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Abstract

We consider a cross-calibration test of predictions by multiple potential experts in a

stochastic environment. This test checks whether each expert is calibrated conditional

on the predictions made by other experts. We show that this test is good in the sense

that a true expert—one informed of the true distribution of the process—is guaranteed

to pass the test no matter what the other potential experts do, and false experts will

fail the test on all but a small (category one) set of true distributions. Furthermore,

even when there is no true expert present, a test similar to cross-calibration cannot be

simultaneously manipulated by multiple false experts, but at the cost of failing some

true experts.
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1 Introduction

Economic and other scientific models commonly include a stochastic component. A

novice tester may wish to test potential experts who each claim to possess a predictive

stochastic model—a theory. Assuming the tester has no prior distribution over the

stochastic process at hand, the question is whether, by simply observing a sequence of

probabilistic predictions by the experts and the realization of the process, the tester

can distinguish true experts from charlatans.

In this paper we provide a method for reliably testing sequential predictions in the

presence of multiple potential experts. Contrary to the case of testing a single expert,

with two or more potential experts we can construct a sequential test revealing their

types by pitting their predictions against one another.

An intuitive sequential test asks that the expert’s predictions be calibrated, i.e.

that the empirical frequency conditional on his prediction converge to that prediction.

For example, if the expert states that the probability of an increase in unemployment

is 40%, we would like to see that, on average, the unemployment rate rose 40% of

the time in those periods for which this 40% prediction was made. Dawid (1982,

1985) proposed this test and showed that an expert predicting according to the true

distribution of the process will be calibrated in this sense. However, Foster and Vohra

(1988) demonstrated that this test can be manipulated by a false expert: there exists a

mixed forecasting strategy that is calibrated with probability one on every realization

of the process.

This negative result has been extensively generalized to many other classes of tests

by Kalai, Lehrer, and Smorodinsky (1999); Fudenberg and Levine (1999); Lehrer

(2001); Sandroni, Smorodinsky, and Vohra (2003); Sandroni (2003); and Vovk and

Shafer (2005). See also Fortnow and Vohra (2006) and Chang and Lyuu (2007), who

study testing from a computational perspective. Recently, Olszewski and Sandroni

(2007) and Shmaya (2007) obtained the strong result that all sequential tests of a

single potential expert can be manipulated.

2



We show that, with more than one potential expert, the situation is very different:

there is a good sequential test that cannot be manipulated by false experts. In fact,

this test is a simple extension of the calibration test; we call it the cross-calibration

test. This test compares the empirical frequencies of events conditional on the joint

predictions made by the experts. For example, consider all of the periods where one

potential expert forecasts the probability of increase in unemployment to be 40%, while

another potential expert puts it at 30%. Conditional on these predictions, the empirical

frequency cannot be both 40% and 30%. Hence, if such a disagreement in predictions

occurs infinitely often, we are guaranteed that at least one of the potential experts

will not be calibrated with respect to this test. This feature plays a central role in

the greater power of the cross-calibration test relative to the classic calibration test.

In independent work, Al-Najjar and Weinstein (2007) consider a different test which

compares the likelihoods of predictions made by a false and a true expert. We discuss

their work in detail in Section 5.

We show that a true expert predicting according to a model based on a distribution

P is guaranteed to pass the cross-calibration test with P -probability one. In other

words, if P indeed governs the process, a true expert is bound to be well cross-calibrated

no matter what strategy—pure or mixed—is employed by the other potential experts.

On the other hand, a false expert is guaranteed to fail the test for most distributions

P when a true expert is present. More precisely, we show that, for every (mixed)

forecasting strategy a false expert may use, he fails the cross-calibration test with

P -probability one on all but a category one set of true distributions P .

Even when there is no true expert, a strict version of the cross-calibration test pos-

sesses some power to fail false experts. The strict test requires the empirical frequencies

to lie within the predicted intervals and not on their boundaries. We show that, except

on a small set of realizations, the probability that at least two potential experts pass

this test simultaneously is zero.

Finally, we show that the realizations on which a pure forecasting strategy P is

calibrated (in the classic calibration test of a single forecaster) form a category one
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set. Hence calibration is a good test with no Type I errors and small Type II error in

terms of category (see Dekel and Feinberg (2006)). In particular, cross-calibration is

also a good test since it too has no Type I error and small Type II error; the set of

realizations on which a forecaster is cross-calibrated is a subset of those on which he is

calibrated when tested in isolation.

2 The Cross-Calibration Test

The environment we consider extends the classic calibration framework to allow for

multiple forecasters. Let Ω =
{

(ωt)t=0,1,... | ωt ∈ {0, 1}
}

denote the space of possible

realizations. Fix a positive integer n > 4, and divide the interval [0, 1] into n equal

closed subintervals I1, . . . , In, so that Il =
[
l−1
n , ln

]
. All results in this paper hold when

[0, 1] is replaced with the set of distributions over any finite set S, and the intervals Il

are replaced with a cover of the set of distributions by sufficiently small closed convex

subsets.

At the beginning of each period t = 0, 1, . . ., all forecasters (or experts) j ∈

{1, . . . ,M} simultaneously announce predictions Ijt ∈ {I1, . . . , In}, which are inter-

preted as probabilities with which the realization 1 will occur in that period. We

assume that forecasters observe both the realized outcome and the predictions of the

other forecasters at the end of each period. A (mixed or behavior) strategy for a

forecaster i is therefore a collection µi =
{
µit
}∞
t=0

of functions

µit : {0, 1}t ×Mj=1 {I1, . . . , In}t −→ ∆({I1, ..., In}),

where ∆(X) denotes the space of distributions over a set X. A strategy profile is

denoted by µ = (µ1, ..., µM ).

The realization in Ω may be determined by a stochastic process. By Kolmogorov’s

extension theorem, a distribution P in ∆({0, 1}∞) corresponds to a collection of func-
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tions

pt : {0, 1}t −→ ∆({0, 1})

which we also denote by P = {pt}∞t=0. Hence P corresponds to a pure strategy that is

independent of the previous predictions made by the potential experts.

The cross-calibration test is defined over outcomes
(
ωt, I

1
t , . . . , I

M
t

)∞
t=0

, which spec-

ify, for each period t, the realization ωt ∈ {0, 1}, together with the prediction intervals

announced by each of the M forecasters. Given any such outcome and any M -tuple

l =
(
l1, . . . , lM

)
∈ {1, . . . , n}M , define

ζ lt = 11
Ij
t =I

lj
∀j=1,...,M

and

νlT =
T∑
t=0

ζ lt, (1)

which represents the number of times that the forecast profile l is chosen up to time

T . For νlT > 0, the frequency f lT of realizations conditional on this forecast profile is

given by

f lT =
1
νlT

T∑
t=0

ζ ltωt. (2)

Forecaster j passes the cross-calibration test at the outcome
(
ωt, I

1
t , . . . , I

M
t

)∞
t=0

if

lim sup
T→∞

∣∣∣∣f lT − 2lj − 1
2n

∣∣∣∣ ≤ 1
2n

(3)

for every l satisfying limT→∞ ν
l
T =∞.

In the case of a single forecaster, the cross-calibration test reduces to the classic

calibration test, which checks the frequency of realizations conditional on each forecast

that is made infinitely often. With multiple forecasters, the cross-calibration test checks

the empirical frequencies of the realization conditional on each profile of forecasts

that occurs infinitely often. Note that if an expert is cross-calibrated, he will also be

calibrated.
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We say that predictions are close to one another if the predicted intervals intersect,

i.e. the intervals are either identical or have a common boundary.

We consider two types of experts: true experts and false experts. A true expert

knows the conditional probabilities, given the realization so far, of the distribution

P governing the stochastic process, while a false expert does not. Formally, for each

history ht =
(
ωs, I

1
s , . . . , I

M
s

)t−1

s=0
, true experts follow the strategy defined by

µt (ht) ≡ I
(
pt

(
(ωs)

t−1
s=0

))
,

where I(p) denotes the interval containing p. If p lies on the boundary between two

intervals, we may assume without loss of generality that the lower interval is chosen.

Note that, although the expert uses a strategy that follows the true distribution P , he

provides only the conditional probabilities for the realized history. Thus it is not nec-

essary that the true expert know P ex ante; it suffices for him to know the conditional

probabilities once a history is realized.

False experts have no knowledge of Nature’s strategy. They observe only the re-

alization and past predictions of other experts, and are free to choose any strategy

randomizing their prediction in each period. We assume that all experts know which,

if any, of the other experts are true ones; however, relaxing this assumption has no

impact on our results.

To minimize notation, we provide proofs of results for just two experts, with or

without one being a true expert. The proofs are essentially the same for all other

combinations of a finite number (greater than one) of potential experts. We frequently

denote by Pr, instead of Prµ,P , the probability of events with respect to µ and P .

3 With True Experts

We begin by exploring the outcome of the cross-calibration test when at least one of the

potential experts is indeed a true expert. We first observe that no matter what others
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do, every true expert is guaranteed to pass the cross-calibration test with P -probability

one. Hence, the cross-calibration test has no Type I error.

Proposition 1 For every distribution P governing the stochastic process, any poten-

tial expert who predicts according to a model that follows P passes the cross-calibration

test with probability 1 no matter what strategies the other potential experts use. That

is, for any strategy profile µ = (P, µ2, ..., µM ), the first forecaster passes the cross-

calibration test with (P, µ)-probability one:

Prµ,P

(
∀l : lim sup

T→∞

∣∣∣∣f l1,...,lMT − 2l1 − 1
2n

∣∣∣∣ ≤ 1
2n

or lim
T→∞

νlT <∞
)

= 1. (4)

Proof. The proof requires a minor modification of Dawid (1982), and is omitted. See

Feinberg and Stewart (2007) for a complete proof.

We now turn to the case of false experts being tested in the presence of a true expert.

The failure probability is determined according to P and the strategies employed by

false experts. We would like to see the false experts fail with probability one according

to the true distribution P , except perhaps for a small set of true distributions (since the

false expert may happen to make predictions very close to the correct ones). We show

that not only is a false expert unable to manipulate cross-calibration, but that for any

strategy he might use, he is guaranteed to fail on most true distributions. This result

contrasts sharply with the negative results in the single-expert case. Calibration-type

tests of a single expert can be manipulated in the sense that a false expert can pass the

test with µ-probability one on every realization, and hence for every true distribution

P .

The notion for large and small sets of distributions we employ is that of category

one—a countable union of nowhere dense sets—as suggested by Dekel and Feinberg

(2006). We show that for every strategy (pure or mixed) of the false expert, for all but

a category one set of distributions P , when the true expert follows P , the false expert

will fail the cross-calibration test with probability one, no matter what strategies the

other potential experts employ.
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The basic intuition for this result is as follows. In order for two potential experts

to pass the cross-calibration test on the same realization, their forecasts must be close

in all but finitely many periods. Since the true expert passes with probability one, the

false expert must announce forecasts close to the truth in all but finitely many periods

in order to pass the test. In order for this to occur with positive probability, there

must be some finite history after which the false expert makes forecasts close to the

truth in every period with high probability. For a given forecasting strategy µ, only a

small set of distributions give conditional probabilities close to forecasts generated by

µ with high probability after some history.

Proposition 2 In the presence of a true expert, for every strategy µ of a false expert,

the set of distributions P under which the false expert will pass the cross-calibration test

with positive (µ, P )-probability is a category one set of distributions in ∆(Ω) endowed

with the weak∗ topology.

Proof. We first prove the following lemma.

Lemma 1 If a forecasting strategy µ is cross-calibrated with respect to a true distri-

bution P with (µ, P )-positive probability, then for every η ∈ (0, 1) there exists a finite

history hηT that occurs with positive probability such that

Pr(µ is close to P in every period following hηT |h
η
T ) ≥ 1− η. (5)

Proof of Lemma 1. Recall that two predictions are close if they are identical or

adjacent intervals. Assume by way of contradiction that no such history exists. In

particular, (5) does not hold for the empty history. We can therefore find a finite time

t0 such that

Pr (∃s ≤ t0 such that µ is not close to P at period s) ≥ η/2. (6)
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By the same argument, for every history ht0 that occurs with positive probability, there

exists a period t(ht0) > t0 such that

Pr (∃s ∈ (t0, t(ht0)] such that µ is not close to P at period s|ht0) ≥ η/2.

Since the number of histories of length t0 is finite, by choosing t1 = maxht0
t(ht0) we

obtain Pr (∃s ∈ (t0, t1] such that µ is not close to P at period s|ht0) ≥ η/2 for every

history ht0 . Inductively, there is a finite tj such that

Pr
(
∃s ∈ (tj−1, tj ] such that µ is not close to P at period s|htj−1

)
≥ η/2 (7)

for every htj−1 that occurs with positive probability.

Define the events

Fj = {∃s ∈ (tj−1, tj ] such that µ is not close to P at period s} . (8)

The event that the forecasts are close from some period onwards is the complement of

the forecasts being not close infinitely often. To be cross-calibrated the experts must

predict close intervals from some point onwards. Hence

Pr (The experts are cross-calibrated) ≤ Pr

¬ ∞⋂
n=1

⋃
j≥n

Fj


= Pr

 ∞⋃
n=1

⋂
j≥n
¬Fj

 ≤ ∞∑
n=1

Pr

⋂
j≥n
¬Fj

 .

(9)

We now show that

Pr

⋂
j≥n
¬Fj

 = 0 (10)

for every n. If Pr (¬Fn ∩ ¬Fn+1 ∩ ... ∩ ¬Fn+k−1) = 0 for some k > 0, then (10) holds

trivially. Otherwise, since (7) holds for every history htj−1 that occurs with positive

probability, it also holds when conditioned on any positive probability collection of
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histories htj−1 . In particular, we have

Pr (¬Fn+k|¬Fn ∩ ¬Fn+1 ∩ ... ∩ ¬Fn+k−1) = 1− Pr (Fn+k|¬Fn ∩ ¬Fn+1 ∩ ... ∩ ¬Fn+k−1)

≤ 1− η/2.

Therefore, for every n, we have

Pr

⋂
j≥n
¬Fj

 = Pr (¬Fn) Pr (¬Fn+1|¬Fn) · · ·Pr (¬Fn+k|¬Fn ∩ Fn+1 ∩ ... ∩ Fn+k−1) · · ·

≤
(

1− η

2

)(
1− η

2

)
· · · = 0. (11)

From (9) and (10) we have that the experts are cross-calibrated with probability zero—

a contradiction, as required.

Fix η < 1
2 . By Lemma 1, if P and µ are cross-calibrated with positive probability,

then P must satisfy (5) for at least one of the countable collection of finite histories.

It suffices to show that the set of distributions that satisfy (5) for a given history is a

category one set.

Given any finite history h =
(
ωt, I

1
t , . . . , I

M
t

)T
t=0

, let

Ω(h) =
{
ω′ = (ω′t)t=0,1,... | (ω′0, . . . , ω′T ) = (ω0, . . . , ωT )

}
be the set of realizations consistent with h—the cylinder determined by h. The set

Ω(h) is both open and closed—a clopen set. For every finite history h and ε ∈ (0, 1),

let S(h, ε) be the set of distributions that assign probability at least ε to Ω(h) and for

which h has the property of (5) (given η and µ). The set of distributions against which

µ passes with positive probability is contained in the countable union

⋃
finite histories h

∞⋃
n=1

S(h, εn).
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Thus it suffices to show that each S(h, ε) is nowhere dense. We will show that each of

these sets is closed and has empty interior.

To show that S(h, ε) is closed, we want to construct for each P /∈ S(h, ε) an open

neighborhood of P that is disjoint from S(h, ε). There are two cases to consider: either

P assigns probability less than ε to Ω(h), or h does not satisfy (5) (or both).

In the former case, consider the set {P ′ | P ′(Ω(h)) < ε}. This set contains P , and

is open in the weak∗ topology since Ω(h) is clopen.

In the latter case, there exist some η′ > η such that

lim
t→∞

Pr (µ is close to P in every period from T + 1 to t|h) < 1− η′.

Hence there exists some period τ such that

Pr (µ is close to P in every period from T + 1 to τ |h) < 1− η′. (12)

Each distribution P ′ gives rise for each t to an induced distribution P ′t over finite his-

tories of realizations (ω0, . . . , ωt). Let Hτ = {ht consistent with h for t = T+1, . . . , τ}.

Assume first that P satisfies

pt (ht) /∈
{

0,
1
n
, . . . ,

n− 1
n

, 1
}

(13)

for every ht ∈ Hτ that occurs with positive P -probability.1 Consider the set

Uδ =
{
P ′ | |P ′τ (E)− Pτ (E)| < δ for all events E determined by time τ

}
.

Note that Uδ is open for each δ since it is defined by a strict inequality condition on a

collection of (open) cylinders.

By (13), we can find δ > 0 sufficiently small such that, in any period following any

ht ∈ Hτ , µ is close to P ′ ∈ Uδ if and only if µ is close to P . For such δ, (12) implies

1Recall that pt(ht) denotes the conditional P -probability that ωt = 1 following ht.
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that

PrP
(
µ is close to P ′ in every period from T + 1 to τ |h

)
< 1− η′.

By the definition of Uδ, this last inequality implies that

PrP ′
(
µ is close to P ′ in every period from T + 1 to τ |h

)
< 1− η

when δ is sufficiently small. This guarantees that Uδ is disjoint from S(h, ε), as needed.

If (13) does not hold, then there exists some finite history ht occurring with positive

P -probability such that PrP (ωt = 1|ht) ∈ {0, 1/n, . . . , 1}. We will show that the set of

distributions P having this property is category one, and hence adding it to the union

of sets S(h, εn) does not affect the claim. Since the set of finite histories is countable

and the set {0, 1/n, . . . , 1} is finite, it suffices to show that, given any finite history ht,

any π ∈ [0, 1], and any ε > 0, the set

R(ht, ε, π) = {P |pt(ht) = π and Pt(ht) ≥ ε}

is closed with empty interior.

First we show that R(ht, ε, π) is closed. Let Sε = {P |Pt(ht) ≥ ε}. Note that Sε is

closed. Let A denote the event that ht occurs, and B the event that ωt = 1. Consider

the function fB|A : Ω −→ R defined by

fB|A(ω) =



π if ω /∈ A

1 if ω ∈ A ∩B

0 otherwise.

Note that, since A and B are clopen, fB|A is continuous. Hence the set of distributions

Sπ =
{
P |
∫
fB|AdP = π

}
is closed in the weak∗ topology. For each P ∈ Sπ, either

P (A) = 0 or P (B|A) = π. Therefore, we have R(ht, ε, π) = Sπ ∩ Sε, proving that

R(ht, ε, π) is closed since Sπ and Sε are.
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Next we show that R(ht, ε, π) has empty interior. Fix any δ ∈ (0, π). Given

any P ∈ R(ht, ε, π), let (Pn)∞n=1 be the sequence of distributions with conditional

probabilities

pnτ (ω0, . . . , ωτ−1) =


π − δn if (ω0, . . . , ωτ−1) = ht

p(ω0, . . . , ωτ−1) otherwise.

The sequence (Pn)∞n=1 converges to P and lies outside of the set R(ht, ε, π), as needed.

Finally, we must show that the interior of S(h, ε) is empty. Fix p ∈ S(h, ε). We

want to construct a sequence q1, q2, . . . converging to p such that qn /∈ S(h, ε) for all n.

As above, let T be the length of the history h, and let pt denote the distribution over

outcomes in period t given the history under p. Define

qnt (·) =


pt(·) if t ≤ T + n

1−
⌊
pt(·) + 1

2

⌋
otherwise,

where the function bxc produces the largest integer not greater than x. Since η < 1
2 ,

µ cannot be close to both p and qn in any period after T + n with probability at least

1− η. Therefore, qn /∈ S(h, ε) and the proof of the proposition is complete.

We have shown that a false expert cannot manipulate the cross-calibration test. For

any strategy he might employ, there exists a distribution against which he almost surely

fails. Moreover, the set of such distributions is large in the sense that its complement

in ∆(Ω) is a category one set in the weak∗ topology. To obtain some intuition for

the meaning of a category one set of measures in ∆(Ω), recall that such a set is a

countable union of nowhere dense sets. Any nowhere dense set S ⊂ ∆(Ω) has the

following property: for any finitely determined event E and any P ∈ S, there exist

measures outside S that agree with P on E, and for every measure P ′ outside S, there

exists a finite event on which P ′ differs from all measures in S. In particular, the

probabilities assigned to finitely determined events can never rule out distributions

outside the nowhere dense set.
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We note that our proof implies that a false expert will fail cross-calibration in finite

time with high probability. In fact, such finite approximation results hold for all limit

results in this paper, much like the finite approximation results in Dekel and Feinberg

(2006) and Olszewski and Sandroni (2007). In particular, fix a mixed strategy µ and

a true distribution P such that the probability that µ is cross-calibrated against the

true expert is zero. This means that there exists some ε > 0 such that, for the false

expert, for some prediction profile l that occurs infinitely often, we have

Pr
(∣∣∣∣f lT − 2lj − 1

2n

∣∣∣∣ > 1
2n

+ 2ε
)
> 1− ε/2 (14)

whenever T is sufficiently large. Pick such a period T for which, in addition, forecasting

according to the true distribution P ensures that one will be cross-calibrated within

ε with probability at least 1 − ε/2. After T periods, with probability at least 1 − ε,

the cross-calibration score of the true expert is higher by at least ε than that of the

false expert. In particular, by choosing fine enough intervals for the cross-calibration

test, the finite horizon approximation to the cross-calibration test can only be passed

by predictions that are close to the true distribution.

We conclude this section with the following proposition for the single-expert cali-

bration tests. It states that when using a pure strategy—following some distribution

P—a potential expert can be calibrated on at most a category one set of realizations.

Naturally, that category one set of realizations has P -probability one, as shown by

Dawid (1982). This demonstrates that the calibration test is a particular example of a

good test as defined by Dekel and Feinberg (2006).2 Combining this proposition with

the main result of Foster and Vohra (1998), it follows immediately that calibration is a

good test that can be manipulated. See Olszewski and Sandroni (2006), who were the

first to demonstrate the existence of a good manipulable test. We will use the following

proposition in the proof of Proposition 4 below.

2A test is called good if it has no Type I errors and small Type II errors, i.e., for each true distribution
P , a forecaster using P passes the test with P -probability one, and for any distribution Q, the set of true
distributions for which predicting according to Q passes with positive probability is category one.
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Proposition 3 For every P , the set of realizations at which P is calibrated is a cate-

gory one set. Hence, calibration is a good test.

Proof. We will prove the result for the weak calibration test as defined by Kalai, Lehrer

and Smorodinsky (1999), which requires calibration only for predictions that occur with

positive density. The density of a sequence periods T1 < T2 < · · · < Tn < · · · is defined

as lim supn→∞
n
Tn

. The set of realizations on which P passes the (standard) calibration

test is a subset of the set of realizations on which P passes the weak calibration test. It

suffices to prove the result for all subintervals of the form [0, x], [x, 1] for x ∈ (0, 1), since

calibration on the subintervals {I1, . . . , In} implies calibration on {I1, I2 ∪ · · · ∪ In}.

Let P ∈ ∆(Ω) and x ∈ (0, 1) be given. Define the sets

Sn,m,0 =

{
ω |

m−1∑
t=0

11pt(ωt)≤x

m
≤ 1/n or

∑m−1
t=0 11pt(ωt)≤xωt+1∑m−1
t=0 11pt(ωt)≤x

≤ x+ 1/n

}
(15)

and

Sn,m,1 =

{
ω |

m−1∑
t=0

11pt(ωt)≥x

m
≤ 1/n or

∑m−1
t=0 11pt(ωt)≥xωt+1∑m−1
t=0 11pt(ωt)≥x

≥ x− 1/n

}
, (16)

and let

SMn =
∞⋂

m=M

(Sn,m,0 ∩ Sn,m,1) . (17)

Letting N = max{10, 2/x, 2/(1− x)}, define the set

S =
∞⋂
n=N

∞⋃
M=1

SMn . (18)

Let ω be such that P is weakly calibrated at ω. In particular, for I = [0, x], we

either have

lim sup
T→∞

T−1∑
t=0

11pt(ωt)∈I

T
= 0 (19)

or

lim sup
T→∞

∗
∑T

t=0 11pt(ωt)∈Iωt+1∑T
t=0 11pt(ωt)∈I

≤ x, (20)
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where the notation lim inf∗, lim sup∗ refers to limits taken only over sequences with

positive density (these are the relevant limits for weak calibration). We claim that for

every n ≥ N , ω ∈ Sn,m,0 for all m sufficiently large. If Equation (19) holds, then for

every n ≥ N , there exists some M such that for all m ≥M ,

m−1∑
t=0

11pt(ωt)≤x

m
≤ 1/n. (21)

Hence for every n ≥ N , there exists some M such that ω ∈ Sn,m,0 for all m ≥ M . If,

on the other hand, Equation (19) does not hold, then assume for contradiction that

there exists some n > N such that ω /∈ Sn,m,0 for an infinite sequence of values of m.

Since (20) holds, this sequence cannot have positive density, which implies that for all

large enough m in this sequence, Inequality (21) holds, contradicting that ω does not

belong to any of these sets.

The symmetric argument applied to the interval I = [x, 1] demonstrates that for

every n ≥ N , ω ∈ Sn,m,1 for all sufficiently large m. Combining these two results,

we find that for every n ≥ N , there exists some M such that ω ∈ SMn , and therefore

ω ∈ S. In addition, if P is not weakly calibrated in either [0, x] or [x, 1] at ω, then

ω /∈ S, for there exists some n > N and infinitely many m with ω /∈ Sn,m,∗. Hence for

some n, we have ω /∈ SMn for all M , which implies that ω /∈ S.

We need to show that S is a category one set in Ω. We will show that each SMn is a

closed set with empty interior. Since S is a countable intersection of a countable union

of such sets, it is a category one set. The set SMn is an intersection of sets of the form

Sn,m,l with l ∈ {0, 1}, so it will be closed if all of the sets Sn,m,l are closed. Without

loss of generality, consider the case l = 0. For every ω /∈ Sn,m,0, we have

m−1∑
t=0

11pt(ωt)≤x

m
> 1/n (22)

and ∑m−1
t=0 11pt(ωt)≤xωt+1∑m−1
t=0 11pt(ωt)≤x

> x+ 1/n. (23)

16



Consider every ω′ such that ω′t = ωt for t = 0, ...,m − 1. Since both conditions above

depend only on the first m coordinates of ω, each such ω′ is not a member of Sn,m,0.

The collection of these ω′ constitute a finite cylinder and hence comprise an open set.

Therefore, every point outside Sn,m,0 has an open neighborhood outside this set and

Sn,m,0 is closed.

Consider any point ω ∈ SMn . Let x ≤ 1/2. Define a sequence of realizations

(ω(j))j=1,2,... by

ω(j)t =


ωt if t ≤ j

1 if t > j and pt−1(ω(j)t|ω(j)1, . . . , ω(j)t−1) < x

0 if t > j and pt−1(ω(j)t|ω(j)1, . . . , ω(j)t−1) ≥ x.

(24)

By definition, ω(j) agrees with ω in the first j coordinates; hence the sequence (ω(j))j=1,2,...

converges to ω. It suffices to show that ω(j) /∈ SMn . If the density of P at [x, 1] given

ω(j) is at least 1/10, then there exist infinitely many m > M such that

m−1∑
t=0

11pt(ω(j)t)≥x

m
> 1/10 ≥ 1/N ≥ 1/n. (25)

For m large enough, we also have

∑m−1
t=0 11pt(ω(j)t)≥xω(j)t+1∑m−1

t=0 11pt(ω(j)t)≥x
< x/2 = x− x/2 < x− 1/N ≤ x− 1/n (26)

since, for t ≥ j, ω(j)t+1 = 0 whenever 11pt(ω(j)t)≥x = 1 and so the empirical frequency

converges to zero. We conclude that if the density of P at [x, 1] for ω(j) is at least

1/10 then ω(j) /∈ SMn .

If the density η at [x, 1] is less than 1/10, then the density ρ in [0, x) must be at

least 1 − η > 9/10 since the sum of densities for the intervals [0, x), [x, 1] must be at

least 1. For infinitely many m > M , we have

m−1∑
t=0

11pt(ω(j)t)≤x

m
> 9/10 ≥ 1/N ≥ 1/n. (27)
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The empirical frequency when [0, x] is predicted is given by

∑m−1
t=0 11pt(ω(j)t)≤xω(j)t+1∑m−1

t=0 11pt(ω(j)t)≤x
=

∑m−1
t=0 (11pt(ω(j)t)=xω(j)t+1 + 11pt(ω(j)t)<xω(j)t+1)∑m−1

t=0 11pt(ω(j)t)≤x
. (28)

When 11pt(ω(j)t)=x we have ω(j)t+1 = 0, and when 11pt(ω(j)t)<x we have ω(j)t+1 = 1.

Substituting these into Equation (28) gives

∑m−1
t=0 11pt(ω(j)t)≤xω(j)t+1∑m−1

t=0 11pt(ω(j)t)≤x
=

∑m−1
t=0 11pt(ω(j)t)<x∑m−1
t=0 11pt(ω(j)t)≤x

≥
∑m−1

t=0 11pt(ω(j)t)<x

m
. (29)

By the definition of the density at [0, x), there exist infinitely many m such that

∑m−1
t=0 11pt(ω(j)t)<x∑m−1
t=0 11pt(ω(j)t)≤x

≥
∑m−1

t=0 11pt(ω(j)t)<x

m
≥ ρ− 1/10 > 1/2 + 2/10 > x+ 1/N ≥ x+ 1/n,

(30)

indicating that ω(j) /∈ SMn , as required.

For the case where x > 1/2, define the sequence ω(j) as in (24) except with the

inequality on the second line weak, and the inequality on the third line strong. Applying

the symmetric argument with the roles of the intervals [0, x] and [x, 1] reversed gives

the result.

4 Without True Experts

When there is no true expert, a false expert cannot manipulate the test for all strategies

of the other forecasters since, by Proposition 2, he can manipulate against only a

category one set of pure strategies. On the other hand, for any strategy profile of the

other forecasters, there exists a strategy that will almost surely pass the test on every

realization. This follows from the observation that, once the opponents’ strategies are

fixed, the cross-calibration test becomes equivalent to a randomized calibration test

(of a single forecaster) of the class studied by Lehrer (2001). Lehrer showed that such

tests are manipulable. This result extends to any sequential test with no Type I error

according to footnote 8 in Olszewski and Sandroni (2007), see also Shmaya (2007).
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In the absence of a true expert, therefore, such a test can at best be guaranteed to

fail all but one false expert. The question remains whether multiple false experts can

manipulate the test simultaneously.

We show that multiple false experts cannot jointly manipulate a stronger version of

our test—the strict cross-calibration test. Whatever forecasting strategies these false

experts use, no two of them can pass the strict test with positive probability except on

a small set of realizations.

If the conditional empirical frequency lies exactly on the boundary between two in-

tervals, then neither of these intervals can be ruled out in the cross-calibration test. We

define the strict cross-calibration test to be the same as the cross-calibration test, except

with disjoint intervals, for example of the form {[0, 1/n), [1/n, 2/n), ..., [(n− 1)/n, 1]}.

Thus we modify the inequality in (3) to a strict inequality (on one side of the interval)

when needed, to reflect that the empirical frequency must converge to the appropriate

interval.

A true expert may fail the strict cross-calibration test. For example, if the true

distribution gives rise to independent probabilities 1/n − 1/et in each period t, then

the empirical frequency converges to 1/n from below with probability one. Olszewski

and Sandroni (2006) have also studied tests that reject some distributions out of hand.

They show that by allowing some Type I errors, the tester can prevent a false expert

from arbitrarily delaying rejection in a finite time approximation test.

We assume throughout that experts cannot correlate their randomized predictions.

While they are allowed to condition on all past realizations of randomized predictions,

they cannot use correlated strategies. Otherwise, false experts could act as one and

manipulate the test.3

Proposition 4 For any strategy profile µ = (µ1, ..., µM ) of M ≥ 2 (false) experts, the

set of realizations on which at least two potential experts simultaneously pass the strict

cross-calibration test with positive probability is a category one set in Ω.

3See Feinberg and Stewart (2007) for an explicit proof of correlated manipulation with real-valued pre-
dictions.
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Proof. Fix the realization ω. For each η ∈ (1
2 , 1), define the (possibly empty) set

Hη = {finite histories h | Pr(forecasts agree forever after h|h, ω) > η} .

Note that histories include the realizations of previous forecasts. Let Hη denote the

complement of Hη in the set of all finite histories. The following lemma states that

the probability that the forecasters are simultaneously strictly cross-calibrated without

reaching any history in Hη is zero.

Lemma 2 Fix η ∈ (0, 1) and the realization ω. If Pr(Hη) < 1, then

Pr(i and j are strictly cross-calibrated | Hη, ω) = 0.

Proof of Lemma 2. The proof is essentially the same as for Lemma 1, and is therefore

omitted. There are only two significant differences. First, the condition Iis 6= Ijs replaces

the condition that µ is not close to P at period s. Second, probabilities are now with

respect to forecasting strategies µi and µj given a fixed realization ω, instead of being

with respect to the forecasting strategy µ and the true distribution P .

Fix a realization ω on which the probability γ that two forecasters simultaneously

pass the strict cross-calibration test is positive. For each η ∈ (1
2 , 1), Lemma 2 implies

that there exists some hT ∈ Hη that occurs with positive probability and satisfies

Pr(i and j are strictly cross-calibrated | hT , ω) ≥ γ. (31)

We will show that when η is sufficiently large, following the history hT , there is a

particular path of forecasts that occurs with probability greater than 1 − γ on which

the forecasters agree in every period. In particular, the forecasters both pass the strict

cross-calibration test on this path.

For each finite history h, let p(h) = (p1(h), . . . , pn(h)) and q(h) = (q1(h), . . . , qn(h))

denote the mixed forecasts of the two forecasters in the period immediately following

h. For each h, there exists some l(h) ∈ {1, . . . , n} satisfying pl(h)(h) ≥ 1
n .
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We define a path of forecasts following the given history hT , i.e. a unique path

of realizations of the forecasts of the experts given ω and the realization of forecasts

hT after which both agree. We will show that this path occurs with high proba-

bility when η is close to 1. For each t > T , recursively define the history ht =(
hT , ωT , Il(T ), Il(T ), . . . , ωt−1, Il(t−1), Il(t−1)

)
, where each l(τ) satisfies pl(τ)(hτ−1) ≥ 1

n

(if there exists more than one such l(τ), then the choice among them is arbitrary). For

each l ∈ {1, . . . , n} and t ≥ T , let ρtl = pl(ht)ql(ht) denote the probability that both

forecasters forecast Il in the period following ht.

Lemma 3 Let h =
(
hT , ωT , Il(T ), Il(T ), ωT+1, Il(T+1), Il(T+1), . . .

)
, as defined above for

hT satisfying (31). We have

Pr
(
h|hT , ω

)
> n(η − 1) + 1.

Proof of Lemma 3. Once again all probabilities are conditional on ω. Note first

that

∑
t≥T

(
t−1∏
τ=T

ρτl(τ)

)(
1−

∑
l

ρtl

)
≤ Pr(forecasts disagree in some period after hT |hT )

< 1− η, (32)

since the t term on left-hand side is the probability of remaining on the specified path

until period t, at which time the forecasters choose two different forecasts. The second

inequality follows since hT ∈ Hη, i.e., the probability of disagreement after hT is less

than 1− η.

Since pl(t)(ht) ≥ 1
n , we have

(
1− pl(t)(ht)

) (
1− ql(t)(ht)

)
≤
(

1− 1
n

)(
1− ql(t)(ht)

)
≤
(

1− 1
n

)(
1− pl(t)(ht)ql(t)(ht)

)
. (33)
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Note that ∑
l 6=l(t)

pl(ht)ql(ht) ≤
(
1− pl(t)(ht)

) (
1− ql(t)(ht)

)
(34)

since the left-hand side represents the probability (following ht) that both forecasters

announce the same forecast other than Il(t), whereas the right-hand side represents the

probability that neither announces Il(t). From (33) and (34), we get

n
∑
l 6=l(t)

pl(ht)ql(ht) ≤ (n− 1)
(
1− pl(t)(ht)ql(t)(ht)

)
, (35)

which rearranged yields

∑
l 6=l(t)

ρtl ≤ (n− 1)

(
1−

∑
l

ρtl

)
(36)

for every t ≥ T .

Inequalities (32) and (36) imply

∑
t≥T

(
t−1∏
τ=T

ρτl(τ)

) ∑
l 6=l(t)

ρtl < (n− 1)(1− η). (37)

We also have that

Pr(forecasts agree forever after hT |hT ) ≤
∏
t≥T

ρtl(t) +
∑
t≥T

(
t−1∏
τ=T

ρτl(τ)

) ∑
l′ 6=l(t)

ρtl′ , (38)

since the first term on the right-hand side represents the probability of remaining on

the specified path and the second term is an upper bound on the probability of leaving

this path, but nonetheless agreeing in every period. This term captures, for each t,

the probability that the first deviation from the most likely path occurs in period t,

and yet the forecasts agree in that period. Since hT ∈ Hη, the left-hand side of (38) is

greater than η, and hence combining (37) and (38) gives

∏
t≥T

ρtl(t) > η − (n− 1)(1− η) = n(η − 1) + 1,
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which completes the proof.

For γ > 0, consider the set of realizations Ω̃(γ) ⊂ Ω on which the experts are simul-

taneously strictly cross-calibrated with probability at least γ. The set of realizations

on which the experts are simultaneously cross-calibrated with positive probability is a

countable union
⋃
n Ω̃(γn) of these sets, where γn → 0. Thus it suffices to show that

Ω̃(γ) is a category one set for each γ > 0.

Fixing an arbitrary γ > 0, we will write Ω̃ in place of Ω̃(γ). By Proposition 3, a

countable collection of pure strategies in the classic calibration test can only pass on

a category one set of realizations. Hence the proof of the proposition is complete if we

can show that there exists such a countable collection of strategies out of which, for

each realization in Ω̃, at least one is calibrated.

As noted above, by choosing η sufficiently close to 1, Lemmas 2 and 3 together

imply that, for each ω ∈ Ω̃, there exists some history hT after which both forecasters

are strictly cross-calibrated if they follow the path of forecasts Il(t). Fix such a history

for each ω ∈ Ω̃, and for each finite history hT , let Ω̃(hT ) ⊂ Ω̃ denote the realizations

associated with hT in this way.

Having fixed the history hT for each realization, let lω(t) denote the forecast l(t)

of Lemma 3 given ω. To each history hT for which Ω̃(hT ) is nonempty, associate the

pure strategy phT defined by

phT (ht) =


I(ωt) if t ≤ T

Ilω(t) if t > T and ht agrees with ω ∈ Ω̃(hT )

I(1
2) otherwise,

(39)

where, for t ≤ T , ωt denotes the t-coordinate of the realization in hT (recall that

hT represents the realization of ω together with the realized forecasts). As long as

η > 1 − 1
2n , each l(t) in Lemma 3 occurs with probability greater than 1

2 , and is

therefore unique. Moreover, by construction, lω(t) depends only on the past history at

time t, not on the future realization of ω. Therefore, the strategy phT is well-defined.

Since the false experts are strictly cross-calibrated at ω ∈ Ω̃(hT ) if they follow the
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forecasts Ilω(t) following hT , phT is calibrated at ω.

We have shown that Ω̃ is a subset of the realizations for which one of the countable

collections of pure strategies phT is calibrated. Since, by Proposition 3, each pure

strategy is calibrated on a category one set of realizations, the set Ω̃ is itself a category

one set, and the proof of the proposition is complete.

Proposition 4 indicates not only that multiple experts cannot simultaneously ma-

nipulate, but that all but one are guaranteed to fail on all but a category one set of

realizations. The proof exploits the fact that, in order for two forecasters to pass the

strict test simultaneously, they must announce identical predictions in all but finitely

many periods. Lemmas 2 and 3 show that, for this to occur with positive probability

(given some realization ω), there must be some history after which both forecasters

are likely to predict according to a particular path of forecasts. But then there is a

pure strategy that both forecasters’ predictions are likely to follow, in which case they

can pass the test only if this pure strategy passes the classic calibration test at ω. By

Proposition 3, this can happen only on a category one set of realizations.

Since a category one set of realizations has positive probability according to at most

a category one set of distributions (Dekel and Feinberg (2006)), Proposition 4 implies:

Corollary 1 Fix any strategy profile µ of M ≥ 2 (false) experts. For all but a category

one set of true distributions P , at least M−1 experts will fail the strict cross-calibration

test with (µ, P )-probability one.

5 Related Literature and Discussion

As noted in the Introduction, the literature on testing forecasters has focused primarily

on negative results for sequential tests of a single potential expert. The principle

underlying these results is a Minmax, or separation, type theorem. If each prediction

according to a true distribution must get a passing score, then under appropriate

conditions, there is a randomized prediction strategy—a mixed strategy which induces

a behavior strategy—that passes the test no matter what Nature does (i.e. for every
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realization).

These negative results stand in sharp contrast to the case of ex ante predictions. If

the tester can ask the potential expert to predict the entire distribution of the process

on day one, then there exists a good test that cannot be manipulated, as shown by

Dekel and Feinberg (2006).4 While a potential expert has the same set of strategies

when facing a sequential and an ex ante test, the set of ex ante tests is larger. In

particular, sequential tests can use only one sequence of realized predictions, which

endows them with a continuity property enabling manipulation.

With multiple experts, new possibilities arise. When a true expert is known to

be present, the question becomes which of the experts is the true expert, rather than

whether a potential expert is a true one. In independent work, Al-Najjar and Weinstein

(2007) consider this case, and propose a test which compares the likelihoods of pre-

dictions made by a false and a true expert. Their test selects the expert who is more

likely to know the truth based on updating an equal prior probability. Technically,

their test compares the product of the probabilities assigned to the realized outcome

by each forecaster. Al-Najjar and Weinstein work mostly with the finite time version

of this comparative test. They elegantly show that a false expert cannot manipulate

their test: for every forecasting strategy the false expert might use, there exists a true

distribution for which he is likely to lose. This is similar to the finite approximation of

the cross-calibration test discussed in Section 3 above. However, there are a number

of differences between the results.

Al-Najjar and Weinstein’s results provide a uniform bound on the time required to

approximately identify the true probabilities; no matter what strategy the false expert

uses, he is unlikely to pass the test unless he announces probabilities close to the truth

in all but a fixed number of periods. For cross-calibration, on the other hand, the time

required is finite, but may not be uniformly bounded.5 Another difference between our

4See also Olszewski and Sandroni (2006) for a stronger result.
5All non-manipulation results for infinite tests extend to finite approximations in this way quite gener-

ally (cf. Dekel and Feinberg (2006) and Olszewski and Sandroni (2007)). Moving from finite to infinite
tests, however, is more difficult since it requires some consistency across the finite distributions on which
manipulation fails.
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results and theirs is that we provide a bound on the set of distributions on which a false

expert passes—at most a category one set. Hence, non-manipulability is assured for

most true distributions, not just one. Finally, because it is comparative, Al-Najjar and

Weinstein’s test has no power to prevent joint manipulation when all experts choose

their forecasts strategically.

The topological notion of category one characterizes the extent of manipulability

both in the space of distributions when a true expert is present, and in the space

of realizations when one is not. Since category one is not commonly used in the

economics literature, we describe some of its properties in our setting. By Proposition

4 in Feinberg and Dekel (2006), any infinite test for which passing occurs only on a

category one set has a finite approximation for which passing requires assigning high

probability to a nowhere dense set. In particular, these finite approximations rule out

manipulation except when the false expert happens to assign positive probability to

distributions concentrated on a nowhere dense set of realizations. Category one is the

currently best known bound for manipulation, due to Olszewski and Sandroni (2006).6

We find it attractive since the set of all distributions does not allow for a uniform

measure, and hence there is no natural alternative candidate for a measure-theoretic

notion of smallness. Furthermore, a nowhere dense set of distributions is also small

in the sense that identifying whether a distribution belongs to this set requires an

infinite amount of data: for every finite time, the probabilities of events defined up to

that period never rule out distributions outside the set. Perhaps the most interesting

phenomenon is that this same notion appears as a bound on manipulation both with

and without true experts present.

Following the literature on testing forecasters, we have focused on a non-Bayesian

setting. Hence we address “worst-case scenario” types of questions. For testing without

a true expert, these questions include the following:

• Can one false expert manipulate the test when given the strategies of the other

6Feinberg and Dekel (2006) showed that their test cannot be manipulated on a category two set, a weaker
notion than the complement of a category one set.
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forecasters?

• Can multiple false experts jointly manipulate the test when they can correlate

their forecasts?

• Can multiple false experts jointly manipulate the test when they cannot correlate

their forecasts?

Answering the first and second questions is straightforward. A single expert, when

given the strategies of others, can manipulate the test. Similarly, if the experts can

correlate their forecasts, then they can jointly manipulate the test. Our main result

in this setting answers the third question: multiple experts cannot jointly manipulate

the strict cross-calibration test. Testing multiple forecasters also suggests new avenues

of research. Even if false experts can use correlated forecasts to manipulate the test,

it is possible that they may not want to. This issue raises the question of whether the

tester could provide incentives for experts to counter collusive correlation. Answering

this question would require an explicit formulation of the experts’ incentives in order

to apply game-theoretic tools in this non-Bayesian setting.
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