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Abstract

We revisit the question of price formation in general equilibrium the-
ory. We explore whether evolutionary forces lead to Walrasian equilibrium
in the context of a market game, introduced by Shubik (1972). Market
games have Pareto inferior (strict) Nash equilibria, in which some, and
possibly all, markets are closed. We introduce a strong version of evolu-
tionary stable strategies (SESS) for finite populations. Our concept re-
quires stability against deviations by coalitions of agents. We show that a
small coalition of trading agents is sufficient for Pareto improving trade to
be generated. In addition, provided that agents lack market power, Nash
equilibria corresponding to approximate Walrasian equilibria constitute
the only approximate SESS.
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1 Introduction

Walrasian equilibrium is a cornerstone of modern economics. It is, therefore,

not surprising that the question of price formation has received considerable at-

tention in general equilibrium theory. The tâtonnement process has been used

extensively in this context.1 The study of tâtonnement, however, has produced

largely negative results, and this has led some researchers to conclude that de-

centralized information about prices alone is not sufficient to bring the economy

to the Walrasian equilibrium. In addition, and perhaps more importantly, the

tâtonnement has been criticized for lacking micro foundations since the price

adjustment process is not the outcome of the individual optimization.

Even if we put the traditional stability question aside, Walrasian equilibrium

may be challenged on the basis of complexity considerations. Can “unsophis-

ticated” agents learn to behave in such a way that an outside observer of the

economy will see a Walrasian equilibrium allocation? Evolutionary game the-

ory provides an appropriate framework to formulate this question. After all,

competitive outcomes are often justified by appealing to the natural selection

of behavior that is more “fit.”2 In this paper we explore whether evolutionary

forces can lead to Walrasian equilibrium in the context of a market game, in-

troduced by Shubik (1972).3 Our story is not explicitly dynamic. Rather, we

demonstrate that certain outcomes can be disturbed by the introduction of a

small number of “noise-traders,” who can become better off in relative terms by

choosing different trading patterns.

Market games are one of the structures that give rise to competitive out-

comes when agents lack market power. Thus, it has served as a non-cooperative

foundation for the Walrasian equilibrium. Even in large economies, however,

1See Arrow and Hurwicz (1959) for a classic reference.
2See Alchian (1950) for one of the first attempts to formalize this argument. See, for

example, Weibull (1995) or Samuelson (1997) for a review of evolutionary models.
3There is extensive literature on market games. Standard references include Shapley

(1977), Shapley and Shubik (1977), Dubey and Shubik (1977), and Mas-Colell (1982).
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in addition to approximately Walrasian outcomes, market games obtain Pareto

inferior (strict) Nash equilibria, in which some, and possibly all, markets are

closed due to a coordination failure. Our study concerns a pure exchange econ-

omy with a finite number of agents and a finite number of goods. We study the

case formalized by Postlewaite and Schmeidler (PS, 1978), where the number of

agents is large. We introduce a strong version of evolutionary stable strategies

(SESS) for asymmetric, finite games. Roughly speaking, SESS requires stability

against all coalitions consisting of at most one agent per population.

We demonstrate that, in an approximate sense that we make precise, (par-

tial) autarky outcomes are not SESS. A suitable small-size coalition can generate

Pareto improving trade and open a market. Thus, evolutionary forces provide

an avenue through which the economy can avoid situations where some mar-

kets are closed due to a coordination failure. In addition, feasible outcomes in

which all markets are open, and in which non-Walrasian prices prevail in some

markets, can also be disturbed through a small coalition. More precisely, we

demonstrate that if the game is sufficiently large so that agents’ market power is

insignificant, Nash equilibria that support approximate Walrasian equilibria of

the underlying economy are the only approximate SESS. Interestingly, the lack

of market power is necessary for this to be true.4 The reason for this is simple.

As in Schaffer (1988), our concept emphasizes the role of relative performance:

a successful strategy makes an agent better off relative to others of the same

type. In a large economy agents lack market power and, therefore, their ability

to affect the payoffs of others is small. In that case, the best strategy is to

optimize by maximizing absolute performance.5

We can summarize the intuition behind our findings as follows. Since a single

4Our results are related to Dubey and Shubik (1978), who introduce an outside agency
that ensures that arbitrarily small amounts of bids and asks are present in all markets. Our
argument, however, does not rely on the existence of such an agency. In addition, we impose
minimal rationality requirements on our agents, and we explicitly consider non-Nash outcomes.

5See Alchian (1950) for a discussion of the merits of maximizing relative performance by
firms.

2



agent cannot create beneficial trade, Pareto inferior outcomes, in which some

markets are closed, cannot be disturbed by one agent. On the other hand, the

introduction of one trading agent on each side of the market is sufficient to open

a market, thus leading the economy to a Pareto superior trading regime. All

other non-Nash states that involve trade, but not individual optimization, can

be disturbed by a single agent who chooses the best basket at the given prices.

An important ingredient in our analysis is that the number of agents in the

economy under study is much greater than the size of the deviating coalition.

Consequently, while such coalitions can change certain agents’ baskets, they

only have a negligible effect on prices. As a result, no deviations by small-size

coalitions can lead to improvements, in an approximate sense, if the economy is

close to a Walrasian equilibrium. Thus, consistent with the traditionally held

view, our findings provide support for the belief that evolutionary forces lead to

competitive outcomes, but only when individual agents are of small size.6

The paper proceeds as follows. Section 2 reviews some concepts from evolu-

tionary game theory, introduces our solution concept, and presents an example.

In Section 3, we apply the solution concept to the market game and discuss the

main result. A brief discussion section follows.

2 The Solution Concept

We start by stating two existing definitions of evolutionary stability in the con-

text of an abstract normal form game. First, consider a single population con-

sisting of a continuum of identical agents, and assume that N agents are selected

to play a normal-form game Γ = (N,S,U), where S is the set of available (pure)

strategies, and U represents payoffs. The standard definition of an Evolution-

6It is worth noting that outcomes in which some markets are closed are not evolution-
ary stable even if the underlying economy is “small.” However, it is only in sufficiently large
economies that Walrasian outcomes are evolutionary stable. More precisely, the Nash equilib-
rium in which all markets are open may fail to be evolutionary stable if it does not correspond
to an approximate Walrasian equilibrium. This is in contrast to some recent papers in the
literature, notably Vega-Redondo (1997).
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ary Stable Strategy (ESS) for (N = 2)-player symmetric games is as follows (see

Weibull, 1995):

Definition 1 A strategy s ∈ ∆ is an ESS if, for every strategy t 6= s, there

exists εt > 0 such that

U (s, (1− ε) s+ εt) > U (t, (1− ε) s+ εt) , (1)

for all ε ∈ (0, εt), where ∆ is the set of all mixed strategies.

Next, consider any finite population of size N . The definition of ESS for

N -player symmetric games is as follows (see Schaffer, 1988, 1989):

Definition 2 A strategy s ∈ S is an ESS if, for any strategy t 6= s,

U (s, (t, s)) ≥ U(t, (s, s)), (2)

where (t, s) and (s, s) denote the strategies of the other (n− 1) players. In par-

ticular, (s, s) indicates that all other players play strategy s, while (t, s) indicates

that one player plays strategy t, while all other players play s.

Note that, unlike Nash equilibrium, the ESS criterion refers to relative, as

opposed to absolute, performance. We will amend Schaffer’s (1988) definition in

two ways. First, we extend the definition of an ESS from one finite population

to multiple, distinct, finite populations. Second, we will require a strong ver-

sion of evolutionary stability: one that requires stability against a simultaneous

deviation by multiple agents from different populations.

We first present the concept in the context of an example. In the next

section, we will apply it to a market game. Assume that there are K > 1 finite

populations. Each population, i, contains ni ≥ 2 agents. We assume that agents

play an N -player game, Γ, where N = n1 + ... + nK . The game is assumed to

have the following symmetry property. All players from population i have the

same set of strategies, Xi, and the same payoff function, U i. In other words, if
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two players (from the same population) play the same strategy, they will obtain

the same payoffs. Hence, we indicate the normal form game as

Γ =

⎛⎝{n1 + ...+ nK} ;S1 × ...× S1| {z }
n1 times

× ...× SK × ...× SK| {z }
nK times

;
¡
U1; ...;UK

¢⎞⎠ .
(3)

In what follows, we will need to consider the situation where one agent from

population i plays strategy ti, while every other agent from that population

plays strategy si. More generally, in the case where at most one agent in each

population plays a strategy, t, which is different from the one chosen by every

other agent in his population, the payoff of the agent from population i who

plays a different strategy than his peers can be written as:

U i
³
ti; (t1, s1); ...; (ti, si); ...; (tK , sK)

´
, (4)

where, as before,
³
ti, si

´
denotes that one agent from population i plays ti,

while all other agents from population i play si.

We are now ready to define our main concept.

Definition 3 A symmetric strategy profile s =

⎛⎝s1, ..., s1| {z }
n1

; ...; sK , ..., sK| {z }
nK

⎞⎠ ∈
S1 × ...× S1| {z }

n1

× ...× SK × ...× SK| {z }
nK

is a Strong ESS (SESS) if, for all i,

U i
¡
si; γ1, ..., γK

¢
≥ U i

¡
ti; γ1, ..., γK

¢
, (5)

for any strategy ti 6= si, and for all γj, such that γj =
³
sj , sj

´
, or γj =

³
tj , sj

´
.

In other words, a notable feature of the SESS is that it requires stability

against up to K simultaneous deviations (one per population). Clearly, this is a

stronger concept than Schaffer’s ESS. Thus, SESS will not exist in general. An

important feature of our concept is that, while it requires a symmetric outcome,

it can be applied to asymmetric games. Below, we give an example of a four-

player coordination-like game in which SESS uniquely selects the Pareto efficient

Nash equilibrium even though there is another ESS.
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Example: Suppose that there are two populations (I and II), each consist-

ing of two players. Each player has two available actions (a and b). Let θI(II)

stand for the number of a-players in population I(II). Payoffs are defined as

follows.

UI(a, θI , θII) UI(b, θI , θII)

UI(a, 1, 0) = 0 UI(b, 0, 0) = 2
UI(a, 2, 0) = 0 UI(b, 1, 0) = 2
UI(a, 1, 1) = 3 UI(b, 0, 1) = 1
UI(a, 2, 1) = 3 UI(b, 1, 1) = 1
UI(a, 1, 2) = 4 UI(b, 0, 2) = 0
UI(a, 2, 2) = 4 UI(b, 1, 2) = 0

UII(a, θI , θII) UII(b, θI , θII)

UII(a, 0, 1) = 0 UII(b, 0, 0) = 2
UII(a, 0, 2) = 0 UII(b, 0, 1) = 2
UII(a, 1, 1) = 3 UII(b, 1, 0) = 1
UII(a, 1, 2) = 3 UII(b, 1, 1) = 1
UII(a, 2, 1) = 4 UII(b, 2, 0) = 0
UII(a, 2, 2) = 4 UII(b, 2, 1) = 0

(6)

For example, UI(a, 1, 0) = 0 means that the payoff of the player in population

I who plays action a, when all other players (one player in population I and

two players in population II) play action b, is zero. Clearly, this coordination

game obtains two symmetric strict Nash equilibria in which all agents play a

and all play b, respectively. The a-equilibrium is an SESS. Notice, however,

that the b-equilibrium is not an SESS since a coalition consisting of one agent

per population (type) deviating to playing strategy a will result in a payoff of 3

for each of the two deviators (instead of 1 for the b-players).

Later, we shall make use of the following approximate notion of an SESS.

Definition 4 A symmetric strategy profile s =

⎛⎝s1, ..., s1| {z }
n1

; ...; sK , ..., sK| {z }
nK

⎞⎠ ∈
S1 × ...× S1| {z }

n1

× ...× SK × ...× SK| {z }
nK

is an -SESS if, for all i,

U i
¡
si; γ1, ..., γK

¢
≥ U i

¡
ti; γ1, ..., γK

¢
− , (7)

for any ti 6= si, and for all γj, such that γj =
³
sj , sj

´
, or γj =

³
tj , sj

´
.

Thus, an -SESS requires that no agent can be better off by more than a

small amount, . In the next section we motivate and use -SESS in the context

of our main topic of study, a strategic market game.
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3 The Market Game

3.1 Preliminaries

We consider a finite, convex pure exchange economy with L consumption goods.

The economy is described by E =

I,Xi, wi, ui

®
i∈I , where I = {1, ..., N} is a

finite set of agents belonging toK > 1 different populations (or types); Xi = RL+
denotes the consumption possibility set for agent i; wi ∈ RL+ is the endowment

vector of agent i; and ui : RL+ → R is the utility function of agent i. Agents

belonging to the same type have identical preferences and endowments. We

assume that ui is continuous, strictly increasing in all its variables, and strictly

quasi-concave.

Agents participate in a strategic market game related to the one in Shapley

and Shubik (1977). We will follow PS in specifying the market game corre-

sponding to E .7 An N -person market game in normal form is defined as follows.

For each i ∈ I, let Si = {si = (bi, qi) ∈ RL+ × RL+ : qi ≤ wi} be the set of

strategies of agent i. Given any (symmetric) N -list of strategies (bi, qi)i∈I , the

payoff to agent i is denoted by U i
¡
(b1, q1); ...; (bi, qi); ...(bN , qN )

¢
. Here, bi de-

notes the vector of bids or “goods requested” by agent i, measured in abstract

units of account (such as “dollars”), while qi denotes the vector of goods offered

by agent i. U i : S1 × ..× SN → R is the Von-Neuman and Morgenstern utility

function of agent i.

Individual agents have to satisfy a balance or bankruptcy condition, which

requires that the total value of an agent’s bids has to be less than the total “re-

ceipts” from his sales of goods. More precisely, the individual balance condition

is given by X
l∈L

bil ≤
X
l∈L

qilP
j∈I q

j
l

X
j∈I

bjl . (8)

7Our main argument will apply under alternative specifications of the market game pro-
vided that they allow for a Nash equilibrium of the game to be an approximately Walrasian
equilibrium of the underlying economy.
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One issue is what happens to agents who violate the balance condition.

This is particularly important in our case for two reasons. First, unlike PS, we

explicitly consider non-Nash states in which this constraint might be violated.

Second, since agents in our model are concerned with relative performance,

they might take an action that will make them worse off in absolute terms, if

this will lead to other agents of their type becoming further worse off. This

could occur, for example, if an action by a single agent would lead to other

agents’ becoming bankrupt. This possibility arises under the PS specification

since they assume that agents who violate the balance condition have all their

resources confiscated. With these considerations in mind, we impose the milder

assumption that an agent whose total value of goods requested exceeds his total

receipt value has his bid vector “shaved” by an amount that is proportional to

his overbidding. More precisely, let

αi =

P
l∈L

qil

j∈I q
j
l

P
j∈I b

j
lP

l∈L b
i
l

(9)

and let

ebil =
(

αibil, if
P

l∈L b
i
l >

P
l∈L

qil

j∈I q
j
l

P
j∈I b

j
l

bil, otherwise.
(10)

The determination of the agents’ resulting consumption baskets operates as

follows. For all i ∈ I, and l ∈ L, let cil ∈ R+ be the consumption of good l by

agent i. This is determined by

cil = wi
l − qil +

ebilP
j∈I
ebjl
X
j∈I

qjl . (11)

As usual, a (symmetric) strategy profile (bs1, ..., bsN ) is a Nash equilibrium if for

all i ∈ I and all si ∈ Si,

U i(bs1, ..., bsi, ...bsN ) ≥ U i(bs1, ..., si, ...bsN ).
A Nash equilibrium is full if all markets are open; i.e., for all l ∈ L,X

i∈I

bbil > 0 and X
i∈I

bqil > 0.
8



We shall only consider economies in which a full Nash equilibrium exists, in

which there is (sufficiently large) positive trade in all commodities.

Proceeding as in PS, for all l, and for a distinguished agent i, we can write

Bl = bil+B
−i
l = bil+

P
j∈I,j 6=i b

j
l , and Ql = qil+Q

−i
l = qil+

P
j∈I,j 6=i q

j
l . Let pl =

Bl/Ql denote the average price of commodity l (provided that the denominator

of this expression is strictly positive). Define an allocation bz resulting from a

full Nash equilibrium to be -Walrasian if all markets are open, and there existsbp = (bp1, ..., bpL) such that for all i ∈ I, bpbzi = bpwi, and

#{i ∈ I : ∀zi, ui
¡
zi
¢
> ui

¡bzi¢⇒ bpzi > bp(1− )wi} > (1− )#I,
(12)

where, as stated above, prices correspond to ratios of aggregate bids. Next, we

state the main result of PS. It establishes the connection between full Nash

equilibria of the market game and approximate Walrasian equilibria of the un-

derlying economy.

Proposition 1 (PS): For any positive numbers α, β, and , any allocation

resulting from a full Nash equilibrium in an economy E =

I,Xi, wi, ui

®
i∈I with

wi < β(1, ...1) for all i ∈ I,
P

i∈I w
i > Nα(1, ..., 1), and N > 16Lβ/α 2 is

-Walrasian.

In what follows, we find it convenient to rewrite agent i’s utility as a function

of his own strategy and of the bid and offer profile by all other agents; i.e., U i =

U i
¡
si;B−i, Q−i

¢
, where B−i = (B−i1 , ..., B−iL ) and Q−i = (Q−i1 , ..., Q−iL ). This

completes the description of the market game. For a more detailed discussion

of these concepts we refer the reader to PS. Henceforth, we will concentrate on

the evolutionary stability properties of full Nash equilibria.

3.2 Evolutionary Stability

Before we analyze the market game from an evolutionary point of view, we

introduce the main argument in an informal way. This will also serve as a
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motivating discussion for the concepts we introduced in the previous section.

First, notice that no Nash equilibrium in which some markets are closed can

be disturbed by a single deviating agent. This is because at least one agent

on each side of the market is necessary for any trade. While the existence

of such (partial) autarky Nash outcomes is plausible, it is also insightful to

study under what conditions evolutionary forces will result in the “opening of

markets,” leading to a Pareto superior outcome. To our knowledge, ours is the

first example to demonstrate that evolutionary pressure can lead to the opening

of markets. The fact that this requires the simultaneous deviation from each

side of the market is exactly what SESS is designed to capture.

A separate issue from whether all markets will be open is whether evolution

will give rise to an efficient or, more restrictively, to a Walrasian outcome. Even

if no state in which some or all markets are closed corresponds to an SESS,

one might ask whether states that correspond to full Nash equilibria are SESS.

Here, a difficulty arises. The fact that we deal with a finite game implies that

each individual agent has some market power. Of course, this market power

vanishes as the number of agents increases. This suggests that in the case

where the economy is large enough, we can expect that the above question will

be answered in the affirmative, but only in an approximate sense.

To see this, let us suppose that the economy is at a full Nash equilibrium.

Suppose that an agent switches to a different bid/offer. Clearly, since the pre-

vious situation was a Nash equilibrium, the deviating agent will be worse off.

However, this does not imply the evolutionary stability of full Nash equilibria.

The reason is as follows. Since there is a finite number of agents, the devia-

tion will result in slightly different prices for at least some agents. While the

deviator is worse off under the new prices, it could be that other agents of his

type are even more worse off or, in other words, the deviator could be better off

in relative terms. Thus, the evolutionary stability of full Nash equilibria is not
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automatic. A continuity argument, however, guarantees that if the economy

is large enough, a deviation by a small-size coalition cannot make the devia-

tors better off by more than an arbitrarily small amount. Thus, a full Nash

equilibrium of a large enough economy, which PS have shown to be approxi-

mately Walrasian, will also be an approximate SESS, provided that agents lack

significant market power. Formalizing the details of this argument is the main

purpose of this section. We begin by presenting a definition of -SESS in the

context of a market game.

Definition 5 A symmetric strategy profile s =
¡
s1, ..., s1; ..., sK , ..., sK

¢
∈ S1 × ...× S1| {z }

n1

×

...×SK × ...× SK| {z }
nK

is an -SESS of the market game if, for all i ∈ I and for all

ti ∈ Si,

U i
³
si; eB−i, eQ−i´ ≥ U i

µ
ti;
eeB−i, eeQ−i¶− , (13)

where ( eB−i, eQ−i) and (eeB−i, eeQ−i) are such that
eB−il = (ni − 2) b

i

l +
KX

k=1,k 6=i
(nk − 1) b

k

l +
KX
k=1

ebkl ,
eQ−il = (ni − 2) qil +

KX
k=1,k 6=i

(nk − 1) qkl +
KX
k=1

eqkl ,
eeB−i =

KX
k=1

(nk − 1) b
k

l +
KX

k=1,k 6=i

ebkl ,
eeQ−i =

KX
k=1

(nk − 1) qkl +
KX

k=1,k 6=i
eqkl . (14)

As before, the above conditions require that a distinguished deviating agent

is at most better off by relative to the other agents of his type when at most one

agent per population deviates. The variables ( eB−i, eQ−i) and (eeB−i, eeQ−i) give
rise to the resulting prices before and after the deviation by our distinguished
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agent. The next result is stated analogously to the result in PS, but in the

context of our evolutionary analysis.

Consider an economy E and suppose that (bs1, ..., bsK) is a symmetric full
Nash equilibrium profile. Let maxi bsij = λj > 0 denote the largest bid/offer

strategy in this equilibrium. We have the following.

Theorem 1 Consider an economy E that, for any positive numbers , β, and λ,

satisfies the following: (1) (λ1, ..., λL) > λ (1, ..., 1), (2) wi < β (1, ..., 1), and (3)

there exists δ ( ) > 0 such that for any two populations i and j, 2 (L− 1)K
³

β2

λiλj

´
N

nlnj
<

δ ( ). Then, the symmetric full Nash equilibrium profile (bs1, ..., bsK) of the market
game associated with E is -SESS.

Before presenting the proof, we briefly discuss the nature of the conditions

needed for the above Theorem. The first condition requires that the full Nash

equilibrium involves a strictly positive amount of trade in all markets. The

second condition is also used in PS. It assumes that individuals’ endowments

are “small.” Finally, the third condition requires that the number of agents

belonging to each type is sufficiently large.

Proof: Consider an economy E . Fix > 0, and suppose that (bs1, ..., bsK)
is a symmetric full Nash equilibrium profile of the associated market game.

Consider a coalition of agents, C 6= ∅, consisting of at most one agent per type,

who deviates from the full Nash equilibrium. Denote by ti a deviation by an

agent of type i. Let ( bB−i, bQ−i) denote the bids and offers faced by an agent
of type i in a full Nash equilibrium. Similarly, let ( eB−i, eQ−i) and (eeB−i, eeQ−i)
denote, respectively, the bids and offers faced by a non-deviant and by a deviant

agent of type i after the deviation. Finally, bsi and eesi denote the best response
for an agent of type i given prices ( bB−i, bQ−i) (the bids and offers in the full
Nash equilibrium) and (

eeB−i, eeQ−i), respectively.
Since all markets are open, U i is continuous in all arguments. Therefore, for
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all vectors (B−i, Q−i) such that
°°°(B−i, Q−i)− ( bB−i, bQ−i)°°° < δ1( ), we have

that ¯̄̄
U i
¡bsi;B−i, Q−i¢− U i

³bsi; bB−i, bQ−i´¯̄̄ <
2
. (15)

In addition, by the Theorem of the Maximum (see Berge (1997) p. 116), for all

(
eeB−i, eeQ−i) such that °°°°(eeB−i, eeQ−i)− ( bB−i, bQ−i)°°°° < δ2( ), we have that¯̄̄̄

U i
³bsi; bB−i, bQ−i´− U i(eesi; eeB−i, eeQ−i)¯̄̄̄ <

2
. (16)

Let δ( ) ≤ min {δ1( ), δ2( )} be such that condition (3) of the Theorem holds.

We want to show that the maximum possible influence that the deviating coali-

tion will have on the terms of trade in the full Nash equilibrium is smaller than

δ( ).

In this equilibrium, the “price” faced by agent i in the market for good j is

bpji = bB−ijbQ−ij . (17)

Thus, in the full Nash equilibrium, the deviation by coalition C can maximally

increase this price by

¡
pij
¢+
=
bB−i−Cj +BC

jbQ−i−Cj + 0
, (18)

where BC
j =

P
t∈C Bt

j =
P

t∈C
P

l6=j
wtl

Q−Cl + t∈C wtl

bB−Cl .

Similarly, at the full Nash equilibrium, the deviation by C can maximally

decrease price bpji by
¡
pij
¢−
=

bB−i−Cj + 0bQ−i−Cj + wC
j

, (19)

where wC
j =

P
t∈C wt

j . We now have¯̄̄¡
pij
¢+ − bpij ¯̄̄ =

¯̄̄̄
¯ bB
−i−C
j +BC

jbQ−i−Cj

−
bB−i−Cj + bBC

jbQ−i−Cj + bQC
j

¯̄̄̄
¯ =
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¯̄̄̄
¯̄
³
BC
j − bBC

j

´ bQ−i−Cj +
³ bB−i−Cj +BC

j

´ bQC
jbQ−i−Cj

³ bQ−i−Cj + bQC
j

´
¯̄̄̄
¯̄ =

¯̄̄̄
¯̄
³
BC
j − bBC

j

´
bQ−ij +

bQC
jbQ−i−Cj

³ bB−i−Cj +BC
j

´
³ bQ−i−Cj + bQC

j

´
¯̄̄̄
¯̄ ≤

¯̄̄̄
¯̄
³
BC
j − bBC

j

´
bQ−ij

¯̄̄̄
¯̄+ bQC

jbQ−i−Cj

¯̄̄̄
¯̄
³ bB−i−Cj +BC

j

´
³ bQ−i−Cj + bQC

j

´
¯̄̄̄
¯̄ . (20)

Note that ¯̄̄
BC
j − bBC

j

¯̄̄
≤
X
t∈C

X
l6=j

wt
l

N

nl

β

λl
. (21)

By condition (1) in the Theorem, we have

bQ−ij ≥ njλj . (22)

In addition,

bQC
j ≤ Kwj ≤ Kβ. (23)

Hence ¯̄̄̄
¯̄
³
BC
j − bBC

j

´
bQ−ij

¯̄̄̄
¯̄ ≤

¯̄̄̄
¯
P

t∈C
P

l6=j w
t
l
N
nl

β
λl

njλj

¯̄̄̄
¯ ≤

(L− 1) β

λlλj

X
t∈C

wt

¯̄̄̄
N

nlnj

¯̄̄̄
≤
∙
(L− 1)K β2

λlλj

¸
N

nlnj
.

By condition (3) in the Theorem,

1

2
δ( ) > (L− 1)K

µ
β

λiλj

¶2
N

nlnj
≥

¯̄̄̄
¯̄
³
BC
j − bBC

j

´
bQ−ij

¯̄̄̄
¯̄ . (24)

Thus, we have bQC
jbQ−i−Cj

¯̄̄̄
¯̄
³ bB−i−Cj +BC

j

´
³ bQ−i−Cj + bQC

j

´
¯̄̄̄
¯̄ ≤

14



βK

(nj − 1)λj

¯̄̄̄
Nβ

njλj

¯̄̄̄
=

∙
K

β2

λjλj

¸
N

(nj − 1)nj
≤ 1
2
δ( ), (25)

and we finally obtain ¯̄̄¡
pij
¢+ − bpij ¯̄̄ ≤ δ( ). (26)

A similar argument establishes that¯̄̄¡
pij
¢− − bpij ¯̄̄ ≤ δ( ). (27)

Hence, we have demonstrated that the maximum possible influence that the

deviating coalition can have on the terms of trade in the full Nash equilibrium

is smaller than δ( ). Thus inequalities (15) and (16) hold, and we obtain

U i
³bsi; ( eB−i, eQ−i)´− U i(ti; (

eeB−i, eeQ−i)) =
h
U i
³bsi; ( eB−i, eQ−i)´− U i

³bsi; ( bB−i, bQ−i)´i+∙
U i
³bsi; ( bB−i, bQ−i)´− U i(ti; (

eeB−i, eeQ−i))¸
≥ −

¯̄̄
U i
³bsi; ( eB−i, eQ−i)´− U i

³bsi; ( bB−i, bQ−i)´¯̄̄+
∙
U i
³bsi; ( bB−i, bQ−i)´− U i(eesi; (eeB−i, eeQ−i))¸

+

∙
U i(eesi; (eeB−i, eeQ−i))− U i(ti; (

eeB−i, eeQ−i))¸

≥ −
2
−
2
+ 0 ≥ − , (28)

where ti ∈ Si, for all i. In other words, a full Nash equilibrium profile is an

-SESS. ¥

A couple of remarks are in order. First, notice that the above proof uses the

“large economy” assumption. We consider this to be an important feature of our

15



model as it suggests that evolutionary arguments can be used as a foundation

for Walrasian equilibria only when agents lack market power. We discuss this

issue further below. We next provide a partial converse of Theorem 1. For any

strategy profile
¡
t1, ..., tK

¢
, define maxi t

i
j = λj > 0, for all goods j for which

the corresponding market is open. We have the following.

Theorem 2 Consider an economy E and any profile
¡
t1, ..., tK

¢
that does not

constitute a symmetric full Nash equilibrium of the underlying market game.

Let β, λ, and δ0 be positive numbers for which the following conditions hold:

(1) λj ≥ λ, for any good j for which the corresponding market is open, (2)

wi ≤ β (1, ..., 1), and (3) 2 (L− 1)K
³
β
λ

´2
N

nlnj
< δ0. Then, there exists 0 > 0

such that the profile
¡
t1, ..., tK

¢
is not an 0-SESS.

Proof: Since the definition of -SESS involves symmetry, it is sufficient to

consider only symmetric profiles. It is instructive to first demonstrate the result

for the autarchy (no trade) Nash equilibrium. We will then move to the general

case.

Consider the strategy profile (0, ..., 0), associated with no trade. Since, by

assumption, there exists a full Nash equilibrium, we can find a coalition, C, such

that, by opening all markets, each member of the coalition obtains a payoff at

least as great as that in the no-trade equilibrium, while at least one member of

the coalition, say agent i, obtains a strictly higher payoff. Let (B,Q) = (b0,b0)
denote the state where all agents follow a no-trade strategy, and ( eB, eQ) denote
the corresponding state after the deviation by C. We have argued that there

exists i ∈ C whose payoff when he follows trading strategy esi satisfies
U i(esi; eB−i, eQ−i) > U i

³
0;b0,b0´ . (29)

Let

0 =
1

2

h
U i(esi; eB−i, eQ−i)− U i

³
0;b0,b0´i > 0. (30)

16



Then

U i(esi; eB−i, eQ−i)− U i
³
0; eB−i, eQ−i´ =

U i(esi; eB−i, eQ−i)− U i
³
0;b0,b0´ > 0. (31)

This is because non-deviant agents do not trade even when coalition C opens

all markets. Thus, the payoffs to all such agents remain the same as in no-trade

equilibrium.

More generally, now, consider any profile
¡
t1, ..., tK

¢
6= (0, ..., 0) that does

not constitute a full Nash equilibrium. Then, there exists a coalition of agents

(possibly a singleton), C, such that by opening a market or (if all markets

open) by deviating, each member of C obtains a payoff at least as great as her

original payoff, and there exists an agent i in C who obtains a strictly higher

payoff than before. Let (B,Q) denote the original state and ( eB, eQ) denote the
corresponding state after the deviation by C. The payoff to agent i that follows

trading strategy si satisfies

U i(si; eB−i, eQ−i) > U i
¡
ti;B−i,Q−i

¢
. (32)

Next, we need to demonstrate that payoffs to non-deviant agents can change

only by a small amount.

Let

0 =
2

3

h
U i(si; eB−i, eQ−i)− U i

¡
ti;B−i, Q−i

¢i
> 0. (33)

Clearly, the payoff to non-deviant agents can be affected only in those markets

that are initially open. Suppose that there are 1 ≤ M ≤ L such markets.

Let k•kM denote the norm of a vector of bids and offers restricted to the M

initially open markets. The payoff function, U i, is continuous in the bids and

offers that take place in the M originally open markets. Therefore, for any

player i /∈ C, there exists a δ0 > 0 such that for all ( eB−i, eQ−i) such that
17



°°°(B−i, Q−i)− ( eB−i, eQ−i)°°°
M

< δ0, we have¯̄̄
U i
¡
ti;B−i, Q−i

¢
− U i

³
ti; eB−i, eQ−i´¯̄̄ < 0

2
. (34)

Thus, for
°°°(B−i, Q−i)− ( eB−i, eQ−i)°°°

M
< δ0 we have

U i
³
si; eB−i, eQ−i´− U i(ti; eB−i, eQ−i) =

U i
³
si; eB−i, eQ−i´− U i(ti;B−i, Q−i) + U i(ti;B−i, Q−i)− U i(ti; eB−i, eQ−i) ≥h

U i
³
si; eB−i, eQ−i´− U i(ti;B−i, Q−i)

i
−
¯̄̄
U i(ti; eB−i, eQ−i)− U i(ti;B−i, Q−i)

¯̄̄
≥

3

2
0 −

1

2
0 > 0. (35)

In order to complete the proof, we need to bound the effects of a deviation

by the coalition C. In other words, we need to demonstrate that indeed°°°(B−i,Q−i)− ( eB−i, eQ−i)°°°
M

< δ0. (36)

The argument proceeds in parallel to that in the proof of Theorem 1. First,

consider all initially open markets. For such markets, j, define maxi t
i
j = λj >

λ > 0. The “price” faced by agent i in market j is

pij =
B−ij

Q−ij
. (37)

At the original state
¡
t1, ..., tK

¢
, the coalition C can maximally increase the

price faced by agent i on market j by

¡
pij
¢+
=

B−i−Cj + eBC
j

Q−i−Cj + 0
, (38)

where eBC
j =

P
t∈C

eBt
j =

P
t∈C

P
l 6=j

wtl
Q−Cl + t∈C wtl

B−Cl . Similarly, C can max-

imally decrease the above price by

¡
pij
¢−
=

B−i−Cj + 0

Q−i−Cj + wC
j

, (39)
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where wC
j =

P
t∈C wt

j . Thus,¯̄̄¡
pij
¢+ − pij

¯̄̄
=

¯̄̄̄
¯B
−i−C
j + eBC

j

Q−i−Cj

−
B−i−Cj +BC

j

Q−i−Cj +QC
j

¯̄̄̄
¯ ≤

¯̄̄̄
¯̄
³ eBC

j −BC
j

´
¡
Q−i−Cj +QC

j

¢
¯̄̄̄
¯̄+ QC

j

Q−i−Cj

¯̄̄̄
¯̄
³
B−i−Cj + eBC

j

´
¡
Q−i−Cj +QC

j

¢
¯̄̄̄
¯̄ . (40)

Note that ¯̄̄ eBC
j −BC

j

¯̄̄
≤
X
t∈C

X
l6=j

wt
l

N

nl

β

λl
.

By condition (2) in the statement of the Theorem,

Q−ij ≥ njλj , (41)

and since C involves at most one agent from each of the K types of consumers,

QC
j ≤ Kwj ≤ Kβ. (42)

Thus, ¯̄̄̄
¯̄
³ eBC

j −BC
j

´
¡
Q−i−Cj +QC

j

¢
¯̄̄̄
¯̄ ≤ ∙(L− 1)K β2

λlλj

¸
N

nlnj
≤ 1
2
δ0.

Next, note that

QC
j

Q−i−Cj

¯̄̄̄
¯̄
³
B−i−Cj + eBC

j

´
¡
Q−i−Cj +QC

j

¢
¯̄̄̄
¯̄ ≤ ∙K β2

λjλj

¸
N

(nj − 1)nj
≤ 1
2
δ0.

Hence, ¯̄̄¡
pij
¢+ − bpij ¯̄̄ ≤ δ0. (43)

By an analogous argument, ¯̄̄¡
pij
¢− − bpij ¯̄̄ ≤ δ0. (44)

Therefore, the profile
¡
t1, ..., tK

¢
is not an 0-SESS.¥

19



Finally, the next Corollary connects our solution concept to Walrasian equi-

librium. It follows directly from our Theorem 2 when we invoke the main Propo-

sition in PS.

Corollary 1 Consider an economy E that, for any positive numbers α, , β, and

λ satisfies the following: (1) (λ1, ..., λL) > λ (1, ..., 1), (2) wi < β (1, ..., 1), (3)

there exists δ( ) > 0 such that for any two populations i and j, 2 (L− 1)K
³

β2

λiλj

´
N

nlnj
<

δ( ), (4)
P

i∈I w
i > Nα(1, ..., 1), and (5) N > 16Lβ/α 2. Then any allocation

resulting from a strategy profile that constitutes an -SESS is -Walrasian.

Conditions (1)-(3) are needed for both Theorems 1 and 2. Conditions (4)

and (5) are used in PS and further strengthen the first three. They jointly

require that the number of agents in the economy are sufficiently large and that

the aggregate endowment vectors are sufficiently small.

As we mentioned before, the above results will not hold in general if the

economy is populated by a small number of agents. In that case, by having a

non-negligible effect on prices, an agent deviating from the full Nash equilibrium

allocation may be able to make himself better off relative to the other agents of

his type. Therefore, full Nash equilibria may not correspond to -SESS if agents

have significant market power. While this observation is consistent with the

traditionally held view that competitive outcomes arise when individual agents

are of insignificant size, it is distinct from Vega-Redondo (1997), in which a

competitive outcome is shown to be evolutionary stable in the context of a

Cournot oligopoly model where agents have significant market power. This

suggests that whether a partial or a general equilibrium framework is assumed

matters when determining the evolutionary stability of Walrasian outcomes.
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4 Discussion

We studied the evolutionary stability of full Nash equilibria in the context of

strategic market games. We introduced a strong version of evolutionary sta-

ble strategies, SESS, for asymmetric games played by finite populations. SESS

requires stability against coalitions consisting of multiple agents. The introduc-

tion of a small number of “mutants” is sufficient for Pareto improving trade

to be generated. Thus, Pareto inferior strict Nash equilibria where some or

all markets are closed due to a coordination failure, as well as all non-Nash

outcomes, do not constitute SESS. Provided that agents lack market power,

full Nash equilibrium outcomes were shown to be the only -SESS. While our

specification of the market game closely follows the one in PS, we believe that

our analysis holds under alternative specifications. One extension that we are

currently pursuing concerns studying replicas of an arbitrary pure exchange

economy and investigating the relation between the corresponding -SESS and

Walrasian equilibria.8

Throughout the paper we required stability against coalitions consisting of

K agents (one per population). One could ask whether our results would be

different if we required stability against any coalitions of size K (possibly sev-

eral per population). Indeed, our results would hold under this more general

specification, and we adopted the more restrictive notion for notational conve-

nience. The reason is as follows. Clearly, any outcome that does not satisfy

our notion of stability would not satisfy the more general notion. In addition,

full Nash equilibria will satisfy the more general notion since, provided that

the economy is sufficiently large, there is no coalition consisting of K agents

that will have an appreciable effect on the price vector. Thus, the approximate

evolutionary stability of full Nash equilibria will remain intact under the more

8The notion of a replica economy goes back to Edgeworth (1881) and Cournot (1897).
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general specification.9

Peck and Shell (1990) and Ghosal and Morelli (2004) study variations of

market games in which competitive outcomes prevail even when the number

of traders is small. It would be interesting to study whether our evolutionary

story can be embedded in their setups. An important extension of our analy-

sis concerns the relation between our static SESS concept and the asymptoti-

cally stable points of a suitably defined dynamic system describing the learning

process. Such a dynamic system must be able to distinguish between Walrasian

outcomes and other strict Nash equilibria involving (partial) autarky outcomes.

This extension is left to future research. Finally, an advantage of the proposed

setup is that it is simple enough to be implemented in an experimental environ-

ment. In future work, we plan to study under what specifications of preferences

and endowments human subjects will exhibit behavior consistent with SESS in

a laboratory environment.
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