and Lasso, one has to suitably choose
the penalty levels. We record our penalty choices In the Supplementary Appendix 3.

Remark 2 (Differences). Algorithm 1 relies on Post-`1-LAD and Post-Lasso while Algorithm 175

2 relies on `1-LAD and Lasso. Algorithm 1 relies on post-selection estimations that refit the non-
zero coefficients without the penalty term, to reduce the bias, while Algorithm 2 relies on the
penalized estimators. Step 3 of both algorithms relies on instrumental LAD regression.

Remark 3 (Alternative Implementations). In Step 2, Dantzig selector (Candes & Tao, 2007),
square-root Lasso (Belloni et al., 2011) or the associated post-model selection could be used 180

instead of Lasso or Post-Lasso. In step 3, we can use instead a one-step estimator from the
`1-LAD estimator α̂ of the form α̌ = α̂+ [En{fε(0)v̂2}]−1En{ϕ(y − dα̂− xTβ̂)v̂} or a LAD
regression with all the covariates selected in Steps 1 and 2.

2·2. Regularity Conditions
We state regularity conditions sufficient for validity of the main estimation and inference re- 185

sults. The behavior of sparse eigenvalues of the population Gram matrix E(x̃x̃T) with x̃i =
(di, x

T
i )T plays an important role in the analysis of `1-penalized LAD and Lasso. Define the

minimal and maximal m-sparse eigenvalues of the population Gram matrix as

φ̄min(m) = min
1≤‖δ‖0≤m

δTE(x̃x̃T)δ

‖δ‖2
and φ̄max(m) = max

1≤‖δ‖0≤m

δTE(x̃x̃T)δ

‖δ‖2
, (14)



6 A. BELLONI, V. CHERNOZHUKOV AND K. KATO

where 1 ≤ m ≤ p. Assuming φ̄min(m) > 0 requires that all population Gram submatrices
formed by any m components of x̃i are positive definite.190

The main condition (Condition 1) contains sparsity of vectors β0 and θ0 as well as other more
technical assumptions. Below let c1 and C1 be given positive constants, and let `n ↑ ∞, δn ↓ 0,
and ∆n ↓ 0 be given sequences of positive constants.

Condition 1. (i) {(yi, di, xT
i )T}ni=1 is a sequence of independent and identically distributed

random vectors generated according to models (1) and (4) where (εi)
n
i=1 is a sequence of in-195

dependent and identically distributed random variables with common distribution function Fε
such that Fε(0) = 1/2, independent of the random vectors {(di, xT

i )T}ni=1. (ii) E(v2 | x) ≥
c1 and E(|v|3 | x) ≤ C1 almost surely; moreover, E(d4) + E(v4) + max1≤j≤pE(x2jd

2) +

E(|xjv|3) ≤ C1. (iii) There exists s = sn ≥ 1 such that ‖β0‖0 ≤ s and ‖θ0‖0 ≤ s. (iv) The error
distribution Fε is absolutely continuous with continuously differentiable density fε(·) such that200

fε(0) ≥ c1 and fε(t) ∨ |f ′ε(t)| ≤ C1 for all t ∈ R. (v) There exist constantsKn andMn such that
Kn ≥ max1≤j≤p |xij | and Mn ≥ 1 ∨ |xT

i θ0| almost surely, and they obey the growth condition
{K4

n + (K2
n ∨M4

n)s2 +M2
ns

3} log3(p ∨ n) ≤ nδn. (vi) c1 ≤ φ̄min(`ns) ≤ φ̄max(`ns) ≤ C1.

Remark 4. Condition 1 (i) imposes the setting discussed in the previous section with the zero
conditional median of the error distribution. Condition 1 (ii) imposes moment conditions on the205

structural errors and regressors to ensure good model selection performance of Lasso applied
to equation (4). Condition 1 (iii) imposes sparsity of the high-dimensional vectors β0 and θ0.
Condition 1 (iv) is a set of standard assumptions in the LAD literature (see Koenker, 2005) and
in the instrumental quantile regression literature (Chernozhukov & Hansen, 2008). Condition 1
(v) restricts the sparsity index, so that s3 log3(p ∨ n) = o(n) is required; this is analogous to210

the restriction p3(log p)2 = o(n) made in He & Shao (2000) in the problem without selection.
The uniformly bounded regressors condition can be relaxed with minor modifications provided
the bound holds with probability approaching one. Most importantly, no assumptions on the
separation from zero of the non-zero coefficients of θ0 and β0 are made.

Remark 5. Condition 1 (vi) is quite plausible for many designs of interest. Combined with215

Condition 1 (v), an equivalence between the norms induced by the empirical Gram matrix and the
population Gram matrix over s-sparse vectors follows. Examples of such equivalence are: The-
orem 3.2 in Rudelson & Zhou (2013) for independent and identically distributed sub-Gaussian
regressors and s log2(n ∨ p) ≤ δnn; Theorem 4.3 in Rudelson & Zhou (2013) for independent
and identically distributed uniformly bounded regressors and s(log3 n) log(p ∨ n) ≤ δnn.220

2·3. Results
We begin with considering the estimators generated by Algorithms 1 and 2.

THEOREM 1 (ROBUST ESTIMATION AND INFERENCE). Let α̌ and Ln(α0) be the estimator
and statistic obtained by applying either Algorithm 1 or 2. Suppose that Condition 1 is satisfied
for all n ≥ 1. Moreover, suppose that with probability at least 1−∆n, ‖β̂‖0 ≤ C1s. Then, as225

n→∞, for σ2n = 1/{4f2ε E(v2)},

σ−1n n1/2(α̌− α0) N(0, 1) and nLn(α0) χ2(1).

Theorem 1 Algorithms 1 and 2 produce estimators α̌ that perform equally well, to the first
order, with asymptotic variance equal to semi-parametric efficiency bound σ2n. Both algorithms
rely on sparsity of β̂ and θ̂. Sparsity of the former follows immediately under sharp penalty
choices for optimal rates as shown in Supplementary Appendix 3·3. The sparsity for the latter230
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potentially requires heavier penalty as shown in Belloni & Chernozhukov (2011); alternatively,
sparsity for the estimator in Step 1 can also be achieved by truncating the smallest components
of β̂. Lemma 6 in Appendix 4 shows that a suitable truncation gets the required sparsity while
preserving the rate of convergence.

An important consequence of these results is the following corollary. HerePn denotes a collec- 235

tion of distributions for {(yi, di, xT
i )T}ni=1 and for Pn ∈ Pn the notation prPn

means that under
prPn

, {(yi, di, xT
i )T}ni=1 is distributed according to the law determined by Pn.

COROLLARY 1 (UNIFORMLY VALID CONFIDENCE INTERVALS). Let α̌ be the estimator
of α0 constructed according to either Algorithm 1 or 2, and for every n ≥ 1, let Pn be the
collection of all distributions of {(yi, di, xT

i )T}ni=1 for which Condition 1 holds and ‖β̂‖0 ≤ C1s 240

with probability at least 1−∆n. Then for Âξ defined in (13),

sup
Pn∈Pn

∣∣∣prPn

{
α0 ∈ [α̌± σnn−1/2Φ−1(1− ξ/2))]

}
− (1− ξ)

∣∣∣ = o(1),

sup
Pn∈Pn

∣∣∣prPn
(α0 ∈ Âξ)− (1− ξ)

∣∣∣ = o(1), as n→∞.

Corollary 1 establishes the second main result of the paper. It highlights the uniform validity of
the results, which hold despite the possible imperfect model selection in Steps 1 and 2. Condition 245

1 explicitly characterize regions of data-generating processes for which the uniformity result
holds. Simulations results presented below also provide an additional evidence that these regions
are substantial. Here we rely on exactly sparse models, but these results extend to approximately
sparse model in what follows.

We emphasize that both proposed algorithms exploit the homoscedasticity of the model (1) 250

with respect to the error term εi. The generalization to the heteroscedastic case can be achieved
but we need to consider the weighted version of the auxiliary equation (4) in order to achieve the
semiparametric efficiency bound. The analysis of the impact of such estimation is very delicate
and is developed in the companion work (Belloni et al., 2013b).

2·4. Generalization to Many Target Coefficients with Inifinite Dimensional Nuisance 255

Parameters
We consider the following generalization to the previous model:

y =

p1∑
j=1

djαj + g(u) + ε, ε ∼ Fε, Fε(0) = 1/2,

where d, u are regressors, and ε is the noise with distribution function Fε that is independent of
regressors and has median 0, that is, Fε(0) = 1/2. The coefficients αj (1 ≤ j ≤ p1) are now the
high-dimensional parameter of interest. 260

We can rewrite this model as p1 models of the previous form:

y = αjdj + gj(zj) + ε, dj = mj(zj) + vj , E(vj | zj) = 0 (1 ≤ j ≤ p1),

where αj is the target coefficient,

gj(zj) =

p1∑
k 6=j

dkαk + g(u), mj(zj) = E(dj | zj),

and where zj = (d1, . . . , dj−1, dj+1, . . . , dp1 , u
T)T. We would like to estimate and perform in-

ference on each of the p1 coefficients αj simultaneously.
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Moreover, we would like to allow regression functions hj = (gj ,mj)
T to be of infinite dimen-265

sion, that is, they could be written only as infinite linear combinations of some dictionary with
respect to zj . However, we assume that there are sparse estimators ĥj = (ĝj , m̂j)

T that can esti-
mate hj = (gj ,mj)

T at sufficiently fast o(n−1/4) rates in the mean square error sense, as stated
precisely in Section 3. Examples of functions hj that permit such estimation by sparse methods
include the standard Sobolev spaces as well as more general rearranged Sobolev spaces (Bickel270

et al., 2009; Belloni et al., 2014b) with Fourier coefficients. Here sparsity of estimators ĝj and
m̂j means that they are formed by OP (s)-sparse linear combinations chosen from p technical
regressors generated from zj , with coefficients estimated from the data (as stated precisely in
Section 3). This framework is general, in particular it contains as a special case the traditional
linear sieve/series framework for estimation of hj , which uses a small number s = o(n) of pre-275

determined series functions as a dictionary.
Given suitable estimators for hj = (gj ,mj)

T, we can then identify and estimate each of the
target parameters (αj)

p1
j=1 via the estimating equations

E[ψj{w,αj , hj(zj)}] = 0, (1 ≤ j ≤ p1),

where ψj(w,α, t) = ϕ(y − djα− t1)(dj − t2) and w = (y, d1, . . . , dp1 , u
T)T. These equations

have the orthogonality property:280

[∂E{ψj(w,αj , t) | zj}/∂t]
∣∣
t=hj(zj)

= 0, (1 ≤ j ≤ p1).

This estimation problem is subsumed as special case in the next section.

3. INFERENCE ON MANY TARGET PARAMETERS IN Z-PROBLEMS WITH INFINITE
DIMENSIONAL NUISANCE FUNCTIONS

In this section we generalize the previous example to a more general setting, where p1 target
parameters defined via Huber’s Z-problems are of interest, with dimension p1 potentially much285

larger than the sample size. This framework covers the median regression example, its general-
ization discussed above, as well many other semi-parametric models.

The interest lies in p1 = p1n real-valued target parameters αj (1 ≤ j ≤ p1). We assume that
αj ∈ Aj for every 1 ≤ j ≤ p1, where eachAj is a (non-stochastic) bounded closed interval. The
true parameter αj is identified as a unique solution of the following moment condition:290

E[ψj{w,αj , hj(zj)}] = 0. (15)

Here vector w is a random vector taking values inW , a Borel subset of a Euclidean space, which
contains vectors zj (1 ≤ j ≤ p1) as subvectors, and each zj takes values in Zj (zj and zj′ with
1 ≤ j 6= j′ ≤ p1 may have overlap). The vector-valued function z 7→ hj(z) = {hjm(z)}Mm=1 is
a measurable map from Zj to RM , where M is fixed, and the function (w,α, t) 7→ ψj(w,α, t)
is a measurable map from an open neighborhood ofW ×Aj × RM to R. The former map is a295

(possibly infinite-dimensional) nuisance parameter.
Suppose that the nuisance function hj = (hjm)Mm=1 admits a sparse estimator ĥj = (ĥjm)Mm=1

of the form

ĥjm(·) =

p∑
k=1

fjmk(·)θ̂jmk, ‖(θ̂jmk)pk=1‖0 ≤ s (1 ≤ m ≤M),

where p = pn is possibly much larger than n while s = sn, the sparsity level of ĥj , is� n, and
fjmk : Zj → R are given approximating functions. The estimator α̂j of αj is then constructed300
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as a Z-estimator, which solves the sample analogue of the equation (15):

|En[ψj{w, α̂j , ĥj(zj)}]| ≤ inf
α∈Âj

|En[ψ{w,α, ĥj(zj)}]|+ εn, (16)

where εn = o(n−1/2b−1n ) is the numerical tolerance parameter and bn = {log(ep1)}1/2; Âj is a
possibly stochastic interval contained in Aj with high probability. Typically, Âj = Aj or can be
constructed by using a preliminary estimator of αj .

In order to achieve robust inference results, we shall need to rely on the condition of orthog- 305

onality (immunity) of the scores with respect to small perturbations in the value of the nuisance
parameters, which we can express in the following condition:

∂tE{ψj(w,αj , t) | zj}|t=hj(zj) = 0, (17)

where we use the symbol ∂t to abbreviate ∂/∂t. It is important to construct the scores ψj to have
property (17). Generally, we can construct the scores ψj that obey (17) by projecting some initial
non-orthogonal scores onto the orthogonal complement of the tangent space for the nuisance 310

parameter (see van der Vaart & Wellner, 1996; van der Vaart, 1998; Kosorok, 2008). Sometimes
the resulting construction generates additional nuisance parameters, for example, the auxiliary
regression function in the case of the median regression problem in Section 2.

In Conditions 2 and 3 below, ς, n0, c1, and C1 are given positive constants; M is a fixed
positive integer; δn ↓ 0 and ρn ↓ 0 are given sequences of constants. Let an = max(p1, p, n, e) 315

and bn = {log(ep1)}1/2 (recall that the dependence of p1, p on n is implicit).

Condition 2. For every n ≥ 1, we observe independent and identically distributed copies
of (wi)

n
i=1 of random vector w, whose law is determined by the probability measure

P ∈ Pn. Uniformly in n ≥ n0, P ∈ Pn, and 1 ≤ j ≤ p1, the following conditions are satis-
fied. (i) The true parameter αj obeys (15); Âj is a possibly stochastic interval such that
with probability 1− δn, [αj ± c1n−1/2 log2 an] ⊂ Âj ⊂ Aj . (ii) For P -almost every zj , the
map (α, t) 7→ E{ψj(w,α, t) | zj} is twice continuously differentiable, and for every ν ∈
{α, t1, . . . , tM}, E[supαj∈Aj

|∂νE[ψj{w,α, hj(zj)} | zj ]|2] ≤ C1. Moreover, there exist con-
stants L1n ≥ 1, L2n ≥ 1, and a cube Tj(zj) = ×Mm=1Tjm(zj) in RM with center hj(zj)
such that for every ν, ν ′ ∈ {α, t1, . . . , tM}, sup(α,t)∈Aj×Tj(zj) |∂ν∂ν′E{ψj(w,α, t) | zj}| ≤
L1n, and for every α, α′ ∈ Aj , t, t′ ∈ Tj(zj),E[{ψj(w,α, t)− ψj(w,α′, t′)}2 | zj ] ≤ L2n(|α−
α′|ς + ‖t− t′‖ς). (iii) The orthogonality condition (17) holds. (iv) The following global and lo-
cal identifiability conditions hold: 2|E[ψj{w,α, hj(zj)}]| ≥ |Γj(α− αj)| ∧ c1 for all α ∈ Aj ,
where

Γj = ∂αE[ψj{w,αj , hj(zj)}].

Moreover, |Γj | ≥ c1. (v) The second moments of scores are bounded away from zero:
E[ψ2

j {w,αj , hj(zj)}] ≥ c1.

The following condition uses a notion of pointwise measurable classes of functions (see
van der Vaart & Wellner, 1996, p.110 for the definition). 320

Condition 3. Uniformly in n ≥ n0, P ∈ Pn, and 1 ≤ j ≤ p1, the following conditions are sat-
isfied. (i) The nuisance function hj = (hjm)Mm=1 has an estimator ĥj = (ĥjm)Mm=1 with good
sparsity and rate properties, namely, with probability 1− δn, ĥj ∈ Hj , whereHj = ×Mm=1Hjm
and each Hjm is the class of functions h̃jm : Zj → R of the form h̃jm(·) =

∑p
k=1 fjmk(·)θmk

such that ‖(θmk)pk=1‖0 ≤ s, h̃jm(z) ∈ Tjm(z) for all z ∈ Zj , and E[{h̃jm(zj)− hjm(zj)}2] ≤ 325
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C1s(log an)/n, where s = sn ≥ 1 is the sparsity level, obeying (iv) ahead. (ii) The class
of functions Fj = {w 7→ ψj{w,α, h̃(zj)} : α ∈ Aj , h̃ ∈ Hj ∪ {hj}} is pointwise measurable
and obeys the entropy condition ent(ε,Fj) ≤ C1{log(e/ε) +

∑M
m=1ent(ε/C1,Hjm)}. (iii)

The class Fj has measurable envelope Fj ≥ supf∈Fj
|f |, such that F = max1≤j≤p1 Fj obeys

E{F q(w)} ≤ C1 for some q ≥ 4. (iv) The dimensions p1, p, and s obey the growth conditions:330

n−1/2{(s log an)1/2 + n−1/2+1/qs log an} ≤ ρn, ρς/2n (L2ns log an)1/2 + n1/2L1nρ
2
n ≤ δnb−1n .

Condition 2 states rather mild assumptions for Z-estimation problems, in particular, allowing
for non-smooth scores ψj such as those arising in median regression. They are analogous to
assumptions imposed in the setting with p = o(n), for example, in He & Shao (2000).

Conditions 3 (i) and (iii) require reasonable behavior of sparse estimators ĥj . In the previous
section, this type of behavior occurred in the cases where hj consisted of (a part of) median335

regression function and a conditional expectation function in an auxiliary equation. There are
lots of conditions in the literature that imply these conditions from various primitive assumptions.
For the case with q =∞, condition (vi) implies the following restrictions on the sparsity indices:
(s2 log3 an)/n→ 0 for the case where ς = 2 (smooth ψj) and (s3 log5 an)/n→ 0 for the case
where ς = 1 (non-smooth ψj). Condition 3 (ii) is a mild condition on ψj – it holds for example,340

when ψj is generated by applying monotone and Lipschitz transformations to its arguments, as
was the case in median regression (see van der Vaart & Wellner, 1996, for many other ways).
Condition 3 (iii) bounds the moments of the envelopes, and it can be relaxed to a bound that
grows with n, with an appropriate strengthening of the growth conditions stated in (iv).

Define345

σ2j = E[Γ−2j ψ2
j {w,αj , hj(zj)}], φj(w) = −σ−1j Γ−1j ψj{w,αj , hj(zj)} (1 ≤ j ≤ p1).

We are now in position to state the main theorem of this section.

THEOREM 2 (UNIFORM BAHADUR REPRESENTATION). Under Conditions 2 and 3, uni-
formly in P ∈ Pn, with probability 1− o(1), as n→∞,

max
1≤j≤p1

∣∣∣∣∣n1/2σ−1j (α̂j − αj)− n−1/2
n∑
i=1

φj(wi)

∣∣∣∣∣ = o(b−1n ).

An immediate implication is a corollary on the asymptotic normality uniform in P ∈ Pn and
1 ≤ j ≤ p1, which follows from Lyapunov’s central limit theorem for triangular arrays.350

COROLLARY 2 (UNI-DIMENSIONAL CENTRAL LIMIT THEOREM). Under the same condi-
tions as in Theorem 2, as n→∞,

max
1≤j≤p1

sup
P∈Pn

sup
t∈R

∣∣∣prP

{
n1/2σ−1j (α̂j − αj) ≤ t

}
− prP {N(0, 1) ≤ t}

∣∣∣ = o(1).

This implies, in particular, that

max
1≤j≤p1

sup
P∈Pn

∣∣∣prP

{
αj ∈ [α̂j ± σ̂jn−1/2Φ−1(1− ξ/2)]

}
− (1− ξ)

∣∣∣ = o(1),

provided max1≤j≤p1 |σ̂j − σj | = oP (1) uniformly in P ∈ Pn.

This result constructs pointwise confidence intervals for αj , and shows that they are valid355

uniformly in P ∈ Pn and 1 ≤ j ≤ p1.
Another useful implication is the high-dimensional central limit theorem uniformly over

rectangles in Rp1 , provided that (log p1)
7 = o(n), which follows from Corollary 2.1 in Cher-
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nozhukov et al. (2013) on central limit theorem for p1-dimensional (approximate) sample means,
with p1 � n. Let 360

N = (Nj)1≤j≤p1 ∼ N(0,Ω)

be a random vector with normal distribution with mean zero and covariance matrix Ω =
(E{φj(w)φj′(w)})1≤j,j′≤p1 . LetR be a collection of rectangles R in Rp1 of the form

R =

{
z ∈ Rp1 : max

j∈A
zj ≤ t,max

j∈B
(−zj) ≤ t

}
(t ∈ R, A,B ⊂ {1, . . . , p1}).

For example, when A = B = {1, . . . , p1}, R = {z ∈ Rp1 : max1≤j≤p1 |zj | ≤ t}.

COROLLARY 3 (HIGH-DIMENSIONAL CENTRAL LIMIT THEOREM OVER RECTANGLES).
Under the same conditions as in Theorem 2, provided that (log p1)

7 = o(n), 365

sup
P∈Pn

sup
R∈R

∣∣∣prP

[
n1/2{σ−1j (α̂j − αj)}p1j=1 ∈ R

]
− prP {N ∈ R}

∣∣∣ = o(1). (18)

This implies, in particular, that for c1−ξ = (1− ξ)-quantile of max1≤j≤p1 |Nj |,

sup
P∈Pn

∣∣∣prP

(
αj ∈ [α̂j ± c1−ξσjn−1/2] for all 1 ≤ j ≤ p1

)
− (1− ξ)

∣∣∣ = o(1).

The result provides simultaneous confidence bands for (αj)
p1
j=1, which are valid uniformly in

P ∈ Pn. Moreover, (18) is immediately useful for multiple hypotheses testing about (αj)
p1
j=1 via

the step-down methods of Romano & Wolf (2005) which control the family-wise error rates –
see Chernozhukov et al. (2013) for further discussion of multiple testing with p1 � n. 370

In practice the distribution ofN is unknown due to the unknown covariance matrix, but it can
be approximated by the Gaussian multiplier bootstrap, which generates a vector N ∗ as follows:

N ∗ = (N ∗j )p1j=1 =

{
1

n1/2

n∑
i=1

ξiφ̂j(wi)

}p1
j=1

, (19)

where (ξi)
n
i=1 are independent and identically distributed draws of standard normal random vari-

ables, which are independently distributed of the data (wi)
n
i=1, and φ̂j are any estimators of

φj , such that max1≤j,j′≤p1 |En{φ̂j(w)φ̂j′(w)} − En{φj(w)φj′(w)}| = oP (b−4n ) uniformly in 375

P ∈ Pn. Let σ̂2j = En{φ̂2j (w)}. Theorem 3.2 in Chernozhukov et al. (2013) on multiplier boot-
strap for approximate means then implies the following result.

COROLLARY 4 (VALIDITY OF MULTIPLIER BOOTSTRAP). Under the same conditions as in
Theorem 2, provided that (log p1)

7 = o(n), with probability 1− o(1) uniformly in P ∈ Pn,

sup
P∈Pn

sup
R∈R
|prP {N ∗ ∈ R | (wi)ni=1} − prP (N ∈ R)| = o(1).

This implies, in particular, that for ĉ1−ξ = (1− ξ)-conditional quantile of max1≤j≤p1 |N ∗j |, 380

sup
P∈Pn

∣∣∣prP

(
αj ∈ [α̂j ± ĉ1−ξσ̂jn−1/2] for all 1 ≤ j ≤ p1

)
− (1− ξ)

∣∣∣ = o(1).

4. MONTE-CARLO EXPERIMENTS

In this section we examine the finite sample performance of the proposed estimators. We focus
on the estimator constructed by Algorithm 1, which is based on post-model selection methods.
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We considered the following regression model:

y = dα0 + xT(cyθ0) + ε, d = xT(cdθ0) + v, (20)

where α0 = 1/2, θ0j = 1/j2, j = 1, . . . , 10, and θ0j = 0 otherwise, x = (1, zT)T consists of an385

intercept and covariates z ∼ N(0,Σ), and the errors ε and v are independently and identically
distributed as N(0, 1). The dimension p of the covariates x is 300, and the sample size n is
250. The regressors are correlated with Σij = ρ|i−j| and ρ = 0.5. The coefficients cy and cd are
used to control theR2 of the reduce form equation. For each equation, we consider the following
values for theR2: {0, 0.1, 0.2, . . . , 0.8, 0.9}. Therefore we have 100 different designs and results390

are based on 500 repetitions for each design. For each repetition we draw new vectors xi’s and
errors εi’s and vi’s.

The design above with xT(cyθ0) is a sparse model. However, the decay of the components of
θ0 rules out typical separation from zero assumptions of the coefficients of important covariates
(since the last component is of the order of 1/n), unless cy is very large. Thus, we anticipate that395

standard post-selection inference procedures – which rely on model selection of the outcome
equation only – work poorly in the simulation study. In contrast, based upon the prior theoret-
ical arguments, we anticipate that our instrumental median estimator – which works off both
equations in (20)– to work well in the simulation study.

The simulation study focuses on Algorithm 1. Standard errors are computed using the formula400

(11). (Algorithm 2 worked similarly, though somewhat worse due to larger biases). As the main
benchmark we consider the standard post-model selection estimator α̃ based on the post `1-
penalized LAD method, as defined in (3).

In Figure 1, we display the (empirical) rejection probability of tests of a true hypothesis α =
α0, with nominal size of tests equal to 0.05. The left-top plot shows the rejection frequency405

of the standard post-model selection inference procedure based upon α̃ (where the inference
procedure assumes perfect recovery of the true model). The rejection frequency deviates very
sharply from the ideal rejection frequency of 0.05. This confirms the anticipated failure (lack of
uniform validity) of inference based upon the standard post-model selection procedure in designs
where coefficients are not well separated from zero (so that perfect recovery does not happen). In410

sharp contrast, the right top and bottom plots show that both of our proposed procedures (based
on estimator α̌ and the result (10) and on the statisticLn and the result (13)) perform well, closely
tracking the ideal level of 0.05. This is achieved uniformly over all the designs considered in the
study, and this confirms our theoretical results established in Corollary 1.

In Figure 2, we compare the performance of the standard post-selection estimator α̃ (defined in415

(3)) and our proposed post-selection estimator α̌ (obtained via Algorithm 1). We display results
in three different metrics of performance – mean bias (top row), standard deviation (middle
row), and root mean square error (bottom row) of the two approaches. The significant bias for
the standard post-selection procedure occurs when the indirect equation (4) is nontrivial, that is,
when the main regressor is correlated to other controls. Such bias can be positive or negative420

depending on the particular design. The proposed post-selection estimator α̌ performs well in
all three metrics. The root mean square error for the proposed estimator α̌ are typically much
smaller than those for standard post-model selection estimators α̃ (as shown by bottom plots in
Figure 2). This is fully consistent with our theoretical results and semiparametric efficiency of
the proposed estimator.425
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Fig. 1. The figure displays the empirical rejection proba-
bilities of the nominal 5% level tests of a true hypothe-
sis based on different testing procedures: the top left plot
is based on the standard post-model selection procedure
based on α̃, the top right plot is based on the proposed post-
model selection procedure based on α̌, and the bottom left
plot is based on another proposed procedure based on the
statistic Ln. Ideally we should observe the 5% rejection

rate (of a true null) as in bottom left plot.
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SUPPLEMENTARY MATERIAL

In the supplementary material we provide omitted proofs, technical lemmas, discuss extensions to the het-
eroscedastic case, and alternative implementations. 435

APPENDIX 1: PROOFS FOR SECTION 3
A·1. A Maximal Inequality

LEMMA A1 (CHERNOZHUKOV ET AL. (2012)). Let w,w1, . . . , wn be independent and identically
distributed random variables taking values in a measurable space, and let F be a pointwise
measurable class of functions on that space. Suppose that there is a measurable envelope F ≥ 440

supf∈F |f | such that E{F q(w)} <∞ for some q ≥ 2. Consider the empirical process indexed by
F: Gn(f) = n−1/2

∑n
i=1[f(wi)− E{f(w)}], f ∈ F . Let σ > 0 be any positive constant such that
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Fig. 2. The figure displays mean bias (top row), standard
deviation (middle row), and root mean square error (bot-
tom row) for the proposed post-model selection estimator
α̌ (right column) and the standard post-model selection es-

timator α̃ (left column).

supf∈F E{f2(w)} ≤ σ2 ≤ E{F 2(w)}. Moreover, suppose that there exist constants A ≥ e and s ≥ 1
such that ent(ε,F) ≤ s log(A/ε) for all 0 < ε ≤ 1. Then

445

E

{
sup
f∈F
|Gn(f)|

}
≤ K

[{
sσ2 log(A[E{F 2(w)}]1/2/σ)

}1/2

+ n−1/2+1/qs[E{F q(w)}]1/q log(A[E{F 2(w)}]1/2/σ)

]
,

where K is a universal constant. Moreover, for every t ≥ 1, with probability not less than 1− t−q/2,

sup
f∈F
|Gn(f)| ≤ 2E

{
sup
f∈F
|Gn(f)|

}
+Kq

(
σ
√
t+ n−1/2+1/q[E{F q(w)}]1/qt

)
,

where Kq is a constant that depends only on q.

Proof. The first inequality follows from Corollary 5.1 in Chernozhukov et al. (2012). The second450

inequality follows from application of Theorem 5.1 in Chernozhukov et al. (2012) with α = 1 and
[E{max1≤i≤n F

2(wi)}]1/2 ≤ [E{max1≤i≤n F
q(wi)}]1/q ≤ n1/q[E{F q(w)}]1/q . �
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A·2. Proof of Theorem 2
We begin with proving the following technical lemma. Recall an = max(p1, p, n, e).

LEMMA A2. Let F = {w 7→ ψj{w,α, h̃(zj)} : 1 ≤ j ≤ p1, α ∈ Aj , h̃ ∈ Hj ∪ {hj}}. Then we have 455

ent(ε,F) ≤ CMs log(an/ε) for all 0 < ε ≤ 1 where C is a constant that depends only on C1.

Proof of Lemma 2. Recall the classes of functions Fj given in Condition 3. We first note that F =
∪p1j=1Fj , so that ent(ε,F) ≤ log(p1) + max1≤j≤p1 ent(ε,Fj). Since each Hjm consists of p choose s
VC subgraph classes with VC indices bounded by s+ 2, we have ent(ε,Hjm) ≤ Cs log(an/ε) where C
is universal, so that by Condition 3 (ii) we have ent(ε,Fj) ≤ C1{log(e/ε) + CMs log(C1an/ε)}. The 460

desired conclusion follows from adjusting the constant C. �

Proof of Theorem 2. It suffices to prove the theorem under any sequence P = Pn ∈ Pn. We shall
suppress the dependency of P on n in the proof. In this proof, let C denote a generic positive con-
stant that may differ in each appearance, but that does not depend on the sequence P ∈ Pn, n, nor
1 ≤ j ≤ p1. Recall that the sequence ρn ↓ 0 satisfies the growth conditions in Condition 3 (iv). We di- 465

vide the proof into three steps. Below we use the following notation: for any given function g :W → R,
Gn(g) = n−1/2

∑n
i=1[g(wi)− E{g(w)}].

Step 1. (Stochastic expansions of empirical scores). Let α̃j be any estimator such that with probability
1− o(1), max1≤j≤p1 |α̃j − αj | ≤ Cρn. We wish to show that, with probability 1− o(1),

En[ψj{w, α̃j , ĥj(zj)}] = En[ψj{w,αj , hj(zj)}] + Γj(α̃j − αj) + o(n−1/2b−1n ),

uniformly in 1 ≤ j ≤ p1. Expand En[ψj{w, α̃j , ĥj(zj)}] as 470

En[ψj{w, α̃j , ĥj(zj)}] = En[ψj{w,αj , hj(zj)}] + E[ψj{w,α, h̃(zj)}]|α=α̃j ,h̃=ĥj

+ n−1/2Gn[ψj{w, α̃j , ĥj(zj)} − ψj{w,αj , hj(zj)}] = Ij + IIj + IIIj .

We first bound IIIj . Observe that, with probability 1− o(1), max1≤j≤p1 |IIIj | ≤
n−1/2 supf∈F ′ |Gn(f)|, where F ′ is the class of functions defined by 475

F ′ = {w 7→ ψj{w,α, h̃(zj)} − ψj{w,αj , hj(zj)} : 1 ≤ j ≤ p1, h̃ ∈ Hj , α ∈ Aj , |α− αj | ≤ Cρn},

which has 2F as an envelope. We apply Lemma 1 to this class of functions. By Lemma 2, we see that
ent(ε,F ′) ≤ Cs log(an/ε). By Condition 2 (ii), supf∈F ′ E{f2(w)} is bounded by

sup
1≤j≤p1,(α,h̃)∈Aj×Hj

|α−αj |≤Cρn

E

{
E

([
ψj{w,α, h̃(zj)} − ψj{w,αj , hj(zj)}

]2
| zj
)}
≤ CL2nρ

ς
n,

where we have used the fact that E[{h̃m(zj)− hjm(zj)}2] ≤ Cρ2n for all 1 ≤ m ≤M whenever h̃ =

(h̃m)Mm=1 ∈ Hj . Hence applying Lemma 1 with t = log n, we conclude that, with probability 1− o(1),

n1/2 max
1≤j≤p1

|IIIj | ≤ sup
f∈F ′

|Gn(f)| ≤ C{ρς/2n (L2ns log an)1/2 + n−1/2+1/qs log an} = o(b−1n ),

where the last equality follows from Condition 3 (iv). 480

Next, we expand IIj . Pick any α ∈ Aj with |α− αj | ≤ Cρn, h̃ = (h̃m)Mm=1 ∈ Hj , and zj ∈ Zj . Then
by Taylor’s theorem, there exists a pair (ᾱ, t̄) on the line segment joining (α, h̃(zj)) and (αj , hj(zj)) with

E[ψj{w,α, h̃(zj)} | zj ] = E[ψj{w,αj , hj(zj)} | zj ] + ∂αE[ψj{w,αj , hj(zj)} | zj ](α− αj)

+
∑M
m=1 [∂tmE{ψj(w,αj , hj(zj)) | zj}] {h̃m(zj)− hjm(zj)}+ 2−1∂2αE{ψj(w, ᾱ, t̄) | zj}(α− αj)2

+ 2−1
∑M
m,m′=1∂tm∂tm′E{ψj(w, ᾱ, t̄) | zj}{h̃m(zj)− hjm(zj)}{h̃m′(zj)− hjm′(zj)} 485

+
∑M
m=1∂α∂tmE{ψj(w, ᾱ, t̄) | zj}(α− αj){h̃m(zj)− hjm(zj)}. (A1)



16 A. BELLONI, V. CHERNOZHUKOV AND K. KATO

Here the third term on the right side is zero because of the orthogonality condition (17). Condition
2 (ii) guarantees that the expectation and derivative can be interchanged for the second term, that is,
E [∂αE[ψj{w,αj , hj(zj)} | zj ]] = ∂αE[ψj{w,αj , hj(zj)}] = Γj . Moreover, by the same condition, the
expectation of each of the last three terms is bounded by CL1nρ

2
n = o(n−1/2b−1n ), uniformly in 1 ≤ j ≤490

p1. Therefore, with probability 1− o(1), IIj = Γj(α̃j − αj) + o(n−1/2b−1n ), uniformly in 1 ≤ j ≤ p1.
Combining the previous bound on IIIj with this expansion leads to the desired assertion.

Step 2. We wish to show that with probability 1− o(1), infα∈Âj
|En[ψj{w,α, ĥj(zj)}]| =

o(n−1/2b−1n ), uniformly in 1 ≤ j ≤ p1. Define α∗j = αj − Γ−1j En[ψj{w,αj , hj(zj)}] (1 ≤ j ≤ p1).
Then we have max1≤j≤p1 |α∗j − αj | ≤ C max1≤j≤p1 |En[ψj{w,αj , hj(zj)}]|. Consider the class of495

functions F ′′ = {w 7→ ψj{w,αj , hj(zj)} : 1 ≤ j ≤ p1}, which has F as an envelope. Since this class
is finite with cardinality p1, we have ent(ε,F ′′) ≤ log(p1/ε). Hence applying Lemma 1 to F ′′ with
σ = [E{F 2(w)}]1/2 ≤ C and t = log n, we conclude that with probability 1− o(1),

max
1≤j≤p1

|En[ψj{w,αj , hj(zj)}]| ≤ Cn−1/2{(log an)1/2 + n−1/2+1/q log an} ≤ Cn−1/2 log an.

Since Âj ⊃ [αj ± c1n−1/2 log2 an] with probability 1− o(1), α∗j ∈ Âj with probability 1− o(1).
Therefore, using Step 1 with α̃j = α∗j , we have, with probability 1− o(1),500

inf
α∈Âj

|En[ψj{w,α, ĥj(zj)}]| ≤ |En[ψj{w,α∗j , ĥj(zj)}]| = o(n−1/2b−1n ),

uniformly in 1 ≤ j ≤ p1, where we have used the fact that En[ψj{w,αj , hj(zj)}] + Γj(α
∗
j − αj) = 0.

Step 3. (Preliminary rate for α̂j). We wish to show that with probability 1− o(1),
max1≤j≤p1 |α̂j − αj | ≤ Cρn. By Step 2 and the definition of α̂j , with probability 1− o(1),
we have max1≤j≤p1 |En[ψj{w, α̂j , ĥj(zj)}]| = o(n−1/2b−1n ). Recall F = {w 7→ ψj{w,α, h̃(zj)} : 1 ≤
j ≤ p1, α ∈ Aj , h̃ ∈ Hj ∪ {hj}} given in Lemma 2. Then with probability 1− o(1),505

|En[ψj{w, α̂j , ĥj(zj)}]| ≥
∣∣∣E[ψj{w,α, h̃(zj)}]|α=α̂j ,h̃=ĥj

∣∣∣− n−1/2 sup
f∈F
|Gn(f)|,

uniformly in 1 ≤ j ≤ p1. Applying Lemmas 1 and 2 with σ = [E{F 2(w)}]1/2 ≤ C and t = log n, we
have, with probability 1− o(1),

n−1/2 sup
f∈F
|Gn(f)| ≤ Cn−1/2{(s log an)1/2 + n−1/2+1/qs log an} = O(ρn).

Moreover, application of the expansion (A1) with αj = α together with the Cauchy-Schwarz inequality
implies that |E[ψj{w,α, h̃(zj)}]− E[ψj{w,α, hj(zj)}]| is bounded by C(ρn + L1nρ

2
n) = O(ρn), so

that with probability 1− o(1),510 ∣∣∣E[ψj{w,α, h̃(zj)}]|α=α̂j ,h̃=ĥj

∣∣∣ ≥ ∣∣E[ψj{w,α, hj(zj)}]|α=α̂j

∣∣−O(ρn),

uniformly in 1 ≤ j ≤ p1, where we have used Condition 2 (ii) together with the fact that E[{h̃m(zj)−
hjm(zj)}2] ≤ Cρ2n for all 1 ≤ m ≤M whenever h̃ = (h̃m)Mm=1 ∈ Hj . By Condition 2 (iv), the first term
on the right side is bounded from below by (1/2){|Γj(α̂j − αj)| ∧ c1}, which, combined with the fact
that |Γj | ≥ c1, implies that with probability 1− o(1), |α̂j − αj | ≤ o(n−1/2b−1n ) +O(ρn) = O(ρn), uni-
formly in 1 ≤ j ≤ p1.515

Step 4. (Uniform Bahadur representation for α̂j). By Steps 1 and 3, with probability 1− o(1),

En[ψj{w, α̂j , ĥj(zj)}] = En[ψj{w,αj , hj(zj)}] + Γj(α̂j − αj) + o(n−1/2b−1n ),

uniformly in 1 ≤ j ≤ p1. Moreover, by Step 2, with probability 1− o(1), the left side is o(n−1/2b−1n )
uniformly in 1 ≤ j ≤ p1. Solving this equation with respect to (α̂j − αj) leads to the conclusion of the
theorem. �
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tension to the heteroscedastic case, and alternative implementations of the estimator.
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Additional Notation in the Supplementary Material. In addition to the notation used in the
main text, we will use the following notation. Denote by ‖ · ‖∞ the maximal absolute element of 20

a vector. Given a vector δ ∈ Rp and a set of indices T ⊂ {1, . . . , p}, we denote by δT ∈ Rp the
vector such that (δT )j = δj if j ∈ T and (δT )j = 0 if j /∈ T . For a sequence (zi)

n
i=1 of constants,

we write ‖z‖2,n = {En(z2)}1/2 = (n−1
∑n

i=1 z
2
i )1/2. For example, for a vector δ ∈ Rp and p-

dimensional regressors (xi)
n
i=1, ‖xT δ‖2,n = [En{(xTδ)2}]1/2 denotes the empirical prediction

norm of δ. We also use the notation a . b to denote a ≤ cb for some constant c > 0 that does 25

not depend on n; and a .P b to denote a = OP (b).

1. GENERALIZATION AND ADDITIONAL RESULTS FOR THE LAD MODEL

1·1. Generalization of Section 2 to Heteroscedastic Case
We emphasize that both proposed algorithms exploit the homoscedasticity of the model (1)

with respect to the error term εi. The generalization to the heteroscedastic case can be achieved 30

as follows. In order to achieve the semiparametric efficiency bound we need to consider the
weighted version of the auxiliary equation (4). Specifically, we can rely on the following of
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weighted decomposition:

fidi = fix
T
i θ
∗
0 + v∗i , E(fiv

∗
i | xi) = 0 (i = 1, . . . , n), (1)

where the weights are conditional densities of error terms εi evaluated at their medians of zero:

fi = fεi(0 | di, xi) (i = 1, . . . , n), (2)

which in general vary under heteroscedasticity. With that in mind it is straightforward to adapt35

the proposed algorithms when the weights (fi)
n
i=1 are known. For example Algorithm 1 becomes

as follows.
Algorithm 1′ (Based on Post-Model Selection estimators).

1. Run Post-`1-penalized LAD of yi on di and xi; keep fitted value xT
i β̃.

2. Run Post-Lasso of fidi on fixi; keep the residual v̂∗i = fi(di − xT
i θ̃).40

3. Run Instrumental LAD regression of yi − xT
i β̃ on di using v̂∗i as the instrument for di to

compute the estimator α̌. Report α̌ and/or perform inference.

An analogous generalization of Algorithm 2 based on regularized estimator results from remov-
ing the word Post in the algorithm above.

Under similar regularity conditions, uniformly over a large collection P∗n of distributions of45

{(yi, di, xT
i )′}ni=1, the estimator α̌ above obeys

{4E(v∗2)}1/2
√
n(α̌− α0) N(0, 1). (3)

Moreover, the criterion function at the true value α0 in Step 3 also has a pivotal behavior, namely

nLn(α0) χ2(1), (4)

which can also be used to construct a confidence region Ân,ξ based on the Ln-statistic as in (12)
with coverage 1− ξ uniformly in a suitable collection of distributions.

In practice the density function values (fi)
n
i=1 are unknown and need to be replaced by esti-50

mates (f̂i)
n
i=1. The analysis of the impact of such estimation is very delicate and is developed

in the companion work Belloni et al. (2013), which considers the more general problem of uni-
formly valid inference for quantile regression models in approximately sparse models.

1·2. Connection to Neymanization
In this section we make some connections to Neyman’s C(α) test (Neyman, 1959, 1979). For55

the sake of exposition we assume that (yi, di, xi)
n
i=1 are independent and identically distributed

but we shall use the heteroscedastic setup introduced in the previous section. We consider the
estimating equation for α0:

E{ϕ(yi − diα0 − xT
i β0)vi} = 0.

Our problem is to find useful instruments vi such that

∂

∂β
E{ϕ(yi − diα0 − xT

i β)vi}|β=β0 = 0.

If this property holds, the estimator of α0 will be immunized against crude or nonregular estima-60

tion of β0, for example, via a post-selection procedure or some regularization procedure. Such
immunization ideas are in fact behind Neyman’s classical construction of his C(α) test, so we
shall use the term Neymanization to describe such procedure. There will be many instruments vi
that can achieve the property stated above, and there will be one that is optimal.
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The instruments can be constructed by taking vi = zi/fi, where zi is the residual in the re- 65

gression equation:

widi = wim0(xi) + zi, E(wizi | xi) = 0, (5)

where wi is a nonnegative weight, a function of (di, zi) only, for example wi = 1 or wi = fi (the
latter choice will in fact be optimal). The function m0(xi) solves the least squares problem

min
h∈H

E[{wd − wh(x)}2],

whereH is the class of measurable functions h(x) such that E[w2h2(x)] <∞. Our assumption
is that the m0(x) is a sparse function xTθ0 with ‖θ0‖0 ≤ s, so that 70

widi = wix
T
i θ0 + zi, E(wizi | xi) = 0.

In finite samples, the sparsity assumption allows to employ post-Lasso and Lasso to solve the
least squares problem above approximately, and estimate zi. Of course, the use of other structured
assumptions may motivate the use of other regularization methods.

Arguments similar to those in the proofs show that, for
√
n(α− α0) = O(1),

√
n
[
En{ϕ(y − dα− xTβ̂)v} − En{ϕ(y − dα− xTβ0)v}

]
= oP (1),

for β̂ based on a sparse estimation procedure, despite the fact that β̂ converges to β0 at a slower 75

rate than 1/
√
n. That is, the empirical estimating equations behave as if β0 is known. Hence for

estimation we can use α̂ as a minimizer of the statistic:

Ln(α) = c−1
n |
√
nEn{ϕ(y − dα− xTβ̂)v}|2,

where cn = En(v2)/4. Since Ln(α0) χ2(1), we can also use the statistic directly for testing
hypotheses and for construction of confidence intervals.

This is in fact a version of Neyman’s C(α) test statistic, adapted to the present non-smooth 80

setting. The usual expression of C(α) statistic is different. To see a more familiar form, let
θ0 = {E(w2xxT)}−E(w2dxT), where A− denotes a generalized inverse of A, and write

vi = (wi/fi)di − (wi/fi)x
T
i {E(w2xxT)}−E(w2dx′), and ϕ̂i = ϕ(yi − diα− x′iβ̂),

so that,

Ln(α) = c−1
n

∣∣√n [En{ϕ̂(w/f)d} − En{ϕ̂(w/f)xT}{E(w2xxT)}−E(w2dxT)
]∣∣2 .

This is indeed a familiar form of a C(α) statistic.
The estimator α̂ that minimizes Ln(α) up to oP (1), under suitable regularity conditions, obeys 85

σ−1
n

√
n(α̂− α0) N(0, 1), where σ2

n =
1

4
{E(fdv)}−2E(v2).

It is easy to show that the smallest value of σ2
n is achieved by using vi = v∗i induced by setting

wi = fi:

σ∗2n =
1

4
{E(v∗2)}−1. (6)

Thus, settingwi = fi gives an optimal instrument amongst all immunizing instruments generated
by the process described above. Obviously, this improvement translates into shorter confidence
intervals and better testing based on either α̂ or Ln(α). While wi = fi is optimal, fi will have 90
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to be estimated in practice, resulting actually in more stringent condition than when using non-
optimal, known weights, for example, wi = 1. The use of known weights may also give better
behavior under misspecification of the model. Under homoscedasticity, wi = 1 is an optimal
weight.

1·3. Minimax Efficiency95

There is also a clean connection to the (local) minimax efficiency analysis from the semipara-
metric efficiency literature. Lee (2003) derives an efficient score function for the partially linear
median regression model:

Si = 2ϕ(yi − diα0 − xT
i β0)fi{di −m∗0(x)},

where m∗0(xi) is m0(xi) in (5) induced by the weight wi = fi:

m∗0(xi) =
E(f2

i di | xi)
E(f2

i | xi)
.

Using the assumption m∗0(xi) = xT
i θ
∗
0 , where ‖θ∗0‖0 ≤ s� n is sparse, we have that100

Si = 2ϕ(yi − diα0 − xT
i β0)v∗i ,

which is the score that was constructed using Neymanization. It follows that the estimator based
on the instrument v∗i is actually efficient in the minimax sense (see Theorem 18.4 in Kosorok,
2008), and inference about α0 based on this estimator provides best minimax power against local
alternatives (see Theorem 18.12 in Kosorok, 2008).

The claim above is formal as long as, given a law Pn, the least favorable submodels are per-105

mitted as deviations that lie within the overall model. Specifically, given a law Pn, we shall
need to allow for a certain neighborhood Pδn of Pn such that Pn ∈ Pδn ⊂ Pn, where the overall
model Pn is defined similarly as before, except now permitting heteroscedasticity (or we can
keep homoscedasticity fi = fε to maintain formality). To allow for this we consider a collection
of models indexed by a parameter t = (t1, t2):110

yi = di(α0 + t1) + xT
i (β0 + t2θ

∗
0) + εi, ‖t‖ ≤ δ,

fidi = fix
T
i θ
∗
0 + v∗i , E(fiv

∗
i | xi) = 0,

where ‖β0‖0 ∨ ‖θ∗0‖0 ≤ s/2 and conditions as in Section 2 hold. The case with t = 0 generates
the model Pn; by varying t within δ-ball, we generate models Pδn, containing the least favorable
deviations. By Lee (2003), the efficient score for the model given above is Si, so we cannot have a115

better regular estimator than the estimator whose influence function is J−1Si, where J = E(S2
i ).

Since our model Pn contains Pδn, all the formal conclusions about (local minimax) optimality of
our estimators hold from theorems cited above (using subsequence arguments to handle models
changing with n). Our estimators are regular, since under models with t = (O(1/

√
n), o(1)),

their first order asymptotics do not change, as a consequence of Theorem 1 in Section 2, though120

our theorems actually prove more than this.

1·4. Alternative Implementation via Double Selection
An alternative proposal for the method is reminiscent of the double selection method proposed

in Belloni et al. (2014) for partial linear models. This version replaces Step 3 with a LAD regres-
sion of y on d and all covariates selected in Steps 1 and 2 (that is, the union of the selected sets).125

The method is described as follows:

Algoritm 3. (A Double Selection Method)
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Step 1: Run Post-`1-LAD of yi on di and xi:

(α̂, β̂) ∈ arg min
α,β

En(|y − dα− xTβ|) +
λ1

n
‖Ψ(α, βT)T‖1.

Step 2: Run Heteroscedastic Lasso of di on xi:

θ̂ ∈ arg min
θ

En{(d − xTθ)2}+
λ2

n
‖Γ̂θ‖1.

Step 3: Run LAD regression of yi on di and the covariates selected in Step 1 and 2: 130

(α̌, β̌) ∈ arg min
α,β

{
En(|y − dα− xTβ|) : supp(β) ⊆ supp(β̂) ∪ supp(θ̂)

}
.

The double selection algorithm has three steps: (1) select covariates based on the standard `1-
LAD regression, (2) select covariates based on heteroscedastic Lasso of the treatment equation,
and (3) run a LAD regression with the treatment and all selected covariates.

This approach can also be analyzed through Theorem 2 since it creates instruments implicitly.
To see that let T̂ ∗ denote the variables selected in Step 1 and 2: T̂ ∗ = supp(β̂) ∪ supp(θ̂). By 135

the first order conditions for (α̌, β̌) we have∥∥∥En {ϕ(y − dα̌− xTβ̌)(d, xT

T̂ ∗
)T
}∥∥∥ = O{( max

1≤i≤n
|di|+Kn|T̂ ∗|1/2)(1 + |T̂ ∗|)/n},

which creates an orthogonal relation to any linear combination of (di, x
T

iT̂ ∗
)T. In particular, by

taking the linear combination (di, x
T

iT̂ ∗
)(1,−θ̃T

T̂ ∗
)T = di − xT

iT̂ ∗
θ̃
T̂ ∗

= di − xT
i θ̃ = v̂i, which is

the instrument in Step 2 of Algorithm 1, we have

En{ϕ(y − dα̌− xTβ̌)ẑ} = O{‖(1,−θ̃T)T‖( max
1≤i≤n

|di|+Kn|T̂ ∗|1/2)(1 + |T̂ ∗|)/n}.

As soon as the right side is oP (n−1/2), the double selection estimator α̌ approximately minimizes 140

L̃n(α) =
|En{ϕ(y − dα− xTβ̌)v̂}|2

En[{ϕ(y − dα̌− xTβ̌)}2v̂2]
,

where v̂i is the instrument created by Step 2 of Algorithm 1. Thus the double selection estimator
can be seen as an iterated version of the method based on instruments where the Step 1 estimate
β̃ is updated with β̌.

2. PROOFS FOR SECTION 2
2·1. Proof of Theorem 1 145

The proof of Theorem 1 verifies Conditions 2 and 3 and applies Theorem 2. We will collect
the properties of Post-`1-LAD and Post-Lasso together with required regularity conditions in
Appendix 3. Moreover, we will use some auxiliary technical lemmas stated in Appendix 4. The
proof focuses on Algorithm 1. We provide the minor adjustments for the proof for Algorithm 2
later since it is basically the same proof. 150

In Theorem 2, take p1 = 1, z = x,w = (y, d, xT)T,M = 2, ψ(w,α, t) = {1/2− 1(y ≤
αd+ t1)}(d− t2), h(z) = (xTβ0, x

Tθ0)T = (g(x),m(x))T = h(x) (say), A = [α0 − c2, α0 +
c2] where c2 will be specified later, and T = R2 (we omit the subindex “j”). In what follows, we
will separately verify Conditions 2 and 3.
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Verification of Condition 2: (i). The first condition follows from the zero median condition,155

that is, Fε(0) = 1/2. We will show in verification of Condition 3 that with probability 1− o(1),
|α̂− α0| = o(1/ log n), so that for some sufficiently small c > 0, [α0 ± c/ log n] ⊂ Â ⊂ A,
with probability 1− o(1).

(ii). The map

(α, t) 7→ E{ψ(w,α, t) | x} = E([1/2− Fε{(α− α0)d+ t1 − g(x)}](d− t2) | x)

is twice continuously differentiable since f ′ε is continuous. For every ν ∈ {α, t1, t2},160

∂νE{ψ(w,α, t) | x} is −E[fε{(α− α0)d+ t1 − g(x)}d(d− t2) | x] or −E[fε{(α− α0)d+
t1 − g(x)}(d− t2) | x] or E[Fε{(α− α0)d+ t1 − g(x)} | x]. Hence for every α ∈ A,

|∂νE[ψ{w,α, h(x)} | x]| ≤ C1E(|dv| | x) ∨ C1E(|v| | x) ∨ 1.

The expectation of the square of the right side is bounded by a constant depending only on
c3, C1, as E(d4) + E(v4) ≤ C1. Moreover, let T (x) = {t ∈ R2 : |t2 −m(x)| ≤ c3} with any
fixed constant c3 > 0. Then for every ν, ν ′ ∈ {α, t, t′}, whenever α ∈ A, t ∈ T (x),165

|∂ν∂ν′E{ψ(w,α, t) | x}|
≤ C1

[
1 ∨ E{|d2(d− t2)| | x} ∨ E{|d(d− t2)| | x} ∨ E(|d| | x) ∨ E(|d− t2| | x)

]
.

Since d = m(x) + v, |m(x)| = |xTθ0| ≤Mn, |t2 −m(x)| ≤ c3 for t ∈ T (x), and E(|v|3 |
x) ≤ C1, we have

E{|d2(d− t2)| | x} ≤ E[{m(x) + v}2(c3 + |v|) | x] ≤ 2E[{m2(x) + v2}(c3 + |v|) | x]170

≤ 2E{(M2
n + v2)(c3 + |v|) | x} .M2

n.

Similar computations lead to |∂ν∂ν′E{ψ(w,α, t) | x}| ≤ CM2
n = L1n (say) for some con-

stant C depending only on c3, C1. We wish to verify the last condition in (ii). For every
α, α′ ∈ A, t, t′ ∈ T (x),

E[{ψ(w,α, t)− ψ(w,α′, t′)}2 | x] ≤ C1E{|d(d− t2)| | c}|α− α′|175

+ C1E{|(d− t2)| | x}|t1 − t′1|+ (t2 − t′2)2 ≤ C ′Mn(|α− α′|+ |t1 − t′1|) + (t2 − t′2)2,

where C ′ is a constant depending only on c3, C1. Here as |t2 − t′2| ≤ |t2 −m(x)|+ |m(x)−
t2| ≤ 2c3, the right side is bounded by

√
2(C ′Mn + 2c3)(|α− α′|+ ‖t− t′‖). Hence we can

take L2n =
√

2(C ′Mn + 2c3) and ς = 1.
(iii). Recall that d = xTθ0 + v,E(v | x) = 0. Then we have180

∂t1E{ψ(w,α0, t) | x}|t=h(x) = E{fε(0)v | x} = 0,

∂t2E{ψ(w,α0, t) | x}|t=h(x) = −E{Fε(0)− 1/2 | x} = 0.

(iv). Pick any α ∈ A. There exists α′ between α0 and α such that

E[ψ{w,α, h(x)}] = ∂αE[ψ{w,α0, h(x)}](α− α0) +
1

2
∂2
αE[ψ{w,α′, h(x)}](α− α0)2

Let Γ = ∂αE[ψ{w,α0, h(x)}] = fε(0)E(v2) ≥ c2
1. Then since |∂2

αE[ψ{w,α′, h(x)}]| ≤185

C1E(|d2v|) ≤ C2 (say) where C2 can be taken depending only on C1, we have

E[ψ{w,α, h(x)}] ≥ 1

2
Γ|α− α0|,

whenever |α− α0| ≤ c2
1/C2. Take c2 = c2

1/C2 in the definition ofA, so that the above inequality
holds for all α ∈ A.
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(v). Observe that E[ψ2{w,α0, h(x)}] = (1/4)E(v2) ≥ c1/4.

Verification of Condition 3: Note here that an = p ∨ n and bn = 1. Next we show that the 190

estimators ĥ(x) = (xTβ̃, xTθ̃)T are sparse and have good rate property.
The estimator β̃ is based on Post-`1-penalized LAD with penalty parameters as suggested in

Section 3·2. By assumption in Theorem 1, with probability 1−∆n we have ŝ = ‖β̃‖0 ≤ C1s.
Next we verify that Condition PLAD in Appendix 3 is implied by Condition 1 and invoke
Lemmas 1 and 2. The assumptions on the error density fε(·) in Condition PLAD (i) are as- 195

sumed in Condition 1 (iv). Because of Condition 1 (v) and (vi), κ̄c0 is bounded away from
zero for n sufficiently large (see Bickel et al., 2009, Lemma 4.1) and c1 ≤ φ̄min(1) ≤ E(x̃2

j ) ≤
φ̄max(1) ≤ C1 for every 1 ≤ j ≤ p. Moreover, under Condition 1, by Lemma 7 we have
max1≤j≤p+1 |En(x̃2

j )/E(x̃2
j )− 1| ≤ 1/2 and φmax(`′ns) ≤ 2En(d2) + 2φxmax(`′ns) ≤ 5C1 with

probability 1− o(1) for some `′n →∞. The required side condition of Lemma 1 is satisfied 200

by relations (7) and (8) ahead. By Lemma 2 in Appendix 3 we have ‖xT(β̃ − β0)‖P,2 .P√
s log(n ∨ p)/n since the required side condition holds. Indeed, for x̃i = (di, x

T
i )T and δ =

(δd, δ
T
x )T, because ‖β̃‖0 ≤ C1s with probability 1−∆n, c1 ≤ φ̄min(C1s+ s) ≤ φ̄max(C1s+

s) ≤ C1, and E(|d|3) = O(1), we have

inf
‖δ‖0≤s+C1s

‖x̃Tδ‖3P,2

E(|x̃Tδ|3)
≥ inf
‖δ‖0≤s+C1s

{φ̄min(s+C1s)}3/2‖δ‖3
4E(|xTδx|3)+4|δd|3E(|d|3)

≥ inf
‖δ‖0≤s+C1s

{φ̄min(s+C1s)}3/2‖δ‖3
4Kn‖δx‖1φ̄max(s+C1s)‖δx‖2+4‖δ‖3E(|d|3)

≥ {φ̄min(s+C1s)}3/2
4Kn
√
s+C1sφ̄max(s+C1s)+4E(|d|3)

& 1
Kn
√
s
.

Therefore, since K2
ns

2 log2(p ∨ n) ≤ δnn and λ .
√
n log(p ∨ n) we have 205

√
n
√
φ̄min(s+C1s)/φmax(s+C1s)∧κ̄c0√

s log(p∨n)
inf

‖δ‖0≤s+C1s

‖x̃Tδ‖3P,2

E(|x̃Tδ|3)
&

√
n

Kns log(p∨n) →∞.

The argument above also shows that |α̂− α0| = o(1/ log n) with probability 1− o(1) as claimed
in Verification of Condition 2 (i). Indeed by Lemma 1 and Remark 2 we have |α̂− α0| .√
s log(p ∨ n)/n = o(1/ log n) with probability 1− o(1) under s3 log3(p ∨ n) ≤ δnn.
The estimator θ̃ is based on Post-Lasso with penalty parameters as suggested in Section 3·3.

We verify that Condition HL in Appendix 3 is implied by Condition 1 and invoke Lemma 4. 210

Indeed, Condition HL (ii) is implied by Conditions 1 (ii) and (iv) (condition (iv) is used to ensure
min1≤j≤pE(x2

j ) ≥ c1). Next since max1≤j≤pE(|xjv|3) ≤ C1, Condition HL (iii) is satisfied if√
log(p ∨ n) = o(n1/6), which is implied by Condition 1 (v). Condition HL (iv) follows from

Lemma 5 applied twice with ζi = vi and ζi = di under the condition that K4
n log p ≤ δnn and

K2
ns log(p ∨ n) ≤ δnn. Condition HL (v) follows from Lemma 7. By Lemma 4 in Appendix 3 215

we have ‖xT(θ̃ − θ0)‖2,n .P
√
s log(n ∨ p)/n and ‖θ̃‖0 . s with probability 1− o(1). Thus,

by Lemma 7, we have ‖xT(θ̃ − θ0)‖P,2 .P
√
s log(n ∨ p)/n.

Combining the results above, we have that ĥ ∈ H = ×2
m=1Hm with probability 1−

o(1) where Hm = {h̃m : Rp → R : h̃m(x) = xTθm, ‖θm‖0 ≤ C3s, E[{h̃m(x)− hm(x)}2] ≤
C ′3`

′
ns(log an)/n} and `′n ↑ ∞ sufficiently slowly. 220

To verify Condition 3 (iii) note that F = ϕ(G) · H2, where ϕ(u) = 1/2− 1(u ≤ 0) and
G = {(y, d, xT)T 7→ y − αd− h(x) : α ∈ A, h ∈ H1}. H1 and H2 are the union of

(
p
C3s

)
VC-

subgraph classes. Since ϕ is monotone, by Lemma 2.6.18 in van der Vaart & Wellner (1996),
ϕ(G) is also a VC-subgraph class with the same VC index. Finally, the entropy of F associated
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with the product between ϕ(G) and H2 satisfies the stated entropy condition; see the proof of225

Theorem 3 in Andrews (1994), relation (A.7).
To verify Condition 3 (v), take sn = `′ns and ρn = n−1/2(

√
sn log an +

n−1/2snn
1/q log an) . n−1/2

√
sn log an under q ≥ 4 and s2

n/n = o(1). For ς = 1,
L1n .M2

n and L2n .Mn, the condition (18) holds provided n−1M2
ns

3
n log3 an = o(1)

and n−1M4
ns

2
n log2 an = o(1) which are implied by Condition 1 (with `′n diverging slow230

enough).
Therefore, for σ2

n = E[Γ−2ψ{w,α0, h(x)}] = E(v2)/{4f2
ε (0)}, by Theorem 2 we have the

first result that σ−1
n

√
n(α̌− α0) N(0, 1).

Next we prove the second result regarding nLn(α0). First consider the denominator of
Ln(α0). We have that with probability 1− o(1)235

|En(v̂2)− En(v2)| = |En{(v̂ − v)(v̂ + v)}| ≤ ‖v̂ − v‖2,n‖v̂ + v‖2,n
≤ ‖xT(θ̃ − θ0)‖2,n{2‖v‖2,n + ‖xT(θ̃ − θ0)‖2,n} . δn,

where we have used ‖v‖2,n .P {E(v2)}1/2 = O(1) and ‖xT(θ̃ − θ0)‖2,n = oP (δn).
Second consider the numerator of Ln(α0). Since E[ψ{w,α0, h(x)}] = 0 we have with prob-

ability 1− o(1)240

En[ψ{w,α0, ĥ(x)}] = En[ψ{w,α0, h(x)}] + o(δnn
−1/2),

using representation in the displayed equation of Step 4 in the proof of Theorem 2 evaluated at
α0 instead of α̂j . Therefore, using the identity that nA2

n = nB2
n + n(An −Bn)2 + 2nBn(An −

Bn) with

An = En[ψ{w,α0, ĥ(x)}] and Bn = En[ψ{w,α0, h(x)}] .P {E(v2)}1/2n−1/2,

we have

nLn(α0) =
4n|En[ψ{w,α0, ĥ(x)}]|2

En(v̂2)
=

4n|En[ψ{w,α0, h(x)}]|2

En[ψ2{w,α0, h(x)}]
+OP (δn)

since E(v2) is bounded away from zero. By Theorem 7.1 in de la Peña et al. (2009), and the245

moment conditions E(d4) ≤ C1 and E(v2) ≥ c1, the following holds for the self-normalized
sum

I =
2
√
nEn[ψ{w,α0, h(x)}]

(En[ψ2{w,α0, h(x)}])1/2
 N(0, 1),

and the desired result follows since nLn(α0) = I2 +OP (δn).

Remark 1 (On one-step procedure). An inspection of the proof leads to the following stochas-
tic expansion:250

En[ψ{w, α̂, ĥ(x)}] = −(fεE[v2])(α̂− α0) + En[ψ{w,α0, h(x)}]
+OP (δ1/2

n n−1/2 + δnn
−1/4|α̂− α0|+ |α̂− α0|2),

where α̂ is any consistent estimator of α0. Hence provided that |α̂− α0| = oP (n−1/4), the re-
mainder term in the above expansion is oP (n−1/2), and the one-step estimator α̌ defined by

α̌ = α̂+ {En(fεv̂
2)}−1En[ψ{w, α̂, ĥ(x)}]
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has the following stochastic expansion: 255

α̌ = α̂+ {fεE(v2) + oP (n−1/4)}−1[−{fεE(v2)}(α̂− α0) + En[ψ{w,α0, h(x)}] + oP (n−1/2)]

= α0 + {fεE(v2)}−1En[ψ{w,α0, h(x)}] + oP (n−1/2),

so that σ−1
n

√
n(α̌− α0) N(0, 1).

2·2. Proof of Theorem 1: Algorithm 2
Proof of Theorem 1: Algorithm 2. The proof is the same as the proof for Algorithm 1 just 260

verifying the rates for the penalized estimators.
The estimator β̂ is based on `1-LAD. Condition PLAD is implied by Condition 1 (see the

proof for Algorithm 1). By Lemma 1 and Remark 2 we have with probability 1− o(1)

‖xT(β̂ − β0)‖P,2 .
√
s log(n ∨ p)/n and |α̂− α0| .

√
s log(p ∨ n)/n = o(1/ log n),

because s3 log3(n ∨ p) ≤ δnn and the required side condition holds. Indeed, without loss of
generality assume that T̃ contains d so that for x̃i = (di, x

T
i )T, δ = (δd, δ

T
x )T, because κ̄c0 is 265

bounded away from zero, and the fact that E(|d|3) = O(1), we have

infδ∈∆c0

‖x̃Tδ‖3P,2

E(|x̃Tδ|3)
≥ infδ∈∆c0

‖x̃Tδ‖2P,2‖δT ‖κ̄c0
4E(|x′δx|3)+4E(|dδd|3)

≥ infδ∈∆c0

‖x̃Tδ‖2P,2‖δT ‖κ̄c0
4Kn‖δx‖1E(|xTδx|2)+4|δd|3E(|d|3)

≥ infδ∈∆c0

‖x̃Tδ‖2P,2‖δT ‖κ̄c0
{4Kn‖δx‖1+4|δd|E(|d|3)/E(|d|2)}{E(|xTδx|2)+E(|δdd|2)}

≥ infδ∈∆c0

‖x̃Tδ‖2P,2‖δT ‖κ̄c0
8(1+3c′0)‖δT ‖1{Kn+O(1)}{2E(|x̃Tδx|2)+3E(|δdd|2)}

≥ infδ∈∆c0

‖x̃Tδ‖2P,2‖δT ‖κ̄c0
8(1+3c′0)‖δT ‖1{Kn+O(1)}E(|x̃Tδx|2)(2+3/κ̄2c0 )

≥ κ̄c0/
√
s

8{Kn+O(1)}(1+3c′0){2+3E(d2)/κ̄2c0}
& 1√

sKn
.

(7)

Therefore, since λ .
√
n log(p ∨ n) we have
√
nκ̄c0√

s log(p ∨ n)
inf

δ∈∆c0

‖x̃Tδ‖3P,2
E(|x̃Tδ|3)

&

√
n

Kns
√

log(p ∨ n)
→∞ (8)

under K2
ns

2 log2(p ∨ n) ≤ δnn.
The estimator θ̂ is based on Lasso. Condition HL is implied by Condition 1 and Lemma 5

applied twice with ζi = vi and ζi = di under the condition that K4
n log p ≤ δnn. By Lemma 3 270

we have ‖xT(θ̂ − θ0)‖2,n .P
√
s log(n ∨ p)/n. Moreover, by Lemma 4 we have ‖θ̂‖0 . s with

probability 1− o(1). The required rate in the ‖ · ‖P,2 norm follows from Lemma 7.

3. AUXILIARY RESULTS FOR `1-LAD AND HETEROSCEDASTIC LASSO

3·1. Notation
In this section we state relevant theoretical results on the performance of the estimators: `1- 275

LAD, Post-`1-LAD, heteroscedastic Lasso, and heteroscedastic Post-Lasso. There results were
developed in Belloni & Chernozhukov (2011) and Belloni et al. (2012). We keep the notation
of Sections 1 and 2 in the main text, and let x̃i = (di, x

T
i )T. Throughout the section, let c0 > 1

be a fixed (slack) constant chosen by users (we suggest to take c0 = 1.1 but the analysis is not
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restricted to this choice). Moreover, let c′0 = (c0 + 1)/(c0 − 1). Also recall the definition of the280

minimal and maximal m-sparse eigenvalues of a matrix A as

φmin(m,A) = min
1≤‖δ‖0≤m

δTAδ

‖δ‖2
and φmax(m,A) = max

1≤‖δ‖0≤m

δTAδ

‖δ‖2
, (9)

where 1 ≤ m ≤ p. Finally, define φmin(m) = φmin{m,En(x̃x̃T)}, φ̄min(m) =
φmin{m,E(x̃x̃T)}, φ̄max(m) = φmax{m,E(x̃x̃T)}, φxmin(m) = φmin{m,En(xxT)}, and
φxmax(m) = φmax{m,En(xxT)}. Observe that φmax(m) ≤ 2En(d2) + 2φxmax(m).

3·2. `1-Penalized LAD285

Suppose that {(yi, x̃T
i )T}ni=1 are independent and identically distributed random vectors satis-

fying the conditional median restriction

pr(yi ≤ x̃T
i η0 | x̃i) = 1/2.

We consider the estimation of η0 via the `1-penalized LAD regression estimate

η̂ ∈ arg min
η

En(|y − x̃Tη|) +
λ

n
‖Ψη‖1,

where Ψ2 = diag{En(x̃2
1), . . . ,En(x̃2

p)} is a diagonal matrix of penalty loadings. As established
in Belloni & Chernozhukov (2011) and Wang (2013), under the event that290

λ

n
≥ 2c0‖Ψ−1En[{1/2− 1(y ≤ x̃Tη0)}x̃]‖∞, (10)

the estimator above achieves good theoretical guarantees under mild design conditions. Although
η0 is unknown, we can set λ so that the event in (10) holds with high probability. In particular, the
pivotal rule discussed in Belloni & Chernozhukov (2011) proposes to set λ = c0nΛ(1− γ | x̃)
with γ → 0 where

Λ(1− γ | x̃) = (1− γ)-quantile of 2‖Ψ−1En[{1/2− 1(U ≤ 1/2)}x̃]‖∞. (11)

Here U1, . . . , Un are independent uniform random variables on (0, 1) independent of x̃1, . . . , x̃n.295

This quantity can be easily approximated via simulations. The values of γ and c0 are chosen by
users, but we suggest to take γ = γn = 0.1/ log n and c0 = 1.1. Below we summarize required
technical conditions.

Condition PLAD. Assume that ‖η0‖0 = s ≥ 1, E(x̃2
j ) = 1, |En(x̃2

j )− 1| ≤ 1/2 for all 1 ≤
j ≤ p with probability 1− o(1), the conditional density of yi given x̃i, denoted by fi(·), and its300

derivative are bounded by f̄ and f̄ ′, respectively, and fi(x̃T
i η0) ≥ f > 0 is bounded away from

zero.

Condition PLAD is implied by Condition 1 after a normalizing the variables so that E(x̃2
j ) =

1. The assumption on the conditional density is standard in the quantile regression literature even
with fixed p or p increasing slower than n (see Koenker, 2005; Belloni et al., 2011, respectively).305

We present bounds on the population prediction norm of the `1-LAD estimator. The bounds
depend on the restricted eigenvalue proposed in Bickel et al. (2009), defined by

κ̄c0 = inf
δ∈∆c0

‖x̃Tδ‖P,2/‖δT̃ ‖,

where T̃ = supp(η0) and ∆c0 = {δ ∈ Rp+1 : ‖δ
T̃ c‖1 ≤ 3c′0‖δT̃ ‖1} (T̃ c = {1, . . . , p+ 1}\T̃ ).

The following lemma follows directly from the proof of Theorem 2 in Belloni & Chernozhukov
(2011) applied to a single quantile index.310
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LEMMA 1 (ESTIMATION ERROR OF `1-LAD). Under Condition PLAD and using λ =
c0nΛ(1− γ | x̃) . n log{(p ∨ n)/γ}, we have with probability at least 1− γ − o(1),

‖x̃T(η̂ − η0)‖P,2 .
1

κ̄c0

√
s log{(p ∨ n)/γ}

n
,

provided that
√
nκ̄c0√

s log{(p ∨ n)/γ}
f̄ f̄ ′

f
inf

δ∈∆c0

‖xTδ‖3P,2
E(|x̃Tδ|3)

→∞.

Lemma 1 establishes the rate of convergence in the population prediction norm for the `1-LAD
estimator in a parametric setting. The extra growth condition required for identification is mild. 315

For instance for many designs of interest we have infδ∈∆c0
‖xTδ‖3P,2/E(|x̃Tδ|3) bounded away

from zero (Belloni & Chernozhukov, 2011). For designs with bounded regressors we have

inf
δ∈∆c0

‖xTδ‖3P,2
E(|x̃Tδ|3)

≥ inf
δ∈∆c0

‖xTδ‖P,2
‖δ‖1K̃n

≥ κ̄c0√
s(1 + 3c′0)K̃n

,

where K̃n is a constant such that K̃n ≥ ‖x̃i‖∞ almost surely. This leads to the extra growth
condition that K̃2

ns
2 log(p ∨ n) = o(κ̄2

c0n).
In order to alleviate the bias introduced by the `1-penalty, we can consider the associated 320

post-model selection estimate associated with a selected support T̂

η̃ ∈ arg min
η

{
En(|y − x̃Tη|) : ηj = 0 if j 6∈ T̂

}
. (12)

The following result characterizes the performance of the estimator in (12); see Theorem 5 in
Belloni & Chernozhukov (2011) for the proof.

LEMMA 2 (ESTIMATION ERROR OF POST-`1-LAD). Suppose that supp(η̂) ⊆ T̂ and let
ŝ = |T̂ |. Then under the same conditions as in Lemma 1, 325

‖x̃T(η̃ − η0)‖P,2 .P

√
(ŝ+ s)φmax(ŝ+ s) log(n ∨ p)

nφ̄min(ŝ+ s)
+

1

κ̄c0

√
s log{(p ∨ n)/γ}

n
,

provided that
√
n{
√
φ̄min(ŝ+ s)/φmax(ŝ+ s) ∧ κ̄c0}√

s log{(p ∨ n)/γ}
f̄ f̄ ′

f
inf

‖δ‖0≤ŝ+s

‖x̃Tδ‖3P,2
E(|x̃Tδ|3)

→P ∞.

Lemma 2 provides the rate of convergence in the prediction norm for the post model selection
estimator despite possible imperfect model selection. The rates rely on the overall quality of
the selected model (which is at least as good as the model selected by `1-LAD) and the overall
number of components ŝ. Once again the extra growth condition required for identification is 330

mild.

Remark 2. In Step 1 of Algorithm 2 we use `1-LAD with x̃i = (di, x
T
i )T, δ̂ = η̂ − η0 =

(α̂− α0, β̂
T − βT

0 )T, and we are interested on rates for ‖xT(β̂ − β0)‖P,2 instead of ‖x̃Tδ̂‖P,2.
However, it follows that

‖xT(β̂ − β0)‖P,2 ≤ ‖x̃Tδ̂‖P,2 + |α̂− α0| · ‖d‖P,2.
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Since s ≥ 1, without loss of generality we can assume the component associated with the treat-335

ment di belongs to T̃ (at the cost of increasing the cardinality of T̃ by one which will not affect
the rate of convergence). Therefore we have that

|α̂− α0| ≤ ‖δ̂T̃ ‖ ≤ ‖x̃
Tδ̂‖P,2/κ̄c0 ,

provided that δ̂ ∈ ∆c0 , which occurs with probability at least 1− γ. In most applications of
interest ‖d‖P,2 and 1/κ̄c0 are bounded from above. Similarly, in Step 1 of Algorithm 1 we have
that the Post-`1-LAD estimator satisfies340

‖xT(β̃ − β0)‖P,2 ≤ ‖x̃Tδ̃‖P,2
{

1 + ‖d‖P,2/
√
φ̄min(ŝ+ s)

}
.

3·3. Heteroscedastic Lasso
In this section we consider the equation (4) of the form

di = xT
i θ0 + vi, E(vi | xi) = 0,

where we observe {(di, xT
i )T}ni=1 that are independent and identically distributed random vec-

tors. The unknown support of θ0 is denoted by Td and it satisfies |Td| ≤ s. To estimate θ0, we
compute345

θ̂ ∈ arg min
θ

En{(d − xTθ)2}+
λ

n
‖Γ̂θ‖1, (13)

where λ and Γ̂ are the associated penalty level and loadings which are potentially data-driven.
We rely on the results of Belloni et al. (2012) on the performance of Lasso and post-Lasso that
allow for heteroscedasticity and non-Gaussianity. According to Belloni et al. (2012), we use the
following options for the penalty level and the loadings:

initial γ̂j =
√

En{x2
j (d − d̄)2}, λ = 2c

√
nΦ−1{1− γ/(2p)},

refined γ̂j =
√
En(x2

j v̂
2), λ = 2c

√
nΦ−1{1− γ/(2p)},

(14)

for 1 ≤ j ≤ p, where c > 1 is a fixed constant, γ ∈ (1/n, 1/ log n), d̄ = En(d) and v̂i is an350

estimate of vi based on Lasso with the initial option (or iterations).
We make the following high-level conditions. Below c1, C1 are given positive constants, and

`n ↑ ∞ is a given sequence of constants.

Condition HL. (i) There exists s = sn ≥ 1 such that ‖θ0‖0 ≤ s. (ii) E(d2) ≤
C1,min1≤j≤pE(x2

j ) ≥ c1, E(v2 | x) ≥ c1 almost surely, and max1≤j≤pE(|xjd|2) ≤ C1.355

(iii) max1≤j≤p{E(|xjv|3)}1/3
√

log(n ∨ p) = o(n1/6). (iv) With probability 1− o(1),
max1≤j≤p |En(x2

jv
2)− E(x2

jv
2)| ∨max1≤j≤p |En(x2

jd
2)− E(x2

jd
2)| = o(1) and

max1≤i≤n ‖xi‖2∞s log(n ∨ p) = o(n). (v) With probability 1− o(1), c1 ≤ φxmin(`ns) ≤
φxmax(`ns) ≤ C1.

Condition HL (i) verifies Condition AS in Belloni et al. (2012), while Conditions HL (ii)-360

(iv) verify Condition RF in Belloni et al. (2012). Lemma 3 in Belloni et al. (2012) provides
primitive sufficient conditions under which condition (iv) is satisfied. The condition on the sparse
eigenvalues ensures that κC̄ in Theorem 1 of Belloni et al. (2012) (applied to this setting) is
bounded away from zero with probability 1− o(1); see Lemma 4.1 in Bickel et al. (2009).

Next we summarize results on the performance of the estimators generated by Lasso.365
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LEMMA 3 (ESTIMATION ERROR OF LASSO). Suppose that Condition HL is satisfied. Setting
λ = 2c

√
nΦ−1{1− γ/(2p)} for c > 1, and using the penalty loadings as in (14), we have with

probability 1− o(1),

‖xT(θ̂ − θ0)‖2,n .
λ
√
s

n
.

Associated with Lasso we can define the Post-Lasso estimator as

θ̃ ∈ arg min
θ

{
En{(d − xTθ)2} : θj = 0 if θ̂j = 0

}
and set ṽi = di − xT

i θ̃.

That is, the Post-Lasso estimator is simply the least squares estimator applied to the regressors 370

selected by Lasso in (13). Sparsity properties of the Lasso estimator θ̂ under estimated weights
follows similarly to the standard Lasso analysis derived in Belloni et al. (2012). By combin-
ing such sparsity properties and the rates in the prediction norm, we can establish rates for the
post-model selection estimator under estimated weights. The following result summarizes the
properties of the Post-Lasso estimator. 375

LEMMA 4 (PROPERTIES OF LASSO AND POST-LASSO). Suppose that Condition HL is sat-
isfied. Consider the Lasso estimator with penalty level and loadings specified as in Lemma 3.
Then the data-dependent model T̂d selected by the Lasso estimator θ̂ satisfies with probability
1− o(1):

‖θ̃‖0 = |T̂d| . s.

Moreover, the Post-Lasso estimator obeys 380

‖xT(θ̃ − θ0)‖2,n .P

√
s log(p ∨ n)

n
.

4. AUXILIARY TECHNICAL RESULTS

In this section we collect some auxiliary technical results.

LEMMA 5. Let (ζ1, x
T
1 )T, . . . , (ζn, x

T
n)T be independent random vectors where ζ1, . . . , ζn are

scalar while x1, . . . , xn are vectors in Rp. Suppose that E(ζ4
i ) <∞ for all 1 ≤ i ≤ n, and

there exists a constant Kn such that max1≤i≤n ‖xi‖∞ ≤ Kn almost surely. Then for every τ ∈ 385

(0, 1/8), with probability at least 1− 8τ ,

max
1≤j≤p

|n−1∑n
i=1{ζ

2
i x

2
ij − E(ζ2

i x
2
ij)}| ≤ 4K2

n

√
(2/n) log(2p/τ)

√∑n
i=1E(ζ4

i )/(nτ).

Proof of Lemma 5. The proof depends on the following maximal inequality derived in Belloni
et al. (2014).

LEMMA 6. Let z1, . . . , zn be independent random vectors in Rp. Then for every τ ∈ (0, 1/4)
and δ ∈ (0, 1/4), with probability at least 1− 4τ − 4δ, 390

max
1≤j≤p

|n−1/2∑n
i=1{zij − E(zij)}| ≤

{
4
√

2 log(2p/δ) Q(1− τ)
}

∨ 2 max
1≤j≤p

median of |n−1/2∑n
i=1{zij − E(zij)}|,

where Q(u) = u-quantile of max1≤j≤p
√
n−1

∑n
i=1 z

2
ij .
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Going back to the proof of Lemma 5, let zij = ζ2
i x

2
ij . By Markov’s inequality, we have395

median of |n−1/2∑n
i=1{zij − E(zij)}| ≤

√
2n−1

∑n
i=1E(z2

ij) ≤ K
2
n

√
(2/n)

∑n
i=1E(ζ4

i ),

and

(1− τ)-quantile of max
1≤j≤p

√
n−1

∑n
i=1z

2
ij ≤ (1− τ)-quantile of K2

n

√
n−1

∑n
i=1ζ

4
i

≤ K2
n

√∑n
i=1E(ζ4

i )/(nτ).

Hence the conclusion of Lemma 5 follows from application of Lemma 6 with τ = δ. �

LEMMA 7. Under Condition 1, there exists `′n →∞ such that with probability 1− o(1),400

sup
‖δ‖0≤`′ns
δ 6=0

∣∣∣∣‖xTδ‖2,n
‖xTδ‖P,2

− 1

∣∣∣∣ = o(1).

Proof of Lemma 7. The lemma follows from application of Theorem 4.3 in Rudelson & Zhou
(2013).

LEMMA 8. Consider p-vectors β̂ and β0 where ‖β0‖0 ≤ s, and denote by β̂(m) the vector β̂
truncated to have only its m ≥ s largest components in absolute value. Then

‖β̂(m) − β0‖1 ≤ 2‖β̂ − β0‖1405

‖xT{β̂(2m) − β0}‖2,n ≤ ‖xT(β̂ − β0)‖2,n +
√
φxmax(m)/m‖β̂ − β0‖1.

Proof of Lemma 8. The first inequality follows from the triangle inequality

‖β̂(m) − β0‖1 ≤ ‖β̂ − β̂(m)‖1 + ‖β̂ − β0‖1

and the observation that ‖β̂ − β̂(m)‖1 = min‖β‖0≤m ‖β̂ − β‖1 ≤ ‖β̂ − β0‖1 since m ≥ s =
‖β0‖0.

By the triangle inequality we have410

‖xT{β̂(2m) − β0}‖2,n ≤ ‖xT(β̂ − β0)‖2,n + ‖xT{β̂(2m) − β̂}‖2,n.

For an integer k ≥ 2, ‖β̂(km) − β̂(km−m)‖0 ≤ m and β̂ − β̂(2m) =
∑

k≥3{β̂(km) − β̂(km−m)}.
Moreover, given the monotonicity of the components, ‖β̂(km+m) − β̂(km)‖ ≤ ‖β̂(km) −
β̂(km−m)‖1/

√
m. Then

‖xT{β̂ − β̂(2m)}‖2,n = ‖xT
∑

k≥3{β̂
(km) − β̂(km−m)}‖2,n ≤

∑
k≥3‖x

T{β̂(km) − β̂(km−m)}‖2,n
≤
√
φxmax(m)

∑
k≥3‖β̂

(km) − β̂(km−m)‖ ≤
√
φxmax(m)

∑
k≥2‖β̂

(km) − β̂(km−m)‖1/
√
m415

=
√
φxmax(m)‖β̂ − β̂(m)‖1/

√
m ≤

√
φxmax(m)‖β̂ − β0‖1/

√
m,

where the last inequality follows from the arguments used to show the first result. �
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