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Abstract

This paper considers a repeated model of selective awareness and studies im-
plications for information processing. An individual receives a sequence of signals.
Each signal is informative about the �state of the world.�As in the static models
of Benabou and Tirole (2002, 2004) and Benabou (2008a, 2008b), the individ-
ual can choose how to interpret each signal. The individual�s behavior displays
patterns consistent with observed biases in information processing. She displays
a tendency to interpret information in ways that support original beliefs and
attaches a disproportionately large weight to initial observations (con�rmation
bias). She also updates beliefs in the right direction, but in insu¢ cient amount
compared to the update derived by Bayes�rule (conservatism bias). Additionally,
the individual disregards information after a certain number of observations. As
a consequence, learning is always incomplete.

1 Introduction

Economists typically model humans as statisticians who collect information in an unbiased
manner and make impartial inferences. The psychological evidence, however, suggests that
we tend to behave like unscrupulous statisticians, who collect and interpret information
interested more in feeling competent than in the accuracy of our inferences. Sedikides, Green,
and Pinter (2004, pp. 165), for example, describe people as �striving for a positive self-
de�nition or the avoidance of a negative self-de�nition (...) at the expense of accuracy and
truthfulness.�

Social scientists have long recognized that our biases in information processing may lead
to imperfect learning. Montier (2007), for example, argues that �the major reason we don�t
learn from our mistakes (...) is that we simply don�t recognize them as such. We have a
gamut of mental devices all set up to protect us from the terrible truth that we regularly
make mistakes.�

1 I thank Dilip Abreu, Roland Benabou, Stephen Morris, John Smith, and Muhamet Yildiz for valuable
suggestions, and seminar participants at Princeton, London School of Economics, the Behavioral Economics
Conference (Cornell), and the Murray S. Johnson Memorial Conference (UT Austin) for comments.

This version: May, 2010.

1

mailto:dgottlie@princeton.edu


This paper studies how biases in information processing arise and persist when individuals
are subject to selective awareness (either by selective attention or selective memory). In order
to analyze this issue, I develop a model based on the framework of Benabou and Tirole (2002,
2004, 2006a, 2006b) and Benabou (2008a, 2008b). The model provides a uni�ed explanation
for certain biases in information processing.

Consistently with a huge amount of psychological evidence, the model predicts a tendency
to seek and interpret information in ways that support original beliefs (con�rmation bias).
According to Evans (1989, pp. 41), �[c]on�rmation bias is perhaps the best known and
most widely accepted notion of inferential error to come out of the literature on human
reasoning.�As a result, individuals in my model attach a disproportionately large weight to
initial observations. Individuals with a favorable initial streak of information become trapped
with optimistic beliefs and disregard negative information received afterwards. Similarly,
individuals with a negative initial streak of information are stuck into a pessimistic trap, in
which every positive information is disregarded. The model also leads to an updating bias
known as conservatism. Conservatism states that individuals update their beliefs in the right
direction, but by too little relative to the update derived by Bayes�rule.

The model studies an in�nitely lived individual, who receives a sequence of binary signals.
Each signal provides information about the state of the world. A state of the world may
correspond to the individual�s (unknown) skills (Section 3), or some other unknown feature
that a¤ects her payo¤ through anticipatory utility (Subsection 4.2).

I consider two di¤erent information structures. In the �rst one, there is a small probability
that the process will terminate in each period and the individual will have to take an action
(Section 3). As Wilson (2005) argues, this setup captures an environment in which the
individual expects to obtain a long sequence of information but is unsure about when the
decision will have to be made. In the second information structure, the individual observes a
�xed number of signals and takes an action after the last observation (Subsection 4.3). This
setup represents an environment in which the individual is certain about when the decision
will have to be made and how much information she will acquire before then. The payo¤
from the action depends on the state of the world.

The individual processes information as in the models of Benabou and Tirole. After
observing each signal, she chooses whether to interpret it realistically or to rationalize it
away. The main feature of the model is a trade-o¤ between optimism and improved decision-
making. When the action space is �nite, the individual becomes increasingly convinced about
which action to take as she observes more signals. Therefore, she chooses to rationalize
negative information away after becoming su¢ ciently convinced of which action to take since
the chance that each additional signal would a¤ect her choice becomes arbitrarily small.
When the action space is continuous, each individual signal may always a¤ect the decision.
Nevertheless, because the cost of distorting an action close to the optimum is of second order,
the individual will always choose to rationalize negative information away after a su¢ ciently
large number of observations.

Therefore, the model predicts that �rst impressions matter: initial information gets a
disproportionately large weight. The model also predicts a con�rmatory bias: individuals
do not change their beliefs after they become su¢ ciently convinced of which action to take.
Moreover, since all information is rationalized away after a certain number of observations,
individuals never learn the true state. Thus, as in the quote by Montier, selective awareness
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creates a barrier to learning.
This paper is related to three separate literatures. The �rst one studies selective aware-

ness, cognitive dissonance, self-deception, and other forms of belief manipulation. The se-
lective awareness framework used throughout the paper has been used to provide theories of
personal motivation (Benabou and Tirole, 2002), redistributive policies (Benabou and Tirole,
2006), groupthink and ideologies (Benabou, 2008a, 2008b), endowment, sunk cost e¤ects, and
some other deviations from expected utility theory (Gottlieb, 2009), and preferences for in-
creasing payments (Smith, 2009a and 2009b).2

It is often argued that the Bayesian updating assumption embedded in this framework
combined with the repeated nature of the decisions being modeled would lead individuals
to eventually learn the truth and, therefore, the departures from rationality would vanish in
the long-run. The present paper studies this argument formally. Because all information is
disregarded after a certain number of observations, learning is always incomplete, and the
departures from rationality presented in the static models in the literature do not disappear
even when the decision problem is repeated in�nitely many times.3

The second literature studies biases in information processing.4 The paper closest to
mine is Wilson (2005), which considers a model featuring the same information structure as
the one in Section 3 and also leads to biases in information processing. The main di¤erence
between our models lies in the way memory is modeled. Wilson considers an unbiased mem-
ory, consisting of a �nite number of states. This restriction precludes the individual from
conditioning the action on the whole sequence of signals (or any su¢ cient statistic), which
makes it impossible for the true state to eventually be learned. By contrast, in the model
in this paper, the individual could, in principle, condition actions on the whole history of
signals. The choice of not doing so arises endogenously through either the desire to improve
one�s self-image or to enjoy anticipatory utility. Although it is hard to dispute that human
memory is bounded, it is not clear why unbiased decision makers would not be able to keep a
record of their observations (say, by writing them or some su¢ cient statistic down) or search
for evidence if needed. By contrast, the individuals considered in this paper would write
down inaccurate observations, interpret them incorrectly, delete their records, or choose not
to look at them.

The model can be alternatively interpreted as a costless signaling game between an expert

2Bernheim and Thomadsen (2005) use a similar model to show why individuals may cooperate in a prisoner�s
dilemma game. Kopczuk and Slemrod (2005) consider how the desire to avoid thinking about death may
explain puzzles in health and savings behavior. Other papers featuring belief manipulation include Akerlof
and Dickens (1982), Schelling (1985), Kuran (1993), Rabin (1994), Carrillo and Mariotti (2000), Bodner and
Prelec (2002), and Di Tella et al. (2007).

3This paper is also related to a literature that studies learning by Bayesian decision makers. Ali (2009), for
example, studies time-inconsistent individuals who face a sequence of temptations and identi�es necessary and
su¢ cient conditions for beliefs to converge to the truth. In his model, failure of learning may emerge because
individuals who suspect to be time-inconsistent may prefer to commit to a certain decision. But, in this case,
they never observe whether they would have resisted temptation and do not observe new information. In the
present paper, the individuals always receive new information. However, incomplete learning occurs because
the information gets disregarded. Acemoglu, Chernozhukov, and Yildiz (2009) obtain lack of convergence in
asymptotic beliefs when individuals are uncertain about the distribution of signals.

4Most models in this literature focus on identifying certain biases and exploring their implications for the
economic models. See, e.g., Rabin and Schrag (1999), Gennaioli and Shleifer (2008), Madarász (2009), and
Schwartzstein (2009). Alternatively, Brocas and Carrillo (2009) propose a neuroeconomic model that also
leads to biases in information processing.
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who acquires new information in each period and has reputation concerns and an uninformed
individual who has to make a decision. Therefore, the third literature to which this paper is
related studies information transmission and reputation in repeated environments.5

The structure of the paper is as follows. Section 2 brie�y reviews the psychological
evidence. Section 3 introduces and discusses the main framework. In Subsection 3.1, I
describe the results when actions are binary. Subsection 3.2 considers a continuum of actions.
Section 4 provides generalizations and extensions of the model: Subsection 4.1 considers
general prior distributions and signal structures, Subsection 4.2 presents a version of the
model based on anticipatory utility, and Section 4.3 considers the case in which the individual
observes a �xed number of signals. In Section 5, I discuss the reinterpretation of the model
in terms of an information transmission game and its implications for information disclosure
in repeated environments. Then, Section 6 concludes.

2 An Overview of the Psychology Literature

Psychologists have documented several systematic biases in how we update beliefs after re-
ceiving new information.6 Several studies have documented a tendency to seek and interpret
information in ways that support previously held beliefs. In the words of Oswald and Grosjean
(2004, pp. 79):

�Con�rmation bias�means that information is searched for, interpreted, and
remembered in such a way that systematically impedes the possibility that the
hypothesis could be rejected �that is, it fosters the immunity of the hypothesis.

Psychologists have devoted an immense amount of work to study the con�rmation bias.
Indeed, according to Nickerson (1998), �[i]f one were to attempt to identify a single prob-
lematic aspect of human reasoning that deserves attention above all others, the con�rmation
bias would have to be among the candidates for consideration.�This research suggests that
as people become more convinced of their hypotheses, they tend to disregard information
that con�icts with them. As Lord, Ross, and Lepper (1979, pp. 2099) summarize,

There is considerable evidence that people tend to interpret subsequent evidence
so as to maintain their initial beliefs. The biased assimilation processes underlying
this e¤ect may include a propensity to remember the strengths of con�rming evi-
dence but the weaknesses of discon�rming evidence, to judge con�rming evidence
as relevant and reliable but discon�rming evidence as irrelevant and unreliable,
and to accept con�rming evidence at face value while scrutinizing discon�rming
evidence hypercritically.

In this paper, it will be useful to distinguish between two forms of con�rmatory bias. I
will say that individuals exhibit a weak con�rmation bias if there is positive probability of
reaching histories in which every additional information gets disregarded. I will say that indi-
viduals exhibit a strong con�rmation bias if histories in which they disregard every additional
information are reached with probability one.

5Papers considering reputation in games of information transmission include Sobel (1985), Benabou and
Laroque (1992), Morris (2001), Morgan and Stocken (2003), and Ottaviani and Sørensen (2006a, 2006b).

6See Rabin and Schrag (1999) for a similar description of this literature.
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The main results of this paper show that individuals with selective awareness always
display con�rmation biases. When actions are binary, Theorem 1 establishes the weak con�r-
mation bias for any equilibrium and Theorem 2 establishes the strong con�rmation bias for
any Markovian equilibrium under uniform priors. For continuous actions, Theorem 3 shows
the strong con�rmation bias for any equilibrium under uniform priors. Theorems 4 and 5
generalize the strong con�rmation bias results for any regular prior distribution. Theorem
6 and Proposition 5 establish the weak con�rmation bias for any equilibrium in the cases of
anticipatory utility and a �xed terminal period, respectively.

A related �nding is the disproportionate e¤ect of �rst impressions. When individuals
observe sequences of exchangeable information, initial observations are excessively weighted.
The Markovian equilibria of the model feature exactly this feature (see Corollaries 1 and 2
for uniform prior distributions and Corollaries 3 and 4 for any regular prior distribution).
Individuals interpret initial signals realistically and update their beliefs according to Bayes�
rule. However, after a certain number of periods, they discard every additional information
and therefore do not update beliefs.

Since the 1960s, several psychologists have identi�ed another updating bias known as
conservatism. Conservatism states that individuals update their beliefs in the right direction
but in a smaller magnitude than implied by Bayes� rule. Edwards (1968) summarizes the
�ndings as follows:7

An abundance of research has shown that human beings are conservative
processors of fallible information. Such experiments compare human behavior
with the outputs of Bayes�s theorem, the formally optimal rule about how opin-
ions (...) should be revised on the basis of new information. It turns out that
opinion change is very orderly, and usually proportional to numbers calculated
from Bayes�s theorem �but it is insu¢ cient in amount.

In Proposition 2, I show that individuals in the selective awareness model update infor-
mation precisely as described by Edwards.

A large literature in psychology �nds that preferences a¤ect beliefs.8 For example, biased
beliefs seem to be more prevalent for traits and behaviors that individuals regard as important
(e.g. MacDonald and Ross, 1999, Sanbonmatsu et al., 1987). Bahrick, Hall, and Berger
(1996), for example, study distortions in college students�s memory for their high school
grades. They �nd that accuracy of recollections declines monotonically with the students�
letter grades (from 89% for grades of A to 29% for grades of D). As Bahrick, Hall, and
Berger interpret their �ndings, �[d]istortions are attributed to reconstructions in a positive,
emotionally gratifying direction.�Similarly, Greene (1981) argues that a desire to see oneself
as someone who makes correct judgements biases beliefs towards one�s previous decisions.
Accordingly, Taylor and Gollwitzer (1995) �nd that biases in beliefs are stronger for decisions
that have already been made than for decisions that are yet to be made. Moreover, after
making a decision, people tend to recall the positive aspects of the chosen option and the
negative aspects of the forgone option (Mather, Sha�r, and Johnson, 2003).

7Barberis et al (1998) argue that the conservatism bias may explain the underreaction of stock prices to
news.

8See Kunda (1990) for a summary of the literature.
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Relatedly, several studies document an �asymmetric attribution after success and fail-
ure�(Gollwitzer, Earle, and Stephan, 1982, Zuckerman, 1979). Shepperd et al. (2008) sum-
marize the �ndings as follows:

Several decades of research document a consistent asymmetry in the attribu-
tions people make for their personal outcomes. In general, people make internal
attributions for desired outcomes and external attributions for undesired out-
comes. (...) [This] bias occurs for a variety of events and in a variety of settings.
It is evident in workers who attribute receiving promotions to hard work and ex-
ceptional skill, yet attribute denial of promotions to unfair bosses. It is evident
among athletes who are more likely to assume personal responsibility when they
perform well in the sports arena than when they perform poorly (...). It is even
evident in drivers who attribute accidents to external factors - the weather, the
condition of their car, other drivers - yet attribute the narrow avoidance of an
accident to their alertness and �nely honed driving skills.

Consistently with these �ndings, Propositions 3 and 4 show that preferences a¤ect beliefs
in the selective awareness model: Individuals with the same prior beliefs and subject to the
same information may hold systematically di¤erent posterior beliefs if they have di¤erent
payo¤s associated with the information.

3 The Model

The model considers an individual who observes a sequence of independent and identically
distributed signals before making a decision. Each signal �t 2 fH;Lg provides information
about the individual�s unknown skills � 2 [0; 1] : For simplicity, I assume that the individual
has a uniform prior distribution over the unit interval for � (Subsection 4.1 considers general
prior distributions).9

After each period, there is a small probability � > 0 that the process will terminate and
the individual will have to take an action a 2 A; where A is a non-empty compact subset
of the Euclidean space.10 The payo¤ from action a 2 A is determined by V (a; �) ; where
V (:; �) : A! R is a continuous function.

The individual processes information as in the models of Benabou and Tirole (2002,
2004, 2006a, 2006b) and Benabou (2008a, 2008b). After observing each signal, the individual
decides how to record it. Thus, she chooses whether to interpret the signal realistically
�̂t = �t or to rationalize it as a di¤erent signal �̂t 6= �t: Figure 1 presents the informational
structure in each period.

Because the individual remembers her interpretations of the signal but not the signal itself,
a period t history is a sequence of interpretations ht = f�̂1; �̂2; :::; �̂t�1g ; where we de�ne the
initial history to be the null set, h1 = ?: When the process terminates, the individual has to
take an action a 2 A conditional on the current history. Let Ht � fL;Hgt�1 denote the set

9Since I have not assumed that the individual holds a �correct�prior distribution over �; she is allowed to
hold optimistic or pessimistic beliefs.
10Section 4.3 considers the case in which the individual observes a �xed number of signals. Appendix A

considers a model in which the individual takes an action in each period.
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Figure 1: Informational Structure

of period t histories and denote the set of all possible histories by

H �
1[
t=1

Ht:

For any t0 � t; the sequence ht
0
= f�̂1; �̂2; :::; �̂t0�1g is said to be a subhistory of ht =

f�̂1; �̂2; :::; �̂t�1g : We write ht
0 � ht if ht0 is a subhistory of ht:

Following Benabou and Tirole (2006b) and Gottlieb (2009), I assume that the individual
has preferences over her skills �:11 A high signal � = H is good news about the individual�s
skills. For simplicity, I consider the following parametrization, which is also generalized in
Subsection 4.1:

Pr (� = Hj�) = �:

Preferences are additively separable between skills and actions, and skills are normalized
to be measured in terms of payo¤s. Thus, in each period the individual obtains a payo¤
from skills equal to the expected value of � given her interpretations. Payo¤s from skills
are discounted at rate � 2 [0; 1] : Thus, the individual�s discounted payo¤ from skills given
history ht is

[1� � (1� �)]
1X
s=0

�sE
�
E
�
�jht+s

�
jht
�
; (1)

where the �rst expectation is with respect to the probability of reaching history ht+s; which
will be a function of the agent�s interpretations (endogenous) and the probability of the game
ending (exogenous).12 The term [1� � (1� �)] normalizes the sum of discounted payo¤s to

11Although it is natural to interpret � as representing the individual�s skills, it can be any payo¤-relevant
characteristic that is positively correlated with the payo¤ from the action. Subsection 4.2 substitutes this
speci�cation by preferences that feature anticipatory utility.
12Since � > 0; the sum in Equation (1) converges even when the individual does not discount the future

(i.e., � = 1).
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Figure 2: Revised Informational Structure (Benabou-Tirole)

be measured in units of per-period payo¤s. Thus, an individual with skill � has a utility
function

� [1� � (1� �)]
1X
s=0

�sE
�
E
�
�jht+s

�
jht
�
+ V (a; �) ;

where � > 0 parametrizes the importance of self-image.13

The resulting decision problem features imperfect recall. I follow Piccione and Rubinstein
(1997) in modeling a decision problem with imperfect recall as a game between di¤erent selves.
The individual is treated as a collection of selves, each of them unable to control the behavior
of future selves. In each stage before the process terminates, a new self receives a signal �t
and chooses how to interpret it. When the process terminates, a new self takes an action
a 2 A:

Because we will consider pure strategies only and the signals are ordered by stochastic
dominance, we can assume that the individual always interprets high signals realistically (up
to a relabeling of interpretations �̂t).14 Then, after observing a low signal �t = L; she must
choose whether to interpret it realistically �̂t = L or to rationalize it as a high signal �̂t = H
(see Figure 2).

A strategy is a mapping (�̂; a) : H ! fL;Hg � A determining how to interpret a low
signal if the game does not end and which action to take if the game ends. We refer to
�̂ : H ! fL;Hg as an �interpretation strategy�and to a : H ! A as an �action strategy.�

Let �
�
:jht
�
denote the individual�s posterior beliefs about � given ht and let E�

�
:jht
�

denote the expectation operator with respect to �
�
:jht
�
: Given an action strategy a : H ! A

and posterior beliefs �; let ~V
�
a;ht; ĥt

�
denote the expected payo¤ from actions conditional

on history ht when the individual follows the actions prescribed by a in the continuation

13 I assume that the individual does not discount the payo¤ from actions because I do not want the payo¤
from actions to converge to zero as the expected length of the sequence grows. The results in this paper
continue to hold if we assume that the individual discounts the payo¤ from actions at any rate � 2 [0; 1].
14See Appendix B for a formal proof of this claim. Appendix A.2 considers mixed strategy equilibria.
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histories following ĥt :

~V
�
a;ht; ĥt

�
� E�

h
V
�
a
�
ĥ
�
; �
�
jht
i

= �
1X
s=0

(1� �)sE�
h
V
�
a
�
ĥt+s

�
; �
�
jht
i
:

The individual�s decision is modeled as the perfect Bayesian equilibrium (PBE) of the mul-
tiself game.

De�nition 1 A PBE of the game is a strategy pro�le (�̂�; a�) : H ! fL;Hg�A and posterior
beliefs � such that, for all ht 2 H,

1. �̂�
�
ht
�
2 arg max

�̂2fL;Hg

�
� [1� � (1� �)]

1P
s=0

�sE
�
E�
�
�jht+s

�
jht; �̂

�
+ ~V

�
a�;
�
ht; L

�
;
�
ht; �̂

���
2. a�

�
ht
�
2 argmax

a2A

�
E�
�
�� + V (a; �) jht

�	
3. �

�
:jht
�
is obtained by Bayes�rule if Pr

�
htj�̂�

�
> 0

Conditions 1 and 2 are the perfection conditions. Condition 1 states that each self chooses
the interpretation strategy that maximizes her expected payo¤ given the interpretation and
action strategies of other selves. Condition 2 states that, for each terminal history, the
individual takes the action that maximizes her expected payo¤. Condition 3 is the consistency
condition, requiring beliefs to satisfy Bayes�rule given the equilibrium strategies.15 Given a
PBE (�̂�; a�; �), we say that history ht is on the equilibrium path if Pr

�
htj�̂�

�
> 0:

Suppose the individual rationalizes every low signal away, assigns the same posterior as
her prior distribution to both interpretations in every period, and chooses a preferred action
given her prior beliefs. Because posteriors are not a¤ected by her interpretations, both the
interpretation strategy and the action strategy are optimal given beliefs. Moreover, since
interpretations are uninformative, beliefs are consistent with Bayes�rule (on the equilibrium
path). Hence, there always exists a PBE in which the individual rationalizes away every low
signal:

Proposition 1 There exists a PBE in which �̂�t
�
ht
�
= H for all ht 2 H:

Given a strategy (�̂�; a�) and posterior beliefs � consistent with this strategy, we say
that a history ht is informative if the individual�s posterior beliefs are a¤ected by its last
component:

�
�
�jht

�
6= �

�
�jht�1

�
:

Similarly, a subhistory h� of ht is informative if � (�jh� ) 6= �
�
�jh��1

�
:

15Note that this de�nition of PBE does not require the individual to assign probability 1 to signal � = L
upon observing �̂ = L when the equilibrium strategy assigns �̂� = H because the consistency requirement
only applies to actions on the equilibrium path. Therefore, this is an extremely weak de�nition of a PBE,
as it does not even require subgame perfection for games of complete information. When analyzing games of
incomplete information, one typically imposes additional restrictions on posterior beliefs (see, e.g., Fudenberg
and Tirole, 1991 pp. 331-333). Nevertheless, since the results presented here hold for all PBE, it su¢ ces to
work with this less restrictive de�nition.
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Bayesian updating implies that a recollection a¤ects the individual�s beliefs only when the
individual would have interpreted a low signal realistically, i.e., �̂�

�
ht
�
= L: If the individual

interprets both signals as a high signal
�
�̂�
�
ht
�
= H

�
, then observing a high recollection is

not informative. Thus, when beliefs are consistent with the interpretation strategy, histories
in which �̂�

�
ht
�
= H do not a¤ect the individual�s beliefs: A history ht is informative if and

only if �̂�
�
ht
�
= L: The following lemma states this result formally:

Lemma 1 Fix a strategy (�̂�; a�) : H ! fL;Hg �A and let � be posterior beliefs consistent
with this strategy. Let ht 2 H be a history such that Pr

�
htj�̂�

�
> 0: ht is informative if and

only if �̂�
�
ht
�
= L:

Given a strategy and posterior beliefs consistent with this strategy, we say that a history
ht has k high interpretations in n informative subhistories if k out of the n informative
subhistories feature a high interpretation as the last component.16 The following examples
illustrate this de�nition:

Example 1 For all ht 2 H, let �̂�
�
ht
�
= H and let posterior beliefs �

�
:jht
�
be equal to the

prior distribution. Only high interpretations occur with positive probability. Furthermore,
any history ht = fH; :::;Hg has 0 high interpretations in 0 informative subhistories.

Example 2 Let �̂�
�
ht
�
= L for all ht 2 H; and let � be beliefs consistent with this interpreta-

tion strategy. Since every history is informative, a history ht features k = #
�
�̂ 2 ht : �̂ = H

	
high interpretations in n = t informative subhistories.

Example 3 Let �̂� (?) = L and �̂�
�
ht
�
= H for all ht 6= ?: Let � be beliefs consistent with

this interpretation strategy. Then, history fH;L;L; L:::; Lg has 1 high interpretation in 1
informative subhistory, and history fL;L;L; :::; Lg has 0 high interpretations in 1 informative
subhistory.

The conservatism bias states that individuals update beliefs in the right direction, but
by too little relative to the Bayesian update. The individual in this model always displays a
conservatism bias. When the equilibrium assigns a low interpretation to a low signal �̂�

�
ht
�
=

L; the interpretation fully reveals which signal was observed and beliefs about � are updated
according to Bayes� rule. However, when the equilibrium assigns a high interpretation to
a low signal �̂�

�
ht
�
= H; the individual�s recollection is uninformative and, therefore, she

does not update her beliefs. Hence, selective interpretation introduces additional noise in the
individual�s recollections of signals, which leads her to update beliefs in the same direction
as the Bayesian update conditional on the realized signals, but at a slower rate.

Let �Bt denote the expected value of � obtained by Bayes� rule conditional on the se-
quence of observed signals f�1; :::; �t�1g, and let �̂t denote the expected value of � calculated
according to the individual�s beliefs � (i.e., conditional on the sequence of the individual�s

16More precisely, given a strategy and posterior beliefs consistent with this strategy, a history ht has k high
interpretations in n informative subhistories if

n = #
n
ht

0
� ht : � (:jh� ) 6= �

�
:jh��1

�o
; and k = #

�
�̂t0�1 = H : (�̂1; :::; �̂t0�1) � ht; � (:jh� ) 6= �

�
:jh��1

�	
:
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interpretations). The following proposition establishes that the individual displays conser-
vatism: Posterior expectations move in the same direction, but are �less variable� (in the
sense of second-order stochastic dominance) than the expectations obtained by Bayes�rule.

Proposition 2 (Conservatism) Let �̂� be an interpretation strategy and let � be posterior
beliefs consistent with this strategy. For any history ht such that Pr

�
htj�̂�

�
> 0;

�Bt > �Bt�1 =) �̂t � �̂t�1; and
�Bt < �Bt�1 =) �̂t � �̂t�1:

Furthermore, �̂t second-order stochastically dominates �Bt :

3.1 Binary Actions

This subsection considers a version of the model with a binary action space and symmetric
payo¤s. The payo¤ from action a 2 f0; 1g is

V (a; �) =

�
�a if � � 1

2
��a if � < 1

2

; (2)

where the parameter � > 0 captures the importance of taking the correct action (see Subsub-
section 4.1.2 for more general payo¤ functions). The action can be interpreted as a decision
to invest in a project. The project leads to a pro�t of � if the individual is su¢ ciently skilled�
� � 1

2

�
: Otherwise, it leads to a loss of �.

The following lemma establishes the action taken when the game ends. The symmetry of
the payo¤ function combined with the uniform prior leads to a simple optimal action strategy
in which the high action a = 1 is taken if the proportion of high recollections in informative
subhistories is greater than 1

2 :

Lemma 2 Fix a PBE (�̂�; a�; �) : Let ht be a history such that Pr
�
htj�̂�

�
> 0 and suppose

that ht has k high recollections in n informative subhistories. Then,

a�
�
ht
�
=

�
1 if kn >

1
2

0 if kn <
1
2

:

Next, we study the properties of Perfect Bayesian Equilibria (3.1.1) and Markovian Equi-
libria (3.1.2).

3.1.1 Perfect Bayesian Equilibria

When deciding whether to interpret a low signal as a high signal, the individual balances
the gain from having a higher self-image with the cost from possibly taking a worse action.
The cost of taking a worse action is proportional to the probability that the rationalized
signal becomes pivotal in the decision. After either a su¢ ciently positive or a su¢ ciently
negative sequence of signals, the probability of each signal a¤ecting the decision becomes
arbitrarily small. Therefore, the individual will ignore every additional information after
such a sequence. This result is formally established in the following theorem:
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Theorem 1 (Weak Con�rmation Bias with Binary Actions) Consider the model with
binary actions. There exists �� > 0 such that whenever � 2 (0; ��) :

1. There exist L (�) > 0 and �n (�) 2 N such that, in any PBE, no histories with k high
interpretations in n informative sub-histories are informative (i.e., �̂�

�
ht
�
= H) if

n � �n (�) and k
n < L (�) ; and

2. There exist H (�) < 1 and �n (�) 2 N such that, in any PBE, no histories with k high
interpretations in n informative sub-histories are informative (i.e., �̂�

�
ht
�
= H) if

n � �n (�) and k
n > H (�) :

Theorem 1 states that the individual disregards all new information after both a su¢ -
ciently positive and a su¢ ciently negative sequence of signals. Therefore, the desire to have
higher self-views leads the individual to ignore information after she is su¢ ciently convinced
of which action to take. Whereas this e¤ect has been discussed in the psychology literature
for positive information, it may seem somewhat paradoxical that a desire to have higher
self-views would lead the individual to be caught in a pessimistic trap, in which attempts
to disregard negative information are fruitless since the individual ends up doubting her
recollections.

Nevertheless, this result is consistent with a growing literature in psychology relating
self-esteem and attributional biases. According to this literature, individuals su¢ ciently low
in self-esteem or su¤ering from depression display a di¤erent attributional style from other
individuals. Whereas most individuals tend to attribute success to internal factors (e.g.,
their own ability and e¤ort), and tend to attribute failure to external factors (e.g., bad
luck), low self-esteem or depressed individuals tend to display the opposite pattern.17 When
presented with identical information, low self-esteem and depressed individuals tend be overly
pessimistic whereas other individuals tend to hold overly optimistic beliefs.18 Indeed, it has
been argued that the presence of individuals with the opposite pattern of attributions poses
an important challenge for theories of motivated cognition (e.g., Moore, 2007). Theorem 1
illustrates that this pattern emerges as a side e¤ect of motivated cognition when individuals
are aware of their attempts to improve their self-views.

3.1.2 Markovian Equilibria

Following Maskin and Tirole (2001), I de�ne a Markovian strategy as a strategy that only
depends on payo¤-relevant information. The only way in which the individual�s interpretation
of a signal �̂ a¤ects her payo¤ from self-image is through her beliefs about �. Similarly, the
expected payo¤ from actions depends on the individual�s interpretations only through her
beliefs about �: Therefore, a Markovian strategy space partitions the set of histories based
on the number of high interpretations and informative subhistories.

More precisely, for any histories ht and h�
0
with k high interpretations in n informative

states, we have �
�
:jht
�
= �

�
:jh� 0

�
: Since the individual�s actions a¤ect her expected payo¤

only through beliefs, it follows that a minimal su¢ cient partition groups together every

17See e.g. Kuiper (1978), Tennen and Herzberger (1987), Peterson et al. (1981), Seligman eta l. (1979),
and references therein.
18See Beck (1967), Alloy and Ahrens (1987) and references therein.
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history with the same number of high interpretations k and informative states n: Given a
strategy and beliefs consistent with this strategy, let � : H !

�
(k; n) 2 N2 : k < n

	
denote

the mapping that associates each history ht 2 H to its number of high interpretations and
informative subhistories (k; n). A Markovian Perfect Bayesian equilibrium is a PBE with the
property that strategies depend only on the state (k; n) :

De�nition 2 A Markovian Perfect Bayesian equilibrium (MPBE) of the game is a PBE

such that for any histories ht and h�
0
in H; �

�
ht
�
= �

�
h�

0
�
=) �̂

�
ht
�
= �̂

�
h�

0
�
and

a
�
ht
�
= a

�
h�

0
�
:

Remark 1 This de�nition follows Maskin and Tirole in excluding the history length from
the state space. Some authors refer to these strategies as stationary Markovian strategies
(e.g., Bhaskar, Mailath, and Morris, 2009).

Remark 2 Given an MPBE, a Markovian strategy �̂M � �̂ � � and aM � a � � asso-
ciates each state to the action taken by the individual in that state. Accordingly, we de-
�ne the individual�s Markovian beliefs as the belief associated with each state: �M (:jk; n) �R
d�
�
:j�
�
ht
�
= (k; n)

�
:

Lemma 2 established that in any PBE, action strategies must agree in histories such that
either 2k > n or 2k < n: Therefore, the only additional restriction imposed by the Markovian
assumption is that they must also agree in histories such that 2k = n (i.e., when the individual
is indi¤erent between both actions). The Markovian restriction, however, greatly simpli�es
the analysis of interpretation strategies �̂:

Let �̂�M be a Markovian strategy in which the individual interprets a signal realistically
at state (k; n) ; i.e. �̂�M (k; n) = L: If the game does not end at (k; n) ; either the individual
observes a high signal and moves to state (k + 1; n+ 1) or she observes a low signal and
moves to state (k; n+ 1) : Hence, (k; n) is a transient state whenever �̂�M (k; n) = L:

Now suppose �̂�M is such that the individual rationalizes low signals away at state (k; n) ;
i.e. �̂�M (k; n) = H: Because both signals are interpreted equally, the interpretation of a high
signal is not informative and the individual remains in state (k; n) regardless of which signal
is observed. Thus, (k; n) is an absorbing state if �̂�M (k; n) = H: Therefore, in an MPBE, if
the individual rationalizes one signal away, she will keep rationalizing every new signal away
in the future.

From Proposition 1, there always exists an MPBE in which the individual discards every
information on the equilibrium path: �̂�M (0; 0) = H: The following proposition shows that
this is the (essentially) unique MPBE when the payo¤ from the action is small relative to the
payo¤ from self image:19

Proposition 3 (Uniqueness) Suppose � < �
3 [1� � (1� �)] : Then, in any MPBE the in-

dividual discards every information on the equilibrium path, �̂�M (0; 0) = H:

As the next proposition shows, other MPBEs exist when the payo¤ from the action is not
small relative to the payo¤ from self image:
19The MPBE is essentially unique in the sense that all di¤erent MPBEs agree on actions and beliefs along

the equilibrium path.
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Proposition 4 (Multiplicity) Suppose � � 2�
3 : There exists an MPBE in which the indi-

vidual discards all information after the �rst signal: �̂�M (0; 0) = L and �̂�M (k; n) = H for
(k; n) 6= (0; 0) :

Remark 3 (Preferences a¤ect Beliefs) Propositions 3 and 4 show that individuals with
the same prior beliefs and subject to the same information may hold systematically di¤erent
posterior beliefs if they have di¤erent payo¤s from self-image or from actions. This result is
consistent with the evidence that preferences may a¤ect beliefs described in Section 2.

The following theorem extends the con�rmation bias result from Theorem 1 to almost
every history by focussing on Markovian equilibria. It establishes that the individual will
(almost always) ignore additional information after su¢ ciently long sequences (not only suf-
�ciently good or bad sequences as in Theorem 1).

Theorem 2 (Strong Con�rmation Bias with Binary Actions) Consider the model with
binary actions. There exists �� > 0 such that whenever � 2 (0; ��) ; there exists a date
�t (�; �) 2 N such that no histories ht on the equilibrium path are informative for any t > �t (�; �)
in any MPBE for all � 6= 1

2 :

As a direct consequence of Theorem 2, it follows that the individual�s beliefs (almost)
never converge to the truth as the number of signals grows (i.e., � ! 0). Therefore, selective
awareness imposes a limit to learning. Moreover, any history on the equilibrium path can
be split in two stages. In the �rst stage, signals are interpreted correctly and beliefs evolve
according to Bayes� rule conditional on the observed signals. In the second stage, signals
are misinterpreted and beliefs remain unchanged. Consequently, the individual attaches a
disproportionately high weight to initial information (i.e., �rst impressions matter). The
following corollary sates this result formally:

Corollary 1 (First Impressions Matter) Consider the model with binary actions. For
any MPBE there exists �� > 0 such that whenever � 2 (0; ��) ; for any history ht on the
equilibrium path there exists some �� � t such that a subhistory h� � ht is informative if and
only if � < �� :

3.2 Continuum of Actions

This section considers a version of the model with continuous action spaces. Recall that
the action space A is a non-empty compact subset of the Euclidean space. I will make the
following assumptions about the payo¤ from actions V (a; �) :

Assumption 1. V (:; �) : A! R is continuously di¤erentiable and strictly concave.

Assumption 2. argmaxa2A fV (a; �)g 2 int (A) for almost all �:

As in the binary actions case, the individual balances the gains from self-image with the
cost from taking worse actions when deciding how to interpret low signals. Since E [�jk + 1; n]�
E [�jk; n] = �

n+2 , the self-image gain from rationalizing a low signal away is of order 1n : How-
ever, the cost of distorting actions close to the optimum is of order 1

n2
: Therefore, for large

n; the individual prefers to rationalize every low signal away in any PBE. The next theorem
establishes this result formally.
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Theorem 3 (Strong Con�rmation Bias for Continuous Actions) Suppose Assumptions
1 and 2 are satis�ed. There exists �� such that whenever � 2 (0; ��) ; there exists an n� 2 N
such that, in any PBE, every history on the equilibrium path has at most n� informative
sub-histories.

Note that, unlike Theorem 1, the statement holds for all histories on the equilibrium path
instead of only extreme histories (i.e. when k

n is either su¢ ciently high or su¢ ciently low).
For Markovian equilibria, Theorem 3 implies that histories on the equilibrium path can be
split in two stages. In the �rst stage, signals are interpreted correctly and beliefs evolve
according to Bayes�rule conditional on the observed signals; in the second stage, signals are
misinterpreted and beliefs remain unchanged.

Corollary 2 (First Impressions Matter) Suppose Assumptions 1 and 2 are satis�ed. For
any MPBE there exists �� > 0 such that whenever � 2 (0; ��) ; for any history ht on the equi-
librium path there exists some �� � t such that a subhistory h� � ht is informative if and only
if � < �� :

4 Generalizations and Extensions

4.1 General Information Structures

In the previous section, I assumed that the individual�s prior distribution over skills was
uniform and that the payo¤ from skills was proportional to the expected probability of ob-
serving a high signal (i.e., Pr (� = Hj�) = �). In this section, I show that the main results
generalize for any regular prior distribution and any conditional distribution of high signals
strictly increasing in the individual�s skills. Therefore, the main results from Section 3 do
not rely on the speci�c distributional assumptions.

As in Section 3, the model features an individual with preferences over her skills �: With
no loss of generality, we can assume that skills are measured in payo¤ units. Let the space of
possible skills � =

�
�; �
�
be a non-empty open interval of the real line and let � (:) denote the

agent�s prior distribution of �. Denote the probability of observing a high signal conditional
on � by

Pr (� = Hj�) = � (�) :
I assume that � :

�
�; �
�
! [0; 1] is a strictly increasing function so that a high signal is more

likely under higher skills.20 Moreover, I also assume that � is twice continuously di¤erentiable
and satis�es � (�) > 0 and �

�
�
�
< 1:

The prior distribution satis�es the following regularity conditions:

De�nition 3 A prior distribution � (:) is regular if (i) � is thrice continuously di¤erentiable,
and (ii) � (�) > 0 for all � 2 �:

Note that virtually all bounded continuous distributions used in applications satisfy these
conditions. The following lemma determines that asymptotic behavior of the conditional
expectation E [�jk; n] as the number of informative subhistories n increases.
20From a statistical perspective, the assumption that � is strictly increasing provides an identi�cation

condition for �: If � were not a one-to-one function, it would be impossible for an individual to learn the true
parameter � regardless of the number of observations.
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Lemma 3 Suppose � (:) is regular. There exists constants C0 and Nk such that����E [�jk; n]� ��1�kn
�
� �

�
k

n

�
1

n

���� � C0
n2

(3)

for all n > Nk on an almost sure set (under the true �), where

� (x) �
p
x (1� x)

�0 (��1 (x))
�
(

1

x (1� x)

(
2
h
1�2x
x(1�x)

i �
�0
�
��1 (x)

��3
�3�0

�
��1 (x)

�
�00
�
��1 (x)

� )+ �0 ���1 (x)�
� (��1 (x))

)
(4)

Therefore, for any regular prior distribution �; the expected payo¤ converges to its max-
imum likelihood estimator ��1

�
k
n

�
plus terms of order higher than 1

n : The next lemma
determines the self-image gain from deviating from a history with k high interpretations to
a history with k + 1 high interpretations when the number of informative subshistories n is
large.

Lemma 4 Suppose � (:) is regular. There exists constants C1 and Nk such that�����E [�jk + 1; n]� E [�jk; n]� 1

�0
�
��1

�
k
n

�� 1
n

����� � C1
n2
;

for all n > Nk on an almost sure set (under the true �).

As in the case of uniform priors with linear conditional probabilities studied in Section 3,
the self-image gain of deviating from a history with k high interpretations to a history with
k+1 high interpretations has order 1n : Next, we will study the model with continuous actions
and binary actions separately.

4.1.1 Continuous Actions

Consider an equilibrium in which the individual interprets a low signal realistically after
history ht; i.e. �̂�

�
ht
�
= L: From Lemma 4, the self-image gain from deviating to �̂ = H

has order 1n : However, as in Subsection 3.2, it can be shown that the cost of this deviation in
terms of worsened actions is of order o

�
1
n

�
: Therefore, when n is large enough, the gain from

self-image dominates the loss from worse actions and the individual prefers to rationalize low
signals away in any PBE:

Theorem 4 (Strong Con�rmation Bias for Continuous Actions) Suppose � (:) is reg-
ular and suppose Assumptions 1 and 2 are satis�ed. There exists �� such that whenever
� 2 (0; ��) ; there exists an n� 2 N such that, in any PBE, every history on the equilibrium
path has at most n� informative sub-histories.

The following corollary extends Corollary 2:

Corollary 3 (Strong Con�rmation Bias for Continuous Actions) Suppose � (:) is reg-
ular and suppose Assumptions 1 and 2 are satis�ed. For any MPBE there exists �� > 0 such
that whenever � 2 (0; ��) ; for any history ht on the equilibrium path there exists some �� � t
such that a subhistory h� � ht is informative if and only if � < �� :
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4.1.2 Binary Actions

Next, we consider a generalized version of the binary actions model of Subsection 3.1. Let
the action space be A = f0; 1g. The following assumption generalizes the payo¤ function
from equation (2):

Assumption 3. V (a; �) = av (�) ; a 2 f0; 1g ; where v : �! R satis�es

E [v (�) j�1; :::; �t] > 0 () E [� (�) j�1; :::; �t] > �

for some � 2 R, 8t; �t:

Under the payo¤ function above, the high action a = 1 is optimal if E [v (�) j�1; :::; �t] > 0:
When v is increasing, there always exists a threshold � (�1; :::; �t) such that a = 1 is optimal
if and only if the expected probability of observing a high signal is above this threshold:

E [v (�) j�1; :::; �t] > 0 () E [� (�) j�1; :::; �t] > � (�1; :::; �t) :

Assumption 3 states that the threshold � (�1; :::; �t) is not a function of sequence of signals
f�1; :::; �tg : It simpli�es the analysis because it implies that the threshold which determines
whether a recollection is pivotal does not depend on the history of observations.

Note that the framework from Subsection 3.1 satis�es Assumption 3 with � (�) = �; � = 1
2 ;

and

v (�) =

�
� if � � 1

2
�� if � < 1

2

:

In general, Assumption 3 places restrictions on the distribution of signals and the payo¤
function v: When the payo¤ from actions is an a¢ ne function v (�) = b� (�) + c, however,
this assumption is satis�ed regardless of the distribution of signals since

E [v (�) j�1; :::; �t] > 0 () E [� (�) j�1; :::; �t] > �
c

b
:

The following theorem generalizes the result from Theorem 2. As in the uniform case,
the probability that a signal becomes pivotal converges to 0 faster than 1

n : Therefore, after a
su¢ ciently long history, the individual will always rationalize low signals away.

Theorem 5 (Strong Con�rmation Bias with Binary Actions) Suppose � (:) is regu-
lar and suppose Assumption 3 is satis�ed. There exists �� > 0 such that whenever � 2 (0; ��) ;
there exists a date �t (�; �) 2 N such that no histories ht are informative for any t > �t (�; �) in
any MPBE for almost all �:

Corollary 4 (First Impressions Matter) Suppose � (:) is regular and suppose Assump-
tion 3 is satis�ed. For any MPBE there exists �� > 0 such that whenever � 2 (0; ��) ; for any
history ht on the equilibrium path there exists some �� � t such that a subhistory h� � ht is
informative if and only if � < �� :
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4.2 Anticipatory Utility

In the previous sections, I have followed Benabou and Tirole (2006b) and Gottlieb (2009) in
interpreting the parameter � as the individual�s skills. Signals were assumed to be informative
about the individual�s skills and therefore provided information about the appropriate action
to be taken. This subsection follows Benabou (2008a, 2008b) in considering decision makers
with anticipatory utility.

Consider an individual who has to take an action a 2 f�1; 1g : The payo¤ from each
action V (a; �) is a function of the (unknown) state of the world �: As in Section 3, let
Pr (� = Hj�) = �; and assume that � is uniformly distributed in the interval [0; 1] : The
payo¤ from actions is determined by

V (a; �) = a

�
� � 1

2

�
:

For example, a = 1 can be interpreted as buying an asset and a = �1 as selling it.
The prior distribution over the payo¤ from each action is uniform over the interval

�
�1
2 ;
1
2

�
:

Because V is a linear function of a; the results remain unchanged if we allow for additional
actions in the interval (�1; 1) : In that case, an action can be interpreted as the proportion
of the agent�s wealth allocated to the buying or selling the asset.

Let � denote the individual�s posterior beliefs about the state of the world �. When de-
ciding how to interpret a low signal after a history ht, the current self takes two terms into ac-

count. First, she considers the expected future payo¤ from actions E�
h
V
�
a
�
h~t
�
; y
�
jht; L

i
;

where h~t denotes the (random) history in which the game ends. Second, she takes into ac-

count the anticipatory utility E�
h
V
�
a
�
h~t
�
; y
�
jht; �̂

i
; where �̂ is her interpretation of the

signal.
The individual chooses the interpretation �̂ 2 fL;Hg that maximizes:

[1� � (1� �)]
1X
s=1

�t
n
E
h
E�

h
V
�
a
�
h
~t
�
; y
�
jht+s

i
jht; �̂

io
+E�

h
V
�
a
�
h
~t
�
; y
�
jht; L

i
; (5)

where � 2 [0; 1] captures the relative importance of future anticipatory utility to the current
self. When � = 0; the individual cares only about current anticipatory utility. The de�nitions
of equilibria are analogous to the ones from De�nitions 1 and 2, with the substitution of the
utility function by (5).

In the model of Section 3, each self balanced the gains from higher self-views with the
expected costs of making worse decisions when choosing how to interpret each signal. Then,
when the individual was su¢ ciently con�dent of which action to take, the self-views e¤ect
dominated and she always chose to rationalize low signals away. The anticipatory utility
features a similar trade-o¤. Here, the individual balances the gain in anticipatory utility from
believing in a better state of the world with the expected cost of making worse decisions. As
in the self-views model, when the individual is su¢ ciently con�dent of which action to take,
the anticipatory utility e¤ect dominates and low signals are rationalized away. The following
theorem establishes this result formally:

Theorem 6 (Weak Con�rmation Bias for Anticipatory Utility) Consider the antic-
ipatory utility model with binary actions. There exists �� such that whenever � 2 (0; ��) :
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1. There exist L (�) > 0 and �n (�) 2 N such that, in any PBE, no histories with k
high interpretations in n informative sub-histories are informative if n � �n (�) and
k
n < L (�) ; and

2. There exist H (�) < 1 and �n (�) 2 N such that, in any PBE, no histories with k
high interpretations in n informative sub-histories are informative if n � �n (�) and
k
n > H (�) :

4.3 Known Terminal Period

In the model from Section 3, the information acquisition process terminated in each period
with a constant probability �: This setup represents a situation in which the individual expects
to receive a long sequence of information, but is unsure about when the decision will have to
be made. The current subsection considers a setup in which the individual observes a �xed
number of signals T before making the decision. This framework depicts situations in which
the individual knows when the decision will have to be made and how much information will
be acquired before then.

The discounted payo¤ from skills given history ht is
PT�t
s=0 �

sE
�
E
�
�jht+s

�
jht
�
; where

the �rst expectation is with respect to the probability of reaching history ht+s. Thus, an
individual with skill � has utility function

�
T�tX
s=0

�sE
�
E
�
�jht+s

�
jht
�
+ V (a; �) ; (6)

where the payo¤ from actions a 2 f0; 1g is the same as in Subsection 3.1:

V (a; �) =

�
�a if � � 1

2
��a if � < 1

2

:

The PBE de�nition is the same as the one from De�nition 1, with the appropriate substitution
of the utility function by (6).

Recall that the decision of whether to interpret a low signal realistically balances the
bene�t from having a higher self-image against the cost of worse decision-making. Therefore,
distorting an interpretation is only costly when the interpretation a¤ects which action will
be chosen. This observation allows us to place a bound on the number of signals that can be
interpreted realistically, even when the payo¤ from self image is arbitrarily small.

For example, suppose the individual observes T = 3 signals, and consider the individual�s
choice of how to interpret the last signal. Following a history with 0 high interpretations in
2 informative subhistories, the individual will always choose a = 0 regardless of the signal
observed in the last period and the individual�s interpretation strategy in the last period.
Similarly, after a history with 2 high interpretations in 2 informative subhistories, she always
chooses a = 1 in every continuation history for every interpretation strategy following that
history. Thus, because in both cases rationalizing a low signal away has no costs, the individ-
ual will always choose to rationalize it away. The following proposition applies a backward
induction argument to generalize this argument for any �nite number of periods:

Proposition 5 (Weak Con�rmation Bias for Finitely Many Periods) Consider the model
with a �nite number T of signals. Fix a PBE (�̂�; a�; �) and let hT��be a history on the
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equilibrium path. Suppose that hT�� has k high recollections in n informative subhistories,
where 0 � � � T: If either k

n+� �
1
2 or

k+�+1
n+� < 1

2 ; then h
T�� is not informative (i.e.,

�̂�
�
hT��

�
= H).

Thus, after the individual becomes convinced of which action to take, she disregards
every additional information. In particular, we cannot have equilibria in which all signals are
interpreted realistically when T � 3: Moreover, because the possibility of a signal becoming
pivotal is increasing in the number of remaining signals � , information is more likely to be
disregarded as the game approaches its end (i.e., for k and n �xed, the bound determining
which signals are rationalized away decreases in �).

Note that, unlike in Theorem 1, the bounds on the proportion of high and low recollections
from Proposition 5 is independent of the relative importance self image (parametrized by �).
As the T = 3 example showed, the cost of deviating in terms of taking a worse action is equal
to zero in some histories. On the other hand, in the model with random termination, this
cost is never exactly equal to zero since there is always some probability that the individual
will eventually observe a large number of future signals, allowing her to possibly take a better
action.

Proposition 5 takes the number of signals T as �xed, whereas the analysis from the
previous sections considered the individual�s behavior as the expected number of signals
grew (i.e., � ! 0). Recall that the main intuition from the section was that as the individual
collects more information, the cost of making worse decisions vanishes at rate 1

n2
whereas the

bene�t from having a higher self-image decreases at rate 1
n : Therefore, the individual prefers

to rationalize low signals away after a su¢ ciently large number of observations. Since this
result does not rely on the randomness of terminal date, it is straightforward to generalize
all the results from the previous section to the model with a known terminal date, replacing
� � 0 by T large enough. The only results that have to be slightly modi�ed are Propositions
3 and 4, which are established below:

Proposition 6 (Uniqueness) Suppose � < �
h
1
3 +

�
T+3

�
1��T
1��

�i
if � < 1 or � < �

PT
t=3

1
t

if � = 1: In any MPBE the individual discards every information on the equilibrium path,
�̂�M (0; 0) = H:

Proposition 7 (Multiplicity) Suppose � � 2�
3

�
1��T
1��

�
: There exists an MPBE in which

the individual discards all information after the �rst signal: �̂�M (0; 0) = L and �̂
�
M (k; n) = H

for (k; n) 6= (0; 0) :

5 Implications for Dynamic Information Transmission

Although the model was presented as representing an individual�s decision on how to inter-
pret information, it could alternatively be seen as a model of information disclosure between
di¤erent individuals. Consider a situation involving experts who provide advice to an unin-
formed individual who has to make a decision. The individual receiving advice will eventually
take an action a 2 A; whose payo¤ V (a; �) depends on an unknown state of the world �:

In each period, an expert observes a signal �t 2 fH;Lg that provides information about
the state of the world. The expert decides how to describe the signal to the uninformed
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individual. For example, the expert may be a consultant who observes information about the
pro�tability of an investment and, in each period, strategically interprets the information to
an uninformed investor. The expert may also be an employee who communicates strategically
to her employer. In another application of the model, a doctor observes a sequence of tests and
decides how to strategically interpret them to a patient, who will then choose one treatment.

Experts care about the payo¤ V (a; �) but also care about the uninformed individual�s
perception of the state of the world. For example, the state of the world may be informative
about the experts� skills and experts may care about conveying to have high skills (either
because their payment may formally depend on their perceived skills or because of career
concerns). Alternatively, doctors may favor states of the world associated with more expensive
treatments. Similarly, consultants may favor states of the world in which their advice is
perceived as being more important.

When � = 0; the model is formally equivalent to a cheap-talk game in which a sequence
of experts with reputation concerns provide advice to the uninformed individual.21 For
� > 0; the model di¤ers from a more standard cheap-talk game in that the expert can only
access the information transmitted to the uninformed individual but not the actual observed
information. Nevertheless, it can be shown that the main results from this paper generalize
to the case where the expert can condition her actions on the actual information.

The model�s implications can then be stated in terms of learning by the individual receiv-
ing the advice. For binary actions, Theorem 1 implies that in any PBE the expert�s additional
advice is always discarded after a su¢ ciently positive or su¢ ciently negative sequence of in-
formative signals. Theorem 2 states that the expert�s advice can be partitioned in two stages
in any Markovian equilibria. In the �rst stage, she reveals information truthfully and her
advice is correctly interpreted. In the second stage, her additional advice is uninformative.
Proposition 3 states that if the expert cares enough about signaling a high state of the world
�, any Markovian equilibrium is fully uninformative. Theorem 3 shows that when actions are
continuous, every information gets discarded after a certain number of periods in any PBE.
Proposition 5 establishes bounds on the amount of informative advice when the number of
signals is �nite.

6 Conclusion

Several papers have recently used the selective awareness framework proposed by Benabou
and Tirole to provide explanations for deviations from rational decision making. However, it
is often argued that the Bayesian updating assumption embedded in this framework combined
with the repeated nature of the decisions being modeled would lead individuals to eventually
learn the truth and, therefore, the departures from rationality would vanish in the long-run.

This paper formally studied this issue by studying a repeated version of the selective
awareness model of Benabou and Tirole (2002, 2004) and Benabou (2008a, 2008b). It showed
that all information gets disregarded after a certain number of observations. Therefore,
learning is always incomplete, and the departures from rationality presented in the static

21Morgan and Stocken (2003) present a (one-period) reputational cheap talk model in which an analyst may
have an incentive to misreport her information in order to in�ate the stock price. Ottaviani and Sørensen
(2006b) consider a related strategic communication model in which a sequence of experts are concerned about
appearing to be well informed.
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models in the literature do not disappear even when the decision problem is repeated in�nitely
many times.

The model predicts a behavior that is consistent with some biases in information process-
ing studied by psychologists. Individuals attribute a disproportionately large weight to ini-
tial information. After becoming su¢ ciently convinced of which action to take, they do not
change their beliefs (con�rmation bias). They also update beliefs in the right direction, but
in insu¢ cient amount compared to the Bayesian updating rule (conservatism bias).

Appendix A. Extensions

A.1 Repeated Actions

In the model considered in the text, the individual faced a single action at the end of the game.
Because the gain from self-image was greater than the loss from distorting actions after a su¢ ciently
large sequence of observations, any equilibrium featured incomplete learning. The intuition carries
over to models in which the individual faces a sequence of actions as long as the actions themselves
are not fully informative about the individual�s skills. This subsection provides a simple extension of
the binary and continuous action models from Section 3 that incorporates an action being taken in
each period.

The model considers an in�nitely lived individual who takes an action a 2 A in each period. After
the action is chosen, the individual observes a signal � 2 fL;Hg ; where

Pr (� = Hja; �) = � for all a 2 A: (7)

Note that a high signal � = H is good news about the individual�s skills �: Moreover, for simplicity,
(7) assumes that any action leads to the same distribution of signals.

As in the general framework of Section 3, the individual�s unknown skills are uniformly distributed
in the unit interval and, for notational simplicity, we assume that the game is in�nitely repeated (i.e.,
there is no random termination as in the model from Section 3). After observing the realization of the
signal �; the individual forms an interpretation �̂ 2 fL;Hg : As in the basic framework, there is no
loss of generality in assuming that high signals are always interpreted correctly, whereas low signals
can be reinterpreted as either high or low.

If a signal � occurs, the individual obtains a payo¤ from actions equal to V (�; a) : Furthermore,
the individual also obtains a payo¤ from self-image equal to E� [�jht] : Payo¤s are discounted at rate
�: Hence, the individual�s discounted sum of expected payo¤s is:

(1� �)
1X
s=0

�s
�
�E

�
E
�
�jht+s

�
jht
�
+ V (�; at+s)

	
:

First, let us consider the binary actions case: A = f0; 1g. The payo¤ from action a 2 f0; 1g is

V (�; a) =

�
�a if � = H
��a if � = L:

A high signal leads to a gain of � if the individual has taken a high action a = 1. Symmetrically, a
low signal is bad news about the individual�s skills and leads to a loss of � if she has taken a high
action a = 1.

Fix a PBE (�̂�; a�; �) : Following the same steps as Lemma 2, it follows that for any history on
the equilibrium path with k high interpretations in n informative subhistories, we must have

a�
�
ht
�
=

�
1 if kn >

1
2

0 if kn <
1
2

:
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As in the case of a single action taken at the end of the game, the cost of distorting actions in each
period converges to zero faster than 1

n whereas the gain from self image converges at rate
1
n : Therefore,

following the exact same steps as Theorems 1 and 2, it is straightforward to establish the following
results:

Theorem 7 (Repeated Binary Actions) Consider the model with repeated binary actions.

1. There exists a date �t (�) 2 N such that no histories ht are informative for any t > �t (�) in any
MPBE for all � 6= 1

2 ;

2. There exist L > 0 and �n 2 N such that, in any PBE, no histories with k high interpretations
in n informative sub-histories are informative if n � �n and k

n < L; and

3. There exist H < 1 and �n 2 N such that, in any PBE, no histories with k high interpretations
in n informative sub-histories are informative (i.e., �̂� (ht) = H) if n � �n and k

n > H :

In the continuous actions case, it is also straightforward to extend the arguments from Theorem
3 and Corollary 2 to the case of repeated actions. Then, we have the following results:

Theorem 8 (Repeated Continuous Actions) Suppose Assumptions 1 and 2 are satis�ed.

1. There exists an n 2 N such that, in any PBE, every history on the equilibrium path has at most
n informative sub-histories.

2. there exists �t 2 N such that no histories ht are informative for any t > �t:

A.2 Mixed Strategies

In the text, we have focused on pure strategy equilibria. This subsection extends the incomplete
learning for mixed strategy equilibria. Consider the continuous action case under quadratic payo¤s:

V (a; �) = �� (a� �)2 : (8)

As in Subsubsection 4.1.1, we allow for any regular prior distribution � but, for simplicity, we consider
� (�) = �:

Once we allow for mixed strategies, the equivalence between the decision problem from Figure 1
and the Benabou and Tirole model (Figure 2) may no longer hold. In this Subsection, we will focus
on the Benabou and Tirole model.

A mixed strategy are mappings � : H ! [0; 1] and  : H ! �(R) ; where � (ht) assigns a
probability of playing �̂ = H after observing a low signal given history ht; and  assigns the probability
of playing each action a 2 R if the game ends after history ht:

We denote the strategy  (ht) that assigns probability one to action a 2 R by  (ht) = �a: Under
quadratic payo¤s (equation 8), any PBE features pure strategy actions:

Lemma 5 Fix a PBE. Then, � (ht) = �E[�jht]:

Proof. Consider the action that maximizes the expected payo¤ from actions:

max
a

�
��
Z
(a� �)2 f

�
�jht

�
d�

�
:

The unique solution to this program is a� = E [�jht] : Since the solution is unique, the individual
cannot play mixed action strategies in equilibrium.
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Lemma 6 Fix a PBE. For any history ht on the equilibrium path, we have:

E
�
V
�
�
�
ht; L

�
; �
�
jht; L

�
� E

�
V
�
�
�
ht;H

�
; �
�
jht; L

�
= �

�
E
�
�jht;H

�
� E

�
�jht; L

�	2
: (9)

Proof. For notational simplicity, for a �xed history ht; let �H � E [�jht;H] and �L � E [�jht; L] :
Substituting the � (ht) = �E[�jht] in the quadratic payo¤ function, we obtain

E
�
V
�
�
�
ht; L

�
; �
�
jht; L

�
� E

�
V
�
�
�
ht;H

�
; �
�
jht; L

�
= ��

�Z
(�H � �)2 f

�
�jht; L

�
d� �

Z
(�L � �)2 f

�
�jht; L

�
d�

�
= �� (�H � �L)2 :

Therefore, after history ht; the cost of taking the action associated with �t = H if the true signal
was �t = L is proportional to the square of the di¤erence between the conditional expectations of � in
each history. Whenever E [�jht;H] � E [�jht; L] < �

� , it follows that the cost of taking a suboptimal
action is smaller than the gain from improving self-image:

�E
�
�jht;H

�
+ E

�
V
�
�
�
ht;H

�
; �
�
jht; L

�
> �E

�
�jht; L

�
+ E

�
V
�
�
�
ht; L

�
; �
�
jht; L

�
:

Therefore, whenever the individual�s beliefs is su¢ ciently close to the true parameter, she prefers to
interpret every additional signal as �̂ = H: Consequently, no additional signal a¤ects posteriors after
that point. Thus, beliefs cannot converge to the truth:

Proposition 8 Consider the continuous actions model with quadratic payo¤s. In any (mixed strategy)
PBE,

Pr
�
lim
t!1

E
�
�jht

�
= �
�
= 0:

Before presenting the proof, let us introduce the following notation. An outcome path for an
in�nitely repeated game is an in�nite sequence of interpretations h1 � f�̂1; �̂2; :::g 2 fL;Hg1 : A
period t history induced by the outcome path h1 consists of the t� 1 �rst elements of h1:
Proof. Fix a PBE. Consider an outcome path h1 such that, for every t 2 N; the history induced by
h1 is on the equilibrium path. Suppose that limt!1E [�jht] = �: Then, h1 must have an in�nite
number of informative subhistories.

Note that for any history ht induced by the outcome path h1; any history that agrees with ht

in all but one interpretation is on the equilibrium path if and only if the disagreement occurs at an
informative subhistory. Therefore, there are in�nitely many on-the-equilibrium-path histories which
agree with h1 in all but one interpretation. Thus, h1 cannot have a strictly positive probability
mass.

Let ~h1 be an outcome path that agrees with h1 in all but one interpretation that happens in
an informative subhistory (we have shown that there exist in�nitely many of those) and suppose

that limt!1E
h
�j~ht

i
= �: Since the disagreement occurs in an informative subhistory, it follows that

histories induced by h1 are also on the equilibrium path.
By de�nition of convergence, for any " > 0 there exists �t such that t > �t implies��E ��jht�� ��� < "

2
and

���E h�j~hti� ���� < "

2
:

Thus, ���E h�j~hti� E ��jht���� � ��E ��jht�� ���+ ���E h�j~hti� ���� < ":
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Take " = �
� : Then, there exists �t such that for all t > �t

E
�
�jht;H

�
� E

�
�jht; L

�
<
�

�
:

But, by equation (9), this implies

�E
�
�jht;H

�
+ E

�
V (a (H) ; �) jht; L

�
> �E

�
�jht; L

�
+ E

�
V (a (L) ; �) jht; L

�
:

Therefore, if the disagreement occurs at some t > �t the individual strictly prefers to play �̂ = H
(and thus cannot either mix or play L), which implies that ht and ~ht cannot be both on the equilibrium
path. Hence, outcome paths ~h1 that agree with h1 in all but one interpretation can only feature

limt!1E
h
�j~ht

i
= � if the disagreement occurs in a period t < �t: Denote the (�nite) set of such paths

by T :
Let Ph1 be the set of outcome paths with the following properties: (i) every history induced by

the outcome path is on the equilibrium path, and (ii) the outcome path agrees with h1 in all but
one interpretation. As noted previously, this is an in�nite set. Since the set T � Ph1 is �nite and no
history has a strictly positive probability mass, it follows that Pr (limt!1E [�jht] = �) = 0:
Appendix B. Auxiliary Results

Lemma 7 Let Pr (� = Hj�) = � � U [0; 1] and denote by f (�jk; n) the p.d.f. determined by Bayesian
updating conditional on a history with k high recollections in n informative subhistories. Then:

f (�jk; n) =
�k (1� �)n�kR 1

0
�k (1� �)n�k d�

; and

E [�jk; n] =
k + 1

n+ 2
:

Proof. Let xt = 1 (�t = H) : Then, xtj� follows a Bernoulli distribution with parameter �: By
independence, the conditional distribution having k successes in n informative subhistories follows a
Binomial distribution

Pr
�
~k = k; ~n = nj�

�
=

n!

k! (n� k)!�
k (1� �)n�k :

Integrating over �; we obtain the unconditional distribution:

Pr
�
~k = k; ~n = n

�
=

n!

k! (n� k)!

Z 1

0

�k (1� �)n�k d�:

From Bayes�rule,

f
�
�j~k = k; ~n = n

�
= Pr

�
~k = k; ~n = nj�

�
� f (�)

Pr
�
~k = k; ~n = n

� :
Since � � U [0; 1] ; we have

f
�
�j~k = k; ~n = n

�
=

Pr
�
~k = k; ~n = nj�

�
Pr
�
~k = k; ~n = n

� =

n!
k!(n�k)!�

k (1� �)n�k

n!
k!(n�k)!

R 1
0
�k (1� �)n�k d�

=
�k (1� �)n�kR 1

0
�k (1� �)n�k d�

:
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Moreover,

E
h
�j~k = k; ~n = n

i
=

R 1
0
�k+1 (1� �)n�k d�R 1
0
�k (1� �)n�k d�

=
k + 1

n+ 2
:

Lemma 8
R 1
1
2

h
�k (1� �)n�k � (1� �)k �n�k

i
d� � 0 if and only if k � n

2 :

Proof. (() Suppose k � n
2 : Because n� 2k � 0, it follows that for all � 2

�
1
2 ; 1
�
; we have:

(1� �)n�2k � �n�2k:

Multiplying both sides by [(1� �) �]k > 0, yields

�k (1� �)n�k � (1� �)k �n�k:

Therefore, the term inside the integral is positive for all � 2
�
1
2 ; 1
�
. Integrating over this range

concludes this part of the proof.
()) Suppose k � n

2 : Then, for all � 2
�
1
2 ; 1
�
:

(1� �)n�2k � �n�2k:

Multiplying both sides by [(1� �) �]k > 0 and integrating, yieldsZ 1

1
2

h
�k (1� �)n�k � (1� �)k �n�k

i
� 0:

In order to establish the equivalence between the equilibria of the games with the information
structures presented in Figures 1 and 2, we abuse notation and let �̂H (ht) 2 fL;Hg and �̂L (ht) 2
fL;Hg denote the interpretations associated with a high and a low signal after history ht: The next
proposition establishes that up to a relabeling of interpretations �̂t there is no loss of generality in
assuming that the individual always assigns a high interpretation �̂ = H to a high signal � = H:

Note that because recollections have no intrinsic meaning, for any separating equilibrium (i.e., an
equilibrium in which �̂H (ht) 6= �̂L (h

t)), there exists an equivalent equilibrium that associates the
opposite message to each signal. Moreover, for any pooling equilibrium (i.e., an equilibrium in which
�̂H (h

t) = �̂L (h
t)); there exists an an equivalent equilibrium that associates the other message to

both signals.
In order to deal with this uninteresting multiplicity, I will adopt the following relabeling conditions.

Whenever we have a separating equilibrium, I will allocate each signal to its own interpretation:

�̂�H
�
ht
�
6= �̂�L

�
ht
�
=) �̂�H

�
ht
�
= H and �̂�L

�
ht
�
= L:

Moreover, whenever we have a pooling equilibrium, I will allocate the high recollection to both signals:

�̂�H
�
ht
�
= �̂�L

�
ht
�
=) �̂�H

�
ht
�
= �̂�L

�
ht
�
= H:

The following Proposition establishes the equivalence between the information structures in Figures
1 and 2. For notational clarity, I will refer to the games associated with the information structures
from Figures 1 and 2 as Game 1 and Game 2.

Proposition 9 Let �̂� be a pro�le of interpretations from Game 2 and de�ne (�̂�L; �̂
�
H) as �̂

�
L (h

t) =
�̂� (ht) and �̂�H (h

t) = H: (�̂�; a�; �) is a PBE of Game 2 if and only if there exist beliefs �0 that
coincide with � along the equilibrium path for which (�̂�L; �̂

�
H ; a

�; �0) is a PBE of Game 1 such that
the relabeling conditions are satis�ed.
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Proof. Let (�̂�; a�; �) be a PBE of Game 2. For any history ht; we have to establish that the
individual would not pro�t by deviating to �̂ = L after observing � = H for some beliefs �0 that
coincide with � along the equilibrium path. There are two cases: �̂� (ht) = L (separating equilibrium)
or �̂� (ht) = H (pooling equilibrium). In a separating equilibrium, deviating to �̂H = L would reduce
the individual�s self image and lead to suboptimal decisions. Therefore, deviating is not pro�table.

Consider the case of a pooling equilibrium and let (o¤-equilibrium path) beliefs �0 attribute
probability 1 to signal �t = L after observing (ht; L) : Then, condition (1) from de�nition 1 implies
that

� [1� � (1� �)]
1X
s=1

�t
�
E
�
E�
�
�jht+s

�
jht;H

�
� E

�
E�
�
�jht+s

�
jht; L

�	
(10)

� ~V
�
a�;
�
ht; L

�
;
�
ht; L

��
� ~V

�
a�;
�
ht; L

�
;
�
ht;H

��
:

The individual will prefer to choose �̂�H (h
t) = H in Game 1 if

� [1� � (1� �)]
1X
s=1

�t
�
E
�
E�0

�
�jht+s

�
jht;H

�
� E

�
E�0

�
�jht+s

�
jht; L

�	
(11)

� ~V
�
a�;
�
ht;H

�
;
�
ht; L

��
� ~V

�
a�;
�
ht;H

�
;
�
ht;H

��
:

We have to verify that (10) implies (11). Note that � (ht;H) = �0 (ht;H) because �̂ = H is on
the equilibrium path. Moreover, because �0 attributes probability 1 to signal �t = L (which are the
worst beliefs possible with respect to �), it follows that E� [�jht; L] � E�0 [�jht; L] : Because signals
are independent, the left hand side of inequality (11) is weakly greater than the left hand side of
inequality (10). Hence, a su¢ cient condition to ensure that (10) implies (11) is

~V
�
a�;
�
ht; L

�
;
�
ht; L

��
� ~V

�
a�;
�
ht; L

�
;
�
ht;H

��
� ~V

�
a�;
�
ht;H

�
;
�
ht; L

��
� ~V

�
a�;
�
ht;H

�
;
�
ht;H

��
:

(12)
However, by the de�nition of a�; it follows that

~V
�
a�;
�
ht; L

�
;
�
ht; L

��
� ~V

�
a�;
�
ht; L

�
;
�
ht;H

��
� 0; and

~V
�
a�;
�
ht;H

�
;
�
ht; L

��
� ~V

�
a�;
�
ht;H

�
;
�
ht;H

��
� 0;

which imply that (12) is satis�ed.
Conversely, let (�̂�L; �̂

�
H ; a

�; �0) be a PBE of Game 1 such that �̂�L (h
t) = �̂� (ht) and �̂�H (h

t) = H:
Then, by the de�nition of a PBE,

�̂�L;t 2 arg max
�̂2fL;Hg

(
� [1� � (1� �)]

1X
s=1

�tE
�
E�0

�
�jht+s

�
jht; �̂

�
+ ~V

�
a�;
�
ht; L

�
;
�
ht; �̂

��)
; and

a�t 2 argmax
a2A

�
E�0

�
�� + V (a; �) jht

�	
:

Moreover, because �0 agrees with � along the equilibrium path and the relabeling condition ensures
that �̂t = H is on the equilibrium path for all t; it follows that the PBE conditions for Game 2 are
satis�ed.

Appendix C. Proofs

Proof of Proposition 1. For all histories ht; let �̂�t (h
t) = H; a� (ht) � �a 2 argmaxa

R 1
0
V (a; �) d�;

and � (�jht) = 1: Since the interpretation strategy does not a¤ect beliefs and actions, it (weakly)
satis�es Condition 1 from De�nition 1. By construction, a� (ht) = �a satis�es Condition 2 from
De�nition 1. Moreover, because there all signals are rationalized as �̂ = H; consistency requires the
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posterior distribution to be equal to the prior distribution on the equilibrium path. Hence Condition
3 is satis�ed. �

Proof of Proposition 2. From �rst-order stochastic dominance, we have �Bt > �
B
t�1 if �t = H and

�Bt < �
B
t�1 if �t = L: Similarly, if �̂t (h

t; L) = L, we have �̂t > �̂t�1 if �̂t = H and �̂t < �̂t�1 if �t = L:
If �̂t (ht; L) = H; then �̂t = �̂t�1 on the equilibrium path.

Recall that �Bt second-order stochastically dominates �̂t if and only if we can express �
B
t as a

mean-preserving spread of �̂t: Since signals are i.i.d., it follows that the number of high recollections
k in n informative subhistories is a su¢ cient statistic for � given ht: In Appendix A (see Lemma 7),
I establish that the the expected value of � given a history with k high recollections in n informative
subhistories is equal to

E [�jk; n] = k + 1

n+ 2
:

Let �̂� be a strategy pro�le such that �̂�s (h
s; L) = H for some s < t: Consider a strategy pro�le �̂0

that coincides with �̂� except that �̂0s (h
s; L) = L: Let �0t be the conditional expectation obtained by

Bayes�rule given the strategy pro�le �̂0: Let �t = �
0
t � �̂t: Then,

�t =

� k+2
n+3 �

k+1
n+2 if �s = H

k+1
n+3 �

k+1
n+2 if �s = L

; and

E [�tjk; n] = Pr (�s = Hjk; n)
�
k + 2

n+ 3
� k + 1

n+ 2

�
+ Pr (�s = Ljk; n)

�
k + 1

n+ 3
� k + 1

n+ 2

�
= E [�jk; n]

�
k + 2

n+ 3
� k + 1

n+ 2

�
+ f1� E [�jk; n]g �

�
k + 1

n+ 3
� k + 1

n+ 2

�
=

k + 1

n+ 2

�
k + 2

n+ 3
� k + 1

n+ 2

�
+

�
1� k + 1

n+ 2

�
�
�
k + 1

n+ 3
� k + 1

n+ 2

�
= 0:

Thus, increasing the number of realistic interpretations leads to expected values of � that are mean-
preserving spreads of the original ones. Since �Bt is the expected value of � when all interpretations
are realistic, it follows that �Bt is a mean-preserving spread of �̂t: �

Proof of Lemma 2. From De�nition 1, the individual chooses an action a that maximizesZ
V (a; �) d� (�jk; n) = �a

"Z 1

1
2

d� (�jk; n)�
Z 1

2

0

d� (�jk; n)
#
:

Therefore, she chooses a = 1 if
R 1
1
2
d� (�jk; n) �

R 1
2

0
d� (�jk; n) ; and chooses a = 0 if

R 1
1
2
d� (�jk; n) �R 1

2

0
d� (�jk; n) :As shown in Appendix A (see Lemma 7), the posterior distribution has p.d.f. �k(1��)n�kR 1

0
�k(1��)n�kd� :

Therefore, the individual chooses a = 1 ifR 1
1
2
�k (1� �)n�k d�R 1

0
�k (1� �)n�k d�

>

R 1
2

0
�k (1� �)n�k d�R 1

0
�k (1� �)n�k d�

()
Z 1

1
2

�k (1� �)n�k d� >
Z 1

2

0

�k (1� �)n�k d�: (13)

Applying the change of variables x = 1� �, we obtainZ 1
2

0

�k (1� �)n�k d� =
Z 1

1
2

(1� �)k �n�kd�:
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Plugging back inequality (13) yieldsZ 1

1
2

h
�k (1� �)n�k � (1� �)k �n�k

i
d� > 0: (14)

As I show in the Appendix A (see Lemma 8), inequality (14) is satis�ed if and only if k � n
2 : �

Proof of Theorem 1. Consider a history ht with k high interpretations in n informative sub-
histories. The proof proceeds by contradiction. Suppose the equilibrium strategy assigns �̂ (ht) = L
and a consider a deviation to �̂t = H: The deviation changes beliefs to the posterior probability given
k + 1 high interpretations in n informative sub-histories, which yields a gain from self-image and an
expected cost from a possibly suboptimal action.

The gain from self image in the current period is equal to � fE [�jk + 1; n]� E [�jk; n]g = �
n+2 :

Therefore, the expected gain from self image is bounded below by [1� � (1� �)]� �
n+2 ; which converges

to 0 at rate 1
n (this is a lower bound because we are ignoring the gains in all future periods).

Suppose the game ends after a history with ~k high recollections in ~n informative subhistories. Note
that if

~k
~n �

1
2 ; the individual chooses a = 1 both when she deviates or when she does not deviate.

Similarly, the individual chooses a = 0 in both situations when
~k+1
~n � 1

2 : Therefore, deviating only

generates an expected cost in terms of suboptimal actions when
~k
~n <

1
2 <

~k+1
~n : In these cases, the

deviation leads the individual to choose a = 1 instead of a = 0; which gives an expected payo¤ of

�

R 1
1
2

h
�
~k (1� �)~n�~k � (1� �)~k �~n�~k

i
d�R 1

0
�
~k (1� �)~n�~k d�

2 (��; 0) :

Since this term is bounded below by ��; the expected cost from suboptimal decision making is smaller
than p� � �; where p� is probability of the game ending after a history such that ~k

~n <
1
2 <

~k+1
~n . In

order to establish that there is a pro�table deviation, it su¢ ces to show that p� converges to 0 faster
than 1

n as n!1 when k
n is close to either 0 or 1:

Because the result needs to hold for any initial strategy, we need a uniform bound on p�: First,
consider an initial history ht such that k

n >
1
2 : The probability of the game ending after a history

with
~k
~n <

1
2 <

~k+1
~n is bounded above by the strategy �̂0 (h) that interprets signals realistically until

the signal becomes pivotal, and then rationalizing away every additional signal:

� �̂0 (h) = L for subsequent histories such that k0 > n0

2 ; and

� �̂0 (h) = H for subsequent histories such that k0 � n0

2 :

Recall that �̂t = k+1
n+2 is the individual�s expected probability of a high signal given h

t: Under the

strategy above, the individual may reach a continuation history with
~k
~n <

1
2 if she observes:

� 2k � n low signals and 0 high signals, which happens with probability
�
1� �̂

�2k�n
;

� 2k�n+1 low signals and 1 high signal, which happens with probability (2k�n+2)!
(2k�n+1)!1!

�
1� �̂

�2k�n+1
�̂;

� ...

� 2k�n+s low signals and s high signals, which happens with probability (2k�n+2s)!
(2k�n+s)!s!

�
1� �̂

�2k�n+s
�̂
s
;...

Therefore, the upper bound on p� is determined by the sum of all terms above:

p� �
1X
s=0

(2k � n+ 2s)!
(2k � n+ s)!s!

�
1� k + 1

n+ 2

�2k�n+s�
k + 1

n+ 2

�s
:
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Let k = n: Since limn!1

�P1
s=0

(n+2s)!
(n+s)!s! (1�

n+1
n+2 )

n+s
(n+1n+2 )

s

1
n

�
= 0; it follows that for large n

[1� � (1� �)]� �

n+ 2
> ��

1X
s=0

(n+ 2s)!

(n+ s)!s!

�
1� n+ 1

n+ 2

�n+s�
n+ 1

n+ 2

�s
� p��:

Therefore, by continuity, there exist H < 1 and �n such that whenever
k
n > H and n > �n;

�
n+2 > p

��.
This establishes that it is pro�table to deviate to �̂t+1 = H in this case, which concludes the �rst
part of the proof.

Now consider an initial history with k+1
n < 1

2 : Again, a uniform bound on p
� is attained by playing

the following strategy:

� �̂ (h) = L for subsequent histories such that k0 + 1 < n0

2 ; and

� �̂ (h) = H for all subsequent histories such that k0 + 1 � n0

2 :

Under the strategy above, the individual may reach a continuation history with k0+1 � n0

2 if she

observes n�2k+f�2 high signals and f low signals, which happens with probability (n�2k+2f�2)!
(n�2k+f�2)!f ! ��

1� �̂
�f
�̂
n�2k+f�2

; for any f 2 N: Thus, the probability of the signal being pivotal when the game
ends under this strategy is equal to:

�

1X
f=0

(n� 2k + 2f � 2)!
(n� 2k + f � 2)!f ! �

�
1� k + 1

n+ 2

�f �
k + 1

n+ 2

�n�2k+f�2
:

Take k = 0: Using the fact that limn!1 �
P1

f=0
(n+2f�2)!
(n+f�2)!f!�(1�

1
n+2 )

f
( 1
n+2 )

n+f�2

1
n

= 0; it follows that

there exist L > 0 and �n such that whenever
k
n < L and n > �n;

[1� � (1� �)]� �

n+ 2
> �

1X
f=0

(n� 2k + 2f � 2)!
(n� 2k + f � 2)!f !

�
1� k + 1

n+ 2

�f �
k + 1

n+ 2

�n�2k+f�2
� p��;

which concludes the proof. �

Proof of Proposition 3. Suppose �̂�M (0; 0) = L and consider a deviation to H: The increase in
self-image in a period associated with state (k; n) is equal to

E [�jk + 1; n]� E [�jk; n] = 1

n+ 2
: (15)

We need to obtain a uniform lower bound on the discounted bene�t from deviating. Since the expres-
sion in (15) is decreasing in the number of informative subhistories, the discounted gain in self-image
is bounded below by following the strategy that interprets every additional signal realistically, which
yields

� [1� � (1� �)]
+1X
t=0

�t (1� �)t

t+ 3
= � [1� � (1� �)]

 
1

3
+
+1X
t=1

�t (1� �)t

t+ 3

!
� �

3
[1� � (1� �)] :

We want to obtain a uniform upper bound on the cost of taking a suboptimal action. When the
�nal state is such that either

~k
~n >

1
2 or

~k+1
~n < 1

2 ; the deviation does not a¤ect actions. Thus, the cost

is positive only states such that
~k
~n <

1
2 <

~k+1
~n : In these cases, rationalization of the signal induces the
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individual to take action a = 1 when a = 0 is preferred, and the cost of taking the suboptimal action
is equal to

��

R 1
1
2

h
�
~k (1� �)~n�~k � (1� �)~k �~n�~k

i
d�R 1

0
�
~k (1� �)~n�~k d�

2 (��; 0) ;

where
~k
~n <

1
2 <

~k+1
~n : Thus, the cost is bounded above by �: Since � < �

3 [1� � (1� �)] ; the individual
has a pro�table deviation. �

Proof of Proposition 4. If the individual observes a low signal at state (0; 0) ; she interprets it
realistically and moves to (absorbing) state (0; 1) : Therefore, she obtains an expected payo¤ of

� [1� � (1� �)]
�
1 + � (1� �) + �2 (1� �)2 + �3 (1� �)3 + ::

� 1
3
+ 0 =

�

3

(because a�M (0; 1) = 0). By deviating to �̂ = H; the individual moves to (absorbing) state (1; 1) and
gets an expected payo¤ of

2�

3
+ �

R 1
1
2
[(1� �)� �] d�R 1
0
(1� �) d�

=
2�

3
� �
2
:

This deviation is not pro�table if �3 �
2�
3 �

�
2 ; which is equivalent to � �

2�
3 :

Let (o¤-equilibrium path) beliefs be such that, upon observing �̂ = L at any state, the individual
assigns probability 1 to signal � = L: Then, deviating to �̂ = L at state (0; 1) leads to a payo¤ of

�E [�j (0; 2)] + E [V (a (0; 2) ; �) j0; 2] = �

4
;

which is lower than the payo¤ from following the equilibrium strategy and playing �̂ = H because it
lowers the payo¤ from self-image but does not a¤ect the payo¤ from actions. Therefore, this is not a
pro�table deviation.

At (absorbing) state (1; 1), the individual plays �̂ = H and obtains an expected payo¤ of

�E [�j (1; 1)] + E [V (a (1; 2) ; �) j1; 2]| {z }
0

=
2�

3
:

By deviating to �̂ = L; she obtains E [��j (1; 2)] +E [V (a (1; 2) ; �) j1; 2]| {z }
0

= �
2 ; which is lower than the

equilibrium payo¤. Thus, it is not pro�table to deviate at state (1; 1) : �

Proof of Theorem 2. Fix a type � =2
�
0; 12 ; 1

	
. In order to obtain a contradiction, suppose that the

claim above is not true. Recall that (k; n) is an absorbing state if �̂�M (k; n) = H: Therefore, there
must exist a sequence fkng1n=0 such that

k0 = 0; kn+1 2 fkn; kn + 1g ;

and �̂�M (kn; n) = L for all n 2 N:
De�ne the random variable xt � 1 (�̂t = H) ; where 1 (:) denotes the indicator function. Then,

each xt is an independent Bernoulli(�) random variable. Denote the sum of xt by Sn � X1+ :::+Xn;
and de�ne the variable

Zn �
p
n�

Sn
n � �p
� (1� �)

:

Then, by the Central Limit Theorem, Zn !d N (0; 1) :
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As in the proof of Theorem 1, deviating from the equilibrium choice of �̂�M (kn; n) = L and playing
�̂ = H leads to a gain in self-image and a loss due to worse decision making. The gain from self image
is bounded below by

� [1� � (1� �)] fE [�jk + 1; n]� E [�jk; n]g = �

n+ 2
[1� � (1� �)] ;

which converges to �(1��)
n+2 as � ! 0:

The decision making loss is bounded above by �Pr
�
Sn
n < 1

2 <
Sn+1
n

�
: Rewriting in terms of Zn;

yields:

�Pr

 
Zn <

p
n

1
2 � �p
� (1� �)

< Zn +
1

p
n
p
� (1� �)

!
:

Because Zn !d N (0; 1) ; it follows that

Pr

�
Sn
n
<
1

2
<
Sn + 1

n

�
� �

 
p
n

1
2 � �p
� (1� �)

!
� �

 
p
n

1
2 � �p
� (1� �)

� 1
p
n
p
� (1� �)

!
;

where � is the c.d.f. of a standard normal variable.
In order to establish the desired contradiction, we need to show that the gain from self image is

greater than the decision making cost:

� (1� �)
� (n+ 2)

> �

 
p
n

1
2 � �p
� (1� �)

!
� �

 
p
n

1
2 � �p
� (1� �)

� 1
p
n
p
� (1� �)

!
(16)

for n su¢ ciently large.
Note that both sides of inequality (16) converge to 0 as n!1: Using the formula for �; it follows

that � (z)� � (y) = 1p
2�

R z
y
exp

�
�x2

2

�
dx: Applying a Taylor approximation, we obtain

� (y) � � (z) + (y � z)� (y) ;

where � (x) = 1p
2�
exp

�
�x2

2

�
: Then, we have

�

 
p
n

1
2 � �p
� (1� �)

!
� �

 
p
n

1
2 � �p
� (1� �)

� 1
p
n
p
� (1� �)

!

� 1p
2�
p
n
p
� (1� �)

exp

26664�
n

�
1
2��p
�(1��)

�2
2

37775 :
Then, in order to show that inequality (16) is satis�ed for large n, it su¢ ces to show that

� (1� �)
� (n+ 2)

>
1p

2�
p
n
p
� (1� �)

exp

26664�
n

�
1
2��p
�(1��)

�2
2

37775 :

Rearranging, we obtain �(1��)
�

p
n

n+2 >
1p

2�
p
�(1��)

exp

24�n

�
1
2
��p

�(1��)

�2
2

35 : Since p
n

n+2 <
1p
n
; a su¢ cient
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condition is �(1��)
�

1p
n
> 1p

2�
p
�(1��)

exp

24�n

�
1
2
��p

�(1��)

�2
2

35 :Rearranging, yields
� (1� �)

p
2�

�
>

p
np

� (1� �)
exp

"
�n (1� 2�)

2

8� (1� �)

#
:

Note that the term on the left is a positive constant whereas the term on the right is a function of n:

Moreover, for � 6= 1
2 ; we have limn!1

p
n exp

h
�n (1�2�)

2

8�(1��)

i
= 0: Thus, it follows that for large n;

p
np

� (1� �)
exp

"
�n (1� 2�)

2

8� (1� �)

#
<
� (1� �)

p
2�

�
;

which concludes the argument for � =2
�
0; 12 ; 1

	
:

Now suppose � = 0 (the case where � = 1 is analogous). Then, we must have �t = L for all t: In
order to obtain a contradiction, suppose that the claim is not true. Then, because of the Markovian
restriction, we must have �̂�t = L for all t: The individual�s gain from deviating to �̂ = H is bounded
below by

� [1� � (1� �)]
�

2

n+ 2
� 1

n+ 2

�
=
� [1� � (1� �)]

n+ 2
> 0:

For n > 2; the deviation leads the individual to take action a (1; n) = 0 since 1
n <

1
2 : Therefore,

deviating to �̂ = H is pro�table since it increases the individual�s self views but does not a¤ect her
actions. �

Proof of Theorem 3. In order to obtain a contradiction, suppose that �̂ (ht) = L for some history
ht with n large enough and consider a deviation to �̂ = H. The gain from self-image is bounded below
by

� [1� � (1� �)] fE [�jk + 1; n]� E [�jk; n]g = � [1� � (1� �)]
n+ 2

:

Let ~ � ~k
~n ; and ~

0 � ~k+1
~n : The deviation will lead the individual to choose action

a
�
~0; ~n

�
= argmax

a0

Z
V (a0; �) d�

�
�j~n~0; ~n

�
when the game ends after a history associated with

�
~k; ~n
�
= (~n~; ~n) : Therefore, the expected cost of

distorting actions is equal toX
~n~�k
~n�n

�Z
V
�
a
�
~0; ~n

�
; �
�
d� (�j~n~; ~n)�

Z
V (a (~; ~n) ; �) d� (�j~n~; ~n)

�
� (~n~; ~njk; n) ; (17)

where �
�
~k; ~njk; n

�
denotes the probability that the game ends at a history associated with

�
~k; ~n
�

consistent with the strategies being played in the �xed PBE. We will establish that the expression in
(17) decreases to 0 at a rate faster than 1

n :
For notational simplicity, I will omit the term ~n from a (~; ~n) : De�ne � as

� (a (~) ; ~; ~n) �
Z
V (a (~; ~n) ; �) d� (�j~n~; ~n) :

Then, from Taylor�s theorem with the Lagrange remainder, it follows that

� (a (~) ; ~; ~n) = �
�
a
�
~0
�
; ~; ~n

�
+
@�

@a
(a (~) ; ~; ~n)�

�
a
�
~0
�
� a (~)

�
+ r

�
a
�
~0
�
� a (~)

�
; (18)

33



where limh!0
r(h)
h = 0: Since a (̂) 2 maxa

R
V (a; �) d� (�j~n~; ~n) ; it must satisfy the following local

�rst-order condition:
@�

@a
(a (~) ; ~; ~n) = 0:

Therefore, equation (18) becomes

� (a (~) ; ~; ~n) = �
�
a
�
~0
�
; ~; ~n

�
+ r

�
a
�
~0
�
� a (~)

�
:

It remains to be shown that limn!1
r(a(~0)�a(~))

1
n

= 0: Note that 1
n = ~

0 � ~; so that

r
�
a
�
~0
�
� a (~)

�
1
n

=
r
�
a
�
~0
�
� a (~)

�
~0 � ~

=
r
�
a
�
~0
�
� a (~)

�
a
�
~0
�
� a (~)

a
�
~0
�
� a (~)

~0 � ~ :

Moreover, from the de�nition of r; we have lima(~0)�a(~)!0
r(a(~0)�a(~))
a(~0)�a(~) = 0: Thus, it su¢ ces to show

that there exists some constants " and K~ such that
��~0 � ~�� < " implies�����a

�
~0
�
� a (~)

~0 � ~

����� < K~ :

By the Theorem of the Maximum, a is continuous. The result then follows from the fact that contin-
uous functions have bounded subdi¤erentials at any interior points.

Therefore, for n large enough, there exists some n� (k; �) such that �̂ (ht) = H for all n > n� (k; �) ;
k 2 f0; :::; ng : Since f0; :::; ng is a �nite set, letting �n (�) � maxk2f0;:::;ng n� (k; �) concludes the proof.
�

Proof of Lemma 3. Let X1; X2; :::; Xn be a sequence of independent Bernoulli random variables
with parameter � (�) : Therefore, they are distributed according to a probability mass function

f (xj�) = � (�)x [1� � (�)]1�x ; x 2 f0; 1g :

It is straightforward to check that Assumptions 1-9 from Johnson (1970) are satis�ed. Moreover,Z �

�

j�j � (�) d� � �� <1:

Therefore, from the Theorem 3.1 in Johnson (1970), it follows that there exists constants C and Nk
such that ������E [�jX1; X2; :::; Xn]� �̂ � 1

b
�
�̂
�
0@6a3 ��̂�+ �0

�
�̂
�

�
�
�̂
�
1An�1

������ � Cn�2; (19)

where �̂ is the maximum likelihood estimator of �;

a2n (�) � 1

2n

nX
i=1

@2

@�2
log f (xij�) ; (20)

a3n (�) � 1

6n

nX
i=1

@3

@�3
log f (xij�) ; and

b (�) �
p
�2a2n (�):

34



Note that the maximum likelihood estimator of � (�) in this model is [� (�) =
Pn

i=1 xi
n : Moreover, from

the invariance property, it follows that �̂ = ��1
�Pn

i=1 xi
n

�
: Computing the terms in equations (20)

and substituting in (19), we obtain:������
E [�jX1; X2; :::; Xn]� �̂

�
q
�(�̂)[1��(�̂)]

�0(�̂)

�
1

�(�̂)[1��(�̂)]

�
2
h
�0
�
�̂
�i3 1�2�(�̂)

�(�̂)[1��(�̂)]
� 3�0

�
��1

�
�̂
��
�00
�
�̂
��

+
�0(�̂)
�(�̂)

�
n�1

������(21)

� Cn�2:

As before, let k �
Pn

i=1 xi denote the number of successes in the n Bernoulli trials. Then, substituting

�̂ = ��1
�Pn

i=1 xi
n

�
yields����E [�jX1; X2; :::; Xn]� ��1�kn

�
� �

�
k

n

�
n�1

���� � Cn�2;
where � is given by equation (4). �

Proof of Lemma 4. From equation (3), there exist C0 and C1 such that����E [�jk; n]� ��1�kn
�
� �

�
k

n

�
n�1

���� � C0n�2; and����E [�jk + 1; n]� ��1�k + 1n
�
� �

�
k + 1

n

�
n�1

���� � C1n�2
for all n > max fNk; Nk+1g on an almost sure set (under the true �). From the triangular inequality,
it follows that����E [�jk + 1; n]� E [�jk; n]� ��1�k + 1n

�
+ ��1

�
k

n

�
� �

�
k + 1

n

�
n�1 + �

�
k

n

�
n�1

���� � C2n�2
(22)

for C2 � C0 + C1:
Let �̂

�
� ��1

�
k+1
n

�
and recall that �̂ = k

n : Applying a Taylor approximation, it follows that there
exist constants Z0 and N1;k such that���� ��̂��� � ��̂�� ��̂� � �̂� �0 ��̂���� � Z0n�2
for all n > N1;k. Substituting in equation (22), we obtain����E [�jk + 1; n]� E [�jk; n]� ��1�k + 1n

�
+ ��1

�
k

n

�
�
�
��1

�
k + 1

n

�
� ��1

�
k

n

��
�0
�
k

n

�
n�1

����(23)

� Z1n
�2

for constants N2;k and Z1 and n > N2;k on an almost sure set.
Since � is twice continuously di¤erentiable, there exist constants N3;k and Z2 such that for all

n > N3;k and Z2 �������1
�
k + 1

n

�
� ��1

�
k

n

�
� 1

n

1

�0
�
��1

�
k
n

�� ����� < Z2n�2:
Then, equation (23) implies that there exist constants N4;k and Z3 such that for all n > N4;k :�����E [�jk + 1; n]� E [�jk; n]� 1

�0
�
��1

�
k
n

��n�1 � �0
�
k
n

�
�0
�
��1

�
k
n

��n�2����� � Z3n�2
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on an almost sure set. Letting D1 � Z3 +
���� �0( kn )
�0(��1( kn ))

���� ; this inequality implies that�����E [�jk + 1; n]� E [�jk; n]� 1

�0
�
��1

�
k
n

��n�1����� � D1n�2;
which concludes the proof. �

Proof of Theorem 4. The proof follows the exact same argument as the proof of Theorem 3. �

Theorem 5 will be established by a series of lemmata:

Lemma 9
p
n fE [�jk; n]� �g !D N

�
0; 1b2

�
; where b =

q
� 1
n

�Pn
i=1

@2

@�2 log f (xij�)
	
�=�̂

= 1p
�̂(1��̂)

;

and �̂ = k
n is the MLE of �:

Proof. This is a straightforward application of the Laplace-Bernstein-von Mises theorem (see Theo-
rem 1.4.3 and Remark 1.4.6 in Ghosh and Ramamoorthi, 2003).

Lemma 10 Suppose � (:) is regular. Then, there exists constants D and Nk such that for any n > Nk :����E [�jk + 1; n]� E [�jk; n]� 1

n

���� � D 1

n2
:

Proof. Let p denote the prior distribution over � implied by � : p (� (�)) = � (�) : Note that

p0 (� (�))�0 (�) = �0 (�) ) p0 (� (�)) = �0 (�)

�0 (�)
:

Thus, p0 (�) =
�0(��1(�))
�0(��1(�))

where ��1 (�) is the inverse of the relation � (�) ; i.e. �
�
��1 (�)

�
= �: From

Johnson (1970), there exist constants D1 and N such that n > N implies�����EX [�]� �̂ �p�̂ (1� �̂)
"
2

1� 2�̂
�̂2 (1� �̂)2

+
p0 (�̂)

p (�̂)

#
n�1

����� � D1n�2:
where EX denotes the posterior distribution of � given some sequence of signals X and �̂ denotes the

maximum likelihood estimator of �: Since p0 (�̂) =
�0(��1(�̂))
�0(��1(�̂))

and �̂ = k
n ; we obtain�����EX [�]� k

n
�

s
k

n

�
1� k

n

�"
2

1� 2 kn�
k
n

�2 �
1� k

n

�2 + �0
�
��1

�
k
n

��
p
�
k
n

�
�0
�
��1

�
k
n

��#n�1����� � D1n�2:
Let � (�̂) �

p
�̂ (1� �̂)

�
2 1�2�̂
�̂2(1��̂)2 +

�0(��1(�̂))
p(�̂)�0(��1(�̂))

�
: Then,

E [�jk; n] = k

n
+ �

�
k

n

�
n�1 +O

�
n�2

�
; (24)

Applying a Taylor expansion yields

�

�
k + 1

n

�
= �

�
k

n

�
+
1

n
�0
�
k

n

�
+O

�
1

n2

�
:
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Therefore,

E [�jk + 1; n] = k + 1

n
+ �

�
k

n

�
n�1 +O

�
n�2

�
(25)

Combining (24) and (25) yields

E [�jk + 1; n]� E [�jk; n] =
k + 1

n
+ �

�
k

n

�
n�1 � k

n
� �

�
k

n

�
n�1 +O

�
n�2

�
=

1

n
+O

�
n�2

�
;

which concludes the proof.
Proof of Theorem 5. Under Assumption 3, a signal is pivotal if

E [�jk; n] < � < E [�jk + 1; n] : (26)

Applying the result from Lemma 10, we obtain

E [�jk + 1; n] < E [�jk; n] + 1

n
+Dn�2

for n > Nk: Therefore, inequality (26) becomes

p
nq

k
n

�
1� k

n
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nq

k
n

�
1� k

n

� (�� �)
for some constant C:

Since
p
nq

k
n (1�

k
n )
fE [�jk; n]� �g !D N (0; 1) ; the probability of a signal being pivotal is bounded

above by the following probability:

�
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k
n
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k
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�
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�
1� k

n

�
1A :

Note that this term converges to zero. We want to show that

�

 
p
nq

k
n (1�

k
n )
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k
n (1�

k
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(�� �)�

p
n(Cn�2+ 1

n )q
k
n (1�

k
n )

!
1
n

!a:s: 0;

which will establish that the gain from self-perception is greater than the cost of suboptimal decisions
when n is high for almost all histories.

From Taylor�s theorem, we obtain
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Therefore, it su¢ ces that establish that

p
n(Cn�2+ 1

n )r
k
n (1� k

n )
1p
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exp

8>>>>>><>>>>>>:
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2664 p
nr
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!a:s: 0: But rear-

ranging this expression yields�
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which converges (a.s.) to zero if and only if

p
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k
n

�
1� k

n

� exp
(
� n

2 kn
�
1� k
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� (�� �)2)!a:s: 0: (27)

Using the fact that the function above is continuous,
q

k
n

�
1� k

n

�
!as

p
� (1� �); and

p
np

� (1� �)
exp

�
� n

2� (1� �) (�� �)
2

�
!a:s: 0:

Thus, (27) is satis�ed whenever � 6= �. This establishes our desired result. �

Proof of Theorem 6. Consider a history ht with k high interpretations in n informative sub-
histories. We want to show that there exists H such that for k

n > H and n large, the individual
will always play �̂ = H: In order to obtain a contradiction, suppose this is not true and consider a
deviation to �̂ = H: The proof proceeds by obtaining an upper bound on the equilibrium payo¤s,
a lower bound on the payo¤ from deviating, and showing that the lower bound on the payo¤ from
deviating is greater than the upper bound on the equilibrium payo¤s. I will consider the case in which
k
n > H (by symmetry, the other case is analogous).

The payo¤ from deviating is bounded below by the strategy in which the individual plays �̂ = H
after every future low signal. In this case, all additional signals are uninformative and the individ-
ual gets an anticipatory payo¤ of E

�
� � 1

2 jk + 1; n
�
and an expected payo¤ from actions equal to

E
�
� � 1

2 jk; n
�
: Thus, the payo¤ from deviating is bounded below by

E

�
� � 1

2
jk + 1; n

�
+ E

�
� � 1

2
jk; n

�
=
2k + 3

n+ 2
� 1: (28)

The payo¤ from playing any equilibrium strategy is bounded above by the payo¤ obtained if the
individual could commit to interpreting every signal realistically. Since � ! 0; the actions taken under

this interpretation strategy converge (almost surely) to a =
�

1 if � > 1
2

�1 if � < 1
2

; which yields an expected

payo¤ of

2E

��
� � 1

2

�
1

�
� � 1

2

�
�
�
� � 1

2

�
1

�
� <

1

2

�
jk; n

�
;

where 1 (x) denotes the indicator function. Rearranging this expression, we obtain

2
hR 1

1
2
�k+1 (1� �)n�k d� �

R 1
2

0
�k+1 (1� �)n�k d�

i
+
R 1

2

0
�k (1� �)n�k d� �

R 1
1
2
�k (1� �)n�k d�R 1

0
�k (1� �)n�k d�

: (29)
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Next, we establish that, for k
n �  � 1 and n large enough, the expression in (28) is greater than

the one in (29). By continuity, it su¢ ces to check that (28) is strictly greater than the one in (29) for
 = 1 when n is large enough. Thus, it su¢ ces to show that

� (n) �
�
n+ 1

n+ 2

�Z 1

0

�nd� � 2
 Z 1

1
2

�n+1d� �
Z 1

2

0

�n+1d�

!
�
Z 1

2

0

�nd� +

Z 1

1
2

�nd� > 0;

for large n: It is straightforward to verify that � (n) 6= 0 and � (n)& 0, which implies that there exists
an �n such that n > �n =) � (n) > 0, concluding the proof. �

Proof of Proposition 5. Let hT�� be a history with k high interpretations in n informative
subhistories and suppose that k

n �
1
2 . Suppose the equilibrium assigns �̂�

�
hT��

�
= L and consider

a deviation to �̂ = H: A su¢ cient condition for this deviation to be pro�table is that, for every
continuation interpretation strategy after the deviation, the individual keeps playing action a = 1
and she weakly prefers to play this action (hence, this deviation has no costs in terms of suboptimal
decision making). Since the individual observes � additional signals, the individual keeps playing
a = 1 in every continuation strategy and every continuation history after the deviation if she chooses
a = 1 even after observing � additional low signals and interprets them realistically:

k + 1

n+ �
>
1

2
:

Moreover, she prefers action a = 1 for every continuation strategy and every continuation history if

k

n+ �
� 1

2
:

Combining these two conditions yields k
n+� �

1
2 :

Now let k
n � 1

2 , suppose the equilibrium assigns �̂�
�
hT��

�
= L; and consider a deviation to

�̂ = H: Again, a su¢ cient condition for this deviation to be pro�table is that, for every continuation
interpretation strategy, the individual keeps playing a = 0 and she weakly prefers this action in every
continuation history. She keeps playing a = 0 if she does so even after observing � high signals and
interpreting them realistically:

k + � + 1

n+ �
<
1

2
:

Furthermore, she prefers action a = 0 in all continuation histories if

k + �

n+ �
� 1

2
:

Combining these two inequalities yields k+�+1
n+� < 1

2 : �

Proof of Proposition 6. The proof follows the exact steps as the proof of Proposition 3. The only
di¤erence is on the bound of the discounted gain in self-image, which becomes

�
T�1X
t=0

�t

t+ 3
=

(
�
h
1
3 +

�
T+3

�
1��T
1��

�i
if � < 1; and

�
PT�1

t=3
1
t if � = 1:

�

Proof of Proposition 7. The proof follows the exact steps as the proof of Proposition 4, except
that the expected payo¤s from self image become �

3

�
1��T
1��

�
if the individual interprets a low signal

realistically at state (0; 0) ; and 2�
3

�
1��T
1��

�
� �

2 if she deviates and chooses �̂ = H: Deviating is not

pro�table since � � 2�
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�
1��T
1��
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