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Abstract

We revisit the classic dynamic durable goods monopoly and introduce a possibility of monopoly

necessarily insisting on a price. We demonstrate the Coase conjecture is very robust with this

perturbation. Though the e¤ect is ampli�ed by the normal monopoly�s mimicking behavior, the

monopoly can�t get more than the competitive pro�t unless a price-insistent type is very likely.

In particular, if the price-insistent type is rational (in the sense that she optimally chooses her

own price), the full-blown Coase conjecture is strongly robust.

Keywords : Coase conjecture, reputational bargaining, rational commitment

1 Introduction

How does a monopoly selling durable goods price dynamically? Does the monopoly necessarily ask a

price higher than the competitive one, so that there�s an accompanying social ine¢ ciency? There are

two prominent answers to this problem. If the monopoly can make credible commitment, she commits

to the static monopoly price and gets the static monopoly pro�t, which yields a socially ine¢ cient

outcome. If the monopoly doesn�t possess a commitment device and it�s common knowledge that

there�s always a positive surplus in trading, the Coase conjecture holds. When the buyers are patient

enough or the monopoly can adjust price frequently enough, the monopoly asks the competitive price

from the start and all buyers purchase immediately, which leads to social e¢ ciency.

We revisit this classic problem and introduce a possibility of monopoly necessarily insisting on a

price. The motivation comes from the observation that the driving force of the di¤erence between two

famous answers is buyers�perception on the pricing schedule of the monopoly. When the monopoly

has commitment power, buyers believe that the seller will never lower price. On the contrary,

facing a monopoly without commitment buyers never believe the seller keeps price higher than the
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competitive one. Having a possibility for the monopoly to necessarily commit to a price creates a

non-trivial problem. Even if the chance is very small, the e¤ect is ampli�ed (reputation e¤ect). The

normal monopoly pretends be a price-insistent type, and so buyers�perception on the price is greatly

distorted. The purpose of this paper is to investigate the interaction between the monopoly and

buyers in this environment and evaluate whether and to what extent the Coase conjecture is robust.

In our model, with some exogenously given probability the monopoly is restricted not to adjust

price. This type of seller is called a commitment type, because if her type is known, buyers know

that the price does not change as the commitment monopoly. There are two kinds of commitment

type: A behavioral commitment type insists a price which is exogenously given, while the rational

commitment type optimally chooses her own price, knowing that she can�t adjust price later. Both

types will be considered in this paper.

Our equilibrium characterization strategy is "divide and conquer". We �rst solve a game in which

the seller asks a price p and the buyer believes that the seller is a commitment type (whether she is

the rational commitment type or a behavioral commitment type) with probability �. If the buyer�s

valuation is binary (either low valuation or high valuation), this game essentially becomes a two-sided

reputational bargaining game in the sense of Abreu and Gul (2000) in which there exists a unique

equilibrium in a closed form with a war-of-attrition feature. With a continuum of the buyer�s type,

we demonstrate that there still exists a unique equilibrium in which almost closed-form solution is

available. This enables us to derive an indirect utility function of the seller, based on which we

resolve the problem how equilibrium price and equilibrium belief are determined in the �rst place.

The main result is that the Coase conjecture is very robust. If the probability of commitment

types is not big enough, both the rational commitment type and the normal type get the competitive

pro�t. The rational commitment type always asks the competitive price, and the normal type does

with high probability. In the limit where the probability of behavioral commitment types (not that

of the rational commitment type) vanishes, the normal type also asks the competitive price for sure.

The main reasoning is twofold.

First and foremost, there�s an inherent bargaining power for the buyer which stems from the fact

that buyers can pretend to have lower valuation. Hence this problem is not a one-sided (though

it looks), but a two-sided reputation model. Even if the e¤ect of price insistence is magni�ed by

the normal type, it is e¤ective only when it (the seller�s bargaining power) outweighs the natural

reluctance of the buyer (the buyer�s bargaining power). When it�s unlikely that the seller is a

commitment type, buyers are very reluctant to accept high price, which makes the seller get only the

competitive pro�t.

Second, whenever the rational commitment type asks price higher than the competitive one, the

normal type has incentive to follow, which creates an incentive for the buyer to wait until the seller

adjusts price. This in turn provides an incentive for the rational commitment type to avoid delay
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cost by lowering price. If buyers strongly believe that the seller is the normal type, the consequent

delay cost could be so huge that it might be optimal for the rational commitment type to not exert

her commitment power at all (ask the competitive price), which leaves the normal type no choice

but to charge the competitive price as well.

Apart from robustness, we identify an interesting phenomenon when the probability of behavioral

commitment types is relatively high. The normal type may charge price higher than the competitive

one and get more than the static monopoly pro�t. This is intriguing because no payo¤-concerned

seller asks price higher than the static monopoly price, and the static monopoly pro�t is the max-

imum any seller can achieve without uncertainty. The reason is that it�s impossible for the normal

type to behave opportunistically without uncertainty, while it�s not with uncertainty. Suppose the

monopoly is a behavioral commitment type almost surely and there are su¢ ciently rich set of behav-

ioral commitment types. Then no matter what price was asked by the seller, a buyer should purchase

immediately as long as his valuation is higher than the price. The only reason a buyer waits is an

expectation of lower price later. When the seller is unlikely to be a normal type, that possibility

is too low compared to the associated delay cost. Under this scenario the normal type asks a price

higher than the static monopoly one. When the static monopoly (or the rational commitment type

when her type is known) increases price, the marginal bene�t is an additional exploitation from the

existing consumers, while the marginal cost is a loss of some consumers (who were willing to buy

before, but decided not to with higher price). With uncertainty the marginal bene�t to the normal

type is essentially the same as that of the static monopoly, while the marginal cost becomes smaller

because the monopoly can lower price and sell to those lost consumers later.

The remainder of the paper is organized as follows. The basic setup is introduced in the next

section. In Section 3, we characterize an equilibrium in a game in which the initial price the seller

would ask and the buyer�s belief over the seller�s type were already determined. Indirect utility

functions and isopro�t curves are derived. In Section 4 and 5, we analyze a game without the

rational commitment types and without behavioral commitment types, respectively. The full-�edged

model is examined in Section 6. We conclude by discussing several relevant issues in section 7.

2 The Model

A seller and a buyer bargain over the trade of one unit of a good. The seller�s production cost is

known and normalized to 0. The buyer has valuation v for the good, which is private information

and known to be drawn from a distribution function F with support [v; v], 0 < v < v < 1. To get
sharper results, we assume F has a positive and continuously di¤erentiable density f . At each date

t 2 R+, the seller makes an o¤er and the buyer decides whether to accept or not. Since we are always
interested in the limit where o¤er interval � is arbitrarily small, time is essentially continuous. The
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buyer�s time preference is represented by discount rate r > 0.

The seller is either a payo¤ type (�1) or a behavioral commitment type (�2). If the seller is

behavioral, her strategy is exogenously given. More speci�cally, her type � 2 �2 � [v; v] represents
a price which she insists independent of time and history1. There are two payo¤ types, the normal

type �0 and the rational commitment type �1. Both share the same expected utility over timing

of agreement and price, with the same time preference r as the buyer. The two payo¤ types di¤er

each other in that they have di¤erent sets of feasible strategies. The normal type can adjust price

at any time without cost, while the rational commitment type can never. It�s commonly believed

that the seller is the normal type, the rational commitment type, and one of behavioral commitment

types with probability �0; �1 and �2(= 1��0��1). Conditional on that the seller is behavioral, the
probability measure over a Borel �-�eld, F , over �2 is given by �.

The two classic results on the dynamic durable goods monopoly concern with two degenerate

cases, �0 = 0 or �0 = 1. If �0 = 0, the (rational commitment) monopoly chooses the static monopoly

price that maximizes p(1 � F (p)) and all consumers with valuation higher than the price purchase

immediately. When �0 = 1, the Coase conjecture holds. Buyers rationally expect the seller to lower

price in the future, and so the monopoly should ask a reasonable price to induce early purchase.

When the buyers are patient enough or the monopoly can adjust price frequently enough, she can�t

help but to ask the competitive price v2 at date 0, at which all consumers buy immediately.

Relying on the Coase conjecture (�0 = 1), we restrict the normal type seller�s strategy so that at

each time and each history, she can continue to ask the initial price (unless she adjusted before), or

she should lower price to v. Whenever she changes price, it reveals her type to be normal, after which

the Coasian dynamics works. So any price change is essentially equivalent to immediately lowering

to v, which suggests that our restriction has no loss of generality.

The assumption that v> 0 is called the "Gap" case in the sequential bargaining literature and

plays an important role in our analysis. First it enables us to pin down equilibrium behavior in case

the seller�s type is revealed to be normal. With "No Gap" there are multiple equilibria, without

a clear equilibrium selection argument. In addition it makes the normal type seller exhaust her

reputation when necessary. If there�s nothing to gain, she has no reason to reveal her type in any

situation. In the last section we brie�y introduce the equilibrium in the limit as v approaches 0.

fF; (�0; �1; �2); (�2; �)g constitutes a sequential bargaining game with two-sided incomplete in-
formation. We maintain the following assumption during our discussion. It basically tells that two

functions p(1 � F (p)) and p(1 � F (p)) + F (p)v are monotonely single-peaked. It will turn out that

the �rst function is related to the rational commitment type�s expected payo¤, while the second one

1This type was �rst introduced by Myerson (1991).
2 In fact, any price in the range [0; v] constitutes a competitive price. We refer to v as the competitive price in our

model, because any payo¤ type seller never asks price lower than v.
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to that of the normal type. In Section 7, we discuss what results are robust with weaker assumption.

Assumption 1 There exist p�0; p
�
1 2 (v; v) such that

1� F (p)
f(p)

8><>:
>

=

<

9>=>; p if p

8><>:
>

=

<

9>=>; p�0

v +
1� F (p)
f(p)

8><>:
>

=

<

9>=>; p if p

8><>:
>

=

<

9>=>; p�1

A su¢ cient condition for this assumption is that (1 � F (p))=f(p) is strictly decreasing and 1 �
vf(v) > 0. The condition that inverse hazard ratio is strictly decreasing has been widely used in

screening models and more generally in mechanism design literature. The requirement p�0 2 (v; v)
excludes the trivial case where v is the static monopoly price, and 1 � vf(v) > 0 is a su¢ cient

condition for that.

3 (p; �)�Concession Game: A Building Block

3.1 Characterization

Suppose the seller asks a price p and the buyer believes the seller is a commitment type (whether

the rational or a behavioral commitment type) with probability �. The strategic issue of each player

at this level is �nding an optimal concession time. The normal type seller decides the time to lower

price to v, while each buyer decides the time to buy the object at price p. Once one party concedes

the game ends, and each player prefers the opponent to concede earlier. As noticed by Abreu and

Gul (2000) in the context of a variant of a bilateral bargaining game á la Rubinstein, this game

structure is almost the same as that of the standard war-of-attrition.

If the buyer�s valuation follows a binary distribution, the analysis is essentially equivalent to that

of Abreu and Gul. Given a price greater than the lower valuation, the normal type seller and the high

valuation buyer mix between conceding and waiting over some time interval, and their concession

behavior is determined so that the opponent is indi¤erent between conceding and waiting at each

time.

In our problem with a continuum of the buyer�s type, an equilibrium is characterized by (GS ; �)

where GS : R+ ! [0; 1] is the seller�s unconditional concession probability distribution and � :

[v; v] ! R+ is the buyer�s concession function. GS(t) is the cumulative probability that the seller

concedes (lowers price) up to time t conditional on that the buyer hasn�t purchased yet, and �(v)
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is the optimal concession time of the buyer with valuation v conditional on that the seller hasn�t

lowered price yet. Since a commitment type seller and the buyer with valuation lower than p never

concede, GS(t) � 1 � �;8t and �(v) = 1;8v < p. In characterizing an equilibrium, it�s convenient

to de�ne the buyer�s unconditional concession probability distribution GB : R+ ! [0; 1] by GB(t) =

Prfv : �(v) � tg. Though each type of the buyer has a deterministic concession time, it looks like a
random variable from the seller�s viewpoint and only GB is relevant to the seller�s payo¤.

To state the main proposition in this section, we present one measure which can be interpreted

as the buyer�s bargaining power in this (p; �)-concession game. Given a distribution function F and

p 2 [v; v], de�ne

�(F; p) = exp

�
�1
v

Z v

p

(v � p)f(v)
F (v)

dv

�
This is one way to measure how left-skewed the distribution is relative to p. Intuitively, the more

likely the buyer has valuation lower than p, the easier he can pretend not being able to accept price

p and so the stronger his bargaining power becomes. �(F; p) is strictly increasing in p, which is a

natural consequence from the fact that facing a higher price the buyer has more incentive to wait,

which relatively increases the buyer�s bargaining power.

Proposition 1 In the (p; �)-concession game, there exists a unique equilibrium (GS ; �), which is (1)
if � � �(F; p), then

�(v) =

(
�p�v

vr ln (F (t)) if v � p

1 if v < p

GB(t) =

(
1� exp

�
� v
p�v rt

�
if t � �p�v

vr ln(F (p))

1� F (p) otherwise

GS(t) = min

(
1� exp

 
1

v

Z F�1
�
expf� v

p
rtg
�

p

(v � p)f(v)
F (v)

dv

!
; 1� �

)

(2) If � > �(F; p), then

�(v) =

8>><>>:
0 if v � F�1(cB)

�p�v
vr ln

�
F (t)
cB

�
if p � v < F�1(cB)

1 if v < p

GB(t) =

(
1� cB exp

�
� v
p�v rt

�
if t � �p�v

vr ln(
F (p)
cB
)

1� F (p) otherwise

GS(t) = min

(
1� exp

 
1

v

Z F�1
�
cB expf� v

p
rtg
�

p

(v � p)f(v)
F (v)

dv

!
; 1� �

)
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where
1

v

Z F�1(cB)

p

(v � p)f(v)
F (v)

dv + ln� = 0

Proof : See Appendix.
Though the proof is rather involved, we can provide an essential idea. The indi¤erence of the

normal type between conceding and waiting at t such that 0 < GS(t) < 1� � yields

rv =
dGB(t)=dt

1�GB(t)
(p� v)

The left-hand side is the marginal cost of waiting instant more, while the right-hand side is the

marginal bene�t, which consists of a conditional concession rate of the buyer at time t and the

seller�s additional bene�t by selling at p instead of v. This �rst-order ordinary di¤erential equation

has a nice solution GB(t) = 1� cB exp (�vrt=(p� v)) where cB 2 [F (p); 1] is unknown.
The optimality of �(v) for each v produces

r(v � p) = dGS(�(v))=dt

1�GS(�(v))
(p� v)

because the marginal cost (left) and the marginal bene�t (right) of the buyer with valuation v are

equated at his own optimal concession time �(v). This equation is not readily solvable as before, but

we can invoke the skimming property in a sequential bargaining game, which is v > v0 ) �(v) < �(v0).

Intuitively, the marginal bene�t of the buyer waiting more is independent of the buyer�s valuation

and decreases as time goes by (the probability for the seller to be the normal type decreases), while

the marginal cost is strictly increasing in the buyer�s valuation and is constant across time. Hence

the higher valuation the buyer has, the faster his optimal concession time is. Using this property,

the equation is essentially equivalent to

r(��1(t)� p) = dGS(t)=dt

1�GS(t)
(p� v)

whose solution is

GS(t) = 1� cS exp
�
�
Z t

0

r(��1(s)� p)
p� v ds

�
with another unknown cS 2 [�; 1]. In order to remove an endogenous object � in the equation, the
skimming property is invoked once again, which gives

1� F (��1(t)) = GB(t) = 1� cB exp
�
� v

p� v rt
�
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Rearranging terms, we �nally get

GS(t) = 1� cS exp
 
�1
v

Z F�1(cB)

F�1
�
cB expf� v

p
rtg
� (v � p)f(v)

F (v)
dv

!

The two unknowns cB and cS are found using the following two facts : (1) Either cB = 1 or cS = 1

and (2) GS(t�) = 1 � � , GB(t
�) = 1 � F (p). The former one states that a player strictly prefers

waiting an instant to conceding immediately, if the opponent concedes with a positive probability

at date 0. The latter one re�ects the fact that once the opponent turns out to be a strong type

(commitment type or buyer with valuation lower than p), a player concedes immediately. During

this discussion, it�s revealed that �(F; p) can be interpreted as the buyer�s bargaining power.

From Proposition 1, it�s immediate to calculate each type�s indirect expected utility, Ui(p; �); i =

0; 1.

Corollary 1 If � � �(F; p), then

U0(p; �) = v

U1(p; �) = v(1� F (p)p=v) if p 2 [v; v]

If � > �(F; p), then

U0(p; �) = p(1� cB) + cBv

U1(p; �) = p(1� cB) + cBv
 
1�

�
F (p)

cB

�p=v!

where
1

v

Z F�1(cB)

p

(v � p)f(v)
F (v)

dv + ln� = 0

3.2 Isopro�t Curves

In this subsection, we develop basic properties of indirect utility functions for future use. For each

� 2 [0; 1], let

p�0(�) 2 arg max
p2[v;v]

U0(p; �)

p�1(�) 2 arg max
p2[v;v]

U1(p; �)

In words, p�i (�) is the price which maximizes �i type seller�s expected payo¤when the buyer�s belief is

�xed by �. Notice that p�i (1) = p�i , i = 0; 1 since cB ! F (p) as �! 1. First we present comparative
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statics results that are immediate.

Lemma 1 Suppose � > �(F; p), Then

(1) lim�!1 cB(p; �) = F (p).

(2) cB(v; �) = limp!v cB(p; �) > 0

(3) @cB(p; �)=@p > 0 and @cB(p; �)=@� < 0 .

(4) @Ui(p; �)=@� > 0

For each p0 2 [v; p�i (1)], let �i(p0) 2 [p�i (1); v] be the value such that Ui(�i(p0); 1) = Ui(p
0; 1) and

Ip
0

i = f(p; �) 2 [v; v]� (0; 1] : Ui(p; �) = Ui(p
0; 1)g

That is, Ip
0

i is the level set on which �i type is indi¤erent.

Lemma 2 For each p 2 (p0; �i(p0)), there exists a unique �i 2 (�(F; p); 1) such that (p; �i) 2 I
p0

i

Proof : Suppose p 2 (p0; p�i (1)]. Since v� Ui(p; �(F; p)) < Ui(p
0; 1) < Ui(p; 1) and Ui(p; �) is

continuous, by the Intermediate Value Theorem, there exists �i 2 (�(F; p); 1) which makes (p; �i) 2
Ip

0

i . Also it�s unique because Ui(p; �) is strictly increasing when bigger than v. Analogous proof

applies for p 2 [p�i (1); �i+(p0)) Q.E.D.
Because of lemma 2, for each p0 2 (v; p�i (1)), we can de�ne an associated isopro�t curve as a

function  p
0

i from (p0; �i(p
0)) to (�(F ); 1). In other words,  p

0

i is de�ned so that (p;  
p0

i (p)) 2 I
p0

i ,8p 2
(p0; �i(p

0)). The continuity of  p
0

i is implied by the continuity of Ui(�; �), and

Lemma 3  p
0

i is strictly decreasing at p if p < p�i ( 
p0

i (p)), and strictly increasing at p if p >

p�i ( 
p0

i (p)).

Proof : Suppose p < p�i ( 
p0

i (p)), but  
p0

i is not strictly decreasing at p. Then there exists

p00 < p�i ( 
p0

i (p)) such that Ui(p
00; �1) = Ui(p

00; �2) >v for distinct �1; �2 2 (�(F ); 1). This is not
possible because @Ui(p00; �)=@� > 0 when Ui(p00; �) >v. The proof of the second part is analogous.

Q.E.D.
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10 Φ(F)

v

p’

ρ0(p’)Φ(F,p)

p0*(μ)

Isopro�t curves of the normal type

The following lemma tells that the monotone single-peakedness of Ui(�; 1) implies the same prop-
erty of Ui(�; �). Also, combined with (4) in Lemma 1, it implies that p�i (�) is strictly increasing.

Lemma 4 If Ui(p; �) >v, Ui(p; �) is strictly increasing in p for p < p�i (�) and strictly decreasing in

p for p > p�i (�)

Proof : Suppose p1 < p2 < p�i (�). Take p and p
0 such that (p1;  pi (p

1)) 2 Ipi and (p2;  
p0

i (p
2)) 2

Ip
0

i . If Ui(p
1; �) > Ui(p

2; �) >v then  pi and  
p0

i should intersect at least once, which is not possible.

If Ui(p1; �) = Ui(p
2; �) then there exists p3 such that Ui(p3; �1) = Ui(p

3; �2) >v for distinct �1; �2 2
(�(F; p3); 1), which is not possible again. Q.E.D.

4 Behavioral Commitment Types vs. Normal Type

From this section, we analyze how the initial price is determined in equilibrium. The availability of

indirect utility functions simpli�es analysis a lot. Both the buyer�s and the seller�s behaviors which

occur after (p; �) was pinned down are already re�ected in the indirect utility functions. We focus

on determining the initial price and the buyer�s conditional belief.

We start with a game without the rational commitment type (�1 = 0). This setup is very similar

to the standard reputation model, and the issue is what behavioral commitment type the normal

type pretends to be. Di¤erent from the standard reputation model in repeated games (in which a

patient long-lived player can increase credibility by repeatedly playing the same action), however,

the normal type su¤ers from the fact that choosing a price necessarily worsens the credibility of
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that price, which in turn decreases her own expected payo¤. Hence the normal type necessarily

randomizes over multiple prices in equilibrium. We represent the normal type seller�s mixed strategy

by a cumulative distribution function H0 over [v; v]. In addition, let � : [v; v]! [0; 1] be the buyer�s

belief over the seller�s type where �(p) is the probability (the buyer�s belief) that the seller is a

commitment type conditional on that she asks a price p.

De�nition 1 A pair (H�
0 ; �

�) constitutes an equilibrium in a game without the rational commitment

type if (i) given ��, for any p0 2 ��0,

U0(p
0; ��(p0)) = max

p2[v;v]
U0(p; �

�(p))

where ��0 = clfp 2 [v; v] : G�0 is strictly increasing at pgand
(ii) given H�

0 (and �), �
� is a conditional probability that the seller is a commitment type

In general, a conditional probability is de�ned up to measure zero sets, which implies that we may

end up with possibly many consistent ��. But requirement (i) helps e¤ectively remove the possible

multiplicity of consistent beliefs. Since the normal type can choose any speci�c price, in equilibrium

we should have one speci�c �� on ��0. Though �
� is still de�ned up to measure zero sets outside ��0,

��(P ) = 1 for any positive measure set P , so it�s without loss of generality assuming ��(p) = 1 for

any p 62 ��0.
To achieve our main purpose in this section (and in section 6), we assume for any price there

exists a corresponding behavioral commitment type. No matter what price was asked by the seller,

there�s a chance that the seller is a commitment type. Formally, we focus on the game in which

�([v; p]) is strictly increasing in p 2 (v; v). One important implication of this assumption is that once
either �� or H�

0 is determined, the other is also settled. Since there�s no o¤-the-equilibrium path, a

consistent belief �� is completely determined by H�
0 (and �) and conversely for a strategy and belief

pro�le to constitute an equilibrium, H�
0 should be adjusted so that �

� is a consistent belief. We work

with �� instead of H�
0 and will not explicitly deal with H

�
0 , relying on this observation.

In addition, we assume that � doesn�t put positive mass on v (�(fvg) = 0). This is mainly for
notational simplicity, and the analysis itself is not more complicated in a general case. � may have

a positive mass at any other price, though it�s most conceivable that � has a density.

We �rst provide a useful lemma, whose results are immediate from the continuity of indirect

utility functions.

Lemma 5 ��0 can be represented by [p
0; �0(p

0)] for some p0 2 [v; p�0(1)]. In addition, if p0 >v, then
��(p0) = ��(�0(p

0)) = 1.

Proof : Suppose p0 2 ��0. Then p 2 ��0,8p 2 (p0; �0(p
0)), because U0(p; 1) > U0(p

0; 1) �
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U0(p
0; ��(p0)). Hence ��0 = [p

0; �0(p
0)] for some p0 2 [v; p�0(1)]. This establishes the �rst result. Now

suppose ��0 = [p0; �0(p
0)]; p0 > v but ��(p0) < 1. Then for " > 0 su¢ ciently small, U0(p0 � "; 1) >

U0(p
0; ��(p0)), which can�t be the case in equilibrium. Analogous proof applies to �0(p

0). Q.E.D.
Suppose in equilibrium ��0 = [p0; �0(p

0)] for some p0 2 (v; p�0(1)]. One immediate, but critical
consequence is that ��(p) =  p

0

0 (p) on �
�
0. In words, for ��0 to be an equilibrium support the

equilibrium belief should follow an isopro�t curve of the normal type starting from (p0; 1). This is

simply a restatement of an obvious requirement that in equilibrium there shouldn�t exist a pro�table

deviation. Given p0, the equilibrium payo¤ is also determined as U0(p0; 1). Therefore the equilibrium

characterization shrinks to a problem of �nding an appropriate p0.

The algorithm of �nding p0 is simple. Given �2, we start from p�0(1), and continuously lower

price. As p0 decreases, a corresponding isopro�t curve expands to the left, encompassing previous

isopro�t curves. In order to make �� follow  p
0

0 , the normal type should play each price in [p
0; �0(p

0)]

with a speci�c probability, and we can take integration over probabilities the normal type consumed

for each price. The integration is continuously and strictly increasing as p0 decreases. We reach a

proper p0 if the integration becomes equal to 1 (the normal type should exhaust probability 1) and

the uniqueness of such p0 also follows from the observation that isopro�t curve expands to the left in

a monotone fashion.

If there doesn�t exist such p0 > v, this means that ��0 = [v; v]. The equilibrium belief is also unique

in this case as ��(p) = �(F; p);8p >v. If we focus on the choice of price, it seems to be possible
that ��(p) < �(F; p) for some p. But this can�t happen in a real game. Remembering the analysis

in Section 3, the buyer�s belief should be equal to �(F; p) conditional on that the seller actually asks

p. The normal type might plan to play p with a probability with which ��(p) < �(F; p), but she

should concede with positive probability at date 0 so that the buyer�s belief is equal to �(F; p). Hence

conditional on that the seller asks p, ��(p) = �(F; p);8p >v.
We introduce a quantity that helps state the main proposition in this section. Given � and F ,

let '(F; �) so that
1� '(F; �)
'(F; �)

=

Z
(v;v)

1� �(F; p)
�(F; p)

d�

Roughly '(F; �) is an average value of �(F; p) with respect to �, and has a similar role to �(F; p). As

shown below, it can be interpreted as the bargaining power of the buyer facing behavioral commitment

types distributed according to �. If � �rst-order stochastically dominates �0, '(F; �) > '(F; �0)

because �(F; p) is strictly increasing in p. It is a tempting thought that the seller would be better o¤

if there are more behavioral commitment types asking high prices. However, high price makes the

buyer more willing to endure the war of attrition, which strengthens the buyer�s relative bargaining

position.
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Proposition 2 (1) If �2 � '(F; �) then there exist a unique equilibrium in which ��0 = �2; �
�(p) =

�(F; p);8p > v; and the normal type�s expected payo¤ is v.

(2) If �2 > '(F; �) then there exist a unique equilibrium in which for some p0 2 (v; p�1(1));

��0 = (p
0; �1(p

0));

��(p) =

(
 p

0

1 (p) if p 2 ��0
1 otherwise

and the normal type�s payo¤ is equal to U0(p0; 1)

Proof of Proposition 3.
We present a property of a mixed strategy that we will continuously use. For simplicity, suppose

� and H0 have densities f� and h0 respectively (the result holds more generally). Then

��(p) =
�2f�(p)

(1� �2)h0(p) + �2f�(p)
, 1� ��(p)

��(p)
f�(p) =

(1� �2)h0(p)
�2

For H0 to be an equilibrium,

1� �2
�2

=
1� �2
�2

Z
��0

h0(p)dp =
1� �2
�2

Z
�2

h0(p)dp =

Z
�2

1� ��(p)
��(p)

f�(p)dp

, 1� �2
�2

=

Z
��0

1� ��(p)
��(p)

d� =

Z
�2

1� ��(p)
��(p)

d�

Notice that 1 � ��(p) is the equilibrium belief of the buyer that the seller is normal conditional on

p is asked. Hence (1 � ��(p))=��(p) is the relative ratio between the normal type and commitment

type conditional on p. The above inequality simply says that the aggregate relative ratio between the

normal type and behavioral commitment types should be equal to the expectation of a conditional

relative ratio between the normal type and a behavioral commitment type.

Suppose ��(p) > �(F; p) for some p >v. Since U0(p; ��(p)) >v, ��(p) > �(F; p);8p 2 ��0 and
v 62 ��0. But for ��(p) to be an equilibrium belief,

1� �2
�2

=

Z
��0

1� ��(p)
��(p)

d� <

Z
(v;v)

1� �(F; p)
�(F; p)

d� =
1� '(F; �)
'(F; �)

Hence if �2 � '(F; �) then ��(p) = �(F; p);8p >v. Also, for this to be true, ��0 = [v; v].
Now suppose �2 > '(F; �). De�ne J : (v; p�0(1)]! R+ by

J(p0) =

Z
(p0;�0(p

0))

1�  p
0

0 (p)

 p
0

0 (p)
d�

From comparative static results in Section 3.2, J is strictly decreasing (because if p0 < p00 then
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 p
0

0 (p) <  p
00

0 (p)) and the image of J is [0; (1� '(F; �))='(F; �) ). Therefore for each �2 > '(F; �),

there exists a unique p0 2 (v; p�0(1)] such that (1 � �2)=�2 = J(p0). Based on the previous Lemma,

it�s immediate that this establishes the unique equilibrium. Q.E.D.

1

p

0 Φ(F)

v

p’

Φ(F,p)

p0*(μ)

ψ0
p’(p)=μ*(p)

A typical equilibrium

The �rst part in Proposition 3 says that the implication on the monopoly�s expected payo¤ in the

Coase conjecture is strongly robust with the introduction of behavioral commitment types. Though

the e¤ect of uncertainty over the seller�s type is ampli�ed, buyers are very reluctant to purchase at a

price higher than the competitive one. The monopoly becomes better o¤ only when �2 is su¢ ciently

high. The e¢ ciency implication is weakly robust. It�s true that the delay disappears as �2 tends to

0, but there does exist delay as soon as �2 > 0.

One interesting observation is that the normal type asks price higher than the static monopoly

one, if �2 is high enough. Formally, if

1� �2
�2

< C(F; �) �
Z
(p�1(1);�0(p

�
1(1)))

1�  p
�
1(1)
0 (p)

 
p�1(1)
0 (p)

d�

then any price the normal type asks is higher than the static monopoly one. For exposition, suppose

�2 is arbitrarily close to 1. Then no matter which price was asked, the buyer believes that the

seller is almost surely a commitment type, so he purchases immediately at high price as long as his

valuation is greater. Instant later, the normal type can lower price and gets additional pro�t. Hence

the e¤ective objective function of the normal type in this scenario is p(1 � F (p)) + F (p)v, whose

maximum p�0(1) is strictly greater than p
�
1(1). Without uncertainty, her �exibility is not a blessing
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but a curse. With uncertainty, however, it may become a blessing, and the bene�t becomes larger,

the more likely the seller is believed to be a commitment type. Of course, the normal type�s expected

pro�t is higher than the static monopoly pro�t with �2 high enough.

5 Rational Commitment Type vs. Normal Type

In this section, we study a game with the normal type and the rational commitment type. There are

two main reasons why we study the rational commitment type. First it provides a way to endogenize

the behavior of commitment type. We are interested in the e¤ect on the robustness result and

equilibrium behavior when the distribution of commitment types is not given arbitrarily. Second the

choice of the rational commitment type is itself interesting. The rational commitment type is the

seller, if her type is known to the buyer, who achieves the static monopoly pro�t by asking the static

monopoly price. Our setup can be interpreted as the one in which the seller is typically the rational

commitment type (who has commitment power), but the buyer has some doubt that the seller may be

opportunistic. So by looking at the choice of the rational commitment type, we can examine how the

behavior of the monopoly with commitment power changes, responding to the buyer�s uncertainty

on her credibility. In this respect, it�s worthy of studying the case with �1 big enough, as well as

that with �1 closed to 0.

Suppose the rational commitment type chooses a single price p(> v) in equilibrium. Then the

normal type undoubtedly follows the rational commitment type. Asking a di¤erent price reveals

her type to be normal, after which she su¤ers from the Coasian dynamics. Therefore the analysis

in Section 3 is enough for our purpose. Given �1, we only need to determine what price can be

supported as an equilibrium price.

The immediate, but very important observation is that if �1 � �(F )(� �(F; v)) then there exists

a unique sequential equilibrium in which both types ask v. In equilibrium, both types should have

payo¤ at least as much as v, because they have option to ask v. Since obviously p�1(�) =v for

�1 � �(F ), the rational commitment type chooses v and consequently the normal type should ask

v as well. Hence the full-blown Coase conjecture is strongly robust in this setup. Not only the

monopoly gets the competitive pro�t, but also the competitive price is asked from the beginning,

which leads to social e¢ ciency.

In fact, the Coase conjecture is even more robust. As soon as �1 > �(F ) (the buyer starts to

concede with positive probability at date 0 for some price), the normal type strictly prefers price

higher than v. On the contrary, the rational commitment type may not be better o¤ by asking

higher price because the buyer may concede with too small probability at date 0. The di¤erence

arises from the fact that the normal type is �exible in adjusting price, which ensures her at least

as much expected utility as v under any circumstance, while the rational commitment type should
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endure all delay cost coming from a war of attrition. The following Lemma pins down the exact

critical value of �1 on which the rational commitment type is indi¤erent between choosing v and

marginally increasing price.

Lemma 6 Suppose �1 > �(F ). Then limp!v @U1(p; �1)=@p = 1� cB(v; �1)� vf(v)

Proof :

@U1(p; �1)

@p
= 1� cB(p; �1)

�
�

F (p)

cB(p; �1)

�p=v �
cB(p; �1)

�
ln

�
F (p)

cB(p; �1)

�
+ p

f(p)

F (p)

�
� @cB(p; �1)

@p
(p� v)

�
Applying Lemma 1, we get the result. Q.E.D.

From Lemma 1, we know that cB(v; �1) continuously and strictly decreases from 1 to 0 as �1
increases from �(F ) to 1. Hence there exists a unique e�(F ) such that cB(v; e�(F )) = 1 � vf(v).

Combining Lemma 4 and Lemma 5, we conclude that p�1(v) = v if and only if �1 � e�(F ), and the
full-blown Coase conjecture holds up to e�(F ).

We provide a numerical example to help understand the result. Suppose F is uniformly distributed

over [1=2; 3=2]. Then

�(F ) = exp

 
�2
Z 3=2

1=2

v � 1=2
v � 1=2dv

!
= e�2 � 0:1353

cB(0:5; e�(F )) = � ln
e�(F )
2

=
1

2
) e�(F ) = e�1

By the previous results, p�1(�1) =v if �1 � e�(F ) = e�1. The following graph shows numerical results,

which match the theoretical ones.
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A Numerical Example

Now suppose �1 > e�(F ). De�ne p1(�) 2 (v; v] so that U1(p1(�); �) =v and pm(�) = minfp�0(�); p1(�)g.
Fix some p 2 [v; p1(�)] and consider the following belief of the buyer: the commitment type chooses
p in equilibrium and the deviator is the normal type for sure. Given this belief, the commitment

type has no choice but to ask p (the normal type�s choice is obvious), which makes the buyer�s belief

consistent. Hence for any p 2 [v; p1(�)] there exists a corresponding sequential equilibrium. We
summarize all �ndings.

Proposition 3 When �2 = 0 there exists e�(F ) > �(F ) such that

(1) if �1 � e�(F ) then there exists a unique sequential equilibrium in which both the rational

commitment type and the normal type choose v, and

(2) if �1 > e�(F ) there exist multiple sequential equilibria in which some price in [v; p1(�)] is asked
by both types.

The worst o¤-the-equilibrium-path belief was used in order to support an equilibrium. Since

introducing a small perturbation (for example, the seller charges a di¤erent price than what she

intended with very small probability) may destroy the equilibrium, this is not quite compelling.

However, this doesn�t have to be the case. Given �1 > e�(F ), �x some p 2 (v; p1(�)). Then we can
�nd p0; p1 2 (v; p�1(1)) such that �1 =  p11 (p) =  p00 (p). In fact, every o¤-the-equilibrium-path belief

�(p0) which satis�es �(p0) � minf p11 (p0);  
p0
0 (p

0)g can be used to support a sequential equilibrium
with p. In particular, we can make � be continuous, for example, with o¤-the-equilibrium belief
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�(p0) = minf p11 (p0);  
p0
0 (p

0)g.

10 Φ(F)

p1

ψ0
p0(p’)

p0

ψ1
p1(p’)

μ1

p

Possible o¤-the-equilibrium beliefs

6 The Full-�edged Model

Finally we study a full-�edged model in which �0; �1; �2 > 0. Though more complicated, this game

provides a way to overcome drawbacks of the previous setups. Introducing the rational commitment

type �xes the problem that equilibrium is a¤ected by the distribution of behavioral commitment type

which is exogenously and arbitrarily given, but invites multiplicity of equilibria in the meantime.

In the full-�edged model the number of equilibria reduces signi�cantly (up to generic �niteness)

and equilibrium belief is uniquely determined. Furthermore the economic interpretation for each

equilibrium is more clear.

The mixed strategy of the normal type and the rational commitment type is represented by a

cumulative distribution function Hi over [v; v]; i = 0; 1.

De�nition 2 A triplet (H�
0 ;H

�
1 ; �

�) constitutes an equilibrium in a full-�edged game if (i) given ��,

for any p0 2 ��i ; i = 0; 1,
Ui(p

0; ��(p0)) = max
p2[v;v]

Ui(p; �
�(p))

where ��i = clfp 2 [v; v] : H�
i is strictly increasing at pg and

(ii) given H�
0 (and �), �

� is a conditional probability that the seller is a commitment type
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The same remarks on �� and, importantly, Lemma 6 apply here as in Section 4. Once ��i is

settled, �� is uniquely identi�ed, and H�
1 has one of the following two possibilities.

Lemma 7 Either ��1 � ��0 or ��1 = fp�1(1)g

Proof : Suppose there exists p 2 ��1 � ��0. As long as �2 is su¢ ciently rich and p 6= p�1(1),

for " small enough, there exists a pro�table deviation to either p � " or p + ", because U1(p; 1) is

single-peaked. Q.E.D.
There are three possibilities of equilibrium according to ��0. (1) �

�
0 = [v; v], (2) p

�
1(1) 62 ��0 and

(3) ��1 � ��0 6= [v; v]. The �rst two cases are relatively straightforward, because there�s no meaningful
strategic interaction between the normal type and the rational commitment type. For ��0 = [v; v],

��(p) = �(F; p);8p >v, and then the rational commitment type obviously chooses v, which in turn
doesn�t a¤ect the normal type�s choice. As long as the probability of behavioral commitment types

is relatively smaller than that of the normal type, this can be an equilibrium. On the contrary, (from

the analysis in Section 4) p�1(1) 62 ��0 happens if and only if the relative ratio between the normal
type and behavioral commitment types is small, and then the choice of the rational commitment

type is obviously p�1(1).

The case with ��1 � ��0 is much more involved. Suppose ��0 = [p0; �0(p0)] for some p0 2 (v; p�1(1)).
Since ��(p) =  p

0

0 (p), we should have

int��1 � argmaxp U1(p; �
�(p)) = U1(p;  

p0

0 (p))

Hence the points at which U0 and U1 are tangent are potentially very important.

Lemma 8 For each p0 2 (v; p�1(1)), there exists a unique �
(p0) 2 (�(F; p0); 1) at which U0 and U1
are tangent. At such (p0; �
(p0)), U1 envelops U0. In addition, p0 < p�1(�


) and limp0!p�1(1) �

(p0) =

limp0!v �

(p0) = 1.

Proof : See Appendix
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1

p

0 Φ(F)

Φ(F,p)

p1*(1)

p

μκ(p)

A typical shape of contract curve

In general, we can�t guarantee that given p0 2 (v; p�1(1)), there exists a single price which max-
imizes U1(p;  

p0

0 (p)). If �

 was increasing, it would be always unique, but we necessarily have de-

creasing region because limp0!p�1(1) �

(p0) = limp0!v �


(p0) = 1 and �
(p0) < 1 for p0 2 (v; p�1(1)). For
each p0 2 (v; p�1(1)), let

�(p0) = argmaxU1(p;  
p0

0 (p))

If p1; p2 2 �(p0) and p1 > p2, then  
p0

0 (p1) >  p
0

0 (p2), because  
p0

0 is strictly increasing below p�0(�).

Let p�(p
0) = maxfp 2 �(p0)g and p�(p0) = minfp 2 �(p0)g.

Proposition 4 (1) If �0 > M�1;�2, then ��0 = �2; �
�(p) = �(F; p);8p >v and ��1 = fvg where

M�1;�2 = sup

(
p0 2 (v; p�1(1)] : �1

1�  p
0

0 (p
�(p0))

 p
0

0 (p
�(p0))

+ �2

Z
(p0;�0(p

0))

1�  p
0

0 (p)

 p
0

0 (p)
d�

)

(2) If �2C(F; �) < �0 < �2(1 � '(F; �))='(F; �), then ��0 = [p0; �0(p
0)];��1 � �(p0) for some

p0 2 (v; p�1(1));

��(p) =

(
1 if p 62 ��0
 p

0

0 (p) if p 2 ��0
(3) If �2(1� '(F; �))='(F; �) � �0 < M�1;�2, then there are at least three equilibria. One is the

like in (1) and two are in (2)

(4) If �0 = M�1;�2 then the equilibrium like in (1) always exists. Additionally, if M�1;�2 is

achieved in p0 2 (v; p�1(1)), then there exists at least one more equilibrium belonging to (2).
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(5) If �0 � �2C(F; �), then �
�
0 = [p

0; �0(p
0)];��1 = fp�1(1)g for some p0 2 [p�1(1); p�0(1));

��(p) =

(
1 if p 62 ��0
 p

0

0 (p) if p 2 ��0

, the rational commitment type achieves the static monopoly pro�t (U1(p�1(1); 1)) and the normal

type does more than the static monopoly pro�t

Proof of Proposition 4 : Suppose ��0 = �2. From the analysis in Section 3, this can be an

equilibrium if and only if
�0
�2
�
Z
(v;v)

1� �(F; p)
�(F; p)

d� =
1� '(F; �)
'(F; �)

Now suppose p�1(1) 62 ��0. Again from the analysis in Section 3, this can be an equilibrium if and

only if
�0
�2

< C(F; �) =

Z
(p�1(1);�0(p

�
1(1)))

1�  p
�
1(1)
0 (p)

 
p�1(1)
0 (p)

d�

Finally, suppose ��0 = [p0; �0(p
0)] for some p0 2 (v; p�0(1)). For each p0 2 (v; p�1(1)], de�ne �

p0
:

F ! [0; 1] and �p
0
: F ! [0; 1] by

�
p0
(P ) =

�11fp�(p0)2Pg + �2�(P )

�1 + �2

and

�p
0
(P ) =

�11fp�(p0)2Pg + �2�(P )

�1 + �2

Given �1 and �2, de�ne J
�1;�2 ; J�1;�2 : (v; p�1(1)]! R+ by

J
�1;�2(p0) =

Z
(p0;�0(p

0))

1�  p
0

0 (p)

 p
0

0 (p)
d�

p0
=

�1
�1 + �2

1�  p
0

0 (p
�(p0))

 p
0

0 (p
�(p0))

+
�2

�1 + �2

Z
(p0;�0(p

0))

1�  p
0

0 (p)

 p
0

0 (p)
d�p

0

J�1;�2(p0) =

Z
(p0;�0(p

0))

1�  p
0

0 (p)

 p
0

0 (p)
d�p

0
=

�1
�1 + �2

1�  p
0

0 (p�(p0))

 p
0

0 (p�(p0))
+

�2
�1 + �2

Z
(p0;�0(p

0))

1�  p
0

0 (p)

 p
0

0 (p)
d�p

0

Since  p
0

0 (p
�(p0)) �  p

0

0 (p�(p0)), J
�1;�2(p0) � J�1;�2(p0). First the minimum (of both J

�1;�2(p0) and

J�1;�2(p0)) is achieved at p�1(1) because

1�  p
�
1(1)
0 (p�1(1))

 
p�1(1)
0 (p�1(1))

= 0 � 1�  p
0

0 (p
�(p0))

 p
0

0 (p
�(p0))

�
1�  p

0

0 (p�(p0))

 p
0

0 (p�(p0))
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and  p
0

0 (p) is strictly increasing in p
0, and it�s value is �2C(F; �)=(�1 + �2). Now de�ne a correspon-

dence J�1;�2 : (v; p�1(1)]! R+ by

J�1;�2(p0) = [J�1;�2(p0); J
�1;�2(p0)]

Note that every value in J�1;�2(p0) can be achieved by putting appropriate weights to p�(p
0) and

p�(p0). By the Theorem of Maximum, J�1;�2 is upper hemi-continuous, and by de�nition,

M�1;�2 = supfp0 2 (v; p�1(1)] : (�1 + �2)J
�1;�2(p0)g

Applying the same logic as Proposition 3, it�s clear that if

�2C(F; �) < �0 < M�1;�2

then there exists p0 2 (v; p�1(1)] and a subset of �(p0) such that ��0 = [p0; �0(p0)].
Q.E.D.

1

p

0 Φ(F)

p’

Φ(F,p)

p0*(μ)

p1*(μ)

μ*(p)

A typical equilibrium in case (2)
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1

p

0 Φ(F)

μ*(p)

A typical equilibrium in case (5)

To understand the statement of Proposition 4, let�s make some assumptions which help clarify

the argument. We assume �(p0) = 
(p0) is a singleton for all p0 2 (v; p�1(1)) and J�1;�2 is strictly
concave for any (�1; �2 _) and is maximized at p

�1;�2 >v. Then

J�1;�2([p�1;�2 ; p�1(1))) =

�
�2

�1 + �2
C(F; �); J�1;�2(p�1;�2)

�
J�1;�2((v; p�1;�1 ]) =

�
�2

�1 + �2

1� '(F; �)
'(F; �)

; J�1;�2(p�1;�2)

�
and

M�1;�2 = (�1 + �2)J
�1;�2(p�1;�2)

From the above calculation, we know there exists a unique equilibrium if

�2C(F; �) < �0 � �2
1� '(F; �)
'(F; �)

with associated p0 > p�1;�2 such that �0 = (�1 + �2)J
�1;�2(p0). If

�2
1� '(F; �)
'(F; �)

< �0 � (�1 + �2)J�1;�2(p�1;�2)

then there are three equilibria. Each one is associated with v, a price lower than p�1;�2 but higher

than v, and a price higher than p�1;�2 . These equilibria correspond to three di¤erent, but possibly
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1

p

0 Φ(F)

Φ(F,p)

p1*(1)

Figure 1: Equilibria when the probability for the seller to be one of behavioral commitment types
vanishes.

consistent beliefs of the seller. When the rational commitment type is optimistic on the buyer�s belief,

she asks a su¢ ciently high price, which in turn enables the normal type to ask only high prices. With

rather pessimism, she asks price low, but higher than v, at which the normal type e¤ectively pools.

If the rational commitment type is too pessimistic, she believe the buyer will never concede at date

0, and simply asks v, with which the normal type has no choice but to randomize over [v; v]

In the same spirit as in the previous section, the special interest is given to the case where �2 is

arbitrarily small. In this way, not only the distribution of commitment types is fully endogenized, but

also rather implausible beliefs are excluded. The following analysis is immediate from Proposition 4.

Let b�(F ) = min
p2(v;p�1(1))

�
(p)

For any �1 < 1, it is an equilibrium that the rational commitment type and the normal type ask v.

The equilibrium belief is unique as ��(p) = �(F; p);8p >v. If �1 < b�(F ), this is a unique equilibrium.
If �1 > b�(F ), then there exists at least two more equilibria. One is associated with a high price,
and the other is associated with a low price. If the equilibrium price p� is greater than v, then the

equilibrium belief is uniquely determined so as to follow the isopro�t curve of the normal type which

crosses (p�; �1).

The last interesting fact is that the equilibrium when �1 = 1 is lower hemi-continuous, but not

upper hemi-continuous. As �0 ! 0 there always exists a sequence of equilibria which converges to
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the equilibrium in which p�1(1) is asked. But when �2 is not always relatively larger than �0, there�s

another sequence (in fact two sequences) of equilibria which converges to the one with v. This result

stems from the fact that the buyer�s belief over the seller�s type across di¤erent prices doesn�t matter

in a degenerate problem, while it does a lot even with very small perturbation.

7 Discussion

(1) Extension

Are the results robust under weaker assumption on F? In particular, we relax the assumption

that both p(1� F (p)) and p(1� F (p)) + vF (p) are monotonely singled-peaked. Now they may have
�at interval and several peaks.

Let u0 = maxp U0(p; 1) and Z0 = [v; u0]. For each z 2 Z0, de�ne �(z) = fp0 2 [v; v] : Ui(p0; 1) >
zg. Then by similar analysis to that in Lemma 2, we know �(z) replaces the role of (p0; �0(p0)). Given
�(z), equilibrium belief should follow isopro�t curve of the normal type. Without the rational com-

mitment type, the equilibrium is again unique. With the rational commitment type and arbitrarily

small probability of behavioral commitment types, a pair (p; �1) can be supported as an equilibrium

only when the isopro�t curves of the normal type and the rational commitment type are tangent

as before. Therefore there�s no qualitative change in equilibrium under weaker assumption on F .

The only di¢ culty is to characterize the set of points at which two isopro�t curves are tangent. In

particular, Lemma 8 applies no longer.

(2) The emergence of the rational commitment type

It was assumed that some rational sellers are exogenously doomed not to change price (the rational

commitment type). Ideally we should be able to suggest a mechanism that naturally generates the

rational commitment type and ask with what probability an agent is the type. But it�s another

research question and we suggest only two tentative explanations here.

One possibility is a contractual arrangement within a selling �rm. If a �rm is su¤ering from

a principal-agent problem, then the principal may restrict the agent�s action to sell only at a pre-

speci�ed price, performs bargaining for himself, or sells the �rm to the agent. The latter two cases

may correspond to the normal type in our model, while the �rst to the commitment type. If �rms

are heterogenous with respect to their technology dealing with a principal-agent problem and each

�rm�s technology is not observable to the buyer, this potentially gives rise to the bargaining problem

we analyzed. Ultimately, no one tries to bargain over prices in a Wal-Mart, while it is di¤erent if

you visit a small local shop. Of course, what kind of contract is optimal between the principal and

the agent in our environment is another question to pursue.

The second possibility relates to the institutional feature of the selling side. In a wage bargaining,

a �rm may be uncertain over a union leader�s level of discretion from the rank and �le, or the
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union�s responsiveness. In an international trade negotiation, a bargainer may be uncertain over the

opponent�s level of delegation from the government or the voters. Hence some institutional feature

which is not observable to the opponent may explain the emergence of the commitment type and

produce the bargaining problem we analyzed.

(3) Acquired stubbornness

Kambe (1999) introduced two possible scenarios on the rise of stubbornness. One is "inborn" stub-

bornness, in which agents know their types before deciding their demands. The other is "acquired"

stubbornness, in which the seller doesn�t know whether she will be stuck to her initial demand, but

knows she may be with some probability. He argued that acquired stubbornness could arise either

psychologically or economically (reputationally).

Inborn stubbornness was used in this paper. Adopting acquired stubbornness in our model is

an immediate task. The only di¤erence is that the relevant (indirect) expected utility function of

the rational seller is a weighted sum of two indirect utility functions. One distinguishing feature of

acquired stubbornness is that there always exists a unique equilibrium, which is a trivial consequence

from the fact that there�s only a single agent who determines the initial price.

(4) The su¢ cient condition for �(F ) > 03.

Our result is not sensitive to whether �(F ) > 0. But it�s still interesting to ask under what

conditions �(F ) = 0, because it can be interpreted as the buyer�s absolute bargaining power, as well

as has a nice, but new functional form.

First if F (v) = f(v)(v � v) + o(v � v) around v, then �(F ) is certainly strictly positive, because

the term inside the integral is bounded. More generally, as long as (v� v)f(v)=F (v) � K=(v� v)1��

around v for some K and � > 0, �(F ) > 0. Conversely, if (v � v)f(v)=F (v) � K=(v � v)1+� around

v for some K > 0 and � � 0, �(F ) = 0. The following example shows a concrete case in which

�(F ) = 0.

F (v) =

8>><>>:
0 if v � v

exp
�

1
v�v �

1
v�v

�
if v � v � v

1 if v > v

Roughly if F decreases arithmetically fast, then the density function f decreases more slowly than F

by one-order and the factor (v� v) completely cancels out the explosion of F=f . In case F converges
to 0 exponentially fast enough, the explosion of F may outweigh the o¤setting e¤ect of (v � v)f(v),
and hence �(F ) could be zero.

(5) The No Gap case

The di¢ culty with the No Gap case is that we can�t pin down the bargaining outcome when the

seller is known to be normal. In fact, Ausubel and Deneckere (1989) proved a folk theorem for durable

3 I thank Aureo de Paula, Jan Eeckhout, and Phillip Kircher for pointing out this problem.



September, 2007 27

goods monopoly problem with No Gap, that all seller payo¤s between zero and static monopoly pro�ts

can be supported by a sequential equilibrium. For now, let�s suppose a Weak-Markov equilibrium

is played in case the seller�s type is revealed to be normal4. We take this equilibrium, not because

there�s a natural advantage in this equilibrium5 but simply because it is the analogue and limit of the

unique equilibrium in the Gap case, and therefore we can also use a limit argument for our problem.

Given p and �, as v! 0, �(F )! 0 and cB ! F�1(p). Hence the sequential equilibrium converges

to

�(v) =

(
0 if v < p

1 otherwise

GS(t) = 0;8t

In the limit, the buyer concedes immediately as long as his valuation is higher than p and the

seller never concede. The driving force of this result is that the normal type becomes more reluctant

to concede as the gain from conceding (v) becomes smaller, and in the limit she has no reason to reveal

her type. She is indi¤erent between conceding and waiting at time t > 0, but for the equilibrium to

be established, she should never concede.

In a discrete time version, the dynamics will be very di¤erent. Even in a Weak-Markov equilib-

rium, there�s a positive gain by the seller revealing her type to be normal, and so the normal type

should adjust price if she is con�dent that the buyer has valuation lower than p. To put it another

way, we have assumed that o¤er interval � is always arbitrarily close to 0, and characterized equi-

librium based on that. Alternatively, when studying an equilibrium in the No Gap case, we can let

v converge to 0 �rst and make � arbitrarily small later. Under the second scenario, the equilibrium

behavior will di¤er a lot from the one we derived here.

(6) Di¤erent discount factors - Relation to the standard reputation result

What happens if the seller is more patient than the buyer? Suppose the buyer and the seller have

discount factors rB and rS respectively. Then for all p,

�(F; p) = exp

�
�1
v

rB
rS

Z v

p

(v � p)f(v)
F (v)

dv

�
All other results are immediate extension. As rS becomes lower for �xed rB (the seller becomes

relatively more patient), the buyer�s bargaining power �(F; p) becomes lower, which makes the buyer

concede faster. The robustness results of the Coase conjecture are still true, but the robustness gets

4A weak-Markov equilibrium is a sequential equilibrium in which the buyer�s decision depends only on the current
price.

5 It is simple and intuitive, but not compelling enough. Why would the monopoly choose to play the worst equilibrium
to her? For more discussion on this issue, see Ausubel and Deneckere (1989).
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weaker, which is predictable.

This analysis shows that the standard reputation result still holds in our problem in terms of

discount rates. More formally, in a model with behavioral commitment types, for �xed �2 > 0, there

exists rS > 0 such that if rS > rS then the expected payo¤ of the normal type is "�close to her
maximum expected payo¤, which is p(1�F (p))+vF (p) in our problem. One di¤erence is that there�s
no natural meaning of the "Stackelberg type" in our model, and so the statement of the reputation

result should be adjusted in terms of the maximum possible payo¤ rather than the speci�c behavior

of some type.

8 Appendix

Proof of Proposition 1. (Many steps in this proof are borrowed from the proof of Proposition 1
in Abreu and Gul (2000))

Suppose (GS ; �) is a sequential equilibrium given p and �. Let u0(t) and uv(t) be the normal
type seller�s and type v buyer�s expected payo¤s by conceding at time t given (GS ; �). From � , de�ne
GB : R+ ! [0; 1] by GB(t) = Prfv : �(v) � tg. Assume we �ip a fair coin in case of simultaneous
concessions. Later it will be clear that this assumption can be replaced by any tie-breaking rule.

u0(t) = p

Z t

0
e�rsdGB +

p+ v

2
(GB(t)� lim

s%t
GB(s)) + v(1�GB(t))e�rt

uv(t) = (v � v)
Z t

0
e�rsdGS(s) +

(v � p) + (v � v)
2

(GS(t)� lim
s%t

GS(s)) + (1�GS(t))(v � p)e�rt

1) GS is not constant.
SupposeGS(t) = c;8t for some 0 � c < 1��. Then �(v) = limt&0 t;8v � p and �(v) =1;8v < p.

Since the normal type seller knows that the remaining buyer has valuation lower than p an instant
later, she will immediately change her price o¤er. Hence we can�t have GS(t) = c;8t for some
0 � c < 1� �.

Now suppose GS(t) = 1 � �;8t. Then �(v) = limt&0 t;8v � p and �(v) = 1;8v < p. If the
normal type waits an instant, then her expected payo¤ is (1�F (p))p+F (p)v > v because the buyer
believes that the seller is commitment type for sure. Therefore we can�t have GS(t) = 1� �;8t.

2) Let t�S = infft 2 R+jGS(t) = 1 � �g and t�B = infft 2 R+jGB(t) = 1 � F (p)g. Then
t� � t�S = t�B.

At t�S , it�s certain that the seller is a commitment type. Therefore the buyer has no reason to
wait as long as his valuation is higher than p. Also at t�B, it�s known that the buyer has valuation
lower than p. Hence the normal type seller waits no longer.

3) If GS has jump at t, then GB should not have jump at t. Similarly, if GB has jump at t, then
GS should not have jump at t.

If GS has jump at t, then all buyers get strictly prefer waiting an instant more to conceding at t.
Hence GB can�t have jump at t. The similar reasoning applies when GB has jump.

4) There doesn�t exist (t1; t2) such that t2 < t� and both GS(t) and GB(t) are constant on (t1; t2).
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Suppose not. Without loss of generality, suppose t2 is the supremum of t2 for which (t1; t2)
satis�es the above property. Suppose GS has no jump at t2 and �x t 2 (t1; t2). Then by de�nition
uv is continuous at t2 and

uv(t)� uv(t2) = (1�GS(t))(v � p)(e�rt � e�rt2) > 0; v > p

Hence there exists � > 0 such that GB(t) = GB(t
0) for all t0 2 (t2; t2 + �). Then for t 2 (t1; t2) and

t0 2 (t2; t2+�), u0(t)�u0(t0) = v(1�GB(t))(e�rt�e�rt
0
) > 0, 8v > p, which implies GS(t) = GS(t

0).
This contradicts the assumption that t2 is the supremum.

Now suppose GS has jump at t2. Then by (3), GB has no jump at t2, which in turn implies that
u0 is continuous at t2. Fix t 2 (t1; t2) and then

u0(t)� u0(t2) = v(1�GB(t))(e�rt � e�rt2) > 0

The continuity of u0 at t2 implies that there exists � > 0 such that u0(t) = u0(t
0) for all t0 2 (t2; t2+�).

Hence GS(t) = GS(t
0). This contradicts the supposition that GS has jump at t2.

5) If t < t0 < t�, then GS(t) < GS(t
0) and GB(t) < GB(t

0)
From the proof of 4), we know that if GS is constant on some interval, then GB is also constant

on the same interval and vice versa, which can�t be the case by 4).
6) Both GS and GB are continuous at t > 0.
If GS(GB) has a jump at t, then GB(GS) should be constant on (t� �; t) for small enough � > 0.

By 5), it can�t be the case.
7) GB(t) = 1� cB expf� v

p�v rtg for some cB 2 (0; 1] and t
� <1.

From the above results, both GS and GB should have positive density on (0; t�) that we will
denote by gS and gB respectively. Also we know the normal type seller should be indi¤erent between
conceding at all times t < t�. Now

u0(t) = p

Z t

0
e�rsdGB + v(1�GB(t))e�rt

Since du0(t)=dt = 0, for t < t�,

0 = pe�rtgB(t)� vgB(t)e�rt � vr(1�GB(t))e�rt

which implies
gB(t)

1�GB(t)
=

vr

p� v
Hence

GB(t) = 1� cB expf�
v

p� v rtg

for some cB 2 (0; 1]. From the functional form of GB, we know that t� <1.
8) �(v) = �p=(vr) ln (F (v)=cB) for v 2 (p; v] such that F (v) � cB and �(v) = 0 for v 2 (p; v] such

that F (v) > cB.
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Given GS , for all v � p, we should have

�(v) 2 arg max
0�t�t�

Z t

0
e�rs(v � v)dGS + e�rt(1�GS(t))(v � p)

Hence for �(v) 2 (0; t�),
gS(�(v))

(1�GS(�(v))
=
r(v � p)
(p� v)

Observe that for v 2 (p; 2p � v), gS(�(v))=(1 � GS(�(v)) < r. Suppose � is strictly increasing
[v1; v2] 2 (p; v]. Letting �(v1) = t1 and �(v) = t for v 2 (v1; v2), we should have

(v � v1)
Z t1

t
e�rtdGS + (v � v1)[e�r1t(1�GS(t1))� e�rt(1�GS(t))] � 0

Since (v � v1) > 0, for all v > v1,Z t1

t
e�rtdGS + [e

�r1t(1�GS(t1))� e�rt(1�GS(t))] � 0

lim
t!t1

1

t� t1

Z t1

t
e�rtdGS +

1

t� t1
[e�r1t(1�GS(t1))� e�rt(1�GS(t))]

= �e�rt1gS(t1) + re�rt1(1�GS(t1) � 0

, gS(t1)

1�GS(t1)
� r

Hence for v 2 (p; 2p�v), � cannot be strictly increasing. Furthermore, it should be strictly decreasing,
becauseGB can�t have a mass except at t = 0. Now suppose �(�) is strictly increasing at some interval.
Let v be the in�mum value from which �(�) is strictly increasing. Since �(�) is strictly decreasing at
least on (p; 2p� v), there should exist v0 and v00 such that v0 < v < v00 and �(v0) = �(v00). However,
this is a contradiction because

r(v00 � p)
(p� v) >

r(v0 � p)
(p� v) =

gS(�(v
0))

(1�GS(�(v0))
=

gS(�(v
00))

(1�GS(�(v00))
=
r(v00 � p)
(p� v)

Therefore �(�) should be strictly decreasing when positive and v > p. From now on, denote the
inverse of � by ��1 on the domain (0; t�). Since GB(t) = 1 � cB expf� v

p�v rtg = 1 � F (��1(t)) for
t 2 (0; t�),

��1(t) = F�1
�
cB expf�

v

p� v rtg
�
, �(v) = �p� v

vr
ln

�
F (t)

cB

�
9) For some cS 2 (0; 1],

GS(t) = 1� cS exp
 
�1
v

Z F�1(cB)

F�1
�
cB expf� v

p
rtg
� (v � p)f(v)

F (v)
dv

!
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Now we know for t 2 (0; t�),

gS(t)(p� v) = r(1�GS(t))(��1(t)� p)

The solution to this problem is

GS(t) = 1� cS exp
�
�
Z t

0

r(��1(s)� p)
p� v ds

�
for some cS . Replacing ��1(s) by F�1

�
cB expf� v

p�v rsg
�
and rearranging, we get

GS(t) = 1� cS exp
 
�1
v

Z F�1(cB)

F�1
�
cB expf� v

p
rtg
� (v � p)f(v)

F (v)
dv

!

10) Since GS(t�) = 1� �,

cS = � exp

 
1

v

Z F�1(cB)

p

(v � p)f(v)
F (v)

dv

!

11) By 3), either cB = 1 or cS = 1. If cB = 1, then

t� = �p� v
vr

ln(F (p))

cS = � exp

�
1

v

Z v

p

(v � p)f(v)
F (v)

dv

�
If cS = 1, then

1

v

Z F�1(cB)

p

(v � p)f(v)
F (v)

dv + ln� = 0

t� = �p� v
vr

ln

�
F (p)

cB

�
Notice that cB = cS = 1 if �(F; p) = �. Hence cB = 1 and cS < 1 if �(F; p) > �, and cB < 1 and
cS = 1 if �(F; p) > �. Q.E.D.

Proof of Lemma 8
Let

K(p; �) =
@U1(p; �)

@p

@U0(p; �)

@�
� @U1(p; �)

@�

@U0(p; �)

@p

=

�
F (p)

cB

�p=v @cB
@�

(p� v)
�
cB

�
1 + ln

�
F (p)

cB

�
+ p

f(p)

F (p)

�
� 1
�
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K(p; �) = 0 if and only if

k(p; �) = cB

�
1 + ln

�
F (p)

cB

�
+ p

f(p)

F (p)

�
� 1

Since cB < 1 when p > v and � < 1, for (p; �) 2W , we should have

ln

�
F (p)

cB

�
+ p

f(p)

F (p)
> 0

Moreover, on (p; �) which satis�es the above inequality, for �xed p >v,

@k(p; �)

@�
=
@cB
@�

�
ln

�
F (p)

cB

�
+ p

f(p)

F (p)

�
< 0

These imply that for each p, if exists, there is a unique � such that (p; �) 2W . Now notice that

lim
�!1

k(p; �) = pf(p)� (1� F (p))

8<:
<
=
>

9=; 0 if p
8<:

<
=
>

9=; p�1(1)

Therefore only for p � p�1(1), we may have �

 at which U0 and U1 are tangent. p � p�1(1) is

also su¢ cient because letting �p 2 (�(F; p); 1) be the value which makes p = p�1(�
p), k(p; �p) > 0.

Hence there exists such a unique �
 if and ONLY IF p � p�1(1). The second statement follows from
K(p; �) < 0 if � < �
 and K(p; �) > 0 if � > �
 for all p 2 (v; p�1(1)).

The fact that p0 < p�1(�

) simply comes from the fact that as soon as p > p�1(�),

K(p; �) < 0) p
f(p)

F (p)
+ lnF (p) >

1� cB(p; �)
cB(p; �)

+ ln cB(p; �)

As p0 ! p�1(1), the left-hand side converges to (1 � F (p)=F (p) + lnF (p), so cB(p0; �
(p0)) !
F (p�1(1)), which happens only when �


(p0)! 1. When p0 ! v, the left-hand side becomes arbitrarily
large, which can be matched only when cB(p0; �) ! 0 , which occurs only when � ! 1, combined
with F (p0)! 0 (We can�t arbitrarily lower �, because p0 < p�1(�


) implies that �
 > �(F )). Q.E.D.
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