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Abstract

We introduce a model of decision making under uncertainty which incorporates fram-
ing effects for how contingencies are described. The primitive is a family of preferences,
indexed by partitions of the state space. Each partition corresponds to a description
of the state space. We axiomatically characterize the following partition-dependent ex-
pected utility representation. The decision maker has a nonadditive set function over
events. She then computes expected utility with respect to her partition-dependent be-
lief, which weights explicitly listed events. One interpretation of the model is in terms
of unforeseen contingencies. We propose definitions for the events which are completely
foreseen or unforeseen by decision maker and study their properties.
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1 Introduction

Beginning with Fischoff, Slovic, and Lichtenstein (1978), numerous psychological exper-
iments suggest that the judged likelihood of an event depends on the manner in which
it is described. The domains of standard economic models of uncertainty do not distin-
guish different descriptions, therefore preclude such framing effects. This paper introduces
a novel methodology for formally incorporating the framing of the state space into decision
making under uncertainty. Its primitives are distinct descriptions of acts. For example,
consider the following health insurance contract, which associates deductibles on the left
with contingencies on the right: 

$500 surgery
$100 prenatal care

...
...

 .

Compare this to the following contract, which includes some redundancies:
$500 laminotomy
$500 other surgeries
$100 prenatal care

...
...

 .

Both contracts provide effectively identical levels of coverage. Nonetheless, a consumer
might evaluate these lists differently, because the second formulation explicitly mentions
laminotomies. She may have never heard of laminotomies or, if she had heard of them, she
may have failed to fully consider them when evaluating the first contract. This oversight
could manifest itself behaviorally if the consumer was willing to pay a higher premium for
the second contract, reflecting an increased personal belief of the likelihood of surgery after
laminotomies are mentioned.

Our general model expands the standard subjective model of decision making under
uncertainty and introduces a richer set of primitives which distinguishes the different ex-
pressions for an act as distinct choice objects. In particular, lists of contingencies with
associated outcomes are the primitive objects of choice. The following list

x1 E1

x2 E2

...
...

xn En

 ,
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denotes an act which delivers the outcome xi if the state of the world is in Ei. While acts
are often notated as lists for ease of exposition, we take this notation quite literally. For
example, if E′

1 ∪ E′′
1 = E1, then the following list

x1 E′
1

x1 E′′
1

x2 E2

...
...

xn En


,

denotes the same act, but is here modeled as a distinct object. The decision maker might
have different attitudes about the two presentations, because the second explicitly mentions
the specific contingencies E′

1 and E′′
1 . This discrimination between presentations is the

primary methodological innovation of the paper. The model is, to our knowledge, the first
axiomatic attempt to incorporate framing of contingencies as an explicit consideration in
decision making.

Aside from theoretical concerns, many real contracts are presented as such lists. In-
surance plans are often described by a table of contingencies associated with coverage or
liability amounts. Table 1 is a partial verbatim copy of a Blue Cross medical plan available
to University of California employees expressed as procedures and deductibles. The other
available plans are similarly described.

Office visit $20
Hospital visit no charge
Preventive physical exam $20
Maternity outpatient care $20
Maternity inpatient care $250

Table 1: Blue Cross health insurance plan

We axiomatically characterize the following utility representation. The decision maker
acts as if she places a weight ν(E) on each event E. When presented a description E1, . . . , En

of the possibilities, she judges the probability of Ei to be ν(Ei)/
∑

j ν(Ej). Since the
weighting function ν is not necessarily additive, her probability of E1 can depend on whether
it is expressed as E1 or expressed as E′

1 ∪ E′′
1 . Her utility for a list

x1 E1

...
...

xn En
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is obtained by aggregating her cardinal utilities u(xi) over the consequences xi by the
normalized weights ν(Ei)/

∑
j ν(Ej) on their corresponding events Ei. While more general

functional forms are certainly imaginable and perhaps compelling, this particular form
departs modestly and parsimoniously from standard subjected expected utility by a simple
relaxation of additivity of ν. The nonadditivity of ν can be used to detect and measure the
effects of framing on decision making. Although the primitives are richer, the representation
maintains the essential notions of expected utility and probabilistic sophistication from the
standard model.

The following example illustrates the relationship between judged likelihood and fram-
ing more sharply. The mathematician Jean d’Alembert argued that “the probability of
observing at least one head in two tosses of a fair coin is 2/3 rather than 3/4. Heads, as
he said, might appear on the first toss, or, failing that, it might appear on the second, or,
finally, might not appear on either. D’Alembert considered the three possibilities equally
likely (Savage 1954, p. 65).” D’Alembert’s fundamental mistake was in his framing of the
states. He failed to split the first event into its two atoms: heads then tails, and heads then
heads. He mistakenly viewed the world as three events: {HH, HT}, {TH}, and {TT}. Had
he explicitly separated the two subevents comprising {HH, HT} and framed the possible
tosses appropriately, he may have avoided the error.

Such framing effects are finessed in the standard models of decision making under uncer-
tainty introduced by Savage (1954) and by Anscombe and Aumann (1963). These models
do not distinguish between different presentations of the same act, implicitly assuming the
psychological principle of extensionality, that the framing of an event is inconsequential.
Despite its obvious normative appeal, extensionality is descriptively questionable and re-
peatedly violated in experiments. Unpacking a contingency into finer components affects its
perceived likelihood. For example, in a now classic experiment, Fischoff, Slovic, and Licht-
enstein (1978) found that car mechanics’ diagnostic assessments of whether a car fails to
start because of a specific part will depend on whether this part’s subcomponents are explic-
itly listed. Tversky and Koehler (1994) proposed an explanation, which they called support
theory, which has since enjoyed considerable success among behavioral decision theorists
and psychologists. One contribution of this paper is to provide an axiomatic foundation
for a generalized version of support theory. But, we should immediately note that many of
the general behavioral intuitions of the model here should be credited to this psychological
literature.

Economists now appreciate the sensitivity of decision making to how consequences are
framed, especially as formalized by prospect theory (Kahneman and Tversky 1979). In
contrast, the effects of how states are framed are surprisingly obscure. We hope this paper
helps direct more economic attention to how the framing of contingencies influences the
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judgment of likelihood, which we think is a significant psychological finding with potentially
important economic consequences.

One interpretation of framing effects is as a consequence of unforeseen contingencies.
The general idea of a decision maker with a coarse understanding of the state space appears
in papers by Ghirardato (2001) and Mukerji (1997). Our model’s contribution is in com-
paring preferences across descriptions to identify which contingencies had been unforeseen.
This basic insight of using the explicit expression of unforeseen contingencies as a founda-
tion for their identification is not entirely novel, in either psychology or economics. Tversky
and Koehler (1994, p. 565) point out the connection between nonextensional judgment and
unforeseen contingencies:

The failures of extensionality . . . highlight what is perhaps the fundamental
problem of probability assessment, namely the need to consider unavailable pos-
sibilities. . . . The extensionality principle, we argue, is normatively unassailable
but practically unachievable . . . . People . . . cannot be expected to think of all
relevant conjunctive unpackings or to generate all relevant future scenarios.

The relationship between awareness of the domain and sensitivity to framing is suggested
in experiments by Fox and Clemen (2005), who asked MBA students at Duke University to
assess the probabilities of various salary ranges of recent Duke MBA graduates and of recent
Harvard Law graduates. Their assessments for Harvard Law salaries were very sensitive to
how finely each range was subdivided, while their assessments for their own salaries were
much less susceptible to framing effects. In economics, the connection to description was
anticipated by Dekel, Lipman, and Rustichini (1998a, p. 524), who distinguish unforeseen
contingencies from null events, because “an ‘uninformative’ statement – such as ‘event x

might or might not happen’ – can change the agent’s decision.” Our model provides a
formal mechanism to precisely execute their suggested test.

Beside unforeseen contingencies, there are other compelling psychological explanations
for nonextensional judgment. For example, the car mechanics surveyed by Fischoff, Slovic,
and Lichtenstein (1978) had surely heard of the mechanical failures before. Rather, the
mechanics more likely forgot or overlooked certain possibilities, which were made available
once explicitly mentioned. To explain nonextensionality, Tversky and Koehler (1994)[p.
549] appeal to “memory and attention . . . . Unpacking a category . . . into its components
. . . might remind people of possibilities that would not have been considered otherwise.
Moreover, the explicit mention of an outcome tends to enhance its salience hence its sup-
port.” It seems difficult to completely disentangle the behavioral implications of unforeseen
and overlooked contingencies. The behavioral connection between availability and unfore-
seen contingencies has already been noted by Dekel, Lipman, and Rustichini (1998a)[p.
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524], who write that “an unforeseen contingency is not necessarily one the agent could not
conceive of, just one he doesn’t think of at the time he makes his choice.”

A more striking set of experimental findings seems less related to availability or un-
foreseen contingencies. Different expressions for temperatures (Tversky and Fox 1995) and
days of the week (Fox and Rottenstreich 2003) elicited different judgments of likelihood.
For example, Fox and Rottenstreich (2003) find that the subjects’ judgments of whether
Sunday will be the hottest day of the coming week depend significantly on whether they
were primed to think of the other days a single event or to differentiate the complement as
Monday, Tuesday, and so on. It seems implausible that the other days of the week were
unavailable or unforeseen to the subjects. These findings seem more directly related to
salience.

Beyond the judgment of likelihood, the sensitivity of behavior to how different cate-
gories are framed appears to be a general and robust psychological phenomenon. A number
of studies document excessive diversification of future consumption over different varieties
(Simonson 1990, Ratner, Kahn, and Kahneman 1999), a tendency sometimes called diver-
sification bias (Read and Loewenstein 1995). Fox, Ratner, and Lieb (2005) point out that
diversification bias implies that portfolio allocation will be sensitive to the manner in which
the options are partitioned and present evidence corroborating this implication. In general,
when there is some quantity that needs to be divided, whether it is wealth or probability,
its allocation can depend on how the bins are constructed.

The next section introduces the primitives of our theory. Section 3 formally defines
the suggested partition-dependent expected utility representation for the model. Section 4
provides axiomatic characterizations for the representation and discusses the uniqueness of
its identification. Finally, Section 5 exploits the structure of the representation. It connects
properties of the weighting function to behavioral patterns. It also defines and examines
two families of events under the interpretation of unforeseen contingencies, those events
which are foreseen to the decision maker, and those which are completely unforeseen.

2 A nonextensional model of decision making

We introduce our general model of nonextensional decision making. Let S denote an ar-
bitrary state space, capturing all relevant uncertainty. Let Π∗ denote the collection of all
finite partitions of S. We interpret a particular partition π ∈ Π∗ as a description of S:
it explicitly mentions categories of possible states and these categories are comprehensive.
For any partition π ∈ Π∗, let σ(π) denote the algebra induced by π. Since π is finite, its
induced algebra σ(π) is the family of unions of cells in π and the empty set. Define the
binary relation ≥ on Π∗ by π′ ≥ π if σ(π′) ⊃ σ(π), i.e. if π′ is finer than π. In words, π′
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is a richer description of the state space than under π. The relation ≥ is transitive, but
generally incomplete. The meet π ∧ π′ denotes the finest common coarsening of π and π′,
while the join π ∨ π′ denotes the coarsest common refinement of π and π′.

The model considers some set of these descriptions Π ⊂ Π∗. We assume that Π includes
the vacuous description {S} and is closed under the operations ∧ and ∨. Two collections
of events will be of particular importance: C = ∪π∈Ππ, which denotes the collection of all
events which are cells of partitions in Π, and E =

⋃
π∈Π σ(π), which denotes the collection

of all events explicitly described in some partition in Π. Clearly, E is the algebra generated
by C. Most of our results focus on two special cases of Π. In the first, descriptions become
progressively finer, in which case Π is a filtration. In the second, all possible descriptions
are included in the model, in which case Π = Π∗. We will discuss the distinction shortly.

Let X denote a finite set of consequences or prizes. Invoking the Anscombe–Aumann
structure, let ∆X denote the set of all lotteries on X. An Anscombe–Aumann act f : S →
∆X maps each state s ∈ S to an an objective lottery over consequences f(s) ∈ ∆X. An
act f is simple if it takes finitely many values, |{f(s) : s ∈ S}| < ∞. Slightly abusing
notation, let p ∈ ∆X also denote the corresponding constant act which maps every state to
the lottery p. Let Fπ denote the family of simple Anscombe–Aumann acts which respect
the partition π, i.e. f−1(p) ∈ σ(π) for all p ∈ ∆X. In words, the act f if σ(π)-measurable if
it assigns a constant lottery to all states in a particular cell of the partition: if s, s′ ∈ E ∈ π,
then f(s) = f(s′). Let F =

⋃
π∈ΠFπ denote the universe of acts under consideration. For

any act f ∈ F , let π(f) denote the coarsest available partition π ∈ Π such that f ∈ Fπ.1

Note that when Π 6= Π∗, π(f) could be strictly finer than the partition induced by f if this
coarsest possible description is not available as an element of Π. Similarly for any pair of
acts f, g ∈ F , let π(f, g) be the coarsest available partition π ∈ Π such that f, g ∈ Fπ.

Our primitive is a family of preferences {%π}π∈Π indexed by partitions π, where each
preference relation %π is defined over the family Fπ of π-measurable acts. The strict and
symmetric components �π and ∼π carry their standard meanings. Our interpretation of
f %π g is that f is weakly preferred to g when the state space S is described as the
partition π. If f /∈ Fπ, then the description π is too coarse to express the conditional
payment schedule implied by the act f . If either f or g is not π-measurable, then the
statement f %π g is nonsensical.

Starting with a family of preferences might not immediately appear to be related to our
original motivation of studying lists. But, in fact, this family provides a parsimonious prim-

1The existence of π(f) is guaranteed by our assumption that Π is closed under the operation ∧. To see this,
let π ∈ Π be any partition according to which f is measurable. Since π is a finite partition, there are finitely
many partitions that are (weakly) coarser than π, hence the set Π′ = {π ∈ Π | π′ ∈ Π, π′ ≤ π, & f ∈ Fπ′}
is finite and nonempty since π ∈ Π′. Let π(f) := ∧π′∈Π′π′. Since f ∈ Fπ′ for each π′ ∈ Π, we have that
f ∈ Fπ(f). Let ρ ∈ Π be such that f ∈ Fρ. Since f ∈ Fπ we conclude that f ∈ Fρ∧π. Hence ρ ∧ π ∈ Π′,
implying π(f) ≤ ρ ∧ π ≤ ρ, as desired.
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itive which loses little descriptive power relative to a model which begins with preferences
over lists. Suppose we started with a list

x1 E1

...
...

xn En


which is a particular expression of the act f . This list is more compactly represented as a
pair (f, π), where the partition π = {E1, . . . , En} denotes the list of explicit contingencies
on the right. This description π is necessarily richer than the coarsest expression of f ,
so assume f ∈ Fπ. Now suppose the decision maker is deciding between two lists, which
are represented as (f, π1) and (g, π2). Then the events in both π1 and π2 are explicitly
mentioned. So the set of delineated events is the coarsest common refinement of π1 and π2,
their join π = π1 ∨ π2. Then (f, π1) is preferred to (g, π2) if and only if (f, π) is preferred
to (g, π). We can therefore restrict attention to the preferences over pairs (f, π) and (g, π)
where f, g ∈ Fπ. Moving the partition from being carried by the acts to being carried as
an index of the preference relation arrives at exactly the model studied here.

We stress that the model is really that of a decision maker deciding between lists.
The lists are expressed through indexed preference relations for the resulting economy of
notation, which will simplify understanding the technical mechanics of the model. The
partition π indexing the preference of f %π g is the coarsest refinement of the observable
descriptions in the lists being compared by the decision maker, and is not meant to be
interpreted as anything more. We certainly do not mean for π to reflect the events which
are foreseen to the decision maker or the way she conceptualizes the state space in her mind.
In fact, in Section 5, we suggest a method for inferring her subjective understanding of the
state space from her preferences over lists.

For example, suppose the decision maker is deciding between the Blue Cross health plan
described on Table 1 and the health plan available from Kaiser Permanente and depicted in
Table 2. The partitioning of the Kaiser Permanente plan differs from the partitioning of the

Primary and specialty care visits $50
Well-child visits to age two $15
Family planning visits $50
Scheduled prenatal care and first postmartum visit $50
Maternity inpatient care $250

Table 2: Kaiser Permanente health insurance plan

Blue Cross plan; some contingencies are explicitly listed on one list but not on the other.
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A newly hired and naive assistant professor, in the process of comparing health insurance
options, has the possibility of maternity outpatient care in mind from the Blue Cross plan,
and the possibility of family planning visits in mind from the Kaiser Permanente plan. This
is a consequence of simply reading the lists and being exposed to both policies. Since the
decision maker is reading both, we set π to be the coarsest refinement of the two lists when
making a comparison. The model therefore assumes that the decision maker can reason
about the intersections and complements of described events.

The restriction that f is π-measurable entails some loss. For example, consider a contract
which covers eighty percent of the cost of surgery. The exact benefit from the contract
depends on the exact procedure required, so the monetary transfer implied by the insurance
contract varies with which surgery is required, while the contract is described without
explicitly mentioning every possible surgery. Hence the contract is arguably not measurable
with respect to its description. However, it is measurable with respect to events of the form
“surgeries which cost x dollars,” about which the decision maker might form likelihood
assessments even without understanding the exact surgeries which comprise each event.
Hence one facile modeling device would be to consider an augmented state space consisting
of pairs of surgery types and surgery costs, over which the act f is measurable.2 While non-
measurability is an interesting and important issue, we will proceed here by abstracting away
from this consideration. Since we can identify the weighting function from the restricted
information in the model, we leave open how preferences over non-measurable acts are
resolved.

An important consideration is exactly which preferences are available or observable to
the analyst. How rich are the preferences which can be sensibly elicited from the decision
maker? This question speaks directly to the structure of the collection Π. Consider the
interpretation of framing in terms of availability or recall. Once an event is explicitly
mentioned to the decision maker, this pronouncement cannot be reversed. She cannot
consequently be made to forget it. In particular, suppose the state space partitions into
three disjoint events S = E∪F ∪G. Once the decision maker is presented a bet on E, which
must be framed as {E,F ∪G}, she is immediately reminded of the event E. If she is then
immediately presented a bet on G, she is reminded the event G. But, since she was already
reminded of E, the observed choices at this second stage will be made as if E, F , and G

had been described to the decision maker. The decision maker is effectively acting as if she
had read the finest partition {E,F, G}. More generally, after being presented with prior

2We thank Todd Sarver for suggesting this. More formally, the augmented state space S′ = S × R+

consists of pairs of the form (s, cost of surgery in state s). This extension is arguably undesirable because it
artificially increases the primitive state space, hence the acts and the choice data. However this extension is
feasible as long as costs of surgeries is contractible or observable, in which case contracts on the augmented
space could be explicitly offered to a decision maker.
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partitions π1, . . . , πt−1, the relevant behavior after also being told πt is with respect to the
refinement of the prior presentations π1, . . . , πt−1 and the current πt. So the appropriate
assumption is that Π is a filtration, where the decision maker is implicitly or explicitly
presented with progressively finer descriptions.

On the other hand, under certain motivations for framing, it seems more reasonable to
allow the analyst to access the family of all descriptions. For example, if framing effects
are driven by the salience of an event, then this salience could depend on the description at
hand, independently of prior descriptions. A similar argument can be made for the represen-
tativeness heuristic.3 Recall the experiment by Fox and Rottenstreich (2003), mentioned in
the introduction, where framing Sunday in isolation increases the judged probability that
Sunday will be the hottest day of next week. This suggests that the experimenter can
manipulate the relevant description quite powerfully. Even for motivations where prefer-
ences under the full set of descriptions cannot be elicited for a single subject, the analyst
could believe there is enough uniformity in the population to elicit preferences across sub-
jects, in which case a particular description could be given to one subject while alternative
descriptions are given to others. Similarly, the analyst might find it useful to consider coun-
terfactual assessments about what a particular decision maker would or should have done
if she had been presented alternative sequences of descriptions.

We therefore consider two canonical cases. In the first, Π is a filtration. In the second,
Π is the family of all finite partitions. The appropriateness of either case depends on the
application being considered. From the standpoint of constructing a representation, neither
case is obviously more technically challenging. When Π is larger, the analyst has access to
more information about the decision maker, but also must rationalize more of the decision
maker’s choices.

We conclude the description of the model by introducing some basic definitions which
will be useful in the sequel. Given a partition π = {E1, . . . , En} ⊂ E and acts f1, . . . , fn ∈ F
define a new act by: 

f1 E1

...
...

fn En

 (s) =


f1(s) if s ∈ E1

...
...

fn(s) if s ∈ En

.4

3The most famous example of this is the Linda problem, where subjects are told that “Linda is 31 years
old, single, outspoken and very bright. She majored in philosophy. As a student, she was deeply concerned
with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations.” The
subjects believe the event “Linda is a bank teller” is less probable than the event “Linda is a bank teller
and is active in the feminist movement” (Tversky and Kahneman 1983, p. 297).

4Note that the partition π does not necessarily belong to Π. However the assumption that π ⊂ E
guarantees that π is coarser than some partition π′ ∈ Π. To see this, let πi ∈ Π be such that Ei ∈ σ(πi) for
each i = 1, . . . , n and let π′ = π1 ∨ π2 ∨ . . . ∨ πn ∈ Π. Then π ≤ π′ and the new act defined above belongs
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Also, let pEq denote the act which assigns the lottery p to the event E and the lottery q to
its complement E{.

The following definition adapts the standard concept of null events for our setting with
a family of preferences.

Definition 1. Given π ∈ Π, an event E ∈ σ(π) is π-null if either E = ∅ or(
p E

f E{

)
∼π

(
q E

f E{

)
,

for all f ∈ Fπ and p, q ∈ ∆X. E ∈ σ(π) is π-nonnull if it is not π-null. The event E is
null if E is π-null for any π such that E ∈ π. E is nonnull if it is not null.

Note that for an event to be nonnull, it only needs to be nonnull for some partition π, but
not necessarily for all partitions whose algebras include it.

Any expression of a contract f must include at least the variation in payments which
is necessary for its description. At a minimum, the events in π(f) must be explicitly
mentioned, recalling that π(f) is the coarsest available partition π ∈ Π which adapts f .
Similarly, when comparing two acts f and g, then the coarsest description available to
express both f and g is π(f, g), where none of the payoff-relevant contingencies are unpacked
into finer subevents. This motivates the following binary relation % on F .

Definition 2. For all f, g ∈ F define f % g if f %π(f,g) g.5

Certain conditions will be more compactly defined on the global relation %, without
referencing the entire family of preferences. The single relation % is theoretically power-
ful because it carries all the essential information about the family of relations {%π}π∈Π.
Suppose the analyst wanted to understand the decision maker’s response to an act f where
some contingencies are unpacked, so the corresponding list includes a description of the
state space which is strictly finer than π(f). Then the finer description π must entail some
redundancies. For example, perhaps f−1(p) = E1 ∪E2, but the description separately lists
E1 and E2, even though they return the same lottery. Now consider the following act f ′

which is very similar to f , but whose minimal expression does require separate expressions
for E1 and E2: f ′ assigns a very close but different lottery p′ 6= p to E2 and is equal to f

everywhere else. Then f ′ is very close to f in terms of effective payments, but very different
in terms of its implied minimal description.

Assuming f, g ∈ Fπ assures that π is at least as fine as π(f, g). This highlights an
important interpretive difference between standard theories of Bayesian updating and our

to Fπ′∨π(f1)∨...∨π(fn) ⊂ F .
5An alternative global relation is the comparison of certainty equivalents. Define f %∗ g if CE(f) % CE(g)

whenever f ∼ CE(f) ∈ ∆X and g ∼ CE(g) ∈ ∆X. The examination of %∗ is part of ongoing work.
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theory of framing contingencies. In the former, acts must be restricted to respect the
information, or lack thereof, embodied in an algebra on the state space. In our model, it
is the algebra that must be expanded to reflect the contingencies explicitly mentioned in
the description of an act. Partitions or subalgebras are often used to model the arrival of
information about the actual state of the world, where each cell of a partition represents
an updated restriction on the truth. Our interpretation is quite different. We take each
partition π a description of the entire state space. Each cell represents an event that is
explicitly mentioned. In our model, the decision maker does not learn at some ex interim
stage which particular cell actually obtains. Any differences in behavior across partitions
are attributable only to the different descriptions of the entire state space, not to different
arrival of information regarding the veracity of particular events.

3 Partition-dependent expected utility

We propose the following utility representation for every %π. The decision maker has a
nonnegative set function ν : C → R+ over relevant contingencies. When she is presented
with a description π = {E1, E2, . . . , En} of the state space, she places a weight ν(Ek) on
each described event. Normalizing these weights by their sum, µπ(Ek) = ν(Ek)/

∑
i ν(Ei)

defines a probability measure µπ over σ(π), the algebra induced by π. Then, her utility for
the act f expressed as:

f =


p1 E1

p2 E2

...
...

pn En

 ,

is
∑n

i=1 u(pi)µπ(Ei), where u : ∆X → R is an affine von Neumann–Morgenstern utility
function on objective lotteries over consequences.

The following restriction avoids division by zero when normalizing the set function.

Definition 3. A set function ν : C → R+ is nondegenerate if
∑

E∈π ν(E) > 0 for all π ∈ Π.

We can now formally define our suggested utility representation.

Definition 4. {%π}π∈Π admits a partition-dependent expected utility representation
if there exist a nonconstant affine vNM utility function u : ∆X → R and a nondegenerate
positive set function ν : C → R+ such that for all π ∈ Π and f, g ∈ Fπ:

f %π g ⇐⇒
∫

S
u ◦ f dµπ ≥

∫
S

u ◦ g dµπ,
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where µπ is the unique probability measure on (S, σ(π)) such that, for all E ∈ π:

µπ(E) =
ν(E)∑

F∈π ν(F )
. (1)

When such a pair (u, ν) exists, we call it a partition-dependent expected utility representa-
tion.

The set function ν in the representation is not necessarily additive, and its nonadditivity
provides a channel for detecting the sensitivity of decision making to the description of the
act. The structure of ν is quite general: ν is not necessarily monotone nor convex-ranged.
It can also be strictly bounded away from zero for nonempty events, in which case there are
no null events, even if the state space is uncountably rich. While it involves nonadditive
set functions, the representation is only superficially similar to Choquet expected utility
(Schmeidler 1989). In fact, the decision maker acts as if she is probabilistically sophisticated
for any fixed description π.

A partition-dependent expected utility representation provides the following guidelines
for the decision maker’s response to framing. Each event E ( S carries a value ν(E), which
corresponds to its relative weight in lists where E, but not its subevents, are explicitly
mentioned. The nonadditivity of ν captures the effects of framing: E and F can be disjoint
yet ν(E)+ν(F ) 6= ν(E∪F ). The normalization of dividing by

∑
E∈π ν(E) is also significant.

It implies that if the complement of E is unpacked and a partition πE{ of E{ is explicitly
mentioned, then the assessed likelihood of E will be indirectly affected. So, the judged
probability of E will depend directly on its description πE and will depend indirectly on
the partitioned description πE{ of its complement.

The utility function is obviously related to support theory, introduced by Tversky and
Koehler (1994) and extended by Rottenstreich and Tversky (1997) as a treatment of nonex-
tensional judgment. The primitives of support theory are descriptions of events, called
hypotheses. Tversky and Koehler (1994) analyze binary comparisons of likelihood between
pairs of hypotheses which they call evaluation frames, which consist of a focal hypothesis and
an alternative hypothesis. The probability judgment of the focal hypothesis A relative to the
alternative B in the evaluation frame (A,B) is proposed to be P (A,B) = s(A)/[s(A)+s(B)],
where s(A) is the support assigned to hypothesis A, based on the strength of its evidence.
They offer a technical characterization of such judgments based on functional equations tak-
ing P as primitive, but not one founded on preference (Tversky and Koehler 1994, Theorem
1). Our theory translates support theory from one of judgment to one of decision making,
extends its scope beyond binary evaluation frames, and provides an axiomatic foundation
from preference.

While the classic economic interpretation of ν is in terms of nonadditive likelihood, psy-
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chologists have a richer view of the support function and its sources. Tversky and Koehler
(1994) suggest two other interpretations. The first is as a gauge of representativeness: “the
hypothesis ‘Bill is an accountant’ may be evaluated by the degree to which Bill’s personality
matches the stereotype of an accountant.” A second suggestion is in terms of representa-
tiveness: “the prediction ‘an oil spill along the eastern coast before the end of next year’
may be assessed by the ease with which similar accidents come to mind.” Then ν has a
quite literal interpretation as the number of examples or cases which the decision maker
can think of. Both interpretations make violations of monotonicity possible. For example,
if Bill’s personality seems closer to that of an stereotypical accountant than to that of a
stereotypical business executive, the support for the strict subset will be larger. Or, one
might be able to recall more words that end with “ing” than words that end with “g.” Such
violations of monotonicity make a straight interpretation of ν in terms of likelihood less
compelling.

Beside its experimental and psychological pedigree, there are sound methodological ar-
guments for the suggested representation. These points will become more transparent as
they develop in the sequel, but we summarize a few here. While the beliefs µπ could be left
unconnected across partitions, the consequent lack of basic structure would not be amenable
to applications or comparative statics. Instead, we relate beliefs across descriptions with the
single set function ν. For example, an immediate implication of the representation is that
the relative likelihood of disjoint events A to B is independent of how finely their comple-
ment is expressed. This form of consistency is assumed in some applications incorporating
awareness, where the announcement of previously unforeseen contingencies does not alter
the relative weight of already understood possibilities (Filiz 2006, Ozbay 2006).

One of the attractive features of the proposed representation is its compact form. Like
standard Anscombe–Aumann expected utility, preference is summarized by two functions,
one for utility and another for likelihood. It conservatively dispenses with the additivity of
the standard model to allow for a rich set of framing effects. A virtue of the standard model is
that a large number of implied preferences can be determined from a small number of choice
observations. Under partition-dependent expected utility, once the weights of specific events
are fixed, the weights of many others can be computed by comparing likelihood ratios. This
tractably generates counterfactual predictions about behavior under alternative descriptions
of the state space, an exercise that would be difficult without any structure across partitions.

A related benefit is that in some cases ν yields a clear interpretation which can be sepa-
rately measured, e.g. in the availability heuristic as the number of cases. Then, as Tversky
and Koehler (1994) point out, the analysis presented here could be reversed to move from
measured support to relative likelihood: “in some cases, probability judgment may be pre-
dicted from independent assessments of support.” Tversky and Koehler (1994, Study 3)
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conduct an experiment asking subjects to rate the strength to different NBA teams from 1
to 100 and to guess the probability that a particular team would win a home game against
a specific opponent. The announced probabilities were strikingly close to the implied likeli-
hoods under support theory using the strength ratings as a direct measurement of support,
with an aggregate R2 of 0.97. When possible, by measuring the degree of representative-
ness or availability in an independent experiment, one could infer which heuristic mediates
judgment in settings with framing effects or unforeseen contingencies by comparing these
measurements to the implied ν function.

Finally, the parametrization allows us to associate interesting classes of behavior with
functional characteristics of ν. This theoretical artifact of the representation therefore
provides behavioral insights. For example, we can characterize specific kinds of framing
effects by the subadditivity of ν. The representation also guarantees natural structure on
special fields of events, in particular those which are foreseen or completely unforeseen.
These results are presented in Section 5.

In the special case that the set function ν is additive, the probabilities of events do not
depend on their expressions, and the model reduces to standard subjective expected utility.

Definition 5. {%π}π∈Π admits a partition-independent expected utility representa-
tion if there exist a nonconstant affine vNM utility function u : ∆X → R and a finitely
additive probability measure µ : E → [0, 1] such that for all π ∈ Π and f, g ∈ Fπ:

f %π g ⇐⇒
∫

S
u ◦ f dµ ≥

∫
S

u ◦ g dµ.

The following examples provide some intuition for partition-dependent expected utility.

Example 1 (Probability weighting). Suppose ν(E) = ϕ(µ(E)), where µ : E → R is a
finitely additive probability measure and ϕ : [0, 1] → [0, 1] is a strictly increasing transfor-
mation with ϕ(0) = 0 and ϕ(1) = 1. In the theory of Choquet integration and nonadditive
beliefs, such transformations are sometimes called probability distortion functions. In the-
ories of non-expected utility over objective lotteries, like prospect theory (Kahneman and
Tversky 1979) and anticipated utility theory (Quiggin 1982), such transformations are called
probability weighting functions. Their application in our model is closest to the subjectively
weighted utility theory of Karmarkar (1978). As Quiggin (1982) points out, because it is in-
dependent of the consequences tied to the lottery, the weighting function ϕ in subjectively
weighted utility must be linear, otherwise the preference violates stochastic dominance.
In fact, the weighting function is applied in a rank-dependent fashion in anticipated util-
ity and cumulative prospect theory (Tversky and Kahneman 1992) to maintain stochastic
dominance. Here, because the manner in which ϕ is applied depends on the framing of the
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act, we provide a rank-independent expression of subjectively weighted utility satisfying
stochastic dominance.

Example 2 (Principle of insufficient reason). Suppose ν is a constant function, for example
ν(E) = 1 for each every nonempty E. Then the decision maker puts equal probability on all
described contingencies. Such a criterion for cases of extreme ignorance or unawareness was
advocated by Laplace and Leibnitz as the principle of insufficient reason. This principle
is sensitive to the framing of the states. Consider the error of d’Alembert mentioned in
the introduction, who attributed a probability of 2/3 to seeing at least one head among
two tosses of a fair coin. The fundamental error was his framing of the state space as
H-, TH, TT , or partitioned as {{HT, HH}; {TH}; {TT}}. If ν is constant, d’Alembert
would have realized his error had he been presented a bet which pays only on a head followed
by a tail, HT . On the other hand, he would have made a similar error had he reasoned that
there can be either 0, 1, or 2 heads, partitioning the states into {{TT}; {HT, TH}; {HH}}.
This criticism of the principle of insufficient reason is difficult to even formalize in a standard
decision model; ours is specifically designed to capture such framing effects. In fact, we will
identify the principle of insufficient reason as a special case of the model, corresponding to
all events being completely unforeseen, in Section 5.

A more tempered resolution of unawareness is a convex combination of a probability
measure µ and the ignorance prior: ν(E) = αµ(E) + (1 − α) for some α ∈ [0, 1]. Fox and
Rottenstreich (2003) report experimental evidence which suggests that judgment is partially
biased towards the ignorance prior. Fox and Clemen (2005) argue that this bias becomes
more pronounced if the decision maker is more ignorant of the domain. For example, they
asked American business students to assess the probabilities of different intervals of closing
values for the Jakarta Stock Exchange, and students’ judgments were extremely sensitive
to the number of intervals that were explicitly mentioned.

4 Axioms and representations

4.1 Basic axioms

We first present axioms which will be required in all our results. The first five conditions
essentially apply the standard Anscombe–Aumann axioms to each %π. We will refer to
Axioms 1–5 collectively as the Anscombe–Aumann axioms.

Axiom 1 (Weak Order). %π is complete and transitive for all π ∈ Π.

Axiom 2 (Independence). For all π ∈ Π, f, g, h ∈ Fπ and α ∈ (0, 1): if f �π g, then
αf + (1− α)h �π αg + (1− α)h.

16



Axiom 3 (Archimedean Continuity). For all π ∈ Π and f, g, h ∈ Fπ: if f �π g �π h, then
there exist α, β ∈ (0, 1) such that αf + (1− α)h �π g �π βf + (1− β)h.

Axiom 4 (Nondegeneracy). For all π ∈ Π, there exist f, g ∈ Fπ such that f �π g.

Axiom 5 (State Independence). For all π ∈ Π, π-nonnull E ∈ σ(π), p, q ∈ ∆X, and
f ∈ Fπ:

p %{S} q ⇐⇒

(
p E

f E{

)
%π

(
q E

f E{

)
.

State Independence has some additional content in our model. Not only is the cardinal
utility for a consequence invariant to the event E in which it obtains, but also invariant to
the way that event E is expressed.

These familiar axioms guarantee an Anscombe–Aumann expected utility representation
for each %π, consisting of a probability measure µπ : σ(π) → [0, 1] and an affine function
u : ∆X → R such that

∫
S u ◦ f dµπ is a utility representation of %π. Given a fixed partition

π, the decision maker’s preferences %π are completely standard. She is probabilistically
sophisticated on σ(π) and evaluates objective lotteries linearly. The model’s interest derives
from the relationship between preferences across different descriptions of the state space.

The sharpest assumption is that the preference for one act over another is insensitive
to how they are described.

Axiom 6 (Partition Independence). For all π, π′ ∈ Π and f, g ∈ Fπ ∩ Fπ′ ,

f %π g ⇐⇒ f %π′ g.

Quite naturally, Partition Independence guarantees that subjective probability is exten-
sional. We state the following variation of the Anscombe–Aumann theorem as a benchmark
case, omitting the straightforward proof.

Proposition 1. {%π}π∈Π admits a partition-independent expected utility representation if
and only it satisfies the Anscombe–Aumann axioms and Partition Independence.

Recall that the global relation % on F is defined by f % g if f %π(f,g) g, where π(f, g)
is the coarsest available partition π ∈ Π which makes both acts measurable f, g ∈ Fπ. The
following is a verbatim application of the classic axiom of Savage (1954) to the defined
relation %.

Axiom 7 (Sure-Thing Principle). For all events E ∈ E and acts f, g, h, h′ ∈ F ,(
f E

h E{

)
%

(
g E

h E{

)
⇐⇒

(
f E

h′ E{

)
%

(
g E

h′ E{

)
.

17



The standard justification for the Sure-Thing Principle is in establishing coherent con-
ditional preferences. The relative likelihood of subevents of E should be independent of the
prizes associated with E{. Because the description of E{ is implicitly encoded in h and h′,
this axiom has additional content here. When the range of h is disjoint from the ranges of f

and g, the contingencies needed to make the comparison in the left hand side can be divided
into two parts: the description of E implied by f and g, and description of E{ implied by
h. The description of the state space in the right hand side can be similarly divided: the
same description of E generated by f and g, and the possibly different description of E{

generated by h′. Since the description of E is similar for both comparisons and the acts
being compared agree on E{, the Sure-Thing Principle requires that the preferences are de-
termined by where the acts differ on E. In other words, the effect of a particular expression
of an event E is independent of how its complement E{ is expressed. The normative appeal
of this axiom is similar to its implicitly dynamic justification in the standard setting. If E

was known to be true, then the description of the impossible event E{ should not change
preference over acts conditional on E.

4.2 Π is a filtration

We write Π is a filtration if the refinement relation ≥ is complete on Π. Given the restriction
to finite partitions, Π can then be indexed by a finite or countably infinite sequence T as
Π = {πt}t∈T with π0 = {S} and πt+1 > πt. When T is finite, there exists a finest partition
πT which adapts the space of all relevant acts and events, F =

⋃
π∈ΠFπ = FπT and

E =
⋃

π∈Π σ(π) = σ(πT ). As a reminder, for any expressible act f ∈ F , in this setting π(f)
refers to the first partition in {πt}t∈T which adapts f , but π(f) could be strictly finer than
the algebra induced by f . Similarly π(f, g) need not be the minimal expression of the pair f

and g, but refers only the first partition in the filtration where f and g become describable.

Theorem 1. {%πt}t∈T admits a partition-dependent expected utility representation if and
only if it satisfies the Anscombe–Aumann axioms and the Sure-Thing Principle.

Proof. See Appendix B.1.

While the utility function u over lotteries is unique up to positive affine transformations,
the uniqueness of the weighting function ν in the representation is surprisingly delicate.
This delicacy also provides some intuition for how ν is constructed. Our general strategy
is to use an appropriate chain of available partitions and betting preferences to calibrate
the likelihood ratio ν(E)/ν(F ). For example, suppose S = {a, b, c, d}, T = {1, 2}, π1 =
{{a, b}; {c, d}}, and π2 = {{a}; {b}; {c, d}}. Consider the ratio ν({a, b})/ν({a}). First,
we examine preferences when the states are described as the partition π1 to identify the

18



likelihood ratio of {a, b} to {c, d}. Next, eliciting the preferences when the states are
described as π2 reveals the ratio of {c, d} to {a}. The Sure-Thing Principle suggests the
following argument: the ratio of {a, b} to {a} is equal to the ratio of {a, b} to {c, d} times
the ratio of {c, d} to {a}, i.e. “the {c, d}’s cancel” and the revealed likelihood ratios multiply
out.

However, this strategy could fail for two reasons. First, if {c, d} is π1-null, the ratio is
undefined. Second, if the filtration specifies π2 = {{a}; {b}; {c}; {d}}, we lose the comparison
cell {c, d} and there is no cell common to π1 and π2 with which to execute the comparison.
Consequently, we cannot link the likelihood of {a, b} to {a} across the two descriptions.
In general, instead of achieving total uniqueness, the collection of cells C segregates into
equivalence classes of cells which can be linked together in the described fashion. Without
further restrictions, ν is unique only up to scale transformations for all such equivalence
classes. This motivates the following definition, which guarantees that a nonnull cell is
available to connect likelihoods across partitions.

Definition 6. A filtration Π = {πt}t∈T is gradual with respect to {%πt}t∈T if there
exists a πt-nonnull event E ∈ πt ∩ πt+1 for all t ≥ 1.

In words, Π is gradual if it never splits all of the πt-nonnull events into finer descriptions.
For example, the example just given where π1 = {{a, b}; {c, d}} and π2 = {{a}; {b}; {c}; {d}}
is not gradual. On the other hand, an alternative elicitation could gradually describe the
state space as π′

2 = {{a}; {b}; {c, d}} and then as π′
3 = {{a}; {b}; {c}; {d}}. This collects

a strictly richer set of preferences while maintaining a filtration structure. So, another
interpretation of the condition is that the experiment implied by the filtration {πt}t∈T does
not throw away any information.

Theorem 2. Suppose {%πt}t∈T admits a partition-dependent expected utility representation
(u, ν). The following are equivalent:

(i) {πt}t∈T is gradual with respect to {%πt}t∈T .

(ii) If (u′, ν ′) also represents {%π}π∈Π, then there exist numbers a, c > 0 and b ∈ R such
that u′(p) = au(p) + b for all p ∈ ∆X and ν ′(E) = cν(E) for all E ∈ C \ {S}.

Proof. See Appendix B.2.

This is the sharpest identification to be expected. First, ν(E) is relevant for preference
only when E is a cell of some nontrivial description of the states. The value ν(F ) is not
identified when F is never coarsely described; if {a, b} is immediately described in π1 as
{a}∪{b}, we can elicit the sum ν({a})+ν({b}), but not ν({a, b}). Second, the only relevant
feature for preference is the ratio of cell weights, which identifies ν up to a constant multiple
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which cancels itself when the weights are normalized. Finally, the value ν(S) at the vacuous
description {S} is unidentified because this quantity will always divide itself to unity.

4.3 Π is the collection of all finite partitions

We now consider the case where Π is the collection Π∗ of all finite partitions of S. In this
case E = 2S and C = 2S \ {∅}. Unlike the previous case where Π was a filtration, the
Sure-Thing Principle is now insufficient to guarantee a partition-dependent expected utility
representation. The problem is that the inferred likelihood ratio of different events can
depend on the sequence of comparisons used to make the inference. In the prior filtration
setting, there was only one sequence available, so this was not a concern. The next example
demonstrates the issue concretely.

Example 3. Let S = {a, b, c, d} and ∆X = [0, 1]. Let π∗ = {{a, b}; {c, d}} with µπ∗({a, b}) =
2
3 and µπ∗({c, d}) = 1

3 . For any π 6= π∗, let µπ(C) = 1
|π| for all cells C ∈ π. Suppose

u(p) = p, so %π is represented by
∫
S f dµπ. These preferences satisfy the Anscombe–

Aumann axioms and the Sure-Thing Principle, but cannot be rationalized by any partition-
dependent expected utility with a fixed set function ν. To the contrary, suppose (u, ν)
was a partition-dependent expected utility representation. Let π1 = {{a, b}; {c}; {d}},
π2 = {{a, d}; {b}; {c}}, and π3 = {{a}; {b}; {c, d}}. Then, by multiplying relevant likeli-
hood ratios, we obtain:

ν({a, b})
ν({c, d})

=
ν({a, b})
ν({c})

× ν({c})
ν({b})

× ν({b})
ν({c, d})

=
µπ1({a, b})
µπ1({c})

× µπ2({c})
µπ2({b})

× µπ3({b})
µπ3({c, d})

= 1.

We can directly obtain a contradictory conclusion:

ν({a, b})
ν({c, d})

=
µπ∗({a, b})
µπ∗({c, d})

= 2.

So, we require additional restrictions on the preferences across descriptions. The example
suggests that some control over sequences of implied likelihood ratios is required, which
is where we will eventually arrive. Preferences across partitions are summarized in the
generated relation %, which ranks a pair of acts according to their coarsest available joint
description. A conspicuous feature of the relation % is its intransitivity, since the implicit
partitions π(f, g), π(g, h), and π(f, h) required for pairwise comparisons of f , g, and h are
generally distinct. One common relaxation of transitivity is acyclicity. A preference relation
% is acyclic if its strict component � does not admit any cycles. Given that % is complete,
this is equivalent to the following definition.
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Axiom 8 (Acyclicity). For all acts f1, . . . , fn ∈ F ,

f1 � f2, . . . , fn−1 � fn =⇒ f1 % fn.

In conjunction with the Anscombe–Aumann axioms, Acyclicity precludes framing effects
and forces partition-independence.

Proposition 2. {%π}π∈Π∗ admits a partition-independent expected utility representation if
and only if it satisfies the Ancsombe–Aumann axioms and Acyclicity.6

Proof. See Appendix C.1.

So, to allow for nontrivial framing effects, Acyclicity must be further generalized. In
particular, some types of cycles must be admitted. The problem with general Acyclicity is
that it precludes cycles which may have no implications for likelihood across disjoint events.
Yet, in a setting where framing and descriptions matter, the notion of relative likelihood is
meaningful only across disjoint events, since two events with nonempty intersection cannot
be cells of the same description. To specify exactly which cycles implicate likelihood, we
first need to introduce some notation.

Definition 7. A sequence of events E1, E2, . . . is sequentially disjoint if Ei ∩ Ei+1 = ∅
for all i.

In particular, cycles involving simple binary bets across sequentially disjoint events are
not allowed, since these are precisely the ones which have meaningful likelihood interpre-
tations, even in the presence of framing. Any cycle must be more complicated than simple
comparisons of bets on disjoint events.

Axiom 9 (Binary Bet Acyclicity). For any sequentially disjoint cycle of sets E1, . . . , En, E1

and lotteries p1, . . . , pn; q ∈ ∆X,(
p1 E1

q E{
1

)
�

(
p2 E2

q E{
2

)
, . . . ,

(
pn−1 En−1

q E{
n−1

)
�

(
pn En

q E{
n

)
=⇒

(
p1 E1

q E{
1

)
%

(
pn En

q E{
n

)
.

The privileged status of binary or simple bets in the measurement of belief dates back to
at least Ramsey (1931), who argued such bets provide the cleanest elicitation of the judged
relative likelihood across events. Binary acts are especially important when preferences are
intransitive. Like nearly all models of subjective uncertainty, partition-dependent expected

6Proposition 2 remains true if Acyclicity is replaced with transitivity of %. Also, recall the certainty
equivalent relation %∗ defined in Footnote 5: f %∗ g if any certainty equivalent of f is weakly preferred to
any certainty equivalent of g. Acyclicity of the defined relation % can also be replaced with monotonicity or
weak admissibility of the certainty equivalent relation %∗: f %∗ g whenever f(s) %∗ g(s) for all s ∈ S.
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utility implies a form of consistency on judgment across events; Binary Bet Acyclicity
characterizes this consistency exactly. For example, Savage suggests eliciting a subjective
likelihood ordering ≥ over events by defining A ≥ B if xAy % xBy whenever x � y. This
implied qualitative probability inherits completeness and transitivity from the preference
relation %. Fishburn (1989) relaxes transitivity of the relation % over acts in a Savage
setting, but maintains the transitivity of the likelihood relation ≥ over events. This is
expressed as a behavioral condition that the relation % is transitive over a class of binary
acts (Fishburn 1989, Axiom P.1∗).7

Savage and Fishburn both invoke fine partitions to calibrate the quantitative probabil-
ity of an event from this implied likelihood ordering. This calibration would fail in our
model: finer partitions alter the framing of the state space, which is exactly the main ob-
ject of study. Instead, we invoke the Anscombe–Aumann structure to directly calibrate
quantitative likelihood ratios for disjoint events using objective randomization over prizes.
Therefore, the appropriate consistency condition is not only qualitative, but quantitative
as well. Hence the acyclicity condition is applied even as the better outcome pi varies for
each act. The restricted notion of transitivity used in Fishburn is identical if the hypothesis
further assumed that the prizes pi are identical.

This consistency on likelihoods is only applicable across comparisons of disjoint events,
a sensible restriction given our model of framing. If A and B intersect, then the statement
A is more likely than B is delicate because we cannot directly elicit the likelihood of the
holistic expression of “A” versus the holistic expression of “B,” because no partition allows
a comparison of A to B. The best we can do is assess the subjective likelihood of “[A\B]∪
[A ∩B]” versus “[B \ A] ∪ [A ∩B].” But once framing effects are allowed and judgment is
nonextensional, this is a conceptually distinct exercise.

Binary Bet Acyclicity can be viewed as a behavioral generalization of an implication
of support theory called the product rule, which is well-known in the psychological lit-
erature. Roughly speaking, if R(A,B) denotes the relative likelihood of hypothesis A

to a mutually exclusive hypothesis B, support theory implies the following product rule:
R(A,C)R(C,B) = R(A,D)R(D,B). This can be rewritten as R(A,C)R(C,B)R(B,D) =
R(A,D), which is a particular case of the kind of likelihood consistency implied by Binary
Bet Acyclicity. The intuitions for the product rule and for Binary Bet Acyclicity are similar:
the particular comparison event, C or D, used to calibrate the quantitative likelihood ratio
of A to B is irrelevant. In an experiment involving judging the likelihoods that professional

7Formally, Fishburn’s Axiom P.1* reads: if x � y, then„
x E1

y E{
1

«
%

„
x E2

y E{
2

«
,

„
x E2

y E{
2

«
%

„
x E3

y E{
3

«
=⇒

„
x E1

y E{
1

«
%

„
x E3

y E{
3

«
.
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basketball teams would defeat others, Fox (1999) elicits ratios of support values and finds
an “excellent fit of the product rule for these data” at both the aggregate and individual
subject level.

The observable content of Acyclicity and Binary Bet Acyclicity is not uncontroversial.
The preference relations that comprise the sequences in the axioms’ hypotheses are indexed
by distinct minimal partitions. This might be problematic if, for example, we interpreted
the model in terms of the recall of contingencies which are not immediately available. If
we present the decision maker with the first, the second, and then the third binary bets,
she has been immediately reminded of more events than had she been presented the second
and third bets in isolation. On the other hand, the preference implied in the axioms is
really the latter. These concerns are fundamentally related to the observability of choices
under all descriptions. But, we only require these axioms when these choices are explicitly
observable. In Theorem 1, we showed that if these comparisons are counterfactual, then
the Sure-Thing Principle is sufficient. Our position is that either the implied preferences
are observable, in which case Acyclicity and Binary Bet Acyclicity can be falsified, or they
are not observable, in which case these axioms can be dispensed. The interpretations and
situations where Binary Bet Acylicity is controversial are exactly those where the axiom is
not required.

We can now characterize partition-dependent expected utility when Π is rich.

Theorem 3. {%π}π∈Π∗ admits a partition-dependent expected utility representation if and
only if it satisfies the Anscombe–Aumann axioms, the Sure-Thing Principle, and Binary
Bet Acyclicity.

Proof. See Appendix C.2

Turning to uniqueness, the following condition translates Definition 6 of a gradual fil-
tration for the setting where all events are cells of some available partition.

Axiom 10 (Event Reachability). For any distinct nonnull events E,F ( S, there exists a
sequentially disjoint sequence of nonnull events E1, . . . , En such that E1 = E and En = F .

Event Reachability is immediately satisfied if all nonempty events are nonnull. To
compare, the axiom of Strict Admissibility is sometimes normatively invoked as a strong
form of monotonicity or dominance.

Axiom 11 (Strict Admissibility). If f(s) % g(s) for all s ∈ S and f(s′) � g(s′) for some
s′ ∈ S, then f � g.

Strict Admissibility implies that all events are nonnull, hence implies Event Reachability.
Strict Admissibility is not inconsistent with our representation, even if the state space
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is very rich. For example, if the set function is uniformly bounded away from zero, i.e.
ν(E) > α > 0 for any nonempty event E, then there are no nonempty null events and Strict
Admissibility is satisfied. Such a uniform bound suggests a decision maker who always put
some small positive probability on any explicitly mentioned contingency.

The converse is false: Event Reachability is strictly weaker than Strict Admissibility.

Example 4 (Event Reachability ; Strict Admissibility). Let S = {s1, s2, s3} and suppose
that {%π}π∈Π∗ admits a partition-dependent expected utility representation, where only
the events {s1}, {s2}, {s3}, and {s1, s2} have strictly positive ν-weight. The specified ν

is nondegenerate. Strict Admissibility fails since some nonempty events are null. Event
Reachability is satisfied: any two singletons are immediately comparable, and and a se-
quentially disjoint path from {s1, s2} to either {s1} or {s2} can be constructed through
{s3}.

So, while Strict Admissibility suffices to identify ν uniquely, it is a touch stronger than
required. Rather, Event Reachability is the weakest assumption which guarantees unique-
ness.

Theorem 4. Assume that {%π}π∈Π∗ admits a partition-dependent expected utility repre-
sentation (u, ν). The following are equivalent:

(i) {%π}π∈Π∗ satisfies Event Reachability.

(ii) If (u′, ν ′) also represents {%π}π∈Π∗, then there exist numbers a, c > 0 and b ∈ R such
that u′(p) = au(p) + b for all p ∈ ∆X and ν ′(E) = cν(E) for all E ( S.

Proof. Follows from Lemma 4 in Appendix A.

If the partition-dependent expected utility representation (u, ν) for {%π}π∈Π∗ is uniquely
determined in the sense of part (ii) of Theorem 4, we write that {%π}π∈Π∗ admits a unique
partition-dependent expected utility representation by (u, ν).

4.4 Monotonicity

In this section, let Π = Π∗. We now consider preferences which correspond to the restriction
that ν is monotone with respect to set inclusion: ν(E) ≤ ν(F ) whenever E ⊂ F ( S. While
it seems natural that subsets should carry less weight, psychological experiments repeatedly
demonstrate otherwise. For example, Tversky and Kahneman (1983) document numerous
examples of the conjunction fallacy, where subjects judge the intersection of different events
to be strictly more likely than its components. One reason may be an availability heuristic.
When estimating the frequency of seven-letter words ending with “ing” versus seven-letter
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words with “n” as the sixth letter, subjects report a higher frequency for the former set,
even though it is a strict subset of the latter. Violations of monotonicity due to the represen-
tativeness heuristic, as famously demonstrated by the Linda problem, are also remarkably
robust, despite “a series of increasingly desperate manipulations designed to induce sub-
jects to obey the conjunction rule” (Tversky and Kahneman 1983, p. 299). In our setting,
a violation of monotonicity suggests that a particularly likely or salient subcontingency is
overlooked unless explicitly mentioned.

Monotonicity can be behaviorally identified. When the set function ν is unique up to a
scalar multiple, as characterized in Theorem 4, the following condition guarantees that ν is
monotone.

Axiom 12 (Monotonicity). For all E ⊂ F and p, q, r, s ∈ ∆X such that p � q,

s %

(
p F

q F {

)
=⇒

(
r E

s E{

)
%

r E

p F \ E

q F {

 .

The assumed preference in the left reflects the relative likelihood of F versus F {. In
particular, the decision maker is willing to pay s for the bet on F . The implied preference
on the right reveals that the relative likelihood of F \ E versus F { (conditional on E{ =
[F \ E] ∪ F { obtaining) must be smaller, since the decision maker is still willing to pay s

(again conditional on E{ obtaining).8 So, the relative likelihoods of F and F \ E against
the same event F { are required to be ordered in the appropriate manner.

Proposition 3. Assume that {%π}π∈Π∗ admits a unique partition-dependent expected utility
representation (u, ν). Then {%π}π∈Π∗ satisfies Monotonicity if and only if E ⊂ F ( S

implies ν(E) ≤ ν(F ).

Proof. See Appendix D.1.

Event Reachability is indispensable in Proposition 3. In general, there could exist one
representation where ν is monotone, but another where ν ′ is not. Example 6 of Appen-
dix D.1 demonstrates this explicitly. Without Event Reachability, we can only conclude
that the family of null sets is an ideal with all subevents of null events remaining null, i.e.
if F is null and E ⊂ F , then E is also null.

One interesting consequence of the Monotonicity axiom is that, once imposed, Event
Reachability and Strict Admissibility are equivalent. Therefore, if one begins with the
hypothesis of Monotonicity, uniqueness can be falsified by finding a nonempty null set.

8Recall the Linda example, where subjects thought Linda was more likely to be a feminist librarian than
a librarian. This behavior is excluded because the likelihood ratio of librarian to non-librarian must be larger
than the likelihood ratio of feminist librarian to non-librarian.
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Proposition 4. Assume that |S| ≥ 3 and {%π}π∈Π∗ admits a partition-dependent expected
utility representation and satisfies Monotonicity. Then {%π}π∈Π∗ satisfies Event Reacha-
bility if and only if it satisfies Strict Admissibility.

Proof. See Appendix D.2.

5 Framing and unforeseen contingencies

In this section, let Π = Π∗. Here, we introduce behavioral definitions of the decision maker’s
sensitivity to framing. We also discuss two interesting families of events, which are especially
relevant when the model is interpreted as one of unforeseen contingencies.

For any nonempty event E, let Π∗
E denote the set of all finite partitions of E. If

E ∈ π ∈ Π∗ and π′
E ∈ Π∗

E , slightly abusing notation let π ∨ π′
E denote π ∨ [π′

E ∪ {E{}].
For any partition π ∈ Π∗ we adopt the convention that π ∪ {∅} denotes the partition π.
Although ∅ is not in the domain of ν, we adopt the convention that ν(∅) = 0.

5.1 Underpacking and overpacking

The following notions of underpacking and overpacking are defined directly on preference,
without reference to any particular utility function. The decision maker underpacks if
she is more willing to bet on an event as it is described in more detail. Conversely, she
underpacks if she is less willing to bet on an event as it is described more finely. In the
Anscombe–Aumann setting here, this willingness to pay can be directly calibrated from
certainty equivalents.

For the interpretation in terms of unforeseen contigencies, we stress that these notions
really identify the correction for potentially partially unforeseen contingencies. This is
because the decision maker might understand that the description is incomplete and conse-
quently attempt to compensate for the lack of finer detail. In doing so, she may undershoot
or overshoot what her willingness to pay would be under the finer description. For example,
consider a car owner who understands that her engine includes a transmission. She would
pay more for a warranty which covers her entire engine than she would for one which only
covers her transmission, because she understands that there are other components in the en-
gine. But, she might pay yet even more for a warranty covering her entire engine when these
other components are unpacked and listed explicitly, because she relatively underestimated
their likelihood when she had only a vague sense of their existence.

Definition 8. Given a nonempty event E and π′
E ∈ Π∗

E , {%π}π∈Π∗ underpacks π′
E if, for
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any p, q, r ∈ ∆X such that q � r and for any π such that E ∈ π:(
q E

r E{

)
%π p =⇒

(
q E

r E{

)
%π∨π′E

p.

{%π}π∈Π∗ underpacks if {%π}π∈Π∗ underpacks π′
E for all nonempty events E and all

π′
E ∈ Π∗

E .

In words, if the decision maker’s certainty equivalent for a bet on the event E increases
when it is described more finely as π′

E . This corresponds to the intuition that more vividly
described events carry more weight. One way to consider the definition is that she is
willing to pay more to insure against contingency E as more of its subevents are explicitly
described. So, finer descriptions of E increase its weight in decision making. When different
contingencies are implicitly grouped into a coarse description E, this grouping decreases
the assess likelihood, so the contingencies are “underpacked.” Consequently, to make the
decision maker put more weight on E, it should be described in more detail. Violations of
monotonicity entail severe underpacking, since a packed group will have less weight than
one of its particular subcontingencies.

The opposite tendency, to put more weight on coarse descriptions, is defined symmetri-
cally.

Definition 9. Given a nonempty event E and π′
E ∈ Π∗

E , {%π}π∈Π∗ overpacks π′
E if, for

any p, q, r ∈ ∆X such that q � r and for any π such that E ∈ π:

p %π

(
q E

r E{

)
=⇒ p %π∨π′E

(
q E

r E{

)
.

{%π}π∈Π∗ overpacks if {%π}π∈Π∗ overpacks π′
E for all nonempty events E and all π′

E ∈ Π∗
E .

For example, a consumer who is mechanically ignorant might purchase more warranty pro-
tection when the engine’s components are not explicitly described, because she overestimates
the number of unknown components which could break down. Such a consumer overpacks.

When preferences admit a unique partition-dependent expected utility representation,
subadditivity or superadditivity of the set function ν determines whether revealed likelihood
increases or decreases as an event becomes more finely described.

Definition 10. A set function ν is subadditive [superadditive] if ν(E∪F ) ≤ [≥]ν(E)+
ν(F ) whenever E ∩ F = ∅ and E ∪ F 6= S.

Note that superadditivity is strictly weaker than convexity.9 Convexity is commonly as-
sumed for value functions in cooperative games or for capacities in Choquet integration,

9A set function ν is convex if ν(E ∪ F ) + ν(E ∩ F ) ≥ ν(E) + ν(F ) for all E, F ⊂ S.
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but carries little behavioral significance beyond the implied superadditivity in our model of
framing.

In their original paper, Tversky and Koehler (1994) argue for and provide evidence
suggesting subadditivity of the support function across disjunctions of hypotheses. More
recently, Sloman, Rottenstreich, Wisniewski, Hadjichristidis, and Fox (2004) present ex-
perimental cases of superadditivity, where explicitly mentioning atypical or unlikely con-
tingencies decreased the subjective probability of an event. Consequently, they suggest
that subadditivity “should be jettisoned from future formulations of the theory (p. 581).”
Without taking a prior position, subadditivity or superadditivity can be verified through
the underpacking or overpacking of descriptions. The straightforward proof of the following
observation is omitted.

Proposition 5. Suppose {%π}π∈Π∗ admits a partition-dependent expected utility represen-
tation (u, ν) and satisfies Strict Admissibility. Then {%π}π∈Π∗ underpacks [overpacks] if
and only if ν is subadditive [superadditive].

Example 7 in Appendix E.1 demonstrates that strict admissibility is indispensable in
Proposition 5.

5.2 Foreseen and completely unforeseen contingencies

We now identify the events which the decision maker understands completely. These are the
events whose explicit descriptions have no effect on choice. For example, if a consumer had
a possibility E already in mind when deciding between contracts f and g, then mentioning
this possibility in the contract should have no bearing on her preference. Conversely, if
explicitly describing E reverses her preference, she must not have completely considered E

before it was described.

Definition 11. Fix {%π}π∈Π∗ . An event E is foreseen if for any π ∈ Π∗ and for any
f, g ∈ Fπ:

f %π g ⇐⇒ f %π∨{E,E{} g.

Let A denote the family of all foreseen events.

We will use A,B to denote generic events in the collection A. Let π ∈ Π∗ and f, g ∈ Fπ.
If π′ ∈ Π∗ is such that π′ ⊂ A, then iterated application of Definition 11 to the events in π′

obtains the following:
f %π g ⇐⇒ f %π∨π′ g.

In words, explicitly describing the already foreseen contingencies in π′ does not affect the
decision maker’s choices, which are made with an implicit understanding of the description
π′.
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Proposition 6. Suppose {%π}π∈Π∗ admits a partition-dependent expected utility represen-
tation (u, ν) and satisfies Strict Admissibility. Then

(i) A ∈ A if and only if ν(E) = ν(E ∩A) + ν(E ∩A{) for any event E 6= S.

(ii) A is an algebra.

(iii) ν is additive on A \ {S}, i.e. for all disjoint A,B ∈ A such that A ∪B 6= S:

ν(A ∪B) = ν(A) + ν(B).

Moreover, ν(A) + ν(A{) = ν(B) + ν(B{) for any A,B ∈ A \ {∅, S}.

(iv) A = 2S if and only if ν is additive on 2S \ {S}.

Proof. See Appendix E.2.

First, under the partition-dependent expected utility representation, the family A of
completely foreseen events can be simply characterized through the set function ν. Specifi-
cally, the weight of an arbitrary event E is additive across its conjunctions with the events
that the decision maker already has in mind. Second, such a representation guarantees that
A is closed under intersection and unions, hence is an algebra. So, (S,A) can be viewed
as the subjective prior understanding of the decision maker of the state space, which can
be coarser or finer across different agents. The decision maker behaves as if, before any
explicit description of particular contingencies, she arrives with an implicit understanding
of some subjective algebra A of the state space. The descriptions which might cause her
to reconsider her preferences are those outside of A, or those which she did not completely
comprehend until they were described. Third, the decision maker’s weights are additive
on that subjective algebra. Also, complementary weights sum to a constant number, so
we can define the value ν(S) = ν(A) + ν(A{) for an arbitrary A ∈ A. Then ν|A is a fi-
nite measure, hence (S,A, ν|A) defines a probability space after appropriate normalization.
Fourth, the case where the decision maker displays no framing effects is characterized by
partition-independence.

Example 5. Suppose π∗ = {A1, . . . , An} be a partition of the state space. An adaptation
of the principle of insufficient reason is to define ν(E) =

∑n
i=1 |E ∩ Ai|. Then the fam-

ily of foreseen events A is the algebra generated by π∗. For example, a consumer might
understand that requiring chemotherapy, surgery, drugs, and behavioral counseling are rel-
evant contingencies in purchasing health insurance which she has in mind even if they are
not specifically mentioned. But, when a specific disease is mentioned, she distributes the
likelihood of its relevant treatments using the principle of insufficient reason.
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We hope these results reinforce our prior caution that the partition π should not be
interpreted as the subjective understanding of the state space on behalf of the decision
maker. Instead, speaking informally, the theoretical artifact A reflects the decision maker’s
prior understanding of the state space, π reflects the contingencies which are observably
mentioned by the lists being compared, and π ∨A reflects her resulting model of the world
after reading the lists.

As a counterpoint to the events which are understood perfectly, we now discuss the
events which are completely overlooked.

Definition 12. Fix {%π}π∈Π∗ . An event E ⊂ S is suppressed if E = ∅ or if, for all three
cell partitions {E,F, G} of S and p, q, r ∈ ∆X:(

p E ∪ F

q G

)
∼ r ⇐⇒

(
p F

q E ∪G

)
∼ r.

E is completely unforeseen if E is nonnull and suppressed.

In words, E is suppressed if the decision maker never puts any weight on E unless it
is explicitly described to her. In the first comparison, she attributes all the likelihood of
receiving p to F , because E carried no weight when it is not separately mentioned; in the
second comparison, all the likelihood of q is similarly attributed to G. Due to the framing of
both acts, E remains occluded and the certainty equivalents are equal because both appear
to be bets on F and G. It is important to notice that an event does not have to be either
foreseen or completely unforeseen; the two conditions represent extreme cases admitting
many intermediate possibilities.

Definition 12 distinguishes a completely unforeseen event from a null event. Whenever
E ∪ F 6= S, the following preference is consistent with E being completely unforeseen:

(
p E ∪ F

q G

)
�

p′ E

p F

q G

 .

Here, the presentation of the second act explicitly mentions E, at which point she assigns
it some positive likelihood. In contrast, this strict preference is precluded whenever E is
null, because then the decision maker would be indifferent to whether p′ or p was assigned
to the impossible event E. One way to understand a completely unforeseen event is as one
which is null only when it is not explicitly mentioned.

On the other hand, we cannot determine whether a null and suppressed event is com-
pletely unforeseen. There are two possible reasons why E contributes no additional like-
lihood to E ∪ F . First, the decision maker may have completely overlooked the event E
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when it was grouped as E ∪ F . Second, she may have actually considered its possibility,
but concluded that E was impossible. These reasons cannot be distinguished behaviorally.

Proposition 7. Suppose {%π}π∈Π∗ admits a unique partition-dependent expected utility
representation (u, ν) where ν is monotone. Then

(i) E is suppressed if and only if ν(E ∪ F ) = ν(F ) for any nonempty event F disjoint
from E such that E ∪ F 6= S.

(ii) If E and F are suppressed and E ∪F 6= S, then E ∩F and E ∪F are also suppressed.

(iii) If |S| ≥ 3 and all nonempty events are completely unforeseen, then ν(E) = ν(F ) for
all nonempty E,F 6= S.

The first part of the proposition relates suppressed events with their marginal contri-
bution to the weighting function ν. The second part shows that the family of suppressed
events has some desirable properties: closure under set operations is guaranteed when the
sets do not cover all of S.

The third part characterizes the principle of insufficient reason. This extreme case where
all nonempty events are completely unforeseen is represented by a constant capacity where
ν(E) = 1 for every nonempty E. The decision maker places a uniform distribution over
the events which are explicitly mentioned in a description π. In fact, this statement can be
strengthened to the following. If two disjoint sets E and F , with E∪F 6= S, are completely
unforeseen, then the principle of insufficient reason is applied to subevents of their union:
ν(D) = ν(D′) for all D,D′ ⊂ E ∪ F . Then E ∪ F can be considered an area of the state
space of which the decision maker has no understanding.

We hope this interpretation of the model complements existing decision theoretic work
on unforeseen contingencies.10 Kreps (1979) introduced an axiomatic model of preference
over menus of objects, where demand for flexibility is interpreted as a response to unfore-
seen contingencies which are captured in the proposed representation as subjective taste
uncertainties. Dekel, Lipman, and Rustichini (2001), henceforth DLR, extend this approach
to menus of lotteries, where the linear structure allows an essential identification of the sub-
jective state space. Then the analyst can remarkably determine the space of uncertainty as
a theoretical artifact of preference, rather than assume an exogenous state space.

The DLR methodology provides a powerfully unified treatment of states, beliefs, and
utilities. On the other hand, because it depends on preferences to elicit the subjective states,
the recovery of unforeseen contingencies is difficult. It encounters the basic conundrum that
the decision maker cannot reveal something completely unforeseen to her at the point of

10There is also a growing literature on the epistemic foundations of awareness. A recent set of references
can be found in Heifetz, Meier, and Schipper (2007).
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choice. In fact, in DLR’s main representations, the decision maker acts as if she has foresight
of some subjective state space.

To address the conundrum, Epstein, Marinacci, and Seo (2007) suggest generalizations
of the DLR model which incorporate minimization over sets of beliefs, delivering analogs to
Gilboa and Schmeidler (1989) with subjective states and to Ghirardato (2001) and Mukerji
(1997) with coarse subjective states. This connection between ambiguity aversion and
unforeseen contingencies resonates with earlier work by Ghirardato (2001), Mukerji (1997),
and Nehring (1999) who capture the decision maker’s partial understanding of unforeseen
contingencies through Choquet integration of belief functions or capacities, originally used
to model ambiguity by Schmeidler (1989). One point of our model is to demonstrate another
method of eliciting partially unforeseen contingencies without invoking ambiguity aversion.
In fact, our representation satisfies the standard expected utility axioms for any particular
description of the state space. This makes some inroads towards a charge forwarded by
Dekel, Lipman, and Rustichini (1998a) to “distinguish between unforeseen contingencies
and ‘standard’ uncertainty aversion.”

Unlike DLR, we do not recover the state space as a component of the representation.
We hope the specification of a state space as part of the model is justified by its conceptual
dividends. It also seems more palatable when imagining applications. It strikes us as
difficult to verify and enforce contracts which depend on DLR’s subjective states, which are
purely theoretical constructions. Insofar as unforeseen contingencies bear on contracting,
assuming some sort of objective state space seems less heroic. In fact, one motivation
for developing the model was to accommodate unforeseen contingencies in a subjective
setting without invoking menus or multi-valued consequences, so the primitives bear as
close a resemblance as possible to the way that actual contracts, like insurance policies or
warranties, are presented.

A Preliminary observations

In this section we will state and prove a set of preliminary lemmas and a uniqueness result for general
Π. In particular, the results in this section will apply to both the case where Π is a filtration and the
case where Π is the set of all finite partitions. We start by noting that the first five axioms provide
a simple generalization of the Anscombe–Aumann Expected Utility Theorem.

Lemma 1. The collection {%π}π∈Π satisfies the Anscombe–Aumann axioms if and only if there exist
an affine utility function u : ∆X → R with [−1, 1] ⊂ u(∆X) and a family of probability measures
{µπ}π∈Π with µπ : σ(π) → [0, 1] such that

f %π g ⇐⇒
∫

S

u ◦ f dµπ ≥
∫

S

u ◦ g dµπ.
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Proof. For each π ∈ Π, the necessity of the Anscombe–Aumann axioms follows immediately from
the standard Anscombe–Aumann Expected Utility Theorem. To prove sufficiency note that for each
π ∈ Π, Axioms 1–5 guarantee a probability measure µπ on (S, σ(π)) and a non-constant affine vNM
utility function uπ : ∆X → R such that f %π g if and only if

∫
S

uπ ◦ f dµπ ≥
∫

S
uπ ◦ g dµπ, for all

f, g ∈ Fπ. For all π, π′ ∈ Π, State Independence implies that p %π q if and only if p %π′ q, therefore
uπ(p) ≥ uπ(q) if and only if uπ′(p) ≥ uπ′(q). Then the uniqueness component of the standard
Anscombe–Aumann Expected Utility Theorem implies that uπ′ is a positive affine transformation of
uπ. By appropriately normalizing, we lose no generality by assuming uπ = uπ′ = u. Nondegeneracy
ensures that u is not constant, so we may further assume that its image contains the interval [−1, 1],
again by appropriately normalizing.

The next Lemma states that the Sure-Thing principle is always a necessary condition for a
partition dependent expected utility representation.

Lemma 2. If {%π}π∈Π admits a partition-dependent expected utility representation, then % satisfies
the Sure-Thing Principle.

Proof. For any f, g ∈ F , note that D(f, g) ≡ {s ∈ S : f(s) 6= g(s)} ∈ σ (π(f, g)), hence:

f % g ⇐⇒ f %π(f,g) g

⇐⇒
∫

D(f,g)

u ◦ f dµπ(f,g) ≥
∫

D(f,g)

u ◦ g dµπ(f,g)

⇐⇒
∑

F ∈ π(f, g) :

F ⊂ D(f, g)

u(f(F ))ν(F ) ≥
∑

F ∈ π(f, g) :

F ⊂ D(f, g)

u(g(F ))ν(F ),

where the second equivalence follows from multiplying both sides by
∑

F ′∈π(f,g) ν(F ′).
Now, to demonstrate the Sure-Thing Principle, let E ∈ E and f, g, h, h′ ∈ F . Let

f̂ =

(
f E

h E{

)
; ĝ =

(
g E

h E{

)
;

f̂ ′ =

(
f E

h′ E{

)
; ĝ′ =

(
g E

h′ E{

)
.

Note that D ≡ D(f̂ , ĝ) = D(f̂ ′, ĝ′) ⊂ E and πD ≡ {F ∈ π(f̂ , ĝ) : F ⊂ D(f̂ , ĝ)} = {F ∈ π(f̂ ′, ĝ′) :
F ⊂ D(f̂ ′, ĝ′)}. Hence by the observation made in the first paragraph:

f̂ % ĝ ⇐⇒
∑

F∈πD

u(f̂(F ))ν(F ) ≥
∑

F∈πD

u(ĝ(F ))ν(F )

⇐⇒
∑

F∈πD

u(f(F ))ν(F ) ≥
∑

F∈πD

u(g(F ))ν(F )

⇐⇒
∑

F∈πD

u(f̂ ′(F ))ν(F ) ≥
∑

F∈πD

u(ĝ′(F ))ν(F )

⇐⇒ f̂ ′ % ĝ′.
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The next Lemma summarizes the general implications of the Anscombe-Aumann axioms and
the Sure-Thing Principle.

Lemma 3. Assume that {%π}π∈Π satisfies the Anscombe–Aumann axioms and the Sure-Thing
Principle. Then {%π}π∈Π admits a representation (u, {µπ}π∈Π) as in Lemma 1. For any events
E,F ∈ C and partitions π, π′ ∈ Π:

(i) If E ∈ π, π′, then µπ(E) = 0 ⇔ µπ′(E) = 0.

(ii) If E,F ∈ π, π′ and E ∩ F = ∅, then µπ(E)µπ′(F ) = µπ(F )µπ′(E)

Proof. To prove part (i), it is enough to show that if E ∈ π, π′, then µπ(E) = 0 ⇒ µπ′(E) = 0.
Suppose that µπ(E) = 0. Select any two lotteries p, q ∈ ∆X satisfying u(p) > u(q) and any two acts
h, h′ ∈ F such that π(h) = π, and π(h′) = π′. Then(

p E

h E{

)
∼

(
q E

h E{

)

by Lemma 1. Hence (
p E

h′ E{

)
∼

(
q E

h′ E{

)
by the Sure-Thing Principle. Since u(p) > u(q), the last indifference can hold only if µπ′(E) = 0 by
Lemma 1.

To prove part (ii), observe that if either side of the desired equality is zero, then part (ii) is
immediately implied by part (i). So we may proceed assuming that both sides are strictly positive.
Then all of the terms µπ(E), µπ′(F ), µπ(F ), and µπ′(E) are strictly positive. As before, select any
two lotteries p, q ∈ ∆X such that u(p) > u(q), and define a new lottery r by

r =
µπ(E)

µπ(E) + µπ(F )
p +

µπ(F )
µπ(E) + µπ(F )

q.

Select any two acts h, h′ ∈ F such that p, q, r /∈ h(S) ∪ h′(S), π(h) = π, and π(h′) = π′. By the
choice of r and the expected utility representation of %π, we have:p E

q F

h (E ∪ F ){

 ∼

(
r E ∪ F

h (E ∪ F ){

)

Hence by the Sure-Thing Principle, p E

q F

h′ (E ∪ F ){

 ∼

(
r E ∪ F

h′ (E ∪ F ){

)
.

This indifference, in conjunction with the expected utility representation of %π′ , implies that

u(r) =
µπ′(E)

µπ′(E) + µπ′(F )
u(p) +

µπ′(F )
µπ′(E) + µπ′(F )

u(q).
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We also have
u(r) =

µπ(E)
µπ(E) + µπ(F )

u(p) +
µπ(F )

µπ(E) + µπ(F )
u(q),

by the definition of r. Subtracting u(q) from each side of the two expressions for u(r) above, we
obtain

µπ′(E)
µπ′(E) + µπ′(F )

[u(p)− u(q)] =
µπ(E)

µπ(E) + µπ(F )
[u(p)− u(q)],

which further simplifies to µπ′ (F )
µπ′ (E) = µπ(F )

µπ(E) since both sides of the previous equality are strictly
positive.

By part (i) of Lemma 3, for any π, π′ ∈ Π, any event E ∈ π, π′ is π-null if and only if it is
π′-null. Hence under the Anscombe-Aumann axioms and the Sure-Thing Principle, we can change
quantifiers in the definitions of null and nonnull events in C. An event E ∈ C is null if and only if E

is π-null for some partition π ∈ Π with E ∈ π. Dually, an event E ∈ C is nonnull if and only if E is
π-nonnull for every partition π ∈ Π with E ∈ π.11

We will next state and prove a general uniqueness result which will imply the uniqueness The-
orems 2 and 4. To do so, we first need to generalize the Event Reachability condition so that it
applies to our general model.

Axiom 13 (Generalized Event Reachability). For any distinct nonnull events E,F ∈ C \ {S}, there
exists a sequence of nonnull events E1, . . . , En ∈ C such that E = E1, F = En, and for each
i = 1, . . . , n− 1 there is π ∈ Π such that Ei, Ei+1 ∈ π.12

Note that when Π is the set of all finite partitions, Generalized Event Reachability is equivalent
to Event Reachability.

Lemma 4. Assume that {%π}π∈Π admits a partition-dependent expected utility representation (u, ν).
Then, the following are equivalent:

(i) {%π}π∈Π satisfies Generalized Event Reachability.

(ii) If (u′, ν′) also represents {%π}π∈Π, then there exist numbers a, c > 0 and b ∈ R such that
u′(p) = au(p) + b for all p ∈ ∆X and ν′(E) = cν(E) for all E ∈ C \ {S}.

Proof. Assume that {%π}π∈Π admits the partition-dependent expected utility representation (u, ν).
Let C∗ denote the set of nonnull events in C. The collection C∗ is nonempty since Nondegeneracy
ensures that S ∈ C∗. Define the binary relation ≈ on C∗ by E ≈ F if there exist a sequence of
events E1, . . . , En ∈ C∗ with E = E1, F = En, and for each i = 1, . . . , n− 1 there is π ∈ Π such that
Ei, Ei+1 ∈ π. The relation ≈ is reflexive, symmetric, and transitive, defining an equivalence relation
on C∗. For any E ∈ C∗, let [E] = {F ∈ C∗ : E ≈ F} denote the equivalence class of E with respect
to ≈. Let C∗/ ≈ = {[E] : E ∈ C∗} denote the quotient set of all equivalence classes of C∗ modulo

11Remember that events in E \ C are all null by definition. Note that ∅ is null and S is nonnull by
Nondegeneracy. Also, there may exist a nonnull event E ∈ C, which is π-null for some π ∈ Π such that
E ∈ σ(π). From the above observation concerning the quantifiers, this can only be possible if E is not a cell
in π but a union of its cells. This would correspond to a representation where, for example, E is a disjoint
union of two subevents E = E1 ∪ E2 and ν(E) > 0, yet ν(E1) = ν(E2) = 0.

12If Π were a filtration, then either E ⊂ F , F ⊂ E, or E ∩ F = ∅.
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≈, with a generic class R ∈ C∗/ ≈. Note that, given the above definitions, Event Reachability is
equivalent to C∗/ ≈ consisting of two indifference classes {S} and C∗ \ {S}.

We first show the “(i)⇒ (ii)” part. Suppose that (u′, ν′) is a partition-dependent expected utility
representation of {%π}π∈Π and that Generalized Event Reachability is satisfied. For each π ∈ Π,
let µπ and µ′π respectively denote the probability distributions derived from ν and ν′ by Equation
(1). Applying the uniqueness component of the Anscombe–Aumann Expected Utility Theorem to
%π, we have µπ = µ′π and u′ = au + b for some a > 0 and b ∈ R.

If E ∈ C is null, then ν(E) = µπ(E) = 0 = µ′π(E) = ν′(E) for any π ∈ Π with E ∈ π. Also note
that if E,F ∈ C∗ are such that there exists π ∈ Π with E,F ∈ π, then

ν(E)
ν(F )

=
µπ(E)
µπ(F )

=
µ′π(E)
µ′π(F )

=
ν′(E)
ν′(F )

.

We will next extend the equality ν(E)
ν(F ) = ν′(E)

ν′(F ) to any pair of events E,F ∈ C∗ \ {S}, in order to
conclude that there exists c > 0 such that ν′(E) = cν(E) for all E ∈ C \ {S}. Let E,F ∈ C∗ \ {S}.
By Generalized Event Reachability, there exist E1, . . . , En ∈ C∗ such that E = E1, F = En, and for
each i = 1, . . . , n− 1 there is π ∈ Π such that Ei, Ei+1 ∈ π. Then:

ν(E)
ν(F )

=
ν(E1)
ν(E2)

× . . .× ν(En−1)
ν(En)

=
ν′(E1)
ν′(E2)

× . . .× ν′(En−1)
ν′(En)

=
ν′(E)
ν′(F )

where the middle equality follows from the existence of π ∈ Π such that Ei, Ei+1 ∈ π, for each i =
1, . . . , n−1. Thus ν′ is a scalar multiple of ν on C∗\{S}, determined by the constant c = ν′(E)/ν(E)
for any E ∈ C∗ \ {S}.

To see the “(i) ⇐ (ii)” part, suppose that Generalized Event Reachability is not satisfied. Then
the relation ≈ defined above has at least two distinct equivalence classes R and R′ different from
{S}. Define ν′ : C → R+ by:

ν′(E) =

{
ν(E) if E ∈ R,

2ν(E) otherwise.

for E ∈ C. Take any π ∈ Π. If E ∈ π ∩ R 6= ∅, then ν′(E) = ν(E) for all E ∈ π. If π ∩ R = ∅,
then ν′(E) = 2ν(E) for all E ∈ π. Hence (u, ν) and (u, ν′) are two partition-dependent expected
utility representations of {%π}π∈Π such that there does not exist a c > 0 with ν′(E) = cν(E) for all
E ∈ C \ {S}.

B Proofs of Section 4.2: Π is a filtration

B.1 Proof of the representation result for filtrations (Theorem 1)

Necessity is implied by Lemmas 1 and 2. We next prove sufficiency. Let u and {µπ}π∈Π be as
guaranteed by Lemma 1. We will define ν on ∪k

t=0πt inductively on k ≥ 0, which will define ν on
the whole C = ∪t∈T πt by the principle of recursive definition. 13

13The ck constants in the iterative definition show just how flexible we are in defining ν, which also hints
to the role of gradualness in guaranteeing uniqueness. In the iterative definition, step 1 is a subcase of the
subsequent step, however we prefer to write it down explicitly because it is substantially simpler.
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Step 0: Let ν(S) := c0 for an arbitrary constant c0 > 0.
Step 1: For all E ∈ π1, set ν(E) := c1µπ1(E), for an arbitrary constant c1 > 0.
Step k + 1 (k ≥ 0): Assume the following inductive assumptions:

(i) the nonnegative set function ν has already been defined on ∪k
t=0πt;

(ii) for all t = 0, 1, . . . , k:
∑

E′∈πt
ν(E′) > 0 (i.e. nondegeneracy is satisfied);

(iii) for all t = 0, 1, . . . , k and for all E ∈ πt: µπt
(E) = ν(E)/

∑
E′∈πt

ν(E′).

Case 1. Assume that there exists E∗ ∈ πk ∩ πk+1 such that µπk
(E∗) > 0. Then by Lemma 3

µπk+1(E
∗) > 0 and by the inductive assumption ν(E∗) > 0. For all E ∈ πk+1 \πk = πk+1 \ (∪k

t=1πt)
(the equality is because we have a filtration) define ν(E) by

ν(E) =
ν(E∗)

µπk+1(E∗)
µπk+1(E) (2)

Equation (2) also holds (as an equation rather than a definition) for E ∈ πk+1 ∩ πk, since

ν(E)
ν(E∗)

=
µπk

(E)
µπk

(E∗)
=

µπk+1(E)
µπk+1(E∗)

.

where the first equality is by the inductive assumption and the second by Lemma 3. It is now easy
to verify that ν satisfies (i), (ii), and (iii) on ∪k+1

t=1 πt.
Case 2. Assume that for all E ∈ πk ∩ πk+1: µπk

(E) = 0. Let ck+1 > 0 be an arbitrary constant
and for all E ∈ πk+1 \ πk = πk+1 \ (∪k

t=1πt) define ν(E) by

ν(E) = ck+1µπk+1(E) (3)

Equation (2) actually also holds (as an equation rather than a definition) for E ∈ πk+1 ∩ πk, since
for all such E, µπk

(E) = 0, hence by Lemma 3 µπk+1(E) = 0 and by the inductive assumption
ν(E) = 0. It is now easy to verify that ν satisfies (i), (ii), and (iii) on ∪k+1

t=1 πt. 2

B.2 Proof of the uniqueness result for filtrations (Theorem 2)

In light of the general uniqueness result Lemma 4, we only need to prove that Generalized Event
Reachability is equivalent to Gradualness for filtrations. Let Π = {πt : t ∈ T } be the filtration repre-
sentation of Π. Suppose that {%π}π∈Π admits a partition-dependent expected utility representation
(u, ν).

First assume that Π is gradual with respect to {%π}π∈Π. Let E,F ∈ C \ {S} be distinct nonnull
events. Then there exist πi, πj ∈ Π such that i, j ∈ T \ {0}, E ∈ πi, and F ∈ πj . Without loss of
generality let i ≤ j, let Ei−1 := E, Ej := F , and for each t ∈ {i, i + 1, . . . , j − 1} let Et ∈ πt ∩ πt+1

be a πt-nonnull event as guaranteed by gradualness. Then Ei−1, Ei, Ei+1 . . . , Ej ∈ C is sequence of
nonnull events such that E = Ei−1, F = Ej , and Et, Et+1 ∈ πt+1 ∈ Π for each t = i− 1, i, . . . , j− 1.
Hence Generalized Event Reachability is satisfied.

Now assume that Generalized Event Reachability is satisfied. Let t∗, t∗ + 1 ∈ T \ {0}. By
Non-degeneracy, there exist a πt∗ -nonnull event E ∈ πt∗ and a πt∗+1-nonnull event F ∈ πt∗+1. Then
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E,F ∈ C \ {S} are non-null, hence by Generalized Event Reachability, there exists a sequence of
nonnull events E1, . . . , En ∈ C such that E = E1, F = En, and for each i = 1, . . . , n − 1 there
is t ∈ T such that Ei, Ei+1 ∈ πt. For each i = 1, . . . , n, let t(i) = min{t ∈ T : Ei ∈ πt} and
t̄(i) = sup{t ∈ T : Ei ∈ πt}.14 Then Ei ∈ πt if and only if t(i) ≤ t ≤ t̄(i). Note that t(1) ≤ t∗ ≤ t̄(1),
t(n) ≤ t∗ + 1 ≤ t̄(n), and t(i + 1) ≤ t̄(i) for i = 1, . . . , n − 1. Hence t(i) ≤ t∗ and t∗ + 1 ≤ t̄(i) for
some i = 1, . . . , n. Then Ei ∈ πt∗ ∩ πt∗+1 and Ei is non-null, hence Ei is πt∗ -non null by Lemma 3.
We conclude that Π is gradual with respect to {%π}π∈Π. 2

C Proofs of Section 4.3: Π is the Set of All Finite Partitions

C.1 Proof of the partition-independent representation result for all finite

partitions (Proposition 2)

Assume that Π is the set of all finite partitions of S. For the necessity part, assume that {%π}π∈Π

admits a partition-independent expected utility representation (u, µ). Note that f % g if and only
if
∫

S
u ◦f dµ ≥

∫
S

u ◦f dµ for any f, g ∈ F . Thus % is transitive, hence acyclic. The necessity of the
Anscombe–Aumann axioms follows immediately from the standard Anscombe–Aumann Expected
Utility Theorem.

Now turning to sufficiency, assume that {%π}π∈Π satisfies the Anscombe-Aumann Axioms and
Acyclicity. Let u and {µπ}π∈Π be as guaranteed by Lemma 1. We will first show that

∀π ∈ Π \ {{S}} and E ∈ π : µπ(E) = µ{E,E{}(E) (4)

Suppose for a contradiction that µπ(E) > µ{E,E{}(E) in (4). Let µπ(E) > α > µ{E,E{}(E). Since
the range of u contains the interval [−1, 1], there exist p, q ∈ ∆X such that u(p) = 1 and u(q) = 0.
Define the act h by

h =

(
p E

q E{

)
.

Note that αp + (1−α)q � h. Let f ∈ F be such that π(f) = π and for all s ∈ S, u(f(s)) < 0. Then
there exists ε ∈ (0, 1) such that the act hε ≡ (1−ε)h+εf satisfies π(hε) = π and hε �π αp+(1−α)q.
Then h � hε � αp + (1 − α)q � h, a contradiction to % being acyclic. The argument for the case
where µπ(E) < µ{E,E{}(E) is entirely symmetric, hence omitted.

Define µ : 2S → [0, 1] by µ(∅) ≡ 0, µ(S) ≡ 1, and µ(E) ≡ µ{E,E{}(E) for E 6= ∅, S. To see that
µ is finitely additive, let E,F be nonempty disjoint sets. If E ∪ F = S, then F = E{ so

µ(E) + µ(F ) = µ{E,E{}(E) + µ{E,E{}(E
{) = 1 = µ(E ∪ F ).

If E ∪ F ( S, let π = {E,F, (E ∪ F ){} and π′ = {E ∪ F, (E ∪ F ){}. Then by (4),

µ(E) + µ(F ) = µπ(E) + µπ(F ) = 1− µπ((E ∪ F ){) = 1− µπ′((E ∪ F ){) = µπ′(E ∪ F ) = µ(E ∪ F ).

14We use supremum here since this value can be +∞.
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Therefore µ is a probability measure. To conclude, note that for any π ∈ Π, the definition of µ and
(4) imply that µπ(E) = µ(E) for all E ∈ π. Hence (u, µ) is a partition-independent representation
of {%π}π∈Π. 2

C.2 Proof of the partition-dependent representation for all finite parti-

tions (Theorem 3)

The necessity of the Anscombe–Aumann axioms follow from the standard Anscombe–Aumann Ex-
pected Utility Theorem. The necessity of the Sure-Thing Principle was established in Lemma 2. We
next check the necessity of Binary Bet Acyclicity.

Lemma 5. Assume that Π is the set of all finite partitions of S and that {%π}π∈Π admits a
partition-dependent expected utility representation. Then % satisfies Binary Bet Acyclicity.

Proof. First note that for any (possibly empty) disjoint events E and F , and (not necessarily distinct)
lotteries p, q, r ∈ ∆X, we have:(

p E

q E{

)
%

(
r F

q F {

)
⇐⇒ [u(p)− u(q)]ν(E) ≥ [u(r)− u(q)]ν(F ).

To see the necessity of Binary Bet Acyclicity, let E1, . . . En, E1 be a sequentially disjoint cycle
of events and p1, p2, . . . , pn; q ∈ ∆X be such that

∀i = 1, . . . n− 1 :

(
pi Ei

q E{
i

)
�

(
pi+1 Ei+1

q E{
i+1

)
.

The observation made in the first paragraph implies that [u(p1)−u(q)]ν(E1) > [u(p2)−u(q)]ν(E2) >

. . . > [u(pn)− u(q)]ν(En). Since [u(p1)− u(q)]ν(E1) > [u(pn)− u(q)]ν(En), we conclude that(
p1 E1

q E{
1

)
�

(
pn En

q E{
n

)
.

We next prove the sufficiency part. In the rest of the section (in particular in Lemmas 6 and
Lemma 7) assume that {%π}π∈Π satisfies the Anscombe–Aumann axioms, the Sure-Thing Princi-
ple, and Binary Bet Acyclicity. Let (u, {µπ}π∈Π) be a representation of {%π}π∈Π guaranteed by
Lemma 1. For any two disjoint nonnull events E,F , define the ratio:

E

F
≡ µπ(E)

µπ(F )

where π is a partition such that E,F ∈ π. The value of E
F does not depend on the particular choice

of π, by part (ii) of Lemma 3. Moreover, E
F is well-defined and strictly positive since E and F are

nonnull. Finally, F
E × E

F = 1 by construction. The following appeals to Binary Bet Acyclicity in
generalizing this equality.
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Lemma 6. For any sequentially disjoint cycle of nonnull events E1, . . . , En, E1 ∈ E and lotteries
p1, . . . , pn, q ∈ ∆X such that u(q) = 0 and u(pi) ∈ (0, 1) for i = 1, . . . , n:

(∀i = 1, . . . n− 1) :

(
pi Ei

q E{
i

)
∼

(
pi+1 Ei+1

q E{
i+1

)
=⇒

(
p1 E1

q E{
1

)
∼

(
pn En

q E{
n

)
.

Proof. It is enough to show that the hypothesis above implies(
p1 E1

q E{
1

)
%

(
pn En

q E{
n

)
.

Let ε̄ ∈ (0, 1) be such that u(pi) + ε̄ < 1 for i = 1, . . . , n. Since the range of the utility function
u over lotteries contains the unit interval [−1, 1], for each ε ∈ (0, ε̄) and i ∈ {1, . . . , n}, there exists
pi(ε) ∈ ∆X such that u(pi(ε)) = u(pi) + εi, where εi refers to the ith power of ε.15 The expected
utility representation of Lemma 1 and the fact that Ei is nonnull implies that for sufficiently small
ε ∈ (0, ε̄), (

pi(ε) Ei

q E{
i

)
�

(
pi+1(ε) Ei+1

q E{
i+1

)
,

for i = 1, . . . , n− 1. By Binary Bet Acyclicity, this implies(
p1(ε) E1

q E{
1

)
%

(
pn(ε) En

q E{
n

)
.

Appealing to the continuity of the expected utility representation of Lemma 1 in the assigned lotteries
f(s) and taking ε → 0 proves the desired conclusion.

Lemma 7. For any sequentially disjoint cycle of nonnull events E1, . . . , En, E1 ∈ E:

E1

E2
× E2

E3
× · · · × En−1

En
× En

E1
= 1.

Proof. The case where n = 2 immediately follows from our definition of event ratios, so assume that
n ≥ 3. Fix t1 > 0, and recursively define

ti = t1 ×
E1

E2
× E2

E3
× . . .× Ei−1

Ei
.

for i = 2, . . . , n. By selecting a sufficiently small t1, we may assume that t1, . . . tn ∈ (0, 1). Also
note that ti+1

ti
= Ei

Ei+1
for i = 1, . . . , n − 1. Recall the range of the utility function u over lotteries

contains the unit interval [−1, 1], so there exist lotteries p1, . . . , pn, q ∈ ∆X such that u(pi) = ti for
i = 1, . . . , n and u(q) = 0.

Fix any i ∈ {1, . . . , n − 1}. Let π = {Ei, Ei+1, (Ei ∪ Ei+1){}. Since ti+1
ti

= Ei

Ei+1
, we have

15We invoke the Axiom of Choice by assuming that we can fix a lottery pi(ε) for each ε ∈ (0, ε̄). Lemma
6 remains true without invoking the Axiom of Choice, but requires a longer proof.
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µπ(Ei+1)u(pi+1) = µπ(Ei)u(pi). Hence:(
pi Ei

q E{
i

)
∼

(
pi+1 Ei+1

q E{
i+1

)

by the expected utility representation of Lemma 1. Since the above indifference holds for any
i ∈ {1, . . . , n− 1}, by Lemma 6, we have(

p1 E1

q E{
1

)
∼

(
pn En

q E{
n

)
.

Hence by the expected utility representation of %π for π = {E1, En, (E1∪En){}, we have µπ(E1)u(p1) =
µπ(En)u(pn). This implies tn

t1
= E1

En
. Recalling the construction of tn, we then have the desired

conclusion:
E1

E2
× E2

E3
× . . .× En−1

En
=

E1

En
.

We can now conclude the proof of sufficiency. We first define C∗ and ≈ as we did in the proof
of Lemma 4. Let C∗ denote the set of nonnull events in C. The collection C∗ is nonempty since
Nondegeneracy ensures that S ∈ C∗. Define the binary relation ≈ on C∗ by E ≈ F if there exist
a sequentially disjoint sequence of nonnull events E1, . . . , En ∈ C∗ with E = E1 and F = En.16

The relation ≈ is reflexive, symmetric, and transitive, defining an equivalence relation on C∗. For
any E ∈ C∗, let [E] = {F ∈ C∗ : E ≈ F} denote the equivalence class of E with respect to ≈. Let
C∗/ ≈ = {[E] : E ∈ C∗} denote the quotient set of all equivalence classes of C∗ modulo ≈, with
a generic class R ∈ C∗/ ≈.17 Select a representative event GR ∈ R for every equivalence class
R ∈ C∗/ ≈, invoking the Axiom of Choice if the quotient is uncountable.

We next define ν. For all null E ∈ C, let ν(E) = 0. For every class R ∈ C∗/ ≈, arbitrarily
assign a positive value ν(GR) > 0 for its representative. We will conclude by defining ν(E), for any
E ∈ C∗ \ {S}. If E = G[E], then E represents its equivalence class and ν(E) has been assigned.
Otherwise, whenever E 6= G[E], since E ≈ G[E], there exists a sequentially disjoint path of nonnull
events E1, . . . , En ∈ C∗ such that E = E1, G[E] = En. Then let:

ν(E) =
E1

E2
× . . .× En−1

En
× ν(G[E]).

Note that the definition of ν(E) above is independent of the particular choice of the path E1, . . . , En,
because for any other such sequentially disjoint path of nonnull events E = F1, . . . , Fm = G[E]:

E1

E2
× . . .× En−1

En
× Fm

Fm−1
× . . .× F2

F1
= 1

by Lemma 7.

16Note that this definition is slightly different than the one we gave in the general uniqueness result
(Lemma 4). It can be checked that the two definitions are equivalent here, since Π is the set of all finite
partitions.

17Note that [S] = {S} and E ≈ F for any disjoint nonnull E, F .
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We will next verify that ν : C\{S} → R+ defined above is a nondegenerate set function satisfying

µπ(E) =
ν(E)∑

F∈π ν(F )
(5)

for any event E ∈ π of any partition π ∈ Π \ {{S}}.
Let π ∈ Π \ {{S}}. By Nondegeneracy and the expected utility representation for %π, there

exists a π-nonnull F ∈ π. Then, since Lemma 3 implies that π-nonnull events in C are nonnull, F is
nonnull so the denominator on the right hand side of Equation (5) is strictly positive, so the fraction
is well-defined. This also implies that ν is a nondegenerate set function. Observe that Equation (5)
immediately holds if E is null, since then ν(E) = 0 and µπ(E) = 0 follows from E being π-null.
Let C∗π ⊂ π denote the nonnull cells of π. To finish the proof of the Theorem, we will show that
µπ(E)
µπ(F ) = ν(E)

ν(F ) for any distinct E,F ∈ C∗π. Along with the fact that
∑

E∈C∗π
µπ(E) = 1, this will prove

Equation (5).
Let E,F ∈ C∗π be distinct. Note that [E] = [F ] since E and F are disjoint. Suppose first

that neither E nor F is G[E]. Then there exist a sequentially disjoint path of nonnull events
E1, . . . , En ∈ C∗ such that E = E1, G[E] = En, and:

ν(E) =
E1

E2
× . . .× En−1

En
× ν(G[E]).

But then F,E1, . . . , En = G[E] forms such a path from F to G[E], hence we have:

ν(F ) =
F

E1
× E1

E2
× . . .× En−1

En
× ν(G[E]).

Dividing the term for ν(E) by the term for ν(F ), we obtain E
F = ν(E)

ν(F ) .
The other possibility is that exactly one of E or F (without loss of generality E) is G[E]. Then

the nonnull events F = E1, E2 = E, make up a path from F to E = G[E]. Then

ν(F ) =
F

E
× ν(E)

as desired. 2
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D Proofs of Section 4.4

D.1 Proof of Proposition 3

Suppose {%π}π∈Π∗ admits a (not necessarily unique) partition-dependent expected utility represen-
tation (u, ν). Then for any events E ⊂ F and p, q, r, s ∈ ∆X:

s %

(
p F

q F {

)
⇐⇒ u(s)[ν(F ) + ν(F {)] ≥ u(p)ν(F ) + u(q)ν(F {)

(
r E

s E{

)
%

r E

p F \ E

q F {

 ⇐⇒ u(s)[ν(F \ E) + ν(F {)] ≥ u(p)ν(F \ E) + u(q)ν(F {).

The next Lemma shows that the existence of a partition-dependent expected utility represen-
tation with a monotone set function ν implies Monotonicity. This is true even without Event
Reachability, or without uniqueness of ν, providing a stronger version of the necessity of the axiom
required in Proposition 3.

Lemma 8. If {%π}π∈Π∗ admits a (not necessarily unique) partition-dependent expected utility rep-
resentation by (u, ν) and ν is monotone, then {%π}π∈Π∗ satisfies Monotonicity.

Proof. Let E ⊂ F and p, q, r, s ∈ ∆X such that p � q and u(s)[ν(F ) + ν(F {)] ≥ u(p)ν(F ) +
u(q)ν(F {). If F = S or if ν(F \E)+ν(F {) = 0, then the desired conclusion holds. Otherwise F ( S

and ν(F \ E) + ν(F {) > 0 and ν(F ) + ν(F {) > 0 by nondegeneracy of ν. Since F \ E ⊂ F ( S, by
monotonicity of ν we have ν(F ) ≥ ν(F \ E). Hence

ν(F )
ν(F ) + ν(F {)

≥ ν(F \ E)
ν(F \ E) + ν(F {)

.

But then since u(p) > u(q), the inequality:

u(s) ≥ ν(F )
ν(F ) + ν(F {)

u(p) +
ν(F {)

ν(F ) + ν(F {)
u(q)

implies

u(s) ≥ ν(F \ E)
ν(F \ E) + ν(F {)

u(p) +
ν(F {)

ν(F \ E) + ν(F {)
u(q).

Therefore {%π}π∈Π∗ satisfies Monotonicity.

The next example shows that, without Event Reachability, we cannot guarantee monotonicity
of ν for every partition-dependent expected utility representation (u, ν) of {%π}π∈Π∗ . It requires
a state space with at least three elements; otherwise, any ν is trivially monotone according to our
definition.
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Example 6. Consider an arbitrary state space S with |S| ≥ 3, and fix an nonempty event A ( S.
Define ν by

ν(E) =

{
1 if E ∩A 6= ∅
0 otherwise

for any event E 6= S. Note that ν is nondegenerate. Let {%π}π∈Π∗ be represented by (u, ν) for some
non-constant u. Any event B such that A ⊂ B ( S has nonempty intersection with all nonnull
events, hence it can not be linked to any other nonnull set through sequentially disjoint nonnull sets:
In the notation of the proof of Theorem 3, such an event B’s reachability class [B] consists of only
B. Hence although ν itself is monotone, it is straightforward to verify that ν′ obtained from ν by
changing ν(B) to 1

2 continues to represent the same preference. Moreover if we choose B such that
|B| ≥ 2, then there exists a C such that C ( B and ν′(C) = 1 > 1

2ν′(B), so ν′ is not monotone.

We show in the next lemma that it is possible to guarantee a weaker version of monotonicity
of the set function from the Monotonicity of {%π}π∈Π∗ : subsets of null events are also null, so the
family of null sets is an ideal.

Lemma 9. Suppose {%π}π∈Π∗ admits a (not necessarily unique) partition-dependent expected utility
representation by (u, ν). If {%π}π∈Π∗ satisfies Monotonicity, then:

E ⊂ F & ν(F ) = 0 ⇒ ν(F \ E) = 0.

Proof. Suppose that there exist events E,F such that E ⊂ F and ν(F \ E) > ν(F ) = 0. Since
ν(F ) = 0, by non-degeneracy of ν, we have ν(F {) > 0. Let p, q, s ∈ ∆X be such that u(p) > u(q) =
u(s). Then

u(s)[ν(F ) + ν(F {)] = u(p)ν(F ) + u(q)ν(F {),

so by Monotonicity, we should have

u(s)[ν(F \ E) + ν(F {)] ≥ u(p)ν(F \ E) + u(q)ν(F {).

However the latter inequality is not possible, since u(p) > u(q) = u(s) and ν(F \ E) > 0, a
contradiction.

In the next Lemma, we prove the sufficiency of the Monotonicity axiom for the existence of a
monotone representation in Proposition 3, given Event Reachability and the uniqueness of the set
function up to scalar multiples.

Lemma 10. Suppose {%π}π∈Π∗ admits a unique partition-dependent expected utility representation
by (u, ν). If {%π}π∈Π∗ satisfies Monotonicity, then ν is monotone.

Proof. We prove by contraposition. Suppose that ν is not monotone. Then there exist events E,F

such that E ⊂ F ( S and ν(F \ E) > ν(F ). By Lemma 9, we can assume that ν(F ) > 0. We
also have that ν(F {) > 0, because otherwise by Lemma 9, any subevent of F { is null, hence F and
F \E are nonnull events that can not be linked by sequentially disjoint nonnull events, contradicting
Event Reachability.
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Let p, q, s ∈ ∆X be such that u(p) > u(q) and

s =
ν(F )

ν(F ) + ν(F {)
p +

ν(F {)
ν(F ) + ν(F {)

q.

Then u(s)[ν(F ) + ν(F {)] = u(p)ν(F ) + u(q)ν(F {), so by Monotonicity, we have u(s)[ν(F \ E) +
ν(F {)] ≥ u(p)ν(F \ E) + u(q)ν(F {). Together with u(p) > u(q), these imply:

ν(F )
ν(F ) + ν(F {)

≥ ν(F \ E)
ν(F \ E) + ν(F {)

,

a contradiction to ν(F \ E) > ν(F ) and ν(F {) > 0.

D.2 Proof of Proposition 4

Given the existence of a partition-dependent expected utility representation, Strict Admissibility is
equivalent to all nonempty events being nonull. The “if” part is immediate. We proceed contrapos-
itively to prove the “only if” part. Let {%π}π∈Π∗ be represented by (u, ν). Now suppose that there
is a nonempty null event E. By nondegeneracy of ν, E{ is nonnull. By Lemma 9, all subevents
of E are null. If there is an event B such that E{ ⊂ B ( S, then B is nonnull by Lemma 9.
Hence E{ and B are two nonnull events that are not linked by sequentially disjoint nonnull sets, so
Event Reachability fails. If there is no such event B, then since |S| ≥ 3, E{ must consist of at least
two elements. In this case, let E{ = E1 ∪ E2, where E1 and E2 are nonempty and disjoint. Then
{E1, E2, E} is a partition of S where E is null, so one of the other two events, say Ei, is nonnull by
nondegeneracy of ν. But then E{ and Ei are two nonnull events that are not linked by sequentially
disjoint nonnull sets, so again Event Reachability fails.

E Proofs of Section 5

E.1 Indispensability of Strict Admissibility in Proposition 5

Example 7. Let S = {s1, s2, s3, s4} and suppose that {%π}π∈Π∗ admits a partition-dependent
expected utility representation (u, ν), where ν({s}) = 1 for all s ∈ S, ν({s1, s2}) = ν({s1, s3}) =
ν({s2, s3}) = 3, and ν(E) = 0 for any other event E 6= S. Strict Admissibility fails since some
nonempty events are null. It can be verified that ν is nondegenerate, Event Reachability is satisfied,
and {%π}π∈Π∗ underpacks. However, ν is not subadditive since ν({s1, s2}) > ν({s1}) + ν({s2}) and
λ({{s1}, {s2}}) = 2

3 < 1.

E.2 Proof of Proposition 6

Proof of (i). To see the “⇒” part of (i), assume that A ∈ A and let E be any event. Assume without
loss of generality that E 6= ∅. Consider the partition π = {E,E{∩A,E{∩A{}. Since E 6= S, the sets
E{∩A and E{∩A{ can not both be empty. Hence by strict admissibility ν(E{∩A)+ν(E{∩A{) > 0.
Assume without loss of generality that [0, 1] ⊂ u(∆X) and let p, q, r ∈ ∆X be such that u(p) = 1,
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u(q) = 0, and

u(r) =
ν(E)

ν(E) + ν(E{ ∩A) + ν(E{ ∩A{)
. (6)

Define the act f by

f =

(
p E

q E{

)
.

Then f ∈ Fπ and f ∼π r. Hence by A ∈ A we have that f ∼π∨{A,A{} r. Since π ∨ {A,A{} =
{E ∩A,E ∩A{, E{ ∩A,E{ ∩A{}, the last indifference implies that

u(r) =
ν(E ∩A) + ν(E ∩A{)

ν(E ∩A) + ν(E ∩A{) + ν(E{ ∩A) + ν(E{ ∩A{)
. (7)

By Equations (6), (7), and ν(E{∩A)+ν(E{∩A{) > 0, we conclude that ν(E) = ν(E∩A)+ν(E∩A{).
To see the “⇐” part of (i), assume that ν(E) = ν(E ∩ A) + ν(E ∩ A{) for any event E 6= S.

Take any π ∈ Π∗. If π is the trivial partition then the desired conclusion follows trivially from state
independence. So assume without loss of generality that π is nontrivial and let π′ = π ∨ {A,A{}. It
suffices to show that µπ(F ) = µπ′(F ) for all F ∈ π. To see this, note that

µπ(F ) =
ν(F )∑

E∈π ν(E)
=

ν(F ∩A) + ν(F ∩A{)∑
E∈π[ν(E ∩A) + ν(E ∩A{)]

= µπ′(F ),

where the middle equality follows from our assumption and F 6= S, E 6= S since π is nontrivial.

Proof of (ii). By definition, A is closed under complements and ∅, S ∈ A. It suffices to show that
A is closed under intersections. Let A,B ∈ A, and take any event E 6= S. We have that

ν(E) = ν(E ∩A) + ν(E ∩A{)

= ν(E ∩A ∩B) + ν(E ∩A ∩B{) + ν(E ∩A{),

by part (i), A,B ∈ A, and E,E ∩A, 6= S. Similarly we have that

ν(E ∩ (A ∩B){) = ν(E ∩ (A ∩B){ ∩A) + ν(E ∩ (A ∩B){ ∩A{)

= ν(E ∩A ∩B{) + ν(E ∩A{).

The two equalities above imply that

ν(E) = ν(E ∩A ∩B) + ν(E ∩ (A ∩B){).

Therefore by part (i), A ∩B ∈ A.

Proof of (iii). We next prove the first part of (iii). Let A,B ∈ A be disjoint events such that
A ∪B 6= S. Since A ∈ A, we have by part (i) that:

ν(A ∪B) = ν([A ∪B] ∩A) + ν([A ∪B] ∩A{) = ν(A) + ν(B).
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Hence ν is additive on A \ {S}.
To see the second part of (iii), let A,B ∈ A \ {∅, S}. Note that:

ν(A) + ν(A{) = ν(A ∩B) + ν(A ∩B{) + ν(A{ ∩B) + ν(A{ ∩B{),

by part (i) applied twice to B ∈ A and to A,A{ 6= S. By the exact symmetric argument interchanging
the roles of A and B we also have that

ν(B) + ν(B{) = ν(B ∩A) + ν(B ∩A{) + ν(B{ ∩A) + ν(B{ ∩A{)

Hence ν(A) + ν(A{) = ν(B) + ν(B{) as desired.

Proof of (iv). Immediately follows from parts (i) and (iii).

The next example demonstrates that A is not necessarily the maximal algebra on which ν is
additive.

Example 8. Let S = {s1, s2, s3, s4} and π = {{s1}, {s2}, {s3, s4}}. Assume that ν satisfies strict
admissibility and assume that ν on σ(π) is defined by ν({s1}) = ν({s2}) = ν({s3, s4}) = 1,
ν({s1, s2}) = ν({s1, s3, s4}) = ν({s3, s3, s4}) = 2, and ν(S) = 3. Note that ν is additive on
σ(π). However if ν({s1, s2, s3}) = 4 and ν({s3}) = 1 then {s1, s2} /∈ A from part (i) of Proposition
6, since:

ν({s1, s2, s3}) = 4 6= 2 + 1 = ν({s1, s2, s3} ∩ {s1, s2}) + ν({s1, s2, s3} ∩ {s1, s2}{)

In this example σ(π) is an algebra on which ν is additive, but σ(π) is not a subset of A. Hence A
is not the maximal algebra on which ν is additive.

E.3 Proof of Proposition 7

Note that the uniqueness of the partition-dependent representation implies, by Theorem 4, that
event Reachability is satisfied. Therefore by monotonicity and Proposition 4, strict admissibility is
also satisfied.

Proof of (i). The “⇐” part of (i) is easily seen to hold even without monotonicity of ν. To see the
“⇒” part, assume that E is suppressed. If E = ∅ then the conclusion is immediate, so assume
without loss of generality that E 6= ∅. Take any nonempty event F disjoint from E such that
E ∪ F 6= S. Let G = S \ (E ∪ F ) 6= ∅.

We first show that
ν(E ∪ F )

ν(G)
=

ν(F )
ν(E ∪G)

. (8)

The fractions above are well defined since strict admissibility guarantees that the denominators do
not vanish. To see (8), let p, q, r ∈ ∆X be such that u(p) > u(q) and

ν(E ∪ F )
ν(E ∪ F ) + ν(G)

u(p) +
ν(G)

ν(E ∪ F ) + ν(G)
u(q) = u(r) ⇐⇒

(
p E ∪ F

q G

)
∼ r. (9)
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By E being suppressed, we have

ν(F )
ν(F ) + ν(E ∪G)

u(p) +
ν(E ∪G)

ν(F ) + ν(E ∪G)
u(q) = u(r) ⇐⇒

(
p F

q E ∪G

)
∼ r. (10)

Since u(p) > u(q), (9) and (10) imply that

ν(E ∪ F )
ν(E ∪ F ) + ν(G)

=
ν(F )

ν(F ) + ν(E ∪G)

which is equivalent to (8).
By monotonicity of ν, we have that

ν(F )
ν(E ∪G)

≤ ν(F )
ν(G)

≤ ν(E ∪ F )
ν(G)

By Equation (8), all the weak equalities above are indeed equalities, hence in particular ν(F ) =
ν(E ∪ F ) as desired.

Proof of (ii). Assume that E and F are suppressed and E∪F 6= S. To see that E∪F is suppressed,
let G be a nonempty event disjoint from E ∪ F such that E ∪ F ∪G 6= S. Then G is disjoint from
E and E ∪G 6= S. By part (i), we have ν(E ∪G) = ν(G). Moreover, E ∪G is disjoint from F and
E ∪ F ∪G 6= S. Again by part (i) we have, ν(E ∪ F ∪G) = ν(E ∪G). Hence ν(E ∪ F ∪G) = ν(G),
as desired.

To see that E ∩ F is suppressed, suppose that G is a nonempty event disjoint from E ∩ F such
that [E ∩ F ] ∪G 6= S. We will show that ν(G ∪ [E ∩ F ]) = ν(G) by consider three cases. this will
imply by part (i) that E ∩ F is suppressed.

Case 1: G ⊂ E. In this case G\F 6= ∅, for otherwise G ⊂ E∩F would not be disjoint from E∩F .
Moreover (G\F )∪F = G∪F ⊂ E∪F 6= S, hence by part (i) we have that ν([G\F ]∪F ) = ν(G\F ).
By monotonicity

ν(G) ≤ ν(G ∪ [E ∩ F ]) ≤ ν(G ∪ F ) = ν([G \ F ] ∪ F ) = ν(G \ F ) ≤ ν(G). (11)

Hence ν(G ∪ [E ∩ F ]) = ν(G).
Case 2: G ⊂ F . We again have that ν(G ∪ [E ∩ F ]) = ν(G), by exactly the same argument as

the one above, changing the roles of events E and F .
Case 3: G \ E 6= ∅ and G \ F 6= ∅. It can not be that both G ∪ E and G ∪ F are equal to

S, because otherwise [G ∪ E] ∩ [G ∪ F ] = G ∪ [E ∩ F ] = S contradicting the hypothesis. Assume
without loss generality that G ∪ F 6= S. Hence by part (i) we have that ν([G \ F ] ∪ F ) = ν(G \ F ).
By Equation (11) again, we conclude that ν(G ∪ [E ∩ F ]) = ν(G).

Proof of (iii). The “⇐” part of (iii) is easily seen to hold even without monotonicity of ν. We will
only prove the “⇒” part. We first show that ν(G) = ν(G{) if G 6= ∅, S. To see this, note that since
there are at least three states G or G{ is not a singleton. Without loss of generality suppose that G
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has at least two elements and let {G1, G2} be a two element partition of G. Then by part (i),

ν(G) = ν(G1 ∪G2) = ν(G1) = ν(G1 ∪G{) = ν(G{),

where the second equality follows because G2 and G1 ∪G2 6= S are completely unforeseen; the third
equality follows because G{ and G1 ∪ G{ 6= S are completely unforeseen; and the fourth equality
follows because G1 and G1 ∪G{ 6= S are completely unforeseen.

Take any distinct events E,F 6= ∅, S. If E \ F 6= ∅ then

ν(E \ F ) ≤ ν(E) = ν(E{) ≤ ν((E \ F ){) = ν(E \ F )

where the inequalities follow from monotonicity of ν, hence ν(E) = ν(E \ F ). Similarly

ν(E \ F ) ≤ ν(F {) = ν(F ) ≤ ν((E \ F ){) = ν(E \ F ),

hence ν(F ) = ν(E \ F ) = ν(E) as desired. The case where F \ E 6= ∅ is symmetric, therefore
omitted.

To see that monotonicity is indispensable for the “⇒” parts of (i) and (iii) to hold, consider the
following example.

Example 9. Let S = {s1, s2, s3} and suppose that {%π}π∈Π∗ admits a partition-dependent ex-
pected utility representation (u, ν), where ν({s1}) = ν({s2, s3}) = 1, ν({s2}) = ν({s1, s3}) = 2,
and ν({s3}) = ν({s1, s2}) = 3. Strict Admissibility is satisfied therefore the partition-dependent
expected utility representation is unique. The set function ν is not monotone since ν({s2}) >

ν({s2, s3}). It is easy to see that all nonempty events are completely unforeseen. Let E = {s1}
and F = {s2}, then ν(E ∪ F ) = 3 6= 2 = ν(F ). Hence parts (i) and (iii) fail in the absence of
monotonicity.
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Davis.

Kahneman, D., and A. Tversky (1979): “Prospect Theory: An Analysis of Decision under Risk,” Econo-
metrica, 47, 263–292.

Karmarkar, U. (1978): “Subjectively Weighted Utility: A Descriptive Extension of the Expected Utility
Model,” Organizational Behavior and Human Performance, 21, 61–72.

Kreps, D. M. (1979): “A Representation Theorem for ‘Preference for Flexibility’,” Econometrica, 47,
565–576.

Mukerji, S. (1997): “Understanding the Nonadditive Probability Decision Model,” Economic Theory, 9,
23–46.

Nehring, K. (1999): “Preference for Flexibility in a Savage Framework,” Econometrica, 67, 101–119.

Ozbay, E. Y. (2006): “Unawareness and Strategic Announcements in Games with Uncertainty,” Working
paper, New York University.

Quiggin, J. (1982): “A Theory of Anticipated Utility,” Journal of Economic Behavior and Organization,
3, 323–343.

Ramsey, F. P. (1931): The Foundations of Mathematics and Other Logical Essayschap. Truth and Proba-
bility, pp. 156–198. Harcourt Brace.

Ratner, R. K., B. E. Kahn, and D. Kahneman (1999): “Choosing Less-Preferred Experiences for the
Sake of Variety,” Journal of Consumer Research, 26, 1–15.

Read, D., and G. Loewenstein (1995): “Diversification Bias: Explaining the Discrepancy in Variety
Seeking Between Combined and Separated Choices,” Journal of Experimental Psychology: Applied, 1,
34–49.

Rottenstreich, Y., and A. Tversky (1997): “Unpacking, Repacking, and Anchoring: Advances in
Support Theory,” Psychological Review, 104, 406–415.

Savage, L. J. (1954): The Foundations of Statistics. Wiley, New York.

Schmeidler, D. (1989): “Subjective Probability and Expected Utility without Additivity,” Econometrica,
57, 571–587.

Simonson, I. (1990): “The Effect of Puchage Quantity and Timing on Variety-Seeking Behavior,” Journal
of Marketing Research, 32, 150–162.

Sloman, S., Y. Rottenstreich, E. Wisniewski, C. Hadjichristidis, and C. R. Fox (2004): “Typical
Versus Atypical Unpacking and Superadditive Porbability Judgment,” Journal of Experimental Psychol-
ogy, 30, 573–582.

Tversky, A., and C. R. Fox (1995): “Weighing Risk and Uncertainty,” Psychological Review, 2, 269–283.

Tversky, A., and D. Kahneman (1983): “Extensional versus Intuitive Reasoning: The Conjunction
Fallacy in Probability Judgment,” Psychological Review, 90, 293–315.

(1992): “Advances in Prospect Theory: Cumulative Representation of Uncertainty,” Journal of
Risk and Uncertainty, 5, 297–323.

Tversky, A., and D. J. Koehler (1994): “Support Theory: A Nonextensional Representation of Subjec-
tive Probability,” Psychological Review, 101, 547–567.

50


	Introduction
	A nonextensional model of decision making
	Partition-dependent expected utility
	Axioms and representations
	Basic axioms
	 is a filtration
	 is the collection of all finite partitions
	Monotonicity

	Framing and unforeseen contingencies
	Underpacking and overpacking
	Foreseen and completely unforeseen contingencies

	Preliminary observations
	Proofs of Section 4.2:  is a filtration
	Proof of the representation result for filtrations (Theorem 1)
	Proof of the uniqueness result for filtrations (Theorem 2)

	Proofs of Section 4.3:  is the Set of All Finite Partitions
	Proof of the partition-independent representation result for all finite partitions (Proposition 2)
	Proof of the partition-dependent representation for all finite partitions (Theorem 3)

	Proofs of Section 4.4
	Proof of Proposition 3
	Proof of Proposition 4

	Proofs of Section 5
	Indispensability of Strict Admissibility in Proposition 5
	Proof of Proposition 6
	Proof of Proposition 7


