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Abstract

We propose a simple theoretical model of supervised learning that is potentially useful

to interpret a number of empirical phenomena relevant to the nature-nurture debate. The

model captures a basic trade-off between sheltering the child from the consequences of his

mistakes, and allowing him to learn from experience. We characterize the optimal parenting

policy and its comparative-statics properties. We then show that key features of the optimal

policy can be useful to interpret provocative findings from behavioral genetics.
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1 Introduction

The nature-nurture debate has been one of the most controversial in the social sciences.1 Since

the 1980s, the literature on behavioral genetics has presented data that is broadly interpreted as

tilting the balance away from nurture, downplaying parental influence.2 Some go so far as to

say that this literature provides evidence that parents have very little (or no) effect on a variety

of measures of the personality of their children, once one controls for genetic factors.3 At the

same time, parents spend great energy and resources in attempts to affect long-run outcomes

for their children. How can we reconcile evidence suggesting that parents do not matter with

common perceptions and practices that suggest that, in fact, they do?

This paper provides a model of optimal parenting that can help resolve this contradiction.

In the model we propose, parents have significant effects on the characteristics of their children.

Yet, the model predicts a distribution of outcomes in the population of children that is consis-

tent with the data from behavioral genetics. This calls into question the interpretation of such

data that has been made in that literature. Furthermore, our model allows an interpretation of

the features of the environment, of the characteristics of the parents, and of the interactions

between parents and children that are responsible for these patterns in the data. In contrast,

the standard analytical framework of behavioral genetics is essentially a statistical model that

does not naturally lend itself to such interpretations or to policy (thought) experiments. Finally,

our model provides a novel interpretation of measures of heritability that have received consid-

erable attention in the social sciences.4

To provide some background for our analysis, the behavioral–genetics literature starts with

a criticism of much of traditional developmental psychology for failing to recognize that ’na-

ture’ could be behind correlations between parenting styles and children’s outcomes because

of shared genes between parents and their biological children.5 Behavioral geneticists then at-

tempt to isolate the effects of the genes through several complementary approaches. The more

direct one is to compare twins raised together by their biological parents with twins raised apart

by different adoptive families.6 A consistent finding of several studies is that twins reared to-

gether are just as similar as twins reared apart. In fact, some studies even find that twins reared

1For some history on this debate, see Pinker [31].
2For an overview of this literature, see Plomin et al. [33] or Reiss et al [34]. Some of the findings of this literature

have been popularized by Harris [27], [28], Pinker [31] and Ridley [35].
3See for instance Harris [27], [28], Pinker [31] and Ridley [35].
4See for instance the debate surrounding the controversial book by Herrnstein and Murray [29].
5This branch of developmental psychology is known as socialization research. For a survey, see for instance

Collins et al. [18] and Demo and Cox [20].
6There are several parallel projects that gather information on this front. The first, large-scale project of this kind

was the Minnesota twin study: see Bouchard et al. [14].
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together are less similar than twins reared apart. These findings are interpreted according to

a simple statistical model (known as the ACE model) as evidence that, once one controls for

genetic factors, the impact of traditional measures of family environment on most personality

traits is greatly diminished.7

Our model of supervised learning permits a different interpretation of the same data. In our

framework, children’s characteristics evolve through interactions with both the environment

and their parents; every parent faces a basic trade-off between sheltering the child from the

consequences of his mistakes, and allowing him to learn from experience.

The key ingredients of our model are as follows. The parent is solely interested in the child’s

welfare, and is active for T periods; the child is active for L > T periods. In each period, the

child must perform some task, and learns by doing: at the end of each period, he receives a

signal about the quality of his performance. However, learning is costly: his payoff is lower the

worse his performance. The parent has better information than the child about the correct way

to perform the task, and can take actions that simultaneously modify (typically increase) the

child’s per-period payoff and distort (typically bias) the child’s signal about his performance.

We characterize the optimal parenting policy and its comparative-statics properties. In par-

ticular, we show that the optimal policy of the parent partially shelters the child, implying that

learning may be slowed down by the presence of the parent; on the other hand, the child learns

at a smaller cost than if he were on his own. We also investigate the dynamics and comparative

statics of parental intervention: see Sec. 2.1 for details.

These key implications of our model allow us to tackle the nature-nurture debate. We can

think of the child’s initial abilities as being genetically determined; similarly, the parent’s abil-

ities are determined by her initial genetic endowment, as well as a prior learning phase. The

parent partially shelters the child from the consequences of his mistakes, as the parent herself

perceives them in light of her own ability; this immediately implies that, in our model, children

of “better” parents have better outcomes, even controlling for the child’s genetic endowment.

On the other hand, parental intervention is genetically mediated: it responds to the child’s ini-

tial abilities. We show that this has an important implication: adoptive parents provide more

sheltering on average than biological parents.8 Hence, on average, adoptive children are less

exposed to environmental influences; thus, genetic similarity in initial abilities induces greater

correlation in the outcomes for adoptive children. This key implication enables our model to

7This broad conclusion is subject to two qualifications: first, there is evidence that improvements in the family

environment have positive effects on children’s cognitive ability, if one restricts attention to families of low socioeco-

nomic status (Turkheimer et al. [42]). Second, and of more immediate relevance to the present paper, recent studies

suggest the intriguing possibility that parental intervention may actually respond to specific, genetically-determined

traits of the child, and thus reinforce or attenuate them (Reiss et al [34]). Thus, family environment may have signif-

icant effects, even though its impact is “genetically mediated.”
8See sec. 3 for details, and a discussion of the evidence supporting this finding.
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match the empirical findings from behavioral genetics for a broad and easily interpretable range

of parameter choices. We also show that, in the optimal policy, parents behave more similarly

with monozygotic (identical) twins than with dizygotic (fraternal) twins; therefore, the greater

similarity of monozygotic twins is partly due to the concordance of parental intervention.

1.1 Additional Background Literature

Learning has been exhaustively investigated in theoretical models by economists, statisticians,

and psychologists.9 However, these studies typically abstract from the fact that learning takes

place under the supervision of parents, caregivers, teachers, advisors, and other experts for

a considerable fraction of an individual’s life. The economics literature has developed sev-

eral models of investment in child quality, starting at least with Becker [5]); a particularly rel-

evant contribution is the recent paper by Cunha and Heckman [19], which analyzes the optimal

life-cycle profile of investments in children in a model with dynamic complementarities. This

approach enables the authors to capture some important facts about child development. Ak-

abayashi [1] provides a model of a child’s human capital formation that can explain child mal-

treatment. Weinberg [46] obtains a positive relation between parents’ income and children’s

outcomes via a model where parents use pecuniary incentives and corporal punishment to af-

fect the behavior of children.

The literature on the consequences of parenting is virtually unanimous in recognizing that

parental support is essential for functional development in extreme situations.10 The nature-

nurture debate pertains mainly to differences within the ‘normal’ range of variation in parent-

ing. A sizable literature across the social sciences argues that these differences can have im-

portant effects. An enormous literature in developmental psychology addresses the effects of

parental care on the development of children.11 Yet, formal modeling of supervised learning, i.e.

the relation between parental behavior and its effects on children’s learning processes, is almost

absent. This is the focus of the present paper.

The behavioral-genetics literature typically focuses on personality traits and measures of

cognitive achievements, and does not typically explore outcomes such as educational attain-

9In economics there is a vast literature that studies learning from various points of view: from Bayesian learning to

adaptive learning to fictitious play. On theory, see e.g. Fudenberg and Levine [23]. Camerer [15], chapter 6 discusses

both theory and experiments.
10Harlow and coauthors (cf. [25], [26]) separated infant monkeys from their mothers; these subjects developed

severe emotional and cognitive problems. The discovery of children in Romanian orphanages, who were raised

with very little human contact, provided a tragic counterpart to these studies, leading to similar conclusions. These

children were in the third to tenth percentile for physical growth, and “grossly delayed” in motor and mental devel-

opment (Chisholm [17]).
11It is impossible to be exhaustive in providing references. See Shonkoff and Deborah Phillips eds. [39] for a recent

overview of the field with respect to early childhood development.
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ment or earnings. In the economics literature, the degree to which a child’s home environment

supports learning (as measured e.g. by how often the mother reads to her child, or whether she

helps him learn numbers) has been shown in some studies to have significant effects on cog-

nitive achievement.12 Recent contributions by Sacerdote [37, 38], Bjorklund, Lindahl and Plug

[11] and others are methodologically closer to the behavioral-genetics literature. For instance,

Sacerdote [38] analyzes a sample of Korean children randomly assigned to American adoptive

families; he finds that maternal education has a significant positive effect on the educational at-

tainment of adopted children, but a much larger effect on that of biological children. Bjorklund

et al. [11], and Bjorklund et al. [12] analyze Swedish adoption data and report significant effects

for both adoptive and biological parents. Moreover, they find evidence for a positive interaction

effect between postbirth environment (nurture) and prebirth factors (nature): as we discuss in

Sec. 3, this is consistent with our approach.

2 “Hand-Holding”

2.1 The basic model

Agents and Horizon. The model features two agents, the child (he) and the parent (she). The

child lives for L > 1 periods, whereas the parent is active (i.e., able to supervise the child) for

T < L periods.

Actions and Payoffs The child must perform a task in every period. The real number M

represents the correct way to perform the task on average; however, the correct way to perform

the task at time t = 1, . . . , L is represented by i.i.d. normal random variables X1, . . . , XL ; every X t

has a normal distribution, with mean M and precision pX .

The parent’s and the child’s actions at time t are also real numbers, respectively denoted

by ā t and b̄ t . If, at time t , the parent chooses action ā t , the child chooses action b̄ t , and the

correct way to perform the task is X t , then the child incurs a loss of

(X t + ā t − b̄ t )2.

As we discuss below in greater detail, the parent knows M , the correct way to perform the task on

average, and can also anticipate the child’s choice b̄ t : thus, the parent’s action ā t is effectively a

correction for the child’s average mistake. Alternatively, one can think of the sequence of events

12See e.g. Carneiro, Heckman, and Masterov [16] and Todd and Wolpin [41]. Also, a sizable literature investigates

the effects of maternal employment on children’s cognitive achievement. Results are mixed: some find that employ-

ment is detrimental (Baydar and Brooks-Gunn, [4]; Desai et. al. [21]; Belsky and Eggebeen [6], Bernal [8]), others

that it is beneficial (Vandell and Ramanan [43]). See also the debate on the effects of family size and birth order (e.g.,

Black, Devereux, and Salvanes) [13].
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as follows: first the problem arises, then the child makes a decision to confront the problem,

and then, after observing the child’s choice, the parent chooses a corrective action.

Both the parent and the child wish to minimize discounted expected losses, given their re-

spective information; thus, the parent is altruistic, The parent discounts per-period losses at

a rate δ ∈ (0, 1). The child’s discount factor may or may not coincide with that of the parent;

however, because of subsequent assumptions, this plays no role in the analysis.

Information and Policies. The child does not know M , but has prior beliefs about it. Specif-

ically, we assume that, from the child’s point of view, M is normally distributed, with mean M 0

and precision p0. Similarly, as far as the child is concerned, the correct way to perform the task

at time t , namely X t , has a normal distribution conditional upon M , with mean M and precision

pX . The child also assumes that X1, . . . , XL are conditionally independent.

The child chooses his action a t at the beginning of each period t . Upon completing the

task, he receives feedback about his performance; however, he cannot distinguish between the

consequences of his own choice and those of his parent’s intervention. We model this by as-

suming that, at the end of each period t , the child observes the sum X t +a t , but not its separate

components X t and a t .

The parent knows M , and also observes the realization of X t at the end of period t . Further-

more, the parent knows the child’s prior.13

Now temporarily suppose that the child was facing a standard learning model, without a

parent. Under the usual assumption that the child minimizes his discounted expected losses,

his optimal choice at time t would be the conditional expectation of M (equivalently, X t ) given

the prior history. In our setting this takes a convenient form:

E [X t |X1 = x1, . . . , X t−1 = x t−1] =
p0M 0+pX
∑t−1

s=1 xs

p0+(t −1)pX
. (1)

If instead the child faces a supervised-learning model, his optimal choices depend in part upon

his understanding of the parent’s own intervention policy. Our baseline model assumes that the

child disregards the parent’s influence on his learning environment. Formally, he acts as if ā t = 0.

We think of this as an interesting polar case that is helpful as an initial step. We also pursue a

“textbook equilibrium” approach in the Web Appendix; our main findings remain true in this

alternative model.

As a consequence of this assumption, at any time t ≤ T+1, after observing x1+ā 1, . . . ,x t−1+

13This is not particularly restrictive in this version of the model. If the parent does not know the value of M 0 but

anticipates the form of the child’s policy, he can learn M 0 in one period, provided he knows p0. Otherwise, he can

learn both M 0 and p0 in two periods.
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ā t−1, the child’s optimal action is his conditional expectation of X t :

M a
t ≡ E [X t |X1 = x1+ ā 1, . . . , X t−1 = x t−1+ ā t−1] =

p0M 0+pX
∑t−1

s=1(xs + ā s )
p0+(t −1)pX

. (2)

A similar expression for the conditional expectation M a
t applies to periods t > T + 1, when the

prior history includes dates at which the parent is not active: see the Appendix for details. Also

notice for future reference that M a
0 =M 0.

Comparing Eqs. (1) and (2) immediately shows that parental intervention distorts the child’s

learning process. On the other hand, parental intervention directly affects the child’s per-period

payoff; in particular, the expected time-t penalty conditional upon the parent’s information has

a simple “variance plus bias” representation:

E [(X t +a t −M a
t−1)

2|X1, . . . , X t−1, M ] = p−1
X +(M +a t −M a

t−1)
2. (3)

Thus, Eqs. (2) and (3) reflect the basic tradeoff in this model.

As in the standard learning models we build upon, our agents are Bayesian rational (i.e. they

maximize expected utility). However, our model is set up so that the child’s learning problem is

elementary: its solution involves a simple adaptive rule. Our main findings can be generalized

to a suitable class of non-Bayesian-rational adaptive learning rules.

Another limitation is that we do not allow the parent to “describe” or “demonstrate” how to

perform the task at hand. We only model one communication channel between the parent and

the child, namely the former’s intervention in the latter’s learning process. We certainly do not

wish to suggest that, in actual parent-child interactions, this really is the only open communi-

cation channel, and in fact we briefly discuss the empirical consequences of one highly stylized

model of communication in Section 3.14

2.2 Three benchmark parenting policies

Before we analyze the solution to the parent’s problem, it is useful to consider three reference,

or benchmark parenting policies.

Letting Go: a t = 0. This is the simplest policy. Clearly, it does not induce any bias in the

child’s learning process.

Full Sheltering: a t =M a
t−1 −M (a.k.a. “The Italian Mom”). This policy minimizes the per-

period loss at times t = 1, . . . , T : this can be seen from Eq. (3). Intuitively, recall that the child’s

14Indeed, it is well known at least since the work of Bandura and coauthors [3, 2] that children can learn by imi-

tating the behavior of others. Furthermore, a stream of literature in developmental psychology, starting in part with

the work of Vygotsky [44], emphasizes the “social” aspects of child development.
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choice at time t is b t =M a
t−1, and the loss is (X t + a t −b t ): thus, by choosing a t =M a

t−1−M ,

the parent “shifts” the mean of X t so that it coincides with the child’s choice. In other words,

the parent makes sure that the child “gets it right” on average. Of course, this has negative

consequences in terms of learning: the child’s belief that M a
t−1 is the mean of X t is reinforced,

no matter how close or distant from the true mean M it may be.

The Boot Camp: a t =
p0+(t−1)pX

pX
(M −M a

t−1). This policy ensures that, at the end of time

t (i.e. after observing X t ), the child’s posterior M a
t will be equal to M on average. Intuitively,

we can think of this policy as exacerbating the loss to the child for an incorrect choice, thereby

accelerating learning. Notice that, as time goes by, intervention becomes more and more severe;

this is because, under Bayesian updating, the child’s posterior precision also increases (at time

t , it equals p0+ t pX ), so it becomes harder to “convince” him that he is wrong.

Thus, the present framework allows for a range of qualitatively very different parenting

strategies involving positive as well as negative learning effects. Moreover, the Full Sheltering

and Boot Camp policies will turn out to be useful reference points to understand the main

features of the optimal solution: Full Sheltering maximizes myopic payoffs, whereas the Boot

Camp policy maximizes learning.

2.3 Characterization and key features of the Optimal Policy

We can now state our main characterization result:

Theorem 2.1 The optimal action of the parent at time t is a linear function of the child’s bias:

a t = γt (M a
t−1−M ). The intensity of intervention γt is time-varying but deterministic, and lies

between zero and one. Also, γt is decreasing in δ and L. Finally, γt is a weighted average of the

intensities of intervention for the “Full Sheltering” and “Boot Camp” policies.

A formal statement and proof of this and all other results are in the Appendix.

The key qualitative (and robust) conclusion of Theorem 2.1 is the finding that optimal par-

enting entails partial sheltering: the intensity of intervention γt lies in (0, 1).15 This finding plays

a central role in our analysis of the evidence from behavioral genetics in Sec. 3.

As the discount factor δ increases, and/or the number of unsupervised periods L − T in-

creases (specifically, if L increases and T is held fixed), learning the correct value of M becomes

more important for the child. Theorem 2.1 confirms that, in this case, the intensity of interven-

tion γt decreases.

Finally, the optimal policy is a combination of a parenting strategy that maximizes learning

(the “Boot Camp”) and one that maximizes myopic payoffs (“Full Sheltering”). In particular,

15We have verified numerically that, in a two-period model, partial sheltering is optimal for a wide range of loss

functions of the form |X t + ā t − b̄ t |r , with r ranging from 0+ to substantially above 2.
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Figure 1: Intensity of intervention for different values of p0 and pX .

γt = µt γ
FS
t +(1−µt )γBC

t , where γFS
t = 1, γBC

t =−
p0+(t−1)pX

pX
, and µt ∈ (0, 1). The weight µt placed

on the “Boot Camp” intensity γBC
t can be shown to reflect the relative cost of the child’s biases

in the current and the following periods: µt (and hence γt ) will be higher in periods when the

cost of mistakes is high relative to the following period.

Illustration and Interpretation. Figure 1 depicts the intensity of intervention for a range of

parameters, summarized in Table 1. The resulting patterns of parenting behavior are represen-

tative of what our model can generate.

Label Color δ p0 pX Label Color δ p0 pX

1 Red 0.9 1 0.1 4 Brown 0.99 0.1 1

2 Blue 0.9 1 1 5 Magenta 0.99 1 1

3 Green 0.9 0.1 1

Table 1: Parameters for the plots in Fig. 1. L = 100, T = 20.

In addition to the properties highlighted in Theorem 2.1, we draw attention to two key fea-

tures related to, respectively, the time evolution of the intensity of intervention and its depen-

dence on parameters related to ease of learning.
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The dynamics of the intensity of intervention16 can be understood in terms of the decom-

position of γt into a weighted average of the “Boot Camp” and “Full Sheltering” intensities. It

can be shown that, except possibly for the first few time periods, the weight µt placed on the

“Full Sheltering” intensity γFS
t will be decreasing in t for δ relatively low and increasing in t for

δ relatively high.

Consider first the case of relatively low discount factor; refer to the curves labeled 1,2 and 3

in Fig. 1. Recall first that, by Theorem 2.1, the intensity of intervention will be relatively high at

any point in time. Now notice that γFS
t is constant; on the other hand, since the precision p0+

(t −1)pX of the child’s posterior at time t increases linearly with t , the coefficient γBC
t becomes

more and more negative.17 Since µt is eventually decreasing in t , the same will be true for γt .

To interpret, note that the impact of observations on the child’s posterior is greater early on (see

Eq. (2)), so sheltering in later periods induces a smaller bias. We conclude that, if δ is low, the

parent places less weight on reducing the child’s bias than on minimizing current losses, and a

high, but eventually decreasing level of sheltering is optimal.

A symmetric argument applies to the case of relatively high discount factor (curves 4 and 5 in

Fig. 1), leading to low, but eventually increasing intensities of intervention. There is, however, an

additional complication: even if the weight placed upon Full Sheltering increases, the intensity

of intervention for the Boot Camp policy decreases linearly. Still, simulations suggest that the

pattern displayed in Fig. 1 is prevalent.

Ease of learning is determined both by the child’s ability to learn and the complexity of the

environment. In our model, these are captured by the relative magnitude of the precisions p0

and pX . Refer to Eq. (1), which characterizes Bayesian updating of the estimated mean of X t :

if p0 is high, or if pX is low, the child places more weight on her prior M 0 than on observations,

and hence learning occurs more slowly.

Our analysis identifies two effects of the ease of learning on the intensity of intervention.

The first is straightforward: if learning occurs more slowly, the child benefits less from a reduced

bias; thus, there is an incentive to provide more sheltering, i.e. increase γt , when learning is

harder. We call this the “inertia” effect.

There is, however, a more subtle intertemporal effect, pushing in the opposite direction. If

learning is harder, this will be the case not just today, but also in the future; in other words, the

“cost” (continuation value) of the residual bias at the end of the current period is higher when

learning is harder. Thus, there is an incentive to provide less sheltering, i.e. decrease γt , when

learning is harder. We call this the “continuation value” effect.

16Formal statements and proofs of the results referred to here can found in the Web Appendix available from the

authors’ Web pages.
17Intuitively, the child’s posterior is less affected by experience in later periods, and therefore a more substantial

intervention is required in order to correct a given expected bias.
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We have verified (via numerical analysis) that the inertia effect dominates when the dis-

count factor is low, whereas the continuation-value effect can prevail when δ is high.

3 Interpreting evidence from behavioral genetics

3.1 A Population Model

In order to analyze the interaction between genetic effects and parenting, we embed our sim-

ple, two-agent supervised-learning model within a population framework where parents and

children are heterogeneous.

We continue to assume that the correct way to perform a task is represented by the real

number M . We also continue to assume that every child has a normal prior over M . The dimen-

sion of heterogeneity we explore is the simplest one to analyze in our model: we assume that

a distribution of prior means M 0 in the population of children is given. Formally, we now treat

M 0 as a random variable.

Symmetrically, we assume that parents do not observe M , and have a normal prior on it,

with mean Z0 and precision pZ 0. Furthermore, a distribution of the prior mean Z0 in the popu-

lation of parents is given: thus, Z0 is also treated as a random variable. Because M is the same

for everyone in the population, the heterogeneity in priors, and in the corresponding posteriors,

has payoff consequences, and can be interpreted as a fitness measure: agents who are closer to

the true mean, namely, those who are more correct on average make better decisions. The exact

distribution of M 0 and Z0 is not important. We do, however, make a few assumptions relating

the key uncertain quantities in the model. First, to aid in the interpretation of this model, it is

useful to think of the parent’s prior beliefs N(Z0, pZ 0) as coming from (1) some prior belief that

the parent held when she was born as a child, and (2) subsequent experience acquired as the

parent was growing up. We also imagine that the distribution of the beliefs held by the parent

as she was born as a child is the same as the distribution of the current child’s beliefs: we elabo-

rate on this point in Sec. 3.4, and provide explicit calculations in Appendix A.2. Additionally, we

assume that children’s and parents’ prior means are uncorrelated with the observations.

Whenever we consider more than one parent and/or more than one child, these assump-

tions will apply to each child-parent pair and to the observations made by the child in that

pair. Observations made by different children will be assumed to be conditionally independent.

The correlations between the prior means of two individuals’ play a crucial role in our analysis.

These correlations reflect the genetic relatedness of the individuals under consideration. Thus, for

instance, the prior means of unrelated parents, or of parents and adoptive children, are uncor-

related; the prior means of monozygotic twins are perfectly correlated; and so on.18

18We note that there may be some ambiguity as to the interpretation of the term ‘parent.’ We typically mean some
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An convenient feature of the linear-quadratic-Gaussian framework adopted here is that,

even if parents do not know M , the optimal policy has the same structure as in Theorem 2.1;

in particular, the intensity of intervention γt is the same as in Section 2. The only difference is

that, at each time t , M is replaced with its conditional expected value at that time, given the

parent’s prior mean Z0 and the realizations of the signals X1, . . . , X t .

3.2 Behavioral Genetics: the ACE model

As was noted in the Introduction, the literature on behavioral genetics (BG henceforth) empha-

sizes the central role of an individual’s genes in determining a variety of traits such as IQ, in-

troversion, neuroticism, social attitudes and many others. Behavioral geneticists build much of

their analysis on the so-called “ACE model”; we now discuss a widely-used variant (cf. Plomin,

et al. [33], p. 345 ff.).

The first step is to decompose the observable characteristic of interest, or phenotype, into a

sum of three factors: the individual’s genotype, or genetic endowment; the shared environment,

corresponding to factors that affect siblings reared in the same family; and the non-shared envi-

ronment, which captures idiosyncratic elements of the phenotype. The random variables cor-

responding to the phenotype and the three factors just described are commonly denoted by P ,

A, C and E respectively; the reference equation of the ACE model can then be written as

P = A +C +E . (4)

The typical assumption in the ACE model is that the factors affecting a given individual’s pheno-

type are mutually independent. Consequently, the variance of P equals the sum of the variances

of the three factors A, C and E .

It should be emphasized that the additive formulation in Eq. (4) does not follow from, or

even suggest, an explicit biological–developmental “production function” whereby genetic and

environmental inputs are transformed into behavioral outputs. In the words of Goldberger [24],
the factors A, C and E are best viewed as “hypothetical constructs.”

By way of contrast, our model suggests a linear relationship whose terms have a direct in-

terpretation in our framework. Specifically, consider for simplicity a two-period version of the

model in Sec. 2; the parent is active only in the first. We can interpret the child’s posterior at

time 1, i.e. M 1, as her phenotype. The form of the optimal parenting policy provided by Theo-

rem 2.1 enable us to express the phenotype M 1 as a function of the primitive parameters of our

aggregate of the two parents, which reflects the extent to which child-rearing responsibilities are shared within the

family. This only matters when quantifying the genetic relatedness of a child and his biological ‘parent.’ However, we

do not need to take a stand on the precise values here; all we need is that the child have substantial (but not perfect)

genetic relatedness with his biological ‘parent.’
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model, as well as the intensity of intervention γ1. Specifically,

M 1
︸︷︷︸

P

=
p0

p0+pX
M 0

︸ ︷︷ ︸

A

+γ1
pX

p0+pX
(M 0−Z0)

︸ ︷︷ ︸

C

+
pX

p0+pX
X1

︸ ︷︷ ︸

E

, (5)

where we have emphasized a possible mapping between the key quantities in our framework

and the additive factors in the ACE model. The terms corresponding to A and E have been cho-

sen to be purely genetic and, respectively, purely environmental and non-shared respectively;

the remaining term captures the effects of parenting, and corresponds to the factor C in the ACE

model.19 Eq. (5) will provide the basis for the analysis in the following two subsections.

3.3 Evidence from Twin Studies

One simple approach to evaluate the relative importance of genes and common rearing in de-

termining cognitive and behavioral traits entails computing the correlation between measured

characteristics of the two members of a twin pair (“phenotypic correlation”), and comparing

these correlations across distinct categories of twins that differ by genetic similarity and/or rear-

ing.

For instance, for most traits of interest, the phenotypic correlation for monozygotic (identi-

cal; MZ henceforth) twins reared apart, by different adoptive parents, is not significantly smaller

than for MZ twins reared together, by their biological parents. Specifically, in most studies, the

phenotypic correlation for MZ twins reared apart, denoted r MZA, is at least 90% of the pheno-

typic correlation for MZ twins reared together, denoted r MZT . In fact, for certain traits, pheno-

typic correlation is actually higher for twins raised apart than for twins raised together (Bouchard

[14], Tab. 4). Furthermore, the difference between r MZT and r MZA is considerably smaller than

that between the phenotypic correlations for MZ and dizygotic (fraternal; DZ henceforth) twins

reared together (cf. Goldberger [24]).

In the BG literature, these findings are interpreted as indicating that common rearing plays

a minor role in determining the traits of interest. Intuitively, if genotype and environmental fac-

tors are independent, the phenotypic correlation between twins reared together is determined

both by their common genetic endowment, and by their common rearing (the non-shared en-

vironment is, by definition, unique to each child); on the other hand, for twins reared apart,

phenotypic correlation can only be driven by commonality in their genetic endowment. Thus,

if r MZA is not much smaller than r MZT , the contribution of common rearing to phenotypic cor-

relation must be small. Similarly, MZ and DZ twins reared together share the same rearing envi-

19An alternative to the proposed mapping is to let A = p0+γ1pX

p0+pX
M 0, leave E unchanged, and adjust C accordingly.

This would only require minor alterations in the following discussion; the main conclusions of our analysis would

be, of course, unchanged.
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ronment; taking the difference between their respective phenotypic correlations “cancels out”

the common effects of parenting, so any remaining difference must be due to the fact that MZ

twins have the same genetic endowment, whereas DZ twins only share 50% of the genes. There-

fore, if r MZT − r MZA < r MZT − r DZT , reducing genetic commonality between twins has a greater

effect on phenotypic correlation than rearing them in separate families. This intuition can be

formalized in the ACE model—although it should be noted that the latter cannot explain the

finding that r MZA > r MZT for certain traits.

We shall now show that these same patterns of phenotypic correlations arise in our model of

supervised learning, precisely because of key features of the optimal parenting policy. Therefore,

the conclusion that family influence is limited is not necessarily warranted—in our model, the

above correlational patterns are consistent with significant parental input. In other words, our

model can match this data, but is consistent with a more positive view of parenting. Towards the

end of §3.4, we also argue that other natural alternative models, including ones in which parents

directly communicate with children, cannot rationalize these findings. Our model also allows

us to obtain additional predictions that have not yet been investigated in the BG literature.

3.4 Phenotypic Correlations under Supervised Learning

Note first that Eq. (5) may be used to compute phenotypic correlations for all twin categories

mentioned in the preceding discussion. It is convenient to define p = pX

p0+pX
, which corresponds

to the precision of the observation X t as a fraction of the precision of the child’s posterior M 1.

We also denote by v0 and vZ 0 the population variances of M 0 and Z0 respectively; by v1 and

v1a the variances of M 1 for children reared by their biological parents and by adopted parents

respectively (as we elaborate in §3.5 below, these will be different in our model); and by vX = 1
pX

the variance of X t . Finally, let r0 denote the correlation between M 0 and Z0 (for a child reared

by her biological parents).

Appendix A.2 explicitly calculates r MZT − r MZA and r MZT − r DZT ; here, we focus on

r MZT − r MZA = [pγ1]2
vZ 0

v1
− r0

¨

2
vX +γ2

1vZ 0

v1a
[(1−p )+pγ1]p 3γ1

p
v0vZ 0

v1

«

. (6)

We emphasize a key feature: the correlation r0 between the child’s prior M 0 and her biological

parent’s initial mean Z0 enters with a negative sign in Eq. (6), and hence reduces the difference

in phenotypic correlation between MZ twins reared together and reared apart. Thus, common

rearing has a direct (and obvious) positive effect on phenotypic correlation, reflected in the first

term in the r.h.s. of Eq. (6); however, our analysis uncovers a compensating effect. As a result,

the difference r MZT − r MZA may well be very small, and even negative.

This effect is the main force that enables our model of supervised learning to generate the

correlational patterns discussed above, for a broad range of sensible parameterizations. Thus,
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it is useful to elaborate upon the intuition behind the negative effect of r0 on the difference in

phenotypic correlation. We shall then discuss our quantitative findings.

Each twin raised by adoptive parents is likely to be less similar to her parent than if she was

raised by her biological parent. On average, this will lead adoptive parents to provide more shel-

tering. This is consistent with evidence from a variety of sources. For instance, Hoopes [30] finds

that “adoptive mothers are more protective and careful with the children... adoptive mothers

and fathers reported that they fostered more dependency than the biological fathers and moth-

ers. The latter group admitted to greater feelings of irritability regarding their children, and the

fathers tended to force independence, suppress affection, and accelerate development (p.23).”

Furthermore, these more protective attitudes of adoptive parents “may have their effect on the

children, who, at 5 years of age, were rated as a little less confident and less willing and attentive

in task completion (p.27).” Warren [45] shows that “adoption significantly increases the likeli-

hood of referral for psychiatric treatment, even after controlling for the fact that adoptees are

significantly more likely to be referred when they display few problems.”

The fact that sheltering is greater for adoptive children implies that non-shared environ-

mental influences will have fewer opportunities to affect the twins’ posterior, which, as a result,

will be more similar to their prior, and hence more similar to one another on average. Conversely,

twins raised by their biological parents will be subject to less sheltering, because their priors are

positively correlated with their parents’. Hence, their non-shared experiences will have a greater

role, and they will end up being less similar to one another.

Thus, differential sheltering by biological and adoptive parents provides a countervailing

force to common rearing;20 this is captured in Eq. (6) by the negative coefficient of r0.

Other models can potentially generate analogous countervailing forces through different

means. For instance, we could obtain similar effects if we assumed that intervention by parents

is solely driven by a desire to have their children be similar to them.21 Under this assumption,

because the biological parents are more similar to their children than the adoptive parents, the

latter intervene more intensely, thus generating similar effects to those discussed above. This

suggests that the effect outlined in this paper should be robust to some alternative modeling

approaches.

However, it is useful to point out that other natural, alternative modeling approaches would

not generate such an effect. For instance, consider a variant of the model developed in this

paper in which parents simply communicate a noisy signal of their prior mean Z0 to children,

but do not intervene in their learning process. Such a model would differ from the reference

20The fact that common rearing increases phenotypic correlation for twins reared together, and hence the differ-

ence between r MZT and r MZA, is captured by the positive coefficient on vZ 0, the variance of the parent’s prior; see also

Eq. (22) in Appendix A.2.
21Bisin and Verdier [9, 10]make such an assumption in a model of cultural transmission.
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ACE framework because shared environmental factors are correlated with the child’s genes. Yet,

such a model would be unable to match the empirical finding that r MZT − r MZA is small, unless

one is willing to assume that communication is particularly ineffective.22 But, in a model of

this kind, this would be tantamount to assuming directly that parents have limited influence on

their children, as suggested by Harris [27] and other “extreme anti-nurturists.”

We finally demonstrate in Figure 2 below that the correlational patterns described in the

preceding subsection emerge for a broad range of parameters. In particular, to rule out implau-

sible parameterizations,23 we consider a “steady-state” version of our model. In every period,

parents are explicitly modeled as individuals who were born at the beginning of the previous

period with some prior beliefs, which they subsequently revised in light of observations made

under the supervision of their own parents. This enables us to write the parent’s initial mean Z0

in a form analogous to Eq. (5), and compute its variance vZ 0 and correlation r0 with M 0 (for

twins reared by their biological parents) as functions of the remaining parameters. Appendix

A.2 provides the details.

We set δ= (0.95)20, intuitively suggesting a 95% yearly discount factor and a teaching period

lasting for 20 years.24

Since the coefficient of intervention γ1 is itself a function of p = pX

p0+pX
andδ, it is sufficient to

specify values p , v0 and the variance vX of X t in addition toδ to obtain a full parameterization of

our model. Finally, it is easily verified that phenotypic correlations are unaffected by a common

rescaling of all variances; hence, we can focus on only two parameters, namely p and the ratio

of v0 to vX . Figure 2 depicts the former on the vertical axis and the latter on the horizontal axis.

Every point below the topmost curve corresponds to a parameterization for which r MZT −
r MZA is smaller than r MZT − r DZT . The second curve from the top is the upper bound of the

region where r MZA is more than 90% of r MZT , and the one immediately below it demarcates the

region where r MZA is more than 95% of r MZT . Finally, the oval-shaped region bounded by the

last two curves corresponds to parameter values for which r MZA is actually greater than r MZT .

Two main conclusions can be drawn by inspecting Fig. 2. First of all, as noted above,

for a substantial range of parameter values, our model generates correlational patterns that

the BG literature has interpreted as indicating limited parental influence on developmental

outcomes—despite the fact that our model accords a fundamental role to parents.

22Also, regardless of the level of communication, such a model could not account for the finding that r MZT < r MZA

for some traits.
23For instance, we wish to rule out the possibility that Z0 may be non-random, because this would be inconsis-

tent with the assumption that this quantity is itself determined by the parent’s prior at “time −1” and subsequent

(supervised) learning.
24Higher values of δ lead to even greater prevalence of the above correlational patterns. Also, the present calcu-

lations assume L = 2; however, a nearly indistinguishable diagram is obtained for higher values of L—for instance,

consistently with Fig. 1, one could take T = 1 and L = 5, where each “period” corresponds to 20 years.
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Figure 2: Twins reared together vs. Twins reared apart

Second, our setup provides a richer framework than the benchmark ACE model to interpret

findings from twin and adoption studies. For instance, suppose that p is greater than 1
2 , indicat-

ing a relatively higher weight of experience in the child’s learning process—hence, a relatively

limited contribution of genetic factors to the phenotype. As Fig. 2 shows, whether, for instance,

r MZT − r MZA is smaller or larger than r MZT − r DZT depends upon the relative magnitude of the

variances v0 and vX . If the environment is relatively homogeneous in the population under con-

sideration (i.e. vX is small relative to v0), then our model predicts that r MZT−r MZA < r MZT−r DZT .

Behavioral geneticists would interpret this as indicating that genetic factors are determinant;

however, our model suggests that, in these circumstances, this pattern may instead be entirely

due to the relative homogeneity of the environment.

In this respect, our model formalizes an objection to the BG interpretation of correlational

findings that other researchers have voiced; for instance, see Ridley [35, pp. 86-87]. Moreover, it

also qualifies this objection: if p is small, so that the child’s genetically-determined prior has a

large weight, then the homogeneity of the environment does not matter: the same correlation

patterns will emerge.

3.5 Auxiliary predictions of the model

The observation that adoptive parents provide more sheltering have two further empirical im-

plications in our model that have not been discussed in the BG literature.
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Differences in phenotypic variance The variance of the posterior mean is larger for adopted

children. This is because adopted children are less exposed to non-shared experiences, and

hence don’t learn the correct way to perform the task at hand as fast as children reared by their

biological parents. The Appendix provides an explicit calculation.25

Thus, our model provides a prediction on the relative dispersion of adopted vs. non-adopted

children. This auxiliary prediction of our model cannot be obtained in the ACE framework: in

the latter, phenotypic variances are the same in all sub-populations. We have surveyed several

studies to verify whether this prediction is consistent with the data. The answer is largely pos-

itive, albeit not in every sample or for every outcome measure. For instance, in Bjorklund et

al [12] (see Table 1), the variance of earnings and income is larger for adoptive children, while

the variance of years of education is slightly smaller for adoptive children. We view this as good

news for our stark model of parenting, since there are potential countervailing factors push-

ing the variances in the opposite direction. In particular, because the process of adoption is

somewhat selective, the most extreme dysfunctional families are likely to be excluded, thereby

reducing the population variance of adoptive parents; as the calculations in Appendix A.2 show,

this in turn reduces the variance for adoptive children.

Correlation of MZ twins adopted together In the previous subsection we have discussed

the contrast between the correlations of MZ twins reared together by their biological parents

and those reared apart by different adoptive parents, because this is a focus of the BG literature.

However, it is easy to show that our model predicts that the highest correlation among twins

arises for MZ twins reared together in an adoptive family. The reason is that these individu-

als share the same parents, and at the same time they are sheltered more than children reared

by biological families. When comparing MZA and MZT twins, these two forces push in oppo-

site direction; however, they both lead to an increased correlation for twins reared in the same

adoptive family.

3.6 Heritability Estimates

In the context of the ACE model, a key quantity of interest is heritability, defined as

Var [A]
Var [P]

≡ h2. (7)

Heritability is intended to capture the extent of variation in the observable trait of interest that

can be ascribed to variation in the genes. As an example, for several measures of IQ, Bouchard

25It is important to point out that this is a statement about the variance of posterior means, not their population

average. In fact, Eq. (5) implies that the average posterior mean will be the same for adopted and biological children.

This is a consequence of the linearity of the parent’s optimal policy.
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[14] reports values of heritability ranging from 69% to 78%. According to the above interpreta-

tion, these figures suggest that IQ is, to a large extent, genetically determined. It should be noted

that the interpretation of heritability adopted in BG is subject to a number of qualifications (see

e.g. Goldberger [24]); nevertheless, heritability remains a central quantity of interest in BG, and

one that is often invoked in various instances of the nature-nurture debate (e.g. Herrnstein and

Murray [29]).

One common measure of heritability is the correlation in the measured trait under consid-

eration for MZ twins raised apart. The intuition suggested by behavioral geneticists is that, due

to their being reared in different families and, more broadly, environments, such individuals

can only be alike to the extent that their genetic endowment (which is identical) influences the

measure of interest. Another common measure of heritability is the difference between the cor-

relations in a measured trait of interest for MZ and DZ twins reared by their biological parents,

multiplied by two. The suggested intuition is that taking the difference between these correla-

tions “cancels out” any (additive) effect of common rearing and, more broadly, environmental

factors on the trait of interest, thus identifying purely genetic effects. One advantage of this

approach relative to the one involving adopted twins is the availability of considerably larger

samples. The findings are broadly in line with those reported above. The reader is referred to

Goldberger [24] and Plomin et al. [33] for rigorous calculations;26 we emphasize that crucial

independence assumptions are required in these derivations.

On the other hand, we show in Appendix A.2 that, in our model,

r MZA = 2(r MZT − r DZT ) = [(1−p )+γ1p ]2h2.

Since γ1 > 0, it follows that standard measures of heritability underestimate the effects of parent-

ing on the trait of interest.

Slightly rephrasing, standard calculations in BG can be seen as capturing a broad notion of

heritability, reflecting both the direct impact of genes on the phenotype, as well as their indirect

impact, mediated by parenting. However, even comparatively large values of “broad heritabil-

ity” do not provide any rationale for negating a significant role for parenting as a contributor to

developmental outcomes.

A Appendix

A.1 Theorem 2.1

26For convenience, the Web Appendix available from the authors’ Web pages also provides calculations.
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Let p t = p0+ t pX for t = 0, . . . , L, and define the random variable

M a
t =







p0M 0+pX
∑t

s=1[Xs+a s (M ,X1,...,X t−1)]
p t

t ≤ T
p0M 0+pX
∑T

s=1[Xs+a s (M ,X1,...,X t−1)]+pX
∑t

s=T+1 Xs

p t
t > T

(8)

The formal statement of Theorem 2.1 is as follows:

Theorem A.1 The optimal parenting policy a = (a 1, . . . , a T )∈A is

a t = γt (M a
t−1−M ), (9)

where γt =
1−δBt+1

pX

p t

p t−1

p t

1+δBt+1

�

pX

p t

�2
, BT+1 =

L−T
∑

τ=1

δτ−1

�

pT

pT+τ−1

�2

, Bt =
δBt+1

1+δBt+1

�

pX

p t

�2
. (10)

Furthermore, γt ∈ (0, 1) and γt is decreasing in δ and L. Finally, for t = 1, . . . , T ,

γt =µt γ
FS
t +(1−µt )γBC

t , where µt =
Bt

δBt+1
∈ (0, 1), γFS

t = 1, γBC
t =−

p t−1

pX
.

Proof. The fact that γt is decreasing in δ and L follows from a simple induction argument, by in-

specting Eq. (10); we thus focus on the remaining statements. Let a = (a 1, . . . , a T ) ∈A denote the par-

ent’s optimal policy; also, to simplify the notation, we write M a
t−1 simply as M t−1. Thus, by the arguments

given in the text, at each time t , the child’s optimal action is b t =M t−1.

Begin by analyzing the non-teaching periods. From Eq. (8), for all t ≥ T and τ≥ 0,

M t+τ =
1

p t+τ

�

p t M t +pX

t+τ
∑

s=t+1

Xs

�

, (11)

where, as usual, for τ= 0, the summation is taken to equal zero. Hence, for t ≥ T and τ≥ 1,

X t+τ−M t+τ−1 = X t+τ−
p t

p t+τ−1
M t −

pX

p t+τ−1

t+τ−1
∑

s=t+1

Xs = (12)

= (X t+τ−M )−
p t

p t+τ−1
(M t −M )−

pX

p t+τ−1

t+τ−1
∑

s=t+1

(Xs −M );

the last line uses the fact that p t M +pX

∑t+τ−1
s=t+1 M = p t M +pX (τ−1)M = p t+τ−1M . It now follows that, at

any time t ≥ T , and for all τ≥ 1, the expected loss at time t +τ given the observed value of M t and the

true value M is

E[(X t+τ−M t+τ−1)2|M , M t ] =
1

pX
+

p 2
X

p 2
t+τ−1

(τ−1)
1

pX
+

p 2
t

p 2
t+τ−1

(M t −M )2,

because X1, . . . , XL are i.i.d. N(M , p−1
X ) given M , so that all of the cross-terms, which are of the form (X t+τ−

M )(M t −M ), (X t+τ−M )(Xs −M ) and (M t −M )(Xs −M ) for s ∈ {t +1, . . . , t +τ−1}, and (Xs −M )(Xσ−M )
for s ,σ distinct in {t +1, . . . , t +τ−1}, all have zero conditional expectation.
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Hence, for every t +1∈ {T +1, . . . , L}, conditional upon M and M t , the expected time-(t +1) contin-

uation value of the child’s optimal policy is Vt+1(M t , M ) = A t+1+ Bt+1(M t −M )2, where

A t+1 =
L−t
∑

τ=1

δτ−1

�

1

pX
+

pX

p 2
t+τ−1

(τ−1)

�

, Bt+1 =
L−t
∑

τ=1

δτ−1

�

p t

p t+τ−1

�2

. (13)

Turn now to teaching periods t ∈ {1, . . . , T }. From the argument just given, VT+1(M T , M ) = AT +
BT+1(M T −M )2. We now show inductively that, for t = T, . . . , 1, if Vt+1(M t , M ) = A t+1 + Bt+1(M t −M )2,

then the equations for a t and γt in Thm. 2.1 hold, and furthermore Vt (M t−1, M ) = A t + Bt (M t−1−M )2,

where Bt is again as in Thm. 2.1. By Eq. (8), for every t ≤ T ,

M t =
p0

p t
M 0+

pX

p t

t
∑

s=1

(Xs +a s ) =
p t−1

p t
M t−1+

pX

p t
(X t +a t ). (14)

After substituting for M t in the expression for Vt+1 in the inductive hypothesis, conditional on the infor-

mation It ≡ {M , X1, . . . , X t−1}, the action a t must solve the Bellman equation

Vt (M t−1, M ) = min
ā

E
�

(X t + ā −M t−1)2|It
�

+ (15)

+ δE

�

A t+1+ Bt+1

�

p t−1

p t
M t−1+

pX

p t
(X t + ā )−M

�2

|It

�

.

Differentiating with respect to ā , taking expectations, and dividing by 2 yields the FOC

0= ā − (M t−1−M )+δBt+1

�

p t−1

p t
M t−1+

pX

p t
(M +a )−M

�

pX

p t
and therefore

a t =
1−δBt+1

pX p t−1

p 2
t

1+δBt+1

�

pX

p t

�2
· (M t−1−M )≡ γt (M t−1−M ). (16)

We now show that Vt can be expressed as a quadratic form in (M t−1−M ). First, note that

X t +γt (M t−1−M )−M t−1 = (X t −M )− (1−γt )(M t−1−M );

as for the quadratic form in the second line of Eq. (15),

p t−1

p t
M t−1+

pX

p t
(X t +γt (M t−1−M ))−M =

p t−1+pXγt

p t
(M t−1−M )+

pX

p t
(X t −M ).

Therefore Vt (M t−1, M ) = A t + Bt (M t−1−M )2, where A t is a suitable constant and

Bt = (1−γt )2+δBt+1

�

p t−1+pXγt

p t

�2

. (17)

To show that Bt can be written as in Eq. (10), note that

1−γt =
1+δBt+1

�

pX

p t

�2
−1+δBt+1

pX p t−1

p 2
t

1+δBt+1

�

pX

p t

�2
=

δBt+1

1+δBt+1

�

pX

p t

�2

pX

p t
and (18)
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p t−1+γt pX

p t
=

1

p t

p t−1+p t−1δBt+1

�

pX

p t

�2
+pX −pXδBt+1

pX p t−1

p 2
t

1+δBt+1

�

pX

p t

�2
=

1

1+δBt+1

�

pX

p t

�2
. (19)

The expression for Bt in Eq. (10) now follows from Eqs. (17), (18), and (19).

We now show that γt ∈ (0, 1) for t = 1, . . . , T . It is clear that γt < 1, so we must only verify that γt > 0.

Notice first that, from Eq. (13), for t = T +1, . . . , L−1,

Bt =
L−(t−1)
∑

τ=1

δτ−1

�

p t−1

p t+τ−2

�2

=
�

p t−1

p t−1

�2

+
L−(t−1)
∑

τ=2

δτ−1

�

p t−1

p t+τ−2

�2

=

= 1+δ
L−t
∑

τ=1

δτ−1

�

p t−1

p t+τ−1

�2

= 1+δ
�

p t−1

p t

�2 L−t
∑

τ=1

δτ−1

�

p t

p t+τ−1

�2

= 1+δ
�

p t−1

p t

�2

Bt+1;

also, BL = 1. Furthermore, we claim that Bt+1
pX

p t

p t−1

p t
< 1 for all t < L. The claim is true for t = L − 1,

because BL = 1 and p t = pX +p t−1 for all t ≥ 1. Now consider an arbitrary t ∈ {T + 1, . . . , L} and assume

the claim is true for t +1, . . . , L. Now Bt
pX

p t−1

p t−2

p t−1
= pX

p t−1

p t−2

p t−1
+δBt+1

�

p t−1

p t

�2 pX

p t−1

p t−2

p t−1
= pX

p t−1

p t−2

p t−1
+δBt+1

pX

p t

p t−1

p t
·

p t−1

p t−1

p t−2

p t−1
≤ pX

p t−1
+δBt+1

pX

p t

p t−1

p t
· p t−2

p t−1
< 1.

Hence, in particular, δBT+1
pX

pT

pT−1

pT
< 1, and so γT ∈ (0, 1). If T = 1, we are done. Otherwise, by induc-

tion, let t ∈ {1, . . . , T }; assume that the claim is true for t +1. By Eqs. (18) and (10), Bt+1 = (1−γt+1)
p t+1

pX
, so

Bt+1
pX

p t

p t−1

p t
= (1−γt+1)

p t+1

pX

pX

p t

p t−1

p t
= (1−γt+1)

(p t+pX )(p t−pX )
p 2

t
= (1−γt+1)

p 2
t −p 2

X

p 2
t
= (1−γt+1)
�

1− p 2
X

p 2
t

�

< (1−γt+1),

because p t = p0+ t pX ≥ p0+pX for t ≥ 1. By the induction hypothesis, 1−γt+1 ∈ (0, 1), so Bt+1
pX

p t

p t−1

p t
< 1

and therefore γt ∈ (0, 1), as claimed.

Finally, we show that γt can be decomposed as a weighted average of γFS
t and γBC

t . We have

γt =
1−δBt+1

pX

p t

p t−1

p t

1+δBt+1

�

pX

p t

�2
=

1+δBt+1

�

pX

p t

�2�

− p t−1

pX

�

1+δBt+1

�

pX

p t

�2
=

=
1

1+δBt+1

�

pX

p t

�2
·1+

δBt+1

�

pX

p t

�2

1+δBt+1

�

pX

p t

�2
·
�

−
p t−1

pX

�

≡µt γ
FS
t +(1−µt )γBC

t ,

and Eq. (10) implies that µt = 1

1+δBt+1

�

pX
pt

�2 =
Bt

δBt+1
, which clearly lies in (0, 1).

A.2 Supervised Learning and Twin Correlations

Recall that p = pX

p0+pX
as in §3.4. We begin by calculating phenotypic variance for children reared by their

biological parents: from Eq. (5), since X1 is uncorrelated with M 0 and Z0, we get

v1 = [(1−p )+pγ1]2v0+p 2vX +[pγ1]2vZ 0−2p (1−p )r0
p

v0vZ 0. (20)

For children reared by adoptive parents, the correlation of M 0 and Z0 is zero, so

v1a = [(1−p )+pγ1]2v0+p 2vX +[pγ1]2vZ 0. (21)
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We now turn to correlations. Let M 1 and M ′1 be the posterior of two twins. For MZ twins reared

together, Eq. (5) yields M 1 = [(1−p )+pγ1]M 0−pγ1Z0+p X1 and M ′1 = [(1−p )+pγ1]M 0−pγ1Z0+p X ′1,

because these siblings have the same genetic endowment and the same parents. Thus

r MZT = [(1−p )+pγ1]2
v0

v1
+[pγ1]2

vZ 0

v1
−2[(1−p )+pγ1]pγ1r0

p
v0vZ 0

v1
. (22)

For DZ twins reared together, we have M 1 = [(1−p )+pγ1]M 0−pγ1Z0+p X1 and M ′1 = [(1−p )+pγ1]M ′0−
pγ1Z0 + p X ′1, because these siblings share the same parents; biological considerations suggest that the

correlation between M 0 and M ′0 is 1
2

. Therefore,

r DZT =
1

2
[(1−p )+pγ1]2

v0

v1
+[pγ1]2

vZ 0

v1
−2[(1−p )+pγ1]pγ1r0

p
v0vZ 0

v1
, (23)

and the quantity r MZT − r DZT can be readily obtained from Eqs. (22) and (23). Finally, for MZ twins

reared apart, we have M 1 = [(1−p )+pγ1]M 0−pγ1Z0+p X1 and M ′1 = [(1−p )+pγ1]M 0−pγ1Z ′0+p X ′1,

because these siblings have the same genetic endowment, but different parents. If adoptive parents are

independently drawn, the correlation of Z0 and Z ′0 is zero, and so

r MZA = [(1−p )+pγ1]2
v0

v1a
. (24)

Simple calculations using Eqs. (20) and (21) yield the expression for r MZT − r MZA in Eq. (6).

Finally, we describe the steady-state model we used to generate Fig. 2. We shall first compute Z0 as

the posterior of an individual with prior M−1, who learns from the observation of X−1 under the supervi-

sion of a biological parent27 with time-(−1)mean Z−1. By analogy with Eq. (5),

Z0 = [(1−p )+pγ1]M−1+p X0−pγ1Z−1;

Z−1 has a similar expression, which we can use to substitute for Z−1 above. Iterating, we get

Z0 =
∞
∑

t=1

(−pγ1)t−1 �[(1−p )+pγ1]M−t +p X−(t−1)
	

.

A child shares approximately 50% of her genes with her parent, who in turn shares approximately 50% of

his genes with his own parent, etc.; thus, the correlation between M 0 and M−t can be taken to be 2−t , so

their covariance is 2−t v0. Also, M 0 is uncorrelated with observations; thus,

Cov [M 0,Z0] = [(1−p )+pγ1]v0

∞
∑

t=1

(−pγ1)t−1
�1

2

�t

.

Finally, to compute vZ 0, note that, in steady state, it must be the case that v1 = vZ 0; furthermore, clearly

Cov [M 0,Z0] = r0
p

v0vZ 0. Thus, we can substitute for the latter quantity in Eq. (20), assume that v1 = vZ 0

and solve for vZ 0: we get

vZ 0 = v1 =
[(1−p )+pγ1]2v0+p 2vX −2p (1−p )Cov [M 0,Z0]

1− [pγ1]2
.

27Adding a small fraction of adopted children in each generation has very limited quantitative effects.
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