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Abstract

A long-lived player encounters disputes with a sequence of short-
lived players, each at a time. The long-lived player has private in-
formation about his liability towards each claim. Each pair of long-
and short-lived players attempt to resolve their dispute via negotiation
but, should there be a disagreement, an unbiased yet imperfect third
party is called upon to make a judgement. The short-lived players
learn about the informed player through two channels: observed be-
havior of the informed player (“soft” information) and, if any, verdicts
of the third party (“hard” information). The interplay between these
two sources of information generates new, interesting equilibrium dy-
namics that feature reputation building. The predictions of the model
explain a number of empirical puzzles identified in litigation and en-
able us to discuss several related policy issues.
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1 Introduction

1.1 Motivation and overview

Recently, Merck and Pfizer, two of the largest pharmaceutical manufactur-
ers, have been involved in a series of high-profile litigations surrounding their
painkillers’ alleged link to increased risk of blood clots, heart attacks and
strokes.1 Despite the close similarity of their cases, the two firms have
adopted contrasting approaches to the litigations. Merck committed from
the outset the policy of contesting every case in court and, following a num-
ber of successful trial outcomes, are now on the verge of striking a mass
settlement.2 In sharp contrast, Pfizer are attempting to settle its disputes
before taking any of them to court.3 How do we reconcile these differences
in behavior?

Product liability litigations such as the above drugs cases in fact repre-
sent one of many important applications of dispute resolutions that share
several distinguishing characteristics. First, many transactions and dispute
resolutions feature a large player and a pool of small players. For example,
a landlord routinely contests with tenants over the amount of deposit to be
returned and a firm often faces labor-wage disputes with its employees, while
a chain of restaurants and other firms producing goods with safety attributes
risk causing damages to their customers. Second, these disputes are rarely
resolved by the two sides alone. Amid the deadlock of a labor-wage dispute,
the parties often turn to a third party, such as an arbitrator or even a court.
When traders disagree on the quality of goods or the terms of a deal, they
hire an expert to make an assessment on their behalf. Even when transac-
tions are conducted smoothly without outside intervention, the third party
is usually in the shadow of the interaction.

Economic significance of such disputes are often strikingly large. A promi-
nent example is found in securities class actions, where an underwriter or au-
ditor representing multiple initial public offerings (IPOs) faces claims from
shareholders on the basis of fraudulent financial practices behind large price

1The drugs in dispute are Vioxx for Merck and Bextra and Celebrex for Pfizer. They
all belong to the same class of painkillers known as COX-2 inhibitors.

2Source: New York Times, http://topics.nytimes.com/top/news/health/diseasesconditions
andhealthtopics/vioxx drug.

3Source: Wall Street Journal (May 2, 2008).
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declines.4 In the year of 2007 alone, the US experienced 177 federal class ac-
tion securities fraud claims with a total disclosure loss of 151 billion dollars.5

Medical malpractice litigations offer another important case in point. In the
US, the claimed damages involved in such suits totaled 28.7 billion dollars
in 2004 and, around the same period, the corresponding amount was about
2.4 billion euros in Italy.6 Observers of these events have indeed voiced rep-
utation concerns of the repeat players. However, a rigorous game-theoretic
framework is still absent.

In this paper, we develop a reputation model of repeated settlement bar-
gaining in the presence of a third party, or an “expert”. A critical aspect
of this model is that expert verdicts are informative but nonetheless imper-
fect. Learning arises from two sources: the informed player’s equilibrium
actions and the decisions made by the expert, if any. We interpret the first
of these two sources as “soft” information and the second as “hard” infor-
mation. The interplay of these two sources of information is indeed the key
innovative feature of our reputation model that generates new, interesting
equilibrium dynamics. To our surprise, it enables us to explain many empir-
ical observations and provide theoretical foundations for analyzing a number
of related policy issues.

We consider a long-lived player (e.g. defendant) who is in dispute with
a sequence of short-lived players (e.g. plaintiffs). The long-lived player has
private information regarding his liability towards each claim and, hence, a
compensation to each short-lived player. He is either “good” or “bad”, with
the bad type being more likely to be liable for each claim. For instance, an
underwriter privately knows whether or not he failed to disclose some infor-
mation relevant for share price decline and a landlord has better knowledge
of whether the damage is due to the tenant’s negligence or the poor condition
of his own building.

In each of infinitely many periods, a new short-lived player enters the
game with a claim and observes the public history. The two parties first
attempt to negotiate a settlement themselves. The short-lived player makes

4For instance, Alexander [1] notices that “two prominent investment banking firms
stated in their own prospectuses that in 1986 they were involved in 60 and 73 lawsuits,
respectively, over public offerings they had underwritten” (Alexander [1], p.558). Also,
see Palmrose [22].

5Source: Stanford law school securities class action clearinghouse, http://securities.
stanford.edu.

6Source: OECD [21].
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a take-it-or-leave-it settlement demand offer. If the demand is accepted,
the short-lived player receives the corresponding amount from the long-lived
player and leaves the game. But, in the event of a disagreement, when the
long-lived player rejects the demand, an expert is called upon to make a
decision on their behalf. An expert verdict is publicly observable, and so are
the details of an agreed settlement.

Expert resolution is costly to the parties and, most importantly, the third
party is imperfect. The “quality” of the expert is measured by the proba-
bility q > 1

2
with which he correctly rules a liable (or non-liable) long-lived

player to be indeed liable (or not liable). Moreover, it is assumed that the
expert quality is fixed over time. That is, we do not allow for the expert to
learn about the true type of the long-lived player. This last assumption is
reasonable in a number of contexts, for instance, when there is a pool of many
experts with average quality q and past evidence/verdicts cannot be used to
influence the current case because of either physical or legal constraints.

We construct a Markov perfect Bayesian equilibrium that displays the
following dynamics: the bad type attempts to gradually build up his repu-
tation when it is low, but he can successfully do so only with a probability
strictly less than 1. Reputation may move up or down and also, with a
strictly positive probability, the bad type will reveal himself and hence fail
to build reputation. It is worth noting that the bad type reveals himself only
when he voluntarily gives up reputation building; the hard information from
the expert, due to its imperfectness, can never lead to full revelation. We also
characterize the exact payoff gain from reputation in all Markov equilibria.
Surprisingly, for low prior beliefs, the benefit is minimal, in sharp contrast
to the result of Fudenberg and Levine [10].

The interplay between soft and hard information generates equilibrium
dynamics that are characterized by two threshold levels of reputation:7

When reputation is above the upper threshold, the short-lived player
makes a low settlement demand and both types of the long-lived player accept
it for sure. This is where the full benefits of successful reputation building
are reaped by the bad long-lived player. There is no learning on the part of
the short-lived players in this region.

In the intermediate reputation region, the short-lived players make a large
settlement demand that the good type cannot accept; the bad type mimics

7We also demonstrate that this threshold property indeed applies to all Markov equi-
libria.
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the good type and also reject settlement demands for sure. Rejection leads to
an arrival of hard information which, in expectation, will reduce reputation.
But, with the prospect of a high continuation payoff (or a low expected
compensation payment) in the neighboring high reputation region, the bad
type is reluctant to accomodate the large demand of the short-lived players.
Here, learning occurs but only through hard information since nothing can
be learned about the long-lived player’s type from the pooling behavior.

When reputation is below the lower threshold, the long-lived player faces
a slim prospect of a high payoff as the high reputation region is far away,
that is, many pieces of good luck (favorable expert verdicts) are needed to
reach the high reputation region. Thus, the long-lived player is willing to
accommodate the short-lived players’ demands. In equilibrium, he builds
reputation by playing a mixed strategy and hard information arrives only
occasionally. Here, the impact of hard information is reduced in the pres-
ence of soft informaiton and, in fact, soft information can sometimes revert
the adverse effects of hard information. We fully characterize an open inter-
val within the low reputation region where a brave rejection of the demand
enhances reputation even after an unfavorable verdict from the expert.

1.2 Contributions

Theory of reputation Our results enrich the adverse selection theory of
reputation initiated by Kreps and Wilson [18], Milgrom and Roberts [20]
and Kreps, Milgrom, Roberts and Wilson [17] and later developed by, among
many others, Fudenberg and Levine [10] and Mailath and Samuelson [19].8

In standard reputation models, no players actually build reputation in equi-
librium; the privately informed player starts pooling with another type from
the very beginning of the game and so “reputation springs to life”.9 Further-
more, even though reputation can increase the equilibrium payoff, reputation
can always be built. In many applications, these features are not completely
realistic. By introducing the interplay between soft and hard information,
we show non-degenerate reputation building dynamics in which reputation
can be built and maintained but not always.

Bar-Isaac [2] considers soft and hard information in a model where the
quality of a monopolist is imperfectly revealed in each period via an exoge-

8See also repeated bargaining models with incomplete information studied by Hart and
Tirole [12], Schmidt [23] and others.

9See Mailath and Samuelson [19] for related commens on standard reputation models.

5



nous signal should he decide to produce. In contrast to our paper, the focus
here is on the learning behavior of the firm under various assumptions about
the degree of private information that it possesses compared to the mar-
ket. We, on the other hand, analyze the dynamics and value of reputation
building.

We also note that external signals have been introduced in the dynamic
signaling literature (see, for instance, Kremer and Skryzpacz [16] and the
references therein). In these models, the arrival of hard information is entirely
exogenous and, moreover, the game ends right after a signal. In our repeated
model the arrival of hard information is optional to the long-lived player, and
we can therefore explore his manipulation of such signals.

Do the merits matter? Our repeated settlement bargaining model
enable us to piece together several empirical observations identified by le-
gal scholars, regarding the relationship between merit and settlement out-
come. Alexander [1], now a classic in this field, studies securities class action
lawsuits involving underwriters behind similar claims of fraud in computer-
related IPOs.10 She finds that, beyond very few exceptions, “the cases set-
tled at an apparent ‘going rate’ of approximately one quarter of the potential
damages...a strong case in this group appears to have been worth no more
than a weak one” (Alexander [1], p.500). Thus, the merit of a case, or “the
parties’ estimates of the strength of the case” (Alexander [1], p500), does not
appear to matter for settlement, an observation that cannot be satisfactorily
explained by existing, static economic models of litigation. Our results are
however consistent with it; this is exactly what happens in the low reputation
region where settlements occur and, moreover, the amount of settlement is
constant over this interval of merits.

We also clarify the puzzle. Although the settlement amount, conditional
on agreement, is independent of merit, settlement is nevertheless meritori-
ous in that the settlement rate (i.e. the likelihood of settlement) is strictly
decreasing in merit over the low reputation region. This is confirmed by Stud-
dert and Mello [26] who find that, in medical malpractice litigations, merits
do indeed affect the settlement rate. Furthermore, it is observed that cases
favoring neither party, or “close calls”, are more likely to go to court (see
Palmrose [22] and Studdert and Mello [26]). Such cases can be interpreted as
corresponding to reputation levels over, or close to, the intermediate region

10See Choi [7] for a survey on securities class actions.
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in our equilibrium, where the bad defendant rejects plaintiffs’ demands and
proceed to trial for sure, or with a very high probability. Here, the con-
flict between the defendant’s long-run interest and the plaintiff’s short-run
interest leads to the low settlement rate. The short-lived plaintiffs demand
a relatively high compensation based on his estimate of the case’s strength.
However, the long-lived defendant is forward looking; the high reputation
region is within reach and thus he will only accept a low settlement demand,
an amount less than what the plaintiffs are willing to offer.

Policy implications An important policy relevant question in litigation
is how the settlement rate is affected by the precision of the court, which is
captured by expert quality q in our model. We show that, as q goes to 1, the
low reputation region is completely squeezed out by the intermediate region,
while the high reputation region shrinks (yet remains present), in equilibrium.
Since the cases go to court with probability 1 in the intermediate region, our
result may sound counterintuitive: why is a bad defendant more willing to
go to court when the court will find him out almost surely? The reason,
again, lies on the conflict of interests between the long-lived and short-lived
parties. When the court is very precise, the plaintiff’s expected payoff from
trial increases and this makes the demand too high for the defendant to
tolerate. The defendant is willing to take even a small chance of court error;
after all, a single mistake will greatly enhance his reputation when the hard
information is very precise. Thus, our paper contributes to the debate over
the desirability of court accuracy (see Kaplow [14] for a survey on the issue).
Our results suggest that, although greater accuracy will make it more difficult
for a guilty defendant to build reputation and get away with their liability
cheaply, it will generate an increased burden on the legal system, manifested
by greater frequency of trials.

We also examine the effects of shifts in the long-lived player’s discount
rate and the short-lived players’ expert cost. The equilibrium response to an
increased plaintiff legal cost is of particular interest since several policy re-
forms have been enacted precisely in this direction with the aim of curtailing
“frivolous” lawsuits, whereby plaintiffs bring up non-meritorious cases solely
to extract settlements.11 Our results throw a caution at such policies: they
may actually help a bad defendant build unjust reputation.

11A case in point is the Private Securities Litigation Reform Act (PSLRA) of 1995 which
made it more difficult for plaintiffs to forward a securities suit.
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On the other hand, we offer a fresh perspective on the negative expected
value suits (see Bebchuk [3][4] and Katz [15] for some of the existing ex-
planations). It is straightforward to re-formulate our model such that the
long-lived player represents a plaintiff and moreover the expected value of
each claim is negative. The equilibrium in such a setup implies that frivolous
litigations may involve not only the motive of extracting immediate com-
pensation but also willingness to reject settlement offers on the part of the
plaintiff to build reputation and reap larger benefits in the future.

Other related literature To our knowledge, our model is the first re-
peated litigation model with “long horizon”.12 Infinite repetition is not only
a realistic feature, but it also enables us to fully analyze the reputation effects
in a much clearer way. A number of papers have considered multi-period (but
finite) models of litigation but their concerns differ from ours (for instance,
see Che and Yi [5], Daughety and Reinganum [8][9], Hua and Spier [13] and
Choi [6]). Nonetheless, in Section 5 below, we shall review some of these
results in more detail and discuss extensions of our model in the directions
adopted by these authors. There are also models that study dynamic settle-
ment bargaining with a single case, where the bargaining protocol matters
(Spier [24]). Instead, in this paper we consider repeated settlement bargain-
ing and long-run incentives/behavior. For this reason, we abstract away the
issue of bargaining protocol within each case.

1.3 Plan

The rest of the paper is organized as follows. The next section describes
a game of repeated settlement bargaining. In Section 3, we construct an
equilibrium of the game and, also, conduct some comparative static analysis
in order to discuss several policy issues. Section 4 then presents some general
characterization results. Finally, we offer some concluding remarks in Section
5. All technical proofs are relegated to Appendix.

12See Spier [25] for an excellent survey on the economics of litigation.
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2 The Model

2.1 Description

We consider repeated settlement bargaining in discrete time. Periods are
indexed by t = 1, 2, . . .. A single long-lived player 1 faces an infinite se-
quence of short-lived players 2, with a new player 2 entering in every period.
Each player 2 brings a claim to player 1. Underwriter/auditor-shareholders
disputes in securities class actions, Hospital-patients disputes over medical
accidents and landlord-tenant disputes over property damages mentioned in
Introduction are some of the applications of the model.

The stake involved in each claim, H > 0 is fixed and common knowledge.13

For example, in a securities class action, it is commonly known that H is the
loss in stock value. However, player 1 privately knows his type θ ∈ {G,B},
where G stands for good and B for bad. The bad type is more likely to be
liable for each case than the good type. In what follows, we shall assume
that type B is liable for each case with probability 1, while type G is not
liable with probability 1. As argued in Remark 1 below, this simplifies the
analysis. We also note that the assumption is valid in applications, such
as the aforementioned Merck/Pfizer cases, where the long-lived player faces
repeated disputes over some action that he has already committed privately
in the past.

Each player 1-player 2 pair attempt to settle their dispute via voluntary
bargaining. Should they fail to reach an agreement, they call upon an ex-
ternal third party, an expert, an arbitrator or a court, to determine whether
player 1 is liable or not. Both players are committed to obey the third party’s
suggestion: player 1, if judged to be liable, should pay H to player 2, and
player 2 should receive no compensation otherwise. Seeking a third party
incurs a cost ci > 0 to player i, regardless of the verdict. We shall henceforth
refer to the third-party as an “expert”.

The expert is unbiased but imperfect: independently of the true liability
of player 1, he makes an error with probability 1 − q, where q ∈

(
1
2
, 1

)
is

common knowledge among all players. Specifically, when player 1 is liable
(or not liable) for compensation, the expert will incorrectly rule that the
player owes nothing (or H) to player 2 with probability 1 − q. We shall

13Our analysis remains unchanged if we instead assume that each stake is drawn from
a fixed distribution, which is independent of player 1’s private information and commonly
known. Then, H would represent the expected stake.
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henceforth refer to q as the “quality” or “precision” of the expert.
Furthermore, we shall assume that the quality of expert judgement is

independent of history and, hence, there is no learning on the part of the
expert. For instance, it may be that at any given period there is a pool
of experts with average quality q and any past verdict cannot influence the
direction of the current case.

The timing of the stage game in period t is as follows. Player 2 makes
a take-it-or-leave-it settlement demand st ∈ R, which player 1 can either
accept or reject. If st is accepted, then player 2 receives st from player 1 and
leaves the game forever. If, on the other hand, the demand is rejected, an
expert is called upon to make a judgement.

Note that if player 1 is of type B his expected payment under expert
resolution is equal to qH; if he is of type G the corresponding amount is
(1−q)H. It is assumed throughout that c1+c2 < qH−(1−q)H = (2q−1)H.

The expert’s verdict is publicly observable, and so are the details of an
agreed settlement.14 The first player 2 holds a prior belief, p1 ∈ (0, 1), that
player 1 is good. Later short-lived players update their beliefs from this prior
and the public history that they observe. Let pt ∈ [0, 1] denote player 2’s
posterior belief that player 1 is not liable in period t. Player 1’s “reputation”
is player 2’s current posterior belief on the good type.

Remark 1 We have assumed that type B (G) is always liable (not liable).
Our analysis remains the same by instead assuming the following structure.
For each claim, type G is liable with probability q′ < 1

2
and type B is liable

with a probability 1 − q′. Player 1 knows his type, but not his liability for
each case due to some randomness (usual in medical malpractice cases, for
instance). An expert makes a judgement on player 1’s liability for each case
with precision q′′. It is readily verified that this is isomorphic to the model
above with expert quality q = q′q′′ + (1− q′)(1− q′′).

14This is the most reasonable description of actual settlement bargaining, and also
consistent with the observations of Alexander [1] and Palmrose [22] on securities/auditor
litigations. The details of any negotiation process (such as the value of rejected demands)
are usually private information known only to the negotiating parties. But, once a deal
is struck, the terms of the deal often enter the public domain. It is however possible for
player 1 and player 2 to make a confidentiality agreement; we shall discuss this issue later.
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2.2 Strategies and equilibrium concept

A (behavioral) strategy of player 1 is a mapping from the set of all possible
histories that he can observe at the beginning of each period and the set of all
possible settlement demands from player 2 to probability distributions over
the set {A,R}, where A and R denote acceptance and rejection, respectively.

A (behavioral) strategy of player 2 in period t is a mapping from the set
of all possible histories that he can observe over preceding t − 1 periods to
probability distributions over all possible settlement demands, R. Note that
it is possible a priori that player 2 demands more than qH.

We focus on perfect Bayesian equilibria in Markov strategies in which
any relevant past history can be summarized by the level of belief that it
generates. A Markov strategy for type-θ player 1, rθ, is

rθ : [0, 1]× R→ [0, 1]

such that rθ(p, s) is the probability with which type θ rejects the demand
s ∈ R at belief p ∈ [0, 1].

On the other hand, the Markovian assumption renders irrelevant the pe-
riod in which player 2 makes entry and, hence, we shall write a Markov
strategy for player 2, d, simply as

d : [0, 1]→4(R)

such that d(p) ∈ 4(R) for any p ∈ [0, 1].
If (rB, rG, d) is a Makrov strategy profile, we write type θ’s discounted

average expected payment at belief p as V θ(p) with discount factor δ ∈ (0, 1).
Note that we have already surpressed the dependence of V θ on the strategy
profile and the discount factor. In what follows, our focus will be on the
equilibrium payments of type-B player 1. Thus, when the meaning is clear,
we shall refer to V B(p) simply as V (p). Player 2 maximizes his stage game
payoff while player 1 minimizes his (discounted average) expected payment.

A strategy profile (rB, rG, d), together with a system of beliefs, forms
a Makrov perfect Bayesian equilibrium (MPBE) if the usual condtions are
satisfied. See, for instance, Fudenberg and Tirole [11] for a formal definition.
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3 Equilibrium

3.1 Behavior of the good type

If a dispute is resolved via the expert, good player 1, in expectation, incurs
total payment (1 − q)H + c1. It is then natural that this player 1 should
not agree to pay anything above this amount from bargaining with player
2. In this section, we construct an equilibrium of the repeated settlement
bargaining game in which, regardless of past history, the good type accepts
a settlement demand if and only if it does not exceed (1− q)H + c1; in other
words, the good type acts as if he commits to this strategy. Note that this
behavior emerges as part of an equilibrium rather than as an assumption
of the model, often the case in standard reputation models. We shall later
discuss other possible equilibrium behavior of the good type in Section 4.
Whenever we henceforth refer to player 1, we shall therefore mean the bad
type.

3.2 First intuition

In the repeated settlement bargaining game, player 2 may learn about the
type of the long-lived player from two sources: player 1’s equilibrium ac-
tions and expert verdicts, if any. We call the tacit information inferred from
the equilibrium behavior “soft” information and the expert’s explicit verdict
“hard” information. The important aspect of our equilibrium construction
captures the interplay between these two channels of information.

Let us first think of possible equilibrium dynamics intuitively. On the one
hand, if player 2’s posterior belief (on the good type) is high, his expected
payoff from resolving the dispute through the expert is low and, moreover,
he has to pay a cost to obtain a verdict. Thus, intuitively, when the posterior
belief is sufficiently high, player 2 should make a low settlement demand that
is going to be accepted by both types of player 1 and the dispute is resolved
without expert intervention. In this case, there is no learning from either
soft or hard information for future player 2.

On the other hand, if the posterior belief is low, player 2 expects to win a
large compensation if the case goes to the expert. Therefore, player 2 should
make a large demand that the good type will not tolerate. How should the
bad type respond?

If the bad type accepts this demand, he reveals his type and consequently
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his future compensation expenditure will be high. He cannot therefore accept
it with probability 1; otherwise, the equilibrium posterior (on the good type)
following rejection must be 1, and the bad type would mimic the good type
by rejecting the demand.

This brings us to the critical question of whether the bad type has incen-
tives to fully mimic the good type in equilibrium and reject the high demand
with probability 1. In the game, rejecting a demand invokes an expert sig-
nal, which is imperfect but informative (q > 1

2
). Thus, mimicking the good

type will reduce the bad type’s reputation at the next period in expectation.
This suggests that, when reputation is very low, fully mimicking the good
type is costly in terms of both current period and continuatin payoffs. Player
1 should then play a mixed strategy: he rejects the high demand with an
interior probability. The role of randomization here is to mitigate the effect
of a non-favorable expert verdict (that is, a verdict that player 1 is liable).
Since the good type rejects the demand for sure and the bad type rejects it
only occasionally, the act of rejection will itself enhance player 1’s reputation
and may even overturn the effect of a non-favorable verdict. Player 2 learns
through both soft and hard information.

However, when reputation is sufficiently close to the point beyond which
player 2 finds optimal to make a low settlement demand, the bad type may
still wish to fully mimic the good type, reject the high demand with probabil-
ity 1 and count on the chance that expert verdict favors him. If he is lucky,
his reputation will enter the region in which player 2 makes only a small
settlement demand, accepted by both types, and learning stops altogether.

The above arguments therefore suggest that an equilibrium can be char-
acterized by two cutoff beliefs that quantify the “low ” and “high ” reputation
regions. We next show that this is indeed the case.

3.3 Formal description

We now elaborate on the above intuition and formally construct an equi-
librium characterized by two threshold beliefs, 0 < p∗ < p∗∗ < 1.15 The
equilibrium displays the following dynamics around three corresponding “re-
gions”:

The low reputation region, (0, p∗). This is a region of learning through

15In the next section, we characterize the key properties of all Markov perfect Bayesian
equilibria.
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both soft and hard information. Player 2 finds it optimal to make a high
settlement demand, equal to qH − c2, which the good type will reject for
sure; the bad type responds to such a demand by randomization. Therefore,
the act of rejection itself leads to reputation building, and the subsequent
expert signal will also lead to learning from player 2. A favorable verdict
enhances reputation further, while a non-favorable verdict brings reputation
back down.

The intermediate reputation region, (p∗, p∗∗). This is a region of learning
through hard information alone. Here, player 2 also makes a high demand
equal to qH − c2 and both types reject it with probability 1. Player 2 does
not learn about player 1’s private information via player 1’s act of rejection
per se; rather, the learning takes place only through the realization of the
expert’s verdict.

The high reputation region, (p∗∗, 1). This is a region of no learning. The
full benefit of reputation is obtained. Player 2 makes a low settlement de-
mand, equal to (1− q)H + c1, that both types accept for sure.

Finally, the behavior at p∗ and p∗∗ are chosen so that the equilibrium
conditions hold. It is worth noting that p∗ and p∗∗ are generic points in the
following sense. At any belief p ∈ (0, p∗), the posterior will reach p∗ after
a rejection and, moreover, a finite number of successive favorable expert
verdicts will take the belief from p∗ to p∗∗. The equilibrium behavior at
these two thresholds are critical in the equilibrium construction. The next
proposition states the equilibrium formally.

Proposition 1 There exists δ̄ ∈ (0, 1) such that for any δ > δ̄ the repeated
settlement bargaining game admits a Markov perfect Bayesian equilibrium
with the following properties. There exist two thresholds, 0 < p∗ < p∗∗ < 1,
such that:

• If p = 0, player 2 demands qH + c1 with probability 1; player 1 (the
bad type) accepts it with probability 1.

• If p ∈ (0, p∗], player 2 demands qH − c2 with probability 1; player 1
rejects it with probability r(p), where

r(p) =
p

p∗
1− p∗

1− p
≤ 1.

• If p ∈ (p∗, p∗∗), player 2 demands qH − c2 with probability 1; player 1
rejects it with probability 1.
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• If p = p∗∗, player 2 demands (1 − q)H + c1 with probability x and
qH − c2 with probability 1− x for some x ∈ [0, 1); player 1 accepts the
low demand with probability 1, while rejecting the other demand with
probability 1.

• If p ∈ (p∗∗, 1], player 2 demands (1−q)H+c1 with probability 1; player
1 accepts this demands with probability 1.

• Beliefs: after observing player 1’s acceptance of any demand above (1−
q)H + c1, player 2 assigns zero probability to the good type; in all other
circumstances, beliefs are updated according to Bayes’ rule whenever
possible.

The equilibrium displays some interesting features beyond the threshold
dynamics. First, starting from any interior prior, the posterior reaches the
high reputation region (p∗∗, 1) and then stay there forever with an interior
probability. Reputation can be built. Second, player 1 will also fail to build
reputation with a positive probability; this happens in the low reputation
region (0, p∗) where player 1 randomizes and reveals his type occasionally.
Reputation is a valuable asset. Third, if the prior falls in the low reputation
region, the equilibrium payment converges to V (0) (the payment once the
type has been revealed) as the discount factor goes to 1. The gain from rep-
utation building is small asymptotically. Finally, in the low reputation region
where both soft and hard information are present, the soft information can
overturn the hard information when their forces pull in opposite directions.
In particular, when p is low enough relative to p∗, the overall effect of reputa-
tion will be positive: even after a non-favorable expert verdict the subsequent
posterior at the beginning of the next period will remain higher than the cur-
rent period’s initial level. Our next proposition summarizes these findings
formally. Their proofs are straightforward.

Proposition 2 Consider the MPBE in Proposition 1.

• “Reputation can be built.”

Suppose that p1 ∈ (0, p∗∗]. Then, the probability with which the equilib-
rium posterior reaches the region (p∗∗, 1) is positive.

• “Reputation is a valuable asset.”

Suppose that p1 ∈ (0, p∗∗]. Then, the probability with which the equilib-
rium posterior falls to 0 is positive.
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• “The gain from reputation building is small asymptotically.”

Suppose that p1 ∈ (0, p∗). Then, V (p1) converges to V (0) as δ goes to
1.

• “Soft information can overturn hard information.”

Suppose that pt ∈
(

0, p∗(1−q)
p∗(1−q)+(1−p∗)q

)
. Suppose also that, in this period

t, player 1 rejects player 2’s demand and the subsequent expert verdict
is non-favorable. Then, we have

pt+1 =
p∗(1− q)

p∗(1− q) + (1− p∗)q
> pt.

We next discuss how the equilibrium responds to shifts in some key pa-
rameters. Of particular interest is how the thresholds change in response to
increased patience and expert quality.16

Proposition 3 Consider the MPBE in Proposition 1.

• As δ goes to 1, p∗ goes to 0; p∗∗ is independent of δ.

• As q goes to 1, p∗ goes to 0; p∗∗ goes to H−c1−c2
H

.

The impact of increased patience falls only on the lower threshold, p∗,
which decreases. Thus, it expands the region in which player 1 fully mimics
the good type and rejects the equilibrium demands for sure, thereby relying
solely on expert signals. Although expert resolution, on average, worsens
reputation, a more patient long-lived player is willing to try his luck earlier,
in an effort to move into the no-learning region above the upper threshold,
p∗∗, where he pays only a small amount of compensation.

As the expert quality increases, the intermediate reputation region also
expands. But here, this effect is achieved by a reduced lower threshold and
an increased upper threshold, p∗∗ (whose corresponding limit is less than 1).
This first implies that the no-learning region shrinks, and we may interpret
this as suggesting that reputation is indeed more difficult to build when the
expert is more accurate.

16Note that, due to the construction seen in the next subsection, p∗ responds discretely
to changes in the parameters. We therefore report its limits.
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While this last observation is intuitive, the fact that the intermediate
region expands as q goes to 1 is somewhat surprising. This says that, when
the expert is very accurate, the parties will almost always resort to external
intervention, rather than making voluntary settlements and saving on expert
costs. Why is this? The reason is that when q is very large a single piece
of good luck is all that is needed for player 1 to jump into the no-learning
region and reap the full benefits of reputation. Given this, what player 2
asks for at low levels of reputation is too much for player 1 to accept.

3.4 Details of construction

We now demonstrate the technique behind the equilibrium construction which
we believe to be innovative and interesting in its own right. Some readers
may, however, wish to skip this part and move directly to the next sub-section
which contains some graphical illustrations of the equilibrium.

Figure 1: Equilibrium demands

Figure 1 describes player 2’s equilibrium demand as a function of the
posterior belief p. Here, the critical aspect of our equilibrium construction
is that the demand at low beliefs (p ≤ p∗) must be exactly qH − c2. The
reasoning is as follows.17

17This is in fact a general property of an equilibrium. A formal statement and its proof
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Note first that player 1 must use a cutoff strategy; that is, in equilibrium,
if he accepts a (high) demand, he must accept any demand that is smaller.
Since rejected demands are not observable, rejecting any demand generates
the same posterior belief and, hence, continuation payment. This implies
that, if player 1 (weakly) prefers to accept than to reject a demand, he must
strictly prefer to accept any lower demand.

Now, suppose that the equilibrium demand were higher than qH−c2 and,
moreover, player 1 would accept it. Then, the acceptance must occur for sure.
This is because, otherwise, player 2 could profitably deviate by demanding
slightly less than the equilibrium amount, and the deviation would be met
with sure acceptance (via the cutoff strategy argument).

But then, since only the good type would reject the demand, the posterior
following rejection on such an equilibrium path would actually be 1 and,
therefore, the bad type would himself have an incentive for deviation; by
rejecting the equilibrium demand, he could obtain a low settlement demand
in every period thereafter.18

On the other hand, player 2 clearly has no incentive to demand anything
less than qH − c2, as this is precisely the amount that he expects to achieve
from the bad type under expert resolution. These arguments lead to the
property that, when p is low, the only demand that can be accepted in
equilibrium must equal qH − c2.

Note that, if p ∈ (p∗, p∗∗), player 2’s equilibrium demand is rejected for
sure by player 1. We can construct other equilibria in which, in this interme-
diate range of beliefs, player 2 makes demands other than qH − c2, as long
as it is sufficiently large that player 1 finds it optimal to reject it. Similarly,
at p∗∗, player 2 can randomize between (1− q)H + c1 and any high demand
that is rejected. In Figure 1 above, the dotted lines and empty dots drawn in
the (p∗, p∗∗) region represent player 1’s reservation demands. These values
are formally characterized in Appendix.

Figure 2 describes player 1’s equilibrium (discounted average) expected
payment. This figure illustrates another key element behind the construction
of the equilibrium.

If p ∈ (0, p∗], player 1 is indifferent between accepting and rejecting the
demand qH − c2. His expected payment is then given by what he obtains

appears in Appendix (Lemma 2).
18For the deviation to be profitable, of course, the discount factor must be sufficiently

large.

18



Figure 2: Equilibrium payments

from accepting and revealing his type. If player 1’s type is revealed, the
demand will be qH + c1 in every period thereafter (and he is going to accept
it) and, therefore, we can see that

V (p) = (1− δ)(qH − c2) + δ(qH + c1) = qH + δc1 − (1− δ)c2. (1)

If p > p∗∗, on the other hand, player 2 demands (1− q)H + c1 which player 1
accepts and, therefore, V (p) = (1−q)H+c1. The payment in the intermediate
region, (p∗, p∗∗), follows a decreasing step function, while the payment when
p is exactly at p∗∗ is determined by player 2’s randomization.

We now provide a full sketch of the equilibrium construction with the aid
of Figure 2. All omitted technical details, as well as a more formal description
of the proposed equilibrium strategies and beliefs appear in Appendix.

Characterizing p∗∗ First, let us determine the upper belief threshold.
At p∗∗, player 2 should be indifferent between demanding (1−q)H+c1, which
is accepted for sure, and a high demand, which is rejected for sure. If his
demand is rejected, the expected payoff is p∗∗(1 − q)H + (1 − p∗∗)qH − c2.
Therefore, from the indifference condition p∗∗(1− q)H + (1− p∗∗)qH − c2 =
(1− q)H + c1, we derive
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p∗∗ =
(2q − 1)H − c1 − c2

(2q − 1)H
∈ (0, 1). (2)

It is important to note that p∗∗ is independent of the discount factor. No
matter how patient or impatient player 1 is, he must pass this threshold in
order to entertain the full benefits of reputation.

Characterizing p∗ Note that, in the equilibrium, V (p) = V (p∗) (as in
(1) above) if p ∈ (0, p∗), and V (p) = (1 − q)H + c1 if p ∈ (p∗∗, 1]. Let p1 be
the belief that is updated from p∗ after an expert verdict favorable to player
1, given that rejection prior to the verdict itself does not affect the belief.
That is,

p1 =
p∗q

p∗q + (1− p∗)(1− q)
.

We define p2 to be the belief obtained from p1 after another favorable verdict,
and p3, p4, . . . are defined similarly. We write p0 = p∗.

Importantly, the assumption that the quality of expert judgement, q, is
symmetric across player 1 types implies that the posterior updated from pn

following a non-favorable verdict is exactly pn−1. It is straightforward to
verify that, for any integer n, if

pn =
pn−1q

pn−1q + (1− pn−1)(1− q)
,

then

pn−1 =
pn(1− q)

pn(1− q) + (1− pn)q
.

Consider any positive integer n such that pn ∈ (p∗, p∗∗). Player 1’s equi-
librium expected payment at pn, V (pn), contains three parts: (i) since he
rejects player 2’s demand, he expects to pay qH + c1 in the current period,
via expert resolution; (ii) if the verdict is non-favorable, which occurs with
probability q, his continuation payment at the next period will be V (pn−1);
and, if the verdict is favorable, which occurs with probability 1− q, his con-
tinuation payment at the next period will be V (pn+1). Thus, we obtain the
following recursive equation to characterize V (pn):

V (pn) = (1− δ)(qH + c1) + δqV (pn−1) + δ(1− q)V (pn+1). (3)
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We solve this second-order difference equation (for integer values on n)
with the initial conditions:

V (p0) = qH + δc1 − (1− δ)c2, (4)

V (p0) = (1− δ)(qH + c1) + δqV (p0) + δ(1− q)V (p1). (5)

These initial conditions arise because we set p0 = p∗ and, at any p < p∗,
player 1 randomizes such that V (p) = V (p∗), in equilibrium.

The solution, V (pn), can easily be shown to be strictly decreasing and
also divergent. This implies that there must exist some finite integer N such
that V (pN) > (1− q)H + c1 and V (pN+1) ≤ (1− q)H + c1. We then define
the lower threshold belief, p∗ = p0, such that p∗∗ = pN . In other words,
p∗ is the posterior belief that is reached from p∗∗, which is already fixed,
after N successive non-favorable expert decisions. Although p∗∗ does not
depend on δ, the other threshold turns out to be tied to the discount factor;
specifically, an increase in δ (weakly) raises the number of steps between the
two thresholds, implying a lower value for p∗.

Equilibrium payments The solution to the recursive equation (3) above,
together with the initial conditions (4) and (5), gives equilibrium payments at
posterior beliefs that are located between and reachable from the two thresh-
olds, corresponding to the solid dots in Figure 2 (V (p0) = V (p∗), . . . , V (pN) =
V (p∗∗)). However, recall that (1− q)H+ c1 is the lowest possible equilibrium
payment. Then, while V (pN) characterizes the equilibrium payment at p∗∗,
the values of the solution to (3) beyond this point cannot be equilibrium
payments since they, by definition, fall below (1− q)H + c1.

This raises a critical issue in our equilibrium construction. Note that
V (pN) is computed from

V (pN) = (1− δ)(qH + c1) + δqV (pN−1) + δ(1− q)V (pN+1),

where V (pN+1) ≤ (1 − q)H + c1. How then do we support V (pN) as an
equilibrium payment? The answer is found in player 2’s randomization at
p∗∗. Here, player 2 is indifferent between having the demand (1 − q)H + c1
accepted and having another, higher demand rejected for sure by both types.
We can derive a unique mixed strategy by player 2 at p∗∗ such that the
equilibrium holds.19

19In the degenerate case where the solution to the recursive equation yields a value
exactly (1 − q)H + c1, at p∗∗, player 2 demands a high amount that is rejected with
probability 1.
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Finally, we can tie down the equilibrium payments at other, remaining
beliefs, along the “steps” between p∗ and p∗∗, by solving the same recursive
equation (3) with different initial conditions, specifically, that the first value
is qH + δc1 − (1− δ)c2 and the (N + 1)-th value (1− q)H + c1.

3.5 Further illustrations

We next provide some graphical illustrations of the above equilibrium with
specific parameter values. Figure 3 shows equilibrium demands by player
2 (together with the bad type’s reservation demands) and equilibrium pay-
ments of the bad type when H = 1, δ = 0.75, q = 0.7, c1 = 0.02 and c2 = 0.1.

Figure 3: Example

p**p*p**p*

In addition, Figure 4 illustrates the probability of rejection, that is, the
likelihood of expert intervention in the corresponding equilibrium. This fur-
ther clarifies the relationship between reputation, or the “merit” of a dispute,
and settlement. As shown in the previous figure, the amount of settlement, if
agreed, is fixed in the interval (0, p∗); however, the rate of settlement (or ex-
pert intervention) is falling (or increasing) in the merit over this region before
reaching zero (or 1) in the intermediate region. Note also that the settlement
rate rises to some interior level at p∗∗ (due to player 2’s randomization) and
then all the way to 1 in the high reputation region.
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Figure 4: Rejection rate

p**p*

Figure 5 illustrates the comparative static results in terms of payments.
The first graph here reproduces the equilibrium payments of the example
above, while the other three show how the payments change after an increase
in δ, q and, also, c2, respectively.

An increase in δ from 0.75 to 0.9 indeed expands the intermediate region
by inducing more “steps”; the high reputation region and the corresponding
payments remain the same but the lower threshold falls and the payment at
the low reputation region is pushed up.

Raising the expert precision from 0.7 to 0.97 shows an even more dras-
tic change. The intermediate region is vastly expanded but it involves only
one step. Both thresholds move, in opposite directions. It is more diffi-
cult to build reputation and reach the high reputation region; moreover,
the payments during the reputation building process are also higher than
the benchmark. However, should player 1 succeed in reaching beyond the
(increased) upper threshold, the benefits will actually be greater (lower pay-
ments). As mentioned in Introduction, this again illustrates the possibility
that, somewhat paradoxically, greater accuracy of the court will impose a
greater burden on itself.

The final graph illustrates the effect of an increase in c2 (from 0.1 to 0.17),
the expert cost incurred by player 2. Here, at any p, player 1’s compensa-
tion expenditure is lower, or the same, compared to the benchmark. Thus,
making the expert more costly to player 2 may improve the benefits of player
1’s reputation building. This observation throws a caution at some policies
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Figure 5: Comparative statics

targeted at reducing the volume of “frivolous” lawsuits (e.g. PSLRA of 1995
in securities litigations). Although it may deter some non-meritorious suits,
higher litigation costs for plaintiffs could perversely aid the cause of a bad
defendant who wants to get away with his responsibility cheaply.

4 Some general properties of an equilibrium

The equilibrium constructed in the previous section exhibits a particular
behavioral pattern. We now turn to the question of whether any aspects of
the equilibrium apply more generally to an equilibrium.

Our next Proposition characterizes some general properties of an MPBE,
while maintaining the following assumptions:
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A1. The good type, regardless of past history, accepts a demand if and only
if it does not exceed (1− q)H + c1.

A2. Acceptance of a demand strictly greater than (1−q)H+c1 reveals that
player 1 is bad, both on and off the equilibrium path.

Proposition 4 Assume A1 and A2, and let p∗∗ = (2q−1)H−c1−c2
(2q−1)H

. Then,

there exists δ̄ ∈ (0, 1) such that, for any δ > δ̄, any MPBE of the repeated
settlement bargaining game satisfies the following properties:

• V (0) = qH + c1.

• For any p ∈ (0, 1], V (p) ∈ [(1− q)H + c1, qH + δc1 − (1− δ)c2].

• For any p ∈ (p∗∗, 1], V (p) = (1− q)H + c1.

• There exists p∗ ∈ (0, p∗∗) such that, for any p ∈ (0, p∗), V (p) = qH +
δc1 − (1− δ)c2.

Thus, we are able to obtain payment bounds for any equilibrium and,
moreover, establish that the lower bound must be achieved when reputation is
sufficiently high while the upper bound is met when reputation is sufficiently
low. These bounds correspond precisely to the payments of the equilibrium
constructed in the previous section for sufficiently high/low reputation levels.

In principle, player 2’s mixed strategy can involve any distribution over
the real line. This potentially makes the problem of characterizing an equi-
librium very complicated in the present repeated game setup. But, we show
that there are only two demand levels that can be accepted with a positive
probability by player 1 on the equilibrium path: either (1 − q)H + c1 or
qH − c2. All other demands are rejected for sure. (An intuition for this has
already been given in the previous section.) This will greatly simplify our
analysis and enable us to reach Proposition 4.

The important feature of an equilibrium is that, when p is sufficiently
low (but strictly positive), the equilibrium payment of player 1 is equal to
qH+δc1−(1−δ)c2. Notice that, as δ goes to 1, this upper bound approaches
qH+c1, the payment that the long-lived player expects to incur in each period
if the short-lived players know that he is bad. Thus, when δ is sufficiently
close to 1, there exists a level of belief low enough at which the value of
reputation building is arbitrarily small.
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It must also be noted that the above equilibrium properties are not tied
to the specific behavior assumed from the good type (assumption A1). In
particular, we may think of another class of equilibria in which the good type
takes a tougher stance and accepts a demand if and only if it is less than
or equal to some level below (1 − q)H + c1. It is not difficult to see that,
appropriately modifying off-the-equilibrium beliefs (assumption A2), we can
reach essentially the same conclusions as in Propositions 1-4. The upper
threshold belief, p∗∗, and the corresponding lower bound on payments will
change, but the overall reputation dynamics as well as the upper payment
bound at low levels of reputation will remain as before.

5 Concluding Discussion

In this paper we have maintained several simplifying assumptions to faciliate
the analysis. We now offer some concluding discussion by addressing these
assumptions. In doing so, we shall also discuss some related work in litigation
research. Our model provides a benchmark for future research in a number
of directions.

5.1 Robustness to (un-)observability of settlement de-
mands

We have assumed, as is usually the case in securities class actions and medical
malpractice litigations, that the accepted settlement demands are publicly
observable while the rejected settlement demands are not. Our equilibrium
in Section 3 is robust to the (un-)observability of the settlement details.

It is straightforward to see that the equilibrium continues to be valid
when the rejected demands are also publicly observable. Even though we
have assumed that short-lived players do not observe previously rejected
demands, it is common knowledge in equilibrium that the rejected demands
must always be qH − c2. Thus, it does not depend on whether this amount
is observable or not.

Daughety and Reinganum [9] consider endogenous settlement in a two-
period model where the parties can choose whether their settlement agree-
ment will be open or confidential and, furthermore, the arrival rate of a
second plaintiff is lower with confidential settlement. They also assume that
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the court’s decision is perfect. This last assumption implies that the long-
lived defendant’s type is perfectly revealed if the first case goes to court,
independently of the verdict, and that the second period game is degenerate
after a trial in the first period. They show that there can be a first-plaintiff
benefit via confidential settlements.20

In contrast, we assume that the court is imperfect. It is possible to in-
corporate into our model endogenous determination of the settlement mode.
However, our equilibrium is robust under the following natural specification
of belief upon observing a confidential settlement: player 2 assigns proba-
bility 1 to the bad type. After all, it is natural that the good type who is
innocent has nothing to hide. This eliminates any benefit of confidentiality.
Indeed, we believe that this reasoning explains why settlements once reached
are observable in securities class actions or medical malpractice cases where
the arrival of litigations are public and independent of the previous settle-
ments (shareholders simply react to a loss in value, while patients to their
own experience of accident).

To justify benefits of confidential settlements with an imperfect court, it
seems that we need to allow the arrival of future short-lived players to itself
depend on the mode of settlement. We leave this to future research.21

5.2 Other assumptions

In our model, the bargaining within each period takes a simple format: the
uninformed player makes a take-it-or-leave-it offer. Such simplicity allows
us to concentrate on the long-lived player’s dynamic incentives, as done also
in Schmidt [23], Daughety and Reinganum [8][9] and others. The one-sided
offer by the uninformed player however rules out complex signaling effects.
Spier [24] considers settlement bargaining between a single pair of defendant
and plaintiff under more complex bargaining procotols.

The stake (or the distribution thereof) in each dispute is assumed to be
common knowledge. This seems to be a reasonable description of securities

20Daughety and Reinganum [8] consider a similar model in which the defendant’s type
is independent across the two periods and, therefore, the issue of learning does not arise.

21Choi [6] studies a multi-period model in which an incumbent patentee has an option
of launching an infringement suit when faced with entry of an imitator. There is, however,
no asymmetric information; rather, the author addresses the incumbent’s optimal timing
of a lawsuit. The issue of timing is in general an interesting aspect of a dynamic problem
but it is not clear how this can be incorporated into a model of reputation.
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class actions where the stakes can be traced to the loss in share value. In-
troducing private information over the magnitude of the stake, in addition
to private information on liability, will significantly complicate the analysis
beyond the scope of the present paper.

Finally, we also assume that the a third party verdict is based on the
merit of the current case alone, regarding whether player 1 is liable or not.
Che and Yi [5] consider a two-period model with correlated decisions. Here,
the probability with which the second plaintiff would win in court depends
on the outcome of the first period litigation. This offers another interesting
extension for future research. However, as argued before, time-independent
expert precision is plausible.

6 Appendix

6.1 Proof of Proposition 1

Our proof of this result is based on the following construction. We first need
some notation. Let

Φ1(p) =
pq

pq + (1− p)(1− q)

Φ−1(p) =
p(1− q)

p(1− q) + (1− p)q)
.

That is, when the belief is p, if both types of player 1 go to expert and the
verdict is not liable (or liable), then the increased (or decreased) updated
belief is equal to Φ1(p) (or Φ−1(p)). Notice that Φ−1 (Φ1(p)) = p for any p.

Furthermore, for any positive integer k, define Φk(p) recursively such that
Φ2(p) = Φ1 (Φ1(p)), Φ3(p) = Φ1 (Φ2(p)) and, hence, Φk(p) = Φ1

(
Φk−1(p)

)
.

In other words, when the initial belief is p, if both types of player 1 go to
expert k consecutive times and the verdict favors player 1 on each occasion,
then the posterior belief updated from p is Φk(p), Similarly, we define Φ−k(p)
as the posterior reached from p after k successive non-favorable expert deci-
sions for player 1. Also, let Φ0(p) ≡ p.

Next, let δ̄ solve the following:

[1− δ̄q][qH+ δ̄c1− (1− δ̄)c2] = (1− δ̄)(qH+c1)+ δ̄(1−q)[(1−q)H+c1]. (6)
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It is straightforward to observe that such δ̄ must belong to (0, 1).

Fix any δ > δ̄, and consider the profile (rB, rG, d) below, where p∗, p∗∗ ∈
(0, 1), x ∈ [0, 1) and ξ(p) are to be defined later.

First, player 2’s strategy, d, is such that:

• At p = 0, it demands qH + c1 with probability 1;

• For any p ∈ (0, p∗∗), it demands qH − c2 with probability 1;

• For any p ∈ (p∗∗, 1], it demands (1− q)H + c1 with probability 1;

• For p = p∗∗, it demands (1− q)H + c1 with probability x and qH − c2
with probability 1− x.

Second, type-G player 1’s strategy, rG, is such that, for any p, it accepts
a demand s if and only if s ≤ (1− q)H + c1.

Third, type-B player 1’s strategy, rB, is such that:

• At p = 0, it accepts a demand s if and only if s ≤ qH + c1;

• For any p ∈ (0, p∗],

– it rejects any s > qH − c2 with probability 1;

– it accepts any s < qH − c2 with probability 1;

– it rejects s = qH − c2 with probability r(p), where r(p) satisfies

p∗ =
p

p+ (1− p)r(p)
,

and therefore,

r(p) =
p

p∗
1− p∗

1− p
≤ 1.

(Notice that r(p∗) = 1.)

• For any p ∈ (p∗, p∗∗],

– it rejects any s > max{(1− q)H + c1, ξ(p)} with probability 1;

– it accepts any s ≤ max{(1− q)H + c1, ξ(p)} with probability 1.
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• For any p ∈ (p∗∗, 1],

– it rejects any s > (1− q)H + c1 with probability 1;

– it accepts any s ≤ (1− q)H + c1 with probability 1.

Finally, the belief is updated by Baye’s rule and the equilibrium strategies
whenever possible. We also assume that the posterior belief assigns proba-
bility 1 to type B after an acceptance of a demand higher than (1−q)H+c1.

We now define p∗, p∗∗, x and ξ(p). Along the way, the equilibrium pay-
ment of type B, V (p), will also be obtained.

Defining p∗∗ At the upper threshold level of belief, p∗∗, player 2 must
be indifferent between demanding (1 − q)H + c1, which is accepted with
probability 1, and demanding qH − c2, which is rejected with probability 1.
Thus, it is computed from the equation

(1− q)H + c1 = p∗∗((1− q)H − c2) + (1− p∗∗)(qH − c2),

which yields

p∗∗ ≡ (2q − 1)H − c1 − c2
(2q − 1)H

∈ (0, 1).

Defining p∗ At p∗, type B is indifferent between accepting and rejecting
qH − c2. Let V0 ≡ V (p∗) and Vn ≡ V (Φn(p∗)). Then, since acceptance of
the equilibrium demand leads to revelation, we first have

V0 = (1− δ)(qH − c2) + δ(qH + c1) = qH + δc1 − (1− δ)c2. (7)

Rejection, on the other hand, yields the following:

V0 = (1− δ)(qH + c1) + δqV0 + δ(1− q)V1, (8)

where the current period expected payment equals qH + c1, the next period
continuation expected payment following a favorable verdict (which takes
place with probability 1− q) is V1 and the corresponding payment following
a non-favorable verdict is also V0 (since type B randomizes at any p < p∗).

Note here that, since we assume (2q− 1)H > c1 + c2, V0 > (1− q)H + c1
and that, since δ > δ̄, V1 > (1− q)H + c1 (see (6) above for the definition of
δ̄).
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Next, consider the equilibrium payment Vn (at p = Φn(p∗)) for any in-
teger n ≥ 1. Here, since the equilibrium demand is rejected for sure, the
continuation payment must satisfy the following recursive structure:

Vn = (1− δ)(qH + c1) + δqVn−1 + δ(1− q)Vn+1. (9)

Define N = sup{n ∈ Z : Vn > (1 − q)H + c1}, where Z denotes the set of
integers; i.e. N is the largest integer n such that Vn > (1− q)H + c1.

Then, given Claim 1 below, define p∗ = Φ−N(p∗∗) ∈ (0, 1). Since V1 >
(1 − q)H + c1, N must be positive and, hence, p∗ < p∗∗ as required by the
equilibrium.

Claim 1 (1) Vn is strictly decreasing in n.
(2) N is finte.

Proof. (1) Notice that V0 < qH and V0 is a convex combination of qH + c1
and V1. Then V1 < V0. Suppose Vn < Vn−1 < · · · < V0 < qH. From (9), Vn is
a convex combination of qH + c1, Vn−1, and Vn+1, and hence Vn+1 < Vn. The
monotonicity of Vn follows by induction.

(2) Suppose to the contrary that N is infinite. That is, Vn > (1−q)H+c1
for all n. Then, since Vn is strictly decreasing, Vn converges to V∞ such that
(1− q)H + c1 ≤ V∞ < qH + c1. But, from (9), it follows that V∞ = qH + c1.
This is a contradiction.

Defining x At p∗∗, player 2 demands (1− q)H + c1 with probability x and
qH−c2 with probability 1−x; both types of player 1 accept the first demand
with probability 1 and reject the second demand with probability 1. This
implies that the equilibrium posterior at the next period must be such that:

• if (1− q)H + c1 is accepted then the posterior remains at p∗∗;

• if a demand is rejected, followed by a favorable verdict to player 1, then
the posterior moves up to Φ1(p∗∗); and

• if a demand is rejected, followed by a non-favorable verdict to player
1, then the posterior moves down to Φ−1(p∗∗).

Thus, we have

V (p∗∗) ≡ VN = x [(1− δ)((1− q)H + c1) + δVN ] + (1− x)X, (10)
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where VN is given by the second-order difference equation (9) with the two
initial conditions V0 and V1 as in (7) and (8) above, and

X ≡ (1− δ)(qH + c1) + δqVN−1 + δ(1− q)((1− q)H + c1). (11)

Claim 2 There exists a unique x ∈ [0, 1) that satisfies (10).

Proof. Simple computation shows that

x =
X − VN

X − (1− δ)((1− q)H + c1)− δVN
.

Note first that VN ≤ X. This follows from comparing (11) above to the
recursive equation

VN = (1− δ)(qH + c1) + δqVN−1 + δ(1− q)VN+1,

where, by assumption, VN+1 ≤ (1 − q)H + c1. Also, we have VN > (1 −
δ)((1− q)H + c1) + δVN because, again by assumption, VN > (1− q)H + c1.
Thus, x ∈ [0, 1).

Equilibrium payments At this juncture, we characterize the equilibrium
expected payments of type B. The following is clear:

• For any p ≤ p∗, V (p) = V0.

• For any p = Φn(p∗) with an integer 1 ≤ n ≤ N , V (p) = Vn; in
particular, V (p∗∗) = VN .

• For any p > p∗∗, V (p) = (1− q)H + c1.

We now pin down payments when p ∈ (p∗, p∗∗) but p 6= Φn(p∗) for any
integer 1 ≤ n ≤ N .

Claim 3 Fix any integer n ∈ [1, N ] and any p, p′ ∈ (Φn−1(p∗),Φn(p∗)).
Then, we have

V (p) = V (p′) < V0.
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Proof. Consider the following recursive structure: for any integer k,

Wk = (1− δ)(qH + c1) + δqWk−1 + δ(1− q)Wk+1

such that W0 = V0 and WN+1 = (1− q)H + c1, where N is defined as above.
Note that we have

Φ−n(p) = Φ−n(p′) < p∗ and Φ−n+1(p) = Φ−n+1(p′) > p∗;

ΦN−n+1(p) = ΦN−n+1(p′) > p∗∗ and ΦN−n(p) = ΦN−n(p′) < p∗∗.

Thus, it is straightforward to see that

Wn = V (p) = V (p′).

Also, from the same arguments for Claim 1 above, we can show that Wk

is strictly decreasing.

Defining ξ(p) For any p ∈ (p∗, p∗∗), ξ(p) satisfies

(1− δ)ξ(p) + δ(qH + c1) = V (p).

It remains to be shown that the profile (rB, rG, d) defined above, together
with the stated beliefs, indeed constitutes an MPBE.

First, given rB and rG, and the definition of p∗∗, it is straightforward to
establish optimality of player 2 strategy, d. In particular, note that it is never
optimal for player 2 to make a demand s ∈ ((1− q)H + c1, qH − c2).

Second, we check optimality of rG, the strategy of type G. This is clear
since player 2 never makes a demand less than (1−q)H+c1, which is precisely
the amount that this type expects to pay in total in case the dispute goes to
the expert in any period.

Finally, we check optimality of rB.

• It is straightforward to check optimality of rB at p = 0.

• Fix any p ∈ (0, p∗]. Suppose first that the demand, s, is less than
qH − c2. If type B accepts this demand, the continuation payment
amounts to

(1− δ)s+ δ(qH + c1) < V0,
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while, since rejected demands are not observable, the continuation pay-
ment from rejecting continues to be V0. Thus, accepting any s < qH−c2
for sure is optimal. A symmetric argument establishes that rejecting
any s > qH − c2 for sure is optimal. The rejection probability r(p),
supports the indifference conditions captured by (7) and (8) above.

• Fix any p ∈ (p∗, p∗∗). Here, by Claims 1 and 3 above, we have V (p) <
V0, and accepting the demand qH−c2 yields precisely V0 = (1−δ)(qH−
c2) + δ(qH + c1) due to revelation. Thus, rejecting the equilibrium
demand, qH − c2, is optimal.22

• Consider p = p∗∗. If type B accepts the equilibrium demand qH − c2,
he reveals his type and, hence, obtains a continuation payment V0. If
he rejects this demand, on the other hand, he obtains

(1− δ)(qH + c1) + δqVN−1 + δ(1− q)((1− q)H + c1) ≡ X < V0,

where the last inequality can be obtained from the proof of Claim 3
above. Thus, it is optimal to reject qH − c2.
Next, consider the demand (1 − q)H + c1. Rejection, again, yields a
continuation payment X, while acceptance leads to a payment (1 −
δ)((1 − q)H + c1) + δVN . Since VN < X and (1 − q)H + c1 < X,
acceptance is optimal.

• Fix any p ∈ (p∗∗, 1]. Since player 2 plays a pure strategy here, and
by A1, accepting the equilibrium demand (1− q)H + c1 cannot reduce
the equilibrium posterior. Thus, accepting yields a continuation pay-
ment (1 − q)H + c1. On the other hand, rejection yields, at best, a
continuation payment

(1− δ)(qH + c1) + δ ((1− q)H + c1) ,

implying optimality of acceptance.

6.2 Proof of Proposition 3

1. We have already established that p∗∗ is independent of δ. By definition, p∗

is the posterior probability after N consecutive non-favorable expert decisions

22Note that type B’s equilibrium cutoff demand here is given by max{(1−q)H+c1, ξ(p)}
(see the specification of rB). It is easily seen that ξ(p) < qH − c2.
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starting from p∗∗. Therefore, to show p∗ goes to 0 as δ goes to 1, it suffices
to establish that N(δ) goes to ∞ as δ goes to 1.

We first note that that V (pn) − V (p0) → 0 as δ goes to 1 for any fixed
n. This follows directly from equations (3) and (4) in the main text. Since
V (p0) > (1− q)H + c1 even when δ → 1, N(δ) goes to ∞ by definition.

2. It is immediate from the definition of p∗∗ that p∗∗ → H−c1−c2
H

as q → 1.
By equations (4) and (5), V (p1)→ −∞ as q → 1. Therefore, N → 1 as q → 1
and, hence, p∗ becomes the posterior probability obtained after a single non-
favorable expert decision starting from p∗∗, that is, p∗ = p∗∗(1−q)

p∗∗(1−q)+(1−p∗∗)q .
Given the limit of p∗∗, it follows immediately that p∗ → 0 as q → 1.

6.3 Proof of Proposition 4

First of all, given assumption A1 and the Markov restriction, it is straight-
forward to observe that, at p = 0, qH+c1 will be demanded and accepted for
sure (thus, V (0) = qH + c1) and, at p = 1, (1− q)H + c1 will be demanded
and accepted for sure (thus, V (1) = (1− q)H + c1).

We now proceed by establishing the following Lemmas.

Lemma 1 (Cutoff of Acceptance) Fix any δ and any MPBE. Also, fix
any posterior p, and consider a demand s > (1− q)H + c1. The following is
true on or off the equilibrium path:

(1) If type B accepts s with a positive probability, then he must accept any
s′ < s with probability 1.

(2) If type B rejects s with a positive probability, then it must reject any
s′ > s with probability 1.

Proof. (1) If s is accepted, the continuation (discounted average expected)
payment from accepting s must be at least as good as that from rejecting it.

Since rejected demands are not observable, rejecting any demand results
in the same continuation payment. Also, by assumption A2, accepting any
demand strictly above (1−q)H+c1 leads to the same continuation payment at
the next period (equal to qH+c1). Then, accepting any s′ ∈ ((1−q)H+c1, s)
must be strictly better than rejecting it since it yields a lower immediate
payment.

On the other hand, accepting a demand s′ ≤ (1− q)H+ c1 needs not lead
to revelation but the continuation payment at the next period must still be
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bounded above by qH + c1 and, hence, the same arguments imply that such
a demand must also be accepted for sure.

(2) If s is rejected, the continuation payment from rejecting s must be at
least as good as that from accepting it. Rejecting s or s′ results in identical
expected payments, both in the current period and each forthcoming period;
on the other hand, while accepting s′ and s yield the same continuation
payment as of the next period, accepting s′ > s involves a strictly higher
stage expected payment than accepting s. Thus, any s′ > s must be rejected
for sure.

Lemma 2 Fix any δ > c1+c2
(2q−1)H+c1+c2

and any MPBE. Also, fix any posterior

p ∈ (0, 1). Suppose that, in equilibrium, player 2 makes a demand s which
player 1 accepts with a positive probability. Then, s is either (1 − q)H + c1
or qH − c2.

Proof. The proof is by contradiction. We consider the following cases.

Case 0. s < (1− q)H + c1 or s > qH + c1.
Any demand s < (1 − q)H + c1 is dominated by (1 − q)H + c1 since

type G accepts (1 − q)H + c1 and player 2’s stage payoff from type B is
qH − c2 > (1 − q)H + c1 should he reject (1 − q)H + c1. Therefore, in
equilibrium, player 2 will not demand s < (1 − q)H + c1. This contradicts
the assumption that s is demanded in equilibrium.

If type B accepts a demand s > qH+c1, by assumption A2, he will reveal
his type and the subsequent payment is qH+c1 each period. If he rejects s, his
current period expected payment is qH + c1 while future expected payments
are bounded above by qH + c1. Therefore, s > qH + c1, if demanded, will
be rejected by type B for sure. This contradicts the assumption that s is
accepted.

Case 1. s ∈ ((1− q)H + c1, qH − c2).
But then, player 2 can profitably deviate by not demanding s and, instead,

demanding any s′ > qH + c1. By assumption A1, type G rejects both s and
s′ for sure; from Case 0 above, we know that type B must also reject s′ for
sure. But player 2 expects to earn qH − c2 > s from type B by seeking an
expert and, therefore, would strictly prefer to have s′ rejected than to have
s accepted. This is a contradiction.

Case 2. s ∈ (qH − c2, qH + c1] and type B rejects s with probability
r ∈ (0, 1).
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But then, consider player 2 deviating by demanding s − ε > qH − c2
instead of s for some small ε > 0. By Lemma 1, such a demand must be
accepted by type B for sure; by A1, type G rejects s − ε. The deviation
payoff then amounts to

p((1− q)H − c2) + (1− p)(s− ε),

while the corresponding equilibrium payoff is

p((1− q)H − c2) + (1− r)(1− p)s+ r(1− p)(qH − c2).

Thus, such a deviation is profitable if ε < r(s − qH + c2). This is a contra-
diction.

Case 3. s ∈ (qH − c2, qH + c1] and type B accepts s with probability 1.
Let rB be the given equilibrium strategy of type B, and let s∗ > qH − c2

denote the supremum of demands that it accepts with probability 1 at p;
that is, s∗ = sup{s : rB(p, s) = 0}.

Then, by Lemma 1, rB(p, s′) = 0 for any s′ ∈ (qH−c2, s∗), and r(p, s′′) =
1 for any s′′ ∈ (s∗,∞). Therefore, player 2’s payoff is s′ by demanding s′ and
qH − c2 < s∗ by demanding s′′. However, both s′ and s′′ are dominated by
s∗− s∗−s′

2
which is accepted for sure, yielding a payoff of s∗− s∗−s′

2
> qH−c2.

Therefore, given our arguments against Cases 0 and 1 above, player 2 will
not make a demand other than (1− q)H + c1 or s∗ in equilibrium.

Suppose now that player 2 demands s∗ with a positive probability. We
shall show that this is impossible.

On the one hand, if player 2’s equilibrium strategy demands s∗ with a
positive probability, type B must accept it with probability 1 by the same
argument as in Case 2; otherwise, player 2 could profitably deviate by de-
manding s∗ − ε instead of s∗ for some small enough ε > 0.

On the other hand, type B has an incentive to deviate by rejecting s∗ if
δ > c1+c2

(2q−1)H+c1+c2
. As we have already established, in equilibrium, the demand

can only be either (1− q)H + c1 or s∗, where the former demand is accepted
for sure by both types and the latter is accepted for sure by type B while
rejected for sure by type G. It then follows that the equilibrium posterior at
the next period after observing rejection in the current period must be 1.

Thus, the deviation results in each subsequent player 2 demanding (1 −
q)H + c1 and, hence, the continuation payment

(1− δ)(qH + c1) + δ((1− q)H + c1). (12)
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But, in equilibrium, acceptance of s∗ results in revelation (assumption A2)
and, hence, the continuation payment

(1− δ)s∗ + δ(qH + c1). (13)

Since s∗ > qH−c2 and δ > c1+c2
(2q−1)H+c1+c2

, (13) exceeds (12) and, therefore,
the deviation is profitable. This is a contradiction.

We now proceed to prove each claim of Proposition 4 in turn. Fix any
δ > c1+c2

(2q−1)H+c1+c2
, as required by Lemma 2 above, and any Markov perfect

Bayesian equilibrium. Also, for ease of exposition, let V = qH+δc1−(1−δ)c2.

Lemma 3 For any p ∈ (0, 1), V (p) ∈
[
(1− q)H + c1, V

]
.

Proof. First of all, the lower bound is immediate since, with assumption
A1, any demand less than (1 − q)H + c1 is strictly dominated for player 2
and thus will never occur in equilibrium.

Next, we establish the upper bound. Let us consider two cases in turn.
First, suppose that every equilibrium demand of player 2 is accepted by

type B. Then, player 2 must play pure strategy (given the assumption that
each equilibrium demand is accepted, player 2 cannot randomize between a
low demand and a high demand).

Then, by Lemma 2, the equilibrium demand is either qH−c2 or (1−q)H+
c1. If the demand is (1 − q)H + c1, by assumption A1, no belief updating
occurs and, therefore, V (p) = (1− q)H + c1 < V . If the demand is qH − c2,
type B reveals himself and hence by the Markov property

V (p) = (1− δ)(qH − c2) + δ(qH + c1) = V .

Second, suppose that, at p, some equilibrium demand is rejected with a
positive probability. Let s∗ be the infimum of these demands that are rejected
by type B at p. By Lemma 1, all demands below s∗ will be accepted and all
demands above s∗ will be rejected by this type.

Note that type B’s equilibrium payment, V (p), is bounded above by re-
jecting all demands. In particular, given the definition of s∗, the upper bound
equals the continuation payment from rejecting an equilibrium demand s∗+ε,
for some ε ≥ 0.
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But, at the same time, since s∗ + ε occurs and is rejected in equilibrium,
type H’s equilibrium payment at p is bounded above by the continuation
payment from accepting s∗ + ε. Therefore, it must be that

V (p) ≤ (1− δ)(s∗ + ε) + δ(qH + c1),

where qH + c1 is the maximum possible continuation payment.
Now, by the definition of s∗, we can take ε→ 0 and, hence, obtain

V (p) ≤ (1− δ)s∗ + δ(qH + c1). (14)

From (14), we are done if s∗ ≤ qH − c2. We simply note that it is im-
possible that s∗ > qH − c2. The reasoning is as follows. Suppose not. By
the definiton of s∗, there exists an equilibrium demand s ≥ s∗ such that s is
rejected and player 2 obtains a payoff of qH − c2. But, by the definition of
s∗, any s∗ − ε > qH − c2 will be accepted by type B which gives player 2 a
payoff of s∗− ε > qH − c2. Therefore, s cannot be demanded in equilibrium.
This is a contradiction.

Lemma 4 Let p∗∗ = (2q−1)H−c1−c2
(2q−1)H

. For any p ∈ (p∗∗, 1), (1 − q)H + c1 is
demanded and accepted for sure.

Proof. By demanding (1− q)H + c1, player 2 obtains a payoff of at least

(1− q)H + c1 (15)

since the good type accepts it and he can obtain qH − c2 > (1 − q)H + c1
if the bad type ever rejects the demand. Note that all lower demands are
strictly dominated by (1− q)H + c1.

By demanding qH − c2, player 2 obtains at most

p((1− q)H − c2) + (1− p)(qH − c2) (16)

since type G will reject it, leading to expected payoff of (1 − q)H − c2 for
player 2, and qH − c2 is player 2’s expected payoff regardless of type B’s
response. Note that all demands in ((1 − q)H + c1, qH − c2) are weakly
dominated by qH − c2, because type G rejects the demand and player 2’s
payoff is lower than qH − c2 if type B ever accepts it.

Now, by Lemmas 1-2, any demand greater than qH − c2 is rejected by
both types for sure, which gives player 2 a payoff of p((1 − q)H − c2) +
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(1− p)(qH − c2). Therefore, we only need to compare (15) with (16). Since
p > p∗∗, the former is larger, implying that (1− q)H + c1 must be demanded
for sure.

Then, since player 2 plays a pure strategy here, and by A1, accepting the
equilibrium demand (1 − q)H + c1 cannot reduce the equilibrium posterior.
Thus, accepting yields a continuation payment (1− q)H + c1 to type B. On
the other hand, rejection yields, at best, a continuation payment

(1− δ)(qH + c1) + δ ((1− q)H + c1) ,

implying that (1− q)H + c1 is accepted for sure.

In order to pin down our final claim, we first need the following Lemma.

Lemma 5 Consider the state space P ⊂ [0, 1] such that P = P1∪P2∪P3. Let
V (p) be the discounted average expected payment at p (with discount factor
0 < δ < 1).

At any p ∈ P3, with probability 1 − q the immediate payment is 0 and
the new state becomes p′ = Φ1(p); with probability q, the payment is H and
the new state becomes p′′ = Φ−1(p), where Φ1(·) and Φ−1(·) are as defined
in the proof of Proposition 1 above. If p ∈ P1, V (p) = v1 > 0; If p ∈ P2,
V (p) = v2 > 0.

We then have the following: If qH ≥ min{v1, v2}, then V (p) ≥ min{v1, v2}
for any p ∈ P3.

Proof. Suppose not. Let v3 = infp∈P3 V (p). Then, by assumption, v3 <
min{v1, v2}. For any small ε > 0, there exists pε ∈ P3 such that V (pε) < v3+ε.
We know that

V (pε) = (1− δ)qH + δ((1− q)V (p′) + qV (p′′))

≥ (1− δ)qH + δmin{V (p′), V (p′′)}.

Therefore,

min{V (p′), V (p′′)} ≤ δ−1(V (pε)− (1− δ)qH)

≤ δ−1[v3 + ε− (1− δ)v3 + (1− δ)v3 − (1− δ)qH]

< v3 + δ−1[ε+ (1− δ)(v3 − qH)].

Taking ε to 0, we have min{V (p′), V (p′′)} < v3 + δ−1(1 − δ)(v3 − qH).
However, we know that, by assumption, v3 < min{v1, v2} ≤ qH. It then
follows that min{V (p′), V (p′′)} < v3. This contradicts the definition of v3.
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We are now ready to complete the proof of Proposition 4 with the follow-
ing Lemma.

Lemma 6 There exists p∗ ∈ (0, p∗∗) such that, for any p ∈ (0, p∗), V (p) =
V .

Proof. We shall follow a series of steps.

Step 1. Fix any p < p∗∗, and suppose that player 2 demands (1− q)H +
c1 in equilibrium. Then, type B must reject this demand with a positive
probability, and hence the equilibrium posterior belief after a rejection but
before the expert verdict does not exceed p.

Proof of Step 1. Suppose to the contrary that player 1 accepts the demand
for sure. Player 2’s payoff will be (1 − q)H + c1. We shall argue that (1 −
q)H + c1 is strictly dominated and cannot be an equilibrium demand.

Consider another demand qH − c2. If player 1 is type G, then he will
reject it and player 2’s payoff will be (1−q)H−c2; if player 1 is type B, then
whether or not he rejects qH − c2, player 2 will earn qH − c2 in expectation.
Therefore, player 2’s expected payoff is p(1 − q)H + (1 − p)qH − c2. Since
p < p∗∗, this amount is greater than (1−q)H+c1. That is, qH−c2 dominates
(1− q)H + c1.

Since (1−q)H+c1 is rejected with positive probability, all higher demands
are rejected for sure by Lemma 1. It follows that in this case rejection reduces
the posterior belief.

Step 2. Fix any p < p∗∗. One of the following holds:

(a) V (p) = V ; or
(b) player 1 weakly prefers to reject any equilibrium demand and the equi-

librium posterior immediately after the rejection (before the expert verdict)
does not exceed p.

Proof of Step 2. There are two cases to consider.
Case 1 : (1 − q)H + c1 is demanded with a positive probability in equi-

librium.
Then, by Step 1, (b) holds.
Case 2 : (1− q)H + c1 is demanded with probability 0 in equilibrium.
In this case only qH − c2 can be possibly accepted by Lemma 2.
- If type B’s equilibrium strategy prescribes that qH − c2 be rejected for

sure, then the belief will not change after rejection; hence, (b) holds.
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- If it prescribes that qH−c2 be accepted with a positive probability, then
all demands greater than (1− q)H + c1 but less than qH − c2 is going to be
accepted for sure, and they are dominated by qH − c2 for player 2 (because
only type B accepts these demands).

Now, there are two possibilities here.
First, if qH − c2 is not demanded in equilibrium by player 2, then all

equilibrium demands are rejected and, therefore, belief never changes; hence,
(b) holds.

Second, if qH− c2 is demanded in equilibrium with a positive probability
by player 2, then type B’s continuation payment from rejecting any demand
is higher than or equal to that from accepting qH − c2. The latter amounts
to

(1− δ)(qH − c2) + δ(qH + c1) = V .

But, since V (p) ≤ V by Lemma 3, it must be that V (p) = V ; hence, (a)
holds.

At this point, for any positive integer k, let pk = Φ−k(p∗∗), as defined in
the proof of Proposition 1 above.

Step 3. Fix any p ∈ [pk+1, pk), and suppose that

V ≥ (1− δk)qH + δk(1− q)H + c1.

Then, we have

V (p) ≥ min{(1− δk+1)qH + δk+1(1− q)H + c1, V }.

Proof of Step 3. We employ induction. First, consider any p ∈ [p1, p
∗∗). By

Step 2, we have either V (p) = V or an equilibrium demand is rejected and
so V (p) is given by the continuation payment from the rejection.

In the latter case, clearly, V (p) ≥ (1 − δ)(qH + c1) + δ((1 − q)H + c1).
Thus,

V (p) ≥ min{(1− δ)qH + δ(1− q)H + c1, V }.
Next, assume that, for any p ∈ [pk, pk−1),

V (p) ≥ min{(1− δk)qH + δk(1− q)H + c1, V }.

We want to show that, for any p ∈ [pk+1, pk),

V (p) ≥ min{(1− δk+1)qH + δk+1(1− q)H + c1, V }.
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Again, given Step 2 above, consider the continuation payment when any
equilibrium demand here is rejected such that the posterior immediately after
rejection does not go above p.

Rejection results in the current period expected payment of qH + c1. If
the subsequent expert verdict is favorable, the next period’s posterior belongs
to [pk, pk−1) and, hence, the corresponding continuation payoff must be at
least min{(1− δk)qH + δk(1− q)H + c1, V }, by assumption.

If the expert verdict is not favorable then the next period’s posterior must
belong to [pk+2, pk+1). By Lemma 5 (taking P3 = [pk+2, pk+1), P1 = [pk, pk−1),
P2 = {p : V (p) = V }\(P1 ∪ P3) ), the corresponding continuation payment
must also be bounded below by min{(1− δk)qH + δk(1− q)H + c1, V }.

Thus, we have

V (p) ≥ min{(1− δ)(qH + c1) + δ
[
(1− δk)qH + δk(1− q)H + c1

]
, V }

= min{(1− δk+1)qH + δk+1(1− q)H + c1, V },

and induction closes the proof of Step 3.

Now, let K be the largest integer such that V ≥ (1 − δK)qH + δK(1 −
q)H + c1. Then, Step 3 immediately implies that, for any p ∈ [pk+1, pk),
k ≥ K, we must have

V (p) ≥ min{(1− δk+1)qH + δk+1(1− q)H + c1, V } = V .

Since, by Lemma 3 we already know that V (p) ≤ V for any p ∈ (0, 1), it
follows that V (p) = V for any p < pK .
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