
From Imitation Games to Kakutani

Andrew McLennan∗ and Rabee Tourky†

October 17, 2005

Abstract

We give a full proof of the Kakutani (1941) fixed point theorem that is
brief, elementary, and based on game theoretic concepts. This proof points
to a new family of algorithms for computing approximate fixed points that
have advantages over simplicial subdivision methods. An imitation game

is a finite two person normal form game in which the strategy spaces for
the two agents are the same and the goal of the second player is to choose
the same strategy as the first player. These appear in our proof, but are
also interesting from other points of view.

Keywords: Imitation games, Lemke paths, Kakutani’s fixed point theo-
rem, Lemke-Howson algorithm, long and short paths, approximate fixed
point, approximate eigenvectors, Krylov method.

1 Introduction

We give a new complete1 proof of Kakutani’s fixed point theorem. In com-
parison with earlier complete proofs of Brouwer’s and Kakutani’s fixed point
theorems (to a greater or lesser extent depending on the proof) our argument
has several advantages. It is elementary. It is direct, arriving at Kakutani’s
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Economic Theory, and the University of Minnesota Combinatorics Workshop. We have ben-
efitted from stimulating correspondence with Christos Papadimitriou and discussions with
John Stachurski.

†Department of Economics, The University of Melbourne, Victoria 3010, Australia, and
Purdue University Department of Economics, 403 W. State Street, West Lafayette, IN 47907-
2056.
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theorem without an intermediate stop at Brouwer’s theorem. It is based on
game theoretic concepts, so it is complementary to the goals of instruction in
theoretical economics.

There is a novel class of algorithms based on the proof that are simple to
implement and flexible, and have various advantages in comparison with other
algorithms. Numerical tests suggest that in practice the algorithms are quite
fast and succeed on some types of problems for which other algorithms are
unsuitable.

The proof also uses a new class of two person games in normal form, called
imitation games, in which the two players’ sets of pure strategies are “the same”
and agent 2’s goal is to choose the same pure strategy as player 1. We call agent
1 the mover and agent 2 the imitator. These games play a role in the proof and
the algorithms. It turns out that they have several other interesting properties.
They are useful in the analysis of the complexity of certain problems related to
two person games and provide new insights into the Lemke-Howson algorithm
(Lemke and Howson (1964)) for a computing Nash equilibrium of two person
games.

Suppose that C is a nonempty compact convex subset of an inner product
space and that F : C ։ C is a upper semicontinuous convex valued correspon-
dence. Starting from any initial point x1 ∈ C, we recursively define sequences
{xm} and {ym} by choosing ym ∈ F (xm) arbitrarily, then setting

xm+1 =
m

∑

j=1

ρm
j yj ,

where (ιm, ρm) is a Nash equilibrium of the imitation game in which the common
set of pure strategies is {x1, . . . , xm}, the mover’s payoff matrix is the m × m
matrix A with entries

aij = −‖xi − yj‖
2,

and (due to the definition of an imitation game) the imitator’s payoff matrix is
the m × m identity matrix I. That is, the mover seeks to minimize the square
of the distance between her choice xi and the chosen image yj of the choice
xj of the second player. A simple calculation ((2) in Section 3) shows that
the support of ιm is contained in the set of elements of {x1, . . . , xm} that are
closest to xm+1. Since this is an imitation game the support of ρm is a subset
of the support of ιm, so xm+1 is a convex combination of elements of the images
F (x) of nearby points x. Since the sequence xm is contained in a compact set,
the diameters of the supports of ιm and ρm decrease to zero as the number of
iterations increases. Since F is upper semicontinuous and convex valued, limit
points of {xm} are exact fixed points of F .

If it is known that each imitation game has a Nash equilibrium, this argument
proves Kakutani’s fixed point theorem. The Lemke-Howson algorithm computes
a Nash equilibrium of a two player normal form game, and the theorem stating
that it is an algorithm (that is, it halts in finite time for any input) implies that
every two person game has a Nash equilibrium. The Lemke-Howson algorithm
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is usually described as either a tableau method (e.g., Lemke and Howson (1964))
or as paths in the edges of a pair of polytopes (e.g., Shapley (1974)).

In an imitation game the imitator’s best response correspondence has a sim-
ple description. This has the consequence that the “pivots” of the Lemke-
Howson algorithm that change the mover’s strategy have a predictable and
trivial character, so that a simpler description involving only one simplex is ob-
tained by ignoring these pivots. The result of adopting this perspective turns
out to be precisely the “Lemke paths” algorithm2 of Lemke (1965). In earlier lit-
erature the Lemke-Howson algorithm is treated as a specialization of the Lemke
paths algorithm obtained by restricting the input of the latter to have a special
form. The observation that the Lemke paths algorithm can be viewed as a pro-
jection of the Lemke-Howson algorithm, applied to an imitation game, is novel,
at least so far as we know. One interesting consequence of this observation is
that it is possible to derive a recent result of Savani and von Stengel (2004)
concerning “long” paths of the Lemke-Howson algorithm from earlier work by
Morris (1994) concerning long paths of the Lemke paths algorithm.

If one uses the Lemke paths algorithm to compute Nash equilibria of the im-
itation games that arise in our algorithm for finding a fixed point of F , one may
be concerned that the computational burden will increase as m increases. Gen-
eral experience with the Lemke-Howson algorithm suggests that this is unlikely,
and in practice our algorithm often finds a fixed point after a small number
of iterations. When C is finite dimensional, there is also theoretical reassur-
ance. A geometric imitation game is an imitation game derived from points
x1, . . . , xm, y1, . . . , ym, as described above. Holding the dimension of C fixed,
the length of the Lemke paths for a geometric imitation game is bounded by a
polynomial function of m. This observation provides a rich class of examples
that complement the works of Savani and von Stengel (2004) and Morris (1994).

We also give some additional results concerning imitation games. Gale and
Tucker (1950) showed how to pass from a two player game to a symmetric
game whose symmetric equilibria are in one-to-one correspondence with the
Nash equilibria of the two player game. Consequently the problem of finding
a symmetric equilibrium of a symmetric games is at least as hard (in a com-
putational sense described precisely in Section 5) as the problem of finding a
Nash equilibrium of a general two player game. We show how to pass from a
symmetric game to an imitation game whose Nash equilibria are in one-to-one
correspondence with the symmetric equilibria of the symmetric game, so the
problem of finding a Nash equilibrium of an imitation game is at least as hard
as the problem of finding a symmetric equilibrium of a symmetric game. Of
course imitation games are a special type of two player games, so the three
problems are equally hard. (Identical reasoning applies to related problems,
such as finding all equilibria, or determining whether there is more than one
equilibrium.) A related application of imitation games is our paper McLennan
and Tourky (2005) that gives simple proofs of the results of Gilboa and Zemel

2There is a third algorithm (Lemke (1968)) that is usually called “the Lemke algorithm,”
or just “Lemke,” so we have avoided that phrase in connection with the algorithm of Lemke
(1965).
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(1989) on the complexity of certain computational problems concerning Nash
equilibria of two person games.

The remainder has the following organization. In the next section we sur-
vey the history of proofs of Brouwer’s and Kakutani’s fixed point theorems.
Section 3 proves Kakutani’s theorem using our recursive sequence and an el-
ementary version of the Lemke paths algorithm. Section 4 is a discussion of
the structure and properties of our algorithms for computing approximate fixed
points. Section 5 discusses imitation games from the point of view of computa-
tional theory. Section 6 explains the derivation of the Lemke-Howson algorithm
from the Lemke paths algorithm and shows how to derive the Lemke paths al-
gorithm from the Lemke-Howson algorithm. Imitation games with a geometric
derivation, as described above, are studied in Section 7, leading to a class of
games with “short” Lemke-Howson paths. The last section gives some final
remarks.

2 Historical Background

Brouwer’s fixed point theorem is a celebrated achievement of early twentieth
century mathematics. The literature now contains several proofs which typically
involve advanced techniques or results. For instance the proof in Brouwer (1910)
uses the ideas that were evolving into the field of mathematics now known as
algebraic topology. An alternative proof due to Hirsch (cf. Milnor (1965)) is
an application of the Morse–Sard theorem in differential analysis to prove the
non-existence of a retraction from a disk to its boundary. An ingenious and
elementary proof by Milnor (1978) uses a simple computation to reformulate
the problems in terms of polynomials. The proof that is perhaps most popular
in economics is similar to ours insofar as it has two phases. The first phase
is a result in combinatoric geometry—Sperner’s lemma in that proof and the
existence of equilibrium for certain two person finite games via the Lemke-
Howson algorithm here. The second phase uses approximations to pass to a
topological conclusion. At this point we should call attention to Scarf (1967b,a)
and Hansen and Scarf (1969) (see also Appendix C of Arrow and Hahn (1971))
which use methods related to those embodied in the Lemke-Howson algorithm
to establish that the conclusion of Sperner’s lemma holds in circumstances where
Brouwer’s theorem follows.

Motivated by a desire to provide a simple proof of von Neumann’s minimax
theorem, Kakutani (1941) extended Brouwer’s fixed point theorem to convex
valued correspondences. His method—show that arbitrarily small neighbor-
hoods of the graph of the correspondence contain graphs of continuous functions,
then apply Brouwer’s fixed point theorem—is intuitive, but its implementation
involves various details that are cumbersome and of slight interest to the other
goals of instruction in theoretical economics. To the best of our knowledge all
previous extensions of Brouwer’s theorem to correspondences use either this
method or (e.g., Eilenberg and Montgomery (1946)) algebraic topology.

The algorithm of Lemke and Howson (1964) is, in effect, an elementary proof
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of a result that had previously been proved by appealing to fixed point theorems.
A sense of the thinking at the time is given by the following excerpt from the
review of Lemke and Howson (1964) by R. J. Aumann3.

“The first algebraic proof of the theorem that every two-person non-
constant-sum game with finitely many strategies for each player has
a Nash equilibrium point. This important paper successfully cul-
minates a series of developments beginning with Nash (1950, 1951).
Nash’s proofs are valid for n-person games with arbitrary n, but
they use fixed point theorems . . . [there has been] a long-standing
suspicion that there must be an algebraic existence proof lurking in
the background; the current paper provides it.”

We regard the arguments given here as demonstrating that the Lemke-
Howson algorithm embodies, in algebraic form, the fixed point principle itself,
and not merely the existence theorem for finite two person games. In this respect
our thinking was strongly influenced by the beautiful paper of Shapley (1974),
which calls attention to the relation between the Lemke-Howson algorithm and
the fixed point index. Another important predecessor is Eaves (1971a), which
shows that a procedure for computing solutions to the linear complementarity
problem can be used as the underlying engine of a procedure for computing
approximate fixed points.

Scarf (1967b) introduced an algorithm, based on an extension of the argu-
ment used to prove Sperner’s lemma, for computing an approximate fixed point.
An extensive literature (e.g., Scarf (1973), Todd (1976), Doup (1988), Murty
(1988)) elaborates on and refines this algorithm, and it continues to be an im-
portant approach to the computation of approximate fixed points. Scarf (1967b)
also pointed out the possibility of using a linear complementarity problem to
find approximate fixed points. This method was extended to Kakutani fixed
points in Hansen and Scarf (1969), and versions involving a triangulation of the
underlying space are given by Kuhn (1969) and Eaves (1971b) and refined by
Merrill (1972a,b). Some aspects of these methods are discussed in Section 4.

3 From Imitation Games to Kakutani

A two person game is a pair (A,B) of m × n matrices of real numbers, where
m and n are positive integers. For each integer k ≥ 1 let ∆k be the standard
unit simplex in R

k, i.e., the set of vectors whose components are nonnegative
and sum to one. A Nash equilibrium of (A,B) is a pair (ι, ρ) ∈ ∆m × ∆n such
that ιT Aρ ≥ ι̃T Aρ for all ι̃ ∈ ∆m and ιT Bρ ≥ ιT Bρ̃ for all ρ̃ ∈ ∆n.

For the rest of the section we specialize to the case m = n and B = I,
where I is the m×m identity matrix. Such a game (A, I) is called an imitation
game, and in such a game the two agents are called the mover and the imitator

3Mathematical Reviews MR0173556 (30 #3769).
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respectively. Let I := {1, . . . ,m}. For any ρ ∈ ∆m, let

ρ◦ := {i ∈ I : ρi = 0} and ρ := argmax
i∈I

(Aρ)i.

An I-equilibrium of an imitation game (A, I) is a mixed strategy ρ ∈ ∆m for
the imitator such that the support of ρ is contained in ρ: ρ◦ ∪ ρ = I. To prove
that (A, I) has a Nash equilibrium it suffices to find an I-equilibrium:

Lemma 1. A mixed strategy ρ ∈ ∆m is an I-equilibrium of (A, I) if and only
if there is ι ∈ ∆m such that (ι, ρ) is a Nash equilibrium of (A, I).

Proof. If (ι, ρ) is a Nash equilibrium of (A, I), then the support of ρ is contained
in the support of ι because ρ is a best response to ι for the imitator, and the
support of ι is contained ρ because ι is a best response to ρ for the mover. Thus
the support of ρ is contained in ρ.

Now suppose ρ is an I-equilibrium of (A, I). Since the set of best responses
to ρ contains the support of ρ, we may choose an ι ∈ ∆m that assigns all
probability to best responses to ρ (so ι is a best response to ρ) and maximal
probability to elements of the support of ρ (so ρ is a best response to ι).

For X,Y ⊂ I let S(X,Y ) := { ρ ∈ ∆m : ρ◦ = X and ρ = Y }.

Lemma 2. If S(X,Y ) is nonempty, then it is convex, X is a proper subset of
I, Y is nonempty, and the closure of S(X,Y ) is

S′ :=
⋃

X′⊃X,Y ′⊃Y

S(X ′, Y ′).

Proof. Since S(X,Y ) is defined by a finite conjunction of inequalities, it is con-
vex. If ρ ∈ S(X,Y ), then the support of ρ is nonempty, so X cannot be all of
I, and ρ = Y is nonempty. As a matter of continuity the closure of S(X,Y ) is
contained in S′, and the line segment between ρ and any point in S′ is contained
in S(X,Y ), so S′ is contained in the closure of S(X,Y ).

We say that A is in general position if |ρ◦| + |ρ| ≤ m for all ρ ∈ ∆m.

Lemma 3. If A is in general position and S(X,Y ) is nonempty, then S(X,Y )
is (m − |X| − |Y |)-dimensional and S(X ′, Y ′) 6= ∅ whenever X ′ ⊂ X and ∅ 6=
Y ′ ⊂ Y .

Proof. Elementary linear algebra implies that the dimension of S(X,Y ) is at
least m−|X|− |Y |. Suppose that the dimension of S(X,Y ) is greater than this.
Then the closure of S(X,Y ) is a polytope, and any of its facets is the closure
of S(X ′, Y ′) for some (X ′, Y ′) with X ⊂ X ′ and Y ⊂ Y ′, where at least one
inclusion is strict, which implies that the dimension of S(X ′, Y ′) is greater than
m − |X ′| − |Y ′|. Proceeding to a facet of the closure of S(X ′, Y ′), a facet of
that facet, and so forth, we eventually arrive at a nonempty S(X ′′, Y ′′) with
m − |X ′′| − |Y ′′| < 0, contradicting general position.
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For any i0 ∈ Y the quantities ρ1 + · · · + ρm, ρi (i ∈ X), and (Aρ)i − (Aρ)i0

(i ∈ Y \ {i0}) are affine functionals on R
m, and since S(X,Y ) is m − |X| − |Y |

dimensional, they are affinely independent. Therefore any neighborhood of a
point where they all vanish (e.g., an element of S(X,Y )) contains points at-
taining any combination of signs for these quantities, including the combination
defining S(X ′, Y ′) for any X ′ ⊂ X and nonempty Y ′ ⊂ Y .

Suppose that A is in general position, and that S(X,Y ) is nonempty. If
|X| + |Y | = m, then S(X,Y ) is a singleton whose unique element is denoted
by V (X,Y ). Such points are called vertices. If |X| + |Y | = m − 1, then the
closure of S(X,Y ), denoted by E(X,Y ), is a one dimensional line segment that
is called an edge. Each edge has two endpoints, which are clearly vertices. The
Lemke paths algorithm follows a path of edges described in the next proof.

Proposition 4. The imitation game (A, I) has an I-equilibrium.

Proof. Using elementary linear algebra, one may show that if A is not in general
position, then its entries express a linear system of equations with more equa-
tions than unknowns that nonetheless has a solution. Therefore the matrices in
general position are dense in the space of m×m matrices. If A is the limit of a
sequence {Ar} and, for each r, there is an I-equilibrium ρr of (Ar, I), then every
accumulation point of the sequence {ρr} is an I-equilibrium of (A, I). Thus we
may assume that A is in general position4.

Fix an arbitrary s ∈ I. A vertex V (X,Y ) is said to be an s-vertex if
X∩Y ⊂ {s}. For an s-vertex V (X,Y ) the following are equivalent: (a) V (X,Y )
is an I-equilibrium; (b) s ∈ X ∪ Y ; (c) X ∩ Y = ∅. If V (X,Y ) is an s-vertex
that is not an I-equilibrium, then X ∩ Y = {i} for some i 6= s.

In general δj denotes the degenerate mixed strategy that assigns probability
one to the pure strategy indexed by j. By general position, δs = {i∗} for some
i∗, so δs = V (I \ {s}, {i∗}) is an s-vertex. If i∗ = s, then δs is an I-equilibrium
and we are done, so we assume that i∗ 6= s.

An edge E(X,Y ) is said to be an s-edge if X ∪ Y = I \ {s}. Observe that
the endpoints of an s-edge are s-vertices.

Let V (X,Y ) be an s-vertex with X ∩ Y = {i}. We now determine the
number of s-edges that have V (X,Y ) as an endpoint. An edge having V (X,Y )
as an endpoint is necessarily E(X \ {j}, Y ) for some j ∈ X or E(X,Y \ {j})
for some j ∈ Y , and these edges will not be s-edges unless j = i. On the other
hand, Lemma 3 implies that S(X \{i}, Y ) 6= ∅, and that S(X,Y \{i}) 6= ∅ if and
only if Y \ {i} 6= ∅. Thus V (X,Y ) is an endpoint of two s-edges if Y has more
than one element, and it is an endpoint of one s-edge if Y = {i}. In the latter
case X = I \ {s} because |X| = m − 1 and X ∪ Y = I \ {s}, so V (X,Y ) = δs

and i = i∗.

4Alternatively we could describe a method of extending the the algorithm to games that
are not in general position. There are standard degeneracy-resolution techniques for pivot-
ing algorithms, including the simplex algorithm for linear programming, the Lemke-Howson
algorithm, and the Lemke path algorithm.
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Summarizing, if there is no I-equilibrium then δs is an end point of one
s-edge, and every other s-vertex is an endpoint of two s-edges. Summing over
s-vertices, we find that there is an odd number of pairs consisting of an s-edge
and one of its endpoints. But of course this is impossible: the number of such
pairs is even because each s-edge has two endpoints.

The Lemke path algorithm for computing an I-equilibrium begins at δs and
proceeds from there along the path of s-edges. We denote this path LP. Since
each s-vertex that is not an I-equilibrium is an endpoint of precisely two I-
edges, this path does not branch or return to any s-vertex that it visited earlier.
Since it is finite, it must eventually arrive at an I-equilibrium.

A correspondence F : C ։ C assigns a nonempty F (x) ⊆ C to each x ∈ C.
It is upper semicontinuous if, for each x ∈ C: (i) F (x) is closed; (ii) for each
neighborhood V ⊆ C of F (x) there is a neighborhood U of x such that F (x′) ⊆
V for all x′ ∈ U .

Theorem 5 (Kakutani (1941)). Let C be a nonempty, compact, and convex
subset of an inner product space. If F : C ։ C is an upper semicontinuous
correspondence whose values are convex, then x∗ ∈ F (x∗) for some x∗ ∈ C.

Proof. Define sequences x1, x2, . . . and y1, y2, . . . by choosing x1 ∈ C arbitrarily,
then (recursively, given x1, . . . , xm and y1, . . . , ym−1) letting ym be any point of
F (xm) and setting

xm+1 =

m
∑

i=1

ρm
i yi , (1)

where ρm is an I-equilibrium of the imitation game (A, I) with m strategies for
which the entries of A are aij = −‖xi−yj‖

2. Note that
∑m

j=1 ρm
j (xm+1−yj) = 0,

so for each i = 1, . . . ,m we have:

(Aρ)i = −
m

∑

j=1

ρm
j ‖xi − yj‖

2

= −
m

∑

j=1

ρm
j ‖(xi − xm+1) + (xm+1 − yj)‖

2

= −
m

∑

j=1

ρm
j

〈

xi − xm+1, xi − xm+1

〉

− 2

m
∑

j=1

〈

xi − xm+1, ρ
m
j (xm+1 − yj)

〉

−
m

∑

j=1

ρm
j

〈

xm+1 − yj , xm+1 − yj

〉

= −‖xi − xm+1‖
2 −

m
∑

j=1

ρm
j ‖xm+1 − yj‖

2.

(2)
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Note that the second term does not depend on i. Since ρ is an I-equilibrium,

supp ρm ⊂ argmin
1≤i≤m

‖xi − xm+1‖ . (3)

The sequence {xm} is contained in the compact set C, so it has an accumu-
lation point x∗. Suppose by way of contradiction that x∗ /∈ F (x∗). Since F (x∗)
is convex, it has a convex neighborhood V whose closure does not contain x∗.
Applying upper semicontinuity, there is ε > 0 such that ‖x − x∗‖ < 3ε implies
both that x /∈ V and that F (x) ⊆ V . Choose m such that ‖xm+1 −x∗‖ < ε and
there is also some ℓ ≤ m such that ‖xℓ − x∗‖ < ε. By (3), if ρm

i > 0, then

‖xi − xm+1‖ ≤ ‖xℓ − xm+1‖ ≤ ‖xℓ − x∗‖ + ‖x∗ − xm+1‖ < 2ε

and

‖xi − x∗‖ ≤ ‖xi − xm+1‖ + ‖xm+1 − x∗‖ < 3ε,

whence yi ∈ F (xi) ∈ V . But this implies that xm+1 =
∑

i ρm
i yi ∈ V , which is

the desired contradiction.

4 Approximate Fixed Points

Suppose C is a complete5 convex subset of an inner product space, and let
F : C ։ C be an upper semicontinuous and convex valued correspondence.
Reviewing the argument above, we see that under these somewhat weaker hy-
potheses the recursive procedure (1) of the proof of Kakutani’s fixed point the-
orem produces a sequence x1, x2, . . . whose accumulation points are fixed points
of F . Such an accumulation point certainly exists when C is compact, and oth-
erwise additional conditions on F may guarantee existence. Any algorithm that
generates xm+1 is the engine of a computational procedure that will eventually
produce an approximate fixed point up to any desired degree of accuracy. One
such algorithm is to compute in each iteration a Lemke path for the imitation
game (A, I) defined in connection with (1). For the non-degenerate case this
Lemke path is described in Proposition 4. Thus, we have the raw materials for
a class of algorithms that compute approximate fixed points.

In this section we study the properties of the sequence (1), concluding with a
discussion of the relative merits of our algorithms and two numerical examples.
The emphasis is on the flexibility of our method, highlighting the relative paucity
of information needed to apply the method and guarantee eventual convergence
to a fixed point.

4.1 Properties of the procedure

We begin with the continuity requirement that guarantees that every accumu-
lation point of {xm} is a fixed point. The correspondence F : C ։ C is said

5That is, every Cauchy sequence in C converges to a point in C.
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to be c-continuous if for every x ∈ C that is not a fixed point of F there is a
neighbourhood V of x such that the closed convex hull of F (V ) does not con-
tain x. Of course, every convex valued upper semicontinuous correspendence is
c-continuous and the selection f(x) = arg miny∈F (x) ‖y − x‖ is a c-continuous
function that is generally not continuous. Further, f has the same fixed points
as F .

Proposition 6. If {xm} is derived from a c-continuous F as per (1), then every
accumulation point x∗ of {xm} is a fixed point of F .

Proof. If x∗ /∈ F (x∗), then there is a neighbourhood V of x∗ such that the closed
convex hull K of F (V ) is disjoint from x∗. Therefore, there exists a continuous
linear functional p and a real number r satisfying 〈p, x∗〉 < r and 〈p, x〉 > r for
every x ∈ K. But we know that there is m large enough such that the support of
ρm is in V and 〈p, xm+1〉 < r. This contradicts the fact that xm+1 =

∑m

i=1 ρiyi

and yi ∈ K for each i.

We turn to a technical result, which states that if xi in the sequence x1, x2, . . .
is not a fixed point, then eventually it is not played with positive probability.
This is obvious when C is compact but not so obvious when the sequence is not
bounded. Recall that a cone K ⊆ R

n is a closed set not equal to zero satisfying
K + K ⊆ K, αK ⊆ K for any α ≥ 0, and K ∩ −K = {0}. The next result
makes no assumptions about the continuity of the correspondence F .

Proposition 7. If C is a closed convex subset of R
n, {xm} is a sequence derived

from F as per (1), and xi is a point in {xm} that is not an accumulation point,
then there exists m∗ such that ρm

i = 0 for all m ≥ m∗.

Proof. We can assume without loss of generality that xi = 0. There exist a
finite number of cones K1,K2, . . . ,Kk whose union is R

n and each satisfying
〈x, y〉 > 0 for all x, y ∈ Kj \{0}. For each j for which xm enters the cone Kj let
mj be the first index satisfying xmj

∈ Kj . Since
〈

xmj
, y

〉

> 0 for all non-zero
y ∈ Kj , the vector xmj

defines a strictly positive linear functional on the cone
Kj , and the set

Pj =
{

x ∈ Kj ∩ C :
〈

xmj
, x

〉

≤ 1
2

〈

xmj
, xmj

〉}

,

is compact.
Suppose ρm

i > 0 for some m ≥ mj . Then (since xi = 0) ‖xm+1‖
2 ≤

‖xmj
− xm+1‖

2. Expanding ‖xmj
− xm+1‖

2 as an inner product, distributing,
subtracting ‖xm+1‖

2 from both sides, and rearranging, we find that xm+1 ∈ Pj .
Suppose by way of contradiction that there are infinitely many m′ with

ρm′−1
i > 0. There are infinitely many such m′ in the union of all Pj , which is

a compact set. Since xi is not an accumulation point, there exist two such m′

and m′′, say with m′ > m′′ such that xm′ , xm′′ are closer to each other than to

xi, which implies that ρm′−1
i = 0. This contradiction completes the proof.

We now study some cases for which C is not compact and the sequence {xm}
has accumulation points. Recall that for any number i and function f : C → C

10



we write f0(x) = x and f i(x) = f(f i−1(x)) for i ≥ 1. Given any x the f-orbit
of x is the set {x, f(x), f2(x), . . .}.

Proposition 8. Let C be a closed convex subset of R
n and xm be the sequence

(1) applied to a c-continuous function f : C → C. If any of the following hold,
then xm has accumulation points, each of which is a fixed point of f :

(a) There exists some i∗ such that the range f i∗+1(C) of f i∗+1 is bounded and
f i(C) is convex for all 0 ≤ i ≤ i∗.

(b) f is a linear operator and the f-orbit of x1 is bounded.

(c) f has a non-repulsive point in C. That is, there exists x∗ ∈ C such that
‖f(y) − x∗‖ ≤ ‖x − x∗‖ for any x ∈ C.

Proof. For (a) suppose by way of contradiction that {xm} does not have an
accumulation point. We claim that for every i ≤ i∗ there is mi such that
xm ∈ f i(C) for all m ≥ mi. This implies that {xm} is eventually in f i∗(C),
so {ym} is eventually in f i∗+1(C), and {xm} is eventually in the convex hull of
f i∗+1(C), which is bounded. Therefore xm has accumulation points.

The proof of the claim is inductive. In the case i = 0 we have that xm ∈
f0(C) = C whenever m ≥ m0 := 1. Suppose that the claim has been established
for i. We may assume that {xm} has no accumulation points, in which case
Proposition 7 implies that ρm

j = 0 for sufficiently large m if j ≤ mi with

xj /∈ f i(C). That is, there exists mi+1 such that for m ≥ mi+1 we have
ρm

j = 0 for any j ≤ mi with xj /∈ f i(C). Thus, for m ≥ mi+1 we have

yj ∈ f(f i(C)) = f i+1(C) for all j such that ρm
j > 0. Since f i+1(C) is convex,

it follows that xm+1 ∈ f i+1(C).
When (b) holds the existence of an accumulation point is a consequence of

the fact that for a linear operator the sequences {xm} and {f(xm)} are always
in the convex hull of the f -orbit of x1.

In the case of (c) the sequence {xm} is contained in the ball with center x∗

and radius ‖x∗ − x1‖.

The procedure can be used to approximate fixed points of functions with
non-convex domains. We study an example that can be extended in various
ways. If C is not convex, then running a variant of our method needs at the
very least an oracle that for any input x outputs whether x ∈ C and if so outputs
f(x). For functions that map the boundary of C inside a star shaped set the
extra information needed is a center of the star shaped set.6 We don’t need to
a priori know anything extra about the geometry of C.

Proposition 9. Let C be a closed subset of R
n, and let f : C → C be a contin-

uous function with bounded range that maps the boundary points of C into the

6A star shaped set K ⊆ R
n is a set with an interior point x∗ such that for any x in the

interior of K the point αx + (1 − α)x∗ is also in the interior of K for every 0 ≤ α ≤ 1. The
point x∗ is called a center of K.

11



interior of a star shaped set K ⊆ C with center x∗. The sequence {xm} of (1)
applied to the function

h : R
n → R

n, h(x) =

{

f(x) if x ∈ C ,

x∗ otherwize ,

has accumulation points, which are fixed points of f .

Proof. We show that h is c-continuous. Let x be a point in R
n. The required

condition holds true if x is not in C or x is in the interior of C. So let x
be on the boundary of C and assume that f(x) 6= x. We can pick a small
enough neighbourhood V of x such that the closed convex hull Y of f(V ) is in
the interior of K. Notice that the closed convex hull of {x∗, Y } is also in the
interior of K and is disjoint from x. Any accumulation point x of xm is a fixed
point of h and f .

An important problem associated with a linear operator T : R
n → R

n is that
of approximating a real eigenvector, which is a non-zero vector x ∈ R

n satisfying
Tx = λx for some λ ∈ R. Here λ is called the eigenvalue of x. This problem is
generally a fixed point problem in the projective space of lines passing through
the origin.7 Assume that T has n independent eigenvectors z1, z2, . . . , zn ∈ R

n

with corresponding eigenvalues |λ1| ≥ |λ2| ≥ · · · ≥ |λn| > 0. Any eigenvector
with an eigenvalue λ satisfying |λ| = |λ1| is called a dominant eigenvector. Let
H ⊆ R

n be the hyperplane containing z2, z3, . . . , zn. Let Ω be R
n \ H. Of

course, we don’t know the hyperplane H or its complement Ω, but we do know
that Ω is open and dense in R

n and that H has positive codimension.

Proposition 10. If x1 ∈ Ω, then xm

‖xm‖ accumulates at dominant eigenvectors

of T when either:

a. λ1 > |λ2| ≥ · · · ≥ |λn| and {xm} is derived from (1) applied to T .

b. λ1 ≥ |λ2| ≥ · · · ≥ |λn| and {xm} is derived from (1) applied to x 7→ T (x)
‖T (x)‖ .

If T has k distinct eigenvalues, then in both cases any xm, ym derived from (1)
remain in the linear span of {x1, T

1x1, . . . , T
kx1}.

Proof. Let M be the matrix whose columns are the eigenvectors z1, z2, . . . , zn.
Let Λ be the the diagonal matrix with diagonal vector (λ1, λ2, . . . , λn). Notice
that T = MΛM−1 and Λ = M−1TM . The vector e = (1, 0, . . . , 0) is a dominant
eigenvector of Λ. Further, if α is a dominant eigenvector of Λ, then Mα is a
dominant eigenvector of T .

Define the inner product 〈α, β〉M = 〈Mα,Mβ〉 and norm ‖α‖M =
√

〈α, α〉M
on R

n. Pick x1 ∈ Ω and let α1 = M−1x1. We know that the first coordinate
α1

1 of α1 is not zero. Define the cone C ⊆ R
n

C =
{

β ∈ R
n : β1α1

1 > 0 and
∣

∣

∣

βi

β1

∣

∣

∣
≤

∣

∣

∣

αi
1

α1
1

∣

∣

∣

}

∪ {0} .

7The idea of of showing the existence of a real eigenvalue using Brouwer’s fixed point
theorem is due to Debreu and Herstein (1953), who give one of the alternative proofs of the
Perron–Frobenius theorem on positive matrices.
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Clearly, α1 ∈ C, β ∈ C \ {0} implies β1 6= 0, and Λ(C) ⊆ C.
For (a) suppose that {αm} is derived from (1) applied to Λ using the inner

product 〈·, ·〉M . Each αm and Λ(αm) are non-zero vectors in C. Let Ci = Λi(C)
for each i = 1, 2, . . .. We have Ci ⊆ Ci+1 and ∩∞

i=1C
i is the half line generated

by either the dominant eigenvectors e or −e of Λ. Notice that if α /∈ Ci, then α is
not a fixed point of Λ. Thus, as in the proof of (a) of Proposition 8 we can apply
Proposition 7 to show that for each i there exists mi satisfying αm ∈ Ci for all
m ≥ mi. Therefore, αm

‖αm‖M
converges to a dominant eigenvector of Λ. Now if

{xm} is derived from (1) applied to T using the cannonical inner product 〈·, ·〉,
then {αm = M−1xm} is derived from (1) applied to Λ using the inner product
〈·, ·〉M . This is because for each i, j we have

‖xi − Txj‖
2 = ‖αi − Λαj‖

2
M

and in each iteration we define the same imitation game. We have therefore
shown that xm

‖xm‖ converges to a dominant eigenvector of T .

For (b) let S be the unit sphere of the norm ‖ · ‖M . Suppose that {αm} is
derived from (1) applied to α 7→ Λα

‖Λα‖M
using the inner product 〈·, ·〉M . The

sequence αm>1 remains in the convex hull of S ∩ C, which is compact and

disjoint from zero. Therefore, αm accumulates at fixed points of α 7→ Λ(α)
‖Λ(α)‖

and αm

‖αm‖M
accumulates at eigenvectors of Λ. Once again if {xm} is derived

from (1) applied to x 7→ Tx
‖Tx‖ using the cannonical inner product 〈·, ·〉, then

{αm = M−1xm} is derived from (1) applied to α 7→ Λα
‖Λα‖M

using the inner

product 〈·, ·〉M . This is because in each i, j we have

‖xi −
Txj

‖Txj‖
‖2 = ‖αi −

Λαj

‖Λαj‖M
‖2

M .

Any eigenvector in C is a dominant eigenvector of Λ, proving (b).
For the last part, notice the Λ-orbit of α1 is contained in the span of the k

points α1,Λ
1α1,Λ

2α1, . . . ,Λ
kα1.

In the preceding result, if the number of distinct eigenvalues k is small,
then we need to evaluate T at only k points to generate the whole sequence
xm. This and the other results indicate that the sequence xm of (1) amplifies
some of the useful properties of iterating a function, which is a method that is
frequently used, both in economics and other disciplines, even when convergence
is not guaranteed. Numerical experience also suggests that the sequence xm

of (1) converges to a fixed point x∗ quite fast when x∗ is locally contractive.
Our understanding of this phenomenon is limited to one case which is rather
interesting.

For the next result suppose that in each iteration m if the pure strategy m
is an I-equilibrium, then ρm

m = 1 is selected. We assume that C is a convex
complete subset of an inner product space and f is a function. We will say that
xm+1 of (1) enters a contractive neighbourhood with factor 0 ≤ q < 1 if there is
n < m + 1 such that ‖f(x) − f(y)‖ ≤ q‖x − y‖ for any x, y in the ball B with
center xm+1 and radius η = ‖xn − xm+1‖.

13



Proposition 11. If xm+1 enters a contractive neighbourhood with factor q ≤
1/2, then for any t ≥ 1 we have xm+t+1 = f(xm+t) and there is a fixed point
x∗ satisfying ‖xm+1+t − x∗‖ ≤ qt‖xm+1 − x∗‖.

Proof. Let µ = ‖xi−xm+1‖ for some i in the support of ρm. By property (3) we
have µ ≤ η. Thus, the support of ρm is in B. This implies that for any i in the
support of ρm we have ‖f(xm+1)− f(xi)‖ ≤ µ/2. Since xm+1 =

∑m

j=1 ρm
j f(xj)

we see that ‖f(xm+1) − xm+1‖ ≤ µ/2 . Applying (3) again we see that for any
j ≤ m we have ‖f(xm+1) − xj‖ ≥ 1/2µ. Thus, the pure strategy xm+1 is
an I-equilibrium of the (m + 1)th game. So ρm+1

m+1 = 1 and xm+2 = f(xm+1).
Noting that the conditions of the Lemma hold for m+2, induction tells us that
xm+1+t = f(xm+t) ∈ B for all t ≥ 1. Since C is complete xm+1+t converges to
a fixed point x∗ ∈ B in C and ‖xm+1+t − x∗‖ ≤ qt‖xm+1 − x∗‖ for all t.

Finally, let us give a full description of the path of procedure in the one
dimensional case with functions that have a single fixed point. Once again we
assume that in each iteration m if the pure strategy m is an I-equilibrium, then
ρm

m = 1 is selected.

Proposition 12. Let f : [a, b] → [a, b] be a continuous function with a single
fixed point x∗ ∈ (a, b). If {xm} is the result of applying (1) to f , then for each
m the point xm is uniquely chosen and

xm = max
{xi≤x∗ : i≤m}

xi = x or xm = min
{xi≥x∗ : i≤m}

xi = x

with

xm+1 =











f(xm) if xm = x and f(xm) ≥ 1/2(x + x) ,

f(xm) if xm = x and f(xm) ≤ 1/2(x + x) ,

1/2(x + x) otherwise .

In particular, if there is 0 ≤ q < 1 such that ‖f(x) − x∗‖ ≤ q‖x − x∗‖ for any
x, then ‖xm+1 − x∗‖ ≤ qm‖xm+1 − x∗‖ for all m.

Proof. Choose any x1. Because there is only one fixed point x∗, if x1 ≥ x∗, then
x2 = f(x1) ≤ x1 and if x1 ≤ x∗, then x2 = f(x1) ≥ x1. Thus, the condition
is satisfied. Suppose that the condition is satisfied for m. By assumption, xm

is equal to either x or x. Suppose, without loss that x∗ 6= xm = x 6= x. This
implies that x is not a fixed point, that f(x) ≥ x, and that f(x) ≥ 1/2(x + x),
because otherwise f(x) could have been chosen in an earlier iteration but wasn’t
contradicting the uniqueness property.

We know that f(xm) < xm. The equilibrium ρm must satisfy ρm
m > 0 for

otherwise there was a point in a previous iteration that could have been chosen
but wasn’t. If f(xm) is greater than 1/2(x + x), then it is chosen since the only
possible equilibrium is ρm

m = 1. If f(xm) ≤ 1/2(x+x), then xm+1 = 1/2(x+x).
This is because it is chosen if ρm

m = 1 and if 0 < ρm
m < 1, which are the only

possible cases.
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4.2 Discussion

Our algorithms have some similarities with simplicial continuation methods
(e.g., Scarf (1973), Doup (1988), and references cited in those books) that com-
pute approximate fixed points by finding completely labelled simplices in a sim-
plicial subdivision of the space C. (Similar remarks pertain also to the other
algorithms developed in Scarf (1967b,a) and Hansen and Scarf (1969).) In each
case there is a combinatoric existence result, namely Sperner’s lemma and the
existence of Nash equilibrium for an imitation game respectively. In each case
there is an algorithmic implementation of this result, namely Scarf’s procedure
for computing a completely labelled simplex and the Lemke paths algorithm.

Simplicial subdivision methods require a space C that can be subdivided
into arbitrarily small simplices and an algorithm for doing so. For the main
applications in economic theory, general equilibrium theory and game theory,
such algorithms exist, but they are nontrivial. Each algorithm requires C to
have a specific geometry or, at the very least, that C is contained in a known
bounded set with a specific geometry. In contrast, our procedure requires an
initial point x1 and a computational procedure for passing from a point x ∈ C
to a point y ∈ F (x), but it is not necessary to know C, and under various
conditions our algorithm can be applied to correspondences with unbounded
domains (see Proposition 8 for example).

Almost all procedures for computing approximate fixed points are iterative,
using the output of one stage as the input to later iterations that refine the
initial approximation. The first simplicial algorithms need to be started at one
of the vertices of the simplex, and do not present an obvious method for taking
advantage of the results of previous calculations. This problem was recognized in
the earlier literature, and an important goal was to find some way to “restart”
the algorithm at a point that was thought to be close to a fixed point. The
idea was to first run the algorithm on a coarse subdivision of C, then, having
found an initial approximate fixed point (i.e., a “completely labelled simplex”)
run the algorithm for a finer subdivision, starting near this point. Variants
that achieve the desired effect by adding an additional dimension and, in effect,
following a simplicial homotopy, were developed by Eaves (1971a) and Merrill
(1972a,b), among others. The analogous problem for our procedure has a simple
solution:the Lemke path algorithm can be started at any pure strategy of the
imitation game, and the natural choice is the pure strategy representing the
most recently computed xm+1.

When applied to a linear operator T : R
n → R

n our algorithm belongs to the
well studied class of Krylov iterative methods, which in the context of solutions
to linear equations are discussed in Ipsen and Meyer (1998). These are methods
that generate a sequence of approximations xm such that to compute each new
approximation xm+1 we need only to know the first m powers of the T -orbit
of x1. That is, x1, Tx1, . . . , T

mx2.
8 There always exists a k ≤ n for which

x1, Tx1, T
2x1, . . . , T

kx1 are linearly dependent and k could be much smaller
than n, for instance when T has n independent eigenvectors with k − 1 distinct

8For each m the vector xm+1 of (1) is a convex combination of Tx1, T 2x1, . . . , T mx1.
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eigenvalues. So as with any Krylov method we require at most k evaluations
of T to compute any pair xm, ym of the sequence (1). This is significant when
each evaluation Tx is costly. In contrast, any completely labeled simplex in a
simplicial subdivision requires n evaluations of T and thus complete information
about the operator.

Simplicial subdivision algorithms can spend a lot of time pivoting through
parts of the space that are far from fixed points, because the speed of motion
is bounded by the mesh9 of the subdivision divided by the dimension. (Each
pivot moves from a simplex to another simplex that shares all but one vertex,
so one cannot move between vertices that have no common vertices in fewer
pivots than the dimension plus one.) Our algorithms are potentially capable of
quickly “zooming in” to the vicinity of a fixed point, thereby avoiding this sort
of slow and steady march through C. Initial numerical experiments show this
potential being realized.

Our discussion has focused on the specific procedure (1), but in fact there
are many variants. The guarantee of eventual discovery of an approximate fixed
point depends on the sequence of points eventually becoming dense in the convex
hull of the sequence. It is possible to preserve this guarantee without keeping
every element of the sequence x1, . . . , xm (see Proposition 7). For example,
if several terms in this sequence are close to each other but distant from xm,
one might discard all but one representative of this cluster. In the case of a
continuous function f : C → C, when only xm is retained our procedure amounts
to iterative evaluation: xm+1 = f(xm). Although iterative evaluation is not
guaranteed to converge unless f is a contraction mapping, it is nonetheless very
popular in practice. Thus, apart from the local iterative behaviour described
above our methods constitute a class of variations of iterative evaluation that
may prove useful, either because they are faster or because they are applicable
to a larger class of problems.

A potential disadvantage of our approach is that at the mth stage we are
computing an I-equilibrium for an m × m matrix. Roughly, one might expect
the burden of this step to be proportional to m2. Several factors mitigate this
concern. First, in many of the examples we have examined to date, convergence
occurs before m becomes large. Second, at every point ρ in the Lemke path,
all but at most one of the elements of the support of ρ are best responses to
ρ. Typically the number of best responses will be at most one more than the
dimension of C, so the dimension of the space containing the Lemke path is
in effect fixed, and does not grow indefinitely as m increases. There is also
some assurance that the burden of computing an equilibrium of each of the
imitation games need not explode when C is finite dimensional. Indeed, it can
be shown that if C is d dimensional, then there is a polynomial time procedure
that accepts a 2m-tuples (x1, . . . , xm, y1, . . . , ym) of points of (1) as an input
and which outputs an I-equilibria of the imitation game (A, I) where A is the
m × m matrix with entries aij = −‖xi − yj‖

2.
We conclude by noting that using the Lemke paths algorithm to compute

9The mesh of a simplicial subdivision is the maximum diameter of any simplex.
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xm+1 is natural, and has certain advantages, but any other method of computing
an I-equilibrium of the derived imitation game is acceptable. Although there is
no obvious reason to think it would be practical, it is nonetheless interesting to
note that recursive versions of the algorithms are possible because for large m
one may use the algorithm itself to compute an I-equilibrium!

4.3 Examples

A very simple example highlights the “zooming in” property discussed above.

Example 4.1. Let C = [−1, 1] and f(x) = qx for some −1 < q < 1. The only
fixed point of f is x = 0. Suppose, that we want to approximate this fixed point
to a degree of accuracy ε. That is, we want the algorithms to find some ‖x‖ < ε.
We begin the Scarf algorithm and the algorithm in (1) at the point x1 = 1. The
Scarf algorithm divides the line R into a mesh of size ε. It takes at least 1/ε
steps to obtain a completely labeled order interval. If q > 0 or −1/2 < q < 1/2,
then the sequence in (1) takes the form xm+1 = f(xm) because f(xm) is closer
to xm than to xℓ for any 1 ≤ ℓ < m. For −1 < q ≤ −1/2 the sequence takes
the following form. For any odd m we have xm+1 = f(xm) and any even m we
have xm+1 = 1/2(xm − xm−1). In both cases ‖xm+1‖ ≤ qm and the algorithm
take at most ln(1/ε)/ ln(1/q) steps to obtain ‖xm+1‖ ≤ ε. Notice that for q
close to −1 the algorithm is much faster than simply iterating the function with
xm+1 = f(xm).

A numerical experiment shows how the predictions of Proposition 11 can
occur in practice. In the experiment each randomly chosen function has expan-
sionary regions but also has a locally contractive fixed point. For these functions
we do not know how to implement the Scarf algorithm or of any other standard
fixed point approximation method that is guaranteed to approximate a fixed
point.

Example 4.2. For any x ∈ R
500, let x3 := (x3

1, x
3
2, . . . , x

3
500) and

arctan(x) := (arctan(x1), arctan(x2), . . . , arctan(x500)) .

We seek to solve the system of equations

f(x) := − arctan(M(x − y)3) + y = x ,

where M is a randomly chosen 500× 500 matrix with norm greater than 3 and
y is a randomly chosen vector in R

500.
The function f takes points from C = R

500 to [−π/2, π/2]500+y. Noting that
the derivative of the one dimensional function arctan is 1

1+x2 we see that in a

neighborhood close to y the function f approximates −M(x−y)3+y. Therefore,
the one known fixed point of this function x∗ = y has a neighborhood N in which
x∗ is attractive. If we choose M = 3I, the function has a unique fixed point that
is attractive in the neighbourhood (approximately) [−0.62, 0.62]500 + y, which
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f(x) := arctan(M(x − y)3) + y and yi ∈ N (0, 1).

N < 200 x∗ = y f t Mean Med. Max. Min.

Mij ∈ −|N(0, 1)| 1000 1000 1000 0 9.06 9 22 5
Mij ∈ N(0, 1/132) 1000 979 979 0 33.11 26 150 13
< 200: successful experiments stopped with ‖f(x∗) − x∗‖∞ < 10−5.

x∗ = y: successful experiment for which ‖x∗ − y‖ < 10−5.

ft: experiments in which simple iteration converged.

Mean/Med.: the mean/median number of iterations of successful experiments.

Max./Min.: the maximum/minimum number of iterations amongst successful experiments.

Table 1: A numerical example with a locally attractive fixed point

has a much smaller volume than [−π/2, π/2]500 + y. Moreover, the function is
neither a contraction or nonexpansionary.

We ran two sets of 1000 numerical experiments. In the first, for each ij
a number mij is chosen randomly from a normal distribution with mean zero
and variance one and we set Mij = |mij |. In the second set the elements of M
are randomly chosen from a normal distribution with zero mean and variance
1/132. Numerical tests show that this ensures that the ℓ2 norm of M remains
around 3.4.

In each experiment the elements of y are chosen from a random distribu-
tion with zero mean and variance one. The algorithm is started at a random
point whose elements are chosen from a normal distribution with mean zero and
variance one. Each experiment stopped when

|(f(x) − x)i| < 10−5 i = 1, 2, . . . , 500

or when the number of iterations exceeds 200. In each experiment we also simply
iterated the function 1000 times and tested if these iterations converged to a
fixed point. We did this using the same starting point as our algorithm and using
a starting point whose elements are uniformly chosen from [−π/2, π/2]500 + y.

The results for this experiment are shown in Table 1. In the second set of
experiments the algorithm is slower, since when M is not positive there could
be other attractive fixed points that “draw” the sequence away from y.

5 Basic Properties of Imitation Games

This section discusses various issues related to imitation games. Collectively,
these results show that imitation games constitute a simple subclass of the
class of two person games that nonetheless embodies the complexity (in various
senses) of general two person games. One manifestation of this, studied in this
section, is a relationship between I-equilibria of imitation games and symmetric
equilibria of symmetric games.

A symmetric game is a two person game (A,AT ) where A is an m × m
matrix. A symmetric equilibrium of (A,AT ) is a ρ ∈ ∆m such that (ρ, ρ) is a
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Nash equilibrium of (A,AT ). The following result is essentially due to Gale and
Tucker (1950).

Proposition 13. Suppose B and C are m × n matrices whose entries are all
positive, and let

A =

[

0 B
CT 0

]

.

For ρ ∈ ∆m+n the following are equivalent:

(a) ρ is a symmetric equilibrium of (A,AT );

(b) there are σ ∈ ∆m, τ ∈ ∆n, and 0 < α < 1 such that:

(i) ρ = ((1 − α)σ, ατ),

(ii) (σ, τ) is a Nash equilibrium of (B,C), and

(iii) (1 − α)σT Bτ = ασT Cτ .

Proof. First suppose that ρ is a symmetric equilibrium of (A,AT ). Then ρ =
((1−α)σ, ατ) for some σ ∈ ∆m, τ ∈ ∆n, and 0 ≤ α ≤ 1. Since (σ, 0)T A(σ, 0) =
0 = (0, τ)T A(0, τ) and the entries of B and C are all positive, it cannot be
the case that α = 0 or α = 1. Since α < 1, in the game (B,C) the strategy
σ is a best response for agent 1 to τ , and similarly τ is a best response for
agent 2 to σ. In addition, (σ, 0) and (0, τ) are both best responses to ρ, so
(1 − α)σT Bτ = ασT Cτ .

Now suppose that (b) holds. It is easily verified that (σ, 0) and (0, τ) are
best responses to ρ := ((1 − α)σ, ατ) in (A,AT ), so any convex combination of
(σ, 0) and (0, τ), such as ρ, is also a best response to ρ.

This result implies that any computational problem related to Nash equilib-
rium of two player games, for instance finding a sample equilibrium or finding all
equilibria, can be recast as a problem concerning symmetric equilibria of sym-
metric games. The symmetric games derived from two player games as above
have a special structure, so it seems that the problems related to symmetric
equilibria of symmetric games are at least as hard as those related to Nash
equilibrium of two player games.

We now describe concepts from computer science that allow precise formal
expression of this idea. An algorithm is polynomial time if its running time is
bounded by a polynomial function of the size of the input. A computational
task is polynomial if there is a polynomial time algorithm that accomplishes it,
and the class of such tasks is denoted by P. Given two computational tasks P
and Q, a reduction from Q to P is a pair of maps, one of which takes an input x
for Q to an input r(x) for P , and the other of which takes an output y of P to
an output s(y) of Q, such that s transforms the desired output of P for r(x) to
the desired output of Q for x. The reduction is a polynomial time reduction10 if

10Other conditions on the reduction can also be considered (Papadimitriou, 1994, Section
8.1).

19



the size of the output of P for r(x) is bounded by a polynomial function of the
size of x and there are polynomial time algorithms that compute the values of r
and s. The result above gives a polynomial time reduction passing from a two
player game to a symmetric game whose set of symmetric equilibria mirrors the
set of Nash equilibria of the given game. In this sense any computational task
related to symmetric equilibria of symmetric games is at least as hard as the
corresponding problem for Nash equilibria of two person games. For example,
if the problem of finding a symmetric equilibrium of a symmetric game is in P,
then so is the problem of finding a Nash equilibrium of a two person game.

We use imitation games to go in the other direction: problems associated
with Nash equilibrium of two person games are at least as hard as the corre-
sponding problems related to symmetric equilibria of symmetric games.

Proposition 14. For an m×m matrix A and ρ ∈ ∆m the following are equiv-
alent:

(a) ρ is a symmetric equilibrium of (A,AT );

(b) ρ is an I-equilibrium of (A, I);

(c) there is ι ∈ ∆m such that (ι, ρ) is a Nash equilibrium of (A, I).

Proof. The equivalence of (a) and (b) is immediate. The equivalence of (b) and
(c) is Lemma 1.

A fourth reformulation of the problem should also be mentioned. A linear
complementarity problem is a problem of the form

z ≥ 0, q + Az ≤ 0, 〈z, q + Az〉 = 0

where the m × m matrix A and the vector q ∈ R
m are given. The problem is

said to be monotone if all the entries of A are positive. Suppose that this is the
case, and that q = (−1, . . . ,−1). If z is a solution, then ρ := z/

∑m

i=1 zi is an
equilibrium of the imitation game (A, I), since the complementarity condition
〈z, q + Az〉 = 0 means precisely that each pure strategy for the first agent is
either unused (that is, zi = 0) or gives the maximal expected payoff. Conversely,
if ρ is an equilibrium of the imitation game (A, I), and v := ρT Aρ, then z := ρ/v
solves the linear complementarity problem above. The extensive literature on
the linear complementarity problem is surveyed in Murty (1988) and Cottle
et al. (1992).

We have shown that there is a polynomial time reduction passing between
any two of the following problems.

(i) Find a Nash equilibrium of a two person game.

(ii) Find an I-equilibrium of an imitation game.

(iii) Find a symmetric equilibrium of a symmetric game.

(iv) Find a solution of a monotone LCP.
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It is not known whether finding a Nash equilibrium of a two person game is in P.
Papadimitriou (2001) has described this problem as (along with factoring) “the
most important concrete open question on the boundary of P.” The fact that
(i) is in P if and only if (ii)-(iv) are each in P lends support to his view. The
equivalence, up to polynomial time reduction, between these solution concepts
holds also for other computational problems such as those shown by Gilboa and
Zemel (1989) to be NP-complete (e.g., determining whether there is more than
one solution) and finding all solutions.

6 Lemke Paths from Lemke-Howson

This section explains how the Lemke paths algorithm may be regarded as a
projection of the Lemke-Howson algorithm applied to an imitation game. We
begin by describing the Lemke-Howson algorithm for a general two player game
that satisfies a general position condition. We then specialize to imitation games
and relate what we obtain to the description of the Lemke paths algorithm given
in Section 3.

Let (A,B) be a two person game, where A and B are m × n matrices. We
index the rows and columns of A and B, and the components σi and τj of a
mixed strategy profile (σ, τ) ∈ ∆m × ∆n, by the elements of

J1 := {1, . . . ,m} and J2 := {m + 1, . . . ,m + n}

respectively. For σ ∈ ∆m the indices of the first agent’s unused strategies are
the elements of σ◦ := { i ∈ J1 : σi = 0 }, and the indices of the second agent’s
pure best responses are the elements of σ := argmaxj∈J2

(BT σ)j . Similarly, for
τ ∈ ∆n let τ◦ := { j ∈ J2 : τj = 0 } and τ := argmaxi∈J1

(Aτ)i. Then (σ, τ) is
a Nash equilibrium if and only if each pure strategy is either unused or a best
response:

σ◦ ∪ τ = J1 and τ◦ ∪ σ = J2.

For W1, Z1 ⊂ J1 and W2, Z2 ⊂ J2 set W := (W1,W2) and Z := (Z1, Z2),
and define

S̃(W,Z) := { (σ, τ) ∈ ∆m × ∆n : σ◦ = W1, τ = Z1, τ◦ = W2, σ = Z2 }.

The next result, and Lemma 16 below, are analogues of Lemmas 2 and 3, with
proofs that are similar and consequently omitted.

Lemma 15. If S̃(W,Z) is nonempty, then it is convex and:

(a) J1 \ W1, Z1, J2 \ W2, and Z2 are all nonempty;

(b) The closure of S̃(W,Z) is
⋃

S̃(W ′, Z ′) where the union is over all (W ′, Z ′)
with W ′

1 ⊃ W1, Z ′
1 ⊃ Z1, W ′

2 ⊃ W2, and Z ′
2 ⊃ Z2.

We say that (A,B) is in general position if |σ◦|+ |σ| ≤ m for all σ ∈ ∆m and
|τ◦|+ |τ | ≤ n for all τ ∈ ∆n. Throughout this section we assume that this is the
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case, so that if (σ, τ) is a Nash equilibrium, then these inequalities hold with
equality and σ◦, τ , τ◦, and σ are pairwise disjoint. As was the case earlier, a
failure of general position implies that the entries of A and B express a system
of linear equations with more equations than unknowns that nonetheless has a
solution, so the set of pairs (A,B) in general position is dense in the space of
all such pairs.

Let
|(W,Z)| := |W1| + |Z1| + |W2| + |Z2|.

Lemma 16. If (A,B) is in general position and S̃(W,Z) is nonempty, then:

(a) S̃(W,Z) is (m + n − |(W,Z)|)-dimensional;

(b) S̃(W ′, Z ′) is nonempty for all (W ′, Z ′) with W ′
1 ⊂ W1, ∅ 6= Z ′

1 ⊂ Z1,
W ′

2 ⊂ W2, and ∅ 6= Z ′
2 ⊂ Z2.

Consider (W,Z) for which S̃(W,Z) 6= ∅. If |(W,Z)| = m + n, then S̃(W,Z)
is a singleton (by (a) above) whose unique element, denoted by Ṽ (W,Z), is
called a vertex. If |(W,Z)| = m+n−1, then the closure of S̃(W,Z), denoted by
Ẽ(W,Z), is a one dimensional (again by (a)) line segment that we call an edge.

We say that an edge Ẽ(W,Z) is horizontal if |W1| + |Z2| = m and |W2| +
|Z1| = n − 1. If |W1| + |Z2| = m − 1 and |W2| + |Z1| = n, then we say that
Ẽ(W,Z) is vertical. A horizontal edge is a cartesian product of a singleton
in ∆m and a line segment in ∆n, while a vertical edge is a cartesian product
of a line segment in ∆m and a singleton in ∆n. As we will see shortly, the
Lemke-Howson algorithm alternates between horizontal and vertical edges.

Each edge has two endpoints that are vertices. If Ṽ (W,Z) is an endpoint
of Ẽ(W ′, Z ′), then W ′

1 ⊂ W1, Z ′
1 ⊂ Z1, W ′

2 ⊂ W2, Z ′
2 ⊂ Z2, and |(W ′, Z ′)| =

|(W,Z)| − 1. If, for example W ′
1 = W1 \ {i} while Z ′

1 = Z1, W ′
2 = W2, and

Z ′
2 = Z2, then we say that (W ′, Z ′) is obtained from (W,Z) by dropping i from

W1. Suppose that Ṽ (W,Z) is a vertex. If (W ′, Z ′) is obtained by dropping i
from W1 or W2, then S̃(W ′, Z ′) is nonempty by (b) above, so that Ẽ(W ′, Z ′)
is defined. Similarly, if (W ′, Z ′) is obtained by dropping i from Z1 or Z2, then
Ẽ(W ′, Z ′) is defined if and only if the resulting Z ′

1 and Z ′
2 are nonempty.

Fix an arbitrary s̃ ∈ J1 ∪ J2. A vertex Ṽ (W,Z) is an s̃-vertex if

(J1 ∪ J2) \ {s̃} ⊂ W1 ∪ Z1 ∪ W2 ∪ Z2.

An edge Ẽ(W,Z) is an s̃-edge if

W1 ∪ Z1 ∪ W2 ∪ Z2 = (J1 ∪ J2) \ {s̃}.

Clearly the endpoints of an s̃-edge are s̃-vertices; let ẽ(Ẽ(W,Z)) be the two
element set containing these endpoints. Let

G̃s̃ := (Ṽs̃, Ẽs̃)

where Ṽs̃ is the set of s̃-vertices and Ẽs̃ is the set of s̃-edges. Then G̃s̃ (with
the relationship between edges and vertices given by ẽ) is an undirected graph.
The Lemke-Howson algorithm follows a path in G̃s̃.
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As in our analysis of the Lemke paths algorithm earlier, we give a taxonomy
of pairs consisting of an s̃-vertex and an s̃-edge that has that vertex as an
endpoint. For the sake of definiteness we assume that s̃ ∈ J1 (the other case
is similar) and we begin with those vertices in which the first agent’s strategy
is δs̃. The general position assumption implies that there is a unique pure best
response to δs̃: δs̃ = {t̃} for some t̃ ∈ J2. In turn general position implies that
δt̃ has a unique best response: δt̃ = {i} for some i ∈ J1. Then (δs̃, δt̃) is the
s̃-vertex Ṽ (W,Z) where

W1 = I1 \ {s̃}, Z1 = {i}, W2 = I1 \ {t̃}, Z2 = {t̃}.

What s̃-edges have (δs̃, δt̃) as an endpoint? If i = s̃, so that (δs̃, δt̃) is a Nash
equilibrium, then (δs̃, δt̃) is not an endpoint of any s̃-edge Ẽ(W ′, Z ′). The only
possibility is the (W ′, Z ′) obtained from (W,Z) by dropping s̃ from Z1, but
S̃(W ′, Z ′) = ∅ because Z ′

1 = ∅.
Next suppose that i 6= s̃, so that (δs̃, δt̃) is not a Nash equilibrium. If

Ẽ(W ′, Z ′) is an s̃-edge that has (δs̃, δt̃) as an endpoint, then (W ′, Z ′) is obtained
from (W,Z) by dropping i from either W1 or Z1. If (W ′, Z ′) is obtained by
dropping i from W1, then Lemma 16 implies that Ẽ(W ′, Z ′) is nonempty, but
i cannot be dropped from Z1 without making it empty, so there is exactly one
s̃-edge having (δs̃, δt̃) as an endpoint.

Now consider an s̃-vertex (σ, τ) = Ṽ (W,Z) with σ 6= δs̃. As above, the
number of s̃-edges having (σ, τ) depends on whether this point is a Nash equi-
librium.

If (σ, τ) is a Nash equilibrium, then the only possibility for an s̃-edge with
(σ, τ) as an endpoint is Ẽ(W ′, Z ′) where (W ′, Z ′) is obtained from (W,Z) by
dropping s̃. There always is such an s̃-edge because σ 6= δs̃ implies that W1 \
{s̃} 6= ∅.

If (σ, τ) is not a Nash equilibrium, then one of W1 ∩ Z1 and W2 ∩ Z2 is a
singleton while the other is empty. If W1 ∩ Z1 = {j}, then there are two edges
with (σ, τ) as an endpoint, namely Ẽ(W ′, Z ′) and Ẽ(W ′′, Z ′′) where (W ′, Z ′)
and (W ′′, Z ′′) are obtained by dropping j from W1 and Z1 respectively. In
particular, note that j cannot be the unique element of Z1 because then W1 ⊂
J1 \ {s̃} would have m − 1 elements, and this can only happen if σ = δs̃.
Similarly, if W2∩Z2 = {j}, then there are two edges with (σ, τ) as an endpoint,
namely Ẽ(W ′, Z ′) and Ẽ(W ′′, Z ′′) where (W ′, Z ′) and (W ′′, Z ′′) are obtained
by dropping j from W2 and Z2 respectively. In this case j cannot be the unique
element of Z2 because W2 has at most n − 1 elements, W2 ∪ Z2 = J2, and
W2 ∩Z2 = {i}. Thus, regardless of which of W1 ∩Z1 and W2 ∩Z2 is a singleton
and which is empty, (σ, τ) is an endpoint of two s̃-edges. Note that one of these
edges is horizontal and the other is vertical.

Summarizing, (δs̃, δt̃) is either a Nash equilibrium, in which case it is not
an endpoint of any s̃-edge, or an endpoint of precisely one s̃-edge. Every other
s̃-vertex is an endpoint of precisely one or two s̃-edges according to whether
it is or is not a Nash equilibrium. The path of s̃-edges that begins at (δs̃, δt̃)
is unbranching, alternates between horizontal and vertical edges, and cannot
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return to any s̃-vertex that it has already visited. Since the set of s̃-vertices
is finite, it must eventually arrive at a Nash equilibrium. The Lemke-Howson
algorithm follows this path. Note that there is one path of the algorithm for
each s̃ = 1, . . . ,m + n.

We now specialize to the case of an imitation game, so henceforth m = n
and B = I. Define d : J1 ∪ J2 → I by setting

d(j) =

{

j, j ∈ J1,

j − m, j ∈ J2.

Then d(σ◦) ∩ d(σ) = ∅ for all σ ∈ ∆m. If (σ, τ) is a vertex or an element of
a horizontal edge, then |σ◦| + |σ| = m, so d(σ◦ ∪ σ) = I and σ is the uniform
distribution on d(σ). If (σ, τ) is an element of a vertical edge Ẽ(W,Z), then σ is
an element of the line segment between the uniform distribution on d(Z2) and
the uniform distribution on I \ d(W1).

The Lemke paths algorithm, as it was described in Section 3, has the follow-
ing graph-theoretic expression. Let s := s̃. (Recall that we are assuming that
s̃ ∈ J1. If we were assuming that s̃ ∈ J2 we would set s := s̃ − m.) Let

Gs = (Vs, Es)

where Vs is the set of s-vertices and Es is the set of s-edges. For E(X,Y ) ∈ Es

let e(E(X,Y )) be the two element subset of Vs containing the endpoints of
E(X,Y ). The Lemke path is the path of edges in Gs that starts at δs.

The next three results describe how G̃s̃ and Gs are related.

Lemma 17. If (σ, τ) = Ṽ (W,Z) ∈ Ṽs̃, then V (d(W2), d(Z1)) ∈ Vs.

Proof. Since τ◦ = W2 and τ = Z1, τ ∈ S(d(W2), d(Z1)). General posi-
tion implies |W2| + |Z1| = m, so (by another application of general posi-
tion) S(d(W2), d(Z1)) is a singleton because |d(W2)| + |d(Z1)| = m. Thus
V (d(W2), d(Z1)) = τ . We claim that τ ∈ Vs, i.e., I \ {s} ⊂ d(W2 ∪ Z1).
We have |(W,Z)| = 2m and

(J1 ∪ J2) \ {s̃} ⊂ W1 ∪ Z1 ∪ W2 ∪ Z2,

so d maps at least two elements of the disjoint union of W1, Z1, W2, and Z2 to
each element of I \ {s}. In addition |W1| + |Z2| = m and d(W1 ∪ Z2) = I.

This result implies that there is a function πV : Ṽs̃ → Vs given by

πV (Ṽ (W,Z)) := V (d(W2), d(Z1)).

In this sense vertices in Ṽs̃ “project” onto vertices in Vs. The next result shows
that a vertex V (X,Y ) ∈ Vs “lifts” to the pair of endpoints of a vertical edge
unless it is an I-equilibrium and s ∈ X, in which case it lifts to a single vertex
in Ṽs̃.
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Lemma 18. Suppose V (X,Y ) = ρ ∈ Vs. If X ∪ Y = I and s ∈ X, then there
is a unique element of Ṽs̃ that is mapped to V (X,Y ) by πV . Otherwise V (X,Y )
is the image of precisely two elements of Ṽs̃, and these are the endpoints of a
vertical edge.

Proof. Let τ be ρ reinterpreted, via the bijection d|J2
, as a probability measure

on J2. Below we will construct various (W,Z) such that πV (Ṽ (W,Z)) = ρ.
Necessarily d(W2) = X and d(Z1) = Y , so all of these will have

W2 := d−1(X) ∩ J2 and Z1 := d−1(Y ) ∩ J1

in common. Let σ be the uniform distribution on Z1.
First suppose that X ∩ Y = {i}. Given W2 and Z1, if

W1 ∪ Z1 ∪ W2 ∪ Z2 = (J1 ∪ J2) \ {s̃},

then either

W1 = d−1(X) ∩ J1 and Z2 = d−1((Y \ {i}) ∪ {d(s̃)}) ∩ J2

or
W1 = d−1(X \ {i}) ∩ J1 and Z2 = d−1(Y ∪ {d(s̃)})) ∩ J2.

Both of these possibilities do in fact, have associated s̃-vertices (σ, τ) and (σ′, τ),
where σ′ is the uniform distribution on J1 \ d−1(X \ {i}), and these are clearly
the two endpoints of a vertical edge.

Now suppose that X ∪Y = I. One way to complete the definition of (W,Z)
is by setting

W1 := d−1(X) ∩ J1 = J1 \ Z1 and Z2 := d−1(Y ) ∩ J2 = J2 \ W2.

Clearly Ṽ (W,Z) = (σ, τ) ∈ Ṽs̃ and πV (Ṽ (W,Z)) = V (X,Y ).
If Ṽ (W ′, Z ′) is another element of Ṽs̃ with πV (Ṽ (W ′, Z ′)) = V (X,Y ), then

W ′
2 = W2 and Z ′

1 = Z1, and of course

(J1 ∪ J2) \ {s̃} ⊂ W ′
1 ∪ Z ′

1 ∪ W ′
2 ∪ Z ′

2.

If s ∈ X, then there is no such (W ′, Z ′) because (due to our maintained as-
sumption that s̃ ∈ J1) s̃ ∈ Z1, so that W ′

1 ∪ Z ′
1 ∪ W ′

2 ∪ Z ′
2 = J1 ∪ J2, whence

(W ′, Z ′) = (W,Z). If s̃ ∈ W1, then such a (W ′, Z ′) can be obtained by fol-
lowing the edge resulting from removing d(s̃) from W1 to its other endpoint
(σ′, τ). Since we need d(σ′◦ ∪ σ′) = I, necessarily Z ′

2 is obtained by adding
s̃ + m to Z2. All this is feasible: if W ′

2 = W2, Z ′
1 = Z1, W ′

1 = W1 \ {s̃}, and
Z ′

2 := Z2 ∪ {s̃ + m}, then Ṽ (W ′, Z ′) = (σ′, τ) ∈ Ṽs̃ where σ′ is the uniform
distribution on J1 \ W ′

1. Clearly Ṽ (W,Z) and Ṽ (W ′, Z) are the endpoints of
the vertical edge Ẽ((W ′

1,W2), (Z1, Z2)).

There is a bijection between the horizontal edges in Ẽs̃ and the edges in Es,
with πV projecting endpoints onto endpoints.
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Lemma 19. If Ẽ(W,Z) ∈ Ẽs̃ is a horizontal edge, then E(d(W2), d(Z1)) ∈
Es. Let πE : Ẽ(W,Z) 7→ E(d(W2), d(Z1)) be the corresponding function from
horizontal edges in Ẽs̃ to Es. Then πE is a bijection, and πV ◦ ẽ = e ◦ πE.

Proof. If (σ, τ) ∈ S̃(W,Z), then τ◦ = W2 and τ = Z1, so S(d(W2), d(Z1)) is
nonempty because it contains τ . In addition, |(W,Z)| = 2m − 1,

(J1 ∪ J2) \ {s̃} = W1 ∪ Z1 ∪ W2 ∪ Z2,

|W1| + |Z2| = m, and d(W1 ∪ Z2) = I, so d(W2 ∪ Z1) = I \ {s}. Thus
E(d(W2), d(Z1)) ∈ Es and πE is defined.

Suppose we are given E(X,Y ) ∈ Es. Then W2 := d−1(X) ∩ J2, Z1 :=
d−1(Y )∩J1, W1 := J1 \ (Z1 ∪{s̃}) and Z2 := J2 \W2 are the unique sets with
all the properties enumerated above. For (W,Z) defined in this way, S̃(W,Z) is
nonempty because it contains (σ, τ) whenever τ ∈ S(X,Y ) and σ is the uniform
distribution on J1 \W1, so Ẽ(W,Z) ∈ Ẽs̃. Thus πE is bijective. The endpoints
of Ẽ(W,Z) are obtained by adding elements to W2 and Z1, so they must be
mapped by πV to endpoints of E(d(W2), d(Z1)), and it is easy to see how to
obtain each endpoint of E(d(W2), d(Z1)) in this way.

Taken together, these results give the following picture. Any path in G̃s̃

projects, via πV and πE , onto a path in Gs. Any path in Gs “lifts” to a path in
G̃s̃ in the sense that there is a path in G̃s̃ that projects onto it, and the lifted
path is unique up to vertical edges above the initial and final vertex of the given
path in Gs.

An important consequence of this observation is that it provides a new proof
of a recent result of Savani and von Stengel (2004) concerning “long” Lemke-
Howson paths. Morris (1994) gives a sequence of examples of problems for which
the length of the shortest Lemke path is an exponential function of the size of
the problem. As Savani and Stengel point out, these paths can be interpreted
as Lemke-Howson paths that compute symmetric equilibria of the derived sym-
metric game, but there are asymmetric equilibria that are reached very quickly
by the Lemke-Howson algorithm. The construction above is a method of passing
from an instance of the Lemke paths algorithm to an imitation game for which
all Lemke-Howson paths project onto Lemke paths of the given problem, so it
automatically produces a sequence of examples of two person games for which
the length of the shortest Lemke-Howson path is an exponential function of the
size of the game.

7 Short Paths in Geometric Games

In the recursive sequence (1) of Kakutani’s fixed point theorem we need to find
an I-equilibrium of an imitation game with a particular geometric derivation.
In this section we study such imitation games in more detail. Let L be an
inner product space of fixed dimension d. The geometric imitation game (A, I)
induced by x1, . . . , xm, y1, . . . , ym ∈ L is the one in which the entries of the
m × m matrix A are aij = −‖xi − yj‖

2.

26



How rich is the class of geometric imitation games? As we have defined the
concept, if (A, I) is a geometric imitation game, then the entries of A are non-
positive, so there are imitation games that are not geometric imitation games.
However, there is a less restrictive sense in which every imitation game can be
realized as an imitation game. We will say that m × m matrices A and A′ are
equivalent if it is possible to pass from A to A′ by some finite sequence of the
following transformations: (a) adding a constant to all entries in some column
of the matrix; (b) multiplying all entries by a positive scalar. We say that imi-
tation games (A, I) and (A′, I) are equivalent if A and A′ are equivalent in this
sense. Equivalent imitation games have the same best response correspondence
for the mover, and consequently they have the same Lemke paths.

The dimension of (A, I) is the smallest d such that (A, I) is equivalent to
the imitation game induced by some x1, . . . , xm, y1, . . . , ym ∈ R

d.

Proposition 20. For any m × m matrix A the dimension of (A, I) is at most
m − 1.

Proof. Let e1, e2, . . . , em be the standard unit basis vectors of R
m, and let e :=

(1, . . . , 1) ∈ R
m. Set x1 := e1, . . . , xm := em. Let p : R

m → R
m be the function

p(y) = (−‖y − x1‖
2, . . . ,−‖y − xm‖2).

Let π be the orthogonal projection of R
m onto the hyperplane

H := { z ∈ R
m : eT z = 0 },

and let q := π ◦ p. Obviously A is equivalent to a matrix A′ whose columns are
all contained in H. It is easy to compute that the matrix of Dp( 1

m
e) is 2(I −

1
m

eeT ). In particular, if v ∈ H, then Dq( 1
m

e)v = Dp( 1
m

e)v = 2v. Applying
the inverse function theorem, for a sufficiently small neighborhood U of e/m
there exist ε > 0 and y1, . . . , ym ∈ U ∩ ( 1

m
e + H) such that q(y1), . . . , q(ym) are

the columns of εA′. Let A′′ be the matrix whose columns are p(y1), . . . , p(ym).
Since p(y) − q(y) is always a scalar multiple of e, εA′ and A′′ are equivalent.
Finally note that x1, . . . , xm, y1, . . . , ym are contained in the (m−1)-dimensional
hyperplane 1

m
e + H.

We now show that the Lemke paths of a d-dimensional geometric imitation
game are “short,” relative to m, if d is fixed but m is allowed to grow. Given
the work in the previous sections, we see that geometric imitation games in a
fixed finite dimensional space are a class of two person games in which the paths
of the Lemke-Howson algorithm are “short” and a class of symmetric games for
which the computational problem of finding a symmetric Nash equilibrium is
in P. In this sense the next result complements the work of of Savani and von
Stengel (2004) and Morris (1994) concerning “long” Lemke-Howson and Lemke
paths.

Lemma 21. If L is a finite dimensional inner product space, then for an open
dense subset in L2m of geometric imitation games the length of the sequences
LP for the induced imitation games are bounded by a polynomial function of m.
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Proof. We will use the terminology in the proof of Kakutani’s fixed point theo-
rem. By (3) if ρ ∈ ∆m, then i ∈ ρ if and only if xi minimizes the distance from
x1, x2, . . . , xm to

∑m

j=1 ρiyi. Therefore, for an open dense subset of geometric
imitation games, |ρ| ≤ d + 1 for all ρ ∈ ∆m, where d is the dimension of L. If ρ
is an element of an edge E(X,Y ) ∈ Es, then ρ is either Y or Y ∪{s}, and X∪Y
contains every index except s, so (X,Y ) is completely determined by Y . Thus
the number of nonempty edges in Es is not greater than the number of d + 1
element subsets of {1, 2, . . . ,m}, which is bounded by a polynomial function of
m.

8 Concluding Remarks

We have given a new proof of Kakutani’s fixed point theorem that passes quickly
from the existence of Nash equilibria in two person games to the desired con-
clusion. The two person games arising in this argument are imitation games,
and the Lemke paths algorithm provides a simple proof of Nash equilibrium
existence for these games.

The proof of Kakutani’s theorem is based on a new algorithm for computing
approximate fixed points and points to a number of variations on the algorithm.
Such algorithms have attractive features that may be useful. There is certainly
a great deal to do in the direction of understanding the dynamics of the al-
gorithms. This seems likely to be a fruitful direction for further theoretical
research.

The study of imitation games has led to other interesting findings. The
Lemke paths algorithm has been displayed as resulting from applying the Lemke-
Howson algorithm to a suitable imitation game. This shows that “long” Lemke
paths are in fact “long” Lemke-Howson paths. The geometric version of imi-
tation games have been shown to provide a class of games with “short” Lemke
and Lemke-Howson paths. These two observations provide additional insights
on the works of Savani and von Stengel (2004) and Morris (1994).

Several important equilibrium concepts have been shown to be of comparable
computational complexity, insofar as there are polynomial time reductions pass
between them. In McLennan and Tourky (2005) we use imitation games to give
simple proofs of results of Gilboa and Zemel (1989) that have also recently been
reproved by Conitzer and Sandholm (2003), Codenotti and Štefanovič (2005),
and Blum and Toth (2004). In their work Codenotti and Štefanovič (2005) and
Bonifaci et al. (2005) also use imitation games to prove new computational com-
plexity results. One may hope that in other ways as well the imitation game
concept will have a unifying and simplifying influence on the study of com-
putational issues related to two person games and the linear complementarity
problem.
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