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Abstract. We show that a general process of decision making involves un-
certainty about two di¤erent sets: the domain of the acts and another set,
which we call the set of models for the decision maker. We study the e¤ect of
di¤erent information structures on the set of models, and prove the existence
of a dichotomy: either the decision maker�s ranking of the acts obeys Subjec-
tive Expected Utility theory or there are many events to which probabilities
cannot be assigned. We use this result to formalize the idea of Knightian
Uncertainty. The relevance of information structures associated to Knightian
Uncertainty is shown by means of examples, one of which is a version of Ells-
berg�s experiments. Our �ndings show that a decision maker faces, generally
speaking, uncertainties of two di¤erent types �"uncertainty about which state
obtains" and "uncertainty about how the world works" � and that Savage�s
theory considers only uncertainty of the �rst type. Finally, in situations of
Knightian Uncertainty, we identify the class of events to which probabilities
can be assigned, and study the relation with the class of unambiguous events
in the sense of [13] and [25].

1. Introduction

Several branches of economic theory (GEE, Game Theory, etc.) have developed
relying, for the most part, on the assumption that individuals make decisions in
accordance to Savage�s theory of decision making under uncertainty [28]. Neverthe-
less, new theories have emerged over the past twenty �ve years: Prospect Theory
[19], Choquet Expected Utility [29], Bewley�s theory [4], Maxmin Expected Utility
[14] and various generalizations of the latter [13]. All these belong to the class of
Multiple Prior Models, and have encountered the favor of many decision theorists.
The reason is clear: these theories try to deal with phenomena which are important
and which cannot be dealt with by Savage�s theory. The best known of these phe-
nomena is that of Knightian Uncertainty. Summarily, it refers to situations where
the information available to the decision maker is so coarse that it generates an
inherent inability to assign probabilities to many events. This has been the main
idea behind most Multiple Prior Models: � ... The idea is simple and appealing.
Since the decision maker does not have enough information to form a meaningful
single prior, he uses a set of priors consisting of all those priors compatible with
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his limited information�(Marinacci [24]). A statement of this sort, while of value
as an inspiring principle, is hard to substantiate in the context of existing theories.
In fact, nothing in those theories tells us (1) What situations should be classi�ed
under the label �Knightian Uncertainty�; (2) Why it is that Multiple Prior Models
should pop up in such situations; and (3) Whether or not we can attribute to those
theories the same normative value that we attribute to Savage theory in risky situ-
ations. The aim of the present paper is to contribute toward answering these types
of questions. Our contribution is twofold. First, we will give a complete answer to
the �rst problem, and we will discuss how our �ndings could be extended in order
to answer to the other two problems. We intend to pursue such an extension in a
future paper. Second, we will show that the notion of set of states as introduced in
Savage is too restrictive in that it cannot account for all the uncertainty faced by a
decision maker. This has two relevant implications. On the one hand, it shows that
some of the limitations of Savage theory emerge precisely as a consequence of such
a restrictive view of uncertainty. On the other hand, it paves the way for a theory
of decision making capable of accommodating a whole new set of phenomena.
The stress we have been placing on the problem of Knightian Uncertainty should

not be misinterpreted as a statement that Savage theory�s only limitation is its in-
ability to deal with Knightian Uncertainty. In fact, many others limitations have
emerged over the years: Unforeseen Contingencies (Dekel, Lipman and Rustichini
[8]), Case-Based decision theory (Gilboa-Schmeidler [15], [16]), Conditional choice
(Fishburn,[11]), etc. These issues are as fundamental as that of Knightian Uncer-
tainty. Some of them can be meaningfully addressed in the framework emerging
from this paper. However, since the main objective is the identi�cation of situations
of Knightian uncertainty, we will limit ourselves to summary hints.

1.1. Outline of the paper. The paper takes o¤ from the simple observation that
the concept of �Information�has no explicit place in existing theories. This is what
makes it hard to identify situations of Knightian uncertainty, for instance. Hence,
the necessity of explicitly introducing Information into the model. We do so as fol-
lows. We begin by observing that �as shown in [2] �virtually any model of decision
making we know of is associated to a certain structure, and that this does allow us
to talk about Information in a meaningful and interesting way. Next, we formally
introduce Information into the model, and study the properties associated to di¤er-
ent types of Information structures. In doing so, we identify certain properties that
provide the formal counterpart to the intuitive idea of Knightian Uncertainty. The
relevance of information structures associated to Knightian uncertainty is shown
by means of examples, one of which is a version of Ellsberg�s paradox.
The paper introduces a number of new concepts which often either require

lengthy explanations or lend themselves to quite novel interpretations. While this
is an important part of our work, we wanted to avoid that too many detours would
make the reader lose sight of the target. Because of this, we have opted in favor
of relegating most of this material into the �nal sections. The remainder of this
section presents an overview of the main steps that are performed in the paper.

1.1.1. Representation theorems. The theory of decision making under uncertainty
is concerned with individuals choosing among a set of available alternatives. The
outcome associated to each choice depends on the realization of a state of the
world, s 2 S, which is unknown to the decision maker. A representation theorem
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is a statement of the form �if the decision maker�s ranking of the alternatives, %,
obeys certain rules, then that ranking can be represented by means of a functional
I : B(S)! R having a certain form�.1

B(S)

I &

R
Figure 1

Thus, the functional I represents the decision maker in the sense that we can think
of him as if he used I to rank the alternatives.
In [2], it was shown that, in essentially any axiomatic model, the functional I

can be thought of as consisting of two parts as in the diagram below.

B(S)
��! B(M)

I & # V

R
Figure 2

The set M and the mapping � are essentially the same in any model of decision
making, while the functional V varies with the axioms one imposes on the decision
maker�s preference relation.
What does this buy us? Recognizing that the process of decision making can

always be described as in the previous diagram generates advantages on two fronts.
First, it allows us to provide new interpretations for existing theories (see [2], where
the process of decision making is interpreted as a form of analogical reasoning).
Second, it shows that the structure involved in the process of decision making is
richer than previously thought (compare Fig. 1 to Fig. 2). This paves the way for
a reconsideration of both the meaning of the term �Uncertainty� and of the role
played by �Information�in decision problems.

1.1.2. Two types of information. Figure 2 states that the process of decision making
involves two sets: the domain of the acts S and another setM . In [2], it was shown
thatM can always be represented as a set of probabilistic descriptions of the domain
of the acts. Thus, the decision maker�s ranking emerges as the outcome of two types
of assessments: assessments about the likelihood of the various states and about the
likelihood of the various probabilistic descriptions. Having realized that a decision
maker can be uncertain about two di¤erent objects leads to the obvious observation
that he can obtain valuable information about any of those sets. Hence, one is led
to inquire about how information about M a¤ects the decision maker�s ranking
of the alternatives. We remark that Ellsberg�s experiments �where the decision
maker is given information about the con�guration of the urn rather than the set
of states �are stripped down examples bringing to light that information about the
set M may a¤ect the decision maker�s choices.

1Here B(S) denotes the set of bounded (measurable) real-valued functions on S.
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1.1.3. Coarse information about M . If we assume that the functional V in Fig. 2
is linear, then Theorem 1 of Section 3 delivers immediately the following result: if
the information about M available to the decision maker is su¢ ciently �ne2, then
the decision maker ranks acts according to a Subjective Expected Utility criterion.
Yet, this does not say anything about our main concern, which is about what
happens in those situations characterized by the presence of coarse information
(cf. Marinacci�s statement above). The study of such situations is the main theme
beginning from Section 6 on. Here is the basic idea: we take as a benchmark a
situation in which the information about M is �ne and the Subjective Expected
Utility (SEU) theorem obtains; then, we vary the information about M , and study
whether or not our SEU theorem still obtains. More precisely, given a �-algebra
M on M for which the SEU theorem obtains, we describe coarser information
structures by means of partitions of M into measurable events. Each partition I
expresses the restriction that, on the basis of his information, the decision maker
has to make the same decision in correspondence of points of M which lie in the
same cell of the partition. Equivalently, the decision maker�s information is now
described by the sub �-�eld generated by the partition, and the decision process
occurs according to the diagram

B(S) �! B(M=I)

I & # V

R
where M=I denotes the quotient space endowed with its canonical measurable
structure. Our main result is the existence of a dichotomy: Either the partition I
is such that the SEU theorem obtains or there are many events (and many acts) to
which the decision maker cannot assign probabilities.

1.1.4. Knightian uncertainty. The idea of Knightian uncertainty is associated to
the presence of a large degree of fuzziness. The decision maker does know that a
number of things can happen, but he is unable to assess to which degree they are
likely to happen. In even looser terms, it feels like any turn might lead anywhere
and for no precise reason. We are going to see that all partitions for which the SEU
theorem fails are associated to the very same property: they are nonmeasurable in
the sense of Rokhlin [27] (see De�nition 2, Section 7). This mathematical property
is the precise translation of the idea of fuzziness: intuitively, it states that the
decision maker, while aware that two things are di¤erent, is unable on the basis
of his information to distinguish between the two. And, of course, if one cannot
distinguish between two things, then there is no way to assign probabilities to them.
Formalizing the idea of Knightian uncertainty does not serve to the mere need of

making a vague idea precise. Rather, it paves the way for a thorough study of both
the idea itself and of those phenomena that are intuitively associated with it. For
instance, now that we know that Knightian uncertainty corresponds to nonmea-
surable information structures, we have a formal setting where questions like "Is
there any reason why, in the presence of Knightian uncertainty, a rational decision
maker should not conform to a SEU criterion" can be meaningfully addressed. As
we shall say in the next paragraph, the formalization of the concept brings about

2In a sense made precise later.
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some other advantages in that it casts a new light on parts of the theory that, at
the outset, were probably not immediately related to it.

1.1.5. Two types of uncertainty. In Sections 9 and 10, we give two examples of
nonmeasurable information structures. The �rst describes uncertainty about the
class of measure zero events, the second is a version of Ellsberg�s three-color urn
experiment. The �nding that these information structures produce (in our formal
sense) Knightian uncertainty leads to a reinterpretation of Theorem 1 of Section
3. In light of those �ndings, the presence of the set M appears neither as an
accident nor as a convenient devise. Quite to the contrary, the set M witnesses the
presence of two distinct types of uncertainty faced by decision makers. The �rst is
the classical one: uncertainty as to which state obtains. The second is uncertainty
about the relations existing across the various events. Intuitively, this is uncertainty
about how the world works, and we will show that this type of uncertainty has been
neglected in Savage�s formulation (equivalently, that Savage�s notion of state is not
as comprehensive as previously thought).

This completes the description of the paper�s core. A few sections (12 to 15)
conclude the paper. Mainly, they are devoted to either highlighting implications of
our �ndings for other parts of the theory or to deepening and clarifying interpre-
tations given before. Probably, Section 13 deserves special mention as we identify
those events to which probabilities can be assigned. We characterize the class of
these events �which we call subjectively measurable �and study the relation of our
notion with the notion of ambiguous event proposed by [13] and [25].

2. Notation

The notation employed in the paper is standard. Alternatives available to the
decision maker are viewed as mappings S �! X, and are called acts. The domain
of the acts S (also referred to as the set of states) is equipped with a �-�eld �,
and every act is �-measurable. The set X is the prize space, and is assumed to be
a mixture space. In the next section, we will make assumptions guaranteeing the
existence of a utility function u : X �! R. This produces an embedding of the
acts into the set B(S;�) of bounded real-valued �-measurable functions on S. In
general, for (C; C) an arbitrary measurable space, the notation B(C; C) stands for
the set of all bounded real-valued C-measurable mappings on (C; C). Sometimes,
we just write B(C) in the place of B(C; C). The notation ba1(�) stands for the set
of all �nitely additive probability measures on �. The subset of ba1(�) consisting
of all those probability measures which are countably additive is denoted by P(S).
Before abandoning this section, a couple of observations about the objects in-

volved in this description are probably in order. Usually, we require that our
theories be testable, at least in principle. This demands that the domain of the
acts S be objectively given at least for an outside observer. Throughout the paper,
we will stick with this interpretation. A similar observation can be made about the
prize space X (see also [20]). The �-�eld � must be given an objective meaning
too, and cannot be interpreted as re�ecting the decision maker�s information about
S. The latter, if anything, should be derived by the theory on the basis of the
decision maker�s behavior. One way to ensure that � has an objective meaning is
as follows. Once acts have been identi�ed to bounded real-valued functions, de�ne
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� as the coarsest �-�eld which makes all the acts measurable. This interpretation
will be maintained throughout the paper.

3. States and models

Let F denote the set of all acts, and Fc that of constant acts. Let %S denote
the decision maker�s preference relation over F . Under the following assumptions
on %S
A1 %S is complete and transitive.
A2 (C-independence) For all f; g 2 F and h 2 Fc and for all � 2 (0; 1)

f �S g () �f + (1� �)h �S �g + (1� �)h
A3 (Archimedean property) For all f; g; h 2 F , if f �S g and g �S h then

9�; � 2 (0; 1) such that �f + (1� �)h �S g and g �S �f + (1� �)h.
A4 (Monotonicity) For all f; g 2 F , f(s) %S g(s) for any s 2 S =) f %S g.
A5 (Non-degeneracy) 9x; y 2 X such that x � y.
Ghirardato, Maccheroni and Marinacci (GMM, [13]) have shown
Theorem (GMM, [13]) 9 a unique3 weak*-closed set of measures C � ba1(�)

and a sup-norm continuous functional I : B(S) �! R such that4

f %S g iff I(f) � I(g)
where

I(f) = �(f)min
�2C

Z
fd� + [1� �(f)]max

�2C

Z
fd�

We remark that the weak*-topology appearing in the Theorem is the one given
by the duality �(ba1(�); B(S;�)). This result can be reformulated as follows

Theorem 1. Given a preference relation satisfying Axioms 1 to 5 there exist
(i) a measurable space (M;M)
(ii) an linear mapping � : B(S)! B(M)
(iii) a functional V : B(M)! R
such that

f <S g iff V � �(f) � V � �(g)
Moreover, one can take M = C � ba1(�) and � is de�ned by f 7�! �f , where �f
is the function that at point � 2 C takes the value

�f (�) =

Z
S

fd�

Finally, � is sup-norm to sup-norm continuous and V is sup-norm continuous.

The �rst part of Theorem 1 was already proven in [2]. Here, we have added the
continuity properties of � and V , which will be needed later.
Theorem 1 states that we can think of the decision process as consisting of two

stages: �rst, the decision maker maps the bets B(S) into B(M) by means of �,
then he orders B(M), and hence B(S), by means of V (see Fig. 2, Section 1). In
other words, we can always think of the decision process as consisting of the two

3In the sense explained there.
4Axioms 1 to 5 guarantee the existence of a utility u : X �! R. For notational simplicity,

in the statement as well as in the rest of the paper, we identify an act f : S �! X with the
real-valued function u � f .
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stages described in Fig. 2 above. We remark that theorems of this type obtain for
a much wider class of preferences (see [2]).

3.1. Comments.

3.1.1. M is a space of risky descriptions. A notable feature of Theorem 1 (and of
its generalizations, see [2]) is that the set M �which we call the set of models
for the decision maker �can always be described by means of a set of probability
measures on S. An additional insight comes from the observation that the mapping
�, which links S and M in the theorem, can always be de�ned in the same way.
That allows us to think of each element in M as describing an ordering of the acts
(on S) conforming to the Expected Utility criterion. To see this, just recall that
if f is an act and m is a model, then f is evaluated by

R
fdm in correspondence

to model m. In the spirit of the Knightian distinction between risk and ambiguity,
we can then think of M as a collection of risky descriptions of the problem faced
by the decision maker. Finally, we observe that M is not just a set, but rather a
space in that it comes equipped with a measurable structure. This expresses the
understanding that the decision maker has of M .

3.1.2. Two types of information. No matter how one interprets M , it is a set that
is linked to S by a certain relation and the decision maker takes this into account
when it comes to ordering the bets in B(S). Then, Theorem 1 allows us to think of a
decision maker who is uncertain about both S andM . The most useful implication
of Theorem 1 stems from this simple observation. In fact, since the decision maker
is uncertain about two objects, he can get information about any of them. In
particular, if he gets some information about M , then this could a¤ect his ranking
of the bets B(S), because M and S are linked to each other. In Sections 9 to 11,
we will show that the simultaneous presence of S and M witness the simultaneous
presence of uncertainties of inherently di¤erent types.

3.2. Standardness assumptions. We now introduce two additional assumptions
which we maintain throughout the paper, unless otherwise stated.
A6 (Standard Setting) The set S has the cardinality of the continuum. More-

over, the measurable space (S;�) is a standard Borel space (see Appendix A.1 for
a de�nition).
Let % be a preference relation satisfying axioms 1 to 5. Let %� denote the

unambiguous preference relation ([13], Sec. B.3) associated to %.
A7 (Monotone Continuity, GMM [13]) For all x; y; z 2 X such that y �� z,

and all sequences of events fAngn�1 � � with An # ;, there exists �n 2 N such that
y �� xA�nz.
Assumption 6 implies, by the Isomorphism Theorem for Borel spaces (see Appen-

dix A.1) that, without any loss, the reader can think of (S;�) as of [0; 1] equipped
with the Lebesgue �-algebra �. Axiom 75 is equivalent to the property that all the
measures in Theorem 1 are countably additive ([13], Sec. B.3).
The main reason for introducing these assumptions is technical: they allow us

to use the machinery of Polish group actions, which plays a big role in the next
sections. We remark, however, that �nite sets equipped with the maximal algebra
are standard Borel spaces. We will study this case in Section 14.

5For a justi�cation of axiom A7, the reader might consult [3].
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3.3. A Polish setting. Assumption A6 and A7 allow us to prove a new version
of Theorem 1 where the weak*-topology �(ba1(�); B(�)) is replaced by the weak*-
topology �(P(S); Cb(S)), thus ensuring thatM is a Polish space. This is the version
that we are going to be using in the rest of the paper. We stress that from now on
by weak*-topology on M , we mean the topology that M inherits as a subspace of
(P(S); �(P(S); Cb(S))).

Theorem 2. Let (S;�) be a standard space. Then, given a preference relation %S
satisfying Axioms 1 to 5 and Axiom 7 there exist
(i) a Borel space (M;M)
(ii) a linear mapping � : B(S)! B(M)
(iii) a functional V : B(M)! R
such that

f <S g iff V � �(f) � V � �(g)
The set M is weak*-compact in (P(S); Cb(S)) and � is de�ned by f 7�! �f , where
�f is the function that at point m 2M takes the value

�f (m) =

Z
S

fdm

The following corollary to Theorem 2, while mainly of a technical nature, is
of independent interest. It states that if an invariant biseparable preference (i.e.,
a preference satisfying A1 to A5, see [13]) satis�es the axiom of monotone conti-
nuity, then the set of priors is a Polish space (a separable, completely metrizable
topological space).

Corollary 1. Let (S;�) be a Standard Space. A preference relation <S satis�es
A1 to A5 and A7 if and only if there exists a sup-norm continuous functional
I : B(S) �! R such that

f % g iff I(f) � I(g)
where

I(f) = �(f)min
�2C

Z
fd� + [1� �(f)]max

�2C

Z
fd�

Moreover, C is unique and it is a weak*-closed subset of (P(S); �(P(S); Cb(S))).

The result obtains by observing that the functionals V of Theorem 1 and V of
Theorem 2 are de�ned (pointwise) in exactly the same way and that the continuity
properties of the functional do not change by moving from Theorem 1 to Theorem
2.

4. An Illustration: Ellsberg�s three-color urn experiment

Ellsberg�s [10] three-color urn experiment is the perfect example to illustrate the
concepts we have developed so far: the ingredients of the model emerging from
Theorems 1 and 2 are all explicitly there. In the three-color urn experiment, a
decision maker has to rank bets which pay a certain amount of money depending
on the color of a ball which is drawn from an urn. He is told that the urn contains
90 balls, of which 30 are red (R) while the remaining are either blue (B) or green
(G) in unknown proportion.
In our notation, the 90-ball urn is the set S, the domain of the bets. We can think

of it as a set with 90 points. The set of bets is the set of nonnegative functions
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with the urn, S, as a domain. �, the coarsest �-�eld which makes all the bets
measurable, is the power set of S. The set of models M is the set of all possible
con�gurations of the urn. Namely, the set of all possible combinations of R, B and
G that add up to 90. Finally, B(M) (considered as a set) can be viewed as a system
of hypothetical bets on the con�guration of the urn. In other words, these would
be bets of the form, �I pay you $x if the number of blue balls is 46 and I give you
0 otherwise�. Notice that these bets are di¤erent from the ones actually o¤ered to
the decision maker.
In the experiment, the decision maker is told that the only possible con�gurations

are those where the number of balls that are either blue or green is 60. We stress
that this is explicitly information about the set of models and not about the domain
of the bets. It is clear, however, that the information is relevant for ranking the bets
in B(S). In particular, if the decision maker is going to use a probability measure
on S, then he must make sure that the probability of the event R � S is 1=3.
Besides these obvious considerations, it is not clear how information about the set
of models translates into information about the domain of the bets. In fact, there is
a piece missing in our exposition, the �-�eldM on the set of models. This describes
the decision maker�s information which is that �the number of balls that are either
blue or green is 60�. Now, which �-�eld on M describes this information? We will
have to introduce a number of additional concepts before attacking this problem.
We will do so in Section 10.

5. The Bayesian view: integrating over priors

The recognition that a decision maker might obtain information aboutM rather
than about S is by no means su¢ cient to justify a departure from the Bayesian
paradigm. In fact, a Bayesian would argue that uncertainty about M would be
described by means of a probability measure, P , on that set; i.e., a measure over
measures on �. Then, the decision maker would "average" these measures using
the �weights�given by P and, by doing so, he would end up with a single measure
on S, which describes his uncertainty. In terms of Fig. 2, this means that if you are
Bayesian, then your functional V has to be linear. Since � is always linear, V � �
is automatically linear and SEU follows from Riesz representation theorem.
Everything seems to work �ne, but ... let us take a closer look. When is it that

this �Integration over Priors� business works in the way just described? Clearly,
since we are talking about integration over M , we have been implicitly referring
to an algebra de�ned on M . This is the one appearing in Theorem 2, namely the
Borel �-algebra generated by the weak*-topology. As it turns out (we shall see it
a moment), this algebra is quite �ne, which corresponds to the assumption that
the decision maker�s information about M is pretty good. But, the motivation for
our work is exactly the statement that Multiple Prior Models would pop up when
the decision maker�s information is coarse! In this respect, the traditional Bayesian
argument does not seem to provide a satisfactory answer: in fact, it does not seem
to provide an answer at all.

6. What is information?

Generally speaking, information about a setX is a pair (X;x), whereX is the set
in question and x is a collection of subsets of X; x tells you that certain elements
have a certain property, certain others do not, etc. It is crucial to distinguish
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betweenX as a set and (X;x) as a space, that is between the set and the information
you are given about it. An example might clarify. Suppose that you are dealing
with an individual who has never heard of the real line. In principle, you might
give him the list of all real numbers. In particular, this contains the numbers e and
�. Now, ask him to show you that e and � are actually di¤erent numbers. Since
he has never heard of the real line, his information about it is described by the
collection of subsets f?;Rg, and it is clear that, on the basis of this information,
he has no way to show you that e and � are actually di¤erent. Of course, things
would be di¤erent if he knew the natural topology of the line.

6.1. Coarse information structures. LetM denote the �-algebra on M gener-
ated by the weak*-topology. Above, we saw that the �integration over priors�ar-
gument works if the decision maker�s information aboutM is described by (M;M).
But, what happens if the information is coarser? The �rst necessary steps toward
answering this question consist of expressing (a) the notion of coarser information;
and (b) the behavioral constraints that appear in the presence of coarser informa-
tion. Point (a) simply requires us to replace M with a proper sub-algebra, which
leads to the following

De�nition 1. An information structure on M is a pair (M; I), where M is the
�-algebra on M generated by the weak*-topology and I is a partition of M .

The partition (and the associated sub �-�eld) states that the decision maker
has only partial information about M . This corresponds to the following situation
(see Billingsley [5], pp. 57-58 and pp. 427-29): on the basis of his information,
the decision maker can construct a statistical experiment whose outcome would tell
him (in a statistical sense) in which element of the partition the true model lies.
However, such a decision maker would not be able, on the basis of his information,
to construct an experiment capable of distinguishing among models lying in the
same cell of the partition.
These limitations translate into limitations in the decision maker�s ability of

ordering functions in B(M). These are of two types: �rst, the functional V :
B(M) �! R must respect the informational constraint described by the partition;
second, the decision maker can only evaluate those functions in B(M) for which
"enough information" is available. Limitations of the �rst type take the following
form. Let I be a partition ofM , and denote by � a generic element of the partition.
Once the decision maker is informed that � obtains, he must evaluate functions in
B(M) according to this information. For ' 2 B(M), let us denote by V (' j �) such
an evaluation. The limitation that all that the decision maker can get to know is
an element of I translates into the condition

(6.1) '; 2 B(M) and V (' j �) = V ( j �) for all � 2 I =) V (') = V ( )

That is, if two functions in B(M) are evaluated in the same way in correspondence
to each and every element of the partition, then they must be evaluated in the same
way unconditionally. Condition (6.1) can be restated in a more useful way. De�ne
a mapping ~�V : B(M) �! RM=I by ' 7�! (V (' j �))�2I ; that is, each function
' 2 B(M) is associated to the real function de�ned on the quotient M=I that at
point � (viewed as point in the quotient) takes value V (' j �). Then, condition
(6.1) says that the functional V : B(M) �! R must be expressible by means of the
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diagram below6

B(M)
~�V�! RM=I

V & # V 0

R
The second issue is whether or not the decision maker has enough information to

rank all the functions in ~�V (B(M)) = range ~�V . This is a condition on the decision
maker�s �-�eld on M=I: by de�nition, functions that are not measurable with
respect to the decision maker�s �-�eld on M=I cannot be evaluated. In particular,
given that V has to respect the condition stated by the diagram above, if  2 B(M)
is such that ~�V ( ) is not measurable, then  cannot be evaluated (i.e.,  is not
measurable with respect to the decision maker�s information). Now, notice that
the decision maker�s �-�eld on M=I must be such that the canonical projection
� : (M;M) �! M=I is measurable. For, if not, we would reach the absurd
conclusion that the decision maker actually has more information than the one
described byM. To see this, suppose, by the way of contradiction, that the decision
maker has a �eld onM=I for which the canonical projection is not measurable. This
means that there exists an event A in M=I for which ��1(A) =2 M. However, by
knowing the setM and his �eld onM=I, the decision maker has enough information
to evaluate the bet ���1(A) (�� denotes indicator functions); in fact, he would
evaluate ���1(A) in the same way as he evaluates the bet �A. This is a contradiction
because, by de�nition, the evaluation of bets like ���1(A) is not permissible on the
basis of his information because ��1(A) is not an event.
Because of this, M=I is endowed with the �nest �-�eld which makes the canon-

ical projection measurable, and we conclude that the decision maker can order the
functions in B(M) while respecting his information if and only if two conditions
are satis�ed:
(*) ~�V (B(M)) � B(M=I;M=I), where M=I denotes the �nest �-�eld which

makes the canonical projection measurable; and
(**) There exists V 0 : B(M=I) �! R such that V = V 0 � ~�V .

6.2. The Bayesian argument revisited. The information about M described
byM (the �-�eld generated by the weak*-topology) is very good information: the
weak*-topology separates points onM . That is, on the basis of his information, the
decision maker is able to distinguish between any two models. In the terminology of
sub �-�elds, this is the �eld associated with the partition generated by the identity
mapping. In this case, as we saw above, the �integration over priors� argument
works. It is worth recording this formally:

Corollary 2. If the information about M described by M and V is linear, then
the decision maker�s ranking of the acts obeys SEU.

If the partition is coarser, the argument should be modi�ed along the lines dis-
cussed above. In this case, the mapping ~�V is the familiar conditional expectation
operator. Essentially, the idea is that the decision maker would compute a collec-
tion of conditional probabilities, one for each element of the partition. Then, he

6Whenever V satis�es condition (6.1), there exists, of course, a unique functional V 0 which
makes the diagram commute.
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would average these conditionals with the weights that he gives to the correspond-
ing elements of the partition, and SEU would obtain again. Momentarily, we are
going to see that this is not guaranteed to work. In fact, we are going to see that
the reasons leading to the failure of the argument describe precisely what we are
after.
Since we are concerned with establishing conditions for which the integration over

prior argument fails, from now on we are going to assume that (unless otherwise
stated) the decision maker is described by a nonatomic probability measure P on
(M;M).

7. Measurable information

In this section, we are going to study conditions on the information structure
which are necessary and su¢ cient for the "integration over priors" argument to
work. We stress that we are concerned with the properties of the partition as a
whole, that is of the information structure, rather than with the properties of the
individual events making up the partition. In what follows, we only use partitions
made up of measurable events, and work modulo sets of measure 0; in particular,
when we say partition we mean partition mod0. So, let I be a partition ofM . The
central concept is expressed in the de�nition below.

De�nition 2. (Rokhlin [27]) A canonical system of conditional measures asso-
ciated to the partition I is a family of measures fP�; � 2 Ig, with the following
properties
(i) P� is a Lebesgue measure on �;
(ii) for any A 2M, the set A \ � is measurable in � for almost all � 2M=I and

the function P�(A \ �) :M=I ! R is measurable with

P (A) =

Z
M=I

P�(A \ �)dP 0

where P 0 is the pushforward of P under the canonical projection � :M �!M=I.

In [27], Rokhlin showed that a canonical system of conditional measures exists
if and only if there exists a countable family of measurable subsets of M=I which
separate points. In such a case, that is when M=I is countably separated, the
partition I is called measurable.
The idea of measurable partition has an intuitive meaning: loosely, it states that

"averages" can be taken, and that things "add up" properly. A bit more precisely
(see proof of Theorem 3), the idea is as follows. Given a partition I of (M;M; I),
consider a system of conditional probabilities fP�; � 2 Ig. Then, for each ' 2 B(M),
we have two possible ways of evaluating it: (1) by computing the integral

R
M
'dP ;

(2) by computing
R
M=I

R
�
' j� dP�dP 0; � 2 I. A partition is called measurable if

(a) the expression in (2) makes sense; and (b)
R
M
'dP =

R
M=I

R
�
' j� dP�dP 0, that

is the two ways lead to the same evaluation. We can now state our �rst result
about information structures. In the statement, we concisely say "SEU obtains" to
mean that the decision maker orders acts in B(S) by means of an expected utility
criterion.



STATES, MODELS AND INFORMATION 13

Theorem 3. SEU obtains if and only if the partition I of M is measurable.

Notice that if the prior P is such that supp P is contained in a single equivalence
class, then (P mod0) the partition is always measurable. In fact, in such a case,
the conditional on supp P coincides with the prior (all others can be speci�ed arbi-
trarily), and it is straightforward to check that all the conditions in the de�nition
above are satis�ed. If we interpret, like we did above, a partition as representing a
statistical experiment, this would be a case where the outcome of the experiment
is completely uninformative for the decision maker. Motivated by this observation
and the result above we give the following de�nition.

De�nition 3. An information structure is measurable if the associated partition is
measurable for every nonatomic prior P on (M;M).

8. Nonmeasurable information: examples

In this section, we are going to link the notion of nonmeasurable partition with
that of Knightian Uncertainty. We will do so by discussing two examples, which
have been selected because of their simplicity. Examples more relevant to decision
theory will be studied later.
Two popular examples of nonmeasurable partitions are (1) the partition of the

torus T 2 by lines of irrational slope �; (2) the partition of the unit interval by means
of the equivalence relation x � y if and only if y = x+� (mod 1), where, like before,
� is a �xed irrational number. We will describe the behavior of the quotient space
produced by such equivalence relations �rst from the viewpoint of the topological
properties, and, then, from the viewpoint of the measure space properties. While
a discussion of the topological case is not strictly necessary for our purposes, it is
convenient to include it, nonetheless. In fact, geometric intuition is simpler in the
topological case.

8.0.1. Topological properties.
Example (1). To begin, let us consider the unit square along with a partition of
it into lines of irrational slope �. Clearly, there are uncountably many of such
lines. From the square, obtain the torus T 2 by gluing its sides. The original
partition of the square produces a partition of the torus into spirals. Since the
original lines had irrational slope, each spiral revolves around the torus without
ever meeting itself, and it is easily seen that each spiral is dense for the usual
topology of T 2. Now, de�ne an equivalence relation on the torus by declaring two
points equivalent if and only if they belong to the same spiral. Clearly, there are
uncountably many equivalence classes, that is the quotient has uncountably many
points. As a topological space, the quotient is equipped with the �nest topology
which makes the canonical projection continuous. It is easy to see that such a
quotient is not separated (in particular, no point in the quotient can be a closed set
as each spiral is dense). In fact, the only closed sets in the quotient are the empty
set and the whole quotient. Hence, while as a set it has uncountable many points,
as a topological space the quotient behaves as a one-point space (equivalently, the
only continuous functions on the quotient are the constants).
Example (2). Consider the mapping from the unit interval into itself given by f :
x 7�! x+ � (mod 1). It is easily checked that for � irrational this mapping has no
�xed point. De�ne an equivalence relation on the unit interval by x � y i¤ 9n 2 N
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such that y = fn(x) (fn is the nth iterate). One can see that each equivalence class
is dense in [0; 1], and that the same conclusion as above about the quotient obtains.
As the reader has certainly noticed, the two examples are essentially the same.

Below, we treat them simultaneously.

8.0.2. Measure space properties. Given a measure space (M;M; P ) and a partition
I of M , a basis for the partition I is a countable separating family of measurable
subsets of M=I. Then, by the theorem of Rokhlin mentioned above, the partition
I is measurable if and only if a basis exists.
Consider again example (1). Now, let T 2 be endowed with the usual measure

structure, and let � denote the partition of the torus into spirals. It is clear, that
each spiral is a measurable subset of T 2. It can be readily checked that the problem
of �nding a basis for � is equivalent to the problem of �nding a basis for the partition
� of the unit circle T de�ned as follows. Two points x; y 2 T are in the same element
of � if and only if 9n 2 N such that y = x + n� (mod 1). Hence, if we de�ne the
map

r� : T ! T by x 7�! x+ � (mod 1)

we see that the elements of the partition are precisely the r�-invariant subsets of
T . It is well-known [7], that the map r� is ergodic, that is every r�-invariant subset
has either measure zero or measure one. This shows that the partition � of T 2

is nonmeasurable. Equivalently, the quotient T 2=� behaves, when considered as
a measure space, as a one-point space, that is the only integrable functions are
constant almost everywhere.

8.1. Ergodicity. Given a setM and an equivalence relation, �, on it, subsets ofM
which are union of equivalence classes are called saturated with respect to �. If M
has a measurable structure, (M;M), a measure P on (M;M) is called �ergodic if
the P -measure of any saturated set is either 0 or 1. A nonatomic �ergodic measure
on (M;M) is said to be trivial if its support is contained in a single equivalence
class. Otherwise, it is said to be nontrivial, and any saturated set of measure 1
is necessarily the (disjoint) union of measure 0 equivalence classes. Why is this
important to us? The reason lays in a theorem of E¤ros [9], which states that
the existence of a nontrivial �ergodic measure is equivalent to the fact that the
quotient space is not countably separated. Then, Rokhlin�s theorem implies that
there does not exist a canonical system of conditional probabilities (equivalently,
the partition is non-measurable).

8.2. Toward a formalization of Knightian Uncertainty. In Theorem 3, we
saw that if a partition is non-measurable, then the SEU theorem fails, while in
this section we have seen some of the characteristic features displayed by non-
measurable partitions. How does this relate to Knightian Uncertainty? Informally,
the term Knightian Uncertainty refers to situations where there is an inherent
inability to assign probabilities to various events. It is intuitively associated to
concepts like �insu¢ cient knowledge�, �confusion�, etc. This is exactly what the
idea of nonmeasurable partition conveys. Let us take a closer look. Let us go back
to the torus example, and let us consider the topological case �rst, as intuition
is easier in that case. We have seen that the pathological nature of the quotient
means that, on the basis of our information (the topology of the torus), we cannot
distinguish between any two equivalence classes (spirals). Why is this so? Let us
try to distinguish between two spirals. To this end, pick any point on the torus,
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and consider an open set around that point. Since each spiral is dense in the torus,
all the equivalence classes intersect such an open set. Put in another way, each and
any spiral has elements having the property described by that open set. Hence, we
cannot distinguish among spirals on the basis of such a property. What�s more, the
denseness of each spiral implies that it is so for any open set: no matter where you
place yourself on the torus, on the basis of your information every equivalence class
looks like any other. Hence, the inability of distinguishing among them. This is
why the quotient looks pathological. It behaves just like the set of reals equipped
with the trivial topology: you know that it has lots of points, but you also know
that you cannot distinguish among them. The situation is exactly the same if we
replace the topological structure with a measure space one. And, if one cannot
distinguish between two things, then there is no way of assigning probabilities to
them.

9. Uncertainty on the measure zero class

We have seen that non-measurable information structures lead to the inability
of assigning probabilities. Now, the issue boils down to whether or not these infor-
mation structures are mere curiosities. The scope of this and the next section is to
show, by means of examples, that they are not.
The �rst information structure that we consider is not only very natural, but

also has an obvious relevance for any theory of decision making. It is the one that
partitions the set of models in such a way that two models are equivalent if and only
if they are associated to the same collection of measure zero events (in S). Formally,
for �; � 2 P(S), such an information structure is de�ned by the equivalence relation

�E� iff �� � and � � �

where � stands for absolute continuity, and two measures are equivalent if and
only if they are mutually absolutely continuous. Information patterns associated
to such an equivalence relation are of the form �The class of measure zero events
in � is either � or 	�, etc.. Our �rst result about information structures is stated
in the following theorem (see Kechris and Sofronidis [23]).

Theorem 4. The information structure E is nonmeasurable.

The result follows (Appendix B.4) by combining the Spectral Theorem for nor-
mal operators with the ergodicity of unitary equivalence . The theorem states that
the information structure associated to measure equivalence behaves exactly like the
equivalence relation on the torus we studied before. The quotient is not countably
separated: on the basis of his information, the decision maker cannot distinguish
between any two equivalence classes. If he decides to do something in correspon-
dence to a certain equivalence class, then he must do the same in correspondence
to any other equivalence class simply because he cannot distinguish between them.
In other words, his behavior must be constant across equivalence classes.
The implication of Theorem 4 is dramatic: Bayesian theory holds only in a very

special case. To see this, consider a Bayesian decision maker with a nonatomic
probability P on (M;M), and suppose that he tries to integrate over priors in a
way that respects his information. Consider the following two disjoint events in M
(a) Y = fm 2M j m(A) = 0; A � Sg
(b) Z = fm 2M j m(A) > 0; A � Sg
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and let  : M ! R be a (hypothetical) bet on M such that  takes value y
on Y and takes value z 6= y on Z. It is clear that evaluating bets like  is crucial
to determine the ranking of the bets with domain S. How is our decision maker
going to evaluate  ? Clearly, he has to evaluate the relative likelihood of Y vs Z.
Now, we have two possibilities: either suppP intersects both Y and Z (that is, the
decision maker is uncertain about whether or not A has nonzero probability) or the
decision maker is a priori certain that either A has probability zero or that A has
nonzero probability (that is, either suppP � Y or suppP � Z). In the �rst case,
the decision maker cannot evaluate  : Y and Z are union of equivalence classes
from the measure equivalence relation, and the theorem states that such equivalence
relation behaves like the one in the torus example. We can say that events like Y
and Z are nonmeasurable with respect to the decision maker�s information. In this
case, it is easy to see why the integration over prior argument must fail: since
the decision maker cannot assess the likelihood of Y and Z, he cannot take the
average of such likelihoods, neither with weights given by P nor in any other way.
In the second case, the decision maker can obviously evaluate  . If this happens to
be the case for each and every event A � S, then the decision maker can solve his
integration over priors problem, and derive a SEU ranking for the acts with domain
S. Notice, that this implies that it must be the case that suppP is contained in a
single equivalence class. We record this in the following corollary

Corollary 3. Let d be a Bayesian decision maker whose information structure on
the set of models is given by the measure equivalence relation. Then, SEU obtains
if and only the decision maker is a priori certain about the class of measure zero
events of S.

In other words, if the only information available to the decision maker regards
the class of measure zero events, and if the decision maker is uncertain about this
class, then the decision maker cannot be Bayesian.

10. A reconsideration of Ellsberg�s Paradox

Here, we consider a continuous version of Ellsberg�s three-color urn experiment.
The urn is the interval [0; 1], which we should think of as partitioned into three sub-
sets, labeledR, B andG. The set of bets is ff j f : [0; 1]! R; f bounded and �-measurableg,
where � is the Lebesgue �-algebra. The set of models, M , is the set of probability
measures on ([0; 1];�). The decision maker�s information ��the true model belongs
to the subset 
 � P([0; 1]) such that �(R) = 1=3 for every � 2 
��is about the
set of models and not about the domain of the bets. We are going to show that
if a Bayesian decision maker is given this type of information, then SEU obtains
only in one special case. In all others, the information structure associated with the
experiment generates an inherent inability to produce a single probability measure
on the domain of the bets.

10.1. An equivalent representation. Because of the result of the previous sec-
tion, we focus on Bayesian (nonatomic) decision makers who are a priori certain
about the class of measure zero events of S. We denote by [�] such a class, and by
� one of its representatives. For such decision makers, the theorem below provides
a representation equivalent to that of Theorem 2, with the only di¤erence that the
subset of probability measures on S is now replaced by the set G = Aut(�; �) of
automorphisms of � which are nonsingular with respect to � (see Appendix A.4).
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That is, each con�guration of the urn is now associated to an element of G (in fact,
an equivalence class). The reason for using this version of Theorem 2 is convenience.
Later, it will allow us to describe, in a useful way, the information associated with
Ellsberg�s experiment.7

Theorem 5. Let d be a decision who satis�es the assumptions of Theorem 2, and
assume that M � [�] for some � 2 P(S). Then,

f <S g iff ~V � ~�(f) � ~V � ~�(g)
where
(i) ~� : B(S)! B(G) is de�ned by, for f 2 B(S) and g 2 G,

~�(f)(g) =

Z
S

fdg��

with g�� denoting the pushforward of � under g; and
(ii) ~V : B(G)! R.

10.2. Ellsberg�s Paradox. In the three-color urn experiment, a decision maker
faces bets whose domain is an urn containing 90 balls. He is told that of those 30
are red (R) while the remaining are either blue (B) or green (G) in an unknown
proportion. As it is well-known, the following violation of the SEU is often observed

R � B
but

R [G � B [G
In our view, what makes the Paradox actually a paradox is that these decision

makers often exhibit indi¤erence between betting on B rather than G. What�s
more, this is indi¤erence in a very strong sense. One can replace B with G (and
vice versa) at any point in decision maker�s table of preferences without changing
the table itself. It is this symmetric treatment of B and G that prevents us to
dismiss those choices as simply incorrect. Such a symmetry is respected in all
Ellsberg�s decision makers� choices, and, therefore, can hardly be considered an
accident.

10.3. Symmetry in the information. In Ellsberg�s experiment, a decision maker
walks into a room, he is o¤ered the bets, and he is told that there are 30 red balls.
There is hardly any doubt that the information he receives about the possible
con�gurations of the urn is symmetric in the events B and G. Here, we want to
gain a better grasp of this idea of symmetry. In order to explore it, let us begin
with a simpler example. We can think of it as some sort of reduced Ellsberg�s
experiment. Let us suppose that, in addition to the information he is given in the
original experiment, the decision maker is told that the number of blue balls is
either 20 or 40. Consequently, the number of green balls is either 20 or 40. The
symmetry involving B and G is evident.
In our reduced experiment, we have (modulo permutations of the balls) two

possible con�gurations of the urn, each corresponding to an element of the group G.

7The description in terms of Aut(�; �) is probably better suited to problems like Ellsberg�s
experiment as it allows for a wider variety of information patterns. For instance, in Ellsberg�s
setting, one could order the balls, and give the decision maker information about such an ordering
(something like �the 29th ball is red�). This possibility is accounted for when M = Aut(�; �).
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Let g1 and g2 be such elements. We have already noticed that the two con�gurations
are the same except for the labels, B and G, which are attached to two subsets of
the urn. This feature translates into a precise property of our automorphisms g1
and g2: there exists a third automorphism u 2 G such that g1 = u�1g2u. In other
words, if two con�gurations are linked one to another by a relabelling of the domain
of the bets, then the corresponding automorphisms are linked one to another by
the relation g1 = u�1g2u, for some u 2 G.
In more detail, but with the caveat that we are going to de�ne mappings using

only the parts the concern us, the situation translates as follows. The domain of the
bets is [0; 1], which is equipped with the Lebesgue algebra �. The sets R, B and G
are placed so that R = [0; 1=3), B = [1=3; 2=3) and G = [2=3; 1]. In this section, we
have been assuming that the decision maker is a priori certain about a measure class
on �. To �x ideas, suppose that this is the measure class of the Lebesgue measure �.
We take m0 = ([0; 1];�; �) as a reference point (i.e., m0 is associated to the identity
in G). In our reduced experiment, we have two models for the decision maker, m1

and m2, each of which corresponds to a measure space: m1 = ([0; 1];�; �1) is such
that �1(R) = 1=3, �1(B) = 2=9, �1(G) = 4=9, while m2 = ([0; 1];�; �2) is such that
�2(R) = 1=3, �2(B) = 4=9, �2(G) = 2=9. According to Theorem 5, each model
corresponds (modulo �-preserving transformation of [0; 1]) to an automorphism of
[0; 1]. In our case, m1 and m2 can be associated to the two automorphisms g1 and
g2

g1 =

8<: [0; 3) ! [0; 3)
[3; 5) ! [3; 6)
[5; 9] ! [6; 9]

and g2 =

8<: [0; 3) ! [0; 3)
[3; 7) ! [3; 6)
[7; 9] ! [6; 9]

In fact, the measure associated to model mi is given by ��gi, the pushforward of
� under gi. As observed, m1 and m2 are the same except for the labels, B and G,
that are attached to two of its subsets. Let u be the automorphisms of the algebra
� given by

u =

8>><>>:
[0; 3) ! [0; 3)
[3; 5) ! [7; 9]
[5; 6) ! [6; 7)
[6; 9] ! [3; 6)

Then, it is immediate to check that the diagram below commutes

[0; 1]
g1�! [0; 1]

u # # u

[0; 1]
g2�! [0; 1]

That is, g1 = u�1g2u. The relation g1 = u�1g2u, u 2 G, de�nes an equivalence
relation on G. It is the orbit equivalence relation (see Appendix A.2) generated by
the action by conjugation of G on itself.

10.4. Treating B and G symmetrically. Let us begin by recording the content
of the discussion above.

De�nition 4. Two models, g1 and g2 in G, are the relabelling of one another,
g1 � g2, if there exists a u 2 G such that g1 = ug2u

�1.
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Now, let us go back to Ellsberg�s experiment. Our decision maker is described
by the standard space (G;B; P ), G = Aut(�; �). In addition, he is told that the
true model is such that the measure of R is equal to 1=3. He recognizes that this
information is symmetric in B and G, and wants to respect such a symmetry when
making his choices. This demands that the set of all possible models be partitioned
according to the above equivalence relation. Notice that, given the partition as-
sociated to the equivalence relation, the information given to the decision maker
takes the form:"the true model belongs to a subset which is the union of a certain
number of equivalence classes". Can he be Bayesian?

10.5. Ergodicity, once again.

Theorem 6. The information structure associated to the equivalence relation in
De�nition 4 is nonmeasurable.

At this point, we can just repeat what we said in Section 9 following Theorem 4.
That is, Theorem 6 leaves us with only two possibilities. We describe them quickly
since the argument is exactly the same as in Section 9. The �rst possibility is that
the measure P is trivial, that is the prior is concentrated on a single equivalence
class. In terms of Ellsberg�s example this means, for instance, that our decision
maker believes that the blue balls are either 20 or 40 but he excludes a priori that
the blue balls might be either 19 or 21 or any other number, even though no one
has given him such information. In such a case, the conditional measure exists and
coincides with the prior. The decision maker satis�es Savage�s axioms on B(S),
and behavior of Ellsberg�s type cannot be observed. The second possibility is that
P is nontrivial, that is its support contains parts of at least two equivalence classes
(and, hence, of uncountably many of those). We know that, in such a case, the
ergodicity of the information structure means that the quotient G= � is not count-
ably separated. In turn, this implies that there does not exist a canonical system
of conditional probabilities, and we can �nd no measure on S able to represent our
decision maker. He will not behave in a Savage fashion when it comes to ranking
bets in B(S). We can summarize our �ndings as follows.

Corollary 4. SEU obtains if and only if the decision maker�s prior over G is
concentrated on a single equivalence class.

We will elaborate more on this point in the next section as it casts a new light
on the nature of decision making under uncertainty.

11. Two types of uncertainty

The equivalence relation we encountered in the previous section is interesting
not only because it is associated to Ellsberg�s experiment, but especially because
it allows us to bring to light an aspect of the problem of decision making that was
somehow hidden in Savage�s theory. According to the above equivalence relation,
two measure spaces (two models for the decision maker) are identi�ed if one can be
obtained from the other by means of a (measurable) relabelling of the events. Now,
let us spend a moment re�ecting on the amount of information embedded in the
concept of a measure space. If we are given a measure space, say (S;�; �), we are
implicitly told a number of things: for instance, the conditional probability of an
event given that another occurred; the relative likelihood of an event with respect
to that of any other, etc.. Equivalently, we are told of a class of functions (the
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measurable functions), of the geometric properties of such a class (the Lp spaces)
and of a mapping (the integral) which evaluates these functions by means of real
numbers. In fact, such information permits to reconstruct, in an essentially unique
way, the underlying space (S;�; �), and once (S;�; �) is given, such information is
immediately available.
If we think of such properties as a collection of abstract relations, we realize

that measure spaces that di¤er only because of the labels assigned to the vari-
ous events are intrinsically the same, in the sense that all the measure theoretic
properties (conditional probabilities, relative likelihoods, etc.) as well as all the geo-
metric properties associated with each measure space (the properties of the function
spaces) are the same up to a relabelling of the events. By taking this point of view,
we come to realize an important feature of the above equivalence relation, and
probably get a better understanding of the problem faced by our decision maker.
Within each equivalence class, the geometric properties of the various models were
�xed. For our decision maker, to assign a probability to the various models was a
matter of assigning probabilities to the names of the events. In contrast, to assign
probabilities to models in di¤erent classes meant to assign probabilities to di¤er-
ent geometric properties. In a sense, within each class it is understood how the
world works, and the problem is just which state (which element of the domain
of the bets) obtains. The description of how the world works, however, varies as
we move from one class to another. Here, the problem is about which description
is the correct one. Above, we saw that Savage�s theory obtains if and only if the
decision maker�s prior on the set of models is concentrated on a single equivalence
class. We can rephrase this by saying that Savage�s theory implicitly assumes that
the decision maker is certain about how the world works. In all other cases, the
Expected Utility Theorem fails.
To us, the distinction between "uncertainty about which state obtains" and

"uncertainty about how the world works" is intuitively sound. Also, there seems
to be little doubt that both are essential aspects of the problem of decision making
under uncertainty. To make things extreme, suppose that in an Ellsberg�s type
experiment a decision maker is told that the urn contains 30 red balls, 46 blue
balls and 14 green balls. Then, such a decision maker is certain about how the
world works (the con�guration of the urn), yet this does not guarantee that the
ball drawn from the urn will be a blue one. Conversely, the decision maker might
be told only that the 90-ball urn contains one ball of each color, but might be
guaranteed (maybe by a dishonest experimenter) that a blue ball will be drawn.
In such a case, the decision maker would be certain about the state, but would
know very little about the con�guration of the urn. In this respect, we believe that
one of the main conceptual contributions of Theorems 1 and 2 has been to uncover
the object �the space of models for the decision maker �which makes explicit the
presence of these two uncertainties in the process of decision making. Finally, we
should like to stress that the intuition that the two uncertainties must be related8

is formally con�rmed in Theorems 1 and 2 by the presence of a mapping linking
the domain of the bets to the space of models.

8The intuition is that a probabilistic assessment as to which state obtains cannot be indepen-
dent of a probabilistic assessment (if any) of how the world works. For instance, in the example
with 46 blue balls, an assessement implying that the probability that a blue ball is drawn from
the urn is zero would be patently inconsistent.
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12. Comments and complements

12.1. Knightian Uncertainty. In this paper, we have formally linked the problem
of Knightian Uncertainty to that of the decision maker�s information. Building on
this, we have then characterized those situations in which the information available
relegates the decision maker to a situation of Knightian Uncertainty. For decision
makers described by a nonatomic prior on the space of models, our �ndings can
be summarized as follows: an information structure on M generates Knightian
Uncertainty on S if and only if (a) it is nonmeasurable; and (b) the prior on M
is not concentrated on a single equivalence class. The two ingredients identifying
Knightian Uncertainty � non-measurable information and non-trivial prior � are
both essential. This is intuitive. The second ingredient (non-trivial prior) reveals
that Knightian Uncertainty is associated to substantial uncertainty: the decision
maker is uncertain about how the world works. The �rst (non-measurable informa-
tion) expresses the fact that the decision maker is (in a measurable sense) unable
to deal with such uncertainty: a given description of the world looks just like any
other, any choice he might make looks just as good as any other. This is what the
singularity of the quotient M=I says.

12.2. More on singular quotients. In a set-theoretic sense, singularity of the
quotient M=I means that there is no countable set of properties (Borel sets) which
permit to distinguish between two distinct equivalence classes. Anthropomorphiz-
ing a bit, suppose that there is an entity who has full knowledge of everything that
concerns the set M , and that such an entity agrees to faithfully answer any count-
able set of questions the decision maker might have about M . With the answers
he receives, our decision maker is free to construct any sort of experiment allowing
him to test whether or not a certain property is satis�ed by some class of models.
Singularity of the quotient means that, even in such a case, the decision maker will
not be able to distinguish between any two distinct equivalence classes.

12.3. Two uncertainties and the de�nition of S. The distinction between the
two uncertainties has nothing to do with the way one de�nes S. In this paper,
we have been interpreting S as the objectively given domain of the acts. We have
done so in order to guarantee that the theory be testable. One might then wonder
whether or not our distinction would survive if one attributes to S the same uni-
versal meaning as in Savage [28]. The point is that, no matter how one de�nes S,
one would still have events in S, and one would still have a decision maker who is
uncertain about the relations across them. This is what M (as a space) stands for,
and this what is conveyed by Theorems 1 and 2 (where, incidentally, no assumption
about the nature of S is made).
In a way, the distinction between the two uncertainties corresponds to that be-

tween set and space, that is a set endowed with a certain structure. In a problem of
decision making, this structure describes the properties of the environment where
decisions take place. Then, Theorems 1 and 2 bring to light not only the intuitive
fact that a decision maker might be uncertain about these properties, but also that
information about these properties is valuable.

12.4. Rational Choice. Savage�s axioms are often viewed as providing a satisfac-
tory de�nition of rational behavior. Since the concept of information has no place



22 MASSIMILIANO AMARANTE

in Savage�s axioms, it follows that this view implicitly postulates that the rules fol-
lowed by the decision maker must be independent of the information available. We
believe that our results, which state the impossibility of obeying SEU in the pres-
ence of certain information structures, cast a serious doubt on this interpretation
of Savage�s theory. Rather, our results pave the way for a de�nition of rational-
ity which is a function of the information available to the decision maker. In this
regard, it should be noticed that, as a consequence of Theorem 3, any de�nition
that might be proposed must be able to produce models of decision making that
are necessarily non-additive in the presence of nonmeasurable information. We will
return to this point in the concluding remarks.

13. Subjectively measurable events

When the information aboutM is described by a non-measurable partition, there
exists no system of canonical conditional probabilities (Section 7). In this section,
we focus on decision makers who, in the presence of non-measurable information
I, use some (necessarily non-canonical) system of conditional probabilities to rank
the acts. Any such system,fP�g�2I , de�nes (like in Section 6.1) an operator ~�V :
�(B(S)) �! RM=I , and the necessary condition for the decision maker to respect
his information is that the functional V decomposes as seen in the diagram below

�(B(S))
~�V�! RM=I

V & # V 0

R

In such circumstances, however, Theorem 3 tells us that there exist acts f 2 B(S)
such that either ~�V (�(f)) =2 B(M=I) (which means that f cannot be measur-
ably evaluated with respect to the decision maker�s information) or

R
M

�(f)dP 6=R
M=I

R
�

�(f) j� dP�dP 0 (which means that f cannot be evaluated consistently). The

complement in B(S) of this set, i.e.

�MA =

8><>:f 2 B(S) j (a) ~�V (�(f)) 2 B(M=I); (b)
Z
M

�(f)dP =

Z
M=I

Z
�

�(f) j� dP�dP 0

9>=>;
and its subset

�ME = f�E 2 B(S) j �E 2 �MAg
are of special signi�cance in that they describe all those acts in B(S) and events in �
that can be evaluated measurably with respect to the decision maker�s information.
In particular, the evaluation of elements in �ME produces a natural set function
on the subset fE 2 � j �E 2 �MAg, which, by a mild abuse of notation, we still
denote by �ME. These observations suggest that we give the following

De�nition 5. A function f 2 B(S) is subjectively measurable if f 2 ��1 �
~��1V (B(M=I)). An event in � is subjectively measurable if its indicator function is
subjectively measurable.
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Of course, if I is measurable, then SEU obtains, every event in � belongs to
�ME, every acts in B(S) is in �MA and the natural set function on � is the
"average" measure obtained through the integration over priors theorem (Theorem
3). If I is non-measurable, �ME is a proper subset of �. Notice that, as it was to
be expected, the exact speci�cation of the class of subjectively measurable events
depends on the decision maker�s preferences since the mapping ~�V depends on V
(Section 6.1). The next proposition, however, tells us that the classes �MA and
�ME display some general properties. In addition, the proposition links our notion
with that of unambiguous events proposed by [13] and [25]. We denoted by A the
class of unambiguous events in the sense of [13] and [25].

Proposition 1. The class of subjectively measurable functions is a linear space.
Consequently, the class �ME is a �-system (in particular, it is nonempty). Fur-
thermore, A � �ME. Finally, for V linear, there exists a natural measure N on
�ME, de�ned by

N(E) =

Z
M

�(�E)dP ; E 2 �ME

where P is the measure that de�nes V .

In general, the inclusion A � �ME is strict. It is possible, however, to give
examples of information structures on M such that the only measurable functions
on M=I are constant (this is the case, for instance, with the torus example). In
such a case, it is easily seen that A corresponds to the intersection over all systems
of conditional probabilities of the corresponding classes of subjectively measurable
events. In this respect, the notion of [13] and [25] can be viewed as the most
restrictive notion of subjectively measurable events compatible with our approach.

Remark 1. The notion of subjectively measurable events is more general than
the one given above in that it does not require the use of systems of conditional
probabilities. In fact, any functional V subject to an informational constraint as
in (6.1), Section 6.1, produces a mapping ~�V : �(B(S)) �! RM=I . We can then
de�ne the sets �MA and �ME just like above. The inclusion A � �ME still holds
since constant functions on M=I are always measurable.

13.1. Unforeseen contingencies. Bayesian decision makers cannot measurably
evaluate events that are not in �ME. For this reason, we should expect, for
instance, that such events would not be explicitly speci�ed in a contract involving
two or more such decision makers. This provides an admittedly tenuous (at this
stage, at least) link with the problem of unforeseen contingencies. Focusing on a
special case would probably clarify the point. Suppose that the class �ME does not
separate points in S. That is, there exist two points s1 and s2 in S such that there
exists no A 2 �ME which contains one point but not the other. This means that,
on the basis of his information, the decision maker is unable to distinguish between
the two states s1 and s2. Equivalently, an act f 2 B(S) such that f(s1) 6= f(s2)
cannot be measurably evaluated by the decision maker. In such circumstances, we
can de�ne an equivalence relation S by terming two points in S equivalent if they
cannot be separated by events in �ME. The resulting quotient space can then be
interpreted as a subjective state space in the spirit of [8]. In a similar vein, acts
f 2 B(S) which are non-constant on equivalence classes can be reinterpreted as
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correspondences de�ned on the quotient in the spirit of [12]. It should be stressed
that, by construction, these correspondences do not admit measurable selections.

14. Finite spaces

We have been assuming throughout that the underlying domain of the bets S
is uncountable. Strictly speaking, this is essential to our results. The scope of
this �nal section is to point out that the same conclusions can be reached when S
is �nite. The key is the observation about the nature of singular quotients made
in Section 12. In a nutshell, this is how it goes. While we assumed that S was
uncountable, at the same time we endowed our decision maker with a tremendous
amount of information (the Borel �eld generated by the weak*-topology). In the
�nite case, if we endow the decision maker with a more reasonable amount of
information (ex. �nitely generated algebras) we may reach the same conclusions.
The remaining part is an exempli�cation of this point.
Assume that S has n points. There is a unique measurable structure that makes

S into a standard space. This is the one generated by the discrete topology. For
such a structure, every act is measurable (and, in fact, continuous). Now, let us
put ourselves in the same situation as when we studied Ellsberg�s Paradox. The
decision maker is a priori certain about the class [�] of measure zero events. The
measure � (the representative) is described a vector in the unit simplex in Rn.
The set of models is a subset of the simplex. It can be equivalently described as
follows. To begin, observe that, for any 1 � p � 1, all the Lp(S;�; �) spaces are
equivalent, and can be thought of as the Hilbert space Rn with the usual scalar
product. The measure � de�nes a linear functional (an integral) on Rn by hf; �i,
f 2 Rn. Such a functional gives an ordering for the elements of Rn, which are the
acts o¤ered to the decision maker. If � is another measure in [�], then � gives rise
to another ordering of the bets, the one given by hf; �i, f 2 Rn. Fixing �, one can
represent each measure in the set of models by means of a matrix on Rn. If � is
such a measure, then the corresponding matrix A is de�ned (modulo equivalence)
by � = A�. Hence, the set of models is identi�ed to a subset of the matrices on Rn.
The set of models is partitioned in a way that two models (matrices) are in

the same element of the partition if they display the symmetry property discussed
above. Here, that means that two models, A and B, are equivalent, A � B, if and
only if there exists a (positive) unitary matrix, U , such that A = U�BU (a matrix
U is a unitary matrix if U�U = I). That is, if and only if A and B are unitarily
equivalent. Now, our question is: Does there exist a countable set of properties
allowing the decision maker to distinguish between any two equivalence classes?
The answer is provided by an elementary result in Linear Algebra. In fact, two

matrices are unitarily equivalent if and only if they have the same set of eigenvalues.
It follows at once (think of the Euclidean topology of Rn) that there exists a count-
able set of properties that distinguishes between any two equivalence classes. In
particular, this is certainly the case if the set of models is equipped with a standard
Lebesgue structure.
So, it seems that no Knightian Uncertainty may arise in the �nite case. In ac-

tual situations, however, there is no general argument guaranteeing that a decision
maker might be able to distinguish among countably many events. If we admit
this, things might turn out to be di¤erent. It might happen that, say, at least
n properties are needed to distinguish among equivalence classes but the decision
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maker can distinguish, on the basis of his information, only among k of those for
k < n. In such a case, we would be back to singular quotients. As a simple
example, consider an Ellsberg�s type experiment with M being the two-point set
f�1 = (1=3; 2=9; 4=9); �2 = (1=3; 4=9; 2=9)g and a decision maker who has the trivial
algebra f?;Mg on M .

15. Conclusion

We have seen that a general process of decision making involves uncertainty
about both the set of states and the set of models. As a consequence, a decision
maker can obtain valuable information about both sets. We showed that infor-
mation structures on the set of models split into two categories: those for which
the SEU theorem obtains and those that generate, for Bayesian decision makers,
an inability to assign probabilities to many events. Situations of Knightian Uncer-
tainty were then identi�ed with the presence of such information structures. The
next step is to introduce functionals on B(M) � the bounded measurable func-
tions on (M;M) �which (a) are linear whenever the information structure on M
is measurable; and (b) maintain, in some sense, the spirit of linearity whenever the
information on M is nonmeasurable. Once this is accomplished, models of decision
making (necessarily non-linear) that emerge in case (b) would appear �by analogy
with the interpretation associated with Savage�s theory in risky situations �as a
"rational choice" response to situations of Knightian Uncertainty.
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APPENDICES

A. Background material

A.1 Standard Spaces
A Polish space, (X; �), is a separable, completely metrizable topological space.

Given the topology � on X, the Borel ���eld is the one generated by the closed
sets. A Standard Borel space is a Polish space stripped down to its Borel structure.
Let X and Y be two measurable spaces. A mapping X ! Y is called a Borel iso-

morphism if it is a bijection and is bimeasurable. An important and well-known fact
about standard Borel spaces is stated in the following theorem (see [30], Theorem
3.3.13)
Borel isomorphism theorem Any two uncountable standard Borel spaces are

Borel isomorphic.
A Standard Borel space along with a nonatomic measure is a called a Standard

Lebesgue space. We recall that a measurable set in a Standard Lebesgue space is a
set which di¤ers from a Borel set by a set of measure zero.

A.2 Group actions
A group G is a set along with a law of composition which is associative, has a

unit element e, and each element in G has an inverse. Let G be a group and X
be a set. An action of G on X (on the left) is a mapping G�X ! X, written as
(g; x) 7�! gx (g 2 G; x 2 X), such that for all g; h 2 G and x 2 X

(gh)x = g(hx) and ex = x

Let x 2 X. The set Gx = fy 2 G j 9g 2 G st y = gxg is called the orbit of x
under G. Since G is a group, the relation on G

x � y iff 9g 2 G st y = gx
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is an equivalence relation on G. It is called the orbit equivalence relation generated
by the action of G on X.

The two examples of group actions that we are going to be using are the following.
Let G be a group, and H be a subgroup of G. Then,
(i) The action by conjugation of H on G is the mapping H �G! G de�ned by

(h; g) 7�! hgh�1

(ii) The action by (left) translation of H on G is the mapping H�G! G de�ned
by

(h; g) 7�! hg

A.3 Polish groups
If G is a topological space, then G is a topological group if the group operation

is continuous [the law of composition is a mapping G � G ! G, G � G endowed
with the product topology].
If G and X are topological (measurable) spaces, the action is continuous (mea-

surable) if the mapping G�X ! X above is continuous (measurable).
A Polish group is a topological group such that its topology is Polish and the

group operation is continuous in such a topology.
Let G be a Polish group andX be a Polish space. Becker and Kechris have shown

that if G acts in a Borel way on X, then there are equivalent Polish topologies on
G and X for which the action is continuous.

A.4 The Polish group G = Aut(�; �)
Consider the measure space (S;�; �). An automorphism of the measure algebra

� is a bijection on �. If g is one such an automorphism, g is said to be nonsingular
if the pushforward of � under g is absolutely continuous with respect to �. In
symbols, g�� � �. We denote by G = Aut(�; �) the set of automorphisms which
are nonsingular with respect to �. It is immediate to verify that G is a group with
the operation of composition of mappings.
Let (S;�; �) be a measure space, and G = Aut(�; �). Denote by L2(�) the

Hilbert space of square integrable functions on (S;�; �).
There is a natural isomorphism (see Kechris [21], Ch. 17) of the set of nonsingular

automorphisms G into the set of positive linear isometries of L2(�), g 7�! Tg, where
Tg is de�ned by

Tg(f) = f � g�1 �
�
dg�1� �

d�

�1=2
; f 2 L2(�)

with the expression in brackets denoting the Radon-Nikodym derivative. A topol-
ogy is de�ned on G by using the isomorphism and observing that the strong and the
weak operator topology coincide when restricted to the positive linear isometries
of L2(�). Such a topology has some remarkable properties. Here are a few that we
will be using in the remaining proofs.
(i) G is a Polish and, hence, a Borel space;
(ii) G is a Polish group;
(iii) An automorphism g 2 G is �-preserving is for every integrable function f on

S,
R
fd� =

R
fdg��. Let PR(�) denote the group of �-preserving automorphisms

of G. Then, PR(�) is a Polish subgroup.
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B. Proofs of results in the main text

B.1 Theorem 1
The following observation is useful to understand the nature of the result con-

tained in Theorem 1. Recall that the dual B� of B(S) is (identi�ed with) the set
of all �nitely additive measures on �. For M � B�, the mapping � appearing in
the statement of Theorem 1 is simply the canonical mapping B(S) �! A(M), the
set of continuous a¢ ne mappings on M .

Proof of Theorem 1. 0. De�ne � by f 7�! �(f) where

�(f)(�) =

Z
fd� ; � 2 C � ba1(�)

Next, setM = C and letM be the Borel �-algebra generated by the weak*-topology
�(ba1(�); B(S;�)). Then, the �rst part follows from GMM�s result by observing
that (a) if f; g 2 B(S) are such that �(f) = �(g), then �(f) = �(g); and (b)
�(f) : M ! R is continuous for the weak*-topology �(ba1(�); B(S;�)) (hence, it
is measurable for the Borel �-algebra generated by that topology; see [13] and [2]).
1. � is sup-norm to sup-norm continuous:
This is a consequence of the following inequality. For f; g 2 B(S)

k�(f)� �(g)k1 = sup
m2M

����Z fdm�
Z
gdm

���� � sup
m2M

Z
jf � gj dm

� sup
m2M

Z
sup
s2S
jf � gj dm = kf � gk1

2. � is linear: immediate.
Next, observe that any element in �(B(S)) is, by construction, a weak*-continuous

linear functional on B� which is restricted to a subset M of B�.
3. � is an open mapping:
We need to show that �(B(S)) is a norm-closed linear subspace (hence, Banach)

of the Banach space B(M): Let f ngn2N � �(B(S)) be such that  n �!  in
the sup norm. Then  is the uniform limit of weak*-continuous functions, hence
it is weak*-continuous. Since all  n are a¢ ne so is  . Hence,  is a weak*-
continuous a¢ ne functional and (by de�nition) there exists an f 2 B(S) such that
 (m) =

Z
fdm. That is,  2 �(B(S)). Finally, since � is a continuous linear

surjective mapping between Banach spaces, then it is an open mapping by the
Open Mapping Theorem.
Next, we want to show that V is a continuous functional for the sup-norm topol-

ogy on B(M). We divide the proof in several steps.
4. The functions max : �(B(S)) �! R and min : �(B(S)) �! R are both

continuous for the sup norm topology on �(B(S)):
Consider the mapping H : �(B(S))�M �! R (product topology on �(B(S))�

M) de�ned by H( ;m) =  (m). Then, for any net f( �;m�)g � �(B(S)) �M
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such that ( �;m�) �! ( ;m) we have

jH( �;m�)�H( ;m)j = j �(m�)�  (m)j
� j �(m�)�  (m�)j+ j (m�)�  (m)j
� sup

m�2M
j �(m�)�  (m�)j+ j (m�)�  (m)j

= k � �  k1 + j (m�)�  (m)j
Hence,  � �!  (sup norm) in �(B(S)) and  continuous on (M;�(M;B(S;�))
imply that H is continuous. Now, the compactness of M and the continuity of H
imply, by an application of the Maximum Theorem (see [1]), that both max and
min are continuous.
5. The functions max �� : B(S) �! R and min �� : B(S) �! R are both

continuous for the sup norm topology on B(S): immediate.
Let � : B(S) �! [0; 1] be the mapping appearing in GMM�s theorem. Then,

whenever it is de�ned (i.e., whenever �(f) is non-constant), �(f) is given by the
expression

�(f) =
I(f)� max

m2M
�(f)(m)

min
m2M

�(f)(m)� max
m2M

�(f)(m)

6. � is sup-norm continuous on an open dense subset of B(S):
Whenever it is de�ned � is sup-norm continuous. � it is not de�ned on the set

N = ff 2 B(S) : �(f) = constantg
Let C1 denote the one-dimensional linear subspace of �(B(S)) consisting of the
constant functions. Then, N = ��1(C1) and (i) N is closed because C1 is closed
and � is continuous; (ii) N has empty interior because � is an open mapping and
C1 has empty interior.
7. It follows that � has a continuous extension to the whole B(S).
8. De�ne ~� : �(B(S)) �! R by means of the diagram

B(S)
��! �(B(S))

�& # ~�
[0; 1]

This can be done because of 0. above. Now, ~� is sup-norm continuous because �
is and � is an open mapping.
9. It follows that V : �(B(S)) �! R in the �rst part of the theorem is de�ned

by
V ( ) = ~�( )min + (1� ~�( ))max 

and is sup-norm continuous by 8. and 4. above. �

B.2 Theorem 2
We recall that, given two measurable spaces, (Y;Y) and (Y 0;Y 0), a mapping

� : B(Y )! B(Y 0) is called normal if

fn % f =) �(fn)% �(f); n 2 N

Proof of Theorem 2. From Theorem 1, we know thatM is a weak*-compact subset
of (ba1; �(ba1; B(S))). From [13] (Sec. B.3), Axiom 7 is equivalent to the property
that all the measures in Theorem 1 are countably additive. That is, M � P(S),
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endowed with the topology that inherits as a subset of (ba1; �(ba1; B(S))). If we re-
place this topology with (P(S); �(P(S); Cb(S))), then M remains compact because
the new topology is weaker than the original one. Now, S Polish implies that P(S)
is Polish. Hence, M , being closed, is Polish as well.
Next, de�ne � as in the statement of the Theorem. Clearly, � is linear. Since

all the probabilities are countably additive, the Monotone Convergence Theorem
implies that � is normal. It remains to check that range � � B(M). Let E 2 �,
and let �E denote its indicator function. Then, �(�E) is obviously bounded and
it is well-known that �(�E) is measurable for the Borel �-algebra generated by
�(P(S); Cb(S)) ([1], Lemma 12.14). If h 2 B(S) is a simple function, then it can
be written as a linear combination of indicator functions, and linearity of � implies
that �(h) is measurable. If f 2 B(S) is any function, then there exists a sequence
of simple functions ffng � B(S) such that fn % f , and normality of �implies that
�(f) is measurable. Finally, de�ne V as in Theorem 1. �

B.3 Theorem 3

Proof of Theorem 3. If I is measurable, then by Rokhlin [27] there exists a canon-
ical system of conditional probabilities fP�g�2I . By using Rokhlin�s de�nition, it is
straightforward to check that for every ' 2 B(M), we haveZ

M

'dP =

Z
M=I

Z
�

' j� dP�dP 0; � 2 I; ' 2 B(M)

In particular, the function (
R
�

' j� dP�)�2I is measurable. This means that the

conditional expectation operator TI : ' �! (
R
�

' j� dP�)�2I satis�es the condition

range TI � B(M=I), andZ
M

'dP = V (') =

Z
M=I

Z
�

' j� dP�dP 0 = V 0 � TI(') ; 8' 2 B(M)

That is, both conditions (*) and (**) in Section 6 are satis�ed. Finally, recall that
the decision maker orders acts in B(S) by means of I = V 0�TI �� = V ��, and that
� is linear. Now, the statement follows by applying Riesz representation theorem.
Conversely, let I be nonmeasurable, and let fP�g�2I be a system of conditional

probabilities, with each P� a Lebesgue measure on �. By Rokhlin�s theorem, fP�g�2I
cannot be canonical. Hence, 9' 2 B(M) such that either TI(') : M=I �! R is
nonmeasurable or

R
M

'dP 6=
R
M=I

R
�

' j� dP�dP 0. Either way, at least one of the

conditions (*) and (**) of Section 6 is violated. If such a ' belongs to range
�(B(S)), we are done. Now, we are going to show that range �(B(S)) necessarily
contains at least one such a '.
To begin, observe that the (non-canonical) system of conditional probabilities

fP�g�2I de�nes an operator ~T : B(M) �! RM=I by

 7! ~T ( ) where ~T ( )(�) =

Z
M

 dP�

Also, observe that suppP� � �.



STATES, MODELS AND INFORMATION 31

Let

� =

8><>: 2 B(M) j (a) ~T ( ) 2 B(M=I); (b)
Z
M

 dP =

Z
M=I

Z
�

 j� dP�dP 0

9>=>;
It is easily checked that � is a linear subspace.
Now, let f ngn2N be a sequence in �;
CLAIM: If either  n %  2 B(M) or  n &  2 B(M), then  2 �.
Proof of the claim: Let  n %  2 B(M).
(a) By the Dominated Convergence Theorem (DCT), 8P� we have

R
M

 ndP� %R
M

 dP�, that is ~T ( n) % ~T ( ). Hence, ~T ( ) is a pointwise limit of measurable

functions, and hence measurable. Moreover, since  2 B(M), ~T ( ) is bounded, i.e.
~T ( ) 2 B(M=I).
(b) Observe thatZ

M

 dP = lim
n!1

Z
M

 ndP (by the DCT and  2 B(M))

= lim
n!1

Z
M=I

Z
�

 ndP�dP
0 (because  n 2 �)

= lim
n!1

Z
M=I

~T ( n)dP
0

=

Z
M=I

~T ( )dP 0 (by (a) and the DCT )

=

Z
M=I

Z
�

 j �dP�dP
0

which completes the proof for the case  n %  . The other case is similar.

Now suppose, by the way of contradiction, that range �(B(S)) � �. Let K
denote the set of (continuous) convex functions on M . Then, if  2 K there exists
([26], p. 19) f�ngn2N � A(M) � range �(B(S)) such that �n % . By the above
claim,  2 �, that is K � �. Since � is a linear space, it follows that K �K � �.
By the Stone-Weierstrass theorem, K �K is uniformly dense in C(M), the set of
continuous functions on M .
Since M is a metric space, for any closed set A �M , there exists ([1], Corollary

3.14) f�ngn2N � C(M) such that �n & �A, where �A denotes the indicator func-
tion of A. Since K �K is uniformly dense in C(M), for each n 2 N, there exists
fhnkgk2N � K �K such that hnk ! �n uniformly as k !1.
Now, let k0 2 N be such that 8k � k0

�0(m)� 1 < h0k0(m) < �0(m) + 1 8m 2M

Then, the function

g0 = h0k0 + 2
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is in � because � is a linear space, and satis�es

�0(m) + 1 < g0(m) < �0(m) + 3 8m 2M

Next, let k1 2 N be such that 8k � k1

�1(m)�
1

3
< h1k1(m) < �1(m) +

1

3
8m 2M

Then, g1 = h1k1 +
2
3 2 � and satis�es

�1(m) +
1

3
< g1(m) < �1(m) + 1 8m 2M

Moreover, for every m 2M , we have

g1(m) < �1(m) + 1 � �0(m) + 1 < g0(m)

Inductively, de�ne

gn = hnkn +
2

3n

Then, fgngn2N � �, gn+1(m) < gn(m) 8m 2M , and

sup
m2M

jgn(m)� �n(m)j <
1

3n�1

Now, the inequality

jgn(m)� �A(m)j � jgn(m)� �n(m)j+ j�n(m)� �A(m)j

shows that gn & �A. [Notice that gn(m) > �n(m) +
1
3n � �A(m)]

By the above claim, we then have �A 2 � for any closed set A �M .
Next, observe that:
(i) �M 2 � because the function 1 2 A(M) � �;
(ii) if �A; �B 2 � and A � B, then �BnA = �B � �A 2 � because � is a linear

space;
(iii) if An % A and

�
�An

	
� �, then �An

% �A and �A 2 � by the claim
above.
Hence, we conclude that A = fA 2M j �A 2 �g is a Dynkin system, which

contains all closed sets. Hence, A = M (the Borel �-algebra generated by the
topology on M).
But now, it follows that � contains all the simple functions (because � is a

linear space) and since f ng � � and  n %  imply  2 �, we can conclude that
� = B(M), a contradiction. �

B.4 Theorem 4
Let E and F be two equivalence relations on Polish spaces, X and Y , respectively.

Following Kechris [22], we say that E Borel reduces to F if there exists a Borel map
f : X ! Y such that

xEy () f(x)Ff(y)
At once, this implies that there exists an embedding X=E ! Y=F . We say that E
and F are Borel equivalent, E �B F , if E Borel reduces to F and F Borel reduces
to E .
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Proof of Theorem 4. Let U denote unitary equivalence of normal operators on a
separable Hilbert space. By the Spectral theorem (see, for instance, [6] pp. 293-
97), every normal operator is associated to a measure class on a Polish space, and
two operators are unitarily equivalent if and only if they are associated to the same
measure class. If E denotes measure equivalence (mutual absolute continuity) of
(Borel) probability measures on an uncountable Polish space, then we have U �B
E . The proof is completed by collecting the following facts: (a) The action by
conjugation of U on itself is properly generically ergodic (Hjorth [18], De�nition
3.1, Theorem 7.7 and Corollary 7.8); this, in turn, implies that (b) there exists
a non-trivial non-atomic measure for the equivalence relation produced by such
an action (Harrington-Kechris-Loveau [17], Theorem 1.1). Now, E¤ros� theorem
implies that the associated partition is non-measurable. �

Remark 2. Kechris and Sofronidis [23] have shown that a stronger property holds.
Namely, the action by conjugation of U on itself is turbulent (see [23]), a fact not
needed in this paper.

B.5 Proof of Theorem 5
The proof of the theorem is based on a result of E¤ros-Mackey (Lemma 3 below),

and on two lemmata, which we prove next.
De�ne an equivalence relation, �, on G by (the groups G and PR(�) are de�ned

in A.4)
g1 � g2 iff g1�� = g2��

Lemma 1. g1 � g2 if and only if there exists a b 2 PR(�) such that g1 = g2 � b.

Proof. Let b be a �-preserving automorphism of �, and let b be such that g1 = g2�b.
Then, 8A 2 �, we have

g1��(A) = �(g�11 (A)) = �(b�1 � g�12 (A)) = �(g�12 (A)) = g2��(A)

Conversely, assume g1�� = g2��. De�ne b = g�12 � g1. Since both g1 and g2 are
automorphisms of �, so is b. We have only to show that b 2 PR(�). 8E 2 �, we
have

b��(E) = �(g�12 � g1(E)) = g2��(g1(E)) = g1��(g1(E)) = �(E)

�

The lemma says that the equivalence relation � on G is nothing other than the
orbit equivalence relation produced by the action by right translation of PR(�) on
G (a fact, that we will be using shortly). Because of this, we denote the quotient
G= � by G=PR(�). Note, also, that the lemma establishes a bijection between
G=PR(�) and [�].

Lemma 2. PR(�) is a closed subgroup of G.

Proof. Let E 2 �, and let �E denote the indicator function of E. If g;  2 PR(�),
then

kT�E � Tg�Ek =

Z
j � �E � g � �E j d�

= �((E)4g(E))
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where 4 denotes the symmetric di¤erence. Hence, if fng is a sequence in PR(�)
converging to g 2 G, by de�nition the sequence

Tn�E � Tm�E ! 0 for each
E 2 �, and, by the above, so does the sequence �(n(E)4m(E)). It follows that
g preserves �. �

Lemma 3. G=PR(�) is standard.

Proof. By a theorem of E¤ros-Mackey (see Srivastava [30], p. 196), we have that
the partition generated by the action by right translation of PR(�) on G admits a
Borel transversal. In turn, this implies (Srivastava [30], p. 197) that the quotient
G=PR(�) is standard. �

Proof of Theorem 5. From Theorem 2 and the assumptions contained in the state-
ment, we know that the diagram below commutes

B(S)
��! B([�])

I & # V

R
To prove the theorem, we are going to show that the diagram below also commutes

B(G)
~�% & �

B(S)
k�! B([�])

h ! B(G=PR(�))
I & # V .

R

and, then, de�ne ~V by composing the mappings on the right hand side of the
diagram.
To begin, de�ne ~� as in the statement of the theorem. Then, just as in Theorem

2, it is immediate to verify that range(~�) � B(G).
Next, let � � G denote a generic element of the partition of G produced by

the action of PR(�). We use the same notation to index elements in the quotient
G=PR(�). No confusion can result. From Lemma 3, G=PR(�) is standard. Hence,
there exists a canonical system of condition probabilities fP�g�2G=PR(�). For each
 2 B(G), de�ne a the function �( ) : G=PR(�)! R by

�( )(�) =

Z
�

 j� dP�

It follows at once from Rokhlin�s de�nition (De�nition 2) that �( ) 2 B(G=PR(�)).
In other words, � : B(G)! B(G=PR(�)).
Finally, recall that as we observed after Lemma 1, there exists a bijection between

G=PR(�) and [�]. By the preceding, G=PR(�) is Polish and so is [�] (considered
as a subspace of P(S)). Hence, by the Borel Isomorphism Theorem (A.1), they
are Borel isomorphic. That is, there exists a Borel bijiection b : G=PR(�) ! [�].
Hence, it is immediate to see that if f 2 B([�]), the mapping h de�ned by f 7�! f �b
is a bijection B([�])! B(G=PR(�)). �
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B.6 Theorem 6

Proof of Theorem 6. In A.4, we observed that G embeds isometrically into the
group of unitary operators, U , on L2(�). Restricted to positive linear isometries,
our equivalence relation � is then the orbit equivalence relation produced by the
action by conjugation of U on itself. Hence, the result follows from the fact that
such an action is properly generically ergodic (see proof of Theorem 4). �

B.7 Proof of Proposition 1

Proof of Proposition 1. As noted in the proof of Theorem 3, any system fP�g�2I
of conditional probabilities (canonical or not) de�nes an operator ~T : B(M) �!
RM=I by

 7! ~T ( ) where ~T ( )(�) =

Z
M

 dP�

and the set

� =

8><>: 2 B(M) j (a) ~T ( ) 2 B(M=I); (b)
Z
M

 dP =

Z
M=I

Z
�

 j� dP�dP 0

9>=>;
is a linear subspace. Since an act f 2 B(S) is subjectively measurable if and only
if �(f) 2 �, it follows that the class of subjectively measurable acts is the set
��1(�(B(S)) \ �). It is easily seen that this is a linear subspace of B(S). Notice
that (�(B(S))\�) is always non-empty because it contains the constant functions.
From this, it follows that the class �ME of subjectively measurable events contains
? and S and is closed under �nite disjoint unions. Moreover, normality of � implies
that �ME is closed under countable disjoint unions.
Finally, if an event E 2 � is unambiguous in the sense of [13] and [?], then �(�E)

is a constant mapping on M , that is �E 2 ��1(�(B(S)) \�).
Finally, �E 2 �ME implies

R
M

�(�E)dP =
R
M=I

R
�

�(�E) j� dP�dP 0. Hence, E 7!R
M

�(�E)dP is a set function on �ME which is countably additive. �
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