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Abstract

Research shows that absent all frictions but incomplete asset markets, at almost every equilibrium a

Pareto improvement is supported by many types of intervention, financial, monetary, and fiscal.

Surprisingly, little is known about the size of these Pareto improvements, or even how to define their

”size.”

We provide a measure of the maximal Pareto improvement, as the largest fraction of current resources

a society is willing to pay for the improvement. It can evaluate global policy changes, not just local.

This measure admits an exact formula in the quasilinear case, an upper bound in the general case,

and it obeys the law of diminishing returns. We show that local information already captures the benefits

of global policies, thus supporting the literature’s focus on local Pareto improvements despite global ones

being greater.

We define and calibrate the insurance deficit in future income, and then estimate the maximal Pareto

improvement in the US to be one third of one percent. We justify this calibration by proving a novel

correspondence between insurance deficit and equilibrium consumption: equilibrium consumption is the

maximum of a social welfare function, whose parameters are the insurance deficit as well as individual

weights, extending a classical result of Lange (1942) to incomplete markets.
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1 Introduction

When asset markets provide only incomplete insurance against uncertainty in future income, it is well known
that for almost all economies, all its equilibria are Pareto inefficient, Magill and Quinzii (1996). The generic
existence of Pareto improvements, via lump sum changes in future income, is robust in several senses. It does
not require creating new markets, the existing ones suffice; nor optimizing agents, they may be behavioral,
Nagata (2005). Further, if there are multiple commodities per state, it is robust even to the flexibility of
lump sum changes in income, restrictive policies suffice: lump sum changes in portfolios, Geanakoplos and
Polemarchakis (1986); lump sum changes in current income plus a mild policy instrument, Citanna, Kajii,
and Villanacci (1998); taxation of asset trades, Citanna, Polemarchakis, and Tirelli (2006); anonymous
income taxes, Tirelli (2002); excise taxes or capital gains taxes, Turner (2005).
Though the existence of Pareto improvements is by now robustly established, there is little on the how

“large” these Pareto improvements are. It is important that they be larger than the policy maker’s ex ante
cost of realizing them, whether it be the cost of information or of implementation. In particular, computing
them seems to involve fine information. For example, preferences are recoverable if one can know every
agent’s entire excess demand function, including out of equilibrium, Geanakoplos and Polemarchakis (1990);
or know the equilibrium prices that would prevail if the endowments were perturbed in an arbitrary but
small direction, Kübler et al. (2002).
We define the “size” of a Pareto improvement to be the fraction of current total income agents are willing

to pay for it. This measure is in real terms, for ordinal preferences. To be more explicit, assume agents’
preferences are over income yh = (yh0 , y

h
1), meaning a current amount and an uncertain, state-contingent

future amount. If the income redistribution y = (yh)h weakly Pareto improves on the income distribution

x = (xh)h, then each agent has a willingness to pay ph out of current income, defining a total willingness
to pay p(y) := Σph—here ph is the maximum value making the agent still weakly prefer yh − (ph, 0) to
xh. We define the size of a weak Pareto improvement to x to be this, normalized by current total income:

ρx(y) :=
p(y)

Σxh0

Size is by construction between 0 and 1, an interval along which all Pareto improvements become ordered.
A policy intervention, whose goal is to support a Pareto improving reallocation y and whose cost is c

as a fraction of current total income, is not worthwhile if c > ρx(y), that is, if agents are not willing to pay
for it. The Pareto improvement it supports is ”too small.” A basic problem is settling when the above Pareto

improvements, proved to exist generically, are more than ”too small.” What is the quantitative significance
of the qualitative inefficiency?
We focus on the following question: Quantitatively, how inefficient is an allocation? Say, one arising from

equilibrium trade of incomplete assets? We define the size of the inefficiency of x to be the maximum size
of any weak Pareto improvement to x :

ρx := max
y%x

ρx(y)

This size is between 0 and 1 still, and is 0 if and only if the allocation is Pareto efficient, under mild conditions.
We deem the inefficiency ”too small” if c > ρx, that is, if agents are not willing to pay for any weak Pareto
improvement whatsoever.
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Our measure of inefficiency involves a restriction on the timing of payment, that it be out of current
income, not future as well. This restriction is natural because the underlying reallocations are to be Pareto
improving ex ante the resolution of uncertainty. How they handle the uncertainty is precisely what makes
them improving. The restriction is also crucial because such reallocations need not be Pareto improving
ex post the resolution of uncertainty. Thus the willingness to pay ex post may be different—perhaps even

zero due to moral hazard. Strategic reasons motivate not just our restriction on timing tacit in ρx, they
motivate the very incompleteness of assets. In this regard, our measure of inefficiency ρx is an updated
version of Debreu’s (1951). Debreu’s is the maximum fraction of current and future total income agents are
willing to pay for a Pareto improvement. (His coefficient of resource utilization is one minus this.) With
dated commodities, his measure hinges on ex post payments for an ex ante willingness that may vanish ex
post. (In any case, to the extent our measure is small, Debreu’s is even smaller.)
The size of inefficiency ρx admits an explicit formula in case preferences have a utility representation

that is quasilinear in current consumption: uh(x) = x0 + u
h
1(x1). Our measure requires maximizing p(y)

subject to y being both a reallocation of and weakly Pareto improving on x, i.e. to Σyh = Σxh and
yh0 ≥ xh0 + u

h
1(x1) − uh1(yh1). If y is a reallocation of x—and noting the willingness to pay ph solves

(yh0 − ph) + uh1(yh1) = xh0 + uh1(x1)—the total willingness to pay p(y) = Σph is p(y) = Σuh1(y
h
1)− Σuh1(x1).

To maximize this subject to y being weakly Pareto improving is to maximize Σuh1(y
h
1) subject to yh0 :=

xh0 + u
h
1(x1)− uh1(yh1) ≥ 0. Let y1(x) be a solution, so

ρx =
Σuh1(y

h
1(x))− Σuh1(xh1)
Σxh0

That this is the inefficiency reflects the classical understanding that with quasilinearity the appropriate
measure of “aggregate welfare” is the sum of utilities. Here, inefficiency is the amount by which future
“aggregate welfare” w1(x) := Σu

h
1(x

h
1) fails to be maximized, over current “aggregate welfare” w0(x) :=

Σxh0 .
1

Knowing how large inefficiency ρx can be depends on knowing the income distribution x.

If the income distribution x is known, the size of inefficiency is a specific number, given preferences.

We compute the inefficiency for an estimated US economy to be very small, ρUS = .0027, based on data on
households’ disposable income. The economy would not even pay one third of one percent of current total
income for any Pareto improvement whatsoever; it is nearly Pareto optimal. To estimate the economy, we
must specify the households and future states, first, and second (a) the income distribution, both current
and over these states, (b) these households’ preferences for income over these states. With all this freedom
for specification, any particular one is ad hoc. Ours is in addition very crude. First, we specify three agents,
representatives of the three income terciles, defined from data on the distribution of current disposable
income; and we imagine three future states, the status quo terciles, a rich-middle class switch in terciles, and
a middle class-poor switch in terciles—thus automatically specifying the full income distribution. Second,
we specify preferences to be von Neumann -Morgenstern utilities whose Bernoulli utility is CRRA with

parameter 1/4, as in Kocherlakota (1996). The body of the paper details how we extract the common state
1There are many ways to specify y0 from the maximand y1 and associated value p. For any nonnegative sequence (ph)

such that p = Σph, let yh0 := x
h
0 + u

h
1(x1)− u1(yh1 ) + ph. This weakly improves h and makes his willingness to pay precisely

ph.
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probabilities; broadly, they appear as unknowns in the first order conditions for optimal asset trades, which
we make incomplete by specifying only the riskless bond as tradeable.
On the other hand, if the income distribution x is arbitrary, the size of inefficiency can be a whole

subinterval [0, k]; further, k = 1 if utilities are quasilinear in current consumption. The intuition is simple.
Given total income, take any Pareto efficient distribution, where ρ is 0, and take any Pareto inefficient

distribution, where ρ is some k > 0. The segment connecting these two distributions must, by the
intermediate value and maximum theorems, span all intermediate values of ρ, [0, k]. To see how to arrange
k = 1 with quasilinearity, observe from the above formula that ρx = 1 if and only if all y

h
0 − ph = 0, if and

only if all uh1(x1) = u1(y
h
1) − xh0 . This lower bound for uh1(x1) is achievable by changing x1 as follows.

Take two states and assign some but not all households to one state and all the others to the other state, then
make all ”state one” households donate nearly all their income in that state to the ”state two” households,
and vice versa; an Inada condition on utility for future income then guarantees that uh1(x1)→ −∞ as these
donations drive x1 toward the boundary. Since uh1(x1)→ −∞, to undo this change agents are willing to
give up most of their current income-utility xh0 → 0; that is, ρx → 1. This argument for the arbitrariness of
ρx remains valid with various modifications, in case x must not be arbitrary but an equilibrium allocation

with incomplete asset markets; for example, in the absence of any assets, any allocation is an equilibrium
allocation.
There is a potential criticism of the prevailing analysis of Pareto suboptimality of equilibria: it is local.

Such is the analysis in all the works first cited above, for example. The prevailing analysis focuses only on
when and which local interventions are Pareto improving, and is mute on whether global interventions are
more dramatically Pareto improving and, if so, whether they point in the same direction as the local ones.
A natural lens to scrutinize this potential criticism is the measure of inefficiency ρx, since it accounts for
global interventions as well as local. We find that this criticism is unjustified in the following two senses.
First, the willingness to pay for “policy activation” is relatively larger than for “policy continuation.”

Let y be an alternative allocation to x for which there is some willingness to pay p(y) ≥ 0, and
y(t) := x+ t(y − x) the path leading to this alternative y(1) = y from the status quo y(0) = x, t ∈ [0, 1].
We show p(y(t)) ≥ tp(y), so that the worth p(y(t)) of activating only a t-fraction t(y−x) of the full policy
exceeds a t-fraction of the worth p(y) of completing the full policy (y − x). In the same spirit, we show
p(y(t)) is concave in t. Lastly, p(y(t)) is increasing, if y is the weakly Pareto improving reallocation
that maximizes p(y); this is a direction of change where a partial implementation is dominated by any fuller
implementation.2 See proposition ??.
Second, though local Pareto improvements clearly are bounded above by more global Pareto improve-

ments in terms of willingness to pay (thanks to continuity), the converse is true in an informational sense:
global Pareto improvements are bounded above by local Pareto information, that is, by the information

typical in analyses of local Pareto improvements. Specifically, an upper bound for size of local Pareto im-
provements is also an upper bound for the size of global Pareto improvements, upon formally replacing the
local by the global in the expression. To clarify this, let ∇hs (xh) be the marginal rate of substitution of
income in future state s for current income. Locally, the total willingness to pay for having agent h donate
to i the infinitesimal income ẋhs in state s is (∇is −∇hs )ẋhs , in terms of current income. To maximize

2 Increasingness of p(y(t)) does not imply that y(t) is weakly Pareto superior to x.
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the total willingness to pay for an infinitesimal transfer ẋs in state s, everyone must donate to that state’s
most deprived agent i(s)—meaning i(s) has the largest ∇is(xi)—thus exactly achieving the infinitesimal
willingness

ΣsΣh(∇i(s)s −∇hs )ẋhs
Σxh0

(1)

as a fraction of total current income. The maximum subject to ẋ being in a given ball is an upper bound for

the maximum subject to the further constraint of ẋ being weakly Pareto improving. This latter maximum is
the infinitesimal analogue of the inefficiency ρx, and as noted is bounded above by (1). Globally, consider the
total willingness to pay for such donations to the deprived, but now involving the full income x instead of
the infinitesimal income ẋ. Since willingness to pay is concave, what was an upper bound for the infinitesimal
analogue of ρx should certainly remain an upper bound for ρx, on expanding the infinitesimal donation ẋ
to the greatest donation x :

Rx :=
ΣsΣh(∇i(s)s −∇hs )xhs

Σxh0
(2)

That ρx ≤ Rx is indeed true; proposition 3. In conclusion, the expression (1) for an upper bound for
the local Pareto improvements is, remarkably, also an upper bound for all Pareto improvements: one need
only replace the infinitesimal ẋ by the global x—the income distribution in question. In particular, the
information required to compute the direction of some local Pareto improvement y = x+ ²ẋ, namely ∇(x),
is enough to compute an upper bound Rx for the size of all global Pareto improvements y = x + ∆x,

namely px(y) ≤ ρx ≤ Rx. Incidentally, this upper bound is zero at an interior Pareto optimum, where all
the marginal rates of substitution are equal.

1.1 Calibration strategy

We define the insurance deficit of an allocation, in terms of the marginal rates of substitution ∇h(x) as

µh := ∇h −∇

where ∇ := 1
HΣ∇

h is the average. For any allocation x, clearly Σµh = 0. For an equilibrium allocation
x relative to the asset structure a ∈ RS×J with an incomplete J ≤ S number of assets, the first order
conditions for agent’s optimal portfolios imply a key property:

µha = 0, all h (3)

Note, x is a complete asset markets allocation if and only if it is Pareto optimal iff µ(x) = 0. For this
reason we call µ the insurance deficit.
The insurance deficit is a function of the utilities defining the marginal rate of substitution, and of the

allocation. If utilities are von Neumann Morgenstern, and the Bernoulli utilities given, then we may view the
insurance deficit just as a function of the state probabilities and of the allocation, µ = µ(π, x). Specifying
the state space, we take data on consumption x and seek probabilities that solve equation (3), which is
necessary to rationalize the data as equilibrium consumption. It turns out that these equations are linear
in π, and number precisely dimπ = S for our choice of the state space, so there is a unique solution π
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if the data are in general position. This is an atypically favorable situation for calibration. With the state
probabilities recovered, so are the preferences, allowing a numerical computation of the inefficiency.
A theoretical question that plagues calibrations is whether the calibrating equations, here (3), contain

all the model’s restrictions. We show this is not the case here. That is, given preferences and a vector
µ satisfying (3), there is a unique equilibrium consumption x whose insurance deficit µ(x) is µ.

This correspondence between insurance deficits and equilibrium consumptions is an extension along the
lines traced in Tirelli (2005) of a classical result of Lange (1942) to incomplete markets result: equilibrium
consumptions are the maxima of a social welfare function whose parameters are the insurance deficits as
well as individual weights, both of which lie is linear spaces.
We proceed as follows. Section 2 defines the model. Section 3 defines the measure of inefficiency. Section

4 characterizes it for special utilities, bounds it for general utilities, and shows it obeys the law of diminishing
marginal returns to interventions. Section 5 connects our measure of inefficiency with the traditional local
calculus analysis, and provides a justification for this tradition. Section 6 calibrates the inefficiencies in
several regions. Section 7 describes the global parameterization of equilibrium allocations. An appendix
contains the longer or less important proofs.

1.2 Related literature on equilibrium welfare in the absence of complete asset
markets

On equilibrium welfare in the absence of complete asset markets, a focal contribution is Levine and Zame
(2002), who show that the incomplete assets still allow full risk sharing, if (1) agents are infinitely patient,
(2) there is a single commodity per state, (3) idiosyncratic income risk is transitory, (4) a one-period bond
is tradeable. The underlying idea is in Bewley (1980), that the bond allows for an eventual build up of a
buffer stock of savings, unlikely to ever be depleted by a long sequence of transitory shocks, and therefore

likely to always help finance constant consumption; with nearly infinite patience, the consumption foregone
while initially saving affects only a vanishing fraction of total utility. The idea that a risk averse agent would
optimally smooth consumption over time appears in Friedman’s (1957) permanent income hypothesis. Levine
and Zame do not quantify the smallness of the individual welfare loss, when patience is large but merely
finite, but any Pareto inefficiency is clearly vanishing in the sense of our willingness to pay ex ante. We may
view the broader literature on the topic in relation to how it relaxes assumptions (2-4), with relaxation of
(1) being standard.
Lucas (1987) relaxes (4) alone, in an extreme way, positing a representative agent who in equilibrium

cannot trade anything, in particular a bond. Equilibrium is necessarily Pareto optimal, and the interesting
welfare question is as to how large the risk premium of idiosyncratic income is. That is, what is the

representative agent’s willingness to pay for replacing risky future income by riskless expected income, for
smoothing the business cycle? Lucas calibrates it to be about one half of one percent of expected income.
The question we ask, instead, when allowing asset markets a role, how well do they enable agents to allocate
future income, risky as it is? A literature has followed, enriching Lucas’ model with heterogeneous agents,
assets, and trade frictions, Deborah Lucas (1994), Krusell and Smith (1998, 2002) and Rios-Rull (1994)
being representative, which still find the risk premium to be small. Other attempts such as the introduction
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in these models of preferences with habit formation had also have little impact on this measure, see Diaz,
Pijoan-Mas, Rios-Rull (2003).
Kurz (2005) challenges Lucas’ small number as evidence that the business cycle is negligible for welfare,

noting that it is calibrated with data that may already reflect substantial and successful smoothing of the
business cycle; rather, it is at best interpretable as the worth of marginal smoothing to existing smoothing.

Further, he builds a model where the smoothing arises not exogenously, but endogenously as firms and
consumers build buffer stocks, and estimates the implied cost to be much higher, 4% of total income.
Relaxation of (3) alone is the domain of our two-period model here, where the utility for the second period

income shock is interpretable as the discounted utility of a permanent income shock. In this interpretation of
the model, although a one-period bond is not explicited for future trade, it would not be traded if available,
since those with a negative permanent shock cannot borrow forever, and those with a positive permanent
do not want to save forever. Keeping to an infinite-period model, Krebs (2003) allows for two-dimensional,
persistent shocks to idiosyncratic income and finds a cost of 9-11% of expected income, much larger than
Lucas’.
Geanakoplos and Polemarchakis (1986) relax (2) and show that Pareto inefficiency obtains even relative

to reallocations that must be financed by existing assets. Subsequent research in this line, as cited above,
reaffirms the strong sense of Pareto inefficiency, relative to various other restrictions on reallocations, such
as supportability by particular fiscal, monetary, or financial policies. Levine and Zame (2002) themselves
relax (3).
The literature, broadly split, either focuses on Pareto inefficiency, but then only qualitatively, or else on

quantitative measures, but then only by eliminating the risk in future incomes. We focus on quantifying
Pareto inefficiency of equilibrium, and in particular on the success of incomplete assets in allocating risky
future incomes; our question requires us not to touch the risk in future incomes, not to smooth the business
cycle.

Our paper is organized as follows. Section 2 defines the model. Section 3 defines the measure of
inefficiency. Section 4 characterizes it for special utilities, bounds it for general utilities, and shows it obeys
the law of diminishing marginal returns to interventions. Section 5 connects our measure of inefficiency with
the traditional local calculus analysis, and provides a justification for this tradition. Section 6 calibrates
the inefficiencies for the US. Section 7 describes the global parameterization of equilibrium allocations. An
appendix contains the longer or less important proofs.

2 Economy and equilibria

Primitives Households h = 1, ...,H know the present state of nature, denoted 0, but are uncertain as
to which state among s = 1, ..., S nature will reveal next. In each state there is a nonstorable commodity

available for consumption, and in state 0 there are assets j = 1, ..., J available for trade.
Economy Given limited resources r ∈ RS+1++ of the commodities and limited number J ≤ S of assets,

an economy (e, a) ∈ RH(S+1)+ × RS×J specifies to each household h an endowment of eh ∈ RS+1++ units
and to each asset j a claim of aj ∈ RS units of the commodity across states, constrained so that Σeh = r
and a has rank J. We write E(r) :=

n
e ∈ RH(S+1)++ : Σeh = r

o
.
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Markets Markets specify that each asset j is tradeable at a price of qj units of the state 0 commodity,
by specifying q = p0a for some p ∈ RS++. Q ⊂ RJ denotes these asset prices, which arise as the cost of their
claims relative to some future state prices. Viewing asset prices as a negative claim, asset claims become

W :=

Ã
−q
a

!
∈ RS+1×J . Households are free to trade any amount θhj ∈ R of any asset: buy θhj > 0, sell

θhj < 0, or neither θhj = 0. Trades of asset j clear if Σθhj = 0.
Consumption Fixing asset claims throughout, each household trades assets as a function of asset prices

and its endowment, θh : Q×RS+1++ → RJ , consuming xh
¡
q, eh

¢
:= eh +W θh

¡
q, eh

¢
. Trades are optimal

for the utility function uh : RS+1+ → R if

uh(xh(q, eh)) = supuh(eh +WRJ)

Definition 1 (q, e) ∈ Q × E(r) is an equilibrium if trades of all assets clear, Σθh(q, eh) = 0. It is a

no-trade equilibrium if θh(q, eh) = 0 for every h.

The sets of equilibria, no-trade equilibria are denoted by E(r),T(r).

Definition 2 x ∈ RH(S+1)+ is Pareto optimal ↔ y ∈ RH(S+1)+ ,Σyh = Σxh imply (uh(yh))h ≥ (uh(xh))h
can only hold with equality.

2.1 Assumptions

Assumption 1 In the economy, eh À 0 is strictly positive and a ∈ RS×J has rank J.

Assumption 2 (smooth preferences) ∀h, uh is continuous, C2 in RS+1++ , strictly increasing (∀x ∈ RS+1++ ,Du
h(x)À

0), strictly concave (∀x ∈ RS+1++ ,D
2uh(x) is negative definite), and boundary averse (∀x0 ∈ RS+1++ , u

h(x) ≥
uh(x0)⇒ x ∈ RS+1++ ).

Assumption 3 Trades by h are optimal for uh.

3 Measure of inefficiency

We propose a variation of Debreu’s coefficient of resource utilization (1951).

Definition 3 The risk sharing inefficiency of x ∈ E(r) is the value ρx of

max
y

ρ s.t. uh(yh) ≥ uh(xh),Σyh1 = r1,Σyh0 = (1− ρ)r0 (4)

It is the maximum fraction of current resources r0 that society is willing to pay for an ex ante Pareto
improving reallocation of tomorrow’s risky resources r1. Thus a solution y is an optimal arbitrage
allocation.
The only, but major, difference with Debreu’s definition is his constraint on future resources, Σy1 =

(1 − ρ)r1, which reduces them. Since the role of assets is to allocate risky future resources r1, changing
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them is to deflect our question: how well do assets fulfill this role? (To the extent our coefficient is small,
Debreu’s is even smaller.)
Rewriting the last constraint, ρ = 1− Σy

h
0

r0
, renders the problem more convenient for analysis:

max
y1

1− Σy
h
0

r0
s.t. uh(yh) ≥ uh(xh),Σyh1 = r1 (5)

Proposition 1 Suppose y À 0 is feasible for (4)=(5). Then it is a solution iff is Pareto optimal and
makes all welfare constraints bind.

Proof. Necessity. Let y be a solution and ρ its value. Suppose z is a counterexample, i.e.
Σzh0 = (1 − ρ)r0,Σz

h
1 = r1 and uh(zh) ≥ uh(yh) with strict inequality for some i. Since yh À 0 by

assumption, boundary aversion implies zh À 0; reduce zi0 to zi0 − ²r0 by some ² > 0. By continuity, a

small enough ² is feasible still, in that ui(zi0 − ²r, zi1) > ui(yi) ≥ ui(xi) . But now this modified z0 sums
to (1− (ρ+ ²))r0 so that ρ+ ² > ρ is feasibly supported, contradicting the maximality of ρ. By a similar
argument, a solution gives welfare slack ui(yi) = ui(yi0, y

i
1) > u

i(xi) to no i.

Sufficiency. If not, let z be feasible for (5) and imply greater destruction of 0 resources than does y.
Since z is feasible and y is welfare binding, uh(zh) ≥ uh(xh) = uh(yh). Thus z weakly Pareto dominates
y, and the z+ gotten from z by restoring the extra 0 resource not already destroyed by y, by monotonicity,
Pareto dominates y, contradicting its Pareto optimality.
Tacitly, we allow the reallocation y in problem (4) to reflect any lump-sum transfer, even state contingent.

If we were to constrain further the reallocation to arise from a particular policy—fiscal, monetary, or financial—

then problem (4) would have a no greater feasible set, hence define a no greater “constrained inefficiency.”
(For a formalization of policy, see the appendix.) So the inefficiency as defined by (4) is an upper bound,
uniformly over all policies, for such an alternate constrained inefficiency.

Corollary 1 Suppose xÀ 0. Then ρx = 0 iff it is Pareto optimal.

3.1 The greatest Pareto improvement

We define the size of a Pareto improving reallocation, and show that its maximum value is precisely r0ρx.

Thus ρ gives meaning to the phrase “the greatest Pareto improvement.”

Definition 4 Fix x ∈ E(r), xÀ 0. If ỹ ∈ E(r) is a weak Pareto improving reallocation of x, its size is
p(ỹ) := Σph, where for every h ph is the maximum real number such that uh(ỹh0 − ph, ỹh1) ≥ uh(xh).3

We interpret ph for each agent h as his maximum willingness to pay for ỹ, and p(ỹ) is the
maximum total willingness to pay for ỹ, out of current income. Incidentally, continuity implies the equality
uh(ỹh0 − ph, ỹh1) = uh(xh).

3Note, the asserted maximum ph exists. It suffices that the set of qh satisfying uh(ỹh0 − qh, ỹh1) ≥ uh(xh) be nonempty,
closed, and bounded above, by the completeness of reals. It is nonempty: qh = 0 works since uh(ỹh) ≥ uh(xh) by
assumption. It is closed since uh is continuous. It is bounded above since boundary aversion and x À 0 imply that
uh(ỹh0 − qh, ỹh1) ≥ uh(xh) only if (ỹh0 − qh, ỹh1)À 0, so qh ≤ ỹh0 .
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Thanks to the theorem of the maximum and our assumptions on utility, the size p = p(ỹ) is continuous,
as a function of the weak Pareto improvement ỹ, so by Weierstrass’ theorem it attains its maximum value,
as the set of weak Pareto improvements in E(r) is closed and E(r) is compact.

Remark 1 Fix x ∈ E(r), x À 0. Then among the weakly Pareto improving reallocation of x, the size
attains its maximum value, termed the greatest Pareto improvement.

The following simple fact is proved in the appendix.

Proposition 2 (inefficiency as the greatest Pareto improvement) Fix x ∈ E(r), x À 0.Then the
greatest Pareto improvement is r0ρx.

3.2 On the arbitrariness of equilibrium inefficiency

Research shows that absent all frictions but incomplete asset markets, at almost every equilibrium a Pareto
improvement is supported by many types of intervention, financial, monetary, and fiscal. How large are these
Pareto improvements in the sense of ρ? We would like to decide whether ρ is “large” or “small.” This is

impossible since the variety of income distributions, even if restricted to be equilibrium allocations, supports
any value of inefficiency in the interval [0, 1].

Example 1 H = 2 = S, common utility u(x) = x0 +
1
2 lnx1 +

1
2 lnx2 = x0 +

1
2 lnx1x2. Total resources are

r in every state. Only a bond exists. The allocation x(²) is x1 = ( r2 , ², r− ²), x2 = (
r
2 , r− ², ²), a no-trade

GEI due to its symmetry. Clearly ²0 =
r
2 makes x(²0) Pareto optimal, so by corollary 1 ρx(²0) = 0.

We now find an ²1 with ρx(²1) = 1. It will then follow, by the continuity of ρ ◦ x and the intermediate
value theorem, that any value in [0, 1] = [ρx(²0), ρx(²1)] is the inefficiency of the allocation x(²) for some
² between ²0, ²1.

We compute ρx(²). Since utilities are common and status quo utility levels u(x1) = u(x2) too, the
optimal arbitrage y treats them equally. Since it is Pareto optimal also, it must have yh1 = ( r2 ,

r
2). The

question is now to find the smallest yh0 = c satisfying u(y) ≥ u(x)̇ :

c+
1

2
ln
r

2

r

2
≥ r
2
+
1

2
ln ²(r − ²)

Simplifying and rearranging,

2c = r + ln ²(r − ²)− ln r
2

r

2
= r + ln

4²(r − ²)
r2

By definition,

ρx = 1−
Σyh0
r0

= 1− 2c
r
= −1

r
ln
4²(r − ²)
r2

Choosing ² such that ln 4²(r−²)
r2

= −r implies ρx = −1r (−r) = 1, as desired. One can check such ² is
r
2(1−

√
1− e−r).

In view of this arbitrariness, the rest of the paper assumes the income distribution is known. In the
theoretical part, the income distribution appears in parametric form; in the empirical part, it appears as
extrapolated data.
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4 Welfare analysis of global interventions

By definition, the inefficiency ρ measures the maximum total willingness to pay for a Pareto improvement,
and here we provide three results about it. First, we provide a closed expression for inefficiency as a function
of the income distribution and of 0-quasilinear utilities. By 0-quasilinear utilities we mean with respect
to current consumption: u(x) = x0 + u1(x1). As it turns out, it reaffirms the classical understanding that
with quasilinearity an appropriate measure of “aggregate welfare” is the sum of utilities. Second, for general
utilities, we provide an upper bound for inefficiency as a function of the income distribution and the marginal
rates of substitution. The derivation makes clear that the error in the upper bound is increasing in concavity
of the utilities, as it effectively linearizes them. In addition, knowledge that the allocation is an equilibrium
allocation provides makes the upper bound more explicit. Third, we prove that the law of diminishing
marginal returns is valid for global interventions, whatever the direction.

Both the upper bound on inefficiency and the law of diminishing marginal returns to intervention are
based on the following basic fact about concavity, which makes a global statement based on infinitesimal
information:

Lemma 1 Suppose f : A→ R is C1. Then it is concave iff for all a∗, interior a ∈ A

f(a∗)− f(a) ≤ Df(a)(a∗ − a) (6)

4.1 Quasilinear case: exact formula for inefficiency

We provide a closed expression for inefficiency as a function of the income distribution and of 0-quasilinear
utilities, u(x) = x0 + u1(x1).
Let x̃ be a weakly Pareto improving redistribution of x ∈ E(r). Then an agent’s maximum willingness

to pay ph out of current income clearly satisfies u(x̃h)− ph = uh(xh), which rearranged and summed gives
the total willingness to pay

p(x̃) = Σu(x̃h)− Σuh(xh) = Σu1(x̃h1)− Σuh1(xh1) +Σx̃h0 − Σxh0
= Σu1(x̃

h
1)− Σuh1(xh1)

since the redistribution satisfies Σx̃h0 − Σxh0 = 0. By proposition 2 ρx =
max p(x̃)

r0
, so

ρx =
1

r0

∙
max
y∈E(r)

Σu1(y
h
1)− Σuh1(xh1)

¸
That this is the greatest Pareto improvement is consonant with the classical understanding that with quasilin-
earity the appropriate measure of “aggregate welfare” is the sum of utilities Σuh1(x

h
1). Here, here inefficiency

of an allocation specializes to the amount by which “aggregate welfare” fails to be maximized.

4.2 General case: upper bound for inefficiency

Ideally, there would exist a formula for the inefficiency ρ explicitly in terms of fundamentals. Unfortunately,
such a formula is elusive, and that it is should not be surprising, given that such a formula for Debreu’s

10



coefficient is missing in the fifty years since its definition. Nonetheless, for some questions, an exact formula
is superfluous if an inexact formula can answer them. The question we have in mind is when incompleteness
of asset markets by itself is a rationale for lump-sum intervention, granting full knowledge of the state-
contingent allocation. The answer would be no, if the upper bound —the inexact formula— were tiny and
the intervention constrained to be Pareto improving. For a tiny upper bound implies that the maximum

willingness to pay for a lump-sum intervention is tiny too. The advantage of the upper bound is that it
requires knowledge not of the whole utilities but of their marginal rates of substitution. The idea of the
upper bound is to remove all concavity (diminishing marginal utility) for an arbitrageur to extract an even
larger total willingness to pay his proposed Pareto improving reallocations.
Denote the marginal rate of substitution of future income for current one by

5 :=
(Dxsu)s
Dx0u

∈ RS++

and for an allocation xÀ 0 the state-by-state maximum over households by

5∗ := (max
h
5h
s )s

We show next that an upper bound is4

Rx :=
1

r0
Σ
¡
5∗(x)−5h(xh)

¢
xh1 (7)

The idea is that 5∗ indexes the most deprived household in each state, so that the total willingness to
pay is maximized by having, in each state, all households donate to the most deprived. If the donation
is the infinitesimal amount ẋh1, calculus says that the net total infinitesimal willingness to pay is exactly
Σ
¡
5∗(x)−5h(xh)

¢
ẋh1, out of current income. Because of diminishing returns, if we were to increase the

donation from the infinitesimal to the full income xh1, the total willingness to pay should be at most this

expression with xh1 instead of ẋh1.

Proposition 3 The inefficiency of x ∈ E(r), xÀ 0 is bounded above by

ρx ≤ Rx (8)

Proof. The lemma implies that if y satisfies 0 ≤ uh(yh)−uh(xh) then it satisfies 0 ≤ Duh(xh)(yh−xh).
Therefore an upper bound for the value ρ of problem (5) is the value of the relaxed problem

ρ ≤ max
y1

1− Σy
h
0

r0
s.t.

Σyh1 = r1, y1 ≥ 0
0 ≤ Duh(xh)(yh − xh)

We recast this problem. Rewrite the welfare constraint as 0 ≤ λh0(y
h
0 − xh0) + D1uh(xh)(yh1 − xh1) where

λh0 := D0u
h(xh), divide by λh0 and rearrange to get

yh0 ≥ xh0 −∇h(yh1 − xh1) := yh0
4For a vector v ∈ RS+1, v1 ∈ RS denotes omission of the first coordinate, v0 its first coordinate. So 5h is (Duh)1

Dx0u
h
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Since the objective 1 − Σy
h
0

r0
is decreasing in y0, this inequality implies that at the optimal arbitrage y1

the value of the objective, which is ρx, is at most

1−
Σ
³
xh0 −∇h(yh1 − xh1)

´
r0

=
1

r0
Σ∇h(yh1 − xh1) =: R(x, y1)

It suffices to show R(x, y1) ≤ Rx. Since the optimal arbitrage y1 satisfies Σyh1 = r1, y1 ≥ 0, clearly
R(x, y1) is at most

max
y1

R(x, y1) s.t. Σyh1 = r1, y1 ≥ 0

We show this value is Rx. A feasible y1 for this problem is, for each s > 0, to allocate everything to a
household i = i(s) with the highest ∇is(xi) : y∗is = rs and y∗h6=is = 0. To see it is maximizing, note that
the R(x, y1) objective’s controllable part is Σ∇hyh1 since −Σ∇hxh1 is given. Since Σ∇hyh1 is to be
maximized, note for any feasible y1 that

Σ∇hyh1 = Σs

³
Σh∇hsyhs

´
≤ Σs

³
Σh∇h(s)s yhs

´
= Σs

³
∇h(s)s Σhy

h
s

´
= Σs

³
∇h(s)s rs

´
= Σs

³
Σh∇hsy∗hs

´
= Σ∇hy∗h1

revealing y∗1 as maximizing.
Thus we bound above a global object ρ by local information

³
∇h(xh)

´
h
. The argument used to derive

the bound implies that it will be tighter the less concave are utilities.
Note from the middle of the proof that 1

r0
Σ∇h(yh1 − xh1) is an even better upper bound, where y is

the optimal arbitrage. Of course, this is useless without knowledge of y1, which of course would allow us to
compute the exact inefficiency ρx = 1− Σy0r0 and make the upper bound superfluous. Yet it sheds light in
two ways. First, if xh1 = e

h
1+aθ

h is from an equilibrium allocation, then 1
r0
Σ∇h(yh1−xh1) = 1

r0
Σ∇h(yh1−eh1)

since Σ∇haθh = qΣθh = 0 thanks to the portfolio optimality equation ∇ha = q and asset clearing Σθh.

It follows that imitating the rest of the proof gives

Corollary 2 Suppose xh = eh +Wθh À 0 is an equilibrium allocation for the economy e ∈ E(r). Then
its inefficiency is bounded above by

ρx ≤
1

r0
Σ
¡
5∗(x)−5h(xh)

¢
eh1

Second, writing z := yh1 − xh1 for the net trade to optimal arbitrage, note Σ∇hzh = HCov(∇, z) since
Σzh = 0. So that ρx ≤ 1

r0
Σ∇hzh we may interpret as stating that, to first order, an optimal arbitrage seeks

net trades that maximize their covariance with the marginal rates of substitution.

4.3 The law of diminishing marginal returns to interventions

We show the law of diminishing marginal returns to interventions: for sequence of two interventions in the
same direction, the first part is worth proportionally more than the second part, in terms of the total willing-
ness to pay. In this sense also, small interventions capture a significant portion of the Pareto improvements
from large interventions.
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Let x be a status quo income distribution and y1 a reallocation of the future income. As in definition
4, we ask what is household h0s willingness to pay for the option to consume the future alternative yh1 ,

when he can consume xh = (xh0 , x
h
1)? To how little consumption yh0 would she be willing to deprive herself

for this option? The answer is the smallest solution yh0 of

uh(yh0 , y
h
1) ≥ uh(xh) (9)

Assumption 4 (temporary) A smallest solution ỹh0 = ỹh0 (y
h
1) of (9) exists and is unique, whenever

0 ≤ yh1 ≤ r1.

As a fraction of current resources r0, the willingness to pay for y1 = (y
h
1)h at x is

ρ(x, y1) := 1−
Σỹh0 (y

h
1)

r0

The connection with definition (5) of inefficiency is simple; if y is the optimal arbitrage at x, then
ρ(x, y1) = ρx, that is, the inefficiency is just the maximum willingness to pay.
The following establishes how a partial intervention compares with an intervention, in terms of willingness

to pay. A partial intervention is y1(t) =: (1 − t)x1 + ty1, t ∈ [0, 1]. Clearly it is a null reallocation for
t = 0 and the original intervention for t = 1.

Proposition 4 Suppose assumption 4 and each uh is concave. Then ρ(x, y1(t)) is concave in t and
ρ(x, y1(t)) ≥ tρ(x, y1)—with strict inequality if in addition t ∈ (0, 1), z1 6= 0, and each uh is strictly concave
and continuous in 0-consumption.

Corollary 3 (monotonicity) Let y1 be the optimal arbitrage at x. Then the maximum willingness to pay
for the partial arbitrage y1(t) := (1− t)x1 + ty1, t ∈ [0, 1] is monotonically increasing from the minimum
0 at t = 0 to the maximum ρx at t = 1.

Proof. As noted, ρ(x, y1) = ρx when y1 is an optimal arbitrage, and ρ(x, x1) = 0 if uh is increasing
in 0 consumption. That ρ(x, y1(t)) is concave and maximized at t = 1 implies it is monotonically
increasing.

5 Welfare analysis of local interventions

There is a potentially serious criticism of the typical analysis of the inefficiency in GEI: it is local and, most
importantly, local improvements has not quantified their size, or even defined the notion of size (see Magill
and Quinzii (1996)). The main focus of this local analysis is to establish the generic existence of a direction
of “local improvements,” which could be small compared with “global improvements.” By the size of the

improvement, we mean the measure ρ, which is interpretable as the size of the greatest Pareto improvement.
If this measure is small, local analysis does not miss much of the potential Pareto improvements. On the
other hand, if ρ is not small, local analysis would seem to miss most of the potential Pareto improvements.
We find that this criticism, although plausible, is unjustified. There is some evidence in favor of this

thesis, already: in every direction of intervention, i) its welfare effect is diminishing, and ii) the diminution
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is greater the more concave the preferences are. We now show that, formally, the local information on which
local interventions are based already captures the benefits of global interventions. Roughly put, an upper
bound for the best Pareto improvement from local reallocations is also an upper bound for the best Pareto
improvement from global reallocations, upon formally replacing the local by the global in the expression.
Indeed, locally, the infinitesimal net welfare of having agent h donate to i the infinitesimal income ẋhs
in state s is (∇is −∇hs )ẋhs . Let i(s) be the most deprived agent in this state, in that he has the largest
∇hs (xh). To maximize the total willingness to pay, everyone should donate to the most deprived, state by
state, and then the infinitesimal net welfare change of the infinitesimal reallocation ẋ is exactly

1

r0
Σ
¡
5∗(x)−5h(xh)

¢
ẋh1

as a fraction of total current income. Globally, on the other hand, proposition 3 shows that an upper bound
for ρx, the maximum total willingness to pay as a fraction of total current income, is

Rx :=
ΣsΣh(∇i(s)s −∇hs )xhs

Σhxh0

Thus the expression for an upper bound for the best Pareto improvement from local reallocations is,
remarkably, already an upper bound for the best Pareto improvement from global reallocations: one need
only formally replace the infinitesimal ẋ by the global x—the income distribution in question. In this formal
sense, information relevant to local welfare already captures the global welfare.

5.1 Size of local Pareto improvement

To define a local measure from our global one, we ask how inefficiency ρx changes as x changes in the
direction z, while fixing resources Σzh = 0 :

x(λ) := x+ λz,λ ∈ R (10)

Proposition 5 Suppose each uh is C1 and xÀ 0. Fix z ∈ RH(S+1) with Σzh = 0. Assume a unique
solution y = y(λ) of problem (4) at x(λ) exists and is differentiable at λ = 0. Then the following is well
defined,

dρ(x(λ))

dλ
= − 1

r0
Σ
Duh(xh)zh

D0uh(yh)

Proof is in the appendix.

Corollary 4 If in addition each uh is 0-quasilinear, then at λ = 0 :

dρ
dλ = −

1
r0
Σµh(x)zh1

inefficiency falls the fastest in the direction z1 = (z
h
1) := (µ

h)

the norm of dρ
dλ as a functional of z1 is kµk

r0
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Proof. The assumption implies D0u
h = 1 and D1u

h(xh) = ∇h(xh), so dρ
dλ = −

1
r0
Σ(zh0 +∇hzh1) =

− 1
r0
Σµh(x)zh1 , using Σzh1 = 0 for the latter. Next, the Cauchy-Schwarz inequality implies that among

all z1 in a sphere, the inner product Σµh(x)zh1 is maximized uniquely in the direction zh1 = µh. So
the maximum of dρ

dλ on the sphere kz1k2 = Σzh01 zh1 = 1 is at zh1 = cµh where c solves c = 1
kµk :

dρ
dλ = −

1
r0
Σµhzh1 = − 1

r0
c kµk2 = −kµkr0 .

Remark 2 (quadratic case) Suppose identical utilities u(x) = x0 + Σπs(xs − 1
2x

2
s). Then the covariance

between consumption and policy direction is a sufficient statistic:

dρ

dλ
= − 1

r0
ΣhD1u

hzh1 = −
1

r0
ΣsπsΣh(1− xhs )zhs =

1

r0
ΣhΣsπsx

h
sz
h
s =

1

r0
ΣhCov(x

h
1, z

h
1)

6 Computing inefficiencies in the US

The inefficiency depends on the allocation and on the preferences. Accordingly, a presumption that ineffi-
ciency is large (or small) may find support in a clever choice of allocation and preferences. The objection
to such a choice is that its empirical relevance is accidental at best. In contrast, our choice highlights the

data. The choice of allocation follows an ostensibly neutral conversion of data into allocations; the choice of
preferences defers to evidence reported in Kocherlakota (1996). As it turns out, the inefficiency implied by
US income data of 2004 is exceedingly small—at most 0.27%, ρUS ≤ .0027.
We do not claim that actual inefficiency is tiny, for several reasons: (1) the interpretation of the primitives

of the model (households, states, assets, preferences) is not unique, (2) the conversion of data into allocations
is not unique, and (3) the model is simple relative to other models. Yet, we do think that these numbers
deserve attention for various reasons: (1) they are rooted in the data, (2) they are small in every geographical
region we report, (3) the implied state transition probabilities are unique, given the Bernoulli preferences
and the states. The next section illustrate how we bring our model to data.

6.1 The insurance deficit equations

We revisit the calculus characterization of inefficiency, because it plays three key roles: in estimating ρ for
the US, in an upper bound for ρ, and in a global parameterization of the equilibrium set.
The assumptions imply that the optimal trade function θh(q, eh) is C1 and characterized as the unique

solution of5

∇ha− q = 0 (θ)

while evaluating ∇h at eh +Wθh. Relevant are the differences

µh := ∇h −∇t
5For a vector v ∈ RS+1, v1 ∈ RS denotes omission of the first coordinate, v0 its first coordinate. 5h means (Duh)1

D0uh
. For a

matrix m, hmi denotes the real span of its columns.
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where ∇t := Σth∇h is the average according to given weights t ∈ RH++,Σth = 1, say, th = 1
H . A classical

result is that µ(x) = 0 if and only if x is Pareto optimal if and only if x arises as an equilibrium
with complete insurance markets—that is, markets with zero insurance deficit. So we call µ = µ(x) the
insurance deficit.
Two basic properties of the insurance deficit at equilibrium—the only ones, per theorem 1—are

a) Σthµh = 0

b) µh ∈ hai⊥
(11)

The first one follows from the definition of ∇t, the second one from the optimality equation (θ): averaging
implies ∇ta− q = 0 and subtracting implies µha = (∇h −∇t)a = q − q = 0.

6.2 Choosing the state space

We report the current disposable income distribution x0 ∈ R3+ by terciles, for the US. These terciles suggest

three households: of high, middle, and low ability. The assumption is that tercile incomes match abilities.
These terciles also suggest three future states: in s = 1 incomes still match abilities, s = 2 high and middle
ability switch terciles, s = 3 middle and low ability switch terciles. These states convert the data x0 ∈ R3+
to an interim allocation x ∈ R4×3+ . The allocation adds risk in future resources r1, rescaling the interim
allocation by 1 + f, 1− f, 1 + f in states 1, 2, 3; for every i,

xi1 =: x
i
0(1 + f)

Á
xi0 – xi2 =: x

i
0

Â
xi3 =: x

i
0(1 + f)

The idea behind this risk pattern is that the economy expands by f% when the high ability household is
in charge of the economy (s = 1, 3) and does not grow otherwise. Here we assume a time horizon of one year

so we let f = 4% and a = 1 ∈ RS is just the riskless bond.

6.3 Calibrating the insurance deficit

To specify each economy, we must assign it the missing object: preferences.

Definition 5 Preferences u = (uh)h rationalize x ∈ RH(S+1)+ ↔ x is a u-no trade equilibrium allocation.

Necessary equations for u to rationalize x are:

µh(x, u)a = 0 (12)

Indeed, point (11) has an equilibrium allocation x∗ satisfying µh(x∗)a = 0 for every h. (We take th = 1
H .)

Remark 3 (sufficiency) System (12) is merely necessary for u to rationalize x. The appendix proves
the sufficiency, appealing to a global parameterization of the equilibrium set.
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We analyze system (12). If µ1,2 satisfy the equation, so does µ3. For the definition of µh(u, x) :=
∇h(u, xh)−∇(u, x) implies Σµh = 0, as noted in (11): µ3a = −(µ1 + µ2)a = −µ1a− µ2a = −0− 0 = 0.
So system (12) reduces to two equations, µ1,21 = 0. Accordingly, we make u two-dimensional; each uh is
von-Neumann Morgenstern CRRA,

uh(y) :=
βh

βh − 1
y
βh−1
βh

0 +ΣSs=1πs
βh

βh − 1
y
βh−1
βh

s

and the probability π on 1, ..., S is the two-dimensional variable, since S = 3.
The allocation and CRRA parameters determine the Bernoulli insurance deficit µhs

πs
, so that the system

µ1,2a = 0 is a linear system in the probability π. Unless it is singular, the probability solution is unique.6

6.4 Estimates

The US data on the US income distribution by terciles (normalized so that r0 = 1) for the year 2004 are:7

income
ability h

money market disposable

high=1 .654 .692 .609

middle=2 .254 .244 .275

low=3 .092 .064 .116

Income aggregates follows the definitions given by US Census. Money income includes all money income
received by individuals who are 15 years or older. It consists of income before deductions for taxes and other

expenses and does not include lump-sum payments or capital gains. It also does not include the value of
noncash benefits such as food stamps. This income concept is the basis for the official poverty measure.
Market income includes money income except government cash transfers, imputed realized capital gains and
losses, and an imputed rate of return on home equity. It subtracts imputed work expenses. Market income
is mainly used as a starting point for examining the effect of government activity on income and poverty
estimates. Disposable income includes money income; includes the value of noncash transfers (food stamps,
public or subsidized housing, and free or reduced-price school lunches); it includes imputed realized capital
gains and losses, and an imputed rate of return on home equity; it subtracts imputed work expenses, federal
payroll taxes, federal and state income taxes, and property taxes on owner-occupied homes. A comparison of
market income and disposable income captures the net impact of government transfers and taxes on income

and poverty estimates.
Since households’ disposable income is the one that better capture the pattern of final consumption

allocation, we use its data to specify the date 0 consumption allocations, xh=1,2,30 = (.609, .275, .116). More-
over, we let the CRRA parameters be empirically reasonable: β1,2,3 = 1.3, 2.3, 3.3, Kocherlakota (1996).
Since resources expand and contract by f = .04, r0 = 1, r1 = (1.04, 0, 1.04) . Calibration yields a common
probability π = (.968, .017, .015), and an equilibrium interest rate of 3%. As anticipated, the inefficiency

6The Mathematica code is available on request.
7Terziles are computed using the data of aggregate household income distribution by quintile, US CENSUS (US income data

table 2 - 1/26/06).
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of this economy at the specified allocation is ρUS = 0.0035; households would pay between three and four
tenths of one percent of current resources, at most, for a Pareto improving reallocation of future resources.
This measure is tiny because in our model the economy starts out at an allocation that is already closed
to a Pareto optimum. Even accepting the idea that the model is representative of the real world, one may
still argue that this measures is tiny because the allocation already benefit from government transfers, and

income taxes. Fixed probabilities, these policies smooth the income distribution in every state, therefore
reducing the idiosyncratic risk of moving to a less favorable income tercile. A more correct procedure should
be that of measuring the “ex-ante” inefficiency, by using consumption allocations that would arise in absence
of social insurance, or redistributive, policies. With such data, households consumption would be reduced
by the costs of all those market activities that agents carry out to self-insure. 8 How significant is the effect
of (at least) some of these policies can be estimated by comparing ρUS with the inefficiency computed using
market income at the same probabilities, ρMUS . In our example, ρ

M
US = 0.0055, which is roughly 71% larger

than ρUS . Again, the absolute measure of inefficiency at market income is small, but in relative terms it
is significantly different. Clearly, this is not it, since with our data ρMUS and the relative measure capture
the willingness to pay for only some of the policy interventions implemented and specifically addressed to

households.
Continuing the US example, we can end this section illustrating how the upper bound of ρUS , RUS ,

is computed. Here the household with the highest marginal rate of substitution ∇hs in state 1, 2, 3 is
h = 3, 1, 2,

³
∇hs
´
=

h
s

1 2 3

1 .9401 .9522 .9571

2 .0307 .0119 .0168

3 .0143 .0210 .0112

(13)

so proposition 3 implies the upper bound is

RUS : =
ΣsΣh(∇i(s)s −∇hs )xhs

Σhxh0

=
h
∇31r1 − Σh∇h1xh1

i
+
h
∇12r2 − Σh∇h2xh2

i
+
h
∇23r3 − Σh∇h3xh3

i
=

h
∇31 − Σh∇h1xh0

i
(1.04) +

h
∇12 − Σh∇h2xh0

i
+
h
∇23 − Σh∇h3xh3

i
(1.04)

= 0.031

which is roughly eight times the inefficiency ρUS , the 3.1% of date 0 aggregate resources.
8This point of distinguishing between ex-ante and ex-post measures has been recently made by Kurz (2005), in the context

of the debate on the relevance of stabilization policies and aggregate volatility.
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7 Global parameterization of equilibria

First we intuit the parameterization, and only then formalize it.
With complete markets, a classical conclusion (Lange 1942) is that an e-allocation xÀ 0 is an equilib-

rium allocation if and only if it maximizes

Σδhuh(xh) subject to Σxh = e

with δ fixed by equation (14):

δh := t
D0uh(xh)

(14)

where t > 0 is fixed. Thanks to concavity and linear constraints, maximization amounts to solving the
equations

δhD1u
h − ρ0 = 0 (15)

for some ρ ∈ RS++, which (14) reveals to be t∇h − ρ0 = 0 and which averaged becomes ρ0 = t∇. So an
e-allocation xÀ 0 is an equilibrium allocation if and only if makes zero the differences

µh := t(∇h −∇) (16)

With incomplete markets, in contrast, µh is possibly nonzero. Nonetheless, given a possibly nonzero
µ, we can rewrite equation (16) as

(t∇h − µh)− t∇ = 0

and paraphrase it as
(δhD1u

h − µh)− ρ0 = 0 (17)

for some ρ ∈ RS++. Comparing equations (15), (17), a natural conjecture is whether an e-allocation xÀ 0

is an equilibrium allocation if and only if it maximizes

Σ(δhuh(xh)− µhxh) subject to Σxh = e

with δ fixed by equation (14) still, and µ by some others, where µh := (0, µh). We prove this conjecture,
when µ is constrained according to point 11:

µ ∈
¡
a⊥
¢H

and Σµh = 0

Finally, we note the conjecture is true for some t > 0 if and only if it is true for any t > 0.We think of t
as a normalization of δ, the most convenient being t = 1 for computation and amounting to Σ 1

δh
= ΣD0u

h,

and t = ΣD0u
h for theory and amounting to Σ 1

δh
= 1. (The latter has the virtue of making δh invariant

to a common differentiably increasing transformation of utilities, as is consumption, hence making equation

(14) invariant too.)
Formalizing this intuition9 leads to the following, proved in the appendix:
9 It is easy to extend our parameterization to multiple commodities per state, by reinterpreting our single commodity as the

value of multiple commodity endowments.
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Theorem 1 The no-trade e-equilibria T(e) are globally parameterized via (14), (16) by the product of

D :=
½
δ ∈ RH++ | Σ

1

δh
= 1

¾
U :=

n
µ ∈

¡
a⊥
¢H | Σµh = 0o

Recall, our goal is to show µ is small, with µ = µ(bx) ranging as a function of allocations bx = x (q, e)
arising from equilibria (q, e) ∈ E. Since bx = x (q, bx) and (q, bx) ∈ T, this is the same as ∇ = ∇(bx) ranging
as a function of allocations bx arising from no-trade equilibria (q, e) ∈ T.

8 Appendix

8.1 Global parameterization of equilibria

The global parameters are the Cartesian product of

D : =

½
δ ∈ RH++ | Σ

1

δh
= 1

¾
: dimension H − 1

U : =
n
µ ∈

¡
a⊥
¢H | Σµh = 0o : dimension (H − 1) (S − J)

Theorem 2 T(e) is a smooth (H − 1)(S − J + 1)-manifold diffeomorphic to D×U via (14), (16)

Corollary 5 E(e) is a (H − 1)J−vector bundle on T, hence a smooth (H − 1)(S + 1)−manifold.

Starting from the well known fact10 that

Proposition 6 E is a smooth manifold.

our argument applies the very useful

Lemma 2 (3.2.1 in Balasko (1988)) Let φ : X → Y,ψ : Y → X be smooth maps between smooth
manifolds making φ ◦ ψ the identity. Then ψ(Y ) is a smooth submanifold of X diffeomorphic to Y.

where

X is E

Y is D×U

The maps are the following. φ : E→ D×U is

φ(q, e) =

"
..., ΣD0u

i

D0uh
, ...

..., (ΣD0u
i)(∇h −∇1), ...

#
(18)

evaluated at consumptions e+Wθ (q, e) . ψ : D×U→ E is

ψ(δ, µ) =
¡
∇1a, x

¢
(19)

where ∇1 is evaluated at x1, x := argmaxx∈E Σ(δ
huh(xh)− µhxh), and µh := (0, µh).11

10Geanakoplos and Polemarchakis (1986), section 6.
11Ω is the closure of Ω.
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Lemma 3 φ and ψ are well defined and satisfy the hypothesis in lemma 2.

Proof. φ is well-defined, i.e. φ(q, e) ∈ D×U. Clearly
³
..., ΣD0u

i

D0uh
, ...
´
∈ D; since equilibrium trades are

optimal, ∇ha = q, so subtracting
³
∇h −∇1

´
a = q − q = 0 or

¡
ΣD0u

i
¢ ³
∇h −∇1

´
∈ a⊥.

ψ is well-defined, i.e. ψ(δ, µ) exists, is unique, and in E. x exists because its objective is continuous
and E compact. By boundary aversion in assumption 2, xÀ 0; moreover, it is unique because assumption
2 implies that the objective is strictly concave in the interior. We now show

¡
∇1a, x

¢
∈ E, by showing¡

∇1a, x
¢
∈ T , i.e. θh

¡
∇1a, xh

¢
= 0. By (θ), we must show

∇ha−∇1a = 0 (*)

while evaluating ∇h at xh +W0 = xh. By Kuhn-Tucker, there exists ρ+ = (ρ0, ρ) ∈ RS+1 such that
xÀ 0 maximizes

Σ(δhuh(xh)− µhxh)− ρ0+Σx
h

So
δhDuh − µh = ρ0+ (**)

This says about state 0 that

δh =
ρ0

D0uh
=
ΣD0u

i

D0uh
(20)

where δ ∈ D implies ρ0 = ΣD0u
i; and about states 1 = {1, ..., S} that

µh = δhDuh − ρ0 =
¡
ΣD0u

i
¢
∇h − ρ0

Taking the average and using µ ∈ U reveals 0 = 1
HΣµ

h =
¡
ΣD0u

i
¢
∇− ρ0 or that ρ0 =

¡
ΣD0u

i
¢
∇, so

that
µh =

¡
ΣD0u

i
¢ ³
∇h −∇

´
(21)

Since µ ∈ U and ΣD0ui 6= 0, equation (21) verifies (*).
φ ◦ ψ = id Given (δ, µ), define (q, x) := ψ(δ, µ);we want φ (q, x) = (δ, µ) .We have seen that (δ, µ) is

the right side of (20), (21), evaluated at this x. Also, the right side of (20), (21), evaluated at x+Wθ (q, x)

is the definition of φ (q, x) , for any (q, x) . So the right sides agree, and therefore (δ, µ) = φ (q, x) , if both

consumption agree, i.e. if φ (q, x) = 0, which holds since (q, x) = ψ(δ, µ) ∈ T, as just argued above.
Smoothness That φ is C1 follows from its definition and that uh is C2, θh is C1. That ψ is C1

follows from the implicit function theorem by a standard argument that we omit.
Now we provide the theorem’s
Proof. Lemma 3 verifies the hypothesis of lemma 2, which concludes imψ is a smooth submanifold

of E diffeomorphic to D × U. It remains to show imψ = T. The proof of lemma 3 shows imψ ⊂ T
(where ψ is shown well-defined), so we show T ⊂ imψ, by showing idT = ψ ◦ φ |T . Fix (q, e) ∈ T. Write
(δ, µ) := φ(q, e), which is (18) evaluated at the no-trade consumption e +W0 = e, so that q = ∇1(e1)a
by equation (θ). If e = argmaxx∈E Σ(δ

huh(xh)− µhxh), then by definition ψ(δ, µ) = (q, e), as desired. To
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verify e is a maximand, rearrange (δ, µ) = φ(q, e) to get (**). Defining ρ0+ =
¡
ΣD0u

i
¢
(1,∇) À 0, (**)

reads
(δhDuh − µh)− ρ0+ = 0

which are the necessary conditions for e maximizing Σ(δhuh(xh) − µhxh) − ρ0+Σx
h. Since the latter is

concave and its maximum is interior, these conditions are sufficient. Since e ∈ E (because asset markets
clear), the easy half of Kuhn-Tucker implies that this e is the constrained argmax in (19).
Finally, we provide the corollary’s
Proof. The projection E→ T,π(q, e) = (q, x(q, e)) is well defined; its fibers π−1(q, x) are clearly

π−1(q, x) = {q} ×
©
e ∈ E : ∀h, eh = xh −∆h for some ∆h ∈ hW i

ª
So fibers are parameterized by an open set of ∆h>1 in hW iH−1−here e1 = x1 + Σh>1∆

h—which is a
convex set of dimension (H − 1)J, depending smoothly on (q, e).

8.2 Proof of proposition 2

Proof. Let ỹ be the greatest Pareto improvement and p(ỹ) = Σph(ỹ) its size; it suffices to show
y := ((ỹh0 − ph, ỹh1))h is an optimal arbitrage, for then

ρx =opt.arb. 1−
Σyh0
r0

=def 1−
Σỹh0 − Σph

r0
= 1− r0 − Σp

h

r0
=
p(ỹ)

r0

we must show p(ỹ) = r0ρx.

To see it is an optimal arbitrage, we apply the sufficiency part of proposition 1, which does not require
y À 0 (but y À 0 is easy to show too): by continuity of utility uh(yh) =def u

h(ỹh0 − ph, ỹh1) = uh(xh) is
binding, and clearly y must be Pareto optimal, or else by continuity again ỹ would not be the greatest
Pareto improvement.

8.3 Proof of proposition 4

Proof. Define yh(t) := (yh0 (t), y
h
1(t)) the linear combination of x

h =: (xh0 , x
h
1) and eyh := (ỹh0 (yh1), yh1), t ∈

[0, 1]. By concavity, uh(yh(t)) ≥ (1 − t)uh(xh) + tuh(ỹh) ≥assn.4 uh(xh). Therefore ỹh0 (y
h
1(t)) ≤ yh0 (t); it

follows that

ρ(x, y1(t)) ≥ 1−
Σyh0 (t)

r0
= (1− t)(1− Σx

h
0

r0
) + t(1− Σỹ

h
0 (y

h
1)

r0
) = (1− t)(0) + t(1− Σỹ

h
0 (y

h
1)

r0
) = tρ(x, y1)

Under the addition assumption, uh(yh(t)) > uh(xh), and by continuity in 0-consumption, ỹh0 (y
h
1(t)) < y

h
0 (t),

so ρ(x, y1(t)) > tρ(x, y1).

To establish concavity we can repeat the last argument for every pair of allocations. Equivalently, fix
t, t ∈ [0, 1], and define these allocations to be y(t), y(t); we want to show that for every s ∈ [0, 1]

∗ = ρ(y(t), y1((1− s)t+ st)) ≥ (1− s) ρ(y(t), y1(t)) + s ρ(y(t), y1(t)) = ∗ ∗ .
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Since u is concave, uh(yh(t)) ≥ (1 − t)uh(xh) + tuh(yh) ≥assn.4 uh(xh) for every t ∈ [0, 1]; and uh((1 −
s)yh(t) + syh(t)) ≥ (1− s)uh(yh(t)) + suh(yh(t)) ≥assn.4 uh(xh). Therefore, as above,

ỹh0 (y
h
1((1− s)t+ st)) ≤ (1− s)ỹh0 (y1(t)) + sỹh0 (y1(t))

implying,

∗ ≥ 1− Σ((1− s)ỹ
h
0 (y1(t)) + sỹ

h
0 (y1(t))

r0
= (1− s)(1− Σỹ

h
0 (y1(t))

r0
) + s(1− Σỹ

h
0 (y1(t))

r0
) = ∗∗

8.4 Proof of proposition 5

Proof. By proposition 1, uh(yh(λ)) = uh(xh(λ)) is an identity. Differentiating it at λ = 0,

D0u
h(yh)ẏh0 +D1u

h(yh)ẏh1 = Du
h(xh)ẋh = Duh(xh)zh

Dividing by D0u
h(yh), the ∇h(yh) = D1u

h(yh)
D0uh(yh)

is a common ∇ for all h, since, by proposition 1, y is
Pareto optimal. Summing over households,

Σẏh0 +∇
¡
Σẏh1

¢
=
Duh(xh)zh

D0uh(yh)

Note Σẏh1 = 0 : For Σy
h
1(λ) = Σx

h
1(λ) = Σx

h
1+Σz

h
1 = Σx

h
1, by the assumption that Σz

h
1 = 0; differentiating,

Σẏh1 = 0. So the above reduces to

Σẏh0 = Σ
Duh(xh)zh

D0uh(yh)

Finally, the identity ρ(x(λ)) = 1 − Σy
h
0 (λ)

Σxh0 (λ)
= 1 − Σy

h
0 (λ)
r0

holds (since Σzh0 = 0), showing the derivative of
ρ(x(λ)) exists and equals the claim.
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