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Abstract

The goal of this paper is to construct a user-friendly model of unawareness. We
start from an axiom system (in first-order modal logic) that enables us to express the
following kinds of sentences: “the agent is not sure whether or not there is anything
that he is unaware of”, and “I am not sure whether or not you are aware of something
that I am not”. We then prove a characterization theorem which describes a class of
structures, called object-based unawareness structures, that correspond to this axiom
system. As an application, we explain how an object-based unawareness structure can
be use to model those American founding fathers who were opposed to the inclusion
of the Bill of Rights in the constitution.

1 Introduction

It has been recognized for some time that unawareness is an important phenomenon
in economic life. Consider, for example, contracting parties faced with a vast number of
unknown unknowns. They may choose to write incomplete contracts in order to retain
the flexibility to deal with contingencies they were unaware of at the time of agreement.
Similarly, if legislators are unaware of every potential bad action, they may choose to write
vague laws for fear of how judges will interpret (inevitable) omissions from more precise ones.
Commenting on whether the Bill of Rights should be included in the Constitution of the
United States, James Iredell (later a Supreme Court Justice) made the following remarks:
“[it would be] not only useless, but dangerous, to enumerate a number of rights which are
not intended to be given up; because it would be implying, in the strongest manner, that
every right not included in the exception might be impaired by the government without
usurpation.” Chung and Fortnow (2007) develop a theory of legislation along these lines.
They argue that legislators who are not sure whether or not there are any bad actions that
they are unaware of may optimally refrain from enumerating all the bad actions that they
are aware of.

We can call sentences such as “the legislators are not sure whether or not there are any
bad actions that they are unaware of” or “I am not sure whether or not you are aware of
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something that I am not” EU-sentences, where EU stands for “reasoning about the Existence
of things that one is Unaware of”.1 Any model, including Chung and Fortnow (2007), that
tries to model agents such as James Iredell has first to express EU sentences. However, RU
sentences are not easy to express in traditional economic models such as those based on
information partitions. In fact, such models preclude the expression of an even simpler class
of sentences, which we shall call U-sentences, such as: “an agent is aware of this but not aware
of that.” (We shall explain the expressibility problem in more detail below.) The observation
that these models preclude the expression of U-sentences is formalized in a seminal paper by
Dekel, Lipman, and Rustichini (1998) (hereafter DLR) titled “Standard State-Space Models
Preclude Unawareness.” EU-sentences are more complicated than U-sentences in that the
former involve existential quantifiers which allow us to describe unspecified objects, while
the latter do not.

There have been a number of recent studies that construct non-standard models that do
not preclude the expression of U-sentences. Examples include Modica and Rustichini (1999),
Halpern (2001), Feinberg (2004), Li (2006), and Heifetz, Meier, and Schipper (2006). But
the problem of expressing EU-sentences remains open. The goal of this paper is to construct
a user-friendly model that can express these sentences. We start from an axiom system
that does not preclude the expression of EU-sentences. We then prove a characterization
theorem which describes the class of structures that correspond to this axiom system. We
call this the class of structures the object-based unawareness structures. As an application,
we explain how one can use an object-based unawareness structure to model agents such as
James Iredell.

It goes without saying that we owe huge intellectual debt to each of the unawareness
papers cited above. Without this earlier literature, the current paper would not be possible.
A brief review of this literature will be provided in Section 6.

Two recent independent studies, Halpern and Rego (2006) and Sillari (2006), also address
the issue of EU-sentences. They employ a different way of dealing with the existential
quantifier, adopting the possibilitist (rather than the actualist) approach, which leads them
to construct structures with constant domains (in contrast, our structures have non-constant
domains, which we shall explain faciliate the modelling of an agent who is not sure whether
or not there exist things he is unaware of); and, more importantly, they model awareness in
a very different way, taking what we call a ”semi-syntactic” approach. We shall review their
approaches in Section 6 as well.

1.1 The Expressibility Problem

In this section, we shall briefly review two questions: (1) In what sense are U-sentences
not expressible in standard state-space models, such as models with partitional information
structure? (2) In what sense are EU-sentences not expressible in non-standard state-space
models, such as the models developed in the earlier unawareness literature? Even if the reader

1In this informal section, we use “I am not sure whether or not φ” as a shorthand for the conjunction of
two sentences: “I do not know that φ is true” and “I do not know that φ is not true”.
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is already familiar with this literature, we still urge that he skims through this section, as
we shall introduce some notation and terminology here.

First, we note that DLR do not commit to a specific definition of unawareness. Rather,
their impossibility theorem applies to all definitions that are “reasonable” in a sense they
make precise, and can be expressed in the context of a standard state-space model. For
DLR, a standard state-space model is a state space W (a set of states) coupled with a
knowledge operator k, which is a mapping from events to events (recall that an event is
a subset of the state space), with the requirement that either k(W) = W (Necessitation)
or k(E) ⊂ k(F ) as long as E ⊂ F (Monotonicity). Within these models, they consider
definitions of unawareness that take the form of an operator (again, a mapping from events
to events). They argue that any sensible definition of unawareness should satisfy three
axioms:2

1. u(E) ⊂ (W \ k(E)) ∪ (W \ k(W \ k(E))) (Plausibility),

2. U(E) ⊂ U(U(E)) (AU Instrospection), and

3. K(U(E)) = ∅ (KU Introspection).

They prove that if the unawareness operator satisfies these three axioms, then necessitation
implies that the agent is aware of everything, and monotonicity implies that if the agent
is unaware of anything, he knows nothing. In standard state-space models, then, the three
axioms are inconsistent with a nontrivial notion of unawareness.

At the risk of being repetitive, let’s illustrate this expressiblity problem with an example.
During this illustration we shall also introduce some new notation and terminology, which
will eventually allow us to restate DLR’s impossibility result in a slightly different way.

Consider the following state space: W = {w1, w2}. In state w1, the agent cannot dis-
tinguish w1 and w2, and consider both possible. In state w2, the agent consider only w2

possible. According to the usual definition in this framework, an agent knows an event if
and only if it holds at every state he considers possible, so the corresponding knowledge
operator is such that k(W) = W , k(w1) = k(∅) = ∅, and k(w2) = w2.

3

As an application, suppose fact φ is true in and only in state w2, and let’s write this as
follows:

(M, w1) |= ¬φ,

(M, w2) |= φ,

where M refers to the model we outlined in the paragraph above, and |= represents truth
(so (M, w1) |= ¬φ means “not φ is true in world 1 of model M).

2In words, these axioms say that “if an agent is unaware of something, then he does not know it, and he
does not know that he does not know it”, “if an agent is unaware of something, then he must be unaware
that he is unaware of it”, and “an agent cannot know that he is unaware of a specific fact”.

3We ease notation by omitting brackets when a set is a singleton.
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In this model M , because k(w2) = w2, if we use Kiφ to stand for “the agent knows fact
φ”, then Kiφ is true in and only in w2. Using the notation just introduced, we have:

(M, w1) |= ¬Kiφ,

(M, w2) |= Kiφ.

Similarly, because k(w1) = ∅, we have:

(M, w1) |= ¬Ki¬Kiφ,

(M, w2) |= ¬Ki¬Kiφ.

What we are doing above is assigning truth values to longer and longer sentences such
as φ, ¬φ, Kiφ, ¬Kiφ, and ¬Ki¬Kiφ. How about sentences such as “the agent is unaware
that it is raining”? How should we assign a truth value to Uiφ? This is a new kind of
sentence, involving the letter Ui instead of (merely) Ki. It is an example of what we have
called a U-sentence. Defining unawareness in model M amounts to extending the truth-value
assignment rule to U-sentences.

One natural attempt is to extend the truth-value assignment rule as follows: whenever a
sentence of the form ¬Ki¬Kiα is true in a state w, let’s also assign “true” to the sentence
Uiα in that same state. Applying this rule to our example, we have:

(M, w1) |= Uiφ,

(M, w2) |= Uiφ.

But then, since k(W), we have to also assign “true” to the sentence KiUiφ in both states,
an assignment that violates DLR’s KU Introspection Axiom.

How about other ways of extending the truth-value asignment rule? One way to para-
phrase DLR’s impossiblity result is as follows: in any standard state-space model M , there
is no way to extend the truth-value assignment rule to U-sentences without violating at least
one of DLR’s three axioms (modulo some trivial extensions).

We are now in position to address the second question: In what senses are EU-sentences
not expressible in those non-standard state-space models introduced in the earlier unaware-
ness literature? Technically, it is incorrect to say that EU-sentences are inexpressible in
those models. In each of those models, there is a corresponding truth-value assignment rule,
which assigns truth values to U-sentences in a way that does not violate any of DLR’s three
axioms. But these rules do not specify how truth values should be assigned to EU-sentences,
nor has anyone proposed any extension of these rules to EU-sentences. Indeed, no one has
even suggested any axioms, analogous to DLR’s three axioms, that any sensible extension
should satisfy.

In this paper, instead of working with the existing non-standard state-space models and
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trying to extend their truth-value assignment rules to EU-sentences, we shall start from
scratch. We shall start with an explicit list of “reasonable” axioms, analogous to DLR’s
axioms, and then construct a class of structures (together with a truth-value-assignment
rule for a rich enough set of sentences that includes EU-sentences) that is axiomatized by
exactly those axioms. The advantage of starting from scratch is apparent: since no axioms
will be hidden from the readers, we can afford a more open discussion of whether these
structures (as well as the corresponding truth-value assignment rule) are sensible or not.

1.2 The Main Idea

In this section, we shall very informally explain the main idea that underlies our axioms
(and hence also our structures). This idea can be summarized as follows: while knowledge is
often associated with events/facts, unawareness is more often assocated with objects/things.

This difference between knowledge and unawareness has actually already appeared in
many motivating examples provided by previous authors. For instances, Heifetz, Meier,
and Schipper (2006) write “Scientists were unaware of gravity until Newton conceived it.
Mathematicians are now unaware of tomorrow’s proof-techniques for today’s long-standing
conjectures. Some investors are unaware of financial market regularities that other investors
exploit”. Note that “gravity”, “techniques”, and “regularities” are more akin to objects
rather than events. Even when we sometimes say that an agent is unaware of a certain fact,
as in a sentence like “I was not aware that people could use this loophole to circumvent the
law”, the agent’s unawareness of a certain fact can often be traced to his unawareness of
a certain object referred to in the fact (here, the object is the loophole in question). The
reason behind this unawareness may be very mundane (e.g., the loophole in question simply
slipped the mind of the busy legislator when he wrote the law), or quite fundamental (e.g.,
before viruses were discovered, the word “virus” amounted to nothing more than a funny
sounding word to a typical ear), but in both cases the effect on the agent’s knowledge is the
same: if an agent is not even aware of every object referred to in a particular fact, then he
cannot know this fact, and he cannot know that he does not know this fact . . . , etc.

However, while a legislator who is unaware of loophole x certainly cannot know that
“people can use loophole x to circumvent law y” (nor can he know that he does not know
this), he may well know that “there exist some loopholes that people can use to circumvent
law y”, because the latter fact does not mention x, the object that he is unaware of. In other
words, an agent can be aware of his own unawareness of “something”, yet not know what
that “something” is.

Our axioms will take this idea seriously: in effect they say that an agent’s unawareness
of a fact can be traced to his unawareness of the mentioned objects, and if he is aware of
all objects mentioned then he is also aware of that fact. It could be argued that we have
taken this idea too far, with the result that we fail to capture alternative uses to the word
“aware” in everyday English. For example, in a sentence like “I was not aware that you
were in town, otherwise I would have bought you dinner”, the agent’s unawareness of a
fact (“that you were in town”) is definitely not due to his unawareness of objects. In this
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example, however, “aware” is synonymous with “know”, and the same meaning could have
been expressed without using the word “aware”: “I did not know that you were in town,
otherwise I would have bought you dinner”. In such cases, then, “aware” is not being used
to describe a new concept, and we can ignore this alternative use without loss.4

1.3 Structure of the Paper

Section 2 contains our main result. Section 2.1 first defines the language, or equivalently,
the set of sentences that we are to assign truth values to. Section 2.2 presents our axioms.
Section 2.3 then presents the class of structures, which we shall call the object-based un-
awareness (OBU) structures, that is axiomatized by exactly the axioms presented in Section
2.2. Section 2.4 formally states our characterization theorem.

Section 3 gives an example of our framework in use, showing how one can use an OBU
structure to model those American founding fathers who were opposed to including the Bill
of Rights in the constitution.

In section 4, we verify that our structures satisfy DLR’s three axioms. Then, in Section
5, we discuss how to incorporate other axioms of interest.

Section 6 reviews the previous unawareness literature, and Section 7 concludes.

2 Object-Based Unawareness

In this section, we shall first introduce our language. A language can be thought of as
the set of all sentences, or more precisely all sentences that we would like to assign truth
values to in the structures that we are about to construct in Section 2.3. Our language will
be based on first order modal logic, and is different from the language used in the previous
unawareness literature, which in turn is based on propositional modal logic. Introducing
this new language is necessary, because EU-sentences cannot be expressed in propositional
modal logic.

Although we do not describe object-based unawareness (OBU) structures until Section
2.3, let’s use M to denote the class of such structures that characterizes the axiom system
we are about to introduce, with M being a typical structure within that class. Within the
set of all sentences, there is a subset that is of particular interest, namely those sentences
that are valid in M. the definition of a valid sentence will also have to wait until Section
2.3, but roughly speaking valid sentences are those sentences that are always true in every
structure M in M. They are intimately related to theorems that economists may one day

4We should also note that the word “know” has also occasionally been used in a way that is similar to
how we use the word “aware” here. A famous example is Russell (1912): “The word ‘know’ is here used in
two different senses. (I) In its first use it is applicable to the sort of knowledge which is opposed to error, the
sense in which what we know is true, the sense which applies to our beliefs and convictions, i.e. to what are
called judgements. [...] This sort of knowledge may be described as knowledge of truths. (2) In the second
use of the word ‘know’ above, the word applies to our knowledge of things, which we may call acquaintance.”
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prove using OBU structures. In fact, the notion of validity (if not the word itself) appears
in other contexts that will be familiar to many economists. For example, the sentence “it
cannot be common knowledge that agents disagree on the probability of the same fact” is
a valid sentence in the class of partitional information structures with a common prior, and
is a result proved by Aumann (1976) using those structures. Axiomatization of a class of
structures such as M is in effect axiomatization of its set of valid sentences.

Axiomatization of the set of valid sentences takes the form of a procedure to generate a
set of provable formulas that coincides with the set of valid sentences. The procedure has
two parts. First, some sentences are declared provable directly. These sentences are called
axioms. Second, sentences other than axioms can also qualified as provable indirectly by
association with existing provable formulas. The association rules are called inference rules.
One way to interpret this exercise is to think of axioms and inference rules as two different
forms of “hidden assumptions” of the class of structures being axiomatized. Every provable
formula one may prove using a given class of structures must have its root in some of these
“hidden assumptions.”

One last remark before we start: although we have been using the word “sentences”
casually so far, we shall stop doing so below. The reason is that logicians typically reserve
the word “sentences” for something else, and use the word formulas to refer to what we have
been calling “sentences.” We shall follow this convention below.

2.1 The Language

Our language (to be formally defined shortly) is a version of first order modal logic.
Roughly speaking, first order modal logic is first order logic augmented by modal operators,
and first order logic is an extension of propositional logic. Examples of formulas in proposi-
tional logic include ¬α (read “it is not the case that α”), α∧β (read “α and fact β”), α → β
(read “whenever α is true, β will be true as well”), etc. First order logic extends proposi-
tional logic by including formulas such as ∀x Tall(x) (“every x is tall”). Modal operators are
represented by letters such as Ki and Ai that can be affixed to simpler formulas and result
in longer ones: Kiα (read “agent i knows that α”) and Aiα (read “agent i is aware that α”).
In this ways, modal operators allow us to construct formulas that describe the mind of an
agent. Strictly speaking, in this subsection, where our goal is formally to define the language,
these words do not yet possess any meaning, and we give the intended interpretation only
as an aid to the reader. Their meaning will be governed by axioms, which are the subject of
the next subsection.5

In addition to Ki and Ai, we will have a third modal operator denoted Li in our language.
Although we will not present axioms that govern the meaning of Li until the next subsection,
it is useful give an informal interpretation right now. We would like to use Li to represent an

5If one augment propositional logic (instead of first order logic) with modal operators, what he gets will
be propositional modal logic, which is the language used in most of the previous literature on unawareness.
It should be clear that propositional modal logic is not rich enough to include formulas such as “I am not
sure whether or not you are aware of something that I am not”.

7



alternative kind of knowledge that differs slightly from Ki. In particular, Li stands for the
kind of “know” that appears in the following English sentence: “If Madison had been aware
of the right to universal suffrage, he would have known that it was important, and would
have included it in the Bill of Rights”. Here, “know” refers to knowledge in the benchmark
case—a hypothetical case where Madison were not plagued by his unawareness of the right
to universal suffrage. It is not the same as actual knowledge, because Madison was plagued
by unawareness. In the previous literature, what we call “benchmark knowledge” (Li) and
“actual knowledge” (Ki) have been called “implicit knowledge” and “explicit knowledge”,
respectively. Although we do not think these names are ideal, they have become standard
usage and we shall follow henceforth this convention.6

We now formally describe the language. Fix a set N of agents. Fix an infinite set X
of variables, with typical elements x, y, z, x1, x2, x3, . . ., etc. Fix some vocabulary consisting
of a set of relation symbols (predicates); e.g. Tall(x) (“x is tall”), Taller(x, y) (“x is taller
than y”), etc. This generates a set Φ of atomic formulas, P (x1, . . . , xk), where P is a k-ary
predicate and x1, . . . , xk ∈ X are variables. Our language L is the smallest set of formulas
that satisfies the following conditions:7

• if φ ∈ Φ, then φ ∈ L;

• if α, β ∈ L, then ¬α ∈ L and α ∧ β ∈ L;

• if α ∈ L and x ∈ X, then ∀xα ∈ L;

• if α ∈ L and i ∈ N , then Kiα ∈ L and Aiα ∈ L and Liα ∈ L.

We use the following standard abbreviations:

• α ∨ β for ¬(¬α ∧ ¬β);

• α → β for ¬α ∨ β;

• α ↔ β for (α → β) ∧ (β → α);

• ∃xα for ¬∀x¬α;

• Uiα for ¬Aiα.

Finally, we require that there is a special unary predicate called E. The intended interpre-
tation of E(x) is “x is real”. The meaning of “real” will depend on the specific application.
For example, a founding father writing the Bill of Rights may come up with the following

6We believe the names “implicit knowledge” and “explicit knowledge” obscure the fact that Li is merely
an conceptual tool, and is used only as an intermediate step to define Ki, which in turn is our ultimate
interest.

7To be precise, we should have included “(” and “)” as building blocks of our language; we chose not to
do so, and use parentheses only in cases of likely confusion.
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rights: freedom of speech, freedom to bear arms, freedom of choosing one’s own fate. . . .
Upon further reflection, he may realize that only the first two are “real” rights, while the
third one is merely an artificially-created concept. For an agent trying to enumerate animals,
on the other hand, horses and cows are “real”, while unicorns are not.

2.2 The Axiom System

Before we state our axioms, we need one more definition. We say that a variable x is free
in the formula α if it does not fall under the scope of a quantifier ∀x.8 For example, x is free
in ∀y Taller(x, y) but not in ∀x∀y Taller(x, y).

We are now ready to present our axiom system, called AWARE, for the language L. As
we explained earlier, an axiom system contains both axioms and inference rules. We shall
group the axioms and inference rules into several different categories. The first category
is borrowed directly from propositional logic, and is common to all axiom systems in this
literature:

PC all propositional tautologies are axioms9

MP from α and α → β infer β

PC (propositional calculus) is a set of axioms: propositional tautologies include formulas
such as α ∨ ¬α and

(
Tall(x) ∧ ∃x (x, y)

)
→ ∃x Taller(x, y); MP (modus ponens) is an

inference rule, and says that if α and α → β are provable formulas, then so is β. Note that
any formulas may be substituted for α and β, and any variables for x and y.

The second category governs the universal quantifier ∀:

E1 for any variable x, ∀x E(x) is an axiom
E2 for any formula α and variables x and y, ∀xα →

(
E(y) → α[y/x]

)
is an axiom

E3 for any formulas α and β and variable x, ∀x(α → β) → (∀xα →
∀xβ) is an axiom

E4 for any formula α and variable x that is not free in α, α ↔ ∀xα is
an axiom

UG from α infer ∀xα

8More formally, we define inductively what it is for a variable to be free in α:

• if φ is an atomic formula P (x1, . . . , xk) , then each x is free in a formula;

• x is free in ¬α, Kiα, Aiα, and Liα iff x is free in α;

• x is free in α ∧ β iff x is free in α or β;

• x is free in ∀yα iff x is free in α and x is different from y.
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Axiom E1 can be rewritten as ¬∃x¬E(x), which gives an interpretation to the existential
quantifier in terms of the predicate E. Since there are at least two different ways to interpret
the existential quantifier, E1 is an important axiom in the sense that it clarifies which of the
two interpretations is adopted in our system. Consider the following sentence:

“There exist rights that have not been included in the Bill of Rights—think about
the freedom to choose one’s own fate.”

Depending on how we interpret the word “exist”, one may or may not agree that “the
freedom to choose one’s own fate” is an appropriate example in the above sentence. In
particular, if we interpret the word “exist” according to E1, then we would likely regard
that example as inappropriate, because that freedom is not a real right at all. However,
one can conceive another interpretation of the word “exist” that would make that example
appropriate. These two interpretations correspond to what logicians call actualist existence
and possibilitist existence, respectively. We consider the possibilitist interpretation as less
useful in economics. The reason, roughly speaking, is that most possibilitist axiom systems
we are aware of lead to constant-domain structures, which is an especially restrictive property
for economic models. We shall return to this point in Section 6, when we compare our current
paper with Halpern and Rego (2006) and Sillari (2006).

In axiom E2, α[y/x] is the same formula as α with free y replacing every free x.10 To
understand axiom E2, one can consider the following conversation:

father: “One difference between horses and goats is that horses do not have
horns.”

son: “But unicorns have horns.”
father: “Unicorns exist only in fantasy stories. What I meant was: real

horses do not have horns.”

The “E(y)” part of E2 captures the father’s qualification in his second statement, where
α is “if x is a horse than x does not have horns”. The basic idea is that the quantifier ∀
ranges only over “real” things. E3 is straightforward. In E4, if x is not free in α, then
adding ∀x at the beginning of α does not change the meaning; for example, “for all things,
Aumann is an economist” has the same information content as “Aumann is an economist”
(although the former is rather awkward English). To understand UG, consider a formula
such as “x is either tall or not tall”. Suppose we have managed to find a proof for it by
means of other axioms and inference rules. We would like to make sure that the formula
“for all x, x is either tall or not tall” is also provable; and UG is an inference rule that will
help make sure this.

The third category governs the meaning of explicit knowledge:

K for any formula α, Kiα ↔ (Aiα ∧ Liα) is an axiom.

10So for example
(
E(y) ∧ ∀x∃zP (x, y)

)
→ ∃zP (y, y) is an axiom, but

(
E(y) ∧ ∀x∃yP (x, y)

)
→ ∃yP (y, y)

is not.
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We have already alluded to the idea behind K in Section 2.1: an agent explicitly knows
a fact if and only if he implicitly knows it and he is not plagued by unawareness problems.

The fourth category governs the meaning of awareness:

A1 for any formula α that contains no free variables, Aiα is an axiom;
A2 for any formulas α and β, (Aiα ∧ Aiβ) → Ai(α ∧ β) is an axiom;
A3 for any formulas α and β, if every variable x that is free in β is also

free in α, then Aiα → Aiβ is an axiom.

To see that these three axioms capture the idea that awareness is object-based (alluded
to in Section 1.2), one may heuristically think of a free variable as referring to some specific
object, while a variable that is bound by a ∀ quantifier refers to generic objects. With this
heuristic understanding, our idea that unawareness of a fact must arise from unawareness of
specific objects referred to in the fact will have three implications, each correspond to one
of the three axioms: if a fact does not refer to any specific objects, an agent will be aware
of it (A1); if the agent is aware of two facts, then he is aware of a more complicated fact
which is the conjunction of the two (A2); and if an agent is aware of a fact that refers to a
collection of specific objects, then he is also aware of a fact that refers to only a subcollection
of them (A3). These three implications, combined together, also characterize the idea that
unawareness of a fact must arise from unawareness of specific objects referred to in the fact.

The last category governs the meaning of implicit knowledge:

L Li(α → β) → (Liα → Liβ);
LN from α infer Liα;
UGL from α1 → Li

(
α2 → · · · → Li(αh → Liβ) · · ·

)
, where h ≥ 0, infer

α1 → Li

(
α2 → · · · → Li(αh → Li∀xβ) · · ·

)
, provided that x is not

free in α1, . . . , αh.

These axioms suggest that our agents are very powerful reasoners indeed, at least im-
plicitly. Both L and LN, with explicit knowledge replacing implicit knowledge, are present
in (the axiom system that underlies) all standard state-space models. In this sense they
are standard assumptions in economics. L says that the agent can apply the inference rule
modus ponens in his head (at least when he is not plagued by unawareness problems). LN
says that our agents implicitly know all provable formulas of AWARE, even formulas that
no one has ever written down, let alone found a proof for and published in a journal.

UGL is a bit mouthful. To understand what it says, it may be useful to put h = 0 and
simplify it to “from Liβ infer Li∀xβ,” which in turn takes a form similar to UG.

From these axioms and inference rules we can define the set of provable formulas. A
formula can qualify as provable directly because it is an axiom, or it can qualify indirectly
by association. The process of showing that a formula qualifies as a provable formula is
called a “proof.” Formally, a proof is a finite sequence of formulas, each of which is either
an axiom or follows from preceding formulas in the sequence by applying an inference rule.

11



A proof of α is such a sequence whose last formula is α. A formula is a provable formula iff
it has a proof.

2.3 The Object-Based Unawareness Structures

We now present the class of structures M (together with a truth-value assignment rule);
we shall show (Theroem 1) that this class of structures is axiomatized by the axiom system
AWARE presented in Section 2.2 above.

An object-based unawareness (OBU) structure is a tuple M = (W , D, {Dw},P1, . . . ,Pn,A1, . . . ,An, π),
where:

• W is a set of possible worlds, with typical element w;

• D is a set of objects;

• for each w, Dw is a non-empty subset of D, containing objects that are “real” in w;

• Pi is agent i’s possibility correspondence; it is a mapping that assigns to each w a subset
of W , containing worlds that agent i considers possible when the true world is w;

• A is agent i’s awareness correspondence; it is a mapping that assigns to each w a subset
of D, containing objects that agent i is aware of in w;

• π is an assignment at each w of a k-ary relation π(w)(P ) ⊆ Dk to each k-ary predicate
P .

Intuitively, the assignment π describes the properties of each object; these can differ
across worlds, so that for example Alice could be taller than Bob in world w1, while Bob is
taller than Alice in world w2. Let M be the class of all OBU structures.

The way we intend to use an OBU structure is very standard, and will be formally
captured in the truth-value assignment rule. Before we present the rule, let’s go through two
simple examples first.

As the first example, suppose John is an element in D, and tall is one of the predicates.
To determine whether or not, in world w, agent i knows that John is tall, we first construct
the event that John is tall, which is E := {w|John ∈ π(w)(tall)}. We then ask two questions:
in world w, (1) does i implicitly know that John is tall (Pi(w) ⊂ E)? and (2) is i aware
of John (John ∈ Ai(w))? If both answers are affirmative, then i knows that John is tall in
world w.

As another example, suppose we want to determine whether or not, in world w, i knows
that everyone is tall. Once again, we first construct the event that everyone is tall, which
is E := {w|Dw ⊂ π(w)(tall)}. Note that we only count those people who are “real”—for
example, in a world where Jesus has no son, we do not count “Jesus’ son” even if he is an
element in D. We then ask: in world w, does i implicitly know that everyone is tall? If
the answer is affirmative, then i knows that everyone is tall in world w. Note that we do
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not need to ask the awareness question, because no specific person is referred to in the fact
“everyone is tall”, and hence by assumption there will be no unawareness problem.

These will all be formally captured by our truth-value assignment rule. Let a valuation
V on an OBU structure M be a function that assigns a member of D to each variable x.
Intuitively, V (x) describes the object referred to by variable x, provided that it appears free
in a given formula, just like how a name is associated to an object. The truth value of a
formula depends on the valuation, just like whether or not “Bob is tall” depends on which
person bears the name “Bob”.

We say that the fact represented by the atomic formula E(x) is true at state w of structure
M under valuation V , and write

(M, w, V ) |= E(x),

iff V (x) is one of the objects in Dw. For facts represented by more complicated formulas, we
use the following rules inductively:

(M, w, V ) |= P (x1, . . . , xk) iff
(
V (x1) , . . . , V (xk)

)
∈ π (w) (P );

(M, w, V ) |= ¬α iff (M, w, V ) 6|= α;

(M, w, V ) |= α ∧ β iff (M, w, V ) |= α and (M, w, V ) |= β;

(M, w, V ) |= ∀xα iff (M, w, V ′) |= α for every x-alternative V ′ of V such that V ′(x) ∈ Dw;11

(M, w, V ) |= Aiα iff V (x) ∈ Ai (w) for every x that is free in α;

(M, w, V ) |= Liα iff (M, w′, V ) |= α for all w′ ∈ Pi(w);

(M, w, V ) |= Kiα iff (M, w, V ) |= Aiα and (M, w, V ) |= Liα.

If α is true at every w in M under V , we say that α is valid in M under V , and write

(M, V ) |= α.

If α is valid in M under every V , we say that α is valid in M , and write

M |= α.

If α is valid in every M ∈ C ⊆M, we say that α is valid in C, and write

C |= α.

11We say that V ′ is an x-alternative of V if, for every variable y except possibly x, V ′(y) = V (y).

13



2.4 The Characterization Theorem

Theorem 1 The set of formulas α ∈ L that are valid in M is exactly the set of provable
formulas in AWARE.

In logicians’ terminology, AWARE is a sound and complete axiomatization of M in L.
The proof of Theorem 1 uses standard methodology.12 We present the complete proof in the
appendix.

3 An Application

Chung and Fortnow (2007) use a dynamic game with two players (a legislator who is
to write the Bill of Rights, and a judge who is to interpret it 200 years later) to formalize
the argument of those American founding fathers who opposed the inclusion of the Bill of
Rights into the American Constitution. They prove that, in some parameter range, there
is a unique equilibrium where the legislator, who is not sure whether or not there are still
other rights that he is unaware of, optimally chooses to not to write the Bill of Rights. That
is, he optimally chooses not to enumerate even those rights that he is aware of. The reason
is that, in equilibrium, how the judge treats those rights not in the Bill depends on how
elaborated the Bill is. The more elaborate the Bill is, the more likely that judge will rule
that it is constitutional for the government to infringe rights that have not been listed.

They also prove that, even if the legislator adds the sentence

“Any other rights not listed in this Bill are equally sacred and the government
should not infringe them.”

to the Bill, the equilibrium outcome will be the same.

Instead of reproducing the analysis of Chung and Fortnow (2007) here, let’s focus on how
one can use an OBU structure to model that legislator.

Consider the following object-based unawareness structure: There are two worlds, w1 and
w2, and two rights, s and f , where s stands for “freedom of speech” and f stands for “freedom
to choose one’s own fate”. The true state is w2, where only s is “real”. However, both s
and f are “real” in the other world, w1. Formally, it means Dw1 = {s, f}, and Dw2 = {s}.
Suppose agent i is aware of only s in both worlds (i.e., Ai(w) = {s} for w = w1, w2). Then,
in world w1, and only in world w1, there exists some object that the agent is unaware of. If
we use P to stand for some arbitary property that both objects satisfy in both worlds (i.e.,
π(w)(P ) = {s, f} for w = w1, w2), then we have:

(M, w) |= ∃xUiP (x),

(M, w) |= ¬∃xUiP (x).

12See, for example, the proof of Theorem 16.2 in Hughes and Cresswell (1996).
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Suppose, in the true state w2, the agent cannot distinguish w1 and w2 (i.e., P(w2) =
{w1, w2}). Then he is not sure whether or not there exists some right that he is unaware of.
I.e., he does not know for sure that there is no such a right:

(M, w2) |= ¬Ki¬∃xUiP (x);

and he does not know for sure that there is such a right:

(M, w2) |= ¬Ki∃xUiP (x).

This lack of explicit knowledge is not due to unawareness, for he can comprehend both facts:

(M, w2) |= Ai

(
¬∃xUiP (x)

)
, and

(M, w2) |= Ai

(
∃xUiP (x)

)
.

His lack of explicit knowledge is due to his lack of implicit knowledge—he does not (implicitly)
know for sure the exact number of rights that really exist.

Note that this is an example with non-constant domains; i.e., Dw varies across different
worlds. Non-constant domains are important in modelling agents who are not sure whether
or not there exist things that they are unaware of. Consider the above example again, but
suppose Dw is constant across different worlds. For example, suppose Dw = {s} in both
worlds. Then Ki¬∃xUiP (x) would have been true in both worlds. Alternatively, suppose
Dw = {s, f} in both worlds. Then Ki∃xUiP (x) would have been true in both worlds.
The possibility of non-constant domains in our structures arises from our adoption of the
actualist existence axioms. In Halpern and Rego (2006) and Sillari (2006), where they adopt
the possibilitist existence axioms, their structures are necessarily characterized by constant
domains instead.

4 Dekel, Lipman, and Rustichini’s Axioms

A first impression of some readers of this paper is that object-based unawareness struc-
tures violate DLR’s AU Introspection Axiom. AU Introspection is represented by formulas
of the form Uiα → UiUiα. Indeed, every such formula is a provable formula of AWARE (and
hence, by Theorem 1, it is valid in M). To see why, first note that Uiα and α have the same
free variables, so AiUiα → Aiα is a provable formula of AWARE (for all α ∈ L and all i). By
simple propositional reasoning, then, Uiα → UiUiα is also a provable formula of AWARE.

Consider however a similar formula: Uiα → Ui∃xUiα. Suppose α stands for H(x), “x
is a human right”. Then this formula reads “if an agent is unaware that free speech is a
human right, then she is unaware that there is any human right that she is not aware of”.
Clearly we would not want this formula to be a provable formula in AWARE (or valid in
M): clearly we would like to be able to model agents who are unaware of some things, but
aware (or even explicitly know) that there are things they are unaware of. To show that
this formula is indeed not valid in M (and hence not a provable formula in AWARE), it
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suffices to show that its negation is true in some world w of some object-based unawareness
structure M ∈ M under some valuation V . If α stands for H(x), x is free in α but not in
∃xUiα. Then if V (x) 6∈ Ai(w), we have (M, w, V ) |= Uiα but (M, w, V ) 6|= Ui∃xUiα, and so
(M, w, V ) |= ¬(Uiα → Ui∃xUiα).

Another DLR axiom is Plausibility, which is represented by formulas of the form

Uiα → (¬Kiα ∧ ¬Ki¬Kiα).

Again, every such formula is a provable formula in AWARE. This follows easily from A3
and K.

DLR’s third axiom is KU Introspection, which is represented by formulas of the form
¬KiUiα. Such formulas are not provable formulas in AWARE. The basic reason is that there
are no axioms in AWARE to preclude an agent knowing something that is actually false.
(In this sense, instead of implicit and explicit knowledge, we should perhaps call Li and Ki

implicit and explicit belief.) So an agent may explicitly know/believe that she is unaware of
something, even though she is actually aware of it. Adding the Truth Axiom (T: Liα → α),
would make every instance of ¬KiUiα a provable formula.13 In terms of our structures, T
corresponds to the restriction that the possibility correspondences are reflexive: w ∈ Pi(w).
To be more precise, let Mr be the class of object-based unawareness structures in which each
Pi is reflexive; then the set of formulas that are valid in Mr is precisely the set of provable
formulas of AWARE+T.

DLR’s impossibility result is stated within the confines of standard state-space mod-
els, and they argue that Necessitation and Monotonicity are two characterizing features of
those models. Both Necessitation and Monotonicity are restrictions imposed on their class
of state-space models, and can be translated into restrictions on our OBU structures as
well. Necessitation corresponds to the restriction that, for any given OBU structure M and
valuation , if the formula α is true (i.e., (M, w, ) |= α) in every world w then the formula
Kiα is also true (i.e., (M, w, ) |= Kiα) in every world w. Monotonicity corresponds to the
restriction that, for any given OBU structure M and valuation , if the formula α → β is true
(i.e., (M, w, ) |= α → β) in every world w then the formula Kiα → Kiβ is also true (i.e.,
(M, w, ) |= Kiα → Kiβ) in every world w. In general, our OBU structures do not satisfy
these two restrictions. After all, our OBU structures are not standard state-space models.

5 Other Axioms of Interest

The axiom system AWARE (and, correspondingly, the class M of all OBU structures)
can be thought of as imposing a minimal set of restrictions on the behavior of our language L.
Various additional assumptions have been imposed on models of knowledge and unawareness
elsewhere in the literature. In this section, we shall discuss several such assumptions. In each

13Since our language has two knowledge operators, there are two ways to write the Truth Axiom. The
stronger version is is Liα → α, which we adopted in the text. An alternative, weaker version is Kiα → α.
Here, even adding the weaker version suffices to make every instance of ¬KiUiα a provable formula.
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case, we offer an axiomatic representation, and explain how it corresponds to a particular
subclass of M.

To begin with, the following axioms are standard in the economics literature, and are
implicit in the partitional model of knowledge used in the vast majority of economic appli-
cations:

T for any formula α, Liα → α is an axiom;
PI for any formula α, Liα → LiLiα is an axiom;
NI for any formula α, ¬Liα → Li¬Liα is an axiom.

We have already come across the Truth Axiom T in Section 4. PI is the Axiom of
Positive Introspection, and NI is the Axiom of Negative Introspection. Note that all three
are stated in terms of implicit knowledge Li instead of explicit knowledge Ki. These axioms
have been interpreted by some as rationality requirements on the agents, but generally they
are considered to be unrealistically strong.

As before, we say that an agent’s possibility correspondence Pi is reflexive if w ∈ Pi(w)
for all w. We say that it is transitive if x ∈ Pi(w) and y ∈ Pi(x) imply y ∈ Pi(w) for
all w, x, y; and Euclidean if x ∈ Pi(w) and y ∈ Pi(w) imply y ∈ Pi(x) for all w, x, y. Let
Mr, Mt, and Me denote the subclasses of M in which all Pi’s are reflexive, transitive,
and Euclidean, respectively. We shall also use, for example, Mre to denote the subclass of
M in which all Pi’s are reflexive and Euclidean. The following straightforward extension of
Theorem 1 formalizes the notion that reflexivity corresponds to T, transitivity to PI, and
Euclideaness to NI:

Theorem 2 The set of formulas α ∈ L that are valid in {M r,Mt,Me,Mrt,Mre,Mre,Mrte}
is exactly the set of provable formulas in AWARE+T,PI,NI, TPI,TNI,PINI,TPINI.

One may also be interested in an axiom that says every agent knows what he is aware of:

KA for any formula α, Aiα → KiAiα is an axiom.

A related axiom, A-Introspection (Aiα ↔ KiAiα), appears in Heifetz, Meier, and Schip-
per (2006). Note that KA and A3 imply A-Introspection. AWARE+KA corresponds to
the subclass of M in which the possibility correspondences satisfy the following restriction:
for any w and any w′ ∈ Pi(w), Ai(w) ⊆ Ai(w

′).

In the presence of A3 and K, it is straightforward to show that KA is equivalent to:

LA1 for any formula α, Aiα → LiAiα is an axiom.

Inspired by LA1, some may be tempted to add its “mirror image” as well:

LA2 for any formula α, Uiα → LiUiα is an axiom.
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LA2 has appeared in some earlier studies on unawareness.14 We cannot, however, think
of any justification for it,15 other than the purely aesthetic fact that it looks similar to LA1.
It is straightforward to show that AWARE+LA1+LA2 corresponds to the subclass of M
where, for any w and any w′ ∈ P(w), A(w) = A(w′).

6 Related Literature

In this section we shall discuss some of the important contributions to the literature on
unawareness.16 All of these papers share a common feature: unawareness is associated with
events/facts instead of with objects/things.

In an early paper, Fagin and Halpern (1988) take as their starting point the language of
propositional modal logic, and add unawareness modal operators to allow for U-sentences.
To construct models that do not preclude U-sentences, they augment the standard Kripke
structures17 with an unawareness function. The unawareness function associates with each
state a subset of formulas, listing the facts that the agent is unaware of in that state. They
impose no restriction on the unawareness function, so the agent could be aware of a formula
but unaware of its negation. They also consider an assumption that awareness is closed
under subformulas, which rules out this possibility. They provide an axiomatization for their
structures analogous to our Theorem 1.

Modica and Rustichini (1999) provide the first treatment of unawareness in the economics
literature that avoids DLR’s critique (and also address concerns raised in an earlier paper of
their own, Modica and Rustichini (1994)). Their models, called generalized standard models,
distinguish between an objective set of possible worlds and a subjective subset, with the latter
used to represent facts that the agent is aware of. Halpern (2001) shows that generalized
standard models can be viewed as special cases of those in Fagin and Halpern (1988), with
appropriate restrictions on the awareness function. Li (2006) uses a similar technique to
model multi-agent unawareness; it should be noted that the extension to multiple agents is
not trivial in this context.

In a strikingly original paper, Heifetz, Meier, and Schipper (2006) deal with the extension
to the multi-agent case in a different way. They work with a partially ordered set of sets of
possible worlds, where the ordering represents the expressive power of each set. For instance,
if there are only two primitive propositions of interest, their structure consists of four sets
of sets, with the most expressive one describing situations involving both propositions, two
less expressive sets describing situations involving the first and the second propositions re-
spectively, and the least expressive set describing only situations that involve neither. These
sets are used to represent the awareness of agents. In a companion paper, Heifetz, Meier,

14It appears, for example, as Axiom A12 in Halpern (2001).
15Or perhaps we should say we are not aware of any justification for it.
16A comprehensive bibliography can be found on Burkhard Schipper’s website:

http://www.econ.ucdavis.edu/faculty/schipper/unaw.htm
17A Kripke structure is, roughly, a more general version of the partitional information structure, together

with a function that specifies which primitive propositions hold in which states.
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and Schipper (2007) provide an axiomatization for their structures.

None of the papers discussed so far allows us to model agents’ reasoning about their pos-
sible lack of awareness. Two recent papers work with languages that include EU-sentences.
Halpern and Rego (2006) use second-order modal logic, augmenting the language of Fagin
and Halpern (1988) by including quantifiers over formulas. The resulting language includes
formulas such as ∀xKiAjx, to be read as “agent i knows that agent j is aware of every
formula”. More closely related to our current paper, Sillari (2006) uses a language that is
identical to ours.

One difference between these two papers and ours is that they have very different axioms
for the existential quantifier. In particular, their axioms correspond to what logicians call
the possibilitist interpretation of existence, whereas ours correspond to the actualist inter-
pretation. Although both kinds of axioms have their proponents, we believe possibilitist
existence is less useful when it comes to constructing economic models. The reason, roughly
speaking, is that most possibilitist axiom systems we are aware of come with the Barcan For-
mula18, which, when coupled with other axioms familiar to economists, will have undesirable
implications. To illustrate this, let’s consider what would have happened had we adopted
the possibilitist axioms as well. By this, we mean replacing our Axiom E1 with the Barcan
Formula:

BF for any formula α and variables x, ∀xLiα → Li∀xα is an axiom,

and replacing our Axiom E2 with:

E2’ for any formula α and variables x and y, ∀xα → α[y/x] is an axiom.

The class of structures that is axiomatized by this new axiom system is exactly those
object-based unawareness structures where Dw = D in every world w. If we further add
Axioms LA1 and LA2—which, as we explained in Section 5, appeal to many economists—
then the resulting subclass ofM will have a very undesirable feature. In any structure within
this subclass, an agent either knows for sure that there exists something he is unaware of, or
knows for sure that there is nothing he is unaware of—but he can never be uncertain. If he
were to assign a probability to the event that there exists something he is unaware of, then
that probability would have to be either 0 or 1—it could not lie strictly between.

As Sillari (2006) points out, this very problem arises in Halpern and Rego (2006): “The
second-order logic of Halpern and Rego also requires the Barcan to be validated, hence does
not lend itself to model knowledge as high-probability operators.” That is, once Halpern and
Rego incorporate axioms analogous to LA1 and LA2 into their axiom system, sentences such
as “the agent is not sure whether or not there are still things that he is unaware of” or “I am
not sure whether or not you are aware of something that I am not” will become contradictory
in their resulting structures—they must be false in every world of every structure.

18It is named after the philosopher and logician Ruth Barcan Marcus, the founder of first-order modal
logic.
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Although Sillari (2006) also adopts the possibilitist axioms for the existential quantifier,
his axiom system is an exception in that it does not contain the the Barcan formula, as he has
very different axioms for implicit knowledge. His weaker axioms on implicit knowledge lead
to a class of structures very different from our OBU structures. Roughly speaking, our OBU
structures are generalizations of Kripke structures, which are more familiar to economists;
while his structures are generalizations of the neighborhood semantics.

Another, more important, difference between Halpern and Rego (2006) and Sillari (2006)
and our current paper lies in the way unawareness is modelled. Both of them use the same
approach as Fagin and Halpern (1988) by introducing an unawareness function that assigns
to each agent at each possible world a list of those formulas that agent is unaware of—we
call this the semi-syntactic approach. In our object-based approach, on the other hand, we
provide a foundation for awareness of formulas in terms of awareness of objects.

We believe the object-based approach offers an advantage over the semi-syntactic ap-
proach. Logicians like to preserve a clear distinction between the extra-linguistic reality
(which we can think of in our structure as W , D, Dw, Pi, and Ai) and the semantics (the
truth-value assignment rule) which maps the language into this reality. This distinction is
cut by the semi-syntactic approach, which explicitly uses the language to represent part of
the reality (specifically, the awareness of the agents). Why does this matter? In the semi-
syntactic approach, any restrictions that are imposed on the awareness function (Halpern
and Rego (2006) consider several) must of course be expressed linguistically, and correspond
closely to equivalent axioms in the axiom system. But in the object-based approach, the
(non-linguistic) awareness function and the assumptions we make about it look very different
from the corresponding axioms governing the behavior of the awareness operator: this gives
us two different viewpoints from which to assess the reasonableness of our underlying model
of awareness.

At the risk of setting up a strawman, consider as an analogy two different ways of mod-
elling knowledge: first, the standard approach, where we have a set of possible worlds, and a
possibility correspondence for each agent describing, at each world, which worlds the agent
consider possible; second, a semi-syntactic approach, where instead of the possibility corre-
spondence we have a knowledge function which simply lists the set of formulas each agent
knows at each world. Just as various assumptions about the possibility correspondence
(that it is reflexive, transitive, etc.) correspond to various axiomatizations of the prop-
erties of knowledge (in some appropriate language), restrictions could be imposed on the
knowledge function to derive similar equivalence results. But it is clear that the standard
approach offers us two distinct perspectives on the concept of knowledge, and potentially a
better understanding of it, while the semi-syntactic approach offers only one.

Finally, we should also mention the contribution of Feinberg (2004), who adopts an
ingenious meta-approach to the problem: instead of attempting to express unawareness
directly within the formal language, he describes unawareness implicitly by describing which
subsets of the language make up each agent’s subjective world view.
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7 Conclusion

The goal of this paper is to construct a user-friendly model that allows us to express
EU-sentences such as “the agent is not sure whether or not there are still things that he is
unaware of”. Instead of trying to assign truth values to these EU-sentences within existing
unawareness models in the literature, and worrying about whether or not the truth-value-
assignment rule is consistent with some set of “reasonable” axioms, we started with an
explicitly list of axioms, and then constructed the class of structures (together with a truth-
value-assignment rule) that is axiomatized by exactly those axioms. As an application, we
explained how our structures can be use to model those American founding fathers who were
opposed to the inclusion of the Bill of Rights into the constitution.
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Appendix A:

In this appendix we shall prove Theorem 1. Throughout this proof, PC and MP will
be used too often for us to acknowledge everytime. Hence we shall often refrain from citing
their names when we use them.

As usual in this literature, the proof involves two steps: the soundness part and the
completeness part. The soundness part says that all provable formulas of AWARE are valid
in M. The completeness part says the converse is also true.

Lemma 1 Every provable formula α ∈ L of AWARE is valid in M.

Proof: We shall prove that each axiom is valid in every M ∈M, at every w, and under
every V ; and that each inference rule preserves validity. We shall, however, skip the parts
of PC and MP.

For E1, notice that for every x-alternate V ′ of V such that V ′(x) ∈ Dw, we have
(M, w, V ′) |= E(x), which implies (M, w, V ) |= ∀xE(x).

For E2, suppose (M, w, V ) |= ∀xα and (M, w, V ) |= E(y) but (M, w, V ) 6|= α[y/x]. Let
V ′ be the x-alternative of V such that V ′(x) = V (y). Then we have both (M, w, V ′) 6|= α
and V ′(x) ∈ Dw, contradicting that (M, wV ) |= ∀xα.

For E3, suppose (M, w, V ) |= ∀x(α → β) and (M, w, V ) |= ∀xα. Then, for any
x-alternative V ′ of V such that V ′(x) ∈ Dw, we have both (M, w, V ′) |= α → β and
(M, w, V ′) |= α, which implies (M, w, V ′) |= β, which in turn implies (M, w, V ) |= ∀xβ.

For E4, notice that if x is not free in α, then (M, w, V ) |= α iff (M, w, V ′) |= α for any
x-alternative V ′ of V .

For UG, suppose (M, w, V ) 6|= ∀xα. Then there exists some x-alternative V ′ of V such
that V ′(x) ∈ Dw and (M, w, V ′) 6|= α, which implies that the formula α is not valid in M.

For K, it follows directly from the truth-value-assignment rule in Section 2.3.

For A1, notice that if α contains no free variables, then V (x) ∈ A(w) for every x free in
α, and hence we have (M, w, V ) |= Aiα.

For A2, suppose (M, w, V ) |= Aiα and (M, w, V ) |= Aiβ. Then V (x) ∈ A(w) for every
free x in α and every free x in β, and hence also for every free x in α∧β, and hence we have
(M, w, V ) |= Ai(α ∧ β).

For A3, suppose (M, w, V ) |= Aiα. Then V (x) ∈ A(w) for every free x in α, and hence
also for every free x in β, and hence we have (M, w, V ) |= Aiβ.

For L, suppose (M, w, V ) |= Li(α → β) and (M, w, V ) |= Liα but (M, w, V ) 6|= Liβ.
Then there exists some w′ ∈ Pi(w) such that (M, w′, V ) |= α → β and (M, w′, V ) |= α but
(M, w′, V ) 6|= β, contradicting the truth-value-assignment rule in Section 2.3.

For LN, suppose (M, w, V ) 6|= Liα. Then there exists some w′ ∈ Pi(w) such that
(M, w′, V ) 6|= α, which implies the formula α is not valid in M.

22



For UGL, suppose (M, w, V ) 6|= α1 → Li

(
α2 → · · · → Li(αh → Li∀xβ) · · ·

)
. Then

there is a sequence w1, . . . , wh+1 such that w1 = w, (M, wk, V ) |= αk for 1 ≤ k ≤ h, and
(M, wh+1, V ) 6|= ∀xβ. Moreover, there eixsts some x-alternative V ′ of V such that V ′(x) ∈
Dwh+1

and (M, wh+1, V
′) 6|= β. Since x is not free in each αk, we have (M, wk, V

′) |= αk for
1 ≤ k ≤ h, which implies (M, w, V ′) 6|= α1 → Li

(
α2 → · · · → Li(αh → Liβ) · · ·

)
, which in

turn implies the formula α1 → Li

(
α2 → · · · → Li(αh → Liβ) · · ·

)
is not valid in M. �

By the truth-value-assignment rule in Section 2.3, the formula α ∧ ¬α is not valid in
M, and hence by Lemma 1 is not a provable formula in AWARE. That there are some
formulas that are not provable in AWARE means that the system is “consistent” in logicians’
terminology. More importantly, it implies that it cannot be the case that both α and ¬α are
provable formulas of AWARE. This observation will be used in subsequent proofs.

As usual, the proof of the completeness part involves the construction of a structure
M ∈ M, called the canonical structure, and a valuation V , such that every formula α ∈ L
that is valid in M under V is a provable formula of AWARE. Completeness then follows
from the fact that any formula α ∈ L that is valid in M must also be valid in M under V .

We say that a formula α ∈ L is AWARE-consistent if ¬α is not a provable formula of
AWARE. We say that a finite list of formulas {α1, . . . , αk} ⊂ L is AWARE-consistent if
the formula α1 ∧ . . . ∧ αk is AWARE-consistent. We say that an infinite list of formulas is
AWARE-consistent if every finite sublist of it is AWARE-consistent.

We say that a list of formulas is maximal if, for every formula α ∈ L, either α or ¬α is in
the list. We say that a list of formulas is maximal AWARE-consistent if it is both maximal
and AWARE-consistent.

It is a standard result that if α is a provable formula of AWARE, then it is in every
maximal AWARE-consistent list.

We say that a list Γ of formulas possesses the L∀-property if

1. for every formula α and variable x, there is some variables y such that the formula
E(y) ∧ (α[y/x] → ∀xα) is in Γ;

2. for any formulas β1, . . . , βh (h ≥ 0) and α, and every variable x that is not free in

β1, . . . , βh, there is some variable y such that the formula Li

(
β1 → · · · → Li

(
βh →

Li

(
E(y) → α[y/x]

))
· · ·
)
→ Li

(
β1 → · · · → Li(βh → Li∀xα) · · ·

)
is in Γ.

Lemma 2 If formula α is AWARE-consistent, then there is an AWARE-consistent list Γ of
formulas with the L∀-property such that α ∈ Γ.

To prove Lemma 2, we need another lemma first.

Lemma 3 The formula ∃y(θ[y/x] → ∀xθ) is a provable formula of AWARE.
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Proof: By E2, the formula
(
E(x) ∧ ∀yθ[y/x]

)
→ (θ[y/x])[x/y] is a provable formula.

Notice that (θ[y/x])[x/y] gives us back θ. Therefore, by UG and E3, the formula ∀xE(x) →
∀x(∀yθ[y/x] → θ) is a provable formula. By E1 and E3, the formula ∀x∀yθ[y/x] → ∀xθ is
a provable formula. But x is not free in ∀yθ[y/x] anymore, and hence by E4, the formula

∀yθ[y/x] → ∀xθ (1)

is a provable formula.

Given (1), it suffices to prove that the formula

∀y¬(θ[y/x] → ∀xθ) → ¬(∀yθ[y/x] → ∀xθ) (2)

is a provable formula.

By PC, both formulas ¬(θ[y/x] → ∀xθ) → θ[y/x] and ¬(θ[y/x] → ∀xθ) → ¬∀xθ are
provable formulas. By UG and E3, both formulas ∀y¬(θ[y/x] → ∀xθ) → ∀yθ[y/x] and
∀y¬(θ[y/x] → ∀xθ) → ∀y¬∀xθ are also provable formulas. Since y is not free in ¬∀xθ, by
E4, we have (2) as needed. �

Proof of Lemma 2: Assume that all variable x are enumerated, and similarly for all
formulas of the form ∀xθ, and similarly for all formulas of the form Li

(
ξi → · · · → Li(ξh →

Li∀xθ) · · ·
)

with h ≥ 0 and x not free in ξ1, . . . , ξh.

Define a sequence of lists of formulas Γ0, Γ1, . . . as follows: Γ0 = {α}. Given Γn, we define
Γn+1 in two steps.

Step 1: We first extend Γn to Γ+
n . Let ∀xθ be the n + 1st formula of this form. Let y

be the first variable that does not appear in Γn and θ, and define

Γ+
n = Γn ∪ {E(y), θ[y/x] → ∀xθ}.

We claim that, as long as Γn is AWARE-consistent, Γ+
n is AWARE-consistent as well.

Suppose not. Then the formula β →
(
E(y) → ¬(θ[y/x] → ∀xθ)

)
, where β denote the (finite)

conjunction of all formulas in Γn, is a provable formula. By UG, E3, and E4 (applicable
because y does not occur in β), the formula β →

(
∀yE(y) → ∀y¬(θ[y/x] → ∀xθ)

)
is a

provable formula. By E1, the formula β → ∀y¬(θ[y/x] → ∀xθ) is a provable formula. By
Lemma 3, the formula ¬β is a “theroem,” contraditing the presumption that Γn is AWARE-
consistent.

Step 2: We next extend Γ+
n to Γn+1. Let Li

(
ξi → · · · → Li(ξh → Li∀xθ) · · ·

)
be the

n + 1st formula of this form. Let y be the first variable that does not appear in Γ+
n and

ξ1, . . . , ξh, and define Γn+1 = Γ+
n ∪ {Li

(
ξ1 → · · · → Li

(
ξh → Li

(
E(y) → θ[y/x]

))
· · ·
)
→

Li

(
ξ1 → · · · → Li(ξh → Li∀xθ) · · ·

)
}.

We claim that, as long as Γ+
n is AWARE-consistent, Γn+1 is AWARE-consistent as well.
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Suppose not. Then both formulas

β → Li

(
ξ1 → · · · → Li

(
ξh → Li

(
E(y) → θ[y/x]

))
· · ·
)

(3)

and
β → ¬Li

(
ξ1 → · · · → Li(ξh → Li∀xθ) · · ·

)
, (4)

where β denote the (finite) conjunction of all formulas in Γ+
n , are provable formulas.

Since y does not appear in Γ+
n , by UGL (putting n = h + 1), from (3) we infer that the

formula

β → Li

(
ξ1 → · · · → Li

(
ξh → Li∀y

(
E(y) → θ[y/x]

))
· · ·
)

(5)

is a provable formula.

By E3, LN, and L, the formula Li∀y
(
E(y) → θ[y/x]

)
→
(
Li∀yE(y) → Li∀yθ[y/x]

)
is

a provable formula. Since by E1 and LN, the formula Li∀yE(y) is also a provable formula,
we infer that the formula Li∀y

(
E(y) → θ[y/x]

)
→ Li∀yθ[y/x] is a provable formula. By

using LN and L repeatedly (for h times to be exact), we infer that the formula Li

(
ξ1 →

· · · → Li

(
ξh → Li∀y

(
E(y) → θ[y/x]

))
· · ·
)
→ Li

(
ξ1 → · · · → Li(ξh → Li∀yθ[y/x]) · · ·

)
is

a provable formula. From this, together with (5), we infer that β → Li

(
ξ1 → · · · → Li(ξh →

Li∀yθ[y/x]) · · ·
)

is a provable formula. From this, together with (4), we infer that ¬β is a
provable formula, contradicting the presumption that Γ+

n is AWARE-consistent.

We can now let Γ be the union of all Γn’s. Since Γ0 is AWARE-consistent, Γ is also
AWARE-consistent. And Γ will have the L∀-property by construction. �

Lemma 4 If an AWARE-consistent list Γ of formulas possess the L∀-property, then there
is a maximal AWARE-consistent list ∆ fo formulas with the L∀-property such that Γ ⊆ ∆.

Proof: Assume all the formulas in L are enumerated. Define a sequence of lists of
formulas ∆0, ∆1, . . . as follows: ∆0 = Γ. Given ∆n, let α be the n + 1st formula in L, and
let ∆n+1 = ∆n ∪ {α} if ∆n ∪ {α} is AWARE-consistent, or ∆n+1 = ∆n ∪ {¬α} if not. In
either case ∆n+1 is AWARE-consistent if ∆n is. We can now let ∆ be the union of all Γn. �

The construction of the canonical structure is as follows. W is the set of all maximal
AWARE-consistent lists of formulas with the L∀-property. D is the set of all variables in L;
or equivalently, D = X. For every state w, which by construction is a list of formulas,

• Dw is the set of all variables x such that E(x) ∈ w;

• Pi(w) is the set of all states w′ such that L−
i (w) ⊆ w′, where L−

i (w) is the set of all
formulas α such that Liα ∈ w;

• Ai(w) is the set of all variables x such that AiE(x) ∈ w; and

25



• for every k-ary predicate P , π(w)(P ) is the set of all k-tuples (x1, . . . , xk) such that
P (x1, . . . , xk) ∈ w.

Notice that, for any list w ∈ W , since w satisfies the part 1 of the Li∀-property, there
must be at least one variable y such that E(y) ∈ w, and hence Dw is non-empty. Therefore
the canonical structure is indeed an instance of the object-based unawareness structures.

Lemma 5 If Γ is a maximal AWARE-consistent list of formulas with the L∀-property, and
α is a formula such that Liα 6∈ Γ, then there is a maximal AWARE-consistent list ∆ of
formulas with the L∀-property such that L−

i (Γ) ∪ {¬α} ⊆ ∆.

Proof: Assume that all variables x are enumerated, and similarly for all formulas of the
form ∀xθ, and similarly for all formulas of the form Li

(
ξ1 → · · · → Li(ξh → Li∀xθ) · · ·

)
with h ≥ 0 and x not free in x1, . . . , xh.

Define a sequence of formulas δ0, δ1, . . . as follows: δ0 is ¬α. Given δn, we define δn+1 in
two steps.

Step 1: We first extend δn to δ+
n . Let ∀xθ be the n + 1st formula of this form. Let y be

the first variable such that L−
i (Γ) ∪ {δn ∧ E(y) ∧ (θ[y/x] → ∀xθ)} is AWARE-consistent,

and let δ+
n be δn ∧ E(y) ∧ (θ[y/x] → ∀xθ).

We claim that, as long as L−
i (Γ) ∪ {δn} is AWARE-consistent, such a variable y must

exist. Suppose not. Then for every variable y there is a finite sublist {Liβ1, . . . , Liβk} ⊂ Γ

such that (β1 ∧ . . . ∧ βk) →
(
E(y) →

(
δn → ¬(θ[y/x] → ∀xθ)

))
is a provable formula of

AWARE. Therefore, by LN and L, the formula

(Liβ1 ∧ . . . ∧ Liβk) → Li

(
E(y) →

(
δn → ¬(θ[y/x] → ∀xθ)

))
is also a provable formula of AWARE. Since Γ is maximal AWARE-consistent and Liβ1, . . . , Liβk ∈
Γ, we have Li

(
E(y) →

(
δn → ¬(θ[y/x] → ∀xθ)

))
∈ Γ as well. And this is so for every vari-

able y.

Since Γ has the L∀-property, there is a variable y such that the formula

Li

(
E(y) →

(
δn → ¬(θ[y/x] → ∀xθ)

))
→ Li∀z

(
δn → ¬(θ[z/x] → ∀xθ)

)
is in Γ, where the variable z is chosen so that it does not occur in δn or in θ. Since Li

(
E(y) →(

δn → ¬(θ[y/x] → ∀xθ)
))

is in Γ for every variable y, the formula

Li∀z
(
δn → ¬(θ[z/x] → ∀xθ)

)
is in Γ. But z does not occur in δn or θ, and so by E3 and E4, the formula

Li

(
δn → ∀z¬(θ[z/x] → ∀xθ)

)
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is also in Γ.

However, by Lemma 3, the formula

∃z(θ[z/x] → ∀xθ)

is a provable formula of AWARE. So the formula

Li¬δn

must also be a provable formula of AWARE, and hence is in Γ, or equivalently, ¬δn ∈ L−
i (Γ).

And this would make L−
i (Γ) ∪ {δn} AWARE-inconsistent, a contradiction.

Step 2: We next extend δ+
n to δn+1. Let Li

(
ξ1 → · · · → Li(ξh → Li∀xθ) · · ·

)
be the

n+1st formula of this form. We may assume that x is not free in δ+
n or in ξ1, . . . , ξh since if it is

we may choose a bound alphabetic variant of ∀xθ in which the variable that replaces x is not

free in these formulas. Let y be the first variable such that L−
i (Γ)∪ {δ+

n ∧

(
Li

(
ξ1 → · · · →

Li

(
ξh → Li

(
E(y) → θ[y/x]

))
· · ·
)
→ Li

(
ξ1 → · · · → Li(ξh → Li∀xθ) · · ·

))
} is AWARE-

consistent, and let δn+1 be δ+
n ∧

(
Li

(
ξ1 → · · · → Li

(
ξh → Li

(
E(y) → θ[y/x]

))
· · ·
)
→

Li

(
ξ1 → · · · → Li(ξh → Li∀xθ) · · ·

))
.

We claim that, as long as L−
i (Γ) ∪ {δ+

n } is AWARE-consistent, such a variable y must
exist. Suppose not. Then for every variable y there is a finite sublist {Liβ1, . . . , Liβk} ⊂ Γ

such that (β1∧ . . .∧βk) →

(
δ+
n → ¬

(
Li

(
ξ1 → · · · → Li

(
ξh → Li(E(y) → θ[y/x])

)
· · ·
)
→

Li

(
ξ1 → · · · → Li(ξh → Li∀xθ) · · ·

)))
is a provable formula of AWARE. Therefore, both

(β1 ∧ . . . ∧ βk) →

(
δ+
n → Li

(
ξ1 → · · · → Li

(
ξh → Li

(
E(y) → θ[y/x]

))
· · ·
))

(6)

and
(β1 ∧ . . . ∧ βk) →

(
δ+
n → ¬Li

(
ξ1 → · · · → Li(ξh → Li∀xθ) · · ·

))
(7)

are provable formulas of AWARE. From (6), by LN and L,

(Liβ1 ∧ . . .∧Liβk) → Li

(
δ+
n → Li

(
ξ1 → · · · → Li

(
ξh → Li

(
E(y) → θ[y/x]

))
· · ·
))

(8)

is also a provable formula of AWARE. Since formulas Liβ1, . . . , Liβk are all in Γ, so, from
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(8), the formula

Li

(
δ+
n → Li

(
ξ1 → · · · → Li

(
ξh → Li

(
E(y) → θ[y/x]

))
· · ·
))

is also in Γ. And this is true for every variable y.

Since Γ has the Li∀ property, by a similar argument as in Step 1, the formula

Li

(
δ+
n → Li

(
ξ1 → · · · → Li(ξh → Li∀xθ) · · ·

))
is also in Γ, or equivalently, the formula

δ+
n → Li

(
ξ1 → · · · → Li(ξh → Li∀xθ) · · ·

)
is in L−

i (Γ). This, together with (7), would make L−
i (Γ) ∪ {δ+

n } AWARE-inconsistent, a
contradiction.

Since, by [cite a lemma here], L−
i (Γ) ∪ {δ0} is AWARE-consistent, L−

i (Γ) ∪ {δ+
n } and

L−
i (Γ) ∪ {δn+1} are AWARE-consistent for all n.

Let ∆− be the union of L−
i (Γ) and all the δn’s. ∆− is AWARE-consistent, and by

construction, also possess the Li∀ property. Therefore, by Lemma 4, ∆− can be extended
into a maximal AWARE-consistent list ∆ with the Li∀ property such that L−

i (Γ)∪{¬α} ∈ ∆.
�

Lemma 6 Let M be the canonical structure, and V be the valuation such that V (x) = x for
every variable/object x ∈ X = D. Then, for every maximal AWARE-consistent list w ∈ W
of formulas with the L∀-property, and for every formula α ∈ L, (M, w, V ) |= α iff α ∈ w.

Proof: The proof proceeds by induction on the length of the formulas. For any atomic
formula of the form E(x), (M, w, V ) |= E(x) iff V (x) ∈ Dw iff x ∈ Dw iff E(x) ∈ w.

For any other atomic formula of the form P (x1, . . . , xk), (M, w, V ) |= P (x1, . . . , xk) iff(
V (x1), . . . , V (xk)

)
∈ π(w)(P ) iff (x1, . . . , xk) ∈ π(w)(P ) iff P (x1, . . . , xk) ∈ w.

For any formula of the form ¬α, (M, w, V ) |= ¬α iff (M, w, V ) 6|= α which, by the
induction hypothesis, is true iff α 6∈ w which, by the maximality of the list w, is true iff
¬α ∈ w.

For any formula of the form α∧β, (M, w, V ) |= α∧β iff (M, w, V ) |= α and (M, w, V ) |= β
which, by the induction hypothesis, are true iff α ∈ w and β ∈ w which, by the maximal
AWARE-consistency of the list w, are true iff α ∧ β ∈ w.

For any formula of the form ∀xα, suppose ∀xα ∈ w. Consider any x-alternative V ′ of
V such that V ′(x) = y ∈ Dw. Since y ∈ Dw, we have E(y) ∈ w. By E2 and the maximal
AWARE-consistency of the list w, we have α[y/x] ∈ w. By the induction hypothesis, we
have (M, w, V ) |= α[y/x], which in turn implies (M, w, V ′) |= α. Since this is true for every
x-alternative V ′ of V such that V ′(x) ∈ Dw, we have (M, w, V ) |= ∀xα.
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Conversely, suppose ∀xα 6∈ w. Since the list w possesses the L∀-property, there is some
variable y such that E(y)∧(α[y/x] → ∀xα) ∈ w. By the maximal AWARE-consistency of the
list w, we have E(y) ∈ w (making y ∈ Dw) and α[y/x] 6∈ w. By the induction hypothesis,
the latter implies that (M, w, V ) 6|= α[y/x], which in turn implies (M, w, V ′) 6|= α, where
V ′ is the x-alternative of V such that V ′(x) = y. But V ′(x) ∈ Dw, and hence we have
(M, w, V ) 6|= ∀xα.

For any formula of the form Aiα, let {x1, . . . , xk} be the free variables in α. If k = 0, then
we have (M, w, V ) |= Aiα and, by A1 and the maximal AWARE-consistency of the list w,
Aiα ∈ w as well. So let’s assume k ≥ 1. Since V (x) ∈ Ai(w) iff x ∈ Ai(w) iff AiE(x) ∈ w,
we have (M, w, V ) |= Aiα iff AiE(x) ∈ w for every x ∈ {x1, . . . , xk}. By A2, A3, and the
maximal AWARE-consistency of the list w, we have AiE(x) ∈ w for every x ∈ {x1, . . . , xk}
iff Ai

(
E(x1) ∧ . . . ∧ E(xk)

)
∈ w iff Aiα ∈ w.

For any formula of the form Liα, suppose Liα ∈ w. Then we have α ∈ L−
i (w), which

implies α ∈ w′ for every w′ ∈ Pi(w). By the induction hypothesis, we have (M, w′, V ) |= α
for every w′ ∈ Pi(w), which implies (M, w, V ) |= Liα.

Conversely, suppose Liα 6∈ w. By Lemma 5, there is an w′ ∈ W such that L−
i (w)∪{¬α} ⊆

w′. Since L−
i (w) ⊆ w′, we have w′ ∈ P(w). Since ¬α ∈ w′, by the induction hypothesis, we

have (M, w′, V ) 6|= α. Combining the two, we have (M, w, V ) 6|= Liα.

For any formula of the form Kiα, (M, w, V ) |= Kiα iff (M, w, V ) |= Aiα and (M, w, V ) |=
Liα which, by the induction hypothesis, are true iff Aiα ∈ w and Liα ∈ w which, by K and
the maximal AWARE-consistency of the list w, are true iff Kiα ∈ w. �

Proof of Theorem 1: That every provable formula of AWARE is valid in M follows
from Lemma 1. To prove the converse, suppose formula α ∈ L is not a provable formula
of AWARE. Then ¬α is AWARE-consistent, and hence by Lemmas 2 and 4, there exists a
maximal AWARE-consistent list w ∈ W with the L∀-property that contains it. By Lemma 6,
(M, w, V ) |= ¬α. Therefore α is not valid in the canonical structure M under the valuation
V . Since the cononical structure is one instance of the object-based unawareness structures,
this proves that α is not valid in M. �
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