
The War of Information†

Wolfgang Pesendorfer

and

Wolfgang Pesendorfer

Princeton University

November 2006

Preliminary Draft. Do not quote.

Abstract

Two advocates with opposing interests provide costly information to a voter who must

choose between two policies. Players are symmetrically informed and information flows

continuously as long as either advocate is willing to uncur its cost. In the unique subgame

perfect equilibrium, an advocate’s probability of winning is decreasing in his cost. When

costs are different, increasing the low-cost advocate’s cost benefits the voter. We analyze

court proceedings with our model and show that the optimal burden of proof favors the

high-cost advocate. If one advocate is informed, equilibrium yields a signaling barrier, a

threshold that bounds the voter’s beliefs no matter how much information is revealed.

† Financial support from the National Science Foundation is gratefully acknowledged.



1. Introduction

A political party proposes a new policy, for example, a new health care plan. Opposing

interest groups provide information to convince voters of their respective positions. This

process continues until until polling data suggest that voters decisively favor or oppose

the new policy. The health care debate during the Clinton administration and the social

security debate during the Bush administration are prominent examples of this pattern.

In this paper, we analyze a model of competitive advocacy that captures salient fea-

tures of such political campaigns. We assume that advocates provide hard and unbiased

information. Our analysis focuses on the trade-off between information costs and the

probability of convincing the median voter.

Advocates often distort facts or try to present them in the most favorable light. Pre-

sumably, voters understand advocates incentives and interpret their information accord-

ingly. We ignore the details of the inference problem confronting the median voter and take

as our starting point the resulting unbiased information. Our aim is to study the strategic

interaction between two competing advocates. The underlying uncertainty is about the

median voter preferences. Specifically, we assume that there are two states, one in which

the median voter prefers advocate 1’s policy and one in which he prefers advocate 2’s

policy.

We first analyze the symmetric information case. All players are uncertain about

the voter’s preferences and learn as information about the policies is revealed. Hence,

we assume that both advocates know the median voter’s beliefs throughout the game.

Underlying this assumption is the idea that advocates take frequent opinion polls that

inform them of the median voter’s beliefs. Alternatively, players may learn about an

objective state that determines the median voter preferences.

We model the information flow as a continuous-time process. As long as one of the

advocates provides information, all players observe a Brownian motion with unit variance

and a state-dependent drift. The game stops when no advocate is willing to incur the cost

of information provision. At that time, the median voter picks his preferred policy based

on his final beliefs. We refer to this game as the “war of information.”
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The war of information differs from a war of attrition in two ways. First, in a war of

information, players can temporarily quit providing information (for example, when they

are ahead) but resume at a later date. In a war of attrition, both players incur costs as long

as the game continues. Second, the resources spent during a war of information generate

a payoff relevant signal. If the signal were uninformative and both players incurred costs

for the entire game, then the war of information would become a war of attrition with a

public randomization device.

We show that the war of information has a unique subgame perfect equilibrium. In

that equilibrium, each advocate chooses a belief threshold and stops providing information

if the the current belief is less favorable than this threshold. Let pt denote the belief

that advocate 1 offers the better policy. The median voter prefers advocate 1’s policy if

pt > 1/2 and 2’s policy if pt ≤ 1/2. Then, there are belief thresholds r1 < 1/2 < r2 such

that advocate 1 provides information if pt ∈ [r1, 1/2] and advocate 2 provides information

if pt ∈ [1/2, r2]. The game ends at time t if pt = r1 or pt = r2. In the latter case, the voter

chooses policy 1 (advocate 1 wins) and in the former case the voter chooses policy 2.

The belief thresholds can be determined as the equilibrium outcomes of a static game,

the simple war of information. The simple war of information is formally equivalent to a

Cournot duopoly game with a unique Nash equilibrium. Viewed as a game between two

advocates, the simple war of information is a game of strategic substitutes. Increasing

advocate i’s cost make i’s less aggressive and j more aggresive. An advocate with a low

cost of information provision is more likely to win the political contest for two reasons.

First, the lower cost implies that the advocate chooses a more aggressive belief threshold.

Second, the advocate’s opponent will choose a less aggressive belief threshold. Both of

these effects will increase the probability that the low cost advocate wins the campaign.

The campaing’s informativeness deteremines the voter’s equilibrium utility. A very

informative campaign increases the voter’s accuracy while an uninformative campaign

forces the voter to make a decision with little information. From the voter’s perspective,

the advocates’s thresholds are complements: a more aggressive advocate raises the voter’s

marginal benefit from a more aggressive threshold of his opponent. Hence, voters are best

served by balanced campaigns. If one advocate’s information cost is very high, lowering

the other advocate’s cost does not help the voter.
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Propositions 3 and 4 describe how changing advocates’ costs affects voter utility. We

interpret these flows as the cost of continuing the information campaign. For example,

these could be the cost of raising funds during an election campaign. US Election laws

limit the amount of money an individual donor can give. Hence, such laws raise the cost of

campaigning. Consider the case of two advocates with an equally large group of supporters.

If advocate 1’s supporters are wealthier than advocate 2’s, then advocate 1 has a lower cost

of campaigning. Moreover, limiting the maximum donation will disproportionably affect

advocate 1. Hence, we can interpret US campaign finance regulations as raising the cost

of the low-cost advocate.

Propositions 3 and 4 identify situations where raising advocates’ costs can increase

the median voter’s utility. Raising advocate 1’s cost raises both advocates’ thresholds.

Advocate 1 becomes less aggressive (r1 moves closer to 1/2) and advocate 2 becomes more

aggressive (r2 moves away from 1/2). For any advocate 2 cost k2, there is a f(k2) such

that when 1’s cost k1 is less than f(k1), increasing k1 benefits the median voter, while if

k1 > f(k1), increasing k1 hurts the median voter. Increasing the high cost advocate’s cost

is never benefical (i.e., f(k2) < k2). Hence, when costs are sufficiently asymmetric, taxing

the low cost advocate increases voter utilty.

It may not always be feasible to discriminate between advocates. Proposition 5 asks

whether taxing both advocates can be beneficial. We show that when the asymmetry

between candidates is sufficiently large, raising both advocates’ costs benefits the voter.

These results provide a rationale for limiting campaign spending even when campaigns

offer undistorted hard information that is useful to voters. In particular, such regulations

can increase voters’ utility when one advocate has a substantial advantage.

The war of information can also be used to analyze court proceedings. In this interpre-

tation, player 3 is a trier of fact (judge or jury) and the advocates seek a favorable verdict.

During a trial, advocates expend resources to generate information. In this context, we

may interpret the (median) juror’s decision rule as one advocate’s burden of proof. We

interpret the burden of proof as a policy variable. We ask how the burden of proof should

to maximize a trial’s informativeness given a symmetric objective function. Suppose the

payoff is 1 if the advocate with the correct position wins and zero otherwise. The burden
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of proof specifies a threshold π such that advocate 1 wins if the juror’s final belief is above

π and advocate 2 wins if this belief is below π. We compute the optimal burden of proof

and show that it favors the high cost advocate. Moreover, if both advocates are equally

likely to be correct ex ante, then the optimal burden of proof renders a verdict for the high

cost advocate more likely than a verdict for his opponent. Hence, the optimal burden of

proof more than offsets the disadvantage of the high cost candidate.

Section 5 considers the war of information with asymmetric information. We assume

that advocate 1 knows the state while advocate 2 does not. For example, suppose that the

informed advocate is a defendant who knows whether he is liable or not. The jury rules

for the plaintiff if the probability that the defendant is liable is greater than 1/2.

We focus on a particular equilibrium in which the innocent defendant never gives

up. In that equilibrium, the prosecutor behaves as in the symmetric information case: he

sets a threshold r2 > 1/2 and quits when the belief (of the jury) reaches r2. The guilty

defendant also sets a threshold r1 < 1/2. When the belief reaches the threshold r1, the

guilty defendant randomizes. He drops out at a rate that exactly compensates for any

further evidence of guilt. Hence r2 acts as a signaling barrier, i.e., beliefs never drop below

r2. A consequence of the signaling barrier is that even after a long trial that reveals strong

evidence of liability the jurors’ posterior remain favorable to the defendant as long as he

continues with the trial.

In this equilibrium, the defendant gets acquitted with probability 1 whenver he is not

liable irrespective of the players’ costs. The probability of a wrong verdict favoring the

defendant depends on the on the plaintiff’s cost but not on the defendant cost. If the

defendant’s cost goes up, the trial ends quicker but is equally informative.

1.1 Related Literature

The war of information is similar to models of contests (Dixit (1987), and rent seeking

games (Tullock (1980)). The key difference is that in a war of information resources

generate decision-relevant information for the voter/juror.

The literature on strategic experimentation (Harris and Bolton (1999, 2000), Cripps,

Keller and Rady (2005)) analyzes situations where agents incur costs to learn the true state
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but can also learn from the behavior of others. This literature focuses on the resulting free-

rider problem. In our paper, as in Harris and Bolton (1999), the signal is a Brownian motion

with unknown drift.1 However, the war of information induces different incentives. In the

war of information, advocates benefit from a low cost beyond the direct cost saving because

a low cost deters the opponent from experimenting. In the strategic experimentation

literature, lower costs facilitate opponents’ free-riding.

Yilankaya (2002) also provides an analysis of the optimal burden of proof. His model

assumes an informed defendant, an uninformed prosecutor, and an uninformed judge. Yi-

lankaya’s model is static; that is, advocates commit to a fixed expenditure at the beginning

of the game. Yilankaya explores the trade-off between an increased burden of proof and

increased penalties for convicted defendants. He shows that an increased penalty may lead

to larger errors, i.e., a larger probability of convicting innocent defendants or acquitting

guilty defendants. In our model, an increased penalty is equivalent to a lower cost for the

defendant. Our analysis shows that if the defendent is informed, chaning the defendent’s

cost does not affect the trial’s accuracy.

2. The Simple War of Information

The War of Information is a three-person, continuous-time game. We refer to players

1 and 2 as advocates and player 3 as the voter. Nature endows one of the advocates with

the correct position. Then, the advocates decide whether or not to provide information

about their positions. Once the flow of information stops, the voter chooses an advocate.

The voter’s payoff is 1 if he chooses the advocate with the correct position and 0 otherwise.

An advocate receives a payoff of 1 if his policy is chosen and 0 otherwise. Advocate i incurs

a flow cost ki/4 while providing information.

Let pt denote the probability that the voter assigns at time t to advocate i having

the correct position and let T denote the time at which the flow of information stops.

Hence, choosing player 1’s is optimal if and only if pT ≥ 1/2 is optimal for the voter.

Conversely, choosing player 2’s is optimal if and only if pT ≤ 1/2. Define functions

Ii : [0, 1] → [0, 1], i = 1, 2 as follows: I1(x) = x and I2(x) = 1 − x. We say that player i is

1 Moscarini and Smith (2001) analyze optimal experimentation in a decision problem with Brownian
information.
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trailing at time t if ruling for his opponent would be the unique optimal action for player

3 if the game were to end at time t. Hence, i is trailing at t if and only if

Ii(pt) < 1/2 (1)

We assume that only the player who is trailing at time t provides information.2 Hence,

the game stops whenever the trailing player quits. We say that the game is running at

time t, if at no τ ≤ t a trailing player has quit. As long as the game is running, all three

player observe the process X, where

Xt = µt + Zt (2)

and Z is a Wiener process. Hence, X is a Brownian motion with drift µ and variance 1. We

set X0 = 0 and assume that no player knows µ and all three players assign probability 1/2

to each of the two outcomes µ = 1/2 and µ = −1/2. We identify µ = 1/2 with advocate

1 holding the correct position, while µ = −1/2 means that advocate 2 holds the correct

position. Let

p(x) =
1

1 + e−x
(3)

for all x ∈ IR; for x = −∞, we set p(x) = 0 and for x = ∞, we set p(x) = 1. A

straightforward application of Bayes’ Law yields

pt := Prob{µ = 1/2 |Xt} = p(Xt)

and therefore, i is trailing if and only if

(−1)i−1Xt < 0 (4)

Hence, providing costly information gives the trailing advocate a chance to catch up.

In this section, we restrict both advocates to stationary, pure strategies. We call the

resulting game the simple war of information. In the next section, we will show that this

restriction is without loss of generality. A stationary pure strategy for player 1 is a number

2 This assumption is discussed at the end of section 3. The equilibria analyzed below remain equilibria
when players are allowed to provide information when ahead.
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y1 < 0 (y1 = −∞ is allowed) such that player 1 quits providing information as soon as

X reaches y1. That is, player 1 provides information as long as Xt > y1 and stops at

inf{t |Xt = y1}. Similarly, a stationary pure strategy for player 2 is an extended real

number y2 > 0 such that player 2 provides information if and only if 0 < Xt < y2 and

stops as soon as Xt = y2(t). Let

T = inf{t > 0 |Xt − yi = 0 for some i = 1, 2} (5)

if {t |Xt = yi for some i = 1, 2} �= ∅ and T = ∞ otherwise. Observe that the game runs

until time T . At time T < ∞, player 3 chooses player i if and only if XT = yj for j �= i.

If T = ∞, we let pT = 1 and assume that both players win.3 Let y = (y1, y2) and let v(y)

denote the probability that player 1 wins given the strategy profile y; that is,

v(y) = Prob{pT > 1/2}

More generally, the probability of player i winning is:

vi(y) = Ii(v(y)) (6)

To compute the advocates’ cost given the strategy profile y, define C : [0, 1] → {0, 1} such

that

C(s) =
{

1 if s < 1/2
0 otherwise

then, the expected information cost of player i given the strategy profile y is

ci(y) =
ki

4
E

∫ T

0

Ii(C(pt))dt (7)

Note that the expectation is taken both over the possible realizations of µ and the possible

realizations of W . Then, the advocates’ expected utilities are

Ui(y) = vi(y) − ci(y) (8)

3 This specification of payoffs for T = ∞ has no effect on the equilibrium outcome since staying in the
game forever is not a best responses to any opponent strategy for any probability of winning. We chose
this particular specification to simplify the notation and exposition.
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while the voter’s expected utility, (i.e.,, the accuracy of the campaign) is:

U3(y) = E[max{pT , 1 − pT }] (9)

It is more convenient to describe behavior and payoffs as functions of the following

transformations of strategies. Let

αi = (−1)i−1
(
1 − 2p(yi)

)
Hence, α1 = 1 − 2p(y1) ∈ [0, 1] and α2 = 2p(y2) − 1 ∈ [0, 1]. For both players, higher

values of αi indicate a greater willingness to bear the cost of information provision. If αi

is close to 0, then player i is not willing to provide much information; he quits at yi close

to 0. Conversely, if αi = 1, then player i does not quit no matter how far behind he is (i.e.,

y1 = −∞ or y2 = ∞). Without risk of confusion, we write Ui(α) in place of Ui(y), where

α = (α1, α2) ∈ (0, 1]2. Lemma 1 below describes the payoffs associated with a stationary,

pure strategy profile given optimal voter behavior:

Lemma 1: For any α = (α1, α2), the payoffs for the three players are as follows:

Ui(α) =
αi

α1 + α2

(
1 − kiαj ln

1 + αi

1 − αi

)
U3(α) =

1
2

+
α1α2

α1 + α2

where i, j ∈ {1, 2}, j �= i. If αi = 1, then Ui(α) = −∞.

Lemma 2 below utilizes Lemma 1 to establish that player i’s best response to αj is

well-defined, single valued, and differentiable. Furthermore, the simple war of information

is dominance solvable. In section 3, we use this last fact to show that the war of information

has a unique subgame perfect Nash equilibrium even if nonstationary and mixed strategies

are permitted.

The function Bi : (0, 1] → (0, 1] is advocate 1’s best response function if

U1(B1(α2), α2) > U1(α1, α2)
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for all α2 ∈ (0, 1] and α1 �= B1(α2). Advocate 2’s best response function is defined in

an analogous manner. Lemma 2 below establishes that best response functions are well-

defined. Then, α1 is a Nash equilibrium strategy for advocate 1 if and only if it is a

fixed-point of the mapping φ, where φ(α1) = B1(B2(α1)). Lemma 2 below ensures that φ

has a unique fixed-point.

Lemma 2: There exists differentiable, strictly decreasing best response functions Bi :

(0, 1] → (0, 1] for both advocates. Furthermore, if α1 ∈ (0, 1) is a fixed-point of φ, then

0 < φ′(α1) < 1.

Proposition 1: The simple war of information has a unique Nash equilibrium.

Our first comparative statics result, Proposition 2, describes how equilibium behavior

changes as costs change. Part (i) establishes that increasing an advocate’s cost makes the

advocate less aggressive and his opponent more aggressive. It follows from (i) that an

advocate’s own equilibrium payoff is decreasing in his own cost. Part (ii) observes that as

an advocate cost approaches 0, he becomes infinitely aggressive, that is, he is willing to

provide information no matter how unfavorable Xt becomes. Conversely, part (iii) shows

that as an advocates cost approaches ∞, he is willing to provide no information.

Proposition 2: Let α = (α1, α2) be the unique equilibrium of the simple war of infor-

mation. Then,

(i)
∂αi

∂ki
< 0 and

∂αi

∂kj
> 0

(ii) lim
kn

αi = 1 whenever kn
i → 0

(iii) lim
kn

αi = 0 whenever kn
i → ∞

for i = 1, 2 and j �= 1.

A corollary of Propositions 1 and 2 is that every interior strategy profile α ∈ (0, 1) ×
(0, 1) is the equilibrium for some cost parameters (k1, k2), ki > 0.

Corollary 2: Let α = (α1, α2) ∈ (0, 1) × (0, 1). There exist (k1, k2) such that α is the

equilibrium of the simple war of information with costs (k1, k2).
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2.1 Taxing Advocates

Our next result (Proposition 3) provides conditions under which campaign accuracy

improves as costs increase. Call i the better advocate if ki < kj for j �= i and call i

the worse advocate if ki > kj for j �= i. Proposition 3 shows that an increasing the worse

advocate’s cost always reduces accuracy. By contrast, increasing the better advocate’s cost

increases accuracy provided the costs are sufficiently different. When the the advocates’s

costs are close, increasing the better advocate’s cost reduces accuracy.

Let U∗
3 (k1, k2) be player 3’s equlibrium payoff if the costs are (k1, k2).

Proposition 3: There exists a continuous, function f : IR → IR with f(r) = 0 for

r ≤ r̄ < ∞, f strictly increasing at r > r̄, f(r) < r, and f → ∞ as r → ∞ such that

(k1 − f(k2))
dU∗

3 (k1, k2)
dk1

< 0

for k1 �= f(k2).

The corollary below restates Proposition 3 as follows: when the advocates’ equilibrium

strategies are similar, increasing either cost hurts the voter. Conversely, when one advocate

is much more aggressive than the other, increasing the more aggressive advocate’s cost

benefits the voter while increasing the less aggressive candidate’s cost hurts the voter.

Let g : (0, 1] → (0, 1] be such that g(z) satisfies

g(z) =
z2

2(z + g(z))
·
[
1 − g(z)2 +

(1 − g(z)2)2

2g(z)
ln

(
1 + g(z)
1 − g(z)

)]
It is straightforward to show that g is well defined, continuous, and strictly increasing with

z > g(z) and g(z) → 0 as z → 0. Moreover, g(1) is approximately 0.48. Figure 1 below

depicts the graph of the function g.

—- Insert Figure 1 here ———

Corollary 3 below follows from Propositions 2 and 3: Let (α1, α2) be the unique

equilibrium stategy profile given the costs (k1, k2). Then, increasing advocate 1’s cost

benefits the voter if α2 < g(α1) and hurts the voter if α2 > g(α1).
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Corollary 3: If g(α1) �= α2, then

(g(α1) − α2)
dU∗

3 (k1, k2)
dk1

> 0

Propositions 3 and 4 examine the case where only one advocate is taxed. In some

cases, such a discriminatory tax may be infeasible. The next proposition shows that

even a uniform tax on information provision can be beneficial provided that the high cost

advocate has sufficiently high cost. Let α = (α1, α2) be the equilibrium of the simple war

of information with costs (k1 + t, k2 + t).

Proposition 4: For every k1, there is k̄2 such that for k2 > k̄2

dU∗
3 (k1 + t, k2 + t)

dt

∣∣∣
t=0

> 0

Propositions 4 follows form Proposition 3 and Corollary 3: observe that a small in-

crease in k2 has negligible effect compared to a small increase in k1 when k2 is large.

2.2 The Value of Campaigns

We have assumed that the states have equal prior probability. To deal with an arbi-

trary prior π, we can choose the initial state X0 = x0 so that p(x0) = π. The equilibrium

strategies are unaffected by the choice of the initial state and hence if (α1, α2) is the

equilibrium for X0 = 0, then (α1, α2) is also an equilibrium for X0 = x0.

If π �= 1/2 (the threshold for player 3), then one of the advocates may quit immediately.

In particular, let α = (α1, α2) denote the equilibrium strategies. If

π ≤ 1 − α1

2

then player 1 gives up immediately and player 3’s payoff is 1 − π > 1/2. Similarly, if

π ≥ 1 + α2

2
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then player 2 gives up immediately and player 3’s payoff is π > 1/2.

Without the campaign, player 3’s payoff is max{π, 1− π}. Therefore, the value of the

campaign for the voter is

V = U3 − max{π, 1 − π}

Proposition 5 describes the value of a campaign V as a function of the strategies. Its

corollary shows that V goes to 0 as ki goes to infinity.

Proposition 5: Let (α1, α2) be the equilibrium of the simple war of information.

(i) If π �∈
[
1−α1

2 , 1+α2
2

]
, then V = 0.

(ii) If π ∈
(

1−α1
2 , 1+α2

2

)
and π ≥ 1/2, then V = a1a2

a1+a2
+ a1

a1+a2
(1 − 2π).

Proof: Part (i) is obvious. For part (ii) let v be the probability that player 1 wins. Then,

v
1 + a2

2
+ (1 − v)

1 − α1

2
= π

To see this, note that player 1 wins if p(XT ) = 1−α1
2 and loses if p(XT ) = 1+α2

2 . The claim

then follows from the fact that the stochastic process p(Xt) is a martingale. Substituting

for v in

V = v
1 + a2

2
+ (1 − v)

1 + α1

2
− π

then yields the result

Corollary 5: If ki → ∞ for some i, then V → 0.

Note that if π > 1/2 and k2 is sufficiently large, then player 2 will quit immediately

and hence we are in the case of Proposition 5(i) so that V = 0. On the other hand, if

k1 → ∞, then Proposition 2(iii) implies that V → 0.

Proposition 5 and the Corollary illustrate the complementary value of the advocates

actions for voters. If one advocate gives up very quickly, then campaigns have no social

value. This is true, even if the campaign is informative, i.e., even if pT �= π.

2.3 Arbitrary Drift and Variance

In the simple war of information, the drift of Xt is µ ∈ {−1/2, 1/2} and the variance

is σ2 = 1. Also, the prior probability that µ = 1/2 is 1/2. We show in this section that

these assumptions are normalizations and hence are without loss of generality.
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First, we consider an σ2. We can rescale time so that each new unit corresponds

to 1
σ2 old units. Hence, the cost structure with the new time units is k∗ = σ2k, where

k = (k1, k2) is the cost structure with the old time units. Note also that the variance of

Xt with the new time units is 1. Hence, the analysis of section 1 applies after replacing k

with k∗.

Next, we consider arbitrary drifts but maintain the other assumptions. Consider

values of µ1, µ2 such that µ1 − µ2 > 0. By Bayes’ Law the conditional probability of

advocate 1 holding the correct position given Xt is:

pt =
1

1 + eA(t)

where A(t) = −(µ1 − µ2) + (µ1−µ2)(µ1+µ2)t
2 . The voter rules in favor of player 1 if pt ≥ 1/2;

that is, if

Xt ≥
µ1 + µ2

2
· t

Hence, player i is trailing whenever Ii(Xt − µ1+µ2
2 · t) < 0. When µ1 + µ2 �= 0, the voter’s

and hence the advocates optimal strategies will be time-dependent. Suppose player i quits

when Xt = Y i
t for Y i

t defined by

Y i
t = yi +

µ1 + µ2

2
· t (10)

for yi such that Ii(yi) > 0. Hence, the moment player i quits, (i.e., Xt = Y i
t ) we have

pt =
1

1 + e−yi

Thus, strategies (y1, y2) described in (10) are stationary in the sense that they are time-

independent functions of pt. Moreover, player i is trailing whenever Ii(Xt − µ1+µ2
2 · t) < 0.

Hence, the winning probabilities and the expected costs for the strategy profile (y1, y2) in

this game are the same as the winning probabilities and the expected costs associated with

y = (y1, y2) in the simple war of information and the analysis of section 1 applies.

Combining the arguments of this subsection establishes that Propositions 1-3 gener-

alize to the case of arbitrary µ1, µ2, and σ2 provided we replace ki with σ2ki

µ1−µ2
for i = 1, 2.
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Let δ = σ2

µ1−µ2
; hence 1/δ is the precision of the campaign. Then, we can state payoffs

associated with the profile α = (α1, α2) in the game with arbitrary σ2, µ1, µ2 as follows:

Ui(α) =
αi

α1 + α2

(
1 − kiαjδ ln

1 + αi

1 − αi

)
U3(α) =

1
2

+
α1α2

α1 + α2

(11)

where i, j ∈ {1, 2}, j �= i. If αi = 1, then Ui(α) = −∞ for i �= 3. Comparing (11) with the

payoffs for the simple war of information described in Lemma 1 reveals that the analysis

in the previous sections extends immediately to the case of general µ1, µ2, and σ2.

The parameter 1/δ measures the information’s precision. Proposition 6 below utilizes

(11) to establish the limits as δ converges to zero or infinity. Define h : IR+ → [0, 1] as

follows:

h(x) =
1
3x

(
x + 2

√
1 − x + x2 − 2

)
and note that h(1) = 1/3, h(0) = 0 and h → 1 as r → ∞.

Proposition 6: Let α = (α1, α2) be the unique equilibrium of the war of information

with the cost structure (k1, k2) and precision 1/δ. Then,

(i) lim
δn→0

Uj(α) = 1/2; lim
δn→0

U3(α) = 1

(ii) lim
δn→∞

Uj(α) = h(kj/ki); lim
δn→∞

U3(α) = 0

for i, j = 1, 2, j �= i.

Proposition 6 states that as the trial becomes very precise, the juror always makes

the correct decision and the advocates information costs vanish. As the trial becomes very

imprecise, no information will be revealed - hence the juror’s payoff converges to 1/2 - but

advocates receive a positive payoff that depends on the ratio of their costs. If the costs

are equal, then this payoff is 1/3. If one advocate has a large cost advantage, then this

advocate will receive a payoff of 1 (and his opponent receives a payoff of zero.)

As the trial becomes infinitely precise, an advocate can nearly guarantee that he wins

whenever he holds the correct position. Hence, for any ε > 0, he can make sure that his

payoff is within ε of 1/2, yielding (i).

14



3. Nonstationary Strategies and Subgame Perfection

In this section, we relax the restriction to stationary strategies. We will show that

the unique equilibrium of the simple war of information is also the unique subgame perfect

equilibrium of the dynamic game.

With nonstationary strategies, it is possible to have Nash equilibria that fail subgame

perfection. To see this, let α̂2 = B2(1) and α̂1 = B1(α̂2), where Bi are the stationary best

response functions analyzed in Section 2. Hence, α̂2 is advocate 2’s best response to an

opponent who never quits and α̂1 is advocate 1’s best response to an opponent who quits

at α̂2.

Define the function ai : IR → [0, 1] as

ai(x) = (−1)−i(1 − 2p(x))

where p is as defined in (3). Consider the following strategy profile: α2 = α̂2 and α1 = α̂1

if a2(Xτ ) < α̂1 for all τ < t and α1 = 1 otherwise. Hence, advocate 2 plays the stationary

strategy α̂2 while advocate 1 plays the strategy α̂1 along any history that does not require

advocate 2 to quit. But if 2 deviates and does not quit when he is supposed to, then

advocate 1 switches to the strategy of never quitting.

To see why this is a Nash equilibrium, note that 1’s strategy is optimal by construction.

For player 2, quitting before Xt reaches x is clearly suboptimal. Not quitting at Xt = x

is also suboptimal since such a deviation triggers α1 = 1. However, the strategy profile is

not subgame perfect because the 1’s behavior after a deviation by 2 is suboptimal: at any

Xt such that a1(Xt) < α̂1, advocate 1 would be better off quitting.

To simplify the analysis, we will utilize a discrete version of the war of information.

Advocates choose their action and observe the stochastic process Xt only at times t ∈
{0, ∆, 2∆, . . .}. The initial state is x0, i.e., X0 = x0. We refer to t = n∆ as period n. Each

period n, player i chooses αi ∈ [0, 1]. The game ends at t ∈ [(n − 1)∆, n∆] if

t = inf{τ ∈ [n∆, (n + 1)∆] | ai(Xτ ) ≤ αi for some i = 1, 2}

If

{τ ∈ [(n − 1)∆, n∆] | ai(Xτ ) ≤ αi for some i = 1, 2} = ∅
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the game continues and the players choose new αi’s in period n+1. Note that αi ≤ ai(x0)

means that player i quits immediately.

A pure strategy for player i in period n associates with every history (X0, . . . , X(n−1)∆)

an action:

Definition: A pure strategy for player i is a sequence f i = (f i
1, f

i
2, . . .) such that f i

n :

IRn → [0, 1] is a measurable function for all n.

Let n∗ be the smallest integer n such that for some t ∈ [(n − 1)∆, n∆] and some

i = 1, 2

ai(Xt) ≤ f i
n(X0, . . . , X(n−1)∆)

If n∗ = ∞, set T = ∞. If n∗ < ∞ let

T = inf{t ∈ [(n∗ − 1)∆, n∗∆] | ai(Xt) ≤ f i
n∗(X0, . . . , X(n∗−1)∆) for some i = 1, 2}

The game ends at time T . Given the definition of T , the payoffs of the game are defined

as in the previous section (Equations (6)-(8)).

The advocate’s payoffs following a history ζ = (x0, x1, . . . , xk−1) are defined as follows:

Let f̂ = (f̂1, f̂2) where f̂ i
n(x̂0, . . . , x̂n−1) = f i

n+k(ζ, x̂0, . . . x̂n−1) for all n ≥ 2. Hence, we

refer to ζ ∈ IRn as a subgame and let U i
(ζ,x̂0)

(f) = U i
x̂0

(f̂).

Definition: The strategy profile f is a subgame perfect Nash equilibrium if and only if

U1
(ζ,x̂0)

(f) ≥ U1
(ζ,x̂0)

(f̃1, f2)

U2
(ζ,x̂0)

(f) ≥ U2
(ζ,x̂0)

(f1, f̃2)

for all f̃1, f̃2.

Let E be the set of all subgame perfect Nash equilibria and let Ei be the set of all

subgame perfect Nash equilibrium strategies of player i; that is,

Ei = {f i | (f1, f2) ∈ E for some f j , j �= i}

Let α = (α1, α2) be the unique equilibrium of the simple war of information studied in

the previous section. Without risk of confusion, we identify α′ ∈ [0, 1] with the constant
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function f i
n = α′ and the stationary strategy f i = (α′, α′, . . .). The proposition below

establishes that the stationary strategy profile α is the only subgame perfect Nash equi-

librium of the game.

Proposition 7: The strategy profile α is the unique subgame perfect Nash equilibrium

of the discrete war of information.

Proof: See Appendix.

Next, we provide intuition for Proposition 7. Let ᾱi be the supremum of i’s strategy

and let αi be the infimum. We show in the proof of Proposition 5

B2(α1) ≥ ᾱ2

and

B1(ᾱ2) ≤ α1

and therefore

B1(B2(α1)) ≡ φ(α1) ≤ B1(ᾱ2) ≤ α1

The stationary equilibrium is a fixed point of φ and, moreover, φ has slope less than 1

(Proposition 1). Therefore,

φ(α1) ≤ α1

which implies that

α1 ≥ α1

A symmetric argument shows that ᾱ1 ≤ α1 and hence Proposition 5 follows.

3.1 Both Advocates Buy Information

So far, we have assumed that only the trailing advocate buys information. We made

this assumption to simplify the analysis, in particular, to avoid having to specify the

information flow when both advocates are expanding resources.

A general model would allow the advocate that is ahead to increase the information

flow, if he chooses. Note that the equilibrium of the simple war of information characterized
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above would remain an equilibrium even in such a general model. Given a stationary

strategy for i, advocate j �= i has no incentive to provide additional information when he

is ahead. To see this, note that pt is a martingale and therefore a player cannot increase

his probability of winning by increasing the information flow. Since information provision

is costly it follows that such a deviation can never be profitable.

Consider the following simple extension of our model: both agents can incur informa-

tion costs at the same time but the added effort of the second advocate does not change

the information flow. In that case, if players cannot observe who provides information, it is

a dominant strategy for the leading advocate not to provide information. It can be shown

that even if the identity of the information provider is observable, the equilibrium of the

simple war of information remains the unique subgame perfect equilibrium.

If simultaneous purchase of information by both advocates leads to faster learning,

there may be subgame perfect equilibria other than the unique equilibrium of the simple

war of information.

4. Asymmetric Standards of Proof

So far, we have assumed that player 3 chooses player 1 if and only if the probability

that 1 has the correct position is greater than 1/2. In this section, we relax this symmetry

and consider an arbitrary threshold γ ∈ [0, 1] such that player 3 chooses advocate 1 if

pT > γ and chooses advocate 2 if pT < γ.

The purpose of this extension is to examine the effect of different standards of proof

on information provision. Suppose players 1 and 2 are litigants and player 3 is the juror.

Suppose further, that the jury is committed (by law) to a particular standard of proof.

Proposition 9 below characterizes the optimal γ, i.e., the optimal standard of proof.

Let W γ denote the simple war of information with threshold (standard of proof) γ.

As before, let pt denote the probability that player 3 assigns at time T to player i having

the correct position. Player 1 is trailing if pt < γ and player 2 is trailing if pt > γ. As

before, we assume that only the trailing player can provide information. A stationary

strategy for player 1 is denoted z1 ∈ [0, γ] and a strategy for player 2 is a z2 ∈ [γ, 1]. The

interpretation is that player 1 quits when pt ≤ z1 and player 2 quits when pt > z2.
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As we have argued in the previous section, the equilibrium of the war of information

stays unchanged if we change the prior from 1/2 to π since a different prior can be thought

of as a different starting point of the stochastic process X. Let

π = p(x0) =
1

1 + e−x0
= γ

where x0 = X0. Hence π is the starting point of the stochastic process pt.

Let z = (z1, z2) and let vi(z) denote the probability that player i wins given the

strategy profile z; that is,

vγ
i (z) =

π − zi

zj − zi

for j �= i. To compute the advocates’ cost associated with the strategy profile y, define

C : [0, 1] → {0, 1} such that

Cγ(s) =
{ 1 if s < γ

0 otherwise

then, the expected information cost of player i given the strategy profile z is

cγ
i (z) =

ki

4
E

∫ T

0

Ii(C(pt))dt

Then, the advocates’ expected utilities are

Uγ
i (z) = vγ

i (z) − cγ
i (z)

while the juror’s expected utility, (i.e.,, the accuracy of the trial) is:

Uγ
3 (y) = E[max{pT , 1 − pT }]

The following proposition shows that the results for the simple war of information

carry over to W γ . Note that the equilibrium strategy profile does not depend on the initial

belief π. However, if this belief is not in the interval (z1, z2) the game ends immediately.

Proposition 8: The simple war of information with threshold γ has a unique equilibrium

(z1, z2). If Ii(π) ≤ zi, then player i quits at time 0.

Proof: See Appendix.
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Consider the situation where player 3 places the same weight on both mistakes, i.e.,

U3 = max{pT , 1 − pT }

where T is the time when the process of information provision stops. Assume the threshold

γ is chosen independently of player 3’s utility function to maximize U3. In other words,

player 3 commits to a threshold γ prior to the game.

If player 3 commits to γ ∈ (0, 1) then advocates 1 and 2 play the game W γ . The

results below analyzes how a change in γ affects player 3’s payoff. For the remainder of

this section, we assume that in the initial state x0, the belief is 1/2, i.e., π = 1/2. Note

that the equilibrium strategies characterized in Proposition 8 remain equilibrium strategies

for p0 = 1/2. However, for z1 ≥ 1/2 or z2 ≤ 1/2 the game ends immediately.

If the game ends immediately, then the payoff player 3’s is 1/2 and hence the value of

the information generated by the war of information is zero. The lemma below describes

how changing γ affects player 3’s payoff if z1 < 1/2 < z2, i.e., the game does not end at

time 0.

Lemma 3: Let (z1, z2) be the equilibrium of W γ and assume that z1 < 1/2 < z2. Then,

U3 is increasing in γ if

(z2 − γ)(2z2 − 1)2

z2
2(1 − z2)2

<
(γ − z1)(1 − 2z1)2

z2
1(1 − z1)2

Proof: See Appendix.

Increasing γ implies that player 1 incurs a greater share of the cost of the war of

information. The optimal choice of γ depends on the costs of players 1 and 2. Assume

that player 1 is the low cost advocate, i.e., k1 < k2 and Proposition 2 then implies that

for γ = 1/2 player 1 wins with greater probability than player 2. This follows because, in

equilibrium

1/2 − z1 > z2 − 1/2
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and the win probability of advocate i is equal to

vi(z) =
1/2 − zi

zj − zi

The next proposition shows that at the optimal γ it must be the case the player 2 wins

with greater probability than player 1. Hence, the optimal γ implies that the high cost

advocate wins with greater probability than the low cost advocate.

Recall that π = 1/2 and therefore both candidates are equally likely to be holding the

correct position. Let U∗
3 (γ) denote the player 3’s equilibrium utility when the burden of

proof is γ ∈ (0, 1), let γ∗ be a maximizer of U∗
3 , and finally, let(z∗1 , z∗2) be the equilibrium

of W γ∗
.

Proposition 9: If k1 < k2, then γ∗ > 1/2 and v2(z∗) > v1(z∗).

Proof: See Appendix.

Proposition 9 shows that it is optimal to shift costs to the low cost advocate. Moreover,

at the optimal threshold the low cost advocate wins with lower probability than the high

cost advocate. Hence, the shift in the threshold more than compensates for the initial cost

advantage.

5. Asymmetric Information

In this section, we study a war of information with asymmetrically information. We

assume advocate 1 knows the state while players 2 and 3 have the same information as in

section 2. Hence, there are two types of advocate 1: type 0 knows that µ = −1/2 and type

1 knows that µ = 1/2. As in section 2, we assume that γ = π = 1/2 and σ2 = 1.

5.1 Mixed Strategies

Let (Ωi,F i,Pi) be probability spaces for i ∈ {0, 1}. Let Xi be a Brownian motion on

(Ωi,F i,Pi) with mean (−1)i−1/2, variance 1, and let F i
t be the filtration generated by Xi.

It will be convenient to treat player 1 types as separate players (0 and 1) with identical

costs (i.e., k0 = k1). Player 0’s knows that the signal is X0 and player 1 knows that the

signal is X1. Consider the measurable space (Ω2,F2) where

Ω2 = Ω0 ∪ Ω1 and F2 = {A0 ∪ A1, |Ai ∈ F i, i = 0, 1}
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Since player 2 does not know µ, his beliefs about the signal are described the probability

P 2 on (Ω2,F2) such that for all A1 ∈ F1, A2 ∈ F2,

P (A1 ∪ A2) =
1
2
(P 1(A1) + P 2(A2))

Define player 2’s filtration on (Ω2,F2) as follows:

F2
t = {A0 ∪ A1 |Ai ∈ F i

t and X0
τ (A0) = X1

τ (A1) for all τ ≤ t}

A (general) strategy for player i = 0, 1, 2 is a probability measure ηi on (IRe
+ ×

Ωi, σ(Be × F i)), where IRe
+ = IR+ ∪ {∞}, Be = {E ⊂ IRe

+ |E ∩ IR ∈ B} and B are the

Borel sets of IR. For any A ∈ IRe
+, let ηi[A|F i] be a version of the conditional probability

of A given F i. In particular, let

Qi
t(ω) = ηi[A|F i]ω

for all ω ∈ Ω, A = [0, t], t ∈ IR+. Hence, Qi
t(ω) is non-decreasing and right-continuous in

t for every ω. To be consistent with informational and strategic requirements of the war

of information, ηi must satisfy the following additional properties: for all A ∈ F , ω, t ≥ s,

(i) ηi(IRe
+ × A) = P i(A)

(ii) Qi
t is F i

t measurable

Condition (i) captures the fact that P i describes players’ beliefs over Ωi; condition (ii)

ensures that players’ strategies are feasible given their information. Henceforth, we identify

player i’s mixed strategies with Qi (or the corresponding to ηi) satisfying the two conditions

above. We interpret Qi
t(ω) as the probability with which advocate i quits by time t given

the sample point ω, conditional on advocate j �= i continuing until time t.

5.2 Payoffs

Let pt(ω) denote the probability assessment of player 2 at time t that his opponent is

type 1 at the state ω. Hence,

pt =
1 − Q1

t

1 − Q1
t + (1 − Q0

t )e−Xt
(12)
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If both Q0
t , Q

1
1 are 1, let pt = 1/2. Then, let

Q01
t (ω) = (1 − pt(ω))Q0

t (ω) + pt(ω)Q1
t (ω)

Hence, Q01
t (ω) is player 2’s belief that his opponent will quit by time t at state ω.

For q = (Q0, Q1, Q2), we can compute, Di
t(ω), player i assessment of the probability

that the war of information ends by time t at a particular ω as follows:

Di
t(ω) =

 Q0
t (ω) + Q2

t (ω) − Q0
t (ω)Q2

t (ω) for i = 0
Q1

t (ω) + Q2
t (ω) − Q1

t (ω)Q2
t (ω) for i = 1

Q01
t (ω) + Q2

t (ω) − Q01
t (ω)Q2

t (ω) for i = 2, 3
(13)

Equation (13) follows from the fact that conditional on what the players know at time t,

their quitting decisions are independent. Since advocates can only quit when trailing, for

all ω, Qi
t(ω) and Q2

t (ω) have no common points of discontinuity for i = 0, 1. Hence, we

can restate Di
t(ω) as follows:

Di
t(ω) =

∫ t

τ=0

(1 − Qj(i)
τ (ω))dQi

τ (ω) +
∫ t

τ=0

(1 − Qi
τ (ω))dQj(i)

τ (ω) (14)

where j(0) = j(1) = 2 and j(2) = 01. Note that the first term on the right-hand side of

(14) is the probability that advocate 1 ends the game at some time τ ≤ t. The second

term is the corresponding expression for player 2. Hence, the probability that advocate i

wins is

vi(q) = 1 − E

∫ ∞

t=0

(1 − Q
j(i)
t (ω))dQi

t(ω)

Expectations are taken with the probability P i.

For an arbitrary probability process p̃ and strategy profile q define advocate i’s ex-

pected cost as follows:

ci(p̃, q) =
ki

4
E

{∫ ∞

t=0

∫ t

τ=0

Ii(C(p̃τ ))dτdDi
t(ω)

}
for i = 0, 1, 2.

Define the advocates’ utilities as

Ui(p̃, q) = vi(q) − ci(p̃, q)
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Note that conditional on ω and the game ending at time t, the payoff to the juror is

p(Xt(ω)) if Ct(ω) = 1 and 1− p(Xt(ω)) if Ct(ω) = 0. Hence, the expected payoff of player

3 is:

U3(p̃, q) = E
{∫ ∞

t=0

I2−Ct(ω)

(
p̃t(ω)

)
dD3

t (ω)
}

Let q = (Q0, Q1, Q2) and q̂ = (Q̂0, Q̂1, Q̂2) be two strategy profiles and let p be the

belief process induces by (Q0, Q1) (hence, p is as defined in equation (12) above). Finally,

let (q, q̂, i) denote the strategy profile obtained by replacing Qi in q with Q̂i. The profile

q is a Nash equilibrium if we have Ui(p, q) ≥ Ui(p, (q, q̂, i)) for all q̂ and all i.

5.3 Equilibrium Strategies

In this section, we demonstrate that the following strategies constitute an equilibrium

in the war of information with asymmetric information. Let Yt = infτ<t Xτ and for any

z > 0, let Y z
t = min{0, Yt−z}. The following strategy profile q(x, y) = (Q0(x), Q1, Q2(x, y)

depends on two parameters, x, y > 0. Let

Q0
t (x) = 1 − eY x

t

Q1
t ≡ 0

Q2
t (x, y) =

{ 1 if Xt ≥ Y x
t + y

0 otherwise

In this strategy profile type 1 never quits and type 2 randomizes when Xt = Y x
t . Therefore,

if player 1 quits it must be type 0 and hence pt = 0 conditional on player 1 quitting. By

equation (12), along any path where player 1 does not quit, we have

pt =
1 − Q1

t

1 − Q1
t + (1 − Q0

t )e−Xt

=
1

1 + eY y
t −Xt

Note that

pt ≥
1

1 + e−x
≡ p

and therefore, conditional on player 1 not quitting beliefs are bounded below by p̄. We

refer to p̄ as a signaling barrier.

24



The strategy profile q(x, y) has the property that (1) player 1 never quits; (2) player

0 does not quit for pt > p and randomizes when pt = p. Player 2 quits when pt = p̄ where

p̄ :=
1

1 + e−y

Let y∗ satisfy

1 + B2(1)
2

=
1

1 + e−y∗

Hence, y∗ corresponds to the optimal threshold of player 2 against an opponent who never

quits. (Recall that 1+α2
2 is the belief threshold corresponding to the action α2 in the simple

war of information).

Lemma 4: Player 2’s unique best response to (Q0(x), Q1) is Q2(x, y∗).

In the proof of Lemma 4, we show that the uninformed player’s (i.e., player 2) payoff

is the payoff he would receive in the symmetric information game against an opponent who

never quits. Therefore, player 2’s best response is a belief-threshold p̄∗ that corresponds

to the symmetric information game strategy α2 = B2(1). Recall that the strategy α2

corresponds to the belief threshold 1+α2
2 . Define the following maximization problem:

max
x<0

Π(x, y∗) :=
1

1 − ey∗−x

(
1 − e−x − 2k1(1 − ey∗

)(1 − e−x(1 + x))
)

(∗)

Lemma 5: (i) The maximization problem (*) has a unique solution x∗. (ii) The strate-

gies Q1, Q0(x∗) are a best response to Q(x∗, y∗).

Lemmas 2 and 3 imply that q(x∗, y∗) = Q0(x∗), Q1, Q2(x∗, y∗) is a Nash equilibrium

of the war of information with asymmetric information.

Proposition 10: The strategy profile q(x∗, y∗) is an equilibrium of the war of informa-

tion with asymmetric information.

Note that since player 1 never quits, pt is well-defined after every history. Hence, the

equilibrium in Proposition 10 is also a sequential equilibrium.
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In the asymmetric information, player 1 signals his strength by not quitting. As long

as pt > p for all t ∈ (0, τ), the equilibrium q(x∗, y∗) is like the equilibrium of the symmetric

information game; the signal Xτ alone determine beliefs. Once pt hits p, player 0’s quit

decision also affects beliefs. In fact, type 0 quits at a rate that exactly offsets any negative

information revealed by the signal Xt so that pt = p := 1
1+e−y ends: beliefs are bounded

below by p, the signaling barrier. Of course, once player 0 quits pt = 0.

Let T be the time at which the war of information with an informed player 1 ends.

Note that in equilibrium XT can be arbitrarily small; that is, for all x ∈ IR, the probability

that XT ≤ x is strictly positive. Yet, pT will never be less than p(y) as long as the game

continues. This occurs because of signalling. Note that if the informed player has not

quit at t such that Xt < y∗, then one of the following must be true: either he knows that

µ = 1/2 (i.e., he is player 1) or he knows he is player 0 but by chance his random quitting

strategy had him continue until time t. The probability of player 0 quitting by time t

given that player 2 has not quit before t is 1 − ex−y. Hence, for high x, the probability of

0 quitting by time t will be high, which enables pt to stay above p(y∗). Hence, for x high,

the informed player counters the public information Xt = x with his private information.

This means that with positive probability advocate 2 will lose the trial even though the

physical indicates that he holds the correct position (i.e., XT < 0).

Since the informed player only quits when he is type 0, the exact location of the

signaling barrier is payoff irrelevant for players 2 and 3. All that matters is that advocate

1 never gives up unless he has the wrong position. This implies that changing advocate

1’s costs has no effect on the payoff of players 2 and 3. If player 1 has very high costs

of information provision, then the signaling barrier p < 1/2 will be close to 1/2 but the

information revealed by the war of information will be unchanged. On the other hand,

advocate 2’s cost affects his oppnent’s payoff; lowering advocate 2’s always increases player

3’s payoff but advocate 1’s payoff.

Signaling creates multiple equilibria in the war of information with asymmetric in-

formation. For example, consider strategies that “punish” advocate 1 for not quitting: If

advocate 1 does not quit at a particular point he is believed to be type 0. Such strategies

can sustain many equilibria in which even the strong type of advocate 1 quits with positive
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probability. However, these equilibria will not satisfy standard signalling game refinements

such as universal divinity (Banks and Sobel (1987)). The signaling component also gives

rise to equilibria in which the informed player buys information even when he is leading,

i.e., when pt > 1/2. Such equilibria can be sustained by the belief that the decision to

quit indicates advoate 1 is type 0. We have ruled out this latter equilibria by assumption

- i.e., by assuming that only the trailing advocate pays for information. As we explain in

section 3.1, this assumption is easily in the symmetric information game. It is harder to

justify when there is asymmetric information.

6. Appendix

6.1 Proof of Lemma 1

Let E
[
C(Xt)|µ = r

]
be the expected cost incurred by player 1 given the strategy

profile y = (y1, y2) and µ = r. (Recall that σ2 = 1.) Hence, the expected delay cost of

player 1 is:

E
[
C(Xt)

]
= 1/2 E

[
C(Xt)

∣∣1/2
]
+ 1/2 E

[
C(Xt)

∣∣ − 1/2
]

(A1)

First, we will show that

E
[
C(Xt)|µ] =

1
2µ2

(
1 − e−2µy2

1 − e−2µ(y2−y1)

) (
1 − e2µy1(1 + 2µy1)

)
(A2)

For z1 ≤ 0 ≤ z2, let P (z1, z2) be the probability that a Brownian motion Xt with drift µ

and variance 1 hits z2 before it hits z1 given that X0 = 0. Harrison (1985) shows (p. 43)

shows that

P (z1, z2) =
1 − e2µz1

1 − e−2µ(z2−z1)
(A3)

For z1 ≤ 0 ≤ z2, let T (z1, z2) be the expected time a Brownian motion with drift µ spends

until it hits either z1 or z2 given that Xt = 0 (where z1 ≤ 0 ≤ z2). Harrison (1985) shows

(p. 53) that

T (z1, z2) =
z2 − z1

r
P (z1, z2) +

z1

r

To compute E
[
C(Xt)|µ], let ε ∈ (0, y2] and assume that player 1 bears the cost until

Xt ∈ {−y1, ε}. If Xt = ε then player 2 bears the cost until Xt+τ ∈ {0, y2}. If Xt+τ = 0
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then process repeats with player 1 bearing the cost until Xt+τ+τ ′ ∈ {−y1, ε} and so on.

Clearly, this yields an upper bound to E
[
C(Xt)|µ]. Let T ε denote that upper bound and

note that

T ε = T (y1, ε) + P (y1, ε)(1 − P (−ε, y2 − ε))T ε

Substituting for T (y1, ε) and P (y1, ε) we get

µT ε =
(

(ε − y1)(1 − e2µy1)
1 − e−2µ(ε−y1)

+ y1

) (
1 − (1 − e2µy1)(e−2µε − e−2µy2)

(1 − e−2µ(ε−y1))(1 − e−2µy2)

)
and therefore

E
[
C(Xt)|µ] ≤ lim

ε→0
T ε =

1
2µ2

(
1 − e−2µy2

1 − e−2µ(y2−y1)

) (
1 − e2µy1(1 + 2µy1)

)
Choosing ε < 0 we can compute an analogous lower bound which converges to the right

hand side of (A2) as ε → 0. This establishes (A2).

Recall that p(yi) = 1
1+e−yi

and α1 = 1 − 2p(y1), α2 = 2p(y2) − 1. Then, (A1), (A2)

yield

E
[
C(Xt)

]
=

4α1 · α2

α1 + α2
ln

1 + α1

1 − α1

Let v be the probability that player 1 wins. Since PT is a martingale and T < ∞

vp(y2) + (1 − v)p(y1) = pT = 1/2

Hence,

v =
α1

α1 + α2

The last two display equations yield

U1(α) =
α1

α1 + α2

(
1 − k1α2 ln

1 + α1

1 − α1

)
(A5)

A symmetric argument establishes yields the desired result of U2.

6.2 Proof of Lemma 2

By Lemma 1, advocate i’s utility is strictly positive if and only if

αi ∈
(

0,
e

1
kiαj − 1

e
1

kiαj + 1

)
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Furthermore, throughout this range, Ui(·, αj) is twice continuously differentiable and

strictly concave in αi. To verify strict concavity, note that Ui can be expressed as the prod-

uct of two concave functions f, g that take values in IR+, where one function is strictly

increasing and the other strictly decreasing. Hence, (f · g)
′′

= f
′′
g + 2f

′
g

′
+ fg

′′
< 0.

Therefore, the first order condition characterizes the unique best response of player i to

αj . Player i’s first order condition is:

Ui =
2α2

i ki

1 − α2
i

(A6)

Note that (A6) implicitly defines the best response functions Bi. Equation (A6) together

with the implicit function and the envelop theorems yield

dBi

dαj
=

∂Ui

∂αj
· (1 − α2

i )
2

4αiki
(A7)

Equation (A5) implies

∂Ui

∂αj
= − 1

α1 + α2

(
Ui + αjki ln

(
1 + αi

1 − αi

))
(A8)

Note that (A8) implies ∂Ui

∂αj
< 0. The three equations (A6), (A7), and (A8) yield

dBi

dαj
= −αi(1 − α2

i )
2(α1 + α2)

·
(

1 +
1 − α2

i

2αi
ln

(
1 + αi

1 − αi

))
(A9)

Then using the fact that ln
(

1+αi

1−αi

)
≤ 2αi

1−αi
yields

dBi

dαj
≥ −αi(1 − α2

i )(2 + αi)
2(α1 + α2)

(A10)

Hence, since φ′ = dB1
dα2

dB2
dα1

we have

0 < φ(α1) ≤
α1(1 − α2

1)(2 + α1)α2(1 − α2
2)(2 + α2)

4(α1 + α2)
2 (A11)

Note that the α1α2
(α1+α2)

2 ≤ 1/2 and hence, φ′(α1) < 1 if

(1 − α2
i )(2 + αi) < 2

√
2

29



It is easy to verify that the left-hand side of the equation above reaches its maximum at

αi < 1/2. At such αi, the left-hand side is no greater than 5/2 < 2
√

2, proving that

0 < φ′(α1) < 1.

6.3 Proof of Proposition 1

By Lemma 2, Bi are decreasing, continuous functions. It is easy to see such that

Bi(1) > 0 and limr→0 Bi(r) =
√

1
1+2ki

(Note that Ui → 1 if αj → 0 for j �= i). Hence,

we can continuously extend Bi and hence, φ to the compact interval [0, 1], so that φ

much have a fixed-point. Since Bis are strictly increasing, Bi(0) < 1 implies that neither

0 nor 1 is a fixed-point. Hence, every fixed-point of φ must be in the interior of [0, 1].

Let r be the infimum of all fixed-points of φ. Clearly, r itself is a fixed-point and hence

r ∈ (0, 1). Since φ′(r) < 1, there exists ε > 0 such that φ(s) > s for all s ∈ (r, r + ε). Let

s∗ = inf{s ∈ (0, 1) |φ(s) = s}. If the latter set in nonempty, s∗ is well-defined, a fixed-

point of φ, and not equal to r. Since φ(s) < s for all s ∈ (r, s∗), we must have φ(s∗) ≥ 1,

contradicting Lemma 2. Hence, {s ∈ (0, 1) |φ(s) = s} = ∅ proving that r is the unique

fixed-point of φ and hence the unique equilibrium of the simple war of information.

6.4 Proof of Proposition 2

(i) Consider advocate 1’s best response as a function of both α2 and k1. The analysis

in Lemma 2 ensures that B1 : (0, 1]× IR+\{0} → (0, 1] is differentiable. Hence, the unique

equilibrium of the simple war of information is characterized by

B1(B2(α1), k1) = α1

Taking a total derivative and rearranging terms yields

dα1

dk1
=

∂B1
∂k1

1 − dφ
dα1

where dφ
dα1

= ∂B1
∂α2

· dB2
dα1

. By Lemma 1, φ′ < 1. Taking a total derivative of (A6) (for fixed

α2 establishes that ∂B1
∂k1

< 0 and hence dα1
dk1

< 0 as desired. Then, note that k1 does not

appear in (A6) for player 2. Hence, a change in k1 affects α2 only through its effect on α1

and therefore has the same sign as

dB2

dk1
=

dB2

dα1
· dα1

dk1
> 0 (A12)
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By symmetry, we also have dα2
dk2

< 0 and dα1
dk2

> 0

(ii) By (i), as ki goes to 0, the left-hand side of (A6) is bounded away from 0. Hence,
2α2

i

1−α2
i

must go to infinity and therefore αi must go to 1.

(iii) Since Ui ≤ 1 it follows from (A6) that ki → ∞ implies αi → 0.

6.5 Proof of Propositions 3 and 4

From Lemma 1, we have:

dU3

dk1
=

α2
2

(α1 + α2)2
dα1

dk1
+

α2
1

(α1 + α2)2
dα2

dk1

Since α2 = B2(α1), (A9) and (A12) imply dU3
dk1

< 0 if and only if

α2

α1
− α1

2(α1 + α2)
·
[
1 − α2

2 +
(1 − α2

2)
2

2α2
ln

(
1 + α2

1 − α2

)]
> 0 (A13)

Define g : (0, 1] → (0, 1] by g(α1) = α2 where

α2

α1
− α1

2(α1 + α2)
·
[
1 − α2

2 +
(1 − α2

2)
2

2α2
ln

(
1 + α2

1 − α2

)]
= 0

Proof of Proposition 4: First, note that g is well-defined. For any fixed α1 the right had

side of (A13) is negative for α2 sufficiently close to zero and strictly positive for α2 = α1.

Note that α1
2(α1+α2)

, 1 − α2
2, and the last term inside the square bracket are all decreasing

in α2. Hence g is well defined.

Note also that the right hand side of (A13) is decreasing in α1. Hence, g must be

increasing.

Since the term in the brackets adds up to less than 1 it follows that g(z) < z. Setting

α1 = 1, define α̂2 such that the left hand side of (A13) is zero. (Note that α̂2 is approx-

imately 0.48.) By the monotonicity of the right hand side of (A13) in α1 it follows that

g ≤ α̂2.

Proof of Proposition 3 By part (i) of Lemma 2, the first term on the left-hand side of

(A13) is increasing in k1. Similarly, α1
2(α1+α2)

, 1 − α2
2, and the last term inside the square

bracket are all decreasing in k1. Furthermore, the terms inside the square bracket add up
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to a quantity between 0 and 1. Part (i) then follows because g(z) < z and α1 ≤ α2 for

k1 ≥ k2.

For part (ii) note that as k1 goes to 0, α1 goes to 1 (by Proposition 2(ii) above).

Setting α1 = 1, define α̂2 such that the left hand side of (A13) is zero. (Note that α̂2 is

approximately 0.48.) Let r̄ be such that B2(1) = α̂2. By the monotonicity of the right hand

side of (A13) in α1 it follows that (A13) is greater than zero for all α2 > α̂2. Conversely,

for α2 < α̂2 the proof of Proposition 4 above implies that there is a unique α1 ∈ (0, 1)

such that the right hand side of (A13) is zero. It follows that there is f(k2) > 0 such that

at k1 = f(k2), dU3
dk1

= 0. Clearly, there can be at most one such f(k2). The monotonicity

of g and the monotonicity of αi in ki implies that dU3
dk1

< 0 for k1 > f(k2), dU3
dk1

> 0 for

k1 < f(k2), and dU3
dk1

= 0 at f(k2).

Since f(k2) is well-defined, since (α1, α2) are continuous functions of (k1, k2), and since

g is continuous, the function f is also continuous. That f is strictly increasing follows from

part (i) of Proposition 2 and the strict monotonicity of g.

That f → ∞ as r → ∞ follows from the fact that for every α1 > 0 the right hand

side of (A13) is strictly negative for α2 sufficiently small.

Proof of Proposition 5 Note that since α1 is increasing in k2 it follows that

dU∗
3

dt

∣∣∣
t=0

≥ α2
2

(α1 + α2)2
dα1

dk1
+

α2
1

(α1 + α2)2

(
dα2

dk1
+

dα2

dk2

)
From Proposition 4 we know that

dU∗
3

dt

∣∣∣
t=0

≥ α2
2

(α1 + α2)2
dα1

dk1
+

α2
1

(α1 + α2)2
dα2

dk1
> 0

for k2 sufficiently large. Since dα1
dk1

is bounded away from zero for all k2 it suffices to show

that (
dα2

dk2

)
/

(
dα2

dk1

)
→ 0

as k2 → ∞ and since dα2
dk1

= dα2
dα1

dα1
dk1

with dα1
dk1

bounded away from zero for all k2 it suffices

to show that (
dα2

dk2

)
/

(
dα2

dα1

)
→ 0
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Recall that the first order condition is

α2

α1 + α2
(1 − k2α1 ln

1 + α2

1 − α2
) =

2α2
2k2

1 − α2
2

and therefore:∣∣∣ (
dα2

dk2

)
/

(
dα2

dα1

) ∣∣∣ =
∣∣∣(α2 + α1)

−2α2(α1 + α2) − α1 ln 1+α2
1−α2

+ α2
2α1 ln 1+α2

1−α2

(1 − α2
2)(k2α2 ln( 1+α2

1−α2
+ 1)

∣∣∣
Note that α2 → 0 as k2 → ∞ and hence the right hand side of the above expression goes

to zero as k2 → ∞ as desired.

6.6 Proof of Proposition 6

For part (i) suppose i chooses the strategy ai = 1 − ε. Then, for δ sufficiently small

we have Ui ≥ 1−2ε
2−2ε − ε for i = 1, 2. Since ε can be chosen arbitrarily small, the it follows

that Ui → 1/2 as δ → 0. The first order condition (A6) implies that αi → 1 which in turn

implies that U3 → 1.

For part (ii) note that αi → 0 as δ → ∞. Let k1 = 1, k2 = k and define r = α1/α2

and z = α2
1δ. Then, the first order condition (A6) can be re-written as

1
1 + r

1 − zr
ln

(
1+α1
1−α1

)
α1

 = 2z

1
1 + r

1 − zkr
ln

(
1+α2
1−α2

)
α2

 = 2zkr

These two equations imply that z, r must be bounded away from zero and infinity for small

δ. Moreover as δ → ∞ it must be that αi → 0 for i = 1, 2. Therefore,

ln
(

1+αi

1−αi

)
αi

→ 2

And therefore, the limit solution to the above equations must satisfy

1
1 + r

(1 − 2zr) = 2z

1
1 + r

(1 − 2zkr) = 2zkr
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We can solve the two equations for r, z and find Ui from the first order condition

Ui = 2z = 1
3k

(
k + 2

√
1 − k + k2 − 2

)
.

6.7 Proof of Proposition 7

Lemma 3: Let f i = (f i
1, . . .), f j = (f j

1 , . . .), and f̃ j = (f̃ j
1 , . . .) for i = 1, 2 and j �= i

and let f̃ j
n(ζ) ≥ f j

n(ζ) for every n and ζ ∈ IRn. Then, U i
x0

(f1, f2) ≥ U i
x0

(f i, f̃ j).

Proof: Consider any sample path X(ω). Let T (ω), T̃ (ω) denote the termination date

corresponding to the strategy profile (f i, f j) and (f i, f̃ j) respectively. Note that T (ω) ≤
T̃ (ω) and therefore the cost of player i is larger if the opponent chooses f̃ j . Furthermore,

if T (ω) < T̃ (ω) then player i wins along the sample path X(ω) when the strategy profile is

(f i, f j). Therefore, the probability of winning is higher under (f i, f j) than under (f i, f̃ j).

Lemma 4: Let f i = (ai, ai, . . .) be a stationary strategy and for j �= i, let f j =

(f j
1 , Bj(ai), Bj(ai), . . .). (i) If Bj(ai) < αj(x0) < f j

1 (x0), then U j
x0

(f1, f2) < 0 and (ii)

If Bj(ai) ≥ f j
1 (x0) > αj(x0), then U j

x0
(f1, f2) > 0.

Proof: Let V (a, b) denote the payoff of player j if f j
1 = b and f j

n, n ≥ 2 are chosen

optimally, f i = (ai, . . .) and the initial state is α−1(a). Let b∗ = arg maxb∈[0,1] V (1/2, b).

It is easy to see that V is continuous and hence b∗ is well defined. Next, we show that

V (a, b∗) ≥ V (a, b) for all a ∈ IR and for all b ∈ [0, 1]. To prove this, assume that b > b∗ and

note that V (a, b) − V (a, b∗) = cV (b∗, b) where c is the probability that X(t) reaches the

state y = α−1(b∗) for some t ∈ [0, ∆]. Since a is arbitrary it follows from the optimality of

b∗ that V (b∗, b) ≤ 0. Since the decision problem is stationary, it follows that f j
n = b∗ is a

best response to f i = (ai, . . .). This in turn implies that b∗ = Bj(ai) and U j
x0

(f1, f2) ≤ 0

if Bj(ai) < αj(x0) < f j
1 (x0). Let b = f j

1 (x0). If U j
x0

(f1, f2) = 0 then by the argument

above f j = (b, b, ·) is also a best response to (ai, ai, . . .). But this contradicts the fact that

B(ai) is unique. Hence, a strict inequality must hold and part (i) of the Lemma follows.

Part (ii) follows from a symmetric argument.
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Proof of Proposition 7: Let

āi = sup{αi(x) | f i = (f i
1, . . .) ∈ Ei, f i(x) > αi(x) for some x}

ai = inf{αi(x) | f i = (f i
1, . . .) ∈ Ei, f i(x) ≤ αi(x) for some x}

Hence, ai, āi are respectively, the least and most patient actions for i observed in any

subgame perfect Nash equilibrium. Clearly, ai ≤ a∗
i ≤ āi.

First, we show that (i) B2(a1) ≥ ā2. To see this note that if the assertion is false, then

there exists x0,(f1, f2) ∈ E such that f2
1 (x0) > α2(x0) > B2(a1). By Lemma 3 and part

(i) of Lemma 4, U2
x0

(f1, f2) ≤ Ux0(a
1, f2) < 0, contradicting the fact that (f1, f2) ∈ E.

Next, we prove that (ii) B1(ā2) ≤ a1. If the assertion is false, then there exists x0,(f1, f2) ∈

E such that f1
1 (x0) ≤ α1(x0) < B1(ā2). Then, 0 = U1

x0
(f1, f2) and by Lemma 3

U1
x0

(f1, f2) ≥ U1
x0

(f̃1, f2) ≥ U1
x0

(f̃1, ā2) for all f̃1. By Lemma 4 part (ii), there exists

f̃1 such that U1
x0

(f̃1, ā2) > 0 and hence U1
x0

(f1, f2) > 0, a contradiction.

The two assertions (i) and (ii) above together with the fact that Bi is nonincreasing

yield φ(a1) = B1(B2(a1)) ≤ B1(ā2) ≤ a1. Since the slope of φ is always less than 1

(Lemma 2), we conclude that a∗
1 ≤ a1 and therefore a∗

1 = a1. Symmetric arguments to

the ones used to establish (i) and (ii) above yield B2(ā1) ≤ a2 and B1(a2) ≥ ā1. Hence,

φ(ā1) = B1(B2(ā1)) ≥ B1(a2) ≥ ā1 and hence a∗
1 ≥ ā1 and therefore a∗

1 = a1 = ā1 proving

that a∗
1 is the only action that 1 uses in a subgame perfect Nash equilibrium. Hence,

E1 = {a∗
1} and therefore E = {(a∗

1, a
∗
2)} as desired.

6.8 Proof of Proposition 8

If (z1, z2) is an equilibrium for π = γ then (z1, z2) is also an equilibrium for π = 1/2.

If z1 < 1/2 < z2 then the converse is also true. In the following, we assume that π = γ.

If Xt = x then the belief of player 3 that 1 holds the correct position is

pγ(x) =
γ

γ + (1 − γ)e−x

Let yi = p−1
γ (zi) denote the strategy expressed in terms of the realization of X.
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As in the proof of Lemma 1, let E
[
C(Xt)|µ = r

]
be the expected cost incurred by

player 1 given the strategy profile y = (y1, y2) and µ = r. (Recall that σ2 = 1.) Recall

that

E
[
C(Xt)|µ = r

]
=

1
2r2

(
1 − e2y2

1 − e−2r(y1−y2)

) (
1 − e−2ry1(1 + 2ry1)

)
(A2)

The expected delay cost of player 1 is:

E
[
C(Xt)

]
= γ E

[
C(Xt)

∣∣µ = 1/2
]
+ (1 − γ) E

[
C(Xt)

∣∣µ = −1/2
]

(A1)

Let v be the probability that player 1 wins. Since PT is a martingale and T < ∞,

vz1 + (1 − v)z2 = EpT = γ, Hence,

v =
γ − z1

z2 − z1

Substituting for yi we find that Ui, i = 1, 2 is given by

U1(z1, z2) =
γ − z1

z2 − z1

(
1 − k1(z2 − γ)

(
2γ − 1

γ(1 − γ)
+

1 − 2z1

γ − z1
ln

(1 − z1)/z1

(1 − γ)/γ

))
and

U2(z1, z2) =
z2 − γ

z2 − z1

(
1 − k2(γ − z1)

(
1 − 2γ

γ(1 − γ)
+

2z2 − 1
z2 − γ

ln
z2/(1 − z2)
γ/(1 − γ)

))
The first order condition for this maximization problem yields:

(z2 − z1)2(z2 − γ)g(z1, z2, γ) = 0

where

g(z1, z2, γ) = −1/k1 + (1 − 2z2) ln
z1/(1 − z1)
γ/(1 − γ)

− (γ − z1)(z2z1(1 − 2γ) − (1 − γ)z2 + γz1)
z1(1 − z1)γ(1 − γ)

Note that the second order condition for a maximum is satisfied at z1 if and only if

∂g(z1, z2, γ)/∂z1 < 0. A direct calculation yields

∂g(z1, z2, γ)
∂z1

= − z2 − z1

(z1(1 − z1))2
< 0
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and hence the second order condition is satisfied. Note that g(γ, z2, γ) = −1/k1 and

limz1→0 g(z1, z2, γ) → ∞. Hence, any solution to the maximization problem is interior.

Moreover, since the second order condition holds for any solution of the first order con-

dition, it follows that the maximum is unique. This in turn implies that B1(z2) is a

continuous function. To see that B1 is strictly decreasing, note that g(z1, z2, γ) = a + bz2

for some constants a < 0, b > 0. Since z2 > 0 and g(z1, z2, γ) = 0 at an optimum, it follows

that b > 0. Therefore,

∂B1(z2)
∂z2

=
−b

∂g(z1, z2, γ)/∂r1
> 0

(Differentiability follows from the fact that ∂g(z1,z2,γ)
∂z1

�= 0.)

By the above argument, B1 is continuous and therefore the analogous function B2 is

also continuous. Moreover, B1 ∈ [0, γ] and analogously B2 ∈ [γ, 1]. Therefore, (B1, B2) :

[0, γ] × [γ, 1] → [γ, 1] × [0, γ] has a fixed point.

To show uniqueness, define

φ(z1) = B1(B2(z1))

We will show that |φ′ < 1| if z1 = φ(z1). Let z1 be a fixed point of φ and let z2 = B2(z1).

Then,

|φ′(z1)| = |dB1

z2

dB2

z1
| = |∂g(z1, z2, γ)/∂z1

∂g(z1, z2, γ)/∂z2
· ∂g(1 − z2, 1 − z1, 1 − γ)/∂z2

∂g(1 − z2, 1 − z1, 1 − γ)/∂z1
| := h

A direct calculation shows that

h =

z2
1(1 − z1)2z2

2(1 − z2)2

(z2 − z1)2
(2 lnκ(1 − z2, 1 − γ) − λ(1 − z2, 1 − γ)) (2 lnκ(z1, γ) − λ(z1, γ))

where κ(a, b) = a/(1−a)
b/(1−b) , λ(a, b) = (ab−(1−a)(1−b))(b−a)

b(1−b)a(1−a) . Note that − lnx ≤ −1 + 1/x for

x ≤ 1. Further note that lnκ(1−z2, 1−γ) < 0, lnκ(z1, γ) < 0, λ(z1, γ) > 0, λ(1−z2, 1−γ) >

0. Therefore, substituting −1 + 1/κ(z1, γ) for lnκ(r1, γ) and −1 + 1/κ(1 − z2, γ) for
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lnκ(1 − z2, γ) we get an upper bound for h. Following the substitution we are left with

the following expression:

h ≤ z1(1 − z1)(γ − z1)z2(1 − z2)(z2 − γ)(1 + γ − z1)(1 + z2 − γ)
γ2(1 − γ)2(z2 − z1)2

≤ 9/4
z1(γ − z1)(1 − z1)z2(1 − z2)(z2 − γ)

γ2(1 − γ)2(z2 − z1)2

Note that z1 ≤ γ, 1 − z2 ≤ 1 − γ. Choose δ1, δ2 so that z1 = δ1γ, 1 − z2 = δ2(1 − γ) then

the above expression simplifies to

9/4
(1 − δ1γ)(1 − δ2(1 − γ))δ1(1 − δ1)δ2(1 − δ2)

(1 − δ1γ − δ2(1 − γ))2

with δ ∈ [0, 1], γ ∈ [0, 1]. The above expression is maximal at γ = 1/2, δ1 = δ2 = δ for

some δ ∈ (0, 1) and therefore it suffices to show that

9/4
δ2(1 − δ)2(1 − δ/2)2

(1 − δ)2
≤ 1

The last equality holds by a direct calculation.

6.9 Proof of Lemma 3

Let g be as defined in the proof of Proposition 6. Note that

dz1

dγ
= −∂g(z1, z2, γ)

∂γ

[
∂g(z1, z2, γ)

∂z1

]−1

Substituting for g and calculating the above partial derivatives yields

dz1

dγ
=

z2 − γ

γ2(1 − γ)2
z2
1(1 − z1)2

z2 − z1

and an analogous argument yields

dz2

dγ
=

γ − z1

γ2(1 − γ)2
z2
2(1 − z2)2

z2 − z1

Next, note that

∂U3

zi
= 2(−1)i (zi − 1/2)2

(z2 − z1)2

Combining the three displayed equations then yields Lemma 3.
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6.10 Proof of Proposition 9

Part (i): First, we show that U(1−γ) > U(γ) for γ < 1/2. This will prove that γ∗ ≥ 1/2.

Let zi(γ) denote the equilibrium strategy of advocate i in W γ .

Fact 1: Assume γ < 1/2 and k1 < k2. Then, 1− z1(γ) > max{z2(1− γ), 1− z1(1− γ)}.

Proof: Note that 1−zγ
1 = z2(1−γ) if k1 = k2. Since z1 is increasing in k1 and decreasing

in k2 it follows that 1 − z1(γ) > z2(1 − γ). 1 − z1(γ) > 1 − z1(1 − γ) follows from the fact

that z1 is increasing in γ.

Fact 2: Assume γ < 1/2, k1 < k2 and z2(γ) > 1/2. Then, z2(1 − γ) − z1(1 − γ) ≥
z2(γ) − z1(γ).

Proof: Let ∆+(x) = z2(1/2 + x)−z1(1/2 + x) and let ∆−(x) = z2(1/2 − x)−z1(1/2 − x)

for x ∈ [0, x̄] where x̄ = 1/2 is the largest x ≤ 1/2 such that z2(1/2 − x) ≥ 1/2. First,

we establish that if ∆+(x) ≤ ∆−(x) then ∂∆+(x)/∂x > ∆−(x)/∂x. To see this note that

from the proof of Lemma 3)

dz1

dγ
=

z2 − γ

γ2(1 − γ)2
z2
1(1 − z1)2

z2 − z1

dz2

dγ
=

γ − z1

γ2(1 − γ)2
z2
2(1 − z2)2

z2 − z1

From Fact 1 and z1(γ) ≤ 1/2, z2(γ) > 1/2 we conclude that for γ < 1/2

(z2(γ) − γ)z1(γ)2(1 − z1(γ))2 < (1 − γ − z1(1 − γ))z2(1 − γ)2(1 − z2(1 − γ))2

and

(z2(1 − γ) − (1 − γ))z1(1 − γ)2(1 − z1(1 − γ))2 < (γ − z1(γ))z2(γ)2(1 − z2(γ))2

and hence the assertion follows. Note that ∆+(0) = ∆−(0). Since ∂∆+(x)/∂x > ∆−(x)/∂x

when ∆+(x) = ∆−(x) and ∆+, ∆− are continuously differentiable, we conclude that

∆+(x) ≥ ∆−(x).

To complete the proof of part (i), let a1 := 1 − 2z1; a2 := 2z2 − 1. Then,

U3(γ) − U3(1 − γ) =
a1(γ)a2(γ)

a1(γ) + a2(γ)
− a1(1 − γ)a2(1 − γ)

a1(1 − γ) + a2(1 − γ)
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Fact 1 implies that

a1(γ) > max{a2(1 − γ), a1(1 − γ)}

and Fact 2 implies that

a1(1 − γ) + a2(1 − γ) > a1(γ) + a2(γ)

It is easy to check that these two inequalities imply that U3(γ) < U3(1 − γ) as desired.

Part (ii): By part (i) we have γ∗ ≥ 1/2. If 1/2− z∗1 > z∗2 − 1/2 then γ − z1 > z2 − γ and

hence Lemma 3 implies that U3 is strictly increasing in γ. This proves part (ii).

6.11 Asymmetric Information

Proof of Lemma 4: (i) Let p, p̄ be the belief thresholds corresponding to the profile

Q(x, y). Note that player 1 type 1 never quits and therefore the probability player 2 wins

is v where v satisfies

(1 − v) · q + v · 1 = 1/2

This follows since pt is a martingale and hence by the martingale stopping theorem E(pT ) =

1/2 = p0. Note that v is independent of the strategy of player 0. In particular, we may

assume that player 0 never quits and hence v corresponds to the win probability of player

2 if his opponent never quits.

Next, consider the cost of the strategy Q2(y) with p = 1
1+e−y . We can compute an

upper bound to this cost as in Lemma 1. Let pt = 1/2 and assume player 2 incurs the cost

until time τ with pτ ∈ {1/2 − ε, p}. Choose ε so that 1/2 − ε < p = 1
1+e−x . Let cε denote

this cost. Let πε denote the probability that pt′ reaches 1/2 at some time after τ given

that pτ = 1/2 − ε. This probability satisfies

(1/2) · πε + 1 · (1 − πε) = 1/2 − ε

Note that πε is independent of the strategy of player 0. An upper bound to player 2’s cost

is therefore given by

C̄(q) = cε(q) + πεC̄(q)
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Note that this upper bound is independent of the strategy of player 0. We may therefore

assume that player 0 never quits. For that case, Lemma 1 provides the limiting cost as

ε → 0 by setting α1 = 1. An analogous argument can be used to derive a lower bound

(as in Lemma 1). Hence, we can apply Lemma 1 to show that the utility of player 2 from

strategy y is given by

U2(p) =
1
2p̄

(
1 − kw ln

p̄

1 − p̄

)
where p=1

1+e−y .

By Lemma 2, U2 is strictly concave with a maximum p̄ = 1+B(1)
2 . Hence, for q < p̄,

U2(p̄) − U2(q) > 0. Assume player 2 quits if and only if pt ≥ p̄. Let V (q) denote the

player’s continuation payoff conditional on a history with pt(ω) = q. Note that

πqV (q) = U2(p̄) − U2(q)

where πq is the probability that pt reaches q before it terminates. Hence, for any ω, t with

pt(ω) < p̄ there is a strategy for player 2 that guarantees a strictly positive payoff. This

implies that player 2 quits with probability zero for all t, ω with pt(ω) < p̄.

Next, we show that player 2 must quit at p̄. Suppose player 2 never quits but incurs

the cost only if pt ≤ p̄. For q > p̄ the cost is zero. Clearly, this is an infeasible strategy

(because 2 does not incur the cost of information provision for pt > p̄) that provides an

upper bound to the utility of any strategy that does not quit at p̄. Let W ∗ be the utility

of player 2 at this strategy. We will show below that W ∗ = U2(p̄∗). This implies that the

overall cost incurred by player 2 cannot exceed the cost of the threshold strategy x∗ and

therefore Q2(x∗, y∗) is the unique best reply.

Claim: W ∗ = U2(p̄).

Proof: Let V (q) = U2(p̄)−U2(q)
πq for 1/2 ≤ q < p̄ where πq is the probability that pt reaches

q. Note that V (q) is the continuation value of the strategy Q(x, y∗) at pt = q. Furthermore,

πq is bounded away from zero for all q ∈ [1/2, q∗].

Consider the following upper bound for W ∗. If pt = p̄ then information is generated

at no cost until either pτ = p̄− δ (which occurs with probability r or pτ = 1 (which occurs

with probability 1− r). In the latter case, the player 2 wins. In the former case, the agent

41



proceeds with the threshold strategy p̄ until either p̄ is reached or the opponent quits. If p̄

is reached then free information is generated again, as described above. By the martingale

property of pt we have

r(p̄ − δ) + (1 − x)1 = p̄

which implies that

r =
1 − p̄

1 − p̄ + δ

and therefore

W ∗ ≤ U2(p̄) +
U2(p̄) − U2(q)

πq(1 − rδ)

= U2(p̄) + πq(1 − q + δ)
U2(p̄) − U2(p̄ − δ)

δ

Note that as δ → 0 we have

U2(p̄) − U2(p̄ − δ)
δ

→ U ′
2(p̄) = 0

by the optimality of the threshold p̄ and hence the claim follows. It follows that the player

must quit when pt > p̄.

noindentProof of Lemma 5: From the proof of Lemma 1 we can compute the payoff

of player 0 if he uses a threshold Q0(y) and quits at y as follows. Let P (x, y) denote the

probability of reaching y before x when µ = −1/2 and let E[C(Xt)| − 1/2] denote the cost

when y1 = x, y2 = y∗. Lemma 1 provides expressions for P (x, y) and E[C(Xt)| − 1/2].

Substituting those we obtain

Π0(x) = P (x, y∗) − E[C(Xt)| − 1/2)] = Π(x, y∗)

It is straightforward to show that Π(x, y∗) has a unique maximum x∗. Next, we show that

x∗ < 0. To see that x∗ < 0 for all k1 > 0 and all y∗ > 0 note that

∂
Π̃0(x, y∗)

∂x
|x=0 = − 1

ey∗ − 1

and hence x∗ = 0 cannot be optimal for any k1. Note that Π0(x, y) is concave in x. Hence,

quitting before y∗ cannot be optimal.
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Next, we show that quitting at y∗ is optimal. To demonstrate this, assume that player

0 never quits but incurs the cost of information only if pt ∈ (p, 1/2] with p = 1
1+ex∗ . Clearly,

this strategy provides an upper bound to the payoff of player 1. Denote the corresponding

payoff by W ∗. We can compute an upper bound to W ∗ by assuming that when y∗
0 is

reached then information is provided at no cost to the players until a pt = 1
1+e−(x∗+δ) is

reached. Let Zt = sup0≤s≤t(Xt − Xs) and let p0 = 1
1+e−x∗ . Then,

pt ≤
1

1 + e−y∗
0+Zt

and the probability that pt > 1

1+e
−(y∗

0
+δ) for all t is bounded below by e−δ since Pr{Zt ≤

z} → 1−e−z as t → ∞ (See Harrison, page 15). Hence, the probability that pt = 1

1+e
−y∗

0
+δ

is at most e−δ. Let V δ denote the continuation value of player 0 at pt = 1
1+e−(x∗+δ) when

the player quits at p = 1
1+e−x∗ and note that

V δ =
1

1 − P (x∗ + δ, y∗)
(
Π0(x∗, y∗) − Π0(x∗ + δ, y∗)

)
Then,

W ∗ = Π0(x∗, y∗) +
V δ

1 − e−δ

Note that

lim
δ→0

Π0(x∗, y∗) − Π0(x∗ + δ, y∗)
1 − e−δ

= 0

since ∂Π0(x∗, y∗)/∂x = 0 by the optimality of x∗. Therefore, W ∗ → Π0 ∗ (x∗, y∗) as δ → 0

This shows that quitting at x∗ is optimal. The argument above also shows that V δ → 0

and hence player 0 is indifferent between quitting and not quitting at pt = p.

It remains to show that the strategy Q1 is optimal. Let

Π1(x, y∗) :=
1

1 − e−y∗+x

(
1 − ex − 2k1(1 − e−y∗

)(1 − ex(1 − x))
)

and note that Π1 is the payoff of type 1 if 1 quits at p = 1
1+e−x . A straightforward

calculation shows that

∂Π1(x, y)
∂x

− ∂Π0(x, y)
∂x

< 0

for all x∗ ≤ x < 0 and therefore it is optimal for player 1 not to quit.
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