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Abstract

This paper studies a dynamic Markovian game of two infinitely-lived altru-

istic agents without commitment. Players can save, consume and give transfers

to each other. We find a continuum of equilibria in which the poor player re-

ceives transfers until players effectively pool their wealth and tragedy-of-the-

commons-type inefficiencies occur. The following type of equilibrium exists

only if a shock is introduced: The donor withholds transfers until the recipient

is constrained. We argue that more realistic environments should focus on the

latter type of equilibrium since it is empirically more plausible and has desirable

stability properties.

Dynamic economies with altruistic agents are an important class of models, but
the literature has so far restricted itself to studying rather special cases. Our re-
search agenda aims to fill this gap by providing a tractable theory for the behav-
ior of imperfectly-altruistic agents in a fully-dynamic setting without commitment.
In particular, we hope to provide a building-block model that is flexible and stable
enough to be used in larger settings, such as heterogeneous-agents models in macroe-
conomics (as already done in Barczyk, 2011), but potentially also in microeconomic
models of the family and development.
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We have found that in order to understand the fundamental workings and tensions
in such frameworks (which so far seem to have obstructed progress in the literature)
one has to begin by studying the simplest-possible setting. This is what we do in this
paper: We study Markov-perfect equilibria in a deterministic environment inhabited
by two infinitely-lived altruistic agents. Their only sources of income are a risk-free
return on savings and voluntary transfers from the other player. A key contribution
of the paper is that its insights point the way on how to attack more realistic settings
(idiosyncratic earnings risk, overlapping generations etc., see our follow-up paper).
Furthermore, there is a number of important contributions the paper makes in its own
right.

We characterize dynamic incentives and distortions in consumption-savings de-
cisions induced by strategic interactions between altruists in a fully-dynamic set-
ting. Specifically, we are able to make three new points relative to the existing
two-period models: First, in addition to the known possibility of over-consumption,
agents under-consume in certain situations with respect to the efficient allocation;
indeed, both under- and over-consumption are present in the class of equilibria we
find in the deterministic setting. Second, the model predicts that inefficiencies oc-
cur long before transfers actually flow, a feature that the two-period models in the
literature are necessarily silent upon. Third, we find that not only are the recipient’s
consumption-savings decisions distorted (a phenomenon known as the Samaritan’s
dilemma) but also the donor’s.

Our analysis allows us to draw a sharp distinction between the Samaritan’s dilemma,
which in our setting is characterized by the Party Theorem, and what we call the
Prodigal-Son dilemma. The latter says that under imperfect altruism no equilibrium
exists in which a rich donor lifts a poor recipient out of poverty and both players
are self-sufficient ever after. The potential donor realizes that the recipient would
squander the transfer, come back, and ask for more. The squandering of the transfer
is the Samaritan’s dilemma (the party) whereas not providing transfers in anticipa-
tion of this is the Prodigal-Son dilemma. Both rest importantly on the assumption of
no-commitment.

Finally, we analyze equilibria of the game. We find a continuum of tragedy-of-

the-commons-type equilibria with the following features: When the asset distribution
is imbalanced, the poor player receives an increasing schedule of transfers that give
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her incentives to save herself out of poverty. Once the asset distribution is sufficiently
balanced, players essentially pool their assets and tragedy-of-the-commons-type in-
efficiencies occur. Agents consume at inefficiently high rates out of the common pool
unless both players are perfectly altruistic. This is a novel type of equilibrium (it de-
pends crucially on the infinite-horizon assumption) and exists despite well-defined
property rights.

A transfer-when-constrained equilibrium exists only when uncertainty is added
to the setting. In this equilibrium, the rich agent delays transfers until the recipient is
constrained. By doing so, he can control the recipient’s consumption once transfers
flow. This equilibrium features a Samaritan’s dilemma and savings inefficiencies that
feed back over time. In regions where the asset distribution is balanced, players use
strategies close to the ones they would use in a world where they are self-sufficient.
We argue that future work in more complex environments should focus on this type
of equilibrium because of its greater empirical relevance and superior stability prop-
erties.

On the technical side, we argue that it is useful to work in continuous time in
dynamic-altruism models. Certain strategic interactions are of second order, which
makes instantaneous best-response functions constant and eliminates multiplicity of
equilibria in the ∆t-stage games. Furthermore, our approach enables us to char-
acterize equilibria by ordinary differential equations (ODEs) and a set of boundary
conditions; the number of boundary conditions tells us if to expect no equilibrium,
a finite number or a continuum of them for any given equilibrium type. Finally, we
can study non-smooth equilibria in a dynamic (differential) Markov game1 with the
possibility of mass-type transfers.

In the model there are two infinitely-lived altruistic agents. One-sided altruism,
perfect altruism (representative household), and selfish preferences are nested. Play-
ers decide about consumption, savings in a riskless asset (subject to a no-borrowing
constraint), and a non-negative transfer to the other agent. They are endowed with
an initial stock of assets but have no labor income; this assumption, together with

1The characteristic feature of a differential game is that the law of motion of the state vector is
determined by differential equations in continuous time. The standard solution concept is Markov-
perfect equilibrium (also referred to as feedback or closed-loop solution), but other concepts such as
Stackelberg or Markov equilibrium (open-loop) are also common. For an introduction to the theory of
differential games for economists see the book by Dockner et al. (2000) and chapter 13 in Fudenberg
& Tirole (1993).
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homotheticity of preferences, allows us to exploit the homogeneity of the setting and
reduce the dimensionality of the state space to one.

The literature on altruism has analyzed a host of static and two-period models for
transfers in the tradition of Becker’s (1974) seminal paper. The analysis of Lindbeck
& Weibull (1988) focuses on the Samaritan’s dilemma and highlights the existence
of multiple equilibria in a two-period model. Among others, Bernheim & Stark
(1988) and Bruce & Waldman (1990) study two-period models that emphasize the
Samaritan’s dilemma and its consequences for economic policy. But, restricting the
analysis to two periods carries limitations of what can be learned from a dynamic
setting and in using the model in a more realistic setting.

In the macroeconomics literature, dynamic models often have to take a stance
on how agents within a dynasty or family are connected. Two standard workhorse
models highlight this: The infinitely-lived household is justified by the assumption
that altruistic concerns connect subsequent generations as in Barro’s (1974) semi-
nal paper, whereas pure life-cycle OLG models are usually populated by households
that act in complete isolation. While these two extremes are often convenient rep-
resentations, there is a substantial literature which deems it important to employ a
model which lies somewhere in-between. Abel (1987) studies under which condi-
tions one of the two inter-generational transfer motives is operative that are necessary
for Barro’s (1974) neutrality result to hold. Laitner (1988) assesses the impact of a
social-security system on capital accumulation in an overlapping-generations econ-
omy in which children and parents are imperfectly altruistic. However, while gen-
erations are allowed to interact strategically, they overlap for only one period. Altig
& Davis (1988) study an array of inter- and intra-generational redistributive policies
in an economy with altruistic agents who overlap for a large number of periods, but
they assume commitment.

Furthermore, there are many computational studies in the macro literature in
which altruistic agents overlap for more than one period. However, the authors make
simplifying assumptions in order to circumvent the tensions that we analyze. Laitner
(1992) provides a framework in which agents overlap for many periods, but agents
are restricted to be perfectly altruistic. Fuster, Imrohoroglu & Imrohoroglu (2007)
build on this framework to study pension systems. Nishiyama (2002) studies a set-
ting with imperfect altruistic households in which generations overlap for at most
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two periods, but rules out the possibility that transfers are used for saving. In Kaplan
(2010), imperfectly-altruistic parents and children interact strategically, but parents
are not allowed to save.

In the applied microeconomics literature, many studies build on the collective

model, which is due to Chiappori (1988). The key assumption of the model is that
the family can always coordinate on efficient allocations. In reality, one would ex-
pect efficient outcomes within the household if agents have the ability to commit
to future allocations (say at the point of marriage). Mazzocco (2007) employs an
extension of the collective model that nests the possibilities of commitment and no-
commitment and strongly rejects the assumption of commitment in the data. In light
of this evidence, it is important to explore other, non-cooperative models for dynamic
interaction between altruistic agents. This case is even stronger for inter-household
interaction.

Finally, a note on the empirical evidence on inter-vivos transfers is in order.
Transfers tend to flow from well-off to worse-off family members, and recipients
are often liquidity-constrained (see for example Cox & Raines, 1985 and McGarry,
1999).

The remainder of the paper is structured as follows: Section 1 outlines the setting
of the model and characterizes the set of Pareto-efficient allocations. Section 2 stud-
ies dynamic incentives and distortions in consumption-savings decisions induced by
strategic interactions between imperfect altruists. Section 3 characterizes equilibria
and presents our main results. Section 4 concludes and points out the way for future
research.

1 Setting

1.1 Physical environment

Time t is continuous. There are two agents in the economy who are infinitely-lived.
We will denote variables for the first agent, whom we will refer to as “she”, as plain
lower-case letters, e.g. ct. Variables referring to the second agent, whom we will
call “he”, are denoted with prime-superscripts, e.g. c′t. Both agents can hold a non-
negative amount kt in a riskless asset that pays a time-invariant rate of interest r.
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Figure 1

In each instant of time, agents choose a consumption rate ct ≥ 0 and a non-
negative transfer rate gt to the other agent (g stands for “gift”), so that their assets
evolve according to

k̇t = rkt − ct − gt + g′t (1)

k̇′t = rk′t − c′t − g′t + gt, (2)

where dots denote the time-derivative of a variable. There is a no-borrowing con-
straint for both agents; when kt = 0, we must have that she does not spend more than
she receives, i.e. ct + gt ≤ g′t (and equivalently for him, of course).2

We allow for transfers g that are of mass-point type, formally defined as a Dirac

delta g̃δ in the evolution equation (1). This means that the players can transfer large
amounts of resources instantaneously. A mass-point transfer induces a jump in the
time path (trajectory) of the state of size g̃, see figure (1) for an example in which
she provides a mass-point transfer of size 1

2
to him. It is both reasonable to allow for

this – after all, it is definitely feasible that large amounts of money change hands in-
stantaneously – and it will also turn out convenient for our analysis in many respects.

Her preferences are given by

v0 =

∫ ∞
0

e−ρt[u(ct) + αu(c′t)]dt, (3)

2This is the natural borrowing constraint in this setting if we assume that agents cannot borrow
against future transfers by the other player.
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where ρ > 0 is the discount rate and 0 ≤ α ≤ 1 the parameter which measures
the intensity of altruism.3 He is a mirror-symmetric copy of hers, but might have a
different altruism parameter 0 ≤ α′ ≤ 1. His preferences are

v′0 =

∫ ∞
0

e−ρt[u(c′t) + α′u(ct)]dt. (4)

We assume that the agents have the same discount rate ρ; this is crucial for our
analysis. We also assume that agents do not differ in form of the felicity function u(·).
We choose logarithmic utility as the functional form: u(c) = ln c.4

1.2 Equilibrium definition

As mentioned in the introduction, we focus on Markov-perfect equilibria. The payoff-
relevant state is obviously (k, k′). A Markovian strategy is a pair of non-negative
functions {c(k, k′), g(k, k′)} for her and a pair {c′(k, k′), g′(k, k′)} for him. We leave
strategies unrestricted, in the sense that we impose no upper bound on consumption
and transfer functions at any point in the state space. We enforce feasibility of con-
sumption plans by setting “realized consumption” when she has zero assets to

c∗(0, k′) = min
{
c(0, k′), g′(0, k′)

}
.

This says that she cannot eat more than he gives to her when she is broke, but she
can announce plans to do so. In all other cases, realized consumption equals the
announced strategy c(k, k′) because she faces no constraint.5 We define realized
consumption c′∗(k, 0) for him in the same manner. Furthermore, we rule out that a
broke player gives transfers, which means g(0, k′) = 0 and g′(k, 0) = 0.

When the other player’s strategy is Markov, the best-response problem of each
player is a dynamic-programming problem and best responses will also be Markov.
Just as in discrete time, continuous-time dynamic programming splits the agent’s

3With this linearly separable formulation of altruistic preferences we are in line with the bulk of
the literature.

4Many, but not all results in the paper can still be obtained for power utility.
5Note that in continuous time, an agent is never constrained in the choice of the flow rate of

consumption (or also transfers in this setting) unless he is directly at the borrowing constraint: Given
any small amount ε of assets, he can always choose an arbitrarily high consumption rate M for some
short time interval ∆t < ε/M .

7



problem into two parts: today versus the entire future. Consider the game at time t
for a given state (kt, k

′
t). Suppose we know her equilibrium value function v(kt, k

′
t).

Given his equilibrium strategy {c′(kt, k′t), g(kt, k
′
t)}, Bellman’s principle then says

that we can write her problem over a short horizon ∆t as follows:

v(kt, k
′
t) = max

c,g

{
u(c)∆t+ αu

(
c′(kt, k

′
t)
)
∆t+ e−ρ∆tv(kt+∆t, k

′
t+∆t)

}
,

s.t. kt+∆t = kt +
[
rkt − c− g + g′(kt, k

′
t)
]
∆t+ o(∆t), (5)

k′t+∆t = k′t +
[
rk′t − c′(kt, k′t)− g′(kt, k′t) + g

]
∆t+ o(∆t),

where o(∆t) denotes terms that are lower than order ∆t.6 We will refer to this prob-
lem as her ∆t-problem, which is at the heart of how we define best-responding in
this setting.

If the problem is well-behaved7, this problem’s limit as ∆t goes to zero is equiva-
lent to the Hamilton-Jacobi-Bellman (HJB) equation being fulfilled. To see this, take
a first-order Taylor expansion of the term e−ρ∆tv(kt+∆t, k

′
t+∆t) in ∆t and simplify to

obtain the HJB:

ρv = max
c,g
{u(c) + αu(c′) + (rk − c− g + g′)vk + (rk′ − c′ − g′ + g)vk′} . (6)

Subscripts denote partial derivatives, e.g. vk = ∂v
∂k

. We suppress the dependence of
the functions v etc. on (k, k′) for better readability. The HJB is a partial differential
equation (PDE) that imposes restrictions on v and its partial derivatives vk and vk′

for all points (k, k′) in the state space. His problem is characterized by a mirror-
symmetric HJB; we denote his value function by v′ and the partial derivatives by
v′k′ and v′k. Throughout the main text we will state her equations, with the under-
standing that his equations are mirror-symmetric; the reader can find his equations in
appendix A.1.

Wherever v is differentiable, the partial derivatives vk and vk′ are defined in the
obvious manner. However, we will also be concerned with the case where the above
problem is non-smooth in the following sense: One or both player’s policies are

6Formally: o(∆t) is such that lim∆t→0
o(∆t)

∆t = 0.
7“Well-behaved” means that we can use standard conditions for dynamic programming, which is

here: The other player’s strategy is Lipschitz continuous, which ensures that the ODEs for kt and k′t
are solvable.
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discontinuous and one or both value functions are not differentiable.8 We restrict
attention to the class of equilibria where strategies are piecewise continuously differ-
entiable functions and the state space is partitioned into a finite number of smooth
regions (short: regions). On the seams between regions, we will take directional
derivatives of v(·), where the derivative’s direction is governed by the strategies on
the seam. Specifically, we will say that (c, g) are a best response to (c′, g′) at (k, k′)

if (c, g) maximizes the curly bracket on the right-hand side of (6), where the gradient
(vk, v

′
k) is taken into the direction (k̇, k̇′) which is implied by the respective quadru-

ple (c, g; c′, g′). We will be more specific on this in section A.6 once we have reduced
the state space to one dimension.9

A second special case arises if players use mass transfers. In this case, the econ-
omy will jump from the current state (k, k′) to a distant point (k̄, k̄′). For a mass
transfer of size gδ, we have k̄ = k − g and k̄′ = k′ + g. The principle laid out in
the ∆t-problem (5) requires then that policies be optimal taking into account the (di-
rectional) derivatives at the new state (k̄, k̄′) when evaluating consumption decisions.
An example is in order to illustrate why this is reasonable: Imagine a child owning
1$ who is deciding about her expenses on lollipops over a day, knowing that she will
receive a 100$ gift in the evening of that day. She should clearly take into account
the marginal value of assets at 101$ and not at 1$ when deciding about the number of
lollipops to buy on that day. Again, we will be mathematically precise on this issue
in section A.6.

We now have everything in place to define a recursive equilibrium.

Definition 1 A Markov-perfect equilibrium (MPE) is a collection of functions

{v(·), c(·), g(·)} for her and {v′(·), c′(·), g′(·)} for him such that

1. {v(·), c(·), g(·)} solve her problem given {c′(·), g′(·)}, i.e. they solve (6) in the
8As Fudenberg & Tirole (1993) point out, restricting equilibria to continuously differentiable

strategies (short: C1) in a differential game may be too restrictive. Even if the other player’s strategy
is C1, we need to look for the player’s best response in the space of piecewise-C1 functions, since
this is the space of deviations we have to allow for when applying Pontryagin’s maximum principle.
Should a piecewise-C1 function indeed be a best response, then the other player’s response problem
would already be ill-defined since Lipschitz-continuity for the law of motion breaks down. In this
case, there may not exist a unique solution for the differential equation governing the evolution of the
state.

9This directional approach to HJBs yields very stable results and is intimately related to viscosity
solutions for HJBs, see the book by Bardi & Capuzzo-Dolcetta (2008). Viscosity solutions are the
agreed-upon solution concept for HJBs in the general (non-smooth) case.
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sense laid out above, and

2. {v′(·), c′(·), g′(·)} solve his problem given {c(·), g(·)}.

Since players’ strategies are required to be optimal for all points in the state space,
players have to be best-responding at any node of the game tree, even the ones off
the equilibrium path. As is well known, Markov perfection thus implies subgame
perfection.10

1.3 Pareto-optimal allocations

The set of Pareto-efficient allocations will serve as an important benchmark for the
analysis throughout the paper. In later sections we will return to these and see that
equilibrium allocations are Pareto-efficient only in certain circumstances.

To this end consider a benevolent planner who places a weight η on her life-time
value and a weight (1− η) on his. Given initial assets k0 and k′0, he chooses optimal
savings policies kt, k′t and consumption policies ct, c′t for 0 ≤ t <∞ to maximize

Jη = η

∫ ∞
0

e−ρt
[
u(ct) + αu(c′t)

]
dt+ (1− η)

∫ ∞
0

e−ρt
[
u(c′t) + α′u(ct)

]
dt. (7)

Varying η ∈ [0, 1] yields all allocations on the Pareto frontier.
For the sake of the planner’s problem it is valid to pool the individual assets of

the players together. Defining Kt = kt + k′t as the total resources in the economy at
time t, the planner’s Bellman equation is given by11

ρV η(K) = max
c,c′

{[
η+α′(1−η)

]
u(c)+

[
(1−η)+αη

]
u(c′)+(r−c−c′)V η

K(K)
}
. (8)

Intra-temporally, the planner divides consumption between the two agents in or-
der to equalize the margins, i.e.

[
η + α′(1− η)

]
uc(ct) =

[
(1− η) + αη

]
uc(c

′
t) ∀t.

10If r > 0, note that any state (k, k′) can be reached in finite time if players are sufficiently frugal,
so we cannot exclude any node from the analysis.

11Note that the planner’s problem becomes a standard cake-eating problem but with interest pay-
ments.
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Solving for uc(ct) yields

uc(ct) =
(1− η) + αη

η + α′(1− η)
uc(c

′
t) ∀t. (9)

As in standard dynamic planning problems, marginal utilities are proportional over
time. Here, the factor of proportionality is a function of the planner’s weight η on
her and the altruism parameters α and α′. It is instructive to consider the extreme
cases where η = 0 or η = 1. Placing all weight on her yields uc(ct) = αuc(c

′
t),

whereas placing all weight on him yields uc(ct) = 1
α′
uc(c

′
t). Thus, just as in the static

altruism setting, the ratio of marginal utilities is restricted to the interval [α, 1
α′

]. The
more altruistic both agents are, the smaller is the consumption inequality tolerated
by the Pareto planner. These bounds approach zero and infinity as altruism goes
to zero, until reaching the standard case with selfish agents. For perfect altruism
(α = α′ = 1) there is a unique Pareto-optimal allocation and both agents always
consume the same amount.

We now proceed to the inter-temporal optimality conditions. Note that equa-
tion (9) gives us c′t as a function of ct,12 so that the planner’s problem collapses
to a conventional consumption-savings problem with a modified objective function
(to see this, substitute out c′t in the objective (7) using (9)). It follows that the Eu-
ler equation from the standard one-person consumption-savings problem must hold.
Otherwise, the planner would re-allocate resources inter-temporally for one agent
maintaining the present value of resources allocated to this agent. We must have:13

d

dt
uc(c) = (ρ− r)uc(c), (10)

d

dt
uc(c

′) = (ρ− r)uc(c′),

where the second equation is already implied by the first, using the intra-temporal
optimality condition (9).

12When η = 1 and α = 0, equation (9) does not give us c′t as a function of ct any more – in this
case, however, it is obviously optimal for the planner to set c′t = 0 for all t. Analogously, η = 0 and
α′ = 0 implies that ct = 0.

13Technically, we obtain the same Euler equations in the standard manner from the HJB (8): Take
the derivative with respect to K and use the first-order conditions VK = [η + α′(1 − η)]uc(c) =
[(1− η) + αη]uc(c

′) and the fact that d
dtVK = K̇VKK = (r − c− c′)VKK .
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With u(ct) = ln ct, the Euler equations (10) imply that d ln ct/dt = r − ρ, i.e.
consumption grows at rate (r − ρ) for both agents. The closed-form solution for the
consumption plans is then given by

ct = ρPηKt, c′t = ρ(1− Pη)Kt,

where Pη =
η + (1− η)α′

1 + ηα + (1− η)α′
. (11)

Intuitively, the sum of both agents consumption, ct+c′t = ρKt, is what a single agent
with assets Kt would optimally consume. Here, the planner splits the amount ρKt

between the two players, where the splitting rule depends on the weight η as well as
the altruism parameters α and α′.

Finally, it will be useful to establish a connection between the planner’s problem
and an equilibrium of our setting with the restriction that agents have the possibility
to commit to future consumption and transfers at t = 0. Any Pareto-optimal alloca-
tion can then be implemented by first assigning wealth shares k0 = PηK0 (to her)
and k′0 = (1− Pη)K0 (to him), followed by a transfer stage, but then shutting down
the possibility for further transfers. If the initial wealth shares are outside the range
of Pη’s spanned by η ∈ [0, 1], the richer agent gives an initial transfer to implement
her/his preferred allocation, which is equivalent to the solution of the planner’s prob-
lem with η = 0 or η = 1. This is also the type of equilibrium that obtains in the
static altruism setting, in which a transfer stage precedes the consumption stage. In
essence, commitment removes the dynamic component from the game.

2 Understanding players’ incentives

This section sheds light on the agents’ incentives when responding to the other
player’s consumption and transfer strategy. We highlight the strategic interactions
between players as well as the inefficiencies that result.

In the maximization problem that she faces, which is characterized by the HJB (6),
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separate the max-operators to obtain:

ρv =αu(c′) + (rk + g′)vk + (rk′ − g′ − c′)vk′+ (12)

+ max
g≥0

{
g
[

vk′ − vk︸ ︷︷ ︸
≡µ: transfer motive

]}
+ max

c≥0

{
u(c)− cvk

}
.

The first-order condition (FOC) for consumption is given by

uc(c) = vk, (13)

which says that the marginal utility of current consumption is set equal to the marginal
value of saving in the optimum.

Here we see the crucial simplification that continuous time gives us with respect
to discrete time: His contemporaneous consumption decision c′ does not affect her
optimal choice c, nor does his transfer decision g′. In other words, her best-response
function over a short amount of time is a constant. This means that we can obtain
her optimal consumption as in a standard consumption-savings problem without cal-
culating best responses for each action of the other player.14 Furthermore, constant
best responses ensure existence and uniqueness of equilibrium in the “stage games”,
i.e. the interactions of players over very short horizons ∆t-games (more on this fol-
lows below). This is not the case in discrete time: Lindbeck & Weibull (1988) find
multiple equilibria already in a two-period setting.

At first glance it seems striking that his current decisions should not matter to her.
But this is only true for the decisions taken at the same instant of time. In general,
his decisions do matter for her, which will become evident from her Euler equation
in subsection 2.1. For now remember that the effects of his future decisions on her
are all contained in the partial derivative vk, which encodes the incentives stemming
from the entire continuation of the game.

A second important simplification with respect to discrete time is that there is

14One could argue that this problem can be avoided in discrete time by having players move se-
quentially. However, this has the following disadvantages: First, assumptions on the timing protocol
can influence the results. Second, discrete time periods are tantamount to assuming commitment over
the period length. Note that the player who moves first cannot adjust his decision when observing the
other’s action, even though this might be in his best interest. The advantage of the continuous-time
setting is that the timing protocol does not matter since agents can react infinitely fast – the planning
horizon goes to zero.
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no interaction between the decision problems of the consumption and the transfer
choices: The two max-operators for c and g are separate.

The key to why these simplifications with respect to discrete time arise is that
immediate strategic considerations are of second order. We can see this from the
following first-order approximation of the marginal value of saving, which deter-
mines consumption through the FOC (13), in a small neighborhood of the current
state (kt, k

′
t):

vk(kt+∆t, k
′
t+∆t) = vk(kt, k

′
t) + vkk′(kt, k

′
t)
[
rk′t − c′t − g′t . . .

]
∆t︸ ︷︷ ︸

of second order

+ . . .

Clearly, as ∆t becomes small, the changes in the marginal value of saving induced by
his policies c′t and g′t over the planning period ∆t become negligible. So even when
he chooses a very high c′t, there is a ∆t small enough so that vk is (almost) equal
to its current value. It is therefore valid to disregard the interaction effects between
the consumption decisions when letting ∆t → 0. Intuitively, if she reconsiders her
savings decisions on a daily basis, there is no need to worry about his daily savings
decisions (his control, a flow variable), since the impact it has on his assets (his state,
a stock variable) is small – in order to be sufficiently informed it is enough to keep
an eye on his bank account.

Equation (12) shows that choosing a transfer g is a linear optimization problem.
The term µ ≡ (vk′ − vk) is the marginal benefit of transfering an additional unit of
resources from her to him. We will refer to µ as her transfer motive. Whenever µ is
negative, transfers are set to zero – after all, she cannot force him to give transfers to
her. If µ = 0, then any transfer flow is consistent with optimality; in this case she
is (locally) indifferent with regard to the distribution of assets between him and her.
Should the transfer motive be positive, however, then the agent wants to choose g as
large as possible. In fact, since the agent is allowed to make mass-point transfers, she
would choose to follow the vector (−1, 1) in (k, k′)-space as long as the directional
derivative vk′ − vk = µ is positive. As section 3 will show this actually makes it
impossible that µ > 0 in the first place.15

15Note that in this case, the HJB ceases to be a valid characterization for his problem since – as a
PDE – it only contains local information on the value function. When making a mass-point transfer,
however, it is crucial to consider the continuation value v globally.
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Figure 2: Equilibrium over ∆t.

We will now study how players’ joint consumption decisions lead to inefficien-
cies. This is because players do not fully internalize the effect of their actions on the
other.

Consider the game at time t for a given state (kt, k
′
t), where kt > 0 and k′t > 0.

Suppose that after a short period ∆t the equilibrium policies and the continuation
values are solved for. How would the agents feel about different consumption rates
(c, c′) over a short time interval ∆t, assuming that afterwards the equilibrium allo-
cation is played? Assume that no transfers are given over ∆t. In the spirit of her
∆t-problem in (5), we write today’s value v(kt, k

′
t) as a sum of flow utility collected

over ∆t and the continuation value, which is e−ρ∆tv(kt+∆t, k
′
t+∆t) ' v(kt, k

′
t) −

ρv∆t+ vkk̇∆t+ vk′ k̇
′∆t:

v(kt, k
′
t) ' v(kt, k

′
t)− ρv∆t+ max

c

{
u(c)∆t+ αu(c′)∆t+ vkk̇∆t+ vk′ k̇

′∆t
}
.

Define the term inside the curly bracket on the right-hand side divided by ∆t (the
Hamiltonian) as

H(c, c′) = u(c) + αu(c′) + vkk̇ + vk′ k̇
′.

H(c, c′) tells us how she feels about consumption tuples (c, c′), taking into account
both flow utility over ∆t and their repercussions on the continuation value of the
game.

Figure (2) plots the contours of the functions H and H ′ in (c, c′)-space, where we
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fix some derivatives vk > vk′ and v′k′ > v′k. The vertical solid line indicates c∗(c′) ≡
arg maxcH(c, c′), which is her best-response function; the horizontal solid line is
his best response c′∗(c) ≡ arg maxc′ H

′(c, c′). As discussed above, best responses
are constant in the other player’s action. The equilibrium ∆t-allocation occurs at the
intersection of the two best responses. The horizontal dotted line indicates c̃′∗(c) ≡
maxc′ H(c, c′), which is the consumption rate that she would choose for him if she
could do so; the vertical dotted line indicates his preferred consumption for her,
c̃∗(c′) ≡ arg maxcH

′(c, c′). Note that all of these are constant functions due to the
separability of the instantaneous utility function.

An immediate observation is that the indifference curves of the two players are
crossing each other, illustrating that they disagree about allocations. Only in the case
of perfect altruism (α = α′ = 1) will the indifference curves coincide. The indiffer-
ence curves become straight lines that cross each other in the case of selfishness.

The crucial feature that figure 2 highlights is the inefficiency which usually arises
in this environment. Consider the problem of a ∆t-planner who assigns consumption
tuples (c, c′) using a weight η ∈ [0, 1] on her utility in the following problem:

max
c,c′
{ηH(c, c′) + (1− η)H ′(c, c′)} . (14)

Note that this problem is different from the planner’s problem in (8): The ∆t-planner
sets consumption only over a horizon ∆t, taking as given that the equilibrium policies
will be placed thereafter. The Pareto planner, instead, uses the marginal value of
assets V η

K , which is calculated using the planner’s policy after t+ ∆t.
In order to trace out the Pareto frontier of the ∆t-game, vary η ∈ [0, 1] in the

∆t-planner’s problem (14). The resulting curve connects her and his bliss points,
which are obtained by setting η = 1 and η = 0, respectively. The shaded area
emanating from the equilibrium allocation contains the allocations corresponding to
Pareto improvements over the time interval ∆t. Committing to one of these policies
over ∆t, would raise both player’s welfare. However, both players would be tempted
to break the agreement and revert to the best-response strategy.

In the example of figure 2, both players are over-consuming: It would be Pareto-
improving if they coordinated on lower consumption rates. This is because both
players would prefer the other to consume less. In the figure this is apparent since c̃′∗
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(the consumption she would choose for him) is below c′∗ (the consumption he indeed
chooses), and c̃∗ is to the left of c∗. However, there could also be under-consumption
by one (or both) players. Pareto improvements would then be associated with one
(or both) players consuming more than in the ∆t-equilibrium. Indeed, in the class
of equilibria found in section 3.3 both over- and under-consumption are present in
different regions of the state space.

The following section will show how over- and under-consumption are induced
dynamically, how they are related to the altruism parameters (α, α′), and the value-
functions’ cross derivatives (vk′ , v

′
k).

2.1 Savings incentives: The Euler equation

Our analysis provides new insights on savings incentives in a fully-dynamic setting
when altruism is imperfect. In order to see this, we ask how his consumption and
transfer decisions affect her consumption-savings behavior.

For the relevant trade-offs consider her Euler equation:16

d

dt
[uc(ct)] = (ρ− r)uc(c)︸ ︷︷ ︸

standard = efficient

+
[
vk′ − αuc(c′)

]
c′k︸ ︷︷ ︸

altruistic-strategic distortion

+
[
vk′ − uc(c)

]
g′k︸ ︷︷ ︸

transfer-induced incentives

. (15)

Here, c′k denotes the partial derivative of his consumption policy with respect to her
assets and g′k is the partial derivative of his transfer function (assuming it is a rate,
i.e. of flow- and not of mass-type) with respect to her assets.

We gain intuition for the three terms on the right-hand side of (15) – the terms
which determine marginal-utility growth – by considering a hypothetical deviation
from an equilibrium path in an example framed as a discrete-time counterpart to our
setting. There are three periods. At the beginning of each period, agents make all
decisions simultaneously. Figure 3 shows the paths for the assets (the solid lines)
that result from the players’ equilibrium strategies. Consider the following deviation
from her equilibrium strategy: She saves one unit more in period one and reverts
back to the equilibrium level of assets in period three (the dotted line in the left panel
of figure 3). If her equilibrium behavior is optimal, then such a deviation is not

16In order to obtain her Euler equation we take the derivative of her HJB (12) with respect to k and
use the fact that d

dtuc(ct) = d
dtvk = k̇vkk + k̇′vkk′ by the FOC (13).
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period 1 period 2 period 3
standard −u′(c1) + βRu′(c2)

altruistic-strategic αβu′(c2)
∂c′2
∂k2

−β2Rvk′(k3, k
′
3)
∂c′2
∂k2

transfer-induced βu′(c2)
∂g′2
∂k2

−β2Rvk′(k3, k
′
3)
∂g′2
∂k2

Table 1: Marginal costs and benefits in discrete-time Euler equation

Figure 3: Discrete-time intuition for savings incentives

profitable and its marginal effect on her criterion is zero. Table 1 accounts for all the
effects this deviation has on her utility.

First, the two standard terms account for the usual consumption-savings trade-off:
Saving one unit more in period one costs marginal utility u′(c1), but yields βRu′(c2)

in period two (β is the discount factor and R the gross interest rate). In continuous
time, the two terms correspond to (ρ − r)uc(c), which coincides with the growth
rate of marginal utility that the planner would choose, see equation (10). Thus the
additional two terms on the right-hand side of (15) are distortions that make the agent
stray from efficient behavior.

Second, the altruistic-strategic distortion is comprised of the terms in the second
row in table 1; they stem from his consumption response.

In period two, his consumption will react to her higher asset level, which is cap-
tured by ∂c′2/∂k2. Suppose for now that ∂c′2/∂k2 > 0, which seems intuitive: If she
has higher assets, he can count on receiving larger transfers from her in the future
and/or is less likely to have to give transfers to her, so he can consume more today.
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Because his consumption increases, she realizes the gain αβu′(c2)∂c′2/∂k2 in period
two; in continuous time this shows up as an immediate effect −αuc(c′)c′k. This con-
stitutes an additional incentive to save, and, therefore, enters with the same sign as
the interest rate R (or r) does in the standard term.

However, his increased consumption comes at a cost: In period two he saves
less and enters period three with fewer assets ( the dotted line in the right panel of
figure 3). Hence, in period three the equilibrium path is left and the economy goes
to an equilibrium where he has R∂c′2/∂k2 less assets. Since we can expect vk′ to be
positive, the term −β2Rvk′(k3, k3)∂c′2/∂k2 is negative and acts as a disincentive to
save. In continuous time, the corresponding term vk′c

′
k enters the Euler equation with

the same sign as ρ, and so discourages savings.
Which of the two terms forming part of the altruistic-strategic distortion domi-

nates is directly related to his under- or over-consumption: The bracket [vk′−αuc(c′)]
in (15) is negative whenever he consumes less than she desires, i.e. if and only if
c′ < c̃′∗; it is positive otherwise. As long as c′k > 0 and he is over-consuming, the
altruistic-strategic consideration acts as a disincentive to save for her. She responds
with front-loading consumption to his over-consumption. If he is under-consuming,
the opposite is true: She saves more since this might induce him to consume more.

The third row in table 1 shows the transfer-induced incentives. These two terms
only come into play in regions where he gives transfers, i.e. g′ > 0. Let us sup-
pose that he conditions transfers on her savings behavior by rewarding thrift, i.e.
setting ∂g′/∂k > 0.

Since he rewards her for saving more by increasing transfers, she reaps a benefit
βu′(c2)∂g′2/∂k2 in period two (in continuous time: uc(c)g′k). But in order to revert
back to the equilibrium level k3 she immediately consumes all gains from additional
transfers. This acts as an incentive to save; it enters with the same sign as R in the
standard term. However, there is again a negative effect on his assets in period three
−β2Rvk′(k3, k3)∂g′2/∂k2 (in continuous time: vk′g′k), which acts as a disincentive for
her to save.

To see which of the two terms dominates, note that the bracket [vk′ − uc(c)]

is equal to her transfer motive µ, see her FOC (13). Since we assumed that he is
giving transfers to her, we expect that she strictly prefers not to give transfers to
him, i.e. µ < 0. This means that for the transfer regime under consideration µg′k is
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negative and thus his transfer schedule acts as an incentive to save for her, as was to
be expected.

We now briefly consider the Euler equation (15) for the special cases of self-
ishness and perfect altruism. This will highlight how distortions disappear when
altruism is very weak or very strong and why we expect distortions to be stronger in
the intermediate range of values for α and α′.

Under selfishness (α = α′ = 0) we have that c′k = g′k = 0; after all, he has no rea-
son to condition his behavior on her assets. Then there are neither altruistic-strategic
distortions nor transfer-induced incentives. We are left with the Euler equation from
the one-agent world, which says that marginal utility grows at the rate ρ − r on the
optimal savings path, which is efficient.

Under perfect altruism (α = α′ = 1), in equilibrium we will have vk′ = vk =

uc(c): She values an additional unit of assets in his pocket (vk′) the same as she values
it in her own pocket (vk), which is equivalent to her transfer motive being zero. So
the brackets [vk′ −αuc(c′)] and [vk′ − uc(c)] vanish, and distortions are zero because
players are in full agreement.

From these two extreme cases we conjecture that distortions will be strongest for
intermediate values of the altruism parameters. For values of α and α′ close to zero,
the behavioral responses c′k and g′k should go to zero (this is what the selfish case
suggests). When α and α′ approach one, instead, the brackets in (15) should go to
zero since agents almost agree about allocations, as they would in the case of perfect
altruism.

We conclude this section on a technical note. Generally, imperfect altruism and
no-commitment forces us to find a solution to a system of PDEs instead of ODEs
(ordinary differential equations). When altruism is perfect, absent, or commitment is
present, ODEs suffice. Thus, PDEs are a hallmark of subgame perfection (for a short
discussion see section A.2 in the appendix).

3 Equilibrium

This section presents our main results. In order to characterize equilibria, it is useful
to begin with the special cases of selfishness and perfect altruism as is done in subsec-
tion 3.1. When altruism is imperfect, it can be shown that no equilibria exist which
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are made up of only one smooth region. In order to make progress, subsection 3.2
studies the different candidate regions and how they are connected. Subsections 3.3
and 3.4 then construct and rule out equilibria that result from patching together these
regions.

What makes our approach feasible is the fact that the model environment is ho-
mogenous, i.e. both players have homothetic utility and income is proportional to
assets. While there are currently two state variables, k and k′, homogeneity reduces
the dimensionality of the state space to one. As a result, the economy can take at
most two directions from each point in the state space. This facilitates studying best
responding in mass-transfer-type and non-smooth equilibria. Furthermore, the equa-
tions characterizing potential equilibria turn from PDEs into ODEs. The number of
boundary conditions for the ODEs will provide crucial information on whether to
expect zero, a finite number, or a continuum of equilibria for each given equilibrium
type. Such predictions would be a formidable task in a higher-dimensional setting
with PDEs.

We define the following mapping from pairs (k, k′) to pairs (P,K):

P =
k

k + k′
, K = k + k′. (16)

Thus P ∈ [0, 1] is the fraction of wealth she owns out of the combined wealth K
of both players; the bounds [0, 1] on P are due to the no-borrowing constraints the
agents face.17

We conjecture that the equilibrium consumption and transfer policies are such
that all families, rich and poor, are “proportionally alike”: Given the same distribu-
tion of assets P , all families will choose the same policies as a percentage of total
assets K, i.e. we consider strategies C(·), C ′(·), G(·), G′(·) such that

c(k, k′) = C(P )K g(k, k′) = G(P )K

c′(k, k′) = C ′(P )K g′(k, k′) = G′(P )K.

Appendix A.6 derives the HJBs and Euler equations in P , which is the only remain-

17Note that the mapping is ill-defined for the point k = k′ = 0. This is unproblematic for practical
purposes, since agents will never reach this point in “reasonable” equilibria. Recall that if both agents
went broke, then they would obtain a payoff of minus infinity.
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ing state variable.

3.1 Benchmark cases

As benchmarks for the case of imperfect altruism, it will prove useful to study two
reference models: First, a self-sufficiency (SS) model in which the possibility of
transfers is ruled out; this is linked to players being selfish. Second, a wealth-

pooling (WP) model without property rights; this is linked to agents being perfectly
altruistic.

First, let us consider the self-sufficient allocations, i.e. the allocations players
would choose in our setting if we imposed the additional restrictions G = 0 and
G′ = 0 on strategies. Optimal consumption is then characterized by the familiar
Euler equation

d

dt
uc(ct) = (ρ− r)uc(ct).

This implies that the optimal policies in the SS problem are given by

CSS(P ) = ρP, C ′SS(P ) = ρ(1− P ),

which are equivalent to the familiar c(k, k′) = ρk and c′(k, k′) = ρk′ in k-k′-space.
As shown in the planner’s problem (11), these policies induce the efficient allocation
if the initial P0 lies in the range of Pη’s spanned by the planner’s weight η ∈ [0, 1].
The following proposition tells us that the SS policies can only be an equilibrium
if both players are selfish; they also constitute the unique equilibrium in this case.18

The proof is given in appendix A.5.

Proposition 1 (Self-sufficient equilibrium) Consider the self-sufficiency (SS) strate-

gies CSS = ρP , C ′SS = (1− P )ρ and GSS = G′SS = 0.

1. The SS strategies can be sustained as an equilibrium only if α = α′ = 0.

2. If α = α′ = 0, then:

(a) The SS strategies constitute the unique equilibrium.

18The fact that SS policies cannot be supported as an equilibrium would be obvious if invoking
lower-boundedness of C,C ′ under altruism; note that we do not invoke this assumption here.

22



(b) This equilibrium is efficient for any initial conditions P0.

Under altruism, the equilibrium breaks down at the point where the altruistic player
owns all wealth. He would give a mass transfer in this case in order to avoid zero
consumption by her, which leads to utility of minus infinity for him.

Next, we study a wealth-pooling (WP) model in which players have no property
rights over assets. We remove the restrictions G ≥ 0 and G′ ≥ 0 from our setting,
which amounts to players consuming out of a pooled asset stock K ≥ 0. We again
restrict attention to strategies that are linear in K, so players’ strategies are char-
acterized by consumption rates CWP and C ′WP out of the common asset stock. In
appendix A.7 we show that the equilibrium policies of this game are

CWP =
ρ

1 + α
, C ′WP =

ρ

1 + α′
.

When players are selfish, i.e. α = α′ = 0, they consume at the same rate ρ as
in the SS case, but now out of the common assets K. This is the tragedy of the
commons, which is well-known from the resource-extraction literature (e.g. fish
wars). On the other hand, under perfect altruism (α = α′ = 1) – and only in this case
– consumption corresponds to the (unique) planner’s solution. For 0 < α + α′ < 2,
altruism alleviates the tragedy of the commons: Allocations are inefficient because
extraction from the common stock is too high with respect to efficiency, but in a
less pronounced manner than if altruism is absent. Note also that the more altruistic
player will take into account to a larger extent the externalities he causes on the other
player and consumes less than the less altruistic player.

We now return to our original setting with property rights to see if the wealth-
pooling allocation can be sustained there as an equilibrium. It turns out that this is
only the case if both agents are perfectly altruistic:

Proposition 2 (Wealth-pooling equilibrium) Consider the wealth-pooling (WP) strate-

gies C(P ) = CWP and C ′(P ) = C ′WP .

1. The WP strategies can be sustained as an equilibrium only if α = α′ = 1.

2. If α = α′ = 1, then:

(a) The WP strategies CWP = C ′WP = ρ/2 are the only consumption strate-

gies that can be sustained in equilibrium.
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(b) Transfer strategies are indeterminate, but must be such that they make

WP consumption feasible: G′(0) ≥ ρ
2

and G(1) ≥ ρ
2
.

(c) This equilibrium induces the unique efficient allocation.

A formal proof for proposition 2 is given in appendix A.5. Since the WP alloca-
tion gives the globally preferred and thus efficient allocation to both players under
perfect altruism, point 2 of the proposition should come as no surprise. To see why
the WP consumption plans cannot be supported under imperfect altruism, consider
the situation where an imperfectly-altruistic player is left with the entire wealth, say
α < 1 and P = 1. In this case it turns out that she essentially becomes the “family
dictator” and can implement her globally preferred allocation, which implies provid-
ing less consumption to him than his WP plan would stipulate. So the equilibrium
breaks down at this point.

3.2 Characterization of regions

As alluded to before, there are no equilibria consisting of a single type of region
when altruism is imperfect (see appendix A.9 for the formal result). We thus turn to
studying equilibria which consist of a small number of regions. Section 3.3 will then
show a class of such patched equilibria.

An exhaustive listing of the various types of candidate regions is as follows: No-
transfer (NT) regions: No player gives transfers; Flow-transfer (FT) regions: Trans-
fers of the flow type occur; Mass-transfer (MT) regions: A mass transfer is given by
one player. Furthermore, there are the following two important special types of re-
gions: Self-sufficient (SS) regions, where policies are equal to the self-sufficient ones
(a special kind of NT region); and wealth-pooling (WP) regions, where both play-
ers’ consumption is locally given by WP consumption (a special kind of FT region
or, under special circumstances, a NT region). Within a region, the value functions
and policy functions are assumed to be continuously differentiable. On the bound-
aries, however, policy functions may be discontinuous and value functions may have
kinks. Value functions still have to be continuous at the boundaries, as we show in
appendix A.4. One of our technical contributions is that we study best-responding
on non-smooth boundaries and in mass-transfer regions, see appendix A.6.
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The key results are the following (for a formal characterization of the regions we
refer the reader to appendix A.8):

1. NT regions are characterized by the altruistic-strategic distortions in the Euler
equations discussed in section 2.1. NT regions are left in finite time (almost
always). If the economy stays in a NT region forever, policies must be of the
SS type.

2. FT regions are characterized by the transfer-induced incentives discussed in
section 2.1. FT regions are left in finite time (almost always). If the economy
stays in a FT region forever, policies must be of WP type (unless one player is
broke).

3. MT regions are always left immediately.

It turns out that the results on “transitoriness” paired with the sharp characterizations
on SS and WP regions provide us with the boundary conditions that we need to obtain
equilibria.

We now turn to two results which rely on local arguments at the important point
where one player is broke.

The first result arises when a NT region borders the point where one of the play-
ers is broke and transfers flow only there, i.e. g′ > 0 when P = 0 and g = g′ = 0

on some interval (0, P1). We denote the limiting policies by Clim = limP→0C(P )

and do the same for the law of motion Ṗlim. The following theorem is an analo-
gous characterization of the Samaritan’s dilemma in the infinite-horizon setting to
the Samaritan’s Dilemma known from two-period models. Furthermore, it provides
new insights.

Theorem 1 (Party Theorem) If α′ > 0 and assumptions 1 and 2 are satisfied, then

any equilibrium where a NT-region borders P = 0 has the following properties:

1. Ṗlim < 0 and Ṗ0 = 0: Her being broke is an absorbing state.

2. C(0) = α′C ′WP = α′ρ
1+α′

: When she is broke, his preferred allocation is played.

3. Clim ≡ exp
(

1−αα′
1+α′

)
C(0) > C(0): (Party) On reaching P = 0, her consump-

tion path has a downward jump unless α = α′ = 1.
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4. V ′P (0) > 0: He strictly prefers her to be broke to her returning to be uncon-

strained.

A proof is given in appendix A.5, for the formal technical assumption see A.3.
A striking feature, which at first glance seems at odds with optimizing behavior,

is that the recipient’s consumption path exhibits a discontinuity. The future recipient
of transfers over-consumes relative to the efficient level, a phenomenon analogous to
the Samaritan’s dilemma19 in a two-period model.

The intuition for why a jump in consumption is indeed optimal can already be
obtained in the absence of altruism, as the following simple example demonstrates:
Consider a consumer with wealth k0 > 0 and no flow income. A government pro-
vides a means-tested benefit in the form of a payment g′ handed out only if kt = 0.
For simplicity assume that ρ = r, which implies that the optimal consumption path
has to be constant while assets are positive: ct = c̄ for some constant c̄. The agent
will be able to consume c̄ over an interval t ∈ [0, T (c̄)], where T (c̄) ∈ (0,∞] is the
insolvency time implied by the consumption plan.

Figure 4: Discontinuity in consumption path with means-tested benefit

Consider the two consumption paths depicted in figure 4. A smooth consumption
path implies c̄ = g′. As is obvious from the figure, any plan with c̄ > g′ does better
than this, so a smooth consumption plan cannot be optimal. In technical terms, the

19The Samaritan’s dilemma states the following in a two-period model: If an agent receives a
transfer from an altruistic donor in period 2, then her consumption is inefficiently high in period 1,
see Lindbeck & Weibull (1988).
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usual theorems from control theory fail because the law of motion k̇t = rkt − ct +

g′Ikt=0 is discontinuous at zero. In terms of marginal cost-benefit analysis, there
is an additional cost of saving here that is not present in a standard setting: When
postponing bankruptcy, one diminishes the net present value of government transfers.
For an altruistic recipient, the situation is similar. However, the situation is not quite
as pronounced since she takes the effects of her behavior on the donor into account.

Theorem 1 offers the following three new (to the best of our knowledge) insights:
First, the inefficiencies in consumption-savings decisions are not limited to the in-
stant before receiving transfers, as is the case in the standard Samaritan’s dilemma
in a two-period model. The effects propagate further back in time due to the ineffi-
ciencies caused by altruistic-strategic distortions in the Euler equation (15). Second,
in the time span prior to the actual transfer flow, there are also inefficiencies in the
donor’s consumption behavior, which is in contrast to the donor’s Euler equation be-
ing the efficient one in the two-period model.20 Third, we see that the party – i.e.
the discontinuity of the recipient’s consumption path – constitutes an inefficiency of
a higher order than the inefficiencies occurring before. The inefficiencies before are
characterized by consumption not growing at the efficient rate, but the path still being
continuous.

The second result is that the plausible conjecture of an equilibrium where the
donor lifts the recipient out of poverty with a mass transfer and both remain self-
sufficient ever after proves wrong. As a matter of fact, there cannot be any equilib-
rium in which a mass transfer goes to the broke player.

Theorem 2 (The Prodigal-Son Dilemma: No MT when broke) There cannot be a

mass transfer by him to her at P = 0 (neither by her to him at P = 1) unless

α = α′ = 1.

For the proof see section A.8.5 in the appendix.
The intuition for the result is as in the prodigal-son parable21: He cannot commit

to not-provide transfers after having made the initial mass transfer. She would then
20The donor’s consumption being efficient in the two-period model corresponds to the donor’s

consumption plan being continuous at P = 0 (in contrast to the recipient’s).
21The prodigal son is one of the most famous parables from the New Testament: A wealthy father

has two sons. The younger one asks to be paid out his share of the estate to start a new life in another
town. He goes away and squanders all the money. After a spell of living in poverty as a swineherd, he
decides to return to his father and to become a servant at his estate. However, his father welcomes the
lost son with great festivities, forgives him and re-instates him as an heir equal to the elder brother,
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consume the transfer, come back and ask for more. Of course, if he had the ability
to commit to not-give transfers, an equilibrium of this type could be supported, as
pointed out in section 1.3.

We conclude this section by noting that Bergstrom (1989) has a discussion on the
prodigal son. However, the author uses this term interchangeably with the Samar-
itan’s dilemma. Our framework clearly distinguishes between these two forms of
behavior: The Samaritan’s dilemma refers to the final transfers that flow when the
recipient is broke and the recipient’s party before this; the Prodigal-Son dilemma
refers to the donor’s decision of not giving a large transfer in anticipation of this
already in the beginning.

3.3 Tragedy-of-the-commons-type equilibrium

We now proceed to describe the only type of equilibrium that we have found in our
setting (that is, unless a shock is introduced, see subsection 3.4). The equilibria are
non-smooth, the sequence of regions being FT’-WP-FT. When the asset distribution
is imbalanced, the poor player receives an increasing transfer schedule that gives her
incentives to save herself out of poverty. The economy always winds up in a WP re-
gion in which players essentially pool their wealth. For any parameter constellation
with two-sided altruism there exists a continuum of such equilibria.

Figure 5 displays one such equilibrium. When the initial asset allocation is
tilted in his favor, he provides her with flow transfers (see the blue dotted line in
region FT’). In order to provide incentives to her to save herself out of poverty, trans-
fers are increasing in her wealth share. The economy moves to the right, as the solid
black line, which depicts Ṗ , suggests. As the solid red line shows, her consumption
in FT’ is lower than the donor’s consumption (the solid blue line). Once the asset
distribution is sufficiently balanced, the players essentially pool their assets and play
the WP strategies forever. This can be seen in region WP in the middle, where both
players consume the same (which is the case since α = α′ in this example).

From the right panel in the figure we see that his value function is flat throughout
regions FT’ and WP, so that he is indifferent between these two regimes. Indeed, as
the construction of equilibrium in appendix A.10 shows, she under-consumes in FT’

who had staid hard-working at the estate the entire time, and who is understandably angry about the
father’s decision.
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Figure 5: Tragedy-of-the-commons-type equilibrium: α = α′ = 0.5, P1 =
Pmax(0.5, 0.5), P2 = 1− Pmax(0.5, 0.5)

by exactly as much as she over-consumes in WP. So for him, there are no incentives
to return to the FT’ region once the wealth-pooling regime is reached.

There is a continuum of such equilibria for each pair (α, α′) since the boundaries
(P1, P2) between the regions can be chosen from a range of numbers. This range de-
pends on the levels of altruism, see figure 9 in appendix A.10. There is no boundary
condition on policies at the points P ∈ {0, 1} since the economy is moving away
from there. This means that no information is fed from the margins into the equi-
librium. Due to the lack of such boundary conditions, (P1, P2) can be chosen on
a continuum, which explains the multiplicity of equilibria. Economically speaking,
the entire WP region is the unique steady state of the economy, and there are many
transfer-incentive schemes that make players want to reach this region.

A surprising fact of this equilibrium is that it exists even for arbitrarily small val-
ues of α and α′. One would conjecture that a very rich player prefers self-sufficiency
to the WP allocation. But this is not true any more when the poor agent’s wealth be-
comes very low. Since there is an Inada condition on the other player’s consumption
in the utility function, players will avoid zero consumption by the other player at any
cost and so prefer WP to SS at some point. In this sense, there is a discontinuity of
the player’s criterion at α = 0.

Also, one might wonder why the rich player is not able to implement his preferred
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allocation at P = 0. What would happen if he gave her exactly the amount that he
desires her to consume, namely, α′C ′WP ? The answer is that, because she is saving
at P = 0, he is not controlling her consumption. This is unlike in the case of the
party theorem, where she is constrained and the donor has the power to implement
his preferred allocation. If he increasedG′, she would just save the additional amount
provided, which would not make him better off. After all, his value function is flat
on FT’.

The following theorem formally states this subsection’s result; for the construc-
tion of this equilibrium and the characterization of the equilibrium policies we refer
the reader to appendix A.10.

Theorem 3 (Continuum of tragedy-of-the-commons-type equilibria) If and only

if α > 0 and α′ > 0 there exists a continuum of equilibria of the following type:

1. He gives transfers on [0, P1).

2. There is a WP-region [P1, P2].

3. She gives transfers on (P2, 1].

We have P1 ∈ (0, Pmax(α, α
′)] and P2 ∈ [1−Pmax(α′, α), 1), where Pmax(·) is given

in (33).

This type of equilibrium has, to the best of our knowledge, not been found in the
existing literature on altruism. In the WP region, an inefficiency occurs that is akin
to the tragedy of the commons, which was discussed in section 3.1. An interesting
feature of this equilibrium is that a tragedy of the commons occurs despite property
rights being intact. An additional twist is that there is also under-consumption by the
poor agent in the FT-region, a feature not known from finite-horizon settings.

A problematic point with this equilibrium is that it predicts transfers to flow pri-
marily to recipients who are not liquidity-constrained. But empirical evidence sug-
gests that transfers typically flow to liquidity-constrained individuals.

Furthermore, from a theoretical point of view, this equilibrium is unstable in
the following three ways: First, it breaks down if we allow agents to give in-kind
transfers (i.e. transfers that cannot be saved but have to be consumed immediately):
Returning to the above example, if he had access to this instrument, he would choose
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to give an in-kind transfer of α′C ′WP instead of monetary transfers at P = 0. This
would lead to his globally-preferred allocation being played, so it would clearly be a
profitable deviation. She would always consume the in-kind transfer immediately –
it is clearly not optimal to let it rot. Second, value functions must have a kink to sup-
port the consumption-switching by the poor player. This kink would disappear when
shocks in the form of Brownian motion were introduced into the setting, and the
equilibrium would likely disappear. Finally, this equilibrium would break down in a
finite-horizon setting: In the final period imperfectly-altruistic agents would not play
the WP allocation. Instead, they would withhold transfers since their own consump-
tion provides them with a higher value than obtained from the other’s consumption.

In subsection 3.4 we will see that the transfer-when-constrained equilibrium with
a shock is not vulnerable to these objections.

3.4 Transfer-when-constrained equilibrium

We now turn to the equilibrium candidate that is empirically most plausible: As
mentioned in the introduction, inter-vivos transfers tend to flow from well-off to
less-well-off family members, and, in particular, when the recipient family mem-
ber is liquidity-constrained. In our setting, agents are only constrained at the points
P ∈ {0, 1}. The party theorem thus suggests an equilibrium in which immiseration
of the poorer agent occurs and the richer agent holds back transfers until he owns all
assets. Transfers are delayed until the recipient is constrained since then the donor
has control over the recipient’s consumption behavior and can implement her pre-
ferred allocation.

The spirit of this transfer-when-constrained structure is actually very similar to a
type of equilibrium that has been studied in a two-period setting: Lindbeck & Weibull
(1988), among others, show that for certain initial endowments an equilibrium exists
where transfers are only given in the second period. The recipient’s savings are
inefficiently low in the first period, i.e. there is a Samaritan’s Dilemma. In the
second period, as in the static altruism setting, transfers only flow in regions where
one player is poor relative to the other.22

The key message of this section is that a transfer-when-constrained equilibrium

22Note that Lindbeck & Weibull (1988) do not consider the possibility of transfers in the first period,
which makes their framework more restrictive than ours.
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does not exist, at least when restricting attention to the two simplest conceivable
cases in a deterministic setting. However, once a shock is introduced into the set-
ting, the equilibrium does exist and is actually the unique equilibrium that is found
computationally by backward induction in a finite game.23

We will first consider the possibility that there is an equilibrium consisting of a
single NT region. As for the special case of a SS equilibrium, we already saw in
section 3.1 that it only exists if α = α′ = 0. With altruism, transfers could still flow
at the points P ∈ {0, 1}, being absent otherwise. In this case, the party theorem
gives us four boundary conditions for consumption policies: (Clim, C

′
lim) at P = 0

and P = 1. However, as seen in section A.8.1, there are only two ODEs that have
to be fulfilled on PNT = (0, 1). So we cannot expect a solution to exist generically.
Indeed, numerical calculations show that such an equilibrium does not obtain, at least
in the case of symmetric altruism.

The economic reason for why this equilibrium does not exist is that NT regimes
are always transitory unless they are SS. Therefore, immiseration must occur: One
agent will (almost) always end up broke in the end, so that P ∈ {0, 1} constitute the
only two stable steady states of the economy. However, it is not clear to which of
these the economy should go from any given P0. This creates a strong tension. One
can imagine that each agent wants to be the one who over-consumes and is given
transfers in the end. This tension cannot be resolved unless a shock is introduced, a
scenario we will study below.

However, it is still conceivable that equilibria exist in which two NT regions en-
close a third region in the middle. This middle region can only be of NT, SS or
WP type – recall that we are restricting attention to transfer-when-constrained equi-
libria in this section. We will not study more complicated cases in which NT regions
enclose more than one region.

First consider the cases in which the middle region is of SS- or WP-type. These

23The curious reader might ask her/himself why the transfer-when-constrained equilibrium does
not obtain by backward induction in a finite game. After all, section 2 pointed out that equilibria in
stage games are unique. However, this statement was only made for smooth regions. When solving
backward in time, it is not obvious how the boundary between two regions evolves. Also, even if
equilibria in stage games are unique, they may fail to settle down to a stationary equilibrium. This is
indeed what happened in our numerical calculations when solving the (deterministic) model backward
in time: Limit cycles occurred in which players carried out “transfer wars” in the region between
immiseration and SS.
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two cases are special since the value functions are pinned down in these regions. This
is intimately related to the fact that they are (or can be, in the case of WP) absorbing.
We try to construct the equilibrium as follows: The party theorem tells us the limiting
consumption policies of the NT regions. We can then solve the ODEs (28) and (17)
for NT regions as explained in section A.8.1 in P and check if one of the following
two results occur: The value functions converge at some free boundary to 1) the
SS value functions or 2) the WP value functions. There is now one free boundary, but
two value-matching conditions. This suggests that such an equilibrium is extremely
unlikely to exist. Indeed, we have conducted computations for the special case of
symmetric altruism (α = α′) on the entire range α ∈ (0, 1) and found that none of
the two convergence results occurs for any α. The intuition for the non-existence
results is as in the case of one large NT region: Since there are essentially two steady
states bordering each NT region, the economy might converge to either one from
each point in NT; it is extremely unlikely that the values of the two possibilities
are the same for both players, which leads to conflicts that cannot be resolved in a
deterministic setting.

Next, consider the case of a potential NT-NT-NT equilibrium with two free bound-
aries. Since value functions are not pinned down in NT regions, it is more likely to
find an equilibrium with this structure – we will now see why. To simplify mat-
ters, we will look for a symmetric equilibrium with α = α′ and two boundaries
(P1, 1− P1) with P1 ∈ (0, 1

2
) as a free parameter.

Our equilibrium-construction strategy is as follows: Given the limiting consump-
tion policies at P = 0 from the party theorem, we can solve the ODEs for con-
sumption on NT up to the boundary P1. We then infer consumption policies on the
other side of P1. Section 2 of our supplemental paper derives the implications of
value-matching on boundaries between two adjacent NT-regions and shows how to
find the limiting consumption policies on one side of P1 when knowing the limiting
consumption policies on the other side. Using again the ODEs for NT regions, we
proceed to solve for consumption policies up to the point P = 1

2
. If his and her con-

sumption policy are equal at this point, we have found an equilibrium. If not, we vary
the free boundary P1 until consumption policies are equal at P = 1

2
.24 This amounts

24Note that C( 1
2 ) = C ′( 1

2 ) implies VP ( 1
2 ) = −V ′P ( 1

2 ), and since then Ṗ = 0 at P = 1
2 it also

implies V ( 1
2 ) = V ′( 1

2 ).
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to the problem being exactly identified: We are varying one free parameter P1 to
meet one criterion at P = 1

2
.

Indeed, using this procedure we can find symmetric value functions and con-
sumption policies for each α ∈ (0, 1) that satisfy the HJBs and Euler equations
inside the regions and that are consistent with value-matching at P1, see figure 6 for
an example.25 The figure shows the consumption rates (C,C ′) in the upper-left and

Figure 6: Symmetric equilibrium candidate: Transfers only in bankruptcy (α = α′ =
0.4, ρ = 0.04).

the value functions (V, V ′) in the upper-right panel. The vertical dashed line repre-
sents the boundary P1. We see that value-matching is fulfilled at P1. In the lower
left panel, we have plotted players’ consumption rates (c, c′) out of their own assets
(k, k′). As mentioned before, Ṗ > 0 if and only if c′ > c in NT regions. So the econ-
omy steers towards P1 locally from both sides, so P1 becomes an additional steady
state. Again, we have the problem that there are “too many steady states” to which
the economy can go. However, this time the technical reason for ruling out the equi-
librium is different from the cases before: Corollary 1 in the supplemental material

25We found that for values of α above 0.4, the transfer motive becomes positive just left of P1,
which is a second reason why this equilibrium does not exist for high values of α.
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says that there cannot be mutually best-responding policies at P1 if it is an attracting
boundary.

The technical reason for why there cannot be steady-state supporting policies on
the boundary is the following: If players used the right-hand-side strategies at P1,
then the economy would move to the left of P1. But on the left side the marginal
value of assets is different from the right side, as is apparent from the kinks in the
value functions. Therefore, the right-hand-side policies cannot be optimal. The same
argument applies to the left-hand side policies. Finally, it is also possible to rule out
any other policy combinations at P1 as equilibria.26

The economic intuition for why the equilibrium breaks down at P1 is the fol-
lowing: She (the player with the locally convex value function) wants to steer the
economy away from P1 once the boundary is left. She does not bear all the down-
side consequences of consuming a lot: If she is profligate and becomes poor, he will
provide for her giving transfers in the end. If she is frugal at P1, however, she will
not receive transfers and thus reap all the benefits from savings herself. For him, the
situation is exactly the opposite: He is locally risk-averse (V ′ is locally concave) and
tries to contain the economy at the boundary. If she consumes a lot, he does not want
to be the nice guy who is frugal, watches her party and then pays transfers in the
end, so he prefers to also be profligate. This steers the economy back to P1. If she is
frugal, he also has incentives to be frugal since he will never have to give transfers.

If players had lotteries (or risky assets) at their disposition, then the locally risk-
loving agent would make use of these at P1.27 This cannot be “counter-acted” in
any way by the risk-averse agent, unlike in the deterministic case, and enable the
risk-loving agent to steer the economy away from P1. We will now see how the
introduction of a shock into the setting does indeed resolve the tensions: Chance
decides to which side the economy moves at the critical point.

Section 4 of our supplemental material extends the current model and adds a
shock: Agents face an idiosyncratic shock to assets, which can be either interpreted
as idiosyncratic savings risk or as shocks to expenditures (such as costs of house

26We can also show that there is no equilibrium on the boundary if we allow for mixed strategies,
details are available from the authors upon request.

27Laitner (1988) follows this route: He introduces a full set of lotteries into an altruistic OLG
setting in which generations overlap for one period in order to remove non-concavities in the value
functions.
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repair, medical treatment etc.). We solve for the equilibrium by iterating value func-
tions backward in time.28 Figure 7 shows the resulting equilibrium.

Figure 7: transfer-when-constrained equilibrium with shock (α = α′ = 0.4, ρ =
0.04)

The upper-left panel shows players’ consumption C and C ′. Around the mid-
dle of the state space they are very similar to SS consumption (the diagonal dashed
lines). When the asset distribution is imbalanced, the donor’s consumption is close
to WP consumption (the horizontal dashed lines). The vertical dashed lines indicate
the value of P where transfers would start to flow in a static altruism model. The
discontinuity of the poor player’s consumption at the constraint highlights the third
point of the party theorem.

As for the value functions in the upper-right panel, we see that risk-lovingness
and risk-aversion follow the pattern already pointed out for the NT-NT-NT structure.
The lower two panels show the dynamics of the state variable P . In the lower left
panel, the drift of P is represented as a solid line, and 1-standard-deviation bands as

28The transfer-when-constrained equilibrium obtains as the unique limit. We have checked many
different assumptions for the final period, and the equilibrium is stable with respect to this. Also, the
shock has to be of a certain size. If this is not the case, the transfer motive turns positive at the critical
point. See our follow-up paper for more on this.
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dashed lines. In the neighborhood of P = 0.5, we see that the economy is basically
stationary. However, the only absorbing states are P ∈ {0, 1}, which are the only
points in the state space where the shocks do not influence the asset distribution.
Once one player is broke, no shock can bring him away from there. The lower-right
panel shows the expected evolution of P for various starting values P0. We can
see that when the initial asset distribution is imbalanced, immiseration of the poorer
player is likely to occur.

The strength of this equilibrium, in addition to being empirically plausible and
unique, is that it is stable with respect to the objections mentioned before in sec-
tion 3.3: It can be maintained under a finite horizon, survives the introduction of a
shock and the introduction of in-kind transfers.

Technically, the problem of over-identification that we faced in the deterministic
setting with a single NT region disappears for the following reason: We are still left
with four boundary conditions for consumption at P ∈ {0, 1}, but the ODEs for
consumption on the NT-region are now of second instead of first order because we
introduced Brownian motion (the shock). This makes the system exactly identified,
so a unique equilibrium is the likely outcome. Economically speaking, the economy
can now end up in either of the two steady states from (almost) any starting point, so
information from both sides enters the allocation for any P ∈ (0, 1). As described
above, randomness resolves the directional conflicts that arose before.

4 Conclusions

We have studied a parsimonious dynamic model of voluntary transfers with two-
sided altruism. In the deterministic setting, the only class of equilibria that we find
are tragedy-of-the-commons-type equilibria. Once a shock is added to the setting, we
find a transfer-when-constrained equilibrium. This equilibrium is uniquely obtained
by backward induction as the unique limit of a finite game, has other desirable sta-
bility properties and is empirically plausible. For these reasons, we argue that further
research should focus on this type of equilibrium.

During the development of our research agenda we have found that the tensions
that we identify in our simple setting also surface in more complex settings, e.g. when
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introducing idiosyncratic labor-earnings risk.29 The reason is the following: For rich-
enough families, the present value of labor earnings becomes insignificant relative to
capital income. For these super-rich families, players’ optimization problems look
very similar to the ones in our model.

In a follow-up paper, we include idiosyncratic income risk into the present setting
and focus on the transfer-when-constrained equilibrium. We argue that the frame-
work provided by our research agenda provides a building block for heterogeneous-
agents models with altruistic agents. Barczyk (2011) has already successfully used
this building block in a quantitative study of Ricardian equivalence in an OLG setting
with imperfectly-altruistic agents.
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A Appendix (for online publication only)

A.1 His HJBs, Euler equations etc.

For the convenience of the reader, in this section we state his HJBs, Euler equations etc. The

equations are mirror-symmetric copies of the respective equations for her, which are given in

the main text.

His HJB in k-k′-space, analogous to her (6), is:

ρv′ = max
c′,g′

{
u(c′) + α′u(c) + (rk′ − c′ − g′ + g)v′k + (rk − c− g + g′)v′k′

}
.

The FOC is uc(c′) = v′k′ and the Euler equation is, analogous to (13),

d

dt

[
uc(ct)

]
= (ρ− r)uc(c′) +

[
v′k − α′uc(c)

]
ck′ +

[
v′k − uc(c′)

]
gk′ .

In P -K-space, his HJB, the analogon to (25)), is

ρV ′ =α′ lnC − C 1 + α′

ρ
− C(1− P )V ′P −GVP+

+ max
C′≥0

{
lnC ′ − C ′ 1 + α′

ρ
+ C ′PV ′P

}
+ max
G′≥0
{G′V ′P },

the FOC is
1

C ′
=

1 + α′

ρ
− PV ′P
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and the Euler equation, the analogon to (28), is

d

dt
V ′P (T ) =

[
PC ′ − (1− P )C −G+G′

]
V ′PP = (17)

=
[
ρ− C − C ′

]
V ′P +

[
1

C ′
− α′

C
+ V ′P

]
CP +GPV

′
P .

The ODE for his transfers in an FT region, the analogon to (29), is

G′P =
α′

1 + α′
ρ− C. (18)

The value function in a WP region for him (see section A.8.4) is

ρV ′
WP

= lnC ′WP + α′ lnCWP − (C ′WP + CWP )
1 + α

ρ
.

A.2 Technical note on subgame-perfection

It is a hallmark of subgame perfection that the partial derivatives c′k,ck′ ,g′k, gk′ are present

in the Euler equations. These derivatives tell us about the other player’s “threats” in case

one deviated from the equilibrium policy. These threats have to be credible in the sense of

subgame perfection, i.e. agents’ policies must be mutual best responses on these neighboring

paths as well. But this implies that both agents HJBs (and thus Euler equations) have to hold

in an entire neighborhood of the path under consideration. Indeed, our equilibrium concept

requires that both agents’ HJBs be fulfilled for every point in the state space, so we have to

find a solution for the system of PDEs given by his and her HJB on the entire k-k′-plane. This

is related to the fact that the usual classical calculus-of-variations arguments do not apply:

We cannot construct a deviation from the optimal path that reverts to the optimal path, as

becomes clear from figure 3.

Only in the special cases of α = α′ = 0 and α = α′ = 1 do the partial derivatives c′k
etc. disappear. Then, we can solve an ODE (and not a PDE) for consumption along the

equilibrium path in the spirit of Pontryagin’s maximum principle. In this case, we do not

have to take into account information from neighboring equilibrium paths.

A.3 Formal statement of our technical assumptions

The following are our technical assumptions:

Assumption 1 (Consumption lower-bounded under altruism) If α > 0, then C ′(P ) > ε

for all P ∈ [0, 1] for some ε > 0. If α′ > 0, then C(P ) > ε for all P ∈ [0, 1] for some ε > 0.
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We introduce this assumption since it is very hard to rule out equilibria where one player’s

consumption is zero for some P ∈ P . For example, if we have C(0) = 0, then it is a best

response for him to set G(0) = 0 – giving her transfers would not help, since she would

consume nothing anyway and both players would obtain utility of minus infinity. For her,

since he is not giving any transfer, the deviation C(0) > 0 does not pay since she would

still be left with zero consumption, so this pair of policies is consistent with equilibrium.

However, this is clearly not in the spirit of the altruism framework because both players have

strong incentives to avoid such situations. We thus exclude this case from our analysis.

Note that we do not restrict her consumption to be lower-bounded if he is not altruistic

towards her. To see why, consider the case α = α′ = 0: Here, self-sufficiency with her

consuming C(P ) = ρP is clearly an equilibrium where C(P ) → 0, which is reasonable

since he has no incentives to help her out when α′ = 0.

The second, purely technical, assumption is:

Assumption 2 (Limit-consumption exists) For each region Pi, the limits of consumption

on the boundaries of the region exist: C(Pi−1)lim ≡ limP→P+
i−1

C(P ) and analogously for

C ′(Pi−1)lim, C(Pi)lim and C(Pi)lim.

A.4 Properties of the value function

We will now prove some global properties of the value functions. The following results will

later enable us to restrict the set of candidates for equilibrium.

First, and most importantly, observe that V must be weakly increasing in P . If the trans-

fer motive was positive (i.e. VP < 0) on some interval (P0, P1), then she could improve her

value by setting a mass transfer to reach P0 for all P ∈ (P0, P1). Since a mass transfer im-

mediately brings the economy to P0, she obtains the value V (P0) instantaneously. Therefore

V (P ) ≥ V (P0), which is a contradiction to what we assumed before. Formally we have:

Proposition 3 (V weakly increasing) V (P ) is weakly increasing inP , and V ′(P ) is weakly

decreasing in P .

We now make two weak technical assumptions to prove the next results: C must be

lower-bounded if he is altruistic towards her, and the limits of policy functions must exist on

the border of regions. See appendix A.3 for a formal statement of these assumptions. We can

now show the following (for the proof, see appendix A.5):

Proposition 4 (Value functions continuous) Both players’ value functions are continuous

at the boundaries between regions and thus continuous throughout.
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The intuition for the proof is the following: Suppose her value function had an upward jump

at a boundary. Then she could realize large immediate gains steering the economy from the

left of the kink to the right of it; note that this is always possible by being more frugal or

cutting transfers. But then, the value function on the left side of the boundary cannot be

discretely lower than on the right side, a contradiction.

If both players are altruistic, we can also show that the value functions are bounded (see

Lemma 1 in the appendix).

Finally, we will demonstrate that the two essential parameters in our setting are α and

α′). We can easily compute the equilibria for arbitrary values of (ρ, r) once we know them

for one particular pair. First, note that r does not appear in the HJB (25), so the same V must

solve the HJB for any value of r. As for ρ, it is not hard to show that best responses must be

linear in this parameter.

Proposition 5 (Equilibrium independent of r and linear in ρ) Let (ρ̃, r̃) 6= (1, 1). Then

{C1(·), C ′1(·), G1(·), G′1(·)} are supported as equilibrium strategies (ρ, r) = (1, 1) if and

only if {ρ̃C1(·), ρ̃C ′1(·), ρ̃G1(·), ρ̃G′1(·)} are supported as equilibrium strategies for (ρ, r) =

(ρ̃, r̃).

For a formal proof of this statement see appendix A.5. The economic intuition for this result

is the following: The interest rate r does not matter since the income and substitution effect

cancel out exactly under log-utility, so savings choices are not affected by the interest rate.

As for ρ, consider the following argument: Suppose we have fixed one unit of time to be a

year in the model and have found an equilibrium. When changing the (nominal) time unit to

one month, then we should divide the discount rate by 12 to maintain the agents’ preferences

the same. When also dividing all consumption (and transfer) rates by 12, we obtain the

exact same allocation as before, which must of course also be an equilibrium – but now with

different numbers for the discount rate and equilibrium policies.

A.5 Further results and proofs

A.5.1 Value functions bounded

Lemma 1 Let consumption functions satisfy assumption 1. Then, if α > 0 and α′ > 0, then

there exist numbers M > −∞ and M̄ <∞ such that M < V (P ) < M̄ and M < V ′(P ) <

M̄ .

Proof: Clearly, her value function is upper-bounded by the value of the Pareto problem

where the planner puts full weight on her. To find a lower bound, notice that her flow-utility
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is lower bounded when we invoke assumption 1. So clearly also the value function must be

lower-bounded. �

A.5.2 Proof for proposition 4 (Value functions continuous):

Proof: Suppose that the value function is discontinuous at Pi for her. Since his policies C ′

and G′ converge to finite positive numbers at Pi from both sides by assumptions 1 and 2, she

can always choose her policy C such that Ṗ < 0 (or Ṗ > 0) in a neighborhood around Pi by

the law of motion for P in (22)30. Now, if V (P+
i ) > V (P−i ) (these two denoting the right-

and left-side limits at Pi), then the inequality

V (Pi − ε) ≥ [ln(C) + α ln(C ′(P−i )]∆t+ e−ρ∆tV (Pi) + o(∆t)

can be violated for some small ε > 0 and some C. ∆t is the amount of time it takes to

reach Pi under the given policies, which vanishes as ε→ 0. In other words, she could obtain

a higher value than V (Pi − ε) by steering the economy to Pi. The case V (P+
i ) < V (P−i ) is

entirely analogous. �

A.5.3 Proof for proposition 5: Equilibrium independent of r and linear in ρ

Proof: Fix some arbitrary ρ̃ > 0. We now write down the HJB for ρ = ρ̃ and for ρ = 1:

ρV ρ̃ = max
C,G

{
lnC + α lnC ′ − (C + C ′)

1 + α

ρ
+
[
(1 + P )C ′ − PC +G′ −G

]
V ρ̃
P

}
,

(19)

V 1 = max
C,G

{
lnC + α lnC ′ − (C + C ′)(1 + α) +

[
(1 + P )C ′ − PC +G′ −G

]
V 1
P

}
,

(20)

where we use the super-index ρ̃ that this is the value function related to ρ̃. Since r does not

show up in the value functions, we see immediately that it is irrelevant.

We now guess that the value function for arbitrary ρ is related to the value function for

ρ = 1 as follows:31

ρV ρ = (1 + α) ln ρ+ V 1

30In the special case where Pi = 0 this must also be true since G′(0) > 0 by our assumption that
C(0) > 0. Then Ṗ > 0 may be achieved by setting C < G′(0). A similar argument applies if Pi = 1.

31We can arrive at this guess in the same way as we obtained the guess in section A.6, when we
found the form of the value function in K
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Under this guess, the optimal policies for ρ = ρ̃ and ρ = 1 are related as claimed in the

proposition, i.e. Cρ = ρC1 etc.: Use the FOC and use the fact that ρV ρ
P = V 1

P . Indeed,

when we use these policies on the right-hand side of (19) and the guess for the form of V ρ

on the left-hand side of (19), we see that (19) simplifies to (20): The two are equivalent.

So {V ρ̃, C ρ̃, . . . } are an equilibrium if and only if {V 1, C1, . . . } are (by our definition of

equilibrium), which concludes the proof. �

A.5.4 Proof for proposition 1 (SS equilibrium)

Proof: Consider first the case where at least one player is altruistic, say α > 0. Then, she

would obtain a value of minus infinity when he is broke since C ′SS = 0. So she should

respond with a mass transfer at this point, which shows that self-sufficiency is not an equi-

librium when α+ α′ > 0.

Consider now the case where α = α′ = 0: Given that the other player never gives trans-

fers, the best response is obviously to respond with zero transfers and follow the consumption

rule of an SS saver. Thus the SS policies constitute an equilibrium.

Finally, we have to establish that the SS-policies are the unique equilibrium when α =

α′ = 0. Note that the SS policies are feasible for any initial conditions, so the value function

for each player in equilibrium is lower-bounded by the SS value function. But since any

SS allocation is Pareto-efficient when α = α′ = 0 (see the discussion in 1.3), there does not

exist any allocation that is feasible and gives at least one of the players a higher value, which

concludes the proof.�

First, it should be pointed out that this proof also applies to non-Markovian strategies,

so there are no tit-for-tat strategies either that could implement non-SS equilibria under self-

ishness. Second, it is interesting to note that the proof for uniqueness of the SS equilibrium

does not go through in a stochastic setting, when potential gains from mutual insurance arise:

Then there are possible Pareto improvements from risk sharing which can raise value func-

tions above the SS levels.

A.5.5 Proof for proposition 2 (WP equilibrium only under perfect altruism)

Proof: We first show point 1 of the proposition.

Consider first the case where α = α′ = 1: For any pair of transfer strategies that make

the wealth-pooling (consumption) allocation feasible, both agents are clearly best-responding

since they obtain their globally preferred (feasible) allocation. So the wealth-pooling strate-

gies can be sustained as an equilibrium in this case.
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Second, consider the case where α + α′ < 2 and the situation where the more-altruistic

agent is bankrupt: k = 0. Then he should set transfers to α′C ′WPK, which lowers her

consumption to α′

1+α′K < CWP = 1
1+αK (the inequality holds since α′

1+α′ <
1
2 ≤

1
1+α ).

This implements his globally preferred allocation, which dominates the wealth-pooling out-

come. So we have found a profitable deviation and wealth-pooling cannot be sustained in

equilibrium.

We now proceed to show point 2 of the proposition. Since the criteria by which players

rank allocations (given in (3) and (4)) coincide in the case of perfect altruism, it follows that

V (P ) = V ′(P ) for all P . But since V (·) is weakly increasing in P and V ′(P ) is weakly

decreasing in P , it follows that V (P ) and V ′(P ) must be constant in P . Thus C(P ) =

C ′(P ) = ρ/2 by the FOC (27). Transfers have to be such that these consumption policies are

feasible also at P = 0 and P = 1; if this was not the case, the efficient allocation could not

be reached at these points, which would make the value functions drop below the efficient

level – a contradiction to the value function being constant. Transfers are indeterminate on

P ∈ (0, 1) since agents are indifferent on how wealth is distributed. �

It is possible to show that under perfect altruism the wealth-pooling equilibrium is indeed

the unique equilibrium even when attention is not restricted toK-linear strategies; the proof

is more involved and carries no additional economic intuition, please contact the authors for

details.

A.5.6 Proof for Theorem 1 (Party Theorem)

Proof: It is first convenient to rule out that Ṗ0 > 0.32 Note that Ṗ0 > 0 clearly implies

G′(0) > 0 and also V ′P (0) = 0 by his FOC for transfers. Thus, his consumption is continuous

and given by C ′(0) = C ′lim = C ′WP . Continuity of the value function (see proposition 4)

tells us that Vlim ≡ limP→0 V (P ) = V (0), which implies by the HJB a value-matching

condition, which becomes VP (0)Ṗ0 = VP (0)Ṗlim (both consumption rates drop out since

they are the same on both sides: The recipient must choose C(0) = Clim if Ṗ0 > 0, since

the relevant derivative in the Hamiltonian is the same at both P = 0 and slightly to the right

of it). Since VP > 0 , this implies Ṗ0 = Ṗlim < 0, a contradiction (If it was the case that

VP = 0, she would choose C(0) = CWP , to which he would clearly respond with setting

G′(0) = α′CWP , thus making it impossible for her to save. If α = α′ = 1, this argument

32Although Ṗlim < 0, this remains a possibility under our recursive equilibrium definition. The
ODE for the path of Pt would not be solvable in this case, but our equilibrium definition does not
require this; one could interpret the resulting equilibrium path as zig-zagging to and away from zero
very quickly.
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thus not apply, but then we have a unique WP equilibrium which is also covered by our

proposition).

So we can proceed under the assumption that Ṗ0 = 0, which establishes point 1 of the

proposition. We first note that his consumption must be continuous at zero and given by

C ′lim = C ′(0) = C ′WP by his FOC (note that it is impossible that V ′P tends to infinity – this

would mean that his consumption goes to zero, which is clearly not optimal). Now, define

the function HWP (C) = lnC − C 1+α
ρ and re-write her value-matching condition at P = 0

as

HWP (C∗0 ) = HWP (Clim) + ṖlimVP (0).

If α+α′ < 2, then we know that that VP (0) > 0 and Ṗlim < 0. Then the fact thatHWP (·) is

a strictly increasing function on [0, CWP ], this implies that C∗0 < Clim if α+ α′ < 2, which

is what we term a party before bankruptcy.

Now define JWP (C) = α′ lnC − C 1+α′

ρ and re-write his value-matching condition as

JWP (C∗0 ) = JWP (Clim) + ṖlimV
′
P (0).

Since Ṗlim < 0 and V ′P (0) ≤ 0, it is clear that ṖlimV ′P (0) ≥ 0 and thus JWP (C∗0 ) ≥
JWP (Clim). Observe that JWP (·) is strictly increasing on (0, α′C ′WP ] and strictly decreasing

on [α′C ′WP ,∞). By the ordering C∗0 < Clim from before, it must therefore be that we are

to the right of α′C ′WP and that we have Clim > α′C ′WP . In intuitive terms, she is over-

consuming, he dislikes the party and prefers the bankruptcy consumption rates to it – if this

was not the case, his value-matching cannot be fulfilled. Again, we note that the reasoning

always goes through as long as α+α < 2; for perfect altruism value-matching is fulfilled by

the WP policies anyway.

We now will see that her optimal policy must be C(0) = Clim
33. The relevant terms in

C in her Hamiltonian at P = 0 are lnC∗+ (G′(0)−C∗)VP (0), which are clearly optimized

by setting C(0) = Clim. Now, since Clim > α′C ′WP , he can set G′(0) = α′C ′WP to

obtain his globally preferred allocation. He needs to be altruistic (α′ > 0) for this, if not

the transfer is not given (and also the above reasoning fails since VSS(0) = −∞). Thus,

C∗0 = min{C(0), G′(0)} = α′C ′WP , which is point 2 of the proposition.

Now, using again her value matching and the FOC for Clim in (27), can find the closed-

form expression for Clim(0) given in point 3 of the proposition. Finally, using his value-

matching condition again, we see that V ′P (0) < 0 since GWP (C∗0 ) > GWP (Clim(0)), which

33Recall that the policy C(0) may be different from the realized consumption rate C∗(0) =
min{C(0), G′(0)}
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proves point 4. �

A.5.7 Proof for Theorem 2 (the Prodigal-Son Dilemma)

Proof: By way of contradiction, suppose that he gave a mass transfer in the region [0, P1).

We will first show that her optimal policy at the kink is C(P1) = CWP . The terms in the

relevant Hamiltonian that contain C are

lnC − 1 + α

ρ
C − (1− P )VPC,

which is decreasing in VP . Since V +
P (P1) ≥ V −P (P1) = 0, she obviously maximizes the

Hamiltonian by going to the left and choosing C(P1) = CWP (note that going left can

always be achieved by choosing a large-enough G). So being profligate and counting on

more transfers is always optimal.

Second, note that her “threat consumption” inside [0, P1) must be the same as on the

boundary: C(P ) = CWP for all P ∈ [0, P1). This is the case because our definition of best

responding in MT regions in (26) says that the relevant marginal value of savings is to be

taken at the point one is “shot” to.

We will now check a potential deviation by him at P = 0: If he sets a flow transfer

G′(0) = α′

1+α′ when she is broke, this leads to his globally preferred allocation with value

V ′η=0. The equilibrium strategy, which is to carry out the transfer, must at least yield this

value: V ′(P1) ≥ V ′η=0. But we also have V ′(P1) ≤ V ′η=0, since V ′η=0 is the highest-possible

value attainable by any allocation. So it must be that V ′(P1) = V ′η=0.

But note that V ′η=0 can only be attained if his preferred consumption rates C = α′ρ
1+α′ and

C ′ = C ′WP are played forever, since his preferred allocation is unique. But this is at odds

with her playing CWP at P1, since CWP = ρ
1+α ≥

ρ
2 ≥

ρα′

1+α′ with one of the inequalities

being strict since α+ α′ < 2. Formally, we have V ′η=1 > V ′(P1) = V ′WP , where the second

equality follows from his HJB. This is a contradiction. �

However, note that a MT region is still conceivable if it does not include the points 0

and 1: For example, we could connect two WP regions by a MT region.
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A.6 Exploiting homogeneity

P and K are as defined in (16). The laws of motion for P and K as a function of policies are

K̇ =
[
r − C − C ′

]
K (21)

Ṗ = −(1− P )C + PC ′ +
[
G′ −G

]
. (22)

Her HJB in (P,K)-space is given by

ρṼ = max
C≥0,G≥0

{
ln(CK) + α ln(C ′K) + (r − C − C ′)KṼK+

+
[
PC ′ − C(1− P ) +G′ −G

]
ṼP

}
. (23)

It is now natural to conjecture that the value function Ṽ is additively separable in P and

K and logarithmic in K. Indeed, we show in section 1 of our supplemental material that

K-linear strategies imply it must be of the form

Ṽ (P,K) =
1 + α

ρ

[
r

ρ
+ ln(K)

]
+ V (P ). (24)

The terms in K are known and represent the value of common assets K to her. V (·) remains

to be determined; it represents how she feels about the distribution of assets between him and

her.

Using (24) in her HJB (23) now enables us to drop terms in K and write

ρV =α lnC ′ − C ′ 1 + α

ρ
+ PC ′VP +G′VP+ (25)

+ max
C≥0

{
lnC − C 1 + α

ρ
− C(1− P )VP

}
+ max

G≥0
{−GVP }.

This HJB is an ODE in P , which is an important simplification with regard to (k, k′) state

variables, in which the HJB (12) was a PDE.

It is now also less cumbersome to state what best-responding means at boundaries be-

tween regions since there are only two possible directions to take in the state space. Formally,

our strategy space consists of piecewise C1 functions, where the function values at the dis-

continuity points may differ from both the left- and right-hand-side limit.

To be specific, we need to introduce some more notation: The state space P = [0, 1] is

divided into finitely many regions (intervals) Pi = (Pi−1, Pi), i = 1, . . . , n, with boundaries

0 = P0 < P1 < · · · < Pn−1 < Pn = 1. Inside each region, the value functions V (·), V ′(·)
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and policy functions C(·), C ′(·), G(·) and G′(·) are continuously differentiable. On the

boundaries, value functions may have kinks and policy functions may be discontinuous. We

also allow that policies exactly on the kink differ from their right- and left-hand side limit,

i.e. it is possible that limP↗Pi
C(P ) < C(Pi) < limP↘Pi

C(P ), for example.34 We will

classify and characterize the different kinds of regions in section A.8.

We now specify exactly what we mean by best-responding on a boundary Pi. Let us

denote flow utility by U(C,C ′) = lnC + α lnC ′ − (C + C ′)1+α
ρ . The law of motion

is given by the function f(P ;C,G;C ′, G′) = PC ′ − (1 − P )C + G′ − G. Denote the

left and right derivatives of V at Pi as V +
P and V −P , and fix his (candidate) equilibrium

strategy σ′(Pi) = (C ′(Pi), G
′(Pi)) on the boundary Pi. In order to evaluate deviations by

her, we need to consider the entire set of feasible tuples (C,G). Define the Hamiltonian as a

function of her actions, fixing his strategy:

H(C,G;Pi, V
+
P , V

−
P , σ

′) = U(C,C ′) +

f(Pi;C,G;σ′(Pi))V
+
P if f(·) ≥ 0

f(Pi;C,G;σ′(Pi))V
−
P if f(·) < 0

This Hamiltonian gives us her payoff if we fix his and her actions over a short amount of time

in the spirit of the ∆t-problem in (5). The Hamiltonian uses the left derivative of the value

function to evaluate marginal effects of policies if the respective policies steer the economy

to the left, and it uses the right derivative otherwise. As mentioned before, this approach has

been shown to have good stability properties in the optimal-control literature.

The second important case where we have to be specific about what we mean by the

Hamiltonian is the case where she gives a mass transfer δG that catapults the state from

Pt to P̄ (so G = P̄ − Pt). The ∆t-problem (5) tells us that we have to evaluate both the

consumption and the transfer policy at the current state Pt. So the evolution of the state is

given by

Pt+∆t = Pt +G︸ ︷︷ ︸
=P̄

+
[
PtC

′(Pt)− (1− Pt)C
]
∆t,

and flow utility is U(C,C ′(Pt)). When taking first-order approximations of the value func-

34In this sense, our setting allows for a larger set of strategies than is usually considered in the
differential-games literature. Usually, strategies are restricted to be such that the law of motion is
Lipschitz-continuous in order to ensure existence and uniqueness of the ODE for the state. Note that
our equilibrium concept, which is based on best-responding in the sense of (26), makes no reference
to the path of P and the ODE for it. It can happen that the economy tends toward Pi from both sides
and that the policies at Pi imply that it moves to, say, the right side at the boundary. We interpret
this seemingly incoherent behavior as “jittering” around the boundary; we give examples where this
concept gives us satisfactory equilibria in a note, which is available on request from the authors.
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tion at t + ∆t to evaluate the marginal effects of consumption on assets, we obviously have

to take these at the new state P̄ (recall the lollipop example from section 1.2):

Vt+∆t = V (P̄ ) +
[
PtC

′(Pt)− (1− Pt)C
]
∆tVP (P̄ ) + o(∆t),

where again VP (P̄ ) has to be taken in the appropriate direction if the right- and left-derivative

of V at P̄ do not coincide.

To conclude this discussion, the HJB that we will work with to define best-responding is

then

ρV (P ) = max
C,G

H(P ;C,G;C ′, G′;V +
P , V

−
P ), (26)

which coincides with (12) whenever V is differentiable at P . On a boundary Pi, the direc-

tional derivatives become important. At points where a mass transfer is given, we have to

evaluate the directional derivatives at the point the economy is “shot” to, as explained above.

Note that in the special case of kinks in the value function, it is not necessarily true anymore

that her response is independent of his actions (as is true in smooth regions); also, there might

be multiple “local” equilibria at these boundaries.

When she is unconstrained (i.e. P > 0) and V is smooth, her FOC for consumption is

given by:

1

C
=

1 + α

ρ
+ (1− P )VP , for P ∈ (0, 1]. (27)

This equation says that she sets the marginal utility of consumption equal to the marginal

value of savings. The marginal value of savings can be decomposed into two components:

First, (1 +α)/ρ = ṼK/K measures the (proportional) marginal value of common assets, i.e.

the value obtained ifK is increased by 1% while leaving the distribution unchanged. Second,

−VP = (vk′ − vk)K = µK measures the (proportional) transfer motive: −VP is the value

to her when 1% of total assets K are transfered to him from her while holding total assets K

unchanged.

Analogously to the k-k′-space, (25) tells us that no transfers will flow whenever VP > 0

and any transfer rate is consistent with optimality when VP = 0. The case VP < 0 – a strictly

positive transfer motive – will be ruled out in equilibrium, as will be shown in the following

subsection.

Finally, by taking derivatives of her HJB (25) in smooth regions we obtain her Euler
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equation in P :35

d

dt
VP (t) =

[
PC ′ − (1− P )C −G+G′

]
VPP =

=
[
ρ− C − C ′

]
VP +

[
1

C
− α

C ′
− VP

]
C ′P −G′PVP (28)

A.7 Solving the wealth-pooling (WP) model

Consider the WP game laid out in section 3.1. Players’ strategies are characterized by con-

sumption rates CWP and C ′WP out of the common asset stock. It can actually be shown

that such linear strategies constitute the unique equilibrium of this modified game, details are

available from the authors upon request.

The law of motion for K is then

K̇t = rKt − CWPKt − C ′WPKt.

Let V WP (K) be her value function. Her HJB then reads:

ρV WP = α ln(C ′WPK) + (r − C ′WP )V WP
K + max

C≥0

{
ln(CK)− CKV WP

K

}
.

The first-order condition (FOC) for C is C−1
WP = V WP

K K, which gives us V WP
K as a function

of CWP . Take the derivative of the HJB with respect to K (which yields the Euler equation)

and then use the FOC and symmetry between the players to establish that

A.8 Characterization of regions

We classify regions by the transfer decision; the following is an exhaustive listing of region

types:

• No-transfer (NT) region: G(P ) = G′(P ) = 0 for all P in region Pi.

• Flow-transfer (FT) region: G(P ) > 0 for all P ∈ Pi (or equivalently G′(P ) > 0 for

him).

• Mass-transfer (MT) region: G(P ) = (Pi − P )δ for all P ∈ Pi (or equivalently

G(P ) = (P − Pi−1)δ for him).

35The term GP (P )VP (P ) vanishes in regions where G = 0 since GP = 0 and in regions
where G > 0 since VP = 0; a similar argument shows that the term G(P )VPP (P ) vanishes in
both regions. Of course, the same arguments apply for the respective terms in the HJB for V ′(·).
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Furthermore, there are the following two important special types of regions: Self-sufficient (SS)

regions, where policies are locally equal to the self-sufficient ones (a special kind of NT re-

gion); and wealth-pooling (WP) regions, where both players’ consumption is locally given

by WP consumption (a special kind of FT region or, under special conditions, a NT region).

These regions may still be part of a patched equilibrium, even though – as we have seen in

section 3.1 – they cannot be supported globally as an equilibrium. There is also the possi-

bility that a NT region occurs at the margin of the state space and transfers flow only at the

point where the recipient is broke. This case is treated by the party theorem (Theorem 1).

A.8.1 No-transfer (NT) regions

We first characterize a typical NT region PNT , working with the agents’ Euler equations (28)

and (17), in which all terms inG andG′ are set to zero. This yields a system of two non-linear

ODEs of first order for the consumption policies C(·) and C ′(·) on PNT .

In order to learn more about the properties of such regions, it will be useful to study

steady states of the economy inside a NT region. To do this, we first express the law of

motion for P in terms of (c, c′), i.e. consumption policies out of agents own assets (k,k′):

Ṗ = P (1− P )(c′ − c).

This equation says that the asset distribution evolves in her favor if and only if he consumes

at a higher rate out of his own assets than she does. At a steady state P ∗, we must have

c′ = c = c∗. In section 3 of our supplemental material, we show that if c∗ 6= ρ (i.e. the

agents’ policies are not SS, which is a special case) we have

cP (P ∗) < 0, c′P (P ∗) > 0.

This implies that the dynamics in the NT region must be as depicted in figure 8: At P ∗, the

two consumption functions c and c′ intersect and the economy is in a steady state. To the

right of P ∗, he consumes more out of k′ than she consumes out of k, so that the economy

moves to the right. To the left of P ∗, the opposite is true. So P ∗ is an unstable steady state.

Furthermore, there cannot be a second steady state in PNT : If c and c′ intersected again,

by continuity of the consumption functions they would have to do so in a way violating the

steady-state dynamics derived above. This implies that the economy moves out of an NT

region from all but at most one point.36

36Technically, we need here that c − c′ is bound away from zero on the closure of PNT , which
is fulfilled if we consider the continuation of c and c′ on this closure. Also, we have to exclude
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Figure 8: Dynamics in the NT region

Proposition 6 (NT-regime transitory) Consider a no-transfer region that is not SS, in the

sense that {P ∈ PNT : c(P ) = c′(P ) = ρ} = ∅. Then, for all but at most one point

P ∗ ∈ PNT , the following holds: P0 ∈ PNT \ P ∗ implies Pt /∈ PNT for some t <∞.

This also means that if there is a smooth equilibrium that consists entirely of NT, i.e. PNT =

(0, 1), then one agent must own all assets in the economy at some point (for all but at most

one initial condition P0). We will see whether such an equilibrium can be supported in

section 3.4.

We now turn our attention to the case where an NT region borders the state where she

is broke: PNT = (0, P1). Because we have assumed that her consumption is bounded away

from zero if α′ > 0 (see assumption 1), it must be that he gives transfers when she is broke:

G(0) > 0. Since in this case her income tends to zero, the economy must also move towards

zero, i.e. Ṗlim ≡ limP→0 Ṗ < 0; thus, her being broke must be an absorbing state. However,

there are further implications.

A.8.2 Self-sufficient (SS) regions

A self-sufficient (SS) region PSS is one in which policies are equal to the SS policies CSS
and C ′SS defined in 3.1. This type of region is special because it is the only NT region that

can be absorbing: The law of motion is Ṗ = 0 for all P ∈ PSS , as we can see from (22).

Since all points are steady states, we can derive the value functions on PSS . The HJBs

the case that consumption rates approach the SS consumption rates at the boundaries of the region,
which is ensured by the reasoning in section 3.1 of our supplemental material. Studying this case is
mathematically more involved since we have to deal with a singularity in Euler equations.
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are

ρV (SS) = (1 + α)(ln ρ− 1) + lnP + α ln(1− P ),

ρV ′(SS) = (1 + α′)(ln ρ− 1) + ln(1− P ) + α′ lnP.

Taking the derivative in P gives us

ρV
(SS)
P =

1

P
− α

1 + P
, ρV

′(SS)
P =

−1

1− P
+
α′

P
.

In this case, the Euler equations and the FOCs contain the same information. Furthermore,

G = G′ = 0 implies the inequalities V (SS)
P ≥ 0 and V ′(SS)

P ≤ 0, from which we obtain the

restriction

P ∈
[

α′

1 + α′
,

1

1 + α

]
for all P ∈ PSS .

Thus, any SS region has to be contained in this interval. The intuition for this result is

very simple: If one player becomes too poor, the marginal utility of helping the other out

becomes higher than the marginal utility of her own consumption. Observe that the interval

corresponds to the region in the static altruism model with log-utility in which transfers are

zero. Finally, it shrinks to zero as altruism increases, and extends over the entire state space

as the parameter values approach the selfish ones.

The results are summarized in the following proposition:

Proposition 7 (SS region absorbing; bounds) For any SS region PSS , we have PSS ⊆
[ α′

1+α′ ,
1

1+α ], which is the region in which agents stay SS in the static altruism model with

log-utility. Also, Pt = P0 whenever P0 ∈ PSS .

Given our results on NT and SS regions, we can make an interesting observation regarding

patching together possible equilibria: If agents do not give transfers to each other from some

initial point P0 on, then the path Pt must end up in an SS region, since NT regions are tran-

sitory (that is, unless they started exactly from an unstable steady state inside an NT region).

A.8.3 Flow-transfer (FT) regions

In the second class of regions, PFT , transfers are given in the form of a flow. As we will see

now, in such regions players’ consumption rates must be constant, transfers are governed by

a simple ODE, and FT regions must be transitory.

Consider an open interval PFT on which she gives transfers, that is, G > 0 for all P ∈
PFT ; he might or might not give (flow) transfers. Obviously, G > 0 implies VP = 0. Her
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FOC (27) then says that her consumption throughoutPFT has to beC = CWP . Furthermore,

her HJB (25) implies that his consumption C ′ must also be constant on PFT . Otherwise, if

C ′ would vary, so would the function α lnC ′ − C ′[(1 + α)/ρ − PVP ], violating her HJB

(note that all other terms of her HJB are constant in P ).37

Now, his Euler equation (17) says that

V ′P (ρ− CWP − C ′ +GP ) = 0.

Observe that GP enters his Euler equation with the same sign as does ρ (impatience). Thus,

setting transfers increasing in P , creates a disincentive to save. On the flip side, setting

transfers decreasing in P , i.e. increasing in his wealth share, provides incentives to save. As

intuition suggests, rewarding thrift induces savings.

His Euler equation leads to the following two relevant cases:

1. V ′P = 0: Then, C = C ′ = CWP on P and transfers are indeterminate – we might

indeed have G′ > 0.

2. V ′P < 0: His transfers are zero throughout PFT .

In the first case PFT would be a WP region, a region that we will study separately below

in A.8.4.

From now on, we will refer to the second case as FT-regions, that is, a region where only

one player gives transfers. His Euler equation then says

GP = CWP + C ′ − ρ = C ′ − α

1 + α
ρ︸ ︷︷ ︸

=αCWP

. (29)

Think of it in the following way: It tells her the GP that is needed to induce some consump-

tion rate C ′ for him. The lower the recipient’s consumption rate the donor wants to induce,

the lower GP has to be, i.e. the more she must make transfers increasing in his wealth share

to provide strong-enough incentives to save.

Also, note that the last expression in (29) involves αCWP , which is the consumption rate

that she would choose for him, if she could do so. If she wants him to consume this desired

amount, she must make transfers invariant in his wealth. If she makes them increasing in his

assets (i.e. GP < 0), then he will consume below this desired rate. This under-consumption

will actually be part of the class of equilibria we find in section 3.3.

37We would arrive at the same conclusion by studying her Euler equation.
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Furthermore, his Euler equation (29) is a very simple ODE for G(·) – it tells us that the

slope of G(·) is constant on PFT . Since C and C ′ are constant on PFT , this is the only

ODE we have to solve when provided with boundary values G(Pi) and C ′(Pi) to determine

policies throughout PFT
Finally, we state the following result which tells us that FT regions are always transitory

(except for points with measure zero on the state space), which seems intuitive:

Proposition 8 (FT-regime transitory unless WP) Consider a flow-transfer regionPFT that

is not of wealth-pooling type, i.e. C = CWP and C ′ 6= C ′WP . Then, for all but at most one

point P ∗ ∈ PFT the following holds: P0 ∈ PFT \ P ∗ implies Pt /∈ PFT for some t <∞.

Proof: Using the results from above for the law of motion Ṗ on PFT , we obtain that the law

of motion is a linear function of P on PFT :

d

dP
Ṗ = 2(CWP + C ′)− ρ = const.

Note that if Ṗ < 0 or Ṗ > 0 throughout PFT , the region is obviously left. Also, if d
dP Ṗ > 0

and the economy has a steady state for some P ∗ in the region, the dynamics are unstable and

the region is left for all P 6= P ∗. So we only have to rule out the case d
dP Ṗ ≤ 0.

If this was the case, the dynamics would be stable and we would stay inside the region

starting from any initial state. Since both consumption rates are constant inside the region,

consumption rates would be the same constants for all time. But this implies that both agents

obtain the same continuation value starting from any P0 ∈ PFT , meaning that their value

functions are constant onPFT . But this would mean thatPFT is of WP-type and the recipient

should play WP-consumption too, a contradiction to our assumptions. �

A.8.4 Wealth-pooling (WP) regions

As mentioned above, we now treat the case of WP regions separately.

In a WP region, PWP , consumption policies are given by C = CWP and C ′ = C ′WP .

Both value function must be flat, i.e. VP = V ′P = 0 throughout PWP . Transfers are in-

determinate. As was the case for SS regions, we can actually back out the value functions

on PWP . Her HJB (25) tells us that this value function must be the same as in the WP model

we studied in section 3.1:

ρV (WP ) = lnCWP + α lnC ′WP − (CWP + C ′WP )
1 + α

ρ
= const,
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We now establish that there can be at most one WP region. Suppose that there were two

(or more) such regions. Observe that players value functions must be equal to the constants

V (WP ) and V ′(WP ) in both (or all) WP-regions. Since the value functions are globally

monotonic by proposition 3, it must be that the value functions are also equal to the wealth-

pooling level between both (all) WP-regions for both players. Then, we also have VP =

V ′P = 0 and thus C = CWP as well as C ′ = C ′WP in between, so we can pool both (all)

WP-regions into one large WP-region.38

Finally, since transfers are indeterminate, the dynamics Ṗ are not restricted. We con-

clude:

Proposition 9 (At most one WP-region: Absorbing or transitory) There can be at most

one wealth-pooling region PWP in equilibrium. It can be absorbing or transitory.

A.8.5 Mass-transfer regions (MT)

The last type of region that remains to be characterized is the mass-transfer (MT) type:

PMT = [Pi−1, Pi]. It will again become apparent that allowing for mass transfers enables us

to make interesting formal statements using relatively simple arguments. Our concept of best-

responding over short horizons will allow us to pin down consumption policies (“threats”)

inside PMT that are credible, in the spirit of subgame perfection.

Suppose she gives the mass transfer: G(P ) = (Pi − P )δ for all P ∈ PMT . Since PMT

is left instantaneously, we have V (P ) = V (Pi) and V ′(P ) = V ′(Pi) for all P ∈ PMT ;

this implies VP = V ′P = 0 throughout PMT . However, one may argue, that because no

time is spent in PMT , the consumption policies in this region should not matter since they

never enter the agents’ criterion. But this kind of reasoning opens the door to the following

unreasonable “suicide threats”: He could threaten to eat nothing in PMT ,39 which would

force her to give a mass transfer if the economy started anywhere at P0 ∈ PMT . After all,

if she did not give the transfer, she would obtain utility of minus infinity. But his threat is

clearly not credible, i.e. it is not in the spirit of subgame perfection.

We will now see how our equilibrium concept rules out this kind of blackmailing. Equa-

tion (26) tells us that policies have to be reasonable in the following sense: If a small amount

of time is spent in PMT before the recipient is “shot” out of the region, then the recipient’s

38There might also be a mass-transfer (MT) region between two WP regions, but this would induce
the same consumption behavior over time within the large region and thus not constitute an essential
difference to a pure WP region. So we would still call the large region WP in our language.

39Technically, we have ruled this out with assumption 1, so the reader may replace the word “noth-
ing” by ε: The only important point is that ε must be small enough so that her utility is pressed below
the levels she would obtain in the event of giving in to his threat.
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consumption policy should still be optimal. In the previous example this means that he would

obtain flow utility of minus infinity over ∆t when carrying out the suicide threat, which he

would clearly avoid.40 In order to determine the optimal consumption plan inside PMT ,

players have to take into account the marginal value of assets at the point they are shot to, i.e.

Pi, as explained in the lollipop example in section 1.2.

A.9 No smooth equilibria

We first show that there cannot be any equilibrium consisting of a single FT or MT region

unless α = α′ = 1. To see why suppose that she is the donor in such an equilibrium.

Clearly, she would set C = CWP throughout. But he would not tolerate this when he has the

power to do so. By an argument analogous to the one we saw in the prodigal-son dilemma

(theorem 2), he would set the transfer lower than her WP consumption at P = 0; or formally:

C∗(0) = G(0) = α′ρ
1+α′ ≤

ρ
2 ≤

ρ
1+α = CWP , where one of the inequalities is strict if

α+ α′ < 2.

We are left with the possibility that there is an equilibrium consisting of a single NT re-

gion, but this case has been ruled out in section 3.4.

We have now ruled out smooth equilibria that consist of one type of region. However,

there might still be patched equilibria that are smooth on the boundaries in the sense that

policies are continuously differentiable. Note that this cannot happen between FT and NT re-

gions since transfer functions are linear and positive on FT but zero on NT. It could however

be that NT regions smoothly turn into WP regions (recall that transfers are indeterminate in

those). Since there can only be one WP region (proposition 9), it must be that this WP region

is then enclosed by two NT-regions which extend to the boundaries of the state space. But

now again the problem of 4 boundary conditions for 2 ODEs arises, and we cannot expect

to find equilibria generically. As before, we did not find such an equilibrium in numerical

calculations.

To sum up, while we can be fairly sure that there exist no smooth equilibria, we cannot

provide a formal proof for this statement since there might exist non-generic exceptions.

40Note that the equilibrium candidate of both players eating nothing is ruled out by our assumption 1
that consumption policies are bound away from zero.
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A.10 Construction of the tragedy-of-the-commons-type equilib-
rium

Here we construct the FT’-WP-FT equilibrium formally. There are three regions: PFT ′ =

[0, P1) (he gives flow transfers), PWP = [P1, P2] (wealth-pooling) and PFT = (P2, 1]

(she gives flow transfers). By the properties of the respective regions (see sections A.8.3

and A.8.4), we have C = CWP on PWP ∪PFT and C ′ = C ′WP on PFT ′ ∪PWP . It remains

to pin down transfers in all regions and recipients’ consumption in the FT regions.

First, we will determine her consumption CFT ′ on PFT ′ . Define J(C) = α′ lnC −
C 1+α′

ρ . Value-matching at P1 (i.e. continuity of his value function, see lemma 4) and the

HJBs imply that CFT must solve

J(CFT ) = α′ lnCFT − CFT
1 + α′

ρ
= α′ lnCWP − CWP

1 + α′

ρ
= J(CWP ) (30)

One solution to this equation is obviously CFT = CWP . However, this would mean that FT

is also a WP-region, which is inconsistent with our construction. If α′ > 0, then there is

also a second solution to (30). Since J(·) is then concave, uniquely maximized at α′CWP

and limC→0 J(C) = −∞, there must exist exactly one further solution CFT ∈ (0, α′CWP ),

where she under-consumes in his eyes.41 This solution is linear in ρ, as is easily verified:

Let CFT (1, α, α′) denote the lower solution to (30) for ρ = 1 and given (α, α′). Then

CFT (ρ, α, α′) = ρCFT (1, α, α′) solves (30) for any ρ > 0. For him, we can obtain a

solution C ′FT (1, α, α′) on PFT in the same fashion if α > 0.

To pin down transfers on PFT ′ , we now use her value-matching condition at P1. Define

L(C) = lnC− 1+α
ρ C and notice that the terms in C ′ cancel out since C ′ is continuous at P1

to find

L(CFT ) +
[
P1C

′
WP − (1− P1)CFT +G′1

]
V

(FT ′)
P = L(CWP )

where we define G′1 = limP→P1 G
′(P ) and where V (FT ′)

P denotes the slope of her value

function on PFT ′ . We can now solve for G′1:

G′1 =
L(CWP − L(CFT )

V FT ′
P

+ CFT − P1(CWP + CFT ).

Notice that G′1 can always be made positive when letting P1 → 0: The first term on the

right-hand side is positive since L is maximized at CWP (and finite since V FT ′
P > 0, i.e. FT’

is not WP), the second term CFT is also positive and the last term can be made arbitrarily

41This second solution coincides with the first one in the case α = α′ = 1: Then, CFT ′ = CWP .
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small when P1 becomes small.

We can now use her FOC for consumption (27) to eliminate the derivatives VP and solve

for transfers at the boundary P1 as a function of CWP and CFT only:

G′1 =(1− P1)ρ
(1 + α)CFT (1, α, α′)− lnCFT (1, α, α′)− 1− ln(1 + α)

1
CFT (1,α,α′) − (1 + α)︸ ︷︷ ︸

≡K(α,α′)

+ (31)

+ CFT − P1(C ′WP + CFT ). (32)

Transfers on the remainder of PFT ′ can then be backed out from the ODE for transfers in FT-

regions (29); note that they always must be increasing in P since the recipient’s consumption

is lower than the level desired by the donor.

It remains to check that the transfers we found are such that the recipient’s consumption

plan is feasible: We need G′(0) ≥ CFT ′ . First, note that for the limiting case when the

boundary approaches zero (P1 = 0), we always have G′1 > CFT , as we can see from

equation (30) and using the fact that K(α, α′) > 0, as argued before. By continuity, there

must thus always be some small-enough P1 > 0 such that G′(0) ≥ CFT . Since the right-

hand side of (31) is linearly decreasing in P1, we can back out the maximally-possible P1

that can sustain a FT-WP equilibrium from the equation

G′(0) = G′1(Pmax)−G′PPmax = CFT .

Using (31) and (18), we find that this value is independent of ρ and given by

Pmax(ρ, α, α′) =
K(α, α′)

K(α, α′) + 1
, (33)

where K(α, α′) > 0 is defined in (31). Figure 9 shows Pmax as a function of (α, α′). We

see that the largest range of equilibria can be supported when he is very altruistic and she is

selfish. As is to be expected, the range of equilibria that can be supported becomes extremely

small when the donor’s (his) altruism approaches zero.

Finally, observe that best responding at the kink P1 is unproblematic: We set both con-

sumption policies at their WP-levels and his transfer such that the economy is steered into

the WP-region. Since his value function is flat in both directions, C ′(P1) = C ′WP and any

G′(P1) ≥ 0 are clearly optimal. For her, C(P1) = CWP is optimal since it is the global

maximum of the Hamiltonian for any VP , as is easily verified. Transfers inside PWP are

indeterminate. This establishes theorem 3.
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Figure 9: Maximal boundary in FT-WP-equilibrium

A noteworthy feature of this equilibrium is the following: Since transfers G′ are linearly

increasing in P on FT, we see from the law of motion for P in (24) that Ṗ linearly increases

in P . This means that the economy is moving out of FT at increasing speed as she becomes

richer. If P1 < Pmax, then the equilibrium is such that FT is left in finite time for any starting

value P0, even when P0 = 0. For P1 = Pmax, however, the initial time spent in FT increases

without bound as P0 → 0 and is indeed infinite when P0 = 0: Then Ṗ = 0 and the economy

is stuck at P = 0 forever.

A.11 Transfer-to-SS structure

Lemma 2 Suppose that α′ > 0. If there is an SS regionPSS = ( α′

1+α′ , P2), then there cannot

exist a flow-transfer region PFT ′ = [0, α′

1+α′ ) in equilibrium. Analogously, supposing that

α > 0, if there is an SS region (PN−2,
1

1+α), then there cannot exist a flow-transfer region

PFT = ( 1
1+α , 1].

Proof: His value-matching condition at α′

1+α′ implies that her consumption in the FT-region

is CFT = α′ρ
1+α′ . Then, her value-matching condition implies that G′( α′

1+α′ ) = 0. The ODE

for transfers in a FT-region implies that G′P = 0 throughout PFT ′ , which in turn implies

G′(0) = 0. But this makes her consumption zero at P = 0, which means he is clearly not

best-responding. �

We cannot show formally that G′(0) ≤ 0 when we set the lower boundary of PSS higher

than α′

1+α′ . Numerical exercises show that indeed we always have G′(0) ≤ 0 on the entire
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square (α, α′) ∈ (0, 1)2.42 Figure 10 shows the implied G′(0) for the symmetric case α =

α′ ∈ (0, 1) for all possible boundaries Pkink ∈ [ α
1+α ,

1
2 ].

Figure 10: Implied G′(0) with FT-SS structure
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