
Why Medical Innovation is Valuable:
Health, Human Capital and the Labor Market∗

Nicholas W. Papageorge†

February 5, 2014

Abstract: I develop a framework to assess the value of pharmaceutical innovation, tak-
ing explicit account of how side effects and the labor market affect the demand for medical
treatment. In the framework, forward-looking patients do not simply maximize underlying
health or longevity. Rather, in light of painful or uncomfortable side effects, they choose
labor supply and medicine in an effort to jointly manage two forms of human capital: their
health and their labor market experience. The framework is used to examine the treatment
and employment decisions of HIV+ men before and after a medical breakthrough known
as HAART. Main findings include (1) a counterfactual medical innovation that reduces side
effects of existing drugs—despite no improvement to drug effectiveness—is potentially very
valuable and part of its value arises since working while suffering side effects can be diffi-
cult. (2) Forward-looking, chronically ill patients optimally choose to cycle among available
treatment options, favoring effective treatments despite side effects when in poor health, but
switching to less effective drugs with fewer side effects (or avoiding treatment altogether)
when their health improves. Since working while suffering side effects can be difficult, part
of the incentive to cycle off of treatment comes from the desire to increase consumption
through employment.

Key Words: Innovation, Health, Human Capital, Labor, Structural Models, HIV/AIDS.

JEL Classification: I10 J24 O31

∗This paper was originally a chapter in my doctoral thesis completed at Washington University in St.
Louis. Special thanks goes to my dissertation committee: Barton Hamilton, Tat Chan, Mariagiovanna
Baccara, Sebastián Galiani, Juan Pantano and Robert Pollak. For helpful comments and conversations, I
also thank Jorge Balat, Melanie Blackwell, Janet Currie, Hülya Ereslan, Amy Finkelstein, Stephanie Heger,
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1 Introduction

Beginning with the work of Grossman (1972), economists have envisioned health as a form of

human capital that affects productivity as well as longevity and well-being. This framework

has been a dominant one in the literature for assessing the value of improvements in medical

technology, including innovations in drug effectiveness. However, the framework leaves out

two critical factors: first, it leaves out the possibility that new drugs have more serious

side effects than older drugs and, second, it does not have an explicit compliance decision

on whether to take a new drug. When these two factors are added to the model, the

individual can be seen as facing a tradeoff between enhancing health and suffering side

effects that potentially reduce time in the labor market. An implication is that individuals

make decisions about medical treatment and labor supply in an effort to jointly manage

two forms of human capital: their health and their work experience. Evaluation of medical

innovation is therefore incomplete if the interaction between health and the labor market

is not considered. In particular, a medical innovation that lengthens life, but also has side

effects that cause pain and discomfort—or make it difficult to work—may be less valuable

than a treatment that does not affect longevity, but instead improves the quality of life.

In this paper, I develop a general framework to assess the value of medical innovation,

taking explicit account of how side effects and the labor market affect demand for medical

treatment. Though prior work has recognized various links between health and labor, the

main contribution of this paper is to incorporate how these links influence patient treatment

and employment decisions. In the framework, patients are not viewed as maximizing their

underlying health or longevity. Rather, in light of potential side effects, patients actively

manage their health capital in a way that balances the impacts of medication on the la-

bor market and productivity with impacts on mortality and morbidity. The framework is

therefore consistent with research emphasizing how individuals value healthcare because it

makes them live not only longer, but also better lives (Hall and Jones, 2007). It also marks

a departure from earlier work studying the value of medical innovation, which typically fo-

cuses on increases to life expectancy (Murphy and Topel, 2003, 2006) or relies on stated or

elicited (as opposed to revealed) preferences to assess how medicine affects the quality of life

(Lipscomb et al., 2009).

The framework centers around estimation of a dynamic model where forward-looking

agents simultaneously choose medical treatment and labor supply. The model is set up

in a way that allows it to capture the following two key tradeoffs. First, and consistent

with earlier work linking health and labor, agents treat their health as a form of capital

stock (Becker, 2007; Heckman and Cunha, 2007; Currie, 2009; Conti, Heckman, and Urzua,
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2010). They choose effective treatments to invest in their health capital, but may also forego

treatment to avoid painful or uncomfortable side effects, thus allowing their health capital to

depreciate. The second tradeoff is the one faced by agents choosing whether or not to work.

By working, agents earn income and accumulate human capital, but also forego valuable

leisure time. Moreover, the structure of the model also allows it to capture various ways in

which these two tradeoffs interact. Poor health can negatively affect productivity, earnings

and labor supply, which encourages investments in health capital (Currie and Madrian, 1999;

Cawley, 2004; Garthwaite, 2012). Further, side effects can discourage employment by raising

the utility cost of work, leading some patients to avoid medicine. Finally, employment gaps,

including those induced by illness or side effects, can slow the accumulation of labor market

experience, reducing future income (Mincer and Polachek, 1974; Becker, 1985; Eckstein and

Wolpin, 1989).

Before discussing the application, I highlight two specific features of the model and de-

scribe the benefits of each in allowing the model to capture the tradeoffs mentioned above.

First, patients using medication are viewed as consuming bundles of characteristics. Second,

each treatment is measured along two dimensions of quality: (i) effectiveness at improving

underlying health, which governs longevity and symptoms, and (ii) propensity to cause im-

mediate side effects. Symptoms and side effects manifest as physical ailments and it is these

ailments that affect patient utility.1 To summarize how these features of the model work:

agents are not viewed as having preferences over specific medications or over their underlying

health per se. Rather, they have preferences over what their underlying health delivers: a

longer life and a reduction in symptoms. To improve their health, agents can take drugs, but

these health investments come at the potential cost of painful or uncomfortable side effects.

A key benefit of using the ‘characteristics approach’ to estimate demand is that it permits

assessment of potential new drugs introduced to the market, each constructed as unique,

counterfactual effectiveness and side effects bundle (Petrin, 2004).2 Another benefit is that it

permits straightforward interaction of preferences over health and longevity with preferences

over goods that influence the quality of life, like consumption and leisure. Exploiting the

characteristic approach allows me to show, for example, that medical innovations aimed at

reducing side effects of existing drugs—despite no improvement to drug effectiveness—are

potentially very valuable and that part of this value arises since working while suffering side

effects can be difficult and employment gaps are costly.3

1In the model, out-of-pocket costs are also included. Also, note that it would be straightforward to extend
the model to incorporate further drug characteristics, like convenience.

2Studies pioneering the ‘characteristics approach’ include Stigler (1945), Lancaster (1966) and Rosen
(1974).

3A common alternative to the characteristics approach is to allow patients to have preferences over specific
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The major benefit to measuring drugs along multiple dimensions of quality, i.e., as having

more than one characteristic, is that it highlights how, in cost-benefit analyses of compet-

ing drugs, it is not always appropriate to view one drug as strictly better or worse than

another. Instead, two or more competing treatments taken at different points in time and

depending on time-varying patient characteristics (including their current health status and

their accumulated work experience) could be better than either treatment alone. To cap-

ture various ways that multiple drug characteristics can affect demand, the framework goes

beyond studies explaining patient-level treatment demand solely through the utility gener-

ated by underlying health or by health and side effects (Crawford and Shum, 2005; Chan

and Hamilton, 2006; Fernandez, 2008; Chintagunta, Jiang, and Jin, 2009). Instead, I allow

time-varying patient characteristics (including current-period health, employment, age and

accumulated work experience) to affect choices. I also permit unobserved heterogeneity in

how drugs affect individuals (through both effectiveness and side effects) and in distaste for

physical ailments, work and the interaction between the two. The result is a rich model of

demand, which rationalizes observed variation in treatment choices—not only across indi-

viduals, but also for the same individuals across time. By rationalizing strong variation in

demand among similarly healthy individuals, the framework therefore offers a compelling

explanation for why multiple drugs of similar average effectiveness (often known as ‘me-too’)

drugs can co-exist within a single market.

In the case of chronic illness, a patient’s efforts to jointly manage health and labor

market human capital become permanent fixtures in dynamic decision-making. I apply

the framework developed in this paper to study the treatment and employment decisions

of men suffering from a potentially severe chronic condition: infection with HIV. Focusing

attention on men with HIV does not mean that findings are difficult to generalize. HIV, like

many other chronic conditions (e.g: diabetes, multiple sclerosis and depression) is harmful or

deadly when untreated, but can be quite manageable when treated, though at the possible

cost of mild-to-severe side effects.4 Further, according to the Centers for Disease Control

and Prevention, nearly 50% of adults in the U.S. suffer from a chronic condition, about one

quarter of whom experience significant limitations in daily activities like working.5

drugs or molecules (see, e.g., Arcidiacono et al. (2012)). Doing so can capture consumption and substitution
patterns, some effects of market structure or the removal of drugs from the consumer choice set. Nonetheless,
use of drug or molecule dummy variables in the utility function effectively precludes analysis of counterfactual
drugs and makes it difficult to interact treatment demand with preferences over other goods.

4Individuals suffering from multiple sclerosis, for example, can live longer if they take one from a class
of drugs containing interferons. The cost, in terms of side effects, is that patients feel like they have the flu,
experiencing fatigue, fever, soreness and chills. In response, some patients choose to forego medication for
limited periods of time, though this can accelerate disease progression (Kerbrat et al., 2011).

5For this point, see: http://www.cdc.gov/chronicdisease/resources/publications/aag/chronic.htm. In
principle, the structure of the model means it could be applied to illnesses that are not chronic, but where
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Several features of HIV and the AIDS epidemic make it a natural setting for examin-

ing how agents choose medication to jointly manage their health and labor market human

capital. Perhaps most important, identifying this tradeoff requires strong variation in both

health status and drug characteristics, including side effects. Untreated, HIV infection leads

to immune system deterioration (known as AIDS) where routine infections lead to grave

symptoms and death. Absent treatment, an individual newly infected with HIV lives an

average of 11 years. Additionally, phases of the AIDS epidemic are distinguished by wide

variability in the characteristics of available treatments. The key to identifying the model

parameters is that I observe treatment and employment choices for the same individuals

both before and after a medical breakthrough known as HAART.6 A treatment introduced

in 1996, HAART is credited with having transformed HIV infection from a virtual death

sentence into a chronic, manageable condition, though at the cost of harsh side effects.7

Turning to results, I find that from the perspective of an HIV+ patient, a dynamically

optimal treatment plan is not consistent with full compliance nor with strict longevity maxi-

mization. This finding stands in stark opposition to prevailing medical literature emphasizing

strict adherence to the most effective medication available, despite costs like side effects (El-

Sadr et al., 2006). Observed treatment choices confirm that sicker HIV+ individuals opt

for effective treatments like HAART. Once in better health, however, they are less likely to

choose HAART, a pattern the model rationalizes as part of a dynamically optimal plan of

treatment cycling. When in poor health, agents facing low survival rates anticipate high

marginal returns to investments in their health ‘stock’. They respond by opting for effective

treatments. Once their health improves, however, agents exploit persistence in underlying

health, switching to less effective drugs to avoid side effects, allowing their health capital

to depreciate. However, they maintain the option value of switching back to effective treat-

ments once their health deteriorates. This phenomenon is henceforth referred to as optimal

treatment cycling.8

effective treatment can influence labor supply. To take an extreme example, a good treatment for the flu
is bed rest. People with the flu therefore face a tradeoff between working and getting better more quickly.
More generally: agents do not need to be ill at all to face a tradeoff between investing in their health versus
their labor market human capital. For example, many individuals face a daily choice between going to the
gym or working longer hours.

6HAART stands for highly active anti-retroviral treatment. There is no vaccine or cure for HIV or AIDS,
but HAART, introduced in 1996, is the current standard treatment.

7 Duggan and Evans (2008) also use HAART introduction to study the affects of a medical breakthrough,
though their focus is on health rather than on the influence of labor or side effects on treatment demand. It
should also be noted that the impact of HAART has not been limited to HIV+ patients. First, it increased
the continuation value associated with HIV-infection. Second, it lowered the infectiousness of HIV+ men.
Both of these lowered the implicit price of risky sexual behavior. These effects are explored in Philipson and
Posner (1993); Lakdawalla, Sood, and Goldman (2006) and Chan, Hamilton, and Papageorge (2013).

8Even if treatment cycling deteriorates health, it is not incongruent with an optimal treatment plan since
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The model also reveals how employment decisions and the labor market interact with

health. Physical ailments—either symptoms or side effects—exacerbate the utility cost of

work. Accordingly, full-time employment exhibits cycles that mimic optimal treatment cy-

cling because relatively healthy agents cycling onto to milder treatments (or avoiding treat-

ment altogether) experience fewer side effects and return to work. In other words, while

allowing their health capital to depreciate, agents invest in their labor market capital by

accumulating work experience. Moreover, although HAART has side effects, it improves

average health, thus reducing symptoms, so that the net effect can be an increase in employ-

ment. Accordingly, I find that, had HAART not been introduced, employment would have

been up to 7.5% lower among HIV+ men in the years following its introduction in 1996.

Exploiting the characteristics approach to evaluate HIV treatment innovations, including

HAART and counterfactual treatments, I find that the value of a given treatment varies

widely across similarly unhealthy individuals, depending on their age and human capital

along with unobserved heterogeneity in drug effectiveness, drug side effects and preferences

over physical ailments. HAART, for example, is worth between $2,000 and $180,000, with

higher values accruing to younger agents and those with more work experience. Moreover, I

find that side effects innovations are valuable: a counterfactual version of HAART with no

side effects is valued up to $160,000 over HAART.

The remainder of this paper proceeds as follows: Section 2 introduces the data and pro-

vides some background on HIV and the AIDS epidemic; Section 3 presents the model; Section

4 describes estimation; Section 5 studies the value of pharmaceutical innovation; Section 6

discusses policy experiments highlighting how drug innovation interacts with employment;

and Section 7 concludes.

2 Data and Background

I use the public data set from the Multi-Center AIDS Cohort Study (MACS), an ongoing

study (beginning in 1984) of the natural and treated histories of HIV− (i.e., not infected

with HIV) and HIV+ homosexual and bisexual men conducted at four sites: Baltimore,

Chicago, Pittsburgh and Los Angeles.9 At each biannual visit, data are collected on: medical

it reflects how patients trade off health and other components of utility. Nonetheless, some studies cast
doubt on the near-consensus in the medical literature that intermittent treatment is bad for health, which
underscores the dynamic optimality of treatment cycling (Stebbing and Dalgleish, 2009).

9Data in this manuscript were collected by the Multicenter AIDS Cohort Study (MACS) with centers
(Principal Investigators) at The Johns Hopkins Bloomberg School of Public Health (Joseph B. Margolick,
Lisa P. Jacobson), Howard Brown Health Center, Feinberg School of Medicine, Northwestern University,
and Cook County Bureau of Health Services (John P. Phair, Steven M. Wolinsky), University of California,
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treatment choices, employment decisions, labor market outcomes and health status, which

includes CD4 count (a measure of immune system health) and subject reports of physical

ailments, like nausea, fever and drenching sweats. As the data set is a panel, I observe

behavior before and after HAART introduction, which occurred between 1995 and 1996.

This permits analysis of how a medical breakthrough can affect both health and employment.

I use data on HIV+ men beginning in 1990, at which point drugs with some effectiveness at

combating HIV emerge and treatment data collection becomes more consistent across time.

The MACS data set contains information on 769 HIV+ individuals, corresponding to 9,837

subject-visits, between 1990 and 2003 (at which point the sample period ends). Observations

with missing data are dropped and the resulting analysis sample is an unbalanced panel of

8,300 observations: 743 subjects over 26 visits.10

Agents report all medications they have used since their previous interview. As there are

dozens of medications used to fight HIV infection, I follow previous research (see, for example,

Detels et al. (2001)) in creating four broad and mutually exclusive treatment categories: no

treatment, mono-therapy, combo-therapy and HAART.11 To measure accumulated human

capital, I use potential experience (current age minus 25) up until the start of the AIDS

epidemic (1984) and thereafter construct employment histories using observed labor supply

choices.12 I model employment choices to be dichotomous—full time or not full time—since

more detailed information is available for only a subset of sample periods.

2.1 Summary Statistics

The interactions among health, medical treatment choices, side effects and employment are

complex, though important dynamics emerge from summary statistics. These are presented

in Table 1 for the full analysis sample and then separately for the periods before and after

HAART, by health status (high or low CD4 count) and by employment status (full time

Los Angeles (Roger Detels), and University of Pittsburgh (Charles R. Rinaldo). The MACS is funded
by the National Institute of Allergy and Infectious Diseases, with additional supplemental funding from
the National Cancer Institute. UO1-AI-35042, 5-MO1-RR-00052 (GCRC), UO1-AI-35043, UO1-AI-35039,
UO1-AI-35040, UO1-AI-35041. Website located at http://www.statepi.jhsph.edu/macs/macs.html.

10The full MACS data set, including pre-1990 observations and information on uninfected individuals,
contains information on 5,622 subjects at 41 possible visits for a total of 98,886 subject-visits.

11An agent with the label “none” may take medications to fight opportunistic infections, such as pneumo-
nia. Mono-therapy denotes a regimen consisting of a single nucleoside reverse transcriptase inhibitor (NRTI).
Combo-therapy consists of several NRTIs. HAART has a more complex definition that includes several drug
regimens, most of which include a protease inhibitor in combination with an NRTI or a non-nucleoside
reverse transcriptase inhibitor (NNRTI).

12Employment histories are constructed using all available data, including observations when HIV+ agents
were observed HIV−, if applicable, and observations with up to two missed subsequent visits, in which case
I assume that agents engage in the same employment status as in the last observed period.

6



or not). In the full sample, subjects are on average about 33-years-old at the start of the

AIDS epidemic (1984). Uninfected individuals generally exhibit a CD4 count (a measure of

immune system functionality) of 500-1500 units per mm3 of blood. The sample average is

slightly lower—about 450—but this number obfuscates important variation: the pre- and

post-HAART averages are 393 and 567, respectively. The most salient feature to capture is

whether CD4 is low enough to signal loss of immune system functionality. For subsequent

analysis, I therefore construct a binary variable that takes the value 0 when patient CD4

count is low enough to indicate AIDS (< 250). About one quarter of observations exhibit

AIDS-level CD4. Subjects also report a number of physical ailments, which may reflect

symptoms of AIDS, side effects of medications or both. I construct a second indicator

variable for ailments, which takes the value 0 if agents report persistently experiencing one

of the following ailments: fatigue, diarrhea, headaches, fever or drenching sweats. About

60% of subjects report that they are free of such ailments (i.e., F = 1). Finally, death

probability is about 4% over the entire sample period.

Considering the pre-HAART and post-HAART eras separately reveals important differ-

ences (Columns 2 and 3 of Table 1). Foremost are health improvements (measured by both

CD4 count, AIDS level CD4 and survival).13 Further, better health correlates with fewer

ailments (see Columns 4 and 5 of Table 1, which compare high and low CD4 count agents).

Despite improved average health after HAART is introduced, the same proportion of agents

reports suffering physical ailments (59%) in the pre- and post-HAART eras. This parity

arises since side effects replace symptoms as agents increase treatment usage, a change that

is also reflected by post-HAART increases in expenditures on treatment. In other words,

HAART both mitigates and exacerbates physical ailments by effectively fighting symptom-

causing illness, but simultaneously causing side effects. The model developed in the following

section is designed to capture how this tension influences treatment choices.

Turning to the interactions between health and the labor market, average reported income

is about $38,000 (in 2003 dollars per year).14 Non-wage income averages about $26,500,

which is lower than the average amount reported by workers (about $44,000), but may

seem high at first glance. It reflects that HIV/AIDS is considered a disability, which opens

up the possibility of social security disability payments and private pensions, which would

13In the context of HIV and HAART, Goldman and Bao (2004) find that HAART use is associated with
a higher likelihood of remaining employed.

14Income is a categorical variable reported in increments of $10,000 where the highest income category is
$50,000 or more. To convert per-period income into dollars, I take the midpoint of each category and then
divide it by 2. The highest income category is set to $27,500 per semester, though reduced-form results are
robust to higher values that account for censoring. I then use the TAXSIM version 9 .ado file developed by
the National Bureau of Economic Research to calculate net income, which I then convert to 2003 dollars.
Out-of-pocket treatment costs are also converted into 2003 dollars.
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presumably increase with pre-disability wage income. In support of this possibility, auxiliary

regressions show that HIV+ agents’ non-wage income is positively correlated to their wage

income in periods before they were infected with HIV. Despite high non-wage income, it is

clear that agents experience a large income drop if their health or physical ailments discourage

work. Indeed, there is clear evidence that both good health and freedom from physical

ailments predict full-time work (see columns 6 and 7 of Table 1, which compare agents by

their employment status). Further, the rate of public insurance is higher in the post-HAART

era (compared to private or no insurance), which could reflect that the sample is an aging

cohort and that laws governing disability change over time. Finally, public insurance is

also correlated with not working and poor health. Since insurance influences out-of-pocket

treatment costs, which can affect treatment choices, it will play a role in subsequent analysis.

2.2 Treatment Choices and Employment Decisions

A number of factors influence treatment choices. First, notice (again referring to summary

statistics in Table 1) that a plurality of agents (45%) eschewed all medical treatments in the

pre-HAART era, but a majority of agents (62%) use HAART after it is introduced. This

shift is depicted in Figure 1(a), which plots treatment choices over the sample period. Not

only do agents substitute HAART for other treatments, but those who refrained from using

earlier, less effective treatments switched onto HAART after 1996. This dynamic suggests

that agents are more willing to suffer side effects if the treatment is effective.

A puzzling feature that emerges in Figure 1(a) is that not everyone who is HIV+ uses

HAART. One possibility is that after HAART is introduced, agents must learn about it

before adopting the new technology. However, learning is not consistent with changes in

usage over time, including an immediate and explosive increase in HAART usage after its

introduction followed by a sharp leveling-off within a couple of years, after which there is a

fairly constant proportion of agents who do not use HAART (about 38% after 1997). This

brings up a second possibility: that a subgroup of agents simply never goes onto HAART.

This hypothesis, however, is not borne out in Figure 1(b), which plots lifetime HAART usage

as a proportion of the total sample over time. By the end of the sample period, nearly 90%

of all agents have used HAART at least once. Nonetheless, there is no period when 90% of

agents are on HAART at the same time. This discrepancy is crucial. It means that being on

HAART is not an absorbing state. Rather, for these dynamics to arise, it must be the case

that some agents go onto and off of HAART at different points in time. A key contribution

of the framework developed in this paper is to rationalize why individuals would ever go off

of HAART.
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To shed light on the dynamics shown in Figures 1(a)-1(b), Table 2 presents a transi-

tion matrix for individual treatment choices. First, treatment choices are highly persistent,

though more strongly so for agents in better health. Second, a small proportion of both

healthy and unhealthy agents go off of HAART in any given period. About 13% of AIDS-

level patients and about 6% of healthier agents go off of HAART. Once off, however, healthier

agents are likely to remain off of HAART (about 87%), whereas about half of sick agents

start taking medication, with about 35% going onto HAART. Further, in any given period

5% of individuals who are not on HAART develop AIDS-level CD4 counts. Given low CD4

and HAART usage, about 29% recover a higher CD4 count in each period. Taken together,

these statistics suggest that many healthy agents will eventually go off of HAART and and,

if so, get sick. Once sick, many go onto HAART to get well. The data therefore exhibit

health-dependent cyclicality in treatment choices.

Given the post-HAART drop in death rates (see Figure 1(c)), however, it remains unclear

why an HIV+ agent would ever go off of HAART given the possibility of succumbing to AIDS

via CD4-count drops. It is unlikely that individuals avoid HAART due to its cost since out-

of-pocket treatment costs are fairly low and exhibit low variability across treatments. Recall,

however, that although HAART can ultimately decrease physical ailments by improving CD4

count, it does so at the immediate cost of inducing physical ailments via side effects. Hence,

agents in good health may avoid going onto HAART in order to avoid physical ailments

arising from side effects.

The data also suggest how the labor market and employment decisions interact with

treatment choices, health and side effects. According to summary statistics in Table 1, poor

health discourages work. Further, Figure 1(d) depicts labor supply decisions over time.

HAART coincides with a break in the decreasing trend of full-time employment in the aging

sample. To underline the significance of this break, I extrapolate the pre-HAART full-time

employment trend until 2001.15 This exercise suggests that a counterfactual world without

HAART may have witnessed lower employment among HIV+ men. The structural model

developed in the following section is designed to uncover how labor interacts with treatment

innovations and health.

Table 1 also shows that agents reporting physical ailments are less likely to engage in

full-time work. However, it is unclear if physical ailments have an independent effect on

employment or merely capture the effect of poor health on agent choices. To explore this

possibility, I present coefficient estimates from static logistic regressions where the depen-

15I regress pre-HAART employment decisions on age, age-squared and a linear time trend and then use
these parameters to predict employment decisions in the post-HAART era, taking post-HAART age profiles
as given.
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dent variable is a dichotomous employment choice (Table 3). First, employment is very

persistent (also apparent in in Table 4, which presents transitions into and out of the labor

force). Estimates also indicate that, independently of CD4 count, physical ailments reduce

labor force participation. Therefore, a health-dependent cyclicality in the labor market also

emerges: healthier agents go off of HAART, which lowers side effects and thus encourages

employment and raises income and consumption. However, in doing so, they face a higher

probability of a drop in their CD4 count, physical ailments in the form of symptoms, and

death.

2.3 HAART Introduction

In subsequent analysis, when specifying agents’ future beliefs, the introduction of HAART is

not anticipated by HIV+ patients.16 Two observations justify this approach. First, HAART

was not a single medication developed and improved over time such that subjects might

update their beliefs and anticipate higher future efficacy. Rather, HAART introduction was

abrupt and many components of HAART already existed prior to 1996. The key insight

involved the union of several existing technologies, none of which was particularly effective

on its own. Second, subject reports from survey questions asking about their hopefulness

about the future are not consistent with anticipation of HAART. Specifically, one in a battery

of questions meant to assess depression asks subjects how often in the week preceding their

interview they felt hopeful about the future.17 Figure 1(e) plots the probability that subjects

answer, “all or most of the time” over time. Notice the pre-HAART flat (or even downward)

trend followed by a break and reversal coinciding with HAART introduction. Importantly,

if the effectiveness of HAART had been anticipated, this upward shift in hopefulness should

have occurred before HAART introduction.18

16In this sense, HAART introduction is treated as a quasi-experiment, an assumption that implies the
need for caution in applying the framework developed in this paper to cases where medical innovation is
anticipated.

17Questions are from a depression screening tests known as the Center for Epidemiological Studies De-
pression (or CES-D) scale. See, for example, Ostrow et al. (1989), for an example of CES-D scale use with
the MACS data set.

18One concern is that hopefulness is highly correlated with health so that the trend reversal simply reflects
HAART-induced health improvements. To account for this, I control for a polynomial in CD4 count and
age in a regression where the regressand is a dichotomous variable for being hopeful about the future ’most
or all of the time’. Plotted residuals (Figure 1(f)) show a similar trend reversal at, but not before, HAART
introduction.
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3 Model

In each period, agents enjoy flow utility, which is a function of current choices and state

variables. Before retirement at age 65, agents choose treatments and employment at each

period. Agents are forward-looking, so their choices maximize the present discounted value of

future utility. Agents retire at age 65 and cease making decisions. Period t state variables are

a function of previous-period states and choices so that the dynamic programming problem

can be solved using backward induction.

3.1 Choices and Flow Utility

At each period t until retirement agents choose a pair dit ≡ (dLit, d
M
it ), where dLit represents

the employment choice and dMit the treatment choice. In particular, the possible choices on

each dimension are:

dLit =

{
0 Not full time work

1 Full time work
and dMit =


0 No Treatment

1 Mono-therapy

2 Combo-therapy

3 HAART (only after 1996)

(1)

Note that the set of choice pairs, denoted by Dt, is time-dependent since HAART is available

only after 1996. Specifically, denoting as DL
t and DM

t the set of labor and treatment options

available at period t, respectively, Dt ≡ DL
t ×DM

t . Ailment status is given by Fit ∈ {0, 1},
where 1 signifies being free of ailments and 0 signifies suffering ailments. Flow utility is given

by:

U(Cit, Fit, dit) =
∑1

f=0 1{Fit = f} ×
[

u (Cit, Fit, γ(Fit)) + θf1 + (θf2 × 1{dLit = 1})
+ θf3 × 1{dMi,t−1 = 0} × 1{dMit 6= 0}
+ θf4 × 1{dMi,t−1 6= dMit } × 1{dMi,t−1 6= 0}
+ θf5 × 1{dMi,t−1 6= 0} × 1{dMit = 0}+ εit(dit)

]
(2)

The first term on the right-hand side of equation (2) is a sum over each ailment status

Fit ∈ {0, 1} along with an indicator function. This term is multiplied with the remainder of

the terms so that flow utility is health-state dependent in an indirect way. This first term

on the second line of equation (2) represents individual utility over consumption (Cit). The

marginal utility of consumption varies by ailment status and u(·) is a CRRA utility function
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with parameter γ(Fit) so that

u (Cit, Fit, γ(Fit)) =
1

1− γ(Fit)
C

1−γ(Fit)
it . (3)

The second term on the second line of equation (2) represents the direct utility level effect of

suffering ailments (when f = 1) or being free of ailments (when f = 0). θf0 is normalized to

zero. The third term on the second line captures the ailment-specific utility cost of full-time

work. Interacting the disutility of work with ailment status captures whether agents find it

relatively more costly to be employed when suffering from symptoms or side effects.

Agents do not have preferences over CD4 count per se. Instead, CD4 count affects agent

symptoms and longevity, but flow utility depends on day-to-day physical ailments. Period

t treatment choices therefore affect intertemporal utility (through their effect on health as

measured by CD4 count) and current period flow utility (through ailments induced by side

effects). Both of these processes will be explained in the following section. Treatment

choices also enter flow utility directly via switching costs, captured by the terms in lines

3-5 of equation (2). Finally, ε(dit) is a choice-specific utility-shifter, which captures factors

that affect agent choices, but that are not observable to the econometrician. In particular,

εit : Dt → R and I use ε(dit) to denote the utility shifter associated with choice dit. Finally,

εit(dit) are Extreme Value Type I distributed.19

Switching costs capture factors—beyond preferences over ailments and long-term health—

that affect agent treatment decisions, including doctors’ orders, treatment protocols and the

social benefits of antiretrovirals.20 Note that switching costs are generic, i.e., not specific to

any particular treatment. Instead, agents experience a cost of starting, switching or ending

treatment. Moreover, switching costs vary by ailment status. This specification of pref-

erences amounts to a characteristics approach to modeling the demand for treatment. In

other words, patients do not have preferences over a specific treatment like HAART, whereby

HAART would enter the utility function as a dummy variable. This approach is crucial for

evaluating counterfactual treatment innovations, each defined by the probability distribution

it implies over CD4 count and ailments. The processes according to which choices and states

generate ailments and consumption are described in the following section.

19This assumption, along with conditional independence of states and outcomes, which will be formally
stated later, follows Rust (1987).

20Effective HIV treatments lower viral loads (the amount of virus in a patient’s blood), which renders
patients less infectious to HIV− sex partners.
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3.2 States and Transitions

Upon entering period t, the agent learns his vector of period t state variables (denoted Sit),

but he still faces uncertainty about ailments (Fit) and consumption (Cit), both of which are

realized only after he makes his labor supply and treatment decision. Therefore, the agent

evaluates expected flow utility conditional on his current choice dit and his vector of period

t state variables, formally:

E[U(Cit, Fit, dit)|Sit]. (4)

The agent’s treatment and labor supply decision has a direct impact on the stochastic process

generating Fit and Cit. Finally, choices and current states jointly determine period t+1 state

variables.

State variables (Sit) include a vector of observables, denoted Xit, and a vector of unob-

servable utility shifters (εit). Specifically, Xit ≡ [Hi,t−1, Ai,t−1, Ei,t−1, vt−1], where:

Hi,t−1 ∈ {0, 1} : High (non-AIDS) CD4 count at t

Ai,t−1 ∈ {25, 25.5, 26, . . . , 65} : Age at t

Ei,t−1 ∈ {10, 20, . . . , 50} : Semesters of full-time experience at t

vt−1 ∈ {1, . . . , 15} : Period t dummy

Recall from Section 2 that HIV infection leads to a low CD4 count, which means that the

patient’s immune system is compromised.21 Sit also includes the unobserved, choice-specific

utility shifters (ε(dit)’s) defined in the previous section.

Next, the agent forms expectations on Fit and Cit, which are collected into a vector

denoted Yit so that: Yit = [Fit, Cit].
22 I assume conditional independence of Yit, i.e., outcomes

are independent of realizations of unobservable flow utility shifters. Formally:

E[Yit|Xit, dit, εit] = E[Yit|Xit, dit]. (5)

21To reduce the size of the state space and thereby reduce computational burden, Hit is a binary variable.
It captures the most salient effect of CD4 count, namely, whether it is low enough to suggest AIDS (i.e.,
<250). Transitions between binary health states are fairly low, reflecting persistence in continuous CD4
count. However, dichotomous health does not reflect that agents with CD4 counts near the cutoff of 250 face
a higher probability of switching health states. Nonetheless, once agents who suffered HIV-induced declines
in their CD4 go onto HAART, despite their counts rising to non-AIDS levels, they rarely exhibit exceedingly
high CD4 counts again. Therefore, although an extension of the current model would capture this difference
by permitting Hit to take on more values, there is little evidence that such an addition would change the
model implications.

22Note that Fit and Cit are not state variables so do not belong to Sit, but do affect utility. Such variables
are often deemed ‘payoff’ or ‘outcome’ variables.
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Ailments Fit evolve according to:

P
[
Fit = 1|XF

it ; θ
F
]

=
exp(XF

it θ
F )

1 + exp(XF
it θ

F )
(6)

where XF
it ≡

[
Hi,t−1, vi,t−1, Hi,t−1 × dMit

]
and θF is a vector of parameters governing the

process generating ailments.

Consumption is equal to income (Iit) minus out-of-pocket treatment costs (pit).
23 For-

mally,

Cit = Iit − pit . (7)

Evaluating expected consumption requires several steps since agents face uncertainty on both

income and treatment costs. Agent income uncertainty reflects unanticipated shocks. For

example, an agent may fall ill at some point before the end of period t and incur an income

loss for missing work days. Agents also form expectations on out-of-pocket treatment costs

(pit). These are a function of underlying health at the end of period t (Hit) and period t

insurance provision (Nit), both of which are unknown at the beginning of period t. This setup

reflects that, after agents choose a treatment category at t, out-of-pocket treatment costs

will depend on their (as yet unrealized) health state throughout the period. In summary,

to derive expected consumption given period t choices and states, the agent must form

expectations on income (Iit), insurance (Nit), CD4 count (Hit) and out-of-pocket treatment

costs (pit). Each of these stochastic processes is explained in turn. Income is modeled as

Iit = XI
itθ

I + εIit (8)

where XI
it ≡

[
(Ei,t−1, E

2
i,t−1, Ai,t−1, Hi,t−1, vi,t−1)× dLit

]
, εIit ∼ N (0, σ2

I ) and θI denotes a vector

of parameters governing the income process.24 Note that state variables affecting the income

process are interacted with period t employment decisions. This reflects that an agent’s

current state can affect wage and non-wage income in different ways.

Insurance status (Nit) affects treatment costs and is also modeled as a process determined

23Agents in the model cannot save. The potential impact of this assumption is discussed as results are
presented.

24Income is a function of health at the beginning of the period Hi,t−1. This modeling choices reflects the
timing of income offers and employment decisions. After learning his health status, the agent faces income
offers for full-time employment. Employers know agent productivity, which is a function of health and human
capital. The employer does not, however, know which medications will be chosen, so the income offer is not
a function of expected ailment status.
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by state variables and labor supply decisions.25 Formally,

P
[
Nit|XN

it ; θN
]

=
exp(XN

it θ
N)

1 + exp(XN
it θ

N)
, (9)

where XN
it =

[
Hi,t−1, Ei,t−1, E

2
i,t−1, Ai,t−1, A

2
i,t−1, vi,t−1, d

L
it

]
and θN is a vector of parameters

governing the insurance process.

Underlying health, as measured by CD4 count, is affected by treatments. The salient

features to be captured are (a) whether treatment (or lack thereof) moves CD4 above or

below AIDS levels and (b) possible persistence in CD4 count. First, ∆Hit indicates whether

an agent’s CD4 increased (versus either decreased or remained unchanged) between periods

t and t+ 1. ∆Hit evolves according to

P
[
∆Hit = 1|X∆H

it , dMit ; θ∆H
]

=
exp(X∆H

it θ∆H)

1 + exp(X∆H
it θ∆H)

, (10)

where X∆H
it ≡

[
Hi,t−1, vi,t−1, d

M
it ×Hi,t−1

]
. In other words, both treatments and period t

CD4 count determine if CD4 count increases or not. Then, period t CD4 count and the

direction of change ∆Hit determine whether CD4 is above or below AIDS levels in t+ 1. In

particular, for parameters θH , the CD4 count process is modeled as:

P
[
Hit = 1|XH

it , d
M
it ; θH

]
=

exp(XH
it θ

H)

1 + exp(XH
it θ

H)
(11)

where XH
it ≡ [∆Hit ×Hi,t−1].

Out-of-pocket treatment costs are modeled as

pit = XP
it θ

P + εPit , (12)

where XP
it ≡

[
Hit × Fit, Iit, Nit × dMit , vit]

]
, εPit ∼ N (0, σ2

P ) and θP is a vector of parameters.26

Given the processes specified above, expected consumption is formally defined as:

E [Cit|Xit, dit] = E [Iit|Iit ≥ 0,Xit, dit]− E[pit |pit ≥ 0,Xit, dit] . (13)

Note that both income and treatment costs are assumed to be non-negative.

25Insurance could also be modeled as a choice. However, MACS includes no data on insurance options.
Also, insurance provision is highly persistent in the data and largely dependent on employment, so I model
insurance provision as a process that agents indirectly control through their labor supply decisions.

26Note that the costs process includes Iit to account for the possibility that treatments are subsidized
according to income.
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Until now, I have described the stochastic processes governing each component of flow

utility. The model is dynamic in the sense that, in making his current decision, the agent

must also evaluate how his choices and current state affect the distribution over future states.

Formally, define the state-to-state distribution function for current (observable) state Xit,
current choice dit and period t+ 1 (observable) state Xi,t+1 as

GX(Xi,t+1|Xit, dit). (14)

I further assume that the distribution over future states is independent of current unob-

servable state variables ε(dit) conditional on current observable state variables and choices.

Formally,

E[Xi,t+1|Xit, dit, εit] = E[Xi,t+1|Xit, dit]. (15)

Furthermore, note that Hi,t−1 ∈ Xit evolves according to equation (11).

Full-time work experience at t, Ei,t−1 increases by 0.5 for each period of full-time employ-

ment. Formally, Eit = Ei,t−1 + 0.5× 1
[
dLit = 1

]
. Next, age at t Ai,t−1 and the time dummy

vi,t−1 evolve deterministically. Specifically, Ait = Ai,t−1 + 0.5 and vit = vi,t−1 + 1.

Finally, the probability of dying between periods t and t+ 1 is denoted

P
[
Bit = 1|XB

it ; θ
B
]

=
exp(XB

it θ
B)

1 + exp(XB
it θ

B)
(16)

where XB
it = [Hi,t−1, Ai,t−1, Hi,t−1 × Ai,t−1], Bit is an indicator function for death and θB is

a vector of parameters that govern death probability. Current period decisions do not affect

the probability of dying; upon entering the period and learning his state variable realizations,

the agent either continues on to enjoy period t flow utility or dies, in which case he receives

flow utility 0 forever.

3.3 Parameters and Unobserved Heterogeneity

Flow utility parameters from equation (2) are collected into a vector denoted θU . Parameters

governing processes and transition probabilities are denoted θXY so that

θXY ≡
[
θF , θI , θN , θH , θP , θB

]
. (17)

Collect these parameters into a vector θ so that θ ≡
[
θU , θXY

]
.

Unobserved heterogeneity is introduced into a subset of utility parameters via latent

types, of which there is a finite number KU . I allow the following preference parameters
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to vary by type: the utility cost of work, the cost of ailments, the interaction between the

two along with the marginal utility of consumption for each ailment status. This model-

ing decision arises from high observed persistence in labor supply choices within individuals

over time, which is consistent with heterogeneity in distaste for work. Parameters governing

health parameters can also vary by unobserved type, the number of which is denoted KXY .

I permit unobserved heterogeneity in: the effectiveness and side effects profiles of HAART

(subsets of θD and θF ) and in parameters governing health transitions θH . This is motivated

by research suggesting that unobserved factors, including genetic variations, can imply dif-

ferent reactions to HAART (see, for example, Scherer (2010)).27 The joint distribution of

latent preference types and latent health types is also freely estimated, which means that

the total number of unobserved latent classes is K ≡ KU ×KXY . For the remainder of this

study, I set KU = 2 and KXY = 2 so that K = 4.28 Let θk denote latent class-k parameters,

where k ∈ {1, . . . , K}. Denote agent i’s parameters as θi. Type probabilities are given by:

πk ≡ P[θi = θk], (18)

where
K∑
k=1

πk = 1. (19)

The subject knows his type k, but the econometrician does not, which means that the

distribution over types must be integrated out and the πk’s jointly estimated. Finally, collect

all parameters to be estimated into a vector ψ, where

ψ =
[
θ1, . . . , θK , π1, . . . , πK

]
. (20)

This concludes the specification of the theoretical model. The following section describes

how ψ is estimated.

27In principle, all parameters could vary by latent type. I have experimented with a variety of specifications
permitting unobserved heterogeneity in parameters governing both health and labor market processes, but
cannot reject that other parameters do not vary by type.

28Experimentation with larger numbers of suggests this is a good number as the search algorithm places
very small probability on a third preference or transition type.
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4 Estimation

The vector of parameters ψ is estimated using a nested procedure.29 At the “inner” step

and given a proposed a set of parameters (denoted ψ(g)), the dynamic programming problem

is solved via backward induction for each set of observed state variables Xit. This yields a

set of transitions and choice probabilities, which maximize utility. At the “outer” step, the

algorithm searches for parameters that maximize a likelihood function computed from the

data.

The structure of the value functions for retired and non-retired agents differs and each will

be described in turn. The value of retirement is an infinite stream of flow utility supposing

that agents no longer work, given by

Ũ(Cit, Fit, d
M
it , d

L
it = 0|Xit)) (21)

where Ũ(·) is flow utility as defined in equation (2) with the utility-shifter netted out. Agents

receive this flow utility at all post-retirement ages, though in each period weighted by the

discount factor β and the probability of dying conditional on state variables at retirement

P[Bit = 1|·].30 Therefore, total retirement value for a given treatment choice and set of state

variables is equal to an infinite sum, given by.31

V R(Ai,t−1 = 65, Sit) =[
P[Bit|·]

1−β P[Bit|·] × Ũ
(
Cit, Fit, d

M
it , d

L
it = 0|Xit

) ]
+ ε(dit).

(22)

Let us now turn attention to non-retired agents. In every period t, they choose dit ∈ Dt

to maximize

E

[
Ti−1∑
j=0

βjU(Ci,t+j, Fi,t+j, di,t+j|Xit) + βTiV R(Ai,t−1 = 65, Sit)

]
(23)

where Ti ≡ (65 − Ait) × 2 represents the number of periods until retirement. Using the

29I employ estimation methods developed by Rust (1987) and Hotz and Miller (1993) and surveyed in
Aguirregabiria and Mira (2010).

30The discount factor β is set to
√
.95 per semester.

31This structure assumes thats agents remain in the same health state and make the same treatment
choice in each period after they retire. This is a reduced-form way to capture that good health is valuable
at retirement. Further, allowing V R to be a function of both Sit and Ait is a slight abuse of notation since
Ait is an element in the vector Sit. Strictly speaking, Sit in this case refers to the vector of observable state
variables without Ait.
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Bellman principle, we can define the value function for periods before retirement as follows:

V (Sit) = maxdit∈Dt

{
E[U(Cit, Fit, dit)] + β

∫
V (Si,t+1)dGX(Xi,t+1|Xit, dit)

}
(24)

where GX(Xi,t+1|Xit, d) is defined in equation (14). Choice-specific value functions can be

written as:

v(Sit, dit) ≡ E[U(Cit, Fit, dit)] + β
∑
Xi,t+1

V̄ (Xi,t+1)gX(Xi,t+1|d,Xit), (25)

where V̄ (·) is the expectation of the value function taken over the distribution of ε(dit) and

gX(·) is the transition density of Xit corresponding to transition distribution function GX(·).
Notice that V̄ (·) takes the form of an expected maximization since the agent does not know

future realizations of εit.

Given this setup, I obtain choice probabilities for each set of observable variables via

backward induction.32 For example, suppose that agent i enters period t at age 64.5, so

that Ai,t−1 = 64.5. Then, each choice will imply a probability distribution over Xi,t+1, from

which I compute expected retirement value. Given state-specific retirement value, I compute

choice-specific value functions for each state at age 64.5. Once I have obtained choice and

state-specific value functions for age 64.5, I can compute choice and state specific value

functions for age 64 using equation (25) and so on until age 30. I do not observe εit(d), but

its distribution implies the following choice probabilities:

P(dit|Xit) =
exp{Ṽ (Xit, dit)}∑

d
′
it∈Dt

exp{Ṽ (Xit, d
′
it)}

(26)

where Ṽ (·) is the net-of-error choice specific value function (i.e., equation (25) minus εit(dit)):

Ṽ (Xit, dit) = E[U(Cit, Fit, dit)] + β
∑
Xi,t+1

V̄ (Xi,t+1)gX(Xi,t+1|d,Xit). (27)

Finally, in the preceding derivations, I have omitted notation identifying type-specific pa-

rameters. For each set of suggested parameters ψ(g), the estimation routine includes solving

the dynamic programming problem to obtain choice probabilities for each set of type-specific

32Experience (Eit) is measured at five grid points, but estimation requires evaluating value functions
between these grid points. For example, if an agent with 10 periods of experience decides to work in period
t, his period t+ 1 experience will be 11. I use linear-spline interpolation (see Judd (1998)) to compute value
functions for state variable values that lie between grid points.
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parameters θk. The likelihood contribution of individual i is therefore:

Li(θ) =
∑K

k=1 πk[Π
Ti
t=1P(dit|Xit; θk)× ΠTi

t=1gY (Yit|Xit, dit; θXY k)
× ΠTi−1

t=1 gX(Xi,t+1|Xit, dit; θXY k)],
(28)

where gY denotes the density function derived from processes governing Fit and Cit and θXY k

denotes type-specific θXY .33

4.1 Identification

This section discusses how moments in the data identify estimated model parameters. In

the data, each period t choice and state combination implies a probability distribution over

period t+1 states and these moments identify parameters governing state-to-state transitions

and outcomes. Parameters in the flow utility function are identified through observed state-

dependent choice probabilities. Here, I exploit the quasi-experimental nature of HAART

introduction, which implies that the same decision-makers are observed making choices over

time, facing unanticipated variation in the features of available products.

The CRRA coefficient γ, which measures the curvature in the utility function, is identified

by differences in how agents choose both treatments and employment at different consump-

tion levels. Employment decisions imply large changes in consumption and treatment choices,

which induce variability in medical expenditures, imply small changes in consumption. In-

sofar as choice probabilities for given state variables change at different rates for different

consumption levels, these choices trace out the marginal utility of consumption. State-

dependent utility parameters are identified through differences in γ across health-status.

Finally, parameters describing the distribution of latent types and type-specific parameters

are identified through repeated observed choices of the same subject over time and given

different values of state variables.

33Portions of equation (28) can be extracted from the summation over k in cases where equation parameters
are constrained to be equal across types, e.g., in the equations describing the income, insurance and out-of-
pocket treatment cost processes. The log likelihood function then consists of additively-separable components
that can be separately maximized and parameters outside of the sum over types can be estimated in a
separate first step, which does not involve solving the dynamic programming problem. This first step requires
estimation of a set of Tobit, logistic and multinomial logistic regressions, all of which can be accomplished
with standard statistical software. In the second step, I only search for remaining parameters along with
probability masses πk. This decreases the number of iterations, which greatly reduces computation burden.
Standard errors are computed taking the variance of first-stage estimates into account.
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4.2 Parameter Estimates

This section presents estimates of type probabilities (πk), preference parameters (θU) and

parameters governing outcomes and transitions (θXY ). I then compute a posterior type

probability for each individual in the dataset to investigate of how latent types relate to

variables not included in the model state space.

Recall that there are two preference types and two health types. As will be discussed

below, preference Type I agents suffer an additional utility cost of working when suffering

from physical ailments. For health Type I agents, HAART is relatively more effective and

causes more side effects. For each individual, preference type can be correlated with health

type, i.e., there four possible type-combinations and the probability of each is freely esti-

mated. About half the population is estimated to be preference Type I and 40% of agents

correspond to health Type I. Among preference Type I agents, about 30% correspond to

health Type I; among preference Type II agents, about half correspond to health Type I (see

Table 5).

Preference parameter estimates (found in Table 6) reveal that both preference Type I

and II agents experience a utility cost of ailments that far outweighs the utility cost of

work. The key difference between preference types lies in the utility cost of working while

suffering ailments. For Type I agents, this cost is about twice the analogous value for Type

II agents. This difference has far-reaching consequences for agent behavior; given their

preferences, Type I agents are more likely to avoid employment while suffering symptoms or

side effects. These agents can essentially attenuate the utility cost of ailments by choosing not

to work. Both preference types indicate an increase in the marginal utility of consumption

with ailments, meaning that, on average, agents tend to consume goods that they value

more when they are sicker. Finally, switching costs vary by ailment status. For agents free

of ailments, it is costly to switch or end treatment, but there is a utility gain implied by

beginning treatment. For agents with ailments, beginning treatment is costly, but ending

treatment carries a benefit after controlling for the impact of this choice on other components

of utility, including health.

Moving on to health transitions and outcomes, the model reveals unobserved heterogene-

ity in drug effectiveness and side effects (see Table 7). For both latent health types, HAART

is the most effective treatment in terms of increasing CD4 count. Differences between health

Types I and II emerge when considering agents with low CD4 counts. For Type I agents,

HAART is vastly superior to previously available treatments. For Type II agents, HAART

is a more limited improvement over combo-therapy. For all latent types, mono-therapy and

combo-therapy, though less effective than HAART, are more effective than no treatment.
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These differences in HAART effectiveness will imply different valuations of HAART between

different health types. Going back to Table 5, estimated correlations between health and

preference types imply that individuals for whom HAART is both highly effective and harsh

are less likely to suffer a high additional utility cost of working with physical ailments.

Predicted values from this regression of the probability of a CD4 count increase are

included as regressor in the model explaining period t+ 1 CD4 count. Results indicate that

for both health types, high CD4 at t along with a higher predicted probability of a CD4

increase independently predict high period t + 1 CD4 count.34 The only coefficient that

significantly varies by health type is that governing the interaction between a high CD4

count and an increase in the predicted probability of a CD4 count increase. This coefficient

essentially measures the effectiveness of medication on agents who are already in relatively

good health and is estimated to be much higher for Type I agents. This means that health

Type I agents face a stronger incentive to remain on HAART while in good health. As will

become apparent in the following section, differences in health transition probabilities imply

differences in the valuation of counterfactual medical innovations specified with the same

effectiveness. Type I agents attain a higher CD4 count with higher probability even with

less effective medications. They therefore have less to gain from an effective medication and

value it accordingly.

Estimates of parameters governing the side effects process are found in Table 8 and show

that an absence of ailments is associated with higher CD4, which reflects that agents in

better health are less likely to suffer ailments, i.e., symptoms (recall that Fit = 1 indicates

the absence of ailments during period t). Treatments also cause ailments via side effects and

it generally holds that more effective treatments like HAART imply the harshest side effects,

with the effect being stronger for health Type I agents. Regarding survival (Table 9), a high

CD4 count drastically reduces death probability. Since higher age can signal good health

among HIV+ subjects, I interact age with high CD4. The positive estimated coefficient

indicates that HIV+ subjects with high CD4 counts face higher death probability as they

age.

Estimates of parameters governing the income, insurance and treatment cost processes

are found in Tables 10, 11 and 12, respectively. Income is modeled to be a function of: high

CD4, experience, experience-squared, age, a time-trend along with current employment fully

interacted with these variables. Income increases with human capital (as measured by expe-

34Recall from the previous section that this method of obtaining transition probabilities among health
states is designed to capture two salient features of treatment technology without increasing the size of the
state space, namely, treatment effectiveness at increasing CD4 count and whether this increase brings agents
to non-AIDS immune system health.
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rience), but at a decreasing rate. Age independently predicts a lower wage and good health

is associated with higher income. The positive relationship between experience and income

for non-full-time workers is consistent with increased non-wage income (e.g: disability pay-

ments) given a longer work history. For full-time workers, and with the exception of health,

these effects are more pronounced. The effect of health on income is weaker for employed

workers, which likely reflects that AIDS counts as a disability so that unemployment benefits

are high for sick agents

Health insurance (public, private or no insurance, the latter being the base category)

is modeled as a function of CD4 count, age, labor supply and experience. Low CD4 and

higher age predict a higher probability of public insurance, which may again reflect that

AIDS is considered a disability and that medicare eligibility is age-dependent. Also, full-

time employment predicts private insurance provision, but predicts a lower probability of

public insurance. Finally, treatment costs are a function of treatment choice, health status

and insurance. Estimates indicate the following: HAART is more expensive than other

treatments; costs increase over time; healthier subjects spend less on their medications; and

both higher income and private insurance are associated with higher treatment costs.35

To gain further insight into the labor market heterogeneity captured by modeling la-

tent types, I compute average ‘posterior’ type probabilities for a given set of labor market

characteristics.36 Next, I average over individuals for a given set of observable labor market

characteristics, including education, race, and occupation category reported at the baseline

interview.37 This exercise permits an analysis of the correlation between unobserved latent

type and labor market factors not included in the model state space. Results are presented

in Table 14. As an example, low education agents (less than a college degree) belong to

preference Type I with an average probability of 54% (versus 48% for the entire sample and

45% for college educated agents). Recall that preference Type I agents are more reactive

to ailment status in choosing whether or not to work. It is likely that less educated agents

tend to work in occupations in which feeling ill makes work especially difficult, e.g., those

requiring inflexible schedules or physical labor. To explore this possibility, I compute average

35Results from a model fit exercise are found in Table 13. Taking current states as given, agent choices
are simulated and then compared with state-dependent choices found in the data. The model successfully
matches dynamics found in the data, though employment probability is overestimated by about 7 percentage
points given low CD4 counts in the post-HAART era. This occurs given a low number of agents with AIDS-
level CD4 after HAART is introduced.

36Specifically, for each preference and health type combination, I construct likelihood contributions for each
individual. Then, I divide by each individual’s actual likelihood contribution, given estimated unconditional
type probabilities. The resulting ’posterior’ ratios measure how likely a given individual, given his behavior
and outcomes, belongs to each type combination.

37Available data does not offer more specific occupational information. Moreover, occupation data is asked
only in 1984, so health-induced occupation change is impossible to measure.
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type probabilities by occupation. Indeed, individuals in the service industry (e.g. waiters)

or who work in extractive industries (e.g. mining) are more likely to be preference Type

I versus individuals who have a professional specialty or work in a craft industry, both of

which may permit more flexible schedules.38

5 The Value of Pharmaceutical Innovation

In this section, I use the estimated model to place a value on pharmaceutical innovations,

including HAART. Contrary to previous studies that estimate drug demand using drug or

molecule dummy variables, I exploit the characteristics approach to evaluate counterfactual

treatments, each defined as a bundle of attributes. Next, I examine how a dynamically op-

timal treatment policy exhibits cycles. Specifically, sicker agents choose effective treatments

despite harsh side effects and switch to less effective drugs with fewer side effects once their

health improves.

5.1 The Value of HAART

This section converts the value of HAART into a measure of willingness-to-accept-payment

in dollars (henceforth: WTAP). To compute WTAP for HAART, I compare computed value

function values in the first post-HAART period to analogous values under the counterfac-

tual scenario in which HAART is never introduced. Instead, a counterfactual treatment

technology is introduced with the same attributes as combo-therapy. Next, I compute what

per-period payment (similar to an annuity) under the counterfactual scenario is required

to make agents indifferent to HAART introduction.39 Finally, I compute the present dis-

counted value of this annuity using expected years of life, which is also simulated with

estimated model parameters.

Results for each type combination are presented in Figure 2, which graphs the present

38The same exercise is performed for both latent health types, but there are few noticeable differences,
which means that unobserved factors determining drug effectiveness and side effects (e.g. genetic differences
influencing biological responses to medications) are independent of occupation, education or race. The
exception is craft industries, for which the likelihood of HAART being highly effective is large. If agents in
craft industries are more likely to be self-employed and therefore have greater freedom to enter and exit the
labor market, they would cycle on and off HAART more aggressively. The model would explain this with
a higher drug match value among agents in this occupational category. Dropping craft workers would not
appreciably affect results since they comprise 1% of individuals in the data set.

39Valuations of both factual and counterfactual treatment introductions capture present discounted value
of utility in all future periods, i.e., gains in years-of-life weighted by utility over time. Further, valuation
via an annuity essentially imposes savings onto individuals. Therefore, permitting savings behavior is not
expected to appreciably affect these results.
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value of future per-period payments for Type I agents of different ages and levels of human

capital. Two key findings emerge. First, HAART has a high potential value: worth $180,000

for a 38-year-old with 15 years of work experience. Second, there is striking heterogeneity in

the value of HAART. In opposition to standard critiques, this heterogeneity in value across

individuals suggests why ‘me-too’ drugs can create value: a ‘me-too’ drug that, on average,

is therapeutically similar to existing options may be welfare-enhancing for some subsets of

agents (if not others), distinguished by observed and unobserved factors affecting demand.

Indeed, Figure 2 shows that older agents value HAART less since their life horizon is shorter,

implying fewer years during which they benefit from HAART. This effect is compounded for

younger agents since health gains made earlier in life persist over time. Further, agents

with higher human capital value HAART more since each life-year gained entails higher

consumption. For example, a 45-year-old with high human capital values HAART at over

$160,000, whereas a lower human capital agent values it at about $20,000.

Latent types also exhibit vastly different valuations of HAART. Health Type II agents

value HAART at less than $30,000, which reflects the low probability that HAART improves

their CD4 count in comparison to their Type I counterparts. Regarding latent preferences:

Type I agents value HAART slightly less than preference Type II agents. This difference

reflects how preference Type I agents can essentially attenuate the utility cost of suffering

ailments by not working. Hence a treatment that ultimately improves their ailment status

by lowering symptoms yields less value. Moreover preference Type I agents are more likely

to exit the work force due to side effects, which slows their accumulation of human capital

and lowers their expected future income were they to stay alive and on HAART. This effect

is reflected in a lower valuation of a treatment that will keep them alive—but poorer—in

comparison to their preference Type II counterparts.

5.2 Optimal Treatment Cycling

When no available treatment dominates along both dimensions of quality (efficacy and side

effects), agents optimally choose to cycle among available treatments. An optimal treatment

path is therefore a non-stationary closed loop driven by three factors: (1) persistence in

underlying health; (2) a non-convexity in discrete treatment choices and (3) health-state

dependent flow utility captured by the estimated disutility of ailments induced by symptoms

or side effects. To fix ideas, note that cycling may not occur in other medical contexts

where one of these components is not present. For example, in the case of diabetes, health

deterioration is immediate absent treatment with insulin. Therefore, cycling off of insulin to

enjoy periods free of side effects would be a short-lived endeavor and likely not part of an
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optimal dynamic plan.

Details of cycling behavior indicate that agents with AIDS-level CD4 count are likely to

switch to the more effective treatment (in this case HAART), akin to a phase of investment

in health ‘stock’. While on HAART, agents face a higher probability of health improve-

ments. Once their health improves, some agents switch back to less effective treatment with

fewer side effects (including the no-treatment option). At this point on the cycle, agents

essentially exploit previous investments in their health stock, trading a higher probability of

diminished future health for several periods with fewer side effects. During these periods,

agents are more likely to engage in full-time employment. Treatment cycling rationalizes

systematic avoidance of HAART as part of an optimal dynamic plan. Moreover, and as will

become evident in the following section, optimal treatment cycling is the key mechanism

through which counterfactual environments affect agent choices and outcomes. Agents re-

spond to counterfactual environments primarily through shifts in the frequency of going off

(and staying off) of HAART in good health and going back onto HAART in poor health.

Consider Figure 3, which illustrates the anatomy of optimal treatment cycling for agents

with preference Type I and health Type I. These are agents who face a high utility cost

of working while suffering physical ailments and for whom HAART is vastly more effective,

but with harsher side effects, versus other available treatments. Behavior is simulated in an

environment where available treatments correspond to actual options in the factual post-

HAART world: no treatment, mono-treatment, combo-treatment or HAART. In any given

period when agents are healthy and on HAART, about 8% switch off of HAART. Of these,

84% remain off of HAART and face a 3% probability of AIDS level CD4 in each period.

During periods in good health, agents are more likely to work when off HAART (44% versus

40%). When they become ill, these agents go onto HAART with 97% probability and remain

on HAART with nearly 100% probability. They face a 50% chance of regaining non-AIDS

CD4, at which point the cycle begins again.

Different latent types exhibit different cycling behavior. For example, agents for whom

HAART is relatively less effective (health Type II agents) are less likely to go onto HAART

once their health deteriorates (40% versus 84%). This difference reflects that these agents face

a 16% probability of health improvements (versus 50% for health Type I agents). Comparing

preference types, agents who face a disutility of working with ailments (preference Type I) are

less likely to stay off HAART when in good health. This occurs because they can essentially

attenuate the utility cost of ailments by exiting employment rather than by facing the health

consequences of going off of HAART.

Treatment cycling is often considered to be a form of suboptimal non-compliance that
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should be curbed (Sabate, 2003). Switching off of treatment is sometimes referred to as

a ‘drug holiday’ and some medical literature points to individual-level dangers of engag-

ing in such behavior (Meredith, 1996). In contrast, I find that a cyclical treatment pat-

tern can be the result of optimal forward-looking behavior and refer to the phenomenon as

optimal treatment cycling. Recent medical research on long-term, chronic illness suggests

adapting current treatments to patient responses to previous treatment (Murphy, 2005).40

Optimal treatment cycling is similar in that current decisions reflect previous treatment out-

comes, though it is driven by patient decision-making. Cycling is also consistent with findings

that medical doctors, despite advocating highly effective treatments for their patients, often

opt for less effective drugs with fewer side effects when faced with similar medical conditions

(Ubel, Angott, and Zikmund-Fisher, 2011).

5.3 The Value of Counterfactual Treatment Innovations

A key benefit of the characteristics approach to modeling treatment quality used in this study

is the possibility to evaluate counterfactual treatment innovations. For example, suppose

that once HAART is introduced, patients are faced with an improvement on HAART along

one or both dimensions of drug-quality. One possibility is a version of HAART without

side effects. Computing WTAP as in Section 5.1, I present valuations of such an innovation

for low-human-capital patients of different ages in Figure 4 (for preference Types I-II and

health Type I) and Figure 5 (for preference Types I-II and health Type II). Counterfactual

innovations occur once HAART has already been introduced. In each figure and for each age,

black bars depict the value of HAART introduction. Given HAART, the value of HAART

without side effects is depicted by the difference between the black bars and the dark grey

bars to the immediate right. A version of HAART without side effects has enormous potential

value: between $100,000 and $125,000 (for a 30-year-old belonging to health Types II and I,

respectively). Health Type I agents exhibit higher willingness-to-pay since HAART is a more

effective drug for them. Consistent with previous results, older agents value the innovation

less since they have fewer periods to enjoy it.41 This valuation is especially striking since the

innovation entails no improvement on underlying health or longevity. In this sense, a version

of HAART without side effects could be seen as a ‘me-too’ innovation since, by design, it

is therapeutically equivalent to an existing treatment. Contrary to arguments that ‘me-too’

innovations offer little benefit to consumers, I find that a treatment that is therapeutically

40Specifically, this line of research suggests designing medical trials involving multiple randomizations to
better formulate decision rules for adaptive treatments.

41According to results that are not shown and are consistent with HAART valuations, high-experience
agents value the innovation more highly than low-experience agents
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equivalent to HAART, but entails fewer side effects, generates high value.42

Suppose that instead of a reduction in side effects, HAART is improved along the efficacy

dimension. In particular, low-CD4 agents who use HAART face a 32% probability of non-

AIDS CD4 in the following period. Under the counterfactual improvement, this probability

is tripled. For each age, the third great bar in Figures 4-5 depict how agents with different

latent types value this innovation. For health Type I agents, this value is about $275,000

(or about $100,000 above HAART). In contrast, health Type II agents would be willing to

pay upwards of $1,100,000 for a 30-year-old with five years of accumulated work experience.

The massive difference between health Types I and II is explained via differences in health

probabilities: Type II agents are more likely to have a low CD4 count and so value an equally

effective medical innovation much more highly.

Agents would be expected to place high value on a life-improving and life-saving tech-

nology. What is more surprising is that optimal treatment cycling underlies some portion of

this value. In general, switching onto milder treatments is risky since the full treatment cycle

includes periods where CD4 count is low and death probability is high. If a highly effective

version of HAART exists, however, agents anticipate fewer periods of poor health once their

health deteriorates. They respond by cycling more aggressively, i.e., by more frequently

switching to low side effects treatments once their CD4 count is high. In other words, the

value of an effective treatment includes the implied option value of optimally cycling off of

it in periods of relatively good health.

Another key finding is that the value of counterfactual treatments depends on existing

treatments. Suppose that the two aforementioned innovations (side effects and efficacy) oc-

cur simultaneously in separate treatments, so that two new drugs are introduced. Returning

to Figures 4-5 and consider the fourth bar for each age. As compared to the efficacy in-

novation, the two innovations create little additional value. This finding is striking: a side

effects innovation is valuable absent an efficacy innovation, but creates little value given an

efficacy innovation. Again, the underlying mechanism is optimal treatment cycling: if a

highly effective version of HAART already exists, agents can simply cycle off of treatment

altogether (avoiding all side effects), retaining the option value of resuming treatment once

their health deteriorates. A drug without side effects adds little additional value in such a

scenario.43 Nonetheless, combining an efficacy and side effects innovation into a single drug

does imply additional value since it permits agents to live without side effects, but to avoid

42See, for example, Angell (2000) for a summary of popular arguments on why ‘me-too’ drug development
should be curtailed.

43This does not necessarily imply that a private pharmaceutical firm would not profit from investing
in marginal improvements on either dimension of drug quality since a high proportion of patients would
presumably switch to the improved treatment despite the small implied value increase.
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risks associated with cycling. Such an innovation starts to approximate a cure and its value

reflects this: about $450,000 for a health Type I 30-year-old and $1,500,000 for a health

Type II 30-year-old.

6 Medical Innovation and the Labor Market

The framework developed in this paper permits an explicit analysis of how pharmaceuti-

cal innovation creates value in part through its interaction with labor market choices and

outcomes. In what follows, I provide results from three counterfactual policy simulations

exploring treatments innovations, a reduction in non-wage income and higher out-of-pocket

treatment costs. For illustrative purposes, I present results for preference Type I and health

Type I agents, for whom both the effects of HAART and the interaction between health and

employment are strong.44

6.1 Counterfactual Treatments

In the first policy simulation, I trace agent decisions along with health and labor market

outcomes from the time of HAART introduction until the end of the sample period under

regimes distinguished by available treatment technologies.45 I compare three of the treatment

scenarios outlined in the previous section. The first is the baseline (factual) regime where

HAART is introduced in 1996. In the second, a treatment identical to combo-therapy is

introduced at the time of HAART introduction. This scenario mimics a continuation of the

pre-HAART world in the sense that a new treatment becomes available, but does not improve

upon existing technology. In the third scenario, two counterfactual improvements upon

HAART are simultaneously introduced: HAART with no side effects and a highly effective

version of HAART with HAART-level side effects. This final scenario illustrates behavior

when innovations occur separately along two dimensions of treatment quality. Under each

policy, agent behavior is optimal in the sense that choices arise from solution of the dynamic

programming problem given estimation preferences parameters. Results are depicted in

Figure 6.

For health Type I agents, it is not surprising that HAART brought better average

44This choice of latent type is for illustrative purposes. Results for each latent type reflect estimated
parameters. Health Type II agents exhibit a relatively weak response to HAART. For preference Type II
agents, the labor market effects of health are less apparent.

45For each simulation, the distribution of observed state variables at the time of HAART introduction is
taken as given, with the exception that all agents are modeled to have chosen “no treatment” in the period
immediately preceding HAART introduction.
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health (see Figure 6(a)). Perhaps more surprising is that counterfactual improvements upon

HAART imply negligible health improvements. In this scenario, a high proportion of agents

opt for the version of HAART without side effects. The availability of a highly effective

version of HAART encourages this behavior: since they are forward-looking, they maintain

the option of using the effective treatment—and quickly recuperating—should they fall ill

in the future. The outcome is a lower probability of suffering ailment in comparison to the

scenario where only HAART is available (Figure 6(b)). Also apparent in Figure 6(b) is that,

on average, fewer agents suffer ailments in the scenario where combo-therapy is the best

available technology. Under this regime, agents eschew medication altogether, which lowers

average health, but also lowers the probability that they suffer ailments.

Health and physical ailments affect employment decisions, which are depicted in Figure

6(c). Absent HAART, a lower proportion of agents work since expected income at the time

of the employment decision is lower, driving some agents out of the labor market. This

effect is compounded by a shorter expected lifespan, which weakens the incentive to work

to accumulate human capital. Recall, however, that preference Type I agents’ employment

disutility is sensitive to ailment status. Given improvements to HAART, which bring only

small improvements to underlying health, agents work more since they are more likely to

be free of physical ailments that increase the utility cost of work. In 1998, for example,

employment is 45% given HAART and nearly 53% given improvements on HAART, a 15%

increase. Given that preference Type I agents constitute about half of the population, this

implies a 7.5% increase in employment among HIV+ men.

The connections between treatment innovations and employment highlight the impor-

tance of looking beyond underlying health to quantify the value of medical breakthroughs.

Given counterfactual improvements to HAART, the average effect on health is negligible,

but agents suffer fewer ailments and return to work. This not only increases their income

(Figure 6(d), but also raises the income tax that they would pay, suggesting a mechanism

through which public investments in biomedical research could be offset through taxation of

the direct beneficiaries of medical innovation.46

46Preference Type I agents exhibit a fairly low probability of working full-time (between 25% and 55%
versus 80% or more for preference Type II agents). This low probability arises, in part, from the timing of
labor supply decisions: agents choose whether or not to work for a full period before they know their ailment
status. A high enough probability of suffering ailments coupled with a high disutility of labor while suffering
ailments, implies that preference Type II agents will often avoid employment.
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6.2 A Decline in Non-Wage Income

The introduction of HAART occurred under very specific circumstances since HAART treats

a condition that is legally considered a disability, giving patients access to disability pay-

ments should they exit the labor market. Therefore, income remains fairly high for agents

who choose not to work.47 The goal of the following experiment is to ascertain agent choices

and outcomes in a counterfactual environment where non-wage income is lower. In the simu-

lated environment, agents face reductions in non-wage income, operationalized via decreased

parameters of the income process for agents not choosing full-time employment. In effect,

non-wage income is reduced 25%, 50% and 75%.

Figure 7 shows that, facing lower non-wage income, health Type I and preference Type

I agents engage in more pronounced optimal treatment cycling (compare Figures 7(a) and

7(b)) in order to improve their ailment status. When non-wage income declines to 25% of

its original value, the probability that high-CD4-count agents switch off of highly effective

treatment rises from 11% to 14% in any given period and the probability that healthy agents

stay off of HAART rises from 84% to 93%.48 Agents move into the labor market, which brings

higher income (Figure 7(c)) and also leads to small improvements in ailments status (Figure

7(d)).

The estimated model implies that a subset of agents (latent preference Type I) face

a higher utility cost of working with side effects. Faced with lower disability payments,

these agents respond by more aggressively cycling off of effective treatments, thereby facing

potential health deterioration and a lower probability of survival. Results from this policy

simulation show that this possibility is not of great concern in the context studied here.

However, the model suggests the possibility of unintended deleterious health consequences

arising from lower disability payments, which may be of concern in other medical contexts.

6.3 Unsubsidized Treatment Costs

Recall that HIV+ agents pay on average about $500 per year for treatment. However, the

actual costs, paid by insurance (both public and private) is much more. A year of HAART

47Under the Americans with Disabilities Act, people living with HIV/AIDS qualify for social security
disability payments. These payments cover both symptoms of AIDS and side effects of treatment. Moreover,
limited benefits can continue even if agents return to work, reflecting the cyclical nature of chronic disease.
For more information, see http://ssa.gov/pubs/10019.html. For more information on government mandated
payment calculations, also see: http://www.ssa.gov/policy/docs/statcomps/supplement/2011/.

48Preference Type II agents’ response to low non-wage income is to slightly increase already high levels
of employment. They do not, however, appreciably shift their treatment cycling behavior since they do not
experience a utility cost of working with ailments.
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therapy costs about $12,000. Combo-therapy costs $8,000 and mono-therapy $6000. What

would happen to agent choices and outcomes if they were compelled to pay these unsubsidized

costs? The following policy experiment addresses this question, simulating environments

where agents would pay 20%, 40% or 60% of the full cost of treatment. Results are presented

in Figure 8.

Again, more pronounced optimal treatment cycling is the key mechanism through which

changes in the environment affect patient choices. Facing high costs, agents are more likely

to switch off (and stay off) of HAART once their health improves (compare Figures 8(a)

and 8(b), which depict use of HAART with full subsidies and 50% subsidies, respectively).

As a result, agents experience lower average health, though survival probability remains

largely unchanged. Agents do exhibit an improvement in their side effects status, shown

in Figure 8(c), which encourages an increase in employment (Figure 8(d)). This finding

underscores how the connection between health and labor affects medical treatment choices.

Here, a decrease in treatment subsidies has an unintended benefit in the form of increased

employment, consumption and, from a social perspective, income tax receipts.

7 Conclusion

This project develops a general framework to value medical innovation that includes various

measures emphasizing the quality of life and highlights links between health, human capital

and the labor market. Contrary to medical literature criticizing treatment non-compliance,

I show that in the case of chronic illness, strict adherence to the most effective medication

available is not part of an individually rational, dynamically optimal treatment plan. Rather,

when no treatment dominates along all dimensions of drug quality, agents cycle among avail-

able options. I also find that similarly unhealthy patients exhibit substantial heterogeneity

in the way they value a given drug, depending on their age, accumulated human capital

along with unobserved factors affecting drug efficacy and side effects. Contrary to standard

arguments that ‘me-too’ drugs imply few benefits to patients, these findings suggest two

avenues through which they can create enormous value: by reducing side effects despite

no improvements to average drug effectiveness and by generating welfare improvements for

certain subsets of the patient population, distinguished by unobservable factors.

Optimal treatment cycling also reveals complex relationships between health and em-

ployment, which influence the effects of medical innovation and other policy changes. I show

that agents facing unsubsidized drug costs quickly cycle off treatment when in relatively good

health. This behavior can damage health, but also reduces ailments induced by side effects,
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which encourages employment, thereby increasing income and accelerating the accumulation

of human capital. This finding underscores the importance of looking beyond the length of

life—to factors affecting the quality of life—to fully appreciate the value of pharmaceutical

innovation.

The framework developed in this paper is applicable to other medical conditions, espe-

cially those that are chronic, that affect working-age adults and where treatment or pre-

vention is costly, both financially and in terms of side effects. Examples include: diabetes,

obesity and depression. Moreover, future research could extend the characteristics approach

to other dimensions of treatment quality. For example, insulin pumps arguably increased

the convenience of diabetes treatment. Perhaps less important in the face of life-threatening

illness, convenience becomes more salient once treatments are effective, side effects are man-

ageable and patients demand innovations that further improve their quality of life.

References

Aguirregabiria, V. and P. Mira. 2010. “Dynamic Discrete Choice Structural Models: A
Survey.” Journal of Econometrics 156 (1):38–67.

Angell, M. 2000. “The Pharmaceutical Industry—To Whom Is It Accountable?” New
England Journal of Medicine 342 (25):1902–1904.

Arcidiacono, P., P. Ellickson, P. Landry, and D.B. Ridley. 2012. “Pharmaceutical Followers.”
mimeo, Duke University.

Becker, G.S. 1985. “Human Capital, Effort, and the Sexual Division of Labor.” Journal of
Labor Economics 3 (1):33–58.

———. 2007. “Health as Human Capital: Synthesis and Extensions.” Oxford Economic
Papers 59 (3):379–410.

Cawley, J. 2004. “The Impact of Obesity on Wages.” Journal of Human Resources 39 (2):451.

Chan, Tat Y, Barton H Hamilton, and Nicholas W Papageorge. 2013. “Health and the
Option Value of Medical Innovation.” Mimeo, Johns Hopkins University.

Chan, T.Y. and B.H. Hamilton. 2006. “Learning, Private Information, and the Economic
Evaluation of Randomized Experiments.” Journal of Political Economy 114 (6):997–1040.

Chintagunta, P.K., R. Jiang, and G.Z. Jin. 2009. “Information, Learning, and Drug Diffusion:
The Case of Cox-2 Inhibitors.” Quantitative Marketing and Economics 7 (4):399–443.

Conti, G., J. Heckman, and S. Urzua. 2010. “The Education-Health Gradient.” American
Economic Review 100 (2):234–38.

33



Crawford, G.S. and M. Shum. 2005. “Uncertainty and Learning in Pharmaceutical Demand.”
Econometrica :1137–1173.

Currie, J. 2009. “Healthy, Wealthy, and Wise: Socioeconomic Status, Poor Health in Child-
hood, and Human Capital Development.” Journal of Economic Literature 47 (1):87–122.

Currie, J. and B.C. Madrian. 1999. Health, Health Insurance and the Labor Market, Handbook
of Labour Economics, vol. 3, chap. 50. Elsevier, 3309–3416.

Detels, R., P. Tarwater, J.P. Phair, J. Margolick, S.A. Riddler, and A. Muñoz. 2001. “Effec-
tiveness of Potent Antiretroviral Therapies on the Incidence of Opportunistic Infections
Before and after AIDS Diagnosis.” AIDS 15 (3):347.

Duggan, M.G. and W.N. Evans. 2008. “Estimating the Impact of Medical Innovation: A
Case Study of HIV Antiretroviral Treatments.” NBER Working Paper.

Eckstein, Z. and K.I. Wolpin. 1989. “Dynamic Labour Force Participation of Married Women
and Endogenous Work Experience.” The Review of Economic Studies 56 (3):375–390.

El-Sadr, WM, J.D. Lundgren, JD Neaton, F. Gordin, D. Abrams, RC Arduino, A. Babiker,
W. Burman, N. Clumeck, CJ Cohen et al. 2006. “CD4+ Count-Guided Interruption of
Antiretroviral Treatment.” New England Journal of Medicine 355 (22):2283–2296.

Fernandez, J.M. 2008. “An Empirical Model of Learning under Ambiguity: The Case of
Clinical Trials.” Mimeo, University of Louisville.

Garthwaite, C. 2012. “The Economic Benefits of Medical Innovations: The Case of Cox-2
Inhibitors.” American Economic Journal: Applied Economics 4 (3):116–137.

Goldman, D.P. and Y. Bao. 2004. “Effective HIV Treatment and the Employment of HIV+
Adults.” Health Services Research 39 (6p1):1691–1712.

Grossman, M. 1972. “On the Concept of Health Capital and the Demand for Health.” The
Journal of Political Economy 80 (2):223–255.

Hall, Robert E and Charles I Jones. 2007. “The Value of Life and the Rise in Health
Spending.” The Quarterly Journal of Economics 122 (1):39–72.

Heckman, J.J. and F. Cunha. 2007. “The Technology of Skill Formation.” American Eco-
nomic Review 97 (2):31–47.

Hotz, V.J. and R.A. Miller. 1993. “Conditional Choice Probabilities and the Estimation of
Dynamic Models.” The Review of Economic Studies 60 (3):497–529.

Judd, K.L. 1998. Numerical Methods in Economics. The MIT press.

Kerbrat, A, E Le Page, E Leray, T Anani, M Coustans, C Desormeaux, C Guiziou, P Kas-
siotis, F Lallement, D Laplaud et al. 2011. “Natalizumab and Drug Holiday in Clinical
Practice: An Observational Study in Very Active Relapsing Remitting Multiple Sclerosis
Patients.” Journal of the Neurological Sciences 308 (1):98–102.

34



Lakdawalla, D., N. Sood, and D. Goldman. 2006. “HIV Breakthroughs and Risky Sexual
Behavior.” The Quarterly Journal of Economics 121 (3):1063–1102.

Lancaster, K.J. 1966. “A New Approach to Consumer Theory.” The Journal of Political
Economy 74 (2):132–157.

Lipscomb, J., M. Drummond, D. Fryback, M. Gold, and D. Revicki. 2009. “Retaining, and
Enhancing, the QALY.” Value in Health 12:S18–S26.

Meredith, PA. 1996. “Therapeutic Implications of Drug Holidays.” European Heart Journal
17 (suppl A):21.

Mincer, J. and S. Polachek. 1974. “Family Investments in Human Capital: Earnings of
Women.” The Journal of Political Economy 82 (2):76–108.

Murphy, K.M. and R.H. Topel, editors. 2003. Measuring the Gains from Medical Research:
An Economic Approach. University of Chicago Press.

Murphy, K.M. and R.H. Topel. 2006. “The Value of Health and Longevity.” The Journal of
Political Economy 114 (5):871–904.

Murphy, S.A. 2005. “An Experimental Design for the Development of Adaptive Treatment
Strategies.” Statistics in Medicine 24 (10):1455—1481.

Ostrow, DG, A. Monjan, J. Joseph, M. VanRaden, R. Fox, L. Kingsley, J. Dudley, and
J. Phair. 1989. “HIV-Related Symptoms and Psychological Functioning in a Cohort of
Homosexual Men.” American Journal of Psychiatry 146 (6):737.

Petrin, A. 2004. “Quantifying the Benefits of New Products: The Case of the Minivan.”
Journal of Political Economy 110 (4):705–729.

Philipson, T.J. and R.A. Posner. 1993. Private Choices and Public Health: The AIDS
Epidemic in an Economic Perspective. Cambridge: Harvard University Press.

Rosen, S. 1974. “Hedonic Prices and Implicit Markets: Product Differentiation in Pure
Competition.” The Journal of Political Economy 82 (1):34–55.

Rust, J. 1987. “Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold
Zurcher.” Econometrica 55 (5):999–1033.

Sabate, E. 2003. “Adherence to Long-Term Therapies: Evidence
for Action.” Tech. rep., World Health Organization, Available:
www.who.int/chp/knowledge/publications/adherence introduction.pdf. Accessed 4
Oct 2011.

Scherer, Robert M. 2010. “Pharmaceutical Innovation.” In Handbook of the Economics
of Innovation, edited by Bronwyn H. Hall and Nathan Rosenberg, chap. 12. Elsevier,
539–571.

35



Stebbing, J. and A. Dalgleish. 2009. “Not So SMART?” The Lancet Infectious Diseases
9 (5):268–269.

Stigler, G.J. 1945. “The Cost of Subsistence.” Journal of Farm Economics 27 (2):303–314.

Ubel, P.A., A.M. Angott, and B.J. Zikmund-Fisher. 2011. “Physicians Recommend Different
Treatments for Patients Than They Would Choose for Themselves.” Archives of Internal
Medicine 171 (7):630–634.

36



8 Tables and Figures

T
a
b
le

1
:
S
u
m
m
a
r
y
st
a
t
is
t
ic
s

F
u
l
l

P
r
e
-

P
o
st

-
H
ig
h

L
o
w

F
u
l
l
-

N
o
t
F
u
l
l
-

S
a
m
p
l
e

H
A
A
R
T

†
H
A
A
R
T

‡
C
D
4

C
D
4

T
im

e
T
im

e

A
ge

in
19

84
(y

ea
rs

)§
32

.7
1

3
3
.1

6
3
2
.3

0
3
2
.5

1
3
3
.2

9
3
2
.4

0
3
3
.3

2

C
D

4
co

u
n
t

(u
n

it
s/

m
m

3
)

44
8.

76
3
9
2
.5

4
5
0
0
.3

7
5
6
6
.8

1
1
2
1
.8

6
4
9
0
.5

7
3
6
6
.1

2

H
ig

h
C

D
4

0.
73

0
.6

5
0
.8

1
1
.0

0
0
.0

0
0
.8

1
0
.5

9

N
o

A
il

m
en

ts
0.

59
0
.5

9
0
.5

9
0
.6

5
0
.4

1
0
.6

8
0
.4

1

D
ea

th
P

ro
b

ab
il

it
y

0.
04

0
.0

7
0
.0

2
<

0
.0

1
0
.1

4
0
.0

2
0
.0

9

In
co

m
e

($
(2

00
3)

/y
ea

r)
32

,3
48

.0
8

2
8
,0

4
0
.5

0
3
6
,3

0
1
.3

2
3
2
,1

2
5
.2

0
2
7
,1

9
8
.5

0
3
6
,0

6
7
.2

2
2
2
,8

1
8
.5

8

O
u

t-
of

-P
o
ck

et
C

os
t

($
(2

00
3)

/y
ea

r)
47

1.
39

3
3
3
.6

0
5
9
7
.8

5
4
4
8
.9

5
5
3
3
.5

3
4
1
4
.8

3
5
8
3
.2

2

E
x
p

er
ie

n
ce

(y
ea

rs
)

12
.5

6
1
1
.7

8
1
3
.2

8
1
2
.6

8
1
2
.2

1
1
2
.8

9
1
1
.9

1

N
o

In
su

ra
n

ce
0.

05
0
.0

7
0
.0

3
0
.0

5
0
.0

5
0
.0

4
0
.0

8

P
ri

va
te

In
su

ra
n

ce
0.

81
0
.8

4
0
.7

9
0
.8

4
0
.7

3
0
.9

2
0
.5

9

P
u

b
li

c
In

su
ra

n
ce

0.
14

0
.0

9
0
.1

8
0
.1

1
0
.2

2
0
.0

4
0
.3

3

T
re

at
m

en
t:

N
on

e
0.

30
0
.4

5
0
.1

8
0
.3

4
0
.2

0
0
.3

3
0
.2

5

T
re

at
m

en
t:

M
on

o
0.

20
0
.3

2
0
.0

9
0
.1

7
0
.2

9
0
.2

0
0
.1

9

T
re

at
m

en
t:

C
om

b
o

0.
17

0
.2

3
0
.1

2
0
.1

7
0
.1

7
0
.1

4
0
.2

5

T
re

at
m

en
t:

H
A

A
R

T
0.

33
.

0
.6

2
0
.3

5
0
.2

6
0
.3

0
0
.3

9

N
ot

fu
ll

ti
m

e
0.

34
0
.3

2
0
.3

6
0
.2

8
0
.5

4
0
.0

8
0
.8

9

F
u

ll
ti

m
e

0.
66

0
.6

8
0
.6

4
0
.7

2
0
.4

6
0
.9

2
0
.1

1

N
[t

im
e
t

va
ri

ab
le

s]
8,

30
0

3
,9

7
2

4
,3

2
8

6
,0

9
8

2
,2

0
2

5
,5

1
2

2
,7

8
8

N
[t

im
e
t

+
1

va
ri

ab
le

]
7,

95
4

3
,6

9
4

4
,2

6
0

6
,0

5
7

1
,8

9
7

5
,4

0
3

2
,5

5
1

†
T

h
e

p
re

-H
A

A
R

T
er

a
co

n
ta

in
s

ob
se

rv
at

io
n

s
fr

o
m

1
9
9
1

u
n
ti

l
m

id
1
9
9
5

(9
p

er
io

d
s)

.

‡
T

h
e

p
os

t-
H

A
A

R
T

er
a

co
n
ta

in
s

ob
se

rv
at

io
n

s
fr

o
m

1
9
9
6

u
n
ti

l
2
0
0
3

(1
7

p
er

io
d

s)
.

§
E

ac
h

en
tr

y
re

p
re

se
n
ts

th
e

m
ea

n
ov

er
in

d
iv

id
u

a
ls

a
n

d
ti

m
e

p
er

io
d

s
fo

r
th

e
p

er
io

d
o
r

g
ro

u
p

in
q
u

es
ti

o
n

.
E

n
tr

ie
s

a
re

p
ro

p
or

ti
on

s
u

n
le

ss
ot

h
er

w
is

e
in

d
ic

at
ed

.

37



Table 2: Transition Matrix

Time t+ 1
None Mono Combo HAART
Pre-HAART & Low CD4

Time t
None 0.67 0.23 0.10 .
Mono 0.13 0.59 0.28 .
Combo 0.06 0.29 0.64 .

Pre-HAART & High CD4

Time t
None 0.91 0.07 0.02 .
Mono 0.07 0.74 0.19 .
Combo 0.05 0.20 0.75 .

Post-HAART & Low CD4

Time t

None 0.53 0.05 0.07 0.35
Mono 0.04 0.46 0.14 0.36
Combo 0.04 0.06 0.37 0.53
HAART 0.04 0.06 0.04 0.87

Post-HAART & High CD4

Time t

None 0.87 0.01 0.04 0.07
Mono 0.03 0.68 0.07 0.21
Combo 0.03 0.02 0.74 0.22
HAART 0.02 0.03 0.01 0.94

HIV treatment choices.

Table 3: Logistic Regression of Employment Decisions

Employment Choice t+ 1
Conditional on Treatment Choices

(1) (2) (3) (4) (5)
Pre- Post-

HAART HAART
Full time (t) 4.26∗∗∗ 3.97∗∗∗ 3.97∗∗∗ 3.41∗∗∗ 4.47∗∗∗

Experience 0.11∗∗∗ 0.17∗∗∗ 0.17∗∗∗ 0.2∗∗∗ 0.14∗∗∗

Exper. Squared -0.001∗∗∗ -0.0005 -0.0005 -0.0005 -0.0002
Age -0.11 -0.15 -0.15 -0.29 0.13
Age2 0.0000414 -0.001 -0.001 -0.0007 -0.004∗

High CD4 . 0.98∗∗∗ 0.95∗∗∗ 0.94∗∗∗ 0.83∗∗∗

No Symptoms . 0.56∗∗∗ 0.55∗∗∗ 0.61∗∗∗ 0.47∗∗∗

Haart Available . 1.02∗∗∗ 1.11∗∗∗ . .
Treatment: Mono (t+1) . . -0.008 0.26 -0.24
Treatment: Combo (t+1) . . -0.27∗∗ 0.2 -0.74∗∗

Treatment: HAART (t+1) . . -0.18 . -0.64∗∗

Treatment: Mono (t) . . . -0.23 -0.06
Treatment: Combo (t) . . . -0.41∗ 0.22
Treatment: HAART (t) . . . . 0.36
Observations 7954 7954 7954 3694 4260

Dichotomous employment choices (full time or not full time) at period t + 1 conditional
on treatment choices in periods t and t+ 1.
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Table 4: Transition Matrix

Time t+ 1
Not Full Time Full Time

Pre-HAART

Time t
Not full time 0.86 0.14
Full Time 0.10 0.90

Post-HAART

Time t
Not full time 0.91 0.09
Full Time 0.06 0.94

Employment decisions (full time or not full time).

Table 5: Structural Parameter Estimates

Latent Type (Preferences)
Type I Type II Σ

Latent Type:
(Transitions and Outcomes)
Type I 0.148 0.261 0.409
Type II 0.345 0.246 0.591
Σ 0.493 0.507

Unconditional latent type probabilities.

Table 6: Structural Parameter Estimates

Type I Type II
Coefficient Error Coefficient Error

No Ailments
CRRA 0.81 0.10 0.80 0.02
Labor Disutility -2.34 0.50 -2.59 0.48
Begin Treatment 13.56 3.95 . .
Change Treatment -6.17 0.37 . .
End Treatment -12.52 2.73 . .
Ailments
Constant -42.27 3.80 -53.92 3.55
CRRA 0.77 0.09 0.74 0.01
Labor Disutility -11.54 1.29 -5.22 1.16
Begin Treatment -42.75 5.10 . .
Change Treatment 4.33 0.53 . .
End Treatment 30.08 2.76 . .

Utility parameters.
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Table 7: Structural Parameter Estimates

Coefficient Error
CD4 Increase (θ∆H)
High CD4 at t -0.40 0.09
High CD4 at t ×

Mono-therapy 0.42 0.06
Combo-therapy 0.50 0.07
HAART [Type I] 0.77 0.10
HAART [Type II] 0.71 0.10

Low CD4 at t ×
Mono-therapy 0.06 0.03
Combo-therapy 0.09 0.03
HAART [Type I] 2.21 0.41
HAART [Type II] 0.17 0.05

Time trend 0.02 0.00
Constant -0.70 0.10
CD4 Count at t+ 1 (θH)
Type I ×

High CD4 at t 6.16 0.66
Predicted CD4 increase (%) ×

Low CD4 4.29 0.95
High CD4 2.94 0.08

Constant -3.82 0.12
Type II ×

High CD4 at t 5.26 0.67
Predicted CD4 increase (%)×

Low CD4 3.90 1.33
High CD4 0.66 0.15

Constant -3.71 0.65

Drug effectiveness and CD4 count processes.
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Table 8: Structural Parameter Estimates

Coefficient Error
Ailments (θF )
High CD4 at t 0.94 0.05
High CD4 at t ×

Mono-therapy -0.19 0.02
Combo-therapy -0.20 0.02
HAART [Type I] 0.01 0.00
HAART [Type II] -0.19 0.03

Low CD4 at t ×
Mono-therapy 0.27 0.04
Combo-therapy 0.24 0.04
HAART [Type I] -1.04 0.22
HAART [Type II] 0.25 0.04

Time trend -0.20 0.02
Constant -0.45 0.06

Drug side effects process.

Table 9: Structural Parameter Estimates

Coefficient Error
Death (θB)
High CD4 -6.16 1.16
Age × high CD4 0.07 0.02
Age -0.01 0.01
Constant -1.37 0.41

Survival process.
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Table 10: Structural Parameter Estimates

Coefficient Error

Income
(
θI
)

High CD4 at t 1508.45 273.60
Experience 664.04 51.47
Experience-squared -4.79 0.62
Age -633.16 71.60
Time trend 165.88 32.39
Full-time employment 28273.11 3186.61
Full-time employment ×

High CD4 at t -871.93 371.21
Experience 248.74 74.78
Experience-squared 1.58 0.86
Age -674.88 108.44
Time trend 81.70 40.98

Constant 26988.58 2154.88
σ2
I 6673.68 53.06

Income process.

Table 11: Structural Parameter Estimates

Coefficient Error
Insurance (θN )
Private Insurance:
Full-time Employment 1.16 0.12
High CD4 at t -0.50 0.14
Experience 0.16 0.03
Experience-squared 0.00 0.00
Age -0.30 0.12
Age-squared 0.00 0.00
Time trend 0.07 0.02
Time trend (post-HAART) 0.02 0.03
Constant 6.95 2.49
Public Insurance:
Full-time Employment -0.88 0.14
High CD4 at t -1.05 0.15
Experience -0.03 0.03
Experience-squared 0.00 0.00
Age 0.17 0.14
Age-squared 0.00 0.00
Time trend 0.10 0.03
Time trend (post-HAART) -0.05 0.04
Constant -5.50 2.85

Insurance process.
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Table 12: Structural Parameter Estimates

Coefficient Error
Out-of-Pockets Costs (θP )
High CD4 at t -131.52 28.58
High CD4 with Ailments 177.88 20.53
Low CD4 with Ailments 146.77 33.08
Income 44.50 5.56
Mono-therapy 502.94 105.26
Combo-therapy 140.47 117.70
HAART -73.41 118.10
Private Insurance -75.37 56.69
Public Insurance 84.66 79.05
Private Insurance ×

Mono-therapy -227.55 108.22
Combo-therapy 155.91 120.84
HAART 407.91 119.39

Public Insurance ×
Mono-therapy -508.47 129.12
Combo-therapy -194.80 143.20
HAART 63.81 134.89

Time trend 14.49 1.46
Constant -524.10 66.27
σ2
P 720.49 6.60

Out-of-pocket treatment cost process.
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Table 13: Model Fit

Labor Drug Choice
Employed None Mono Combo HAART

Data Model Data Model Data Model Data Model Data Model

Full Sample 0.66 0.66 0.30 0.30 0.20 0.20 0.17 0.17 0.33 0.33
Low CD4 0.46 0.46 0.20 0.20 0.29 0.29 0.25 0.25 0.26 0.26
High CD4 0.72 0.72 0.34 0.34 0.17 0.17 0.14 0.14 0.35 0.35
Exp > 10 0.70 0.68 0.27 0.28 0.19 0.19 0.17 0.17 0.37 0.36
Exp ≤10 0.63 0.64 0.33 0.33 0.21 0.20 0.17 0.17 0.29 0.30
Age > 45 0.63 0.62 0.23 0.24 0.17 0.17 0.15 0.15 0.45 0.44
Age ≤45 0.68 0.69 0.36 0.36 0.22 0.22 0.19 0.19 0.23 0.23
Pre-HAART 0.68 0.67 0.45 0.45 0.32 0.32 0.23 0.23 . .
× Low CD4 0.50 0.50 0.25 0.26 0.40 0.40 0.35 0.34 . .
× High CD4 0.76 0.74 0.54 0.54 0.29 0.27 0.18 0.18 . .

Post-HAART 0.64 0.65 0.18 0.18 0.09 0.10 0.12 0.12 0.62 0.61
× Low CD4 0.41 0.48 0.12 0.09 0.11 0.13 0.11 0.12 0.66 0.67
× High CD4 0.69 0.70 0.19 0.19 0.08 0.09 0.12 0.12 0.61 0.60

Given different sets of state variables, choice probabilities are computed using model pa-
rameters and recorded in the columns labeled “Model”. For comparison, analogous sample
moments are recorded in the columns labeled “Data”.
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Table 14: Posterior Type Probabilities

Latent Type
Pref. Type Health Type

I II I II

Full Sample 0.48 0.52 0.41 0.59

College
No 0.54 0.46 0.40 0.60
Yes 0.45 0.55 0.42 0.58

Occupation:

Professional specialty 0.44 0.56 0.42 0.58
Admin. or clerical 0.50 0.50 0.40 0.60
Waitor 0.59 0.41 0.38 0.62
Craft 0.26 0.74 0.61 0.39
Mining 0.55 0.45 0.40 0.60
Transportation 0.60 0.40 0.45 0.55

For each individual and for each latent type, a ratio is computed where the numerator is
the likelihood contribution using estimated parameters for the given type and the denom-
inator is the full likelihood contribution. The result is a number between 0 and 1 that
provides a posterior probability that the individual belongs to each latent type. These ra-
tios are averaged across groups of individuals distinguished by explanatory variables, like
education, that are not included in the structural model. For example, the unconditional
preference Type I probability is 0.48. The posterior indicates that college graduates are
preference Type I with probability 0.45. Non-college graduates are preference Type I with
probability 0.54.
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Summary trends over time. Panel 1(a): Average treatment choice. Panel
1(b): Average lifetime HAART and Antiretroviral (ARV) use. Panel 1(c): Probability
of non-survival until period t + 1 given survival until t (HIV− and HIV+). Panel 1(d):
Average full-time employment: observed and extrapolated from the pre-HAART trend.
Panels 1(e)-1(f): proportion of individuals reporting hopefulness about the future most or
all of the time in the week prior to MACS interview (actual and residuals detrended for
age and CD4-count, respectively).
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(a) (b)

(c) (d)

Figure 2: Heterogeneity in the value of HAART: Value of HAART for Preference
Type I and Health Type I (Panel 2(a)), Preference Type II and Health Type I (Panel 2(b)),
Preference Type I and Health Type II (Panel 2(c)) and Preference Type II and Health
Type II (Panel 2(d)).
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CD4: High
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CD4: High
Switch o�
HAART

CD4: High
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HAART
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CD4: Low
Switch onto
HAART

CD4: Low
Stay  on
HAART

CD4: Low
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On HAART

8%

84%

3%

97%

99%50%

Figure 3: Optimal Treatment Cycling: Probabilities along the cycle are simulated
using model parameters. Beginning with the rightward pointing arrow at the left, Prefer-
ence Type I and Health Type I agents with a high CD4 count cycle off of HAART with
8% probability in each period. Once off of HAART, they remain off of HAART with prob-
ability 84% as long as their CD4 count is high. With 3% probability in each period, their
health declines at which point, with 97% probability they go onto HAART, remaining
there, given low CD4 count, with nearly 100% probability. With 50% probability in each
period, they recuperate their health. Other latent types exhibit similar cycling behavior,
with changes driven by HAART effectiveness. As HAART is not as effective for health
Type II agents, given a low CD4 count, they switch onto HAART less quickly and are
more likely to switch off of HAART even before attaining a high CD4 count.
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(a)

(b)

Figure 4: Heterogeneity in the value of Pharmaceutical Innovation: Value
of Counterfactual Innovations for Preference Type I and Health Type I (Panel 4(a)) and
Preference Type II and Health Type I (Panel 4(b)).
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(a)

(b)

Figure 5: Heterogeneity in the value of Pharmaceutical Innovation: Value
of Counterfactual Innovations for Preference Type I and Health Type II (Panel 5(a)) and
Preference Type I and Health Type I (Panel 5(b)).
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(a) (b)

(c) (d)

Figure 6: Counterfactual Policy Simulations - Treatment Innovations: Three
treatment environments are explored (i) HAART is introduced as observed (ii) HAART
is not introduced and (iii) instead of HAART two treatments are introduced, one with
high effectiveness with HAART-level side effects, the other with HAART effectiveness and
no side effects. For each simulated environment and for preference Type I and health
Type I, Panel 6(a) shows the average probability of high CD4 count over time. Panel
6(b): Average probability of not suffering from physical ailments. Panel 6(c): Average
probability of working full time. Panel 6(d): Average net income in $2003/year.

51



(a) (b)

(c) (d)

Figure 7: Counterfactual Policy Simulations - A Decline in Non-Wage In-
come: Non-wage income is simulated to decline 25%, 50% and 75%. For preference Type
I and health Type I, Panel 7(a) depicts treatment choices over time for no decline in
non-wage income and Panel 7(b) depicts treatment choices under a 75% drop in non-
wage income. For each simulated environment, Panel 7(c) shows average net income in
$2003/year and Panel 7(d) shows the probability of not suffering from physical ailments.
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(a) (b)

(c) (d)

Figure 8: Counterfactual Policy Simulations - An Increase in Treatment
Costs: Out-of-pocket treatments costs are simulated to increase to 20%, 40% and 60%
of actual treatment costs. For preference Type I and health Type I, Panel 8(a) depicts
treatment choices over time for no decline in non-wage income. Panel 8(b): Treatment
choices under a 60% drop in non-wage income. For each simulated environment, Panel
8(c) depicts the probability of not suffering from physical ailments. Panel 8(d): simulated
labor choice.
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