
DISCOUNT FACTORS EX POST AND EX ANTE, AND
DISCOUNTED UTILITY ANOMALIES

SVETLANA BOYARCHENKO ∗,1 AND SERGEI LEVENDORSKǏI†
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Abstract. The real options approach is used to explain discounted utility anomalies
as artifacts of the optimizing behavior of an individual with standard preferences, who
perceives the utility from consumption in the future as uncertain. For this individual,
waiting is valuable because uncertainty is revealed over time. The fair price (or com-
pensation) that the individual agrees to pay (or accept) today is the expected value of
utility of the future gain (or loss) multiplied by a certain non-exponential factor which
we interpret as a discount factor ex ante. The factors ex ante are different for gains
and losses, and depend on the utility function and underlying uncertainty. After the
decision of exchange had been made, valuation ex post reduces to calculation of the
standard expected present value. We provide analytic expressions and numerical exam-
ples for discount factors assuming different utility functions and models of uncertainty,
and demonstrate that our explanation of discounted utility anomalies is robust.
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1. Introduction

The main lesson of the real options theory is that in an uncertain environment, wait-
ing has value. Various economic and non economic applications of the real options
theory were outlined by Dixit and Pindyck (1994). However, both Dixit and Pindyck
(1994) and the majority of papers on real options concentrated mainly on various capi-
tal (dis)investment problems, be it capital budgeting, exploitation of natural resources,
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strategic interactions of investors, and many other. Grenadier and Wang (2005) ex-
tend the real options framework to investment timing with exogenously given time-
inconsistent preferences. We would like to remind the reader that real options are ubiq-
uitous in the sense that in the real life, agents have to make decisions under uncertainty,
which are either irreversible or (partially) reversible at a cost. The theory that explains
how to make such decisions optimally is the real options theory. The key ingredients of
the real options theory are uncertainty, partial or complete irreversibility of decisions,
and the opportunity to choose the time of the decisions. We use the insights of this
theory to explain time dependent discounting and other departures from the standard
discounted utility assumptions.

1.1. History of discounted utility theory. In the first three decades of the twenti-
eth century, “time preference” was analyzed mainly qualitatively, as interaction among
different factors which may influence intertemporal decisions. In 1933, Paul Samuelson
invented the discounted utility theory (DU theory), which compressed the influence of
many factors into one number: the discount rate. In continuous time models, an indi-
vidual with the time-separable utility u calculates the value of consumption of a stream
ct over time interval (0, T ) according to the formula

U =

∫ T

0

e−rtu(ct)dt, (1.1)

where r > 0 is the discount rate. In discrete time models, the counterpart of equation
(1.1) is

U =
T∑

t=0

δtu(ct)dt, (1.2)

where δ ∈ (0, 1). Due to the analytical simplicity (and probably, similarity to the com-
pound interest formula), the exponential discounted utility model was almost instantly
adopted as a standard tool in intertemporal models, although Samuelson suggested the
DU model as a convenient tool only, and explicitly disavowed an idea that individuals
really optimize an integral of the form (1.1). Almost 30 years later, Koopmans (1960)
constructed an axiomatic theory of time preference which lead to the exponential dis-
count factor in Samuelson’s model. As a result, a general feeling emerged that the DU
model was justified. However, later, in many empirical studies, it was shown that the
real behavior of individuals did not agree with the exponential discounting model.

1.2. Observed anomalies. We will consider the following anomalies of discounted util-
ity model (DU anomalies):

1. hyperbolic discounting, which means that the instantaneous discount rate for gains
decreases with time (in the DU model, it is constant);

2. the sign effect (gains are discounted more than losses);
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3. the delay-speedup asymmetry: if the change of the delivery time of an outcome is
perceived as an acceleration from a reference point, then the imputed discount rate is
larger than if the change is perceived as a delay;

4. the negative discounting for losses: an individual may prefer to expedite a payment;
5. the magnitude effect (small outcomes are discounted more than large ones).

All these anomalies have been well-documented. For the discussion of DU anomalies
and references to the literature on each type of DU anomalies, see the excellent review
Frederick et al. (2002).

1.3. Quasi-hyperbolic discounting and other resolutions. To account for DU
anomalies, several alternative (types of) models have been developed. In the (β, δ)-
model of quasi-hyperbolic discounting introduced first by Phelps and Pollak (1968),
equation (1.2) is replaced by

U = u(c0) +
T∑

t=1

δβtu(ct)dt, (1.3)

where β, δ ∈ (0, 1). Equation (1.3) is analytically simple, and captures many qualitative
features of hyperbolic discounting. Thus, as in Samuelson (1933), the discount factors
are postulated. Another strand of literature initiated by Koopmans (1960) deals with
the axiomatic systems for time preferences, which are consistent with DU anomalies - see
Ok and Masatlioglu (2003) and the bibliography therein. Fudenberg and Levine (2004)
suggested a “dual-self” model as a unified explanation for several empirical regularities.
Habit formation models, reference point models and a number of other models incorpo-
rate non-standard features into the utility function. Still other alternative models depart
from the DU model even further (once again, we refer the reader to the review Frederick
et al. (2002) for more details and extensive bibliography).

In this paper, we neither postulate the non-standard dependence of the discount factor
on time as in the quasi-hyperbolic discounted utility models nor deduce it from time
preference axioms. Instead, we show that the DU anomalies result from optimizing
behavior of an individual facing a menu of options in an uncertain environment. To be
more specific, we derive general explicit formulas for the discount factors for gains and
losses from two simple general assumptions.

1.4. Assumption 1. Our starting point is that an individual perceives the future –
hence the utility of consumption – as uncertain. The uncertainty may be caused by
changes both in the anticipated consumption level and utility function per se: obviously,
the satisfaction from possession of a certain widget may change (and typically, changes)
in a not completely predictable fashion. Similar ideas are used in Gul and Pesendorfer
(2004) (“changing tastes”) and Manzini and Mariotti (2005) (“the perception of future
events becomes increasingly “blurred” as the events are pushed further in time”), among
the others.
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We believe that this assumption can serve as an alternative to (or another interpreta-
tion of) the “multiple selves” hypothesis widely used in the literature on the discount rate
anomalies. Instead of assuming that an individual has to play against “future selves”,
we simply presume that an individual cannot know for sure what her state of mind will
be tomorrow, and how her preferences may change.

The importance of uncertainty is well-understood, and, as Frederick et al. (2002,
p. 384) notice, once uncertainty and other confounding factors are accounted for, there
may be no place left for “pure time preference”. Dasgupta and Maskin (2005) show
that if the “average” situation entails some uncertainty about the time when payoffs are
realized, the corresponding preferences may well entail hyperbolic discounting.

Even if the future payoff is a certain amount of money, there is still uncertainty: $100
for a person with a good job and $100 for an unemployed person have different values;
$100 may have different values if a loved one is healthy or deathly ill (see, e.g., Karni
(2005)); in addition, there is the inflation uncertainty. In combination, these and other
factors make the consumption stream stochastic. Recall that in experiments on DU
anomalies, people are typically asked to compare dollars “today” (t = 0) vs. dollars
“tomorrow” (t = 1), and dollars at t = τ vs. dollars at t = τ + 1. While the value of
dollars “today” is certain, the future values are uncertain, so people are asked to compare
a certain value vs. uncertain value, and one uncertain value vs. another uncertain value.
No wonder that they treat them differently1.

1.5. Assumption 2. The second (and crucial) assumption that we make is that the
individual regards any exchange between current and future consumption gains or losses
(expressed, say, in monetary terms) as a right but not an obligation, in other words, as an
option. The rational individual chooses optimally the timing of the decision to exchange.
Whenever the individual agrees to pay for the future consumption, she suffers not only
the cost of this consumption, but also an opportunity cost: she loses the right to make
the decision later. By postponing the decision till a later time period the individual can
make the decision having observed partial revelation of the uncertainty. The individual
agrees to buy the future consumption gain only if the present value of the utility of the
gain covers not only the amount of money to be paid, but the opportunity cost as well.

In other words, the maximal amount of money that the individual agrees to pay for
the future gain (we call it the fair price) is less than the present value of the utility of
the future gain. Similarly, the minimal amount of money which the individual agrees to
accept as a compensation for the future consumption losses (we call it the fair compen-
sation) is larger than the present value of utility of losses, because the agent wants to
be compensated both for losses and for the foregone opportunity of making the decision
later.

1This observation explains, in the nutshell, the quasi-hyperbolic discounting; to account for more
interesting shapes of the discount rate curves, more subtle arguments are needed.
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1.6. American options. Recall that an American call (respectively, put) option is the
right to sell (respectively, buy) an asset with a stochastic payoff at a given strike price.
The option holder has to determine when (if ever) it is optimal to exercise the option.
Here, we ask a sort of an “opposite” question: what strike price would make it optimal
to exercise the option now? In other words, the fair price defined above is the maximal
strike price that makes it optimal to exercise the American call option now. Similarly,
the fair compensation is the minimal strike price which makes it optimal to exercise the
American put option now.

Apart from providing a robust explanation of DU anomalies without resorting to
exotic time preference, this approach may potentially have serious policy implications.
For example, in asking how the population could or should be compensated in order to
favor a proposed social security reform, a correct answer must take into account that the
population has an option to wait. The correct compensation must be higher than the
naive present value approach presumes.

Contingent valuation of environmental goods is another potential application of our
results2. The contingent valuation method involves the use of sample surveys to elicit the
willingness of respondents to pay for environmental programs or projects. For the history
of the contingent valuation method and contingent valuation debate see Portney (1994),
and Hanemann (1994). According to Portney (1994), one of the most influential papers
in natural resource and environmental economics was “Conservation reconsidered” by
Krutilla (1967). That paper identified the importance of the essentially irreversible na-
ture of the development of natural resources and suggested that the difference between
willingness-to-pay and willingness-to-accept compensation for “grand scenic wonders”
may be large indeed. Hanemann (1992) presented a deterministic model that demon-
strates that the differences in the willingness-to-pay and willingness-to-accept are due
to the lack of substitutes for a public good. According to our results, compensation
for losses requested by individuals is higher than the price the same individuals agree
to pay for gains due to the presence of uncertainty and option-like nature of decisions.
Thus, when facing a question of the sort “How much should the government pay for the
damage to an endangered species”, the same individual will name a greater price than
when asked a question of the sort “How much should the government pay to preserve an
endangered species.”

1.7. Results. We demonstrate that the individual contemplating a decision leading to
a gain or loss of consumption in the future and regarding such a gain or loss as a payoff
of an option, uses the ex ante effective discount factors determined endogenously in our
model, and these discount factors exhibit the aforementioned DU anomalies. Factors
ex ante are different in these two situations, which naturally leads to the asymmetry of
valuation of gains and losses in the future. After the decision has been made, the naive
calculation of the EPV’s becomes appropriate, and this calculation uses exponential
discounting with ex post discount factors (also determined endogenously). We cannot

2We are thankful to Don Fullerton for a discussion of this point.
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avoid the use of an exogenous background discount factor, killing rate3, for valuations
of losses if we keep the standard assumption that the instantaneous utility function is
concave. In this case, if the exogenous discount rate is zero, the endogenous ex post
discount rate is negative. So the standard assumption that the individual discounts the
future at rate r > 0 is used. We show that for valuation of gains, the last assumption is
unnecessary, because the endogenous ex post discount rate is positive.

1.8. Preferences and uncertainty. To demonstrate that under our assumptions, the
optimizing behavior of the individual in an uncertain environment leads to a consistent
explanation of the DU anomalies (certainly, other factors considered in the literature
may contribute to the DU anomalies as well), we make standard assumptions about
properties of the utility function (time and state additive separability) and underlying
uncertainty. To account for preferences over gains and losses separately we assume that
the individual assesses the utility of gains and disutility from losses as departures from
some exogenous consumption path, {et}t≥0, so that at time t, the instantaneous utility
function is of the form u(ct) = ũ(ct + et). For example, et may be viewed as the agent’s
endowment and ct is the excess demand or supply at date t.

Notice that with our approach, the loss aversion of u is not required. To be clear,
the instantaneous utility function for gains, uG(c) = u(c), c > 0, need not to be smaller
than the (dis)utility function, uL(c) = −u(−c), c > 0, for losses in order to explain
the delay-speedup asymmetry and sign effects (cf. Loewenstein (1988) and Loewenstein
and Prelec (1992) who used the loss aversion assumption). Also, we do not impose the
restriction that the utility function over losses is convex, as in the latter citation.

1.9. Outline. In Section 2 we present the main idea of our approach using the simplest
models for utility/disutility function and the underlying uncertainty. The optimizing
agent is risk-neutral, and uncertainty is resolved in one period. We explain why the
fair price is always less, and the fair compensation is always larger than the expected
present value of the utility of the future gain or loss, respectively. The sign effect,
negative discounting, delay-speedup asymmetry, and quasi-hyperbolic discounting follow
immediately. In Section 3, for simplest concave utility functions (CRRA) and uncertainty
modelled as a Brownian motion, we provide analytical formulas for ex ante and ex post
discount factors that demonstrate quasi-hyperbolic discounting and explain all of the
other DU anomalies listed earlier except the magnitude effect. We observe that the sign
effect and the delay-speedup asymmetry may be reproduced even with the naive (in the
terminology of the real options theory) computation of the EPV if the individual is loss
averse as in Loewenstein (1988) and Loewenstein and Prelec (1992). Essentially the
same results are valid if the uncertainty is modelled as a Lévy process or random walk;
we consider these cases in Appendix A. In Section 4, we examine more general models

3As Voland put it: “Of course man is mortal, but that’s only half the problem. The trouble is that
mortality sometimes comes to him so suddenly! And he cannot even say what he will be doing this
evening.” M. Bulgakov, The Master and Margarita, transl. by Michael Glenny, 1967, Hamper and Row,
New York.
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for utility/disutility functions; the uncertainty is modelled as the (geometric) Brownian
motion (BM). We derive relatively simple analytical expressions for discount factors,
and reproduce all of the DU anomalies listed earlier. In particular, we obtain more
general form of the hyperbolic discounting than the quasi-hyperbolic one, and explain the
magnitude effect. Sections 3–4 and Appendix A deal with the instantaneous consumption
of a perishable good, and Section 5 with consumption of a durable good. In Appendix B,
we model the dynamics of the underlying stochastic factor as a mean-reverting process.
In all these sections, we study the most tractable case when an individual believes that
she can wait as long as she pleases for an offer of a fair price. The case of a deadline
(deterministic or random), when an individual believes that she can make her decision
till moment T1 in the future, is considered in some detail in Appendix C. All of the
effects that are present with no deadline are also present when there is a deadline, but
at this level of generality, the arguments are more difficult. The size of effects will be
smaller but not negligible even if the deadline is imminent. Section 6 concludes. Some
further technical details are relegated to Appendix D.

For the readers’ convenience, we summarize the results of the paper in Table 1. Each
of the rows in Table 1 represents a basic model. The key characteristics of each model are
utility function, model uncertainty, and methodology (real options approach vs. naive
approach). Columns of the table are the DU anomalies. Check marks in Table 1 indicate
that a given model reproduces a given DU anomaly.

2. Value of waiting in a two-period model

This section demonstrates quasi-hyperbolic discounting, negative discounting, the sign
effect, and the delay-speedup asymmetry in the simplest possible model.

2.1. Decision problem. A risk-neutral consumer facing a random sequence ct of pos-
sible consumptions must choose the optimal time, t∗, to pay K dollars for the T -delayed
random consumption, ct∗+T . Assume that it is prohibitively costly to re-sell the con-
sumption good so that the purchase is irreversible. Qualitative result will be the same if
the resale price is smaller than the price of the new consumption good, rather than zero.
To make things simple, let us assume that the consumer anticipates that at time t = 1,
the consumption value may go up or down from the current level c with probabilities
1/2, and will remain at its new level forever (i.e., all the uncertainty is resolved at t = 1).
To be more specific, for all t ≥ 1, ct = c1 ∈ {(1− d)c; (1 + d)c}, where 0 < d < 1. This
captures nominally fixed c with random marginal utility of consumption arising from a
stochastic environment.

2.2. Optimal strategy. Let β ∈ (0, 1) be an exogenous discount factor. Waiting with
the decision to buy or not beyond t = 1 is non-optimal, because it reduces the present
value of the potential gain without adding new information. Suppose that the consumer
observes c0 = c and does not buy the good now. Then, at time t = 1, she makes a
decision of the kind “now or never”. If K > βT c1, she will not buy the good and her
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Table 1

Model description Hyperbolic
disct’g

Sign
effect

Negative
disct’g

Delay-
speedup
asym.

Magnitude
effect

Linear utility, simple
uncertainty resolved
in one period, real
options approach
(§ 2.3, 2.4)

√ √ √ √

CRRA with loss aver-
sion, BM, naive ap-
proach (§ 3.1)

√ √

CRRA, BM, real op-
tions approach (§ 3.2)

√ √ √ √

Non-homogeneous∗

utility functions, BM,
real options approach
(Sections 4 and 5)

√ √ √ √ √

CRRA, mean rever-
tion, real options ap-
proach (Appendix B)

√ √ √ √ √

∗ Only rules out u(c) = cγ

gain is 0, otherwise she will buy (as usual, we presume that she buys if she is indifferent
between buying or not) and receive the payoff βT c1 − K. Thus we may conclude that
the expected present value at t = 0 of buying the good at t = 1 given the current level
of consumption, c, is

V 1(c) = βE
[
(βT c1 −K)+| c0 = c

]
=

1

2
β

(
βT (1 + d)c−K

)
+

+
1

2
β

(
βT (1− d)c−K

)
+

(here we use the standard notation a+ = max{a, 0}). We see that if c < Kβ−T /(1 + d),
then it is optimal to buy the consumption good in neither state at t = 1. If Kβ−T /(1 +
d) ≤ c < Kβ−T /(1− d), then it is optimal to buy the good at t = 1 only if at date t = 1
consumption value goes up. For c ≥ Kβ−T /(1 − d), it is optimal to buy the good in



DISCOUNT FACTORS EX POST AND EX ANTE, AND DISCOUNTED UTILITY ANOMALIES 9

0
c

 

 

V1(c)

V0(c)

c*Kβ−T/(1+d) Kβ−T
Kβ−T/(1−d)

Figure 1. The value of the option to buy. Parameters: T = 3, K =
3, d = 0.5, β = 0.95

either state at t = 1. Hence (see Figure 1)

V 1(c) =





0, if c < Kβ−T /(1 + d),
β
2

(
βT (1 + d)c−K

)
, if Kβ−T /(1 + d) ≤ c < Kβ−T /(1− d),

β(βT c−K), if c ≥ Kβ−T /(1− d).

Consider the value of buying at t = 0:

V 0(c) =
βT

2
(1 + d)c +

βT

2
(1− d)c−K = βT c−K,

if c ≥ Kβ−T , and V 0(c) = 0 otherwise (see Figure 1).
The rational consumer chooses max{V 0(c), V 1(c)}. Since Kβ−T /(1 + d) < Kβ−T <

Kβ−T /(1 − d), and β(1 + d)/2 < 1, there exists c∗ ∈ (
Kβ−T , Kβ−T /(1− d)

)
such that

V 0(c∗) = V 1(c∗), i.e., at the spot value of consumption c∗, the consumer is indifferent
between buying at t = 0 and t = 1 (see Figure 1). For all c > c∗, V 0(c) > V 1(c), hence
it is optimal to purchase cT immediately. If Kβ−T /(1 + d) < c < c∗, then it is optimal
to wait till t = 1 and buy only if the consumption goes up, otherwise, it is optimal not
to buy at all.
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2.3. Emergence of quasi-hyperbolic discounting. It is easy to derive βT c∗ = K/δG,
where δG = (1 − β(1 + d)/2)/(1 − β/2) ∈ (0, 1). For all c such that βT c ≥ K/δG, it
is optimal to buy at t = 0. Notice that βT c = βT E[cT | c0 = c], which is the expected
present value (EPV) of the future consumption gain cT . We conclude that in order it
would be optimal to purchase cT at t = 0, the EPV of the future gain should exceed K
by the factor 1/δG > 1. This is an analog of the correction factor in Dixit and Pindyck
(1994). Let KG = KG(c; T ) be the maximal amount of money that the consumer would
agree to pay today for the gain cT . Evidently, KG(c; T ) = δGβT c, for any T > 0. Now
we see that the rate of substitution between consumption at t = 0 and t = T is δGβT . At
the same time, the rate of substitution between consumption a date t > 0 and t+T > t,
as seen from time 0, is βT . Thus we obtained the (β, δ)-model with δ = δG < 1.

2.4. Sign effect, negative discounting, and delay-speedup asymmetry. Simi-
larly, one may consider a risk-neutral agent who will lose the consumption T periods
after she gets the compensation K. Let the uncertainty be modelled as above. Then
the agent has to decide whether to accept the compensation immediately, or at t = 1,
if ever. It is straightforward to show that there exists c∗ such that the agent is indif-
ferent between accepting the compensation at t = 0 and waiting till t = 1. For all
c ≤ c∗, it is optimal to accept the compensation immediately. The value of c∗ is given
by βT c∗ = K/δL, where δL = (1− β(1− d)/2)/(1− β/2) > 1. Let KL = KL(c; T ) be the
minimal amount of money that the consumer would agree to accept today for the loss
cT . Evidently, KL(c; T ) = δLβT c, for any T > 0. This means that the fair compensation
always exceeds the EPV of the utility of the loss by the factor δL > 1. Now we see
that the rate of substitution between consumption at t = 0 and t = T is δLβT . At the
same time, the rate of substitution between consumption a date t > 0 and t + T > 0,
as seen from time 0, is βT . Thus we obtained the (β, δ)-model with δ = δL > 1. For
T < log δL/(− log β) the negative discounting for losses is observed. Since δG < 1 < δL,
gains are discounted more than losses. The delay-speedup asymmetry evidently follows.

3. Basic examples

If the underlying uncertainty is less trivial than in the previous Section, then it becomes
possible to separate corrections to the exogenous discount factors that are due to the
presence of uncertainty only from those that emerge from timing decisions. The discount
factors that are used for the calculation of the standard EPV’s of the future payoffs, and
therefore account for uncertainty only, are called ex post discount factors. The discount
factors that are used to evaluate the EPV’s of the future payoffs together with their
option value, are called discount factors ex ante.

3.1. Uncertainty corrections to the background discount factor. In this subsec-
tion, we analyze how the observed discount factors should change if only uncertainty is
taken into account but no decision-making is involved. Assume that the (instantaneous)
utility of future gains uG(ct) and disutility of future losses uL(ct) are random variables.
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In our considerations, only the dynamics of uG(ct) and uL(ct) matter, and the same dy-
namics can be observed for different pairs: utility/disutility function and consumption
ct. For simplicity of presentation, in this paper, we assume that the utility/disutility
functions do not change over time but consumption, ct, is stochastic. To ensure that ct

is positive, we model it as ct = eXt . In this section, we make the simplest assumptions:

(i) uG(c) = cγG and uL(c) = cγL , with, possibly, γG 6= γL; for the utility function
over gains, γ = γG ∈ (0, 1) but for disutility function over losses, we admit any
γ = γL > 0;

(ii) Xt is the Brownian motion with drift µ and variance σ2.

Let us first consider gains, for which uG(ct) = eγXt . The discounted expected utility of
consumption T periods from now is

e−rT Ex[uG(cT )] = e−rT Ex[eγXT ], (3.1)

where x = log c is the current value of the stochastic factor, Ex[f(Xt)] := E[f(Xt)|X0 =
x] is the conditional expectation operator. Since the moment generating function of a
random variable y ∼ N(µ, σ2) is

E[eγy] = eΨ(γ),

where Ψ(γ) = σ2

2
γ2 + µγ, and XT , conditioned on X0 = x, is distributed as a normal

variable with the mean µT + x and variance σ2T , we derive

e−rT Ex[eγXT ] = e−(r−Ψ(γ))T eγx = e−(r−Ψ(γ))T u(c). (3.2)

Formula (3.2) can be interpreted as follows: an individual discounts the future consump-
tion at rate rn

G = r −Ψ(γ), or the discount factor is not e−rT but e−(r−Ψ(γ))T .
Several simple observations are in order. First, if we presume that an individual

anticipates that the future consumption level ct will be the same as today, on average,
i.e., c = ex = Ex[cT ] = eΨ(1)T ex, then we have Ψ(1) = 0. Since Ψ is convex and Ψ(0) = 0,
we have Ψ(γ) < 0 for γ ∈ (0, 1). Therefore, future gains are discounted more than in
the standard exponential discounting model: rn

G = r − Ψ(γ) > r, but the discounting
remains exponential. We will call Dn

G := Dn
G(T ) = eΨ(γ)T the uncertainty correction to

the background discount factor e−rT .
Second, we observe the exponential discounting even if the background discount rate,

r, is zero4. The observed discount rate −Ψ(γ) will be positive. We may say that if
r = 0 then Dn

G(T ) is the endogenous discount factor, and −Ψ(γ) > 0 is the endogenous
discount rate.

Third, the same conclusions hold if we consider the disutility of losses uL(c) = cγ

with γ ∈ (0, 1). However, if we assume that for losses, γ > 1, then Ψ(γ) > 0, and the
correction factor Dn

L(T ) to the discount factor for losses is larger than 1. Therefore, in
this case, we need to have the positive background rate r, and it must be larger than
Ψ(γ) (otherwise, we get arbitrary large negative discounting for losses in the distant

4That is, the individual totally ignores the possibility of dying.
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future; the losses at the infinity are felt as infinite ones). Further, if 0.5 < γG < γL < 1,
we conclude that the gains are discounted more than losses. Hence, the sign effect can
be reproduced, and the delay-speedup asymmetry naturally follows. Notice that here we
need to use different uG and uL as in Loewenstein (1988) and Loewenstein and Prelec
(1992) who explained the delay-speedup asymmetry using the loss aversion assumption
uL(c) > uG(c), for all c > 0.

Notice also that the naive correction factors Dn
G(T ) and Dn

L(T ) to the exponential
discounting formula cannot explain the hyperbolic discounting, negative discounting and
magnitude effect. In other words, the naive pricing formulas

Kn
G = Kn

G(u; x) = e−rT Ex [uG(cT )] (3.3)

and

Kn
L = Kn

L(u; x) = e−rT Ex [uL(cT )] (3.4)

for the gain or loss in consumption cT at time T , respectively, do not lead to the hyper-
bolic discounting, negative discounting and magnitude effects. However, as experiments
show, behavior of people in real life exhibit these effects. The reason is that an individ-
ual, who is under no obligation to buy or sell the right for the payoff cT instantly, and
can wait for a more favorable realization of the underlying uncertainty, prices the future
gains or losses not as prescribed by (3.3) and (3.4). This fact is well-known in the theory
of financial and real options. One says that there exists the option value of waiting.

3.2. Real options approach and DU anomalies. We now deduce formulas for the
discount factors DG(T ) and DL(T ), which take into account not the uncertainty only as
the factors Dn

G(T ) and Dn
L(T ) above, but the decision-making aspect as well. We will call

the former factors discount factors ex ante, and the latter - discount factors ex post (for
gains and losses, respectively). From these formulas, the discounted utility anomalies
will follow.

Our crucial assumption is as follows: when contemplating an acquisition of an instan-
taneous payoff cT , the individual regards this action as an American call option, either
a perpetual one or with a finite (possibly random) maturity date, and prices this option
accordingly. As a result, in an experiment, the individual agrees to pay, at most, the
fair price for this future payoff, i.e., the maximal strike price that makes it optimal to
exercise the option at the date specified in the experiment. Similarly, when contemplat-
ing losses, the individual views this action as an American put option. In this case, the
individual agrees to get the compensation, which is at least fair from her point of view,
i.e., the minimal strike price that makes it optimal to exercise the put option at the
date specified in the experiment. Notice that unlike traders in financial markets, our
individual anticipates neither the presence of arbitrageurs to exploit the arising “natural
bid-ask spread,” nor appearance of competing consumers willing to offer a higher price
for the good to be delivered in the future. Hence, our assumption does not contradict
basic principles of the rational behavior unless we apply it to traders in efficient financial
markets.
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3.2.1. Valuation of future gains and perpetual American call options. We now calculate
the fair strike price, KG, that makes it optimal to exercise now a perpetual American
option to acquire an instantaneous payoff cT (in dollar terms) T periods from now. Sup-
pose that the individual discounts the future at rate r > 0. Given the current realization
of the stochastic factor, Xt, is equal to x, the expected present value of her utility of
consumption is e−rT Ex[uG(cT )]. So the payoff function is g(x) = e−rT Ex[uG(cT )]−KG.
Recall that in this section, we model Xt as the Brownian motion. We assume that the
no-bubble condition rn

G = r−Ψ(γ) > 0 holds, equivalently, the expected present value of
the utility of consumption e−rT Ex[u(cT )] decreases as T increases.

Whenever Xt is at or above certain level h∗ = h∗(KG, T ), it is optimal to exercise the
option. The optimal exercise boundary, h∗, for the perpetual American call option was
derived by McKean (1964). In our case, h∗ solves the equation

eγh∗ =
β+

β+ − γ
eT (r−Ψ(γ))KG, (3.5)

where β+ > γ is the positive root of the “fundamental quadratic” r − Ψ(β) = 0. The
inequality β+ > γ follows from the no-bubble condition.

Suppose that the current realization of the stochastic factor, x, is such that the indi-
vidual finds it optimal to exercise the option right now, i.e., x = h∗(KG, T ). Then (3.5)
defines the highest strike price that makes such an exercise optimal. This strike price is

KG = (1− γ/β+)eγx−(r−Ψ(γ))T = (1− γ/β+)e−(r−Ψ(γ))T u(c) (3.6)

= (1− γ/β+)e−rT Ex[uG(cT )].

Recall that the naive fair price Kn
G is given by (3.3), therefore KG = (1 − γ/β+)Kn

G.
According to our earlier definition, the price KG defined by (3.6) is the fair strike price
of the perpetual American call option. Of course, the individual will agree to pay for cT

any price that is smaller than KG as well if she faces a menu of options with different
strikes.

Observe that 1− γ/β+ ∈ (0, 1), therefore the fair price for the delivery of a payoff in
the future, KG, is always less than the naive fair price Kn

G. Introduce Dc
G = (1− γ/β+)

- the correction factor to the naive exponential discount factor Dn
G(T ). Thus, we recover

the quasi-hyperbolic discounting model for gains:

DG(T ) = δe−(r−Ψ(γ))T

with δ = Dc
G. To conclude this section, we notice that if the individual has to name the

fair price she would agree to pay at time t > 0 for the payoff ct+T that she will get T
periods after date t, then the fair strike price is

KG(t) = (1− γ/β+)e−rT Et[uG(ct+T )],

where Et is the expectation operator conditioned on the information available at date t.
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3.2.2. Valuation of future losses and perpetual American put options. A similar argument
applies if the individual can get a compensation, KL, now in exchange for the loss of a
consumption cT T periods from now. Assuming that the instantaneous disutility of losses
is measured by a function uL (so that −uL(cT ) is the utility of a negative consumption
−cT : −uL(cT ) = u(−cT )), the present value of the loss is e−rT Ex[uL(cT )]. Now the
individual regards herself as the holder of the American put option with the payoff
function g(x) = KL − eγx−(r−Ψ(γ))T . Assume that the option is perpetual.

The optimal exercise boundary, h∗ = h∗(KL, T ), for the perpetual American put option
was derived by Merton (1973). In our case, h∗ solves the equation

eγh∗ =
β−

β− − γ
eT (r−Ψ(γ))KL, (3.7)

where β− < 0 is the negative root of the “fundamental quadratic” r−Ψ(β) = 0. Let the
current realization of the stochastic factor, x, be such that the individual finds it optimal
to exercise the option right now, i.e. x = h∗(KL, T ). Then (3.7) defines the lowest strike
price that makes such an exercise optimal. This strike price is

KL = (1− γ/β−)eγx−T (r−Ψ(γ)) = (1− γ/β−)e−(r−Ψ(γ))T u(c) (3.8)

= (1− γ/β−)e−rT Ex[uL(cT )] = (1− γ/β−)Kn
L.

The last equality holds on the strength of formula (3.4) for the naive fair compensation,
Kn

L. Clearly, the individual will agree to accept any compensation that is higher than
or equal to KL, therefore KL is the fair strike price of the American put option that is
exercised on the spot.

Introduce the correction factor to the naive exponential discount factor Dn
L(T ) as

Dc
L = 1− γ/β− > 1. Thus, we derived the quasi-hyperbolic discounting model for losses

DL(T ) = δe−(r−Ψ(γ))T

with δ = Dc
L, and for T < (logDc

L)/(r−Ψ(γ)), the negative discounting will be observed.
Also, from (3.8) it is evident that KL > Kn

L, i.e., the fair compensation for the loss of a
payoff in the future is always higher than the naive fair compensation.

Lastly, if the individual has to specify the minimal compensation she would agree to
accept at date t for the loss she would incur in T periods from date t, the compensation
would be

KL(t) = (1− γ/β−)e−rT Et[uL(ct+T )].

We have demonstrated the quasi-hyperbolic discounting and negative discounting ef-
fects. The following simple general arguments explain the sign effect and delay-speedup
asymmetry effect.

3.2.3. Sign effect. In Subsection 3.1, we showed that the sign effect is observed iff γG <
γL, i.e., if the preferences exhibit loss aversion. Let γG = γL = γ, then we have

DG(T ) = (1− γ/β+)e−(r−Ψ(γ))T < (1− γ/β−)e−(r−Ψ(γ))T = DL(T ).
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Thus, our model shows that even if the disutility function for losses is identical to the
utility function for gains, the discount factor ex ante for gains is smaller than the discount
factor ex ante for losses. Thus, gains are discounted more than losses.

3.2.4. Delay-speedup asymmetry. Assume that the individual is asked whether she is
willing to delay the delivery of a widget (say, a DVD–player) and receive it at date T
instead of the present date. She is offered the compensation Kdelay for the expected
disutility of losses during the period [0, T ]. Assuming that the decision to suffer losses
has been made, the individual evaluates the disutility of losses using the discount factor
ex post for losses; and she finds

Ex

[∫ T

0

e−rtuL(ct)dt

]
=

∫ T

0

e−rtEx[uL(ct)]dt = eγx

∫ T

0

e−rt+Ψ(γ)tdt = eγx 1− e−T (r−Ψ(γ))

r −Ψ(γ)
.

(Here γ = γL). The same argument as is Subsection 3.2.2 demonstrates that she does not

consider an offer fair unless Kdelay exceeds Ex
[∫ T

0
e−rT uL(ct)dt

]
by factor 1−γ/β− > 1.

Similarly, if she expects the delivery at time T > 0, then the instant delivery provides an

additional utility stream over the period [0, T ], Ex
[∫ T

0
e−rT uL(ct)dt

]
. If the individual

is asked to pay Kexp to expedite the delivery, she is offered the American call option with
the payoff

Ex

[∫ T

0

e−rtuL(ct)dt

]
−Kexp = eγx 1− e−T (r−Ψ(γ))

r −Ψ(γ)
−Kexp.

(Here γ = γG). As the argument is Subsection 3.2.1 demonstrates, she should be willing

to pay Kexp which is not larger than (1 − γ/β+)Ex
[∫ T

0
e−rT uL(ct)dt

]
. Even if uL(c) =

uG(c), for all c > 0 (the disutility function for losses equals the utility function for gains),
equivalently, γL = γG, we observe the delay-speedup asymmetry:

Kexp ≤ (1− γ/β+)(1− γ/β−)−1Kdelay,

whence Kexp < Kdelay. The individual asks more as a compensation for the delay than
she is willing to pay to expedite the payment. Notice that Loewenstein (1988) and
Loewenstein and Prelec (1992) explained the delay-speedup asymmetry using the loss
aversion assumption uL(c) > uG(c), for all c > 0.

4. Hyperbolic discounting and magnitude effect

In order to obtain richer patterns of time dependence of discount factors that distin-
guish hyperbolic from quasi-hyperbolic discounting and reproduce the magnitude effect,
one has to consider either more general than CRRA utility functions or to work with
mean-reverting processes instead of processes with i.i.d. increments. In this section, we
consider an increasing concave utility function u and Brownian motion uncertainty. The
case of mean-reverting processes is relegated to Appendix B.
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4.1. General utility function, Brownian motion case. As in the previous section,
we define the utility function over gains, uG(c) = u(c), c > 0, and disutility function over
losses, uL(c) = −u(−c), c > 0, and we model the stochastic consumption level as the
Geometric Brownian motion: ct = eXt . We assume that the expected present value of
consumption ertEc[ct] is bounded as t → +∞; equivalently, β+ > 1.

Theorem 4.1. The correction factors for gains and losses to the naive exponential dis-
count factor are

Dc
G(c, T ) =

E[u(cT )− (1/β+)cT u′(cT ) | c0 = c]

E[u(cT ) | c0 = c]
(4.1)

and

Dc
L(c, T ) =

E[u(cT )− (1/β−)cT u′(cT ) | c0 = c]

E[u(cT ) | c0 = c]
(4.2)

Proof. Set vG(x) = uG(c(x)). If the individual is offered the instantaneous consumption
cT at time T for K dollars, she is offered the perpetual American call option with the
strike K and payoff function g(x) = e−rT Ex[vG(XT )]−K. Direct calculations show that

function vG − (1/β+)v′G is increasing. (4.3)

Indeed, assuming for simplicity that u′′G exists (and is negative) and using β+ > 1 and
u′G > 0, we find that the derivative of vG(x) − (1/β+)v′G(x) = uG(c) − (1/β+)cu′G(c)
w.r.t. c(= ex) is positive:

(uG(c)− (1/β+)cu′G(c))′ = u′G(c)− (1/β+)u′G(c)− (1/β+)cu′′G(c) > 0.

In Subsection D.1, we prove the following lemma.

Lemma 4.2. Assume that condition (4.3) hold, and

(vG − (1/β+)v′G)(−∞) < KerT < (vG − (1/β+)v′G)(+∞) (4.4)

Then the optimal exercise boundary of the American call with the payoff function g is
the unique solution of the equation

K = e−rT Eh∗ [vG(XT )− (1/β+)v′G(XT )]. (4.5)

Assuming that the current level is X0 = x, and the instantaneous consumption cT at
time T is offered for KG dollars, the individual considers as fair the price given by (4.5)
with h∗ = x and K = KG; hence,

KG = e−rT E[uG(cT )− (1/β+)cT u′G(cT ) | c0 = c].

Since the naive pricing formula is Kn
G = e−rT E[uG(cT ) | c0 = c], we obtain (4.1).

To prove (4.2), we set vL(x) = uL(ex). Assuming for simplicity that u′′ exists and is
negative, we conclude that u′′L exists, and it is positive. Using β− < 0 and u′L > 0, we
find that

(uL(c)− (1/β−)cu′L(c))′ = u′L(c)− (1/β−)u′L(c)− (1/β−)cu′′L(c) > 0.
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Hence,

function vL − (1/β−)v′L is increasing. (4.6)

If the individual may get a compensation K dollars now for the loss of instantaneous
consumption cT at time T , she holds the perpetual American put option with the strike
K and payoff function g(x) = K − e−rT Ex[v(XT )]. In Subsection D.2, we prove the
following lemma.

Lemma 4.3. Assume that condition (4.6) and the following condition hold:

(vL − (1/β−)v′L)(−∞) < KerT < (vL − (1/β−)v′L)(+∞) (4.7)

Then the optimal exercise boundary of the European put with the payoff function g is the
unique solution of the equation

K = e−rT Eh∗ [vL(XT )− (1/β−)v′L(XT )]. (4.8)

Assuming that the current level is X0 = x, and a compensation K dollars is offered
now for the loss of instantaneous consumption, the individual considers as fair the com-
pensation given by (4.8) with h∗ = x and K = KL; hence,

KL = e−rT E[uL(cT )− (1/β+)cT u′L(cT ) | c0 = c].

Since the naive pricing formula is Kn
L = e−rT E[uL(cT ) | c0 = c], we obtain (4.2). ¤

4.2. Sign effect, delay-speedup asymmetry and negative discounting. Since v′ is
positive and−1/β− > 0 > −1/β+ > −1, we see that the numerator in (4.1) (respectively,
(4.2)) is smaller (respectively, larger) than the denominator. Hence, the correction factor
for gains is smaller than 1, and the correction factor for losses is larger than 1. All three
effect are immediate.

4.3. Magnitude effect and hyperbolic discounting: small consumption levels.
Assume that the current level c = c0 is small. Then, if the variance Tσ2

T of XT is not
large, cT will be small with high probability. Assuming that uG is twice continuously
differentiable at 0, increasing and concave, we may approximate u(cT ) and cT u′(c):

u(cT ) = α0cT + α1c
2
T + · · · ,

cT u′(cT ) = α0cT + 2α1c
2
T + · · · ,

where α0 > 0, α1 < 0. Using Ec[ck
T ] = Ex[ekXT ] = ckeTΨ(k) and assuming that ct is a

martingale: Ec[ct] = c, we obtain from (4.1) an approximate equality

Dc
G(c, T ) =

α0(1− 1/β+)c + α1(1− 2/β+)eTΨ(2)c2

α0c + α1eTΨ(2)c2
+ O(c2)

= (1− 1/β+)

(
1 +

(
α1(1− 2/β+)

α0(1− 1/β+)
− α1

α0

)
eTΨ(2)c

)
+ O(c2),
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and after simplification,

Dc
G(c, T ) = (1− 1/β+)

(
1 +

−α1

α0(β+ − 1)
eTΨ(2)c

)
(4.9)

Since β+ > 1, Ψ(2) > 0 and −α1, α0 > 0, we conclude from (4.9) that the discount
factor increases both in c and T (while c remains small). Hence, the magnitude effect is
observed (large gains are discounted less than small ones), and the discount rate ex ante
for gains decreases as T increases.

Since uL(c) = −u(−c) = α0c− α1c
2 + · · · , the analog of (4.9) for losses is

Dc
L(c, T ) = (1− 1/β−)

(
1 +

α1

α0(β− − 1)
eTΨ(2)c

)
(4.10)

Since β− < 0, Ψ(2) > 0 and −α1, α0 > 0, we conclude from (4.9) that the discount
factor increases both in c and T (while c remains small). Hence, the magnitude effect
is observed (large losses are discounted less than small ones), and the discount rate ex
ante for gains decreases as T increases.

In Subsection D.3, we derive the magnitude effect and hyperbolic discounting at mod-
erate consumption levels.

5. Consumption of a durable good

Suppose now that the good is durable, and hence, an individual contemplates the gain
of a consumption stream ct, which she expects to consume from the moment T > 0 till
infinity or during T ′ years, say. We will demonstrate the same effects as in the case of
instantaneous consumption. Below we consider the case when uncertainty is modelled
as a general Lévy process. The case of the Ornstein-Uhlenbeck process is relegated to
Appendix D.

5.1. Utility and disutility functions of the form uG(c) = cγ, uL(c) = cγ. The
expected present value of consumption

Ex

[∫ T+T ′

T

e−rtuG(ct)dt

]
= Ex

[∫ T+T ′

T

e−rt+γXtdt

]
= eγx

∫ T+T ′

T

e−t(r−Ψ(γ))dt

can be represented as

eγx−T (r−Ψ(γ))A(T, T ′) = A(T, T ′)e−rT Ex[uG(cT )],

where the Lévy exponent Ψ(γ) is defined from Ex[eγXt ] = etΨ(γ)+γx, and

A(T, T ′) =
1− e−T ′(r−Ψ(γ))

r −Ψ(γ)
.

This value differs from the expected present value of the instantaneous consumption at
date T by a constant factor A(T, T ′), and therefore the arguments for the instantaneous
consumption case apply. The results are the quasi-hyperbolic discounting models for
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gains and losses with the correction factors δ ∈ (0, 1) and δ > 1, respectively, and the
negative discounting for losses.

5.2. Utility and disutility functions of the general form. In this subsection, Xt

is a Lévy process, and the durable good will be consumed since moment T till infinity;
the present is t = 0. Set v(x) = u(c(x)) = u(ex) and w(T, x) = e−rT Ex[v(XT )]. The
expected present value of consumption of this stream can be represented in the form

e−rT Ex

[
EXT

[∫ +∞

T

e−rtv(Xt)dt

]]
= Ex

[∫ +∞

0

e−rtw(T ; Xt)dt

]
.

Since u is an increasing function of c, both v and w are increasing functions of x. There-
fore, an individual who is offered to pay K dollars for this stream, is offered the payoff
which can be represented as the right to the perpetual stream g(T ; Xt) = w(T ; Xt)−rK.
It has been proved in Boyarchenko (2004) for payoffs of the form AeXt −B and general
Lévy processes, and in Boyarchenko and Levendorskǐi (2005, 2004a,b) for general increas-
ing payoffs g and wide classes of Lévy processes and random walks, that the perpetual
American option on the stream g must be exercised the first time the expected present
value of the stream g under the infimum process X t = inf0≤s≤t Xs becomes non-negative.
Hence, the optimal exercise boundary h∗ is the unique solution of the equation

Eh∗
[∫ +∞

0

e−rtg(X t)dt

]
= 0 (5.1)

(this is the record-setting bad news principle developed in Boyarchenko (2004) as a mod-
ification and generalization of Bernanke’s (1983) bad news principle). For the stream
g(T ; Xt) = w(T ; Xt)− rK, (5.1) can be reformulated as follows:

Eh∗
[∫ +∞

0

e−rtw(T ; X t)dt

]
= rK. (5.2)

The naive NPV equation for the threshold is

Eh∗
[∫ +∞

0

e−rtw(T ; Xt)dt

]
= rK. (5.3)

If at the current level x = X0, the individual finds it optimal to exercise the option, she
must regard the price

K = r−1Ex

[∫ +∞

0

e−rtw(T ; X t)dt

]
(5.4)

as fair, whereas the standard expected exponential discounting rule gives the same for-
mula but with Xt instead of X t. We conclude that the correction factor for gains is

Dc
G(uG; T, x) =

Ex
[∫ +∞

0
e−rtw(T ; X t)dt

]

Ex
[∫ +∞

0
e−rtw(T ; Xt)dt

] . (5.5)
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Excluding cases when the trajectories of the process Xt are non-decreasing a.s., we find
that Dc

G(uL; T, x) < 1, and the hyperbolic discounting is observed.
Similarly, if the individual can get a compensation of K dollars for the loss of a

perpetual consumption stream which she expects to enjoy from moment T from now,
then she finds the following price fair:

K = r−1Ex

[∫ +∞

0

e−rtw(T ; X̄t)dt

]
(5.6)

(the corollary of the record-setting good news principle in Boyarchenko (2004) and Bo-
yarchenko and Levendorskǐi (2004a,b, 2005b)). We conclude that the correction factor
for gains is

Dc
L(uL; T, x) =

Ex
[∫ +∞

0
e−rtw(T ; X̄t)dt

]

Ex
[∫ +∞

0
e−rtw(T ; Xt)dt

] . (5.7)

Excluding cases when the trajectories of the process Xt are non-increasing a.s., we find
that Dc

L(uL; T, x) > 1, and the negative discounting is observed. Assuming that the
trajectories move up and down with non-zero probability, we find that Dc

G(uG; T, x) <
Dc

L(uL; T, x) even if uG = uL. The sign effect and the delay-speedup asymmetry effects
follow but we cannot prove the magnitude effect; however, we demonstrated it numeri-
cally for many parameter values.

6. Conclusion

In the paper, we explained the observed discount utility anomalies as resulting from
the optimizing behavior of an individual who believes that she can wait for some time
for an offer of a fair price, and regards the future consumption as uncertain. We define
the fair price as the strike price of the American option for which the current level
of the stochastic factor is at the optimal exercise boundary. This is the call option if
an individual may pay now for delivery of a consumption good or a certain amount of
money in the future, and the put option, if she may get a compensation now for the loss of
consumption in the future. Using the results for the American options, we showed that for
this individual, the fair price for gains in the future is always smaller than the price which
the standard expected exponential discounting model predicts, and the fair compensation
for losses is larger than in the standard model. From this observation, the negative
discounting for losses, sign effect and delay-speedup asymmetry follow. Modelling the
logarithm of consumption Xt = log ct as the Brownian motion, other processes with
i.i.d. increments, and Ornstein-Uhlenbeck process, we derived explicit formulas for the
discount factors which the individual uses to evaluate gains and losses (discount factors
ex ante as opposed to discount factors ex post in the standard model which she uses to
evaluate the consumption when no decision is involved), and demonstrated the hyperbolic
discounting. We identified the quasi-hyperbolic (β, δ) model (and its natural continuous
time analog) as the model for an individual who
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(i) has the utility function for gains and the disutility function for losses of the form
uG(c) = cγ, uL(c) = cγ (possibly, with different γ′s);

(ii) anticipates the uncertainty as a process with i.i.d. increments.

For this individual, the discount factors ex ante are independent of the consumption
level, and so the magnitude effect cannot be demonstrated.

For more involved utility/disutility functions or uncertainty modelled as the Ornstein-
Uhlenbeck process, larger gains/losses are discounted less than small ones. For the
Ornstein-Uhlenbeck process, this fact is proved analytically, and for the Brownian mo-
tion, it is proved analytically at small levels of consumption and at moderate levels of
consumption if the uncertainty is small. Numerical examples support these claims.

We explained that if the deadline for making a choice of a fair price is introduced,
and hence the individual can be regarded as a holder of an American option with finite
maturity T1 instead of perpetual American option, then the discount utility anomalies
become smaller but for many specifications of uncertainty, they do not vanish even in
the limit T1 → +0. We concluded that the discount utility anomalies should be observed
in the case of a random deadline. We showed that if the deadline is imminent then the
quasi-hyperbolic discounting is a good approximation in all cases.

The qualitative and quantitative results obtained in the paper admit the empirical
verification. The following hypotheses can be tested in experiments:

(1) Competition decreases the size of anomalies. Experiment # 1 (standard one): par-
ticipants are asked to choose the fair price from a wide menu of prices. Experiment
# 2 (the second price sealed-bid auction): participants are asked to do the same but
are told that the future payoff will be given to a person who offers the highest bid.
We expect that in Experiment #2, the DU anomalies will be smaller because there
may be no value of waiting for more information if an object becomes unavailable
(goes to the bidder with the highest bid). At the same time, if bidders do have
hyperbolic time preferences, the presence of competitors should not affect their time
preference.

More generally, we expect that many strategic situations will have different equi-
libria if peoples’ preferences demonstrate DU anomalies or if they are described by
our discount factors ex ante.

(2) The deadline decreases the size of anomalies, and the closer the deadline, the smaller
the sizes of anomalies are. Experiment # 1: participants are asked to choose the fair
price from a narrow menu of prices. It is explained that if they do not make a choice
today they will be offered a different menu tomorrow, which can be more favorable
or less favorable than the menu offered today (on average, roughly the same), and
the experiment will be repeated several times, say, each Monday during a month;
after that, they will lose the right to choose. Experiment # 2: the same experiment,
but with a different time scale, say, each day of a week.

(3) Anomalies do not vanish when the deadline is very close. Presumably, this experi-
ment requires a preliminary stage, when the participants can infer (on a subconscious
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level) the dynamics of the menu they are offered at different dates; it is not clear
whether this preliminary stage is needed to test Hypothesis (2). On the second stage,
the participants are offered a menu of choices and informed that if they do not make
a choice now, then they will be able to make a choice the next time, which will be
the last one.

Appendix A. Processes with i.i.d. increments: instantaneous
consumption

A.1. Lévy processes. For a general process with i.i.d. increments, in continuous time
(a Lévy process), the optimal exercise boundary for the perpetual American call option
with the payoff g(x) = eγx−T (r−Ψ(γ)) −K is given by

eγh∗ = κ+(γ)eT (r−Ψ(γ))K, (A.1)

where Ψ(γ) is definable from Ex[eγXt ] = eγx+tΨ(γ), and κ+(γ) = E[eγX̄τ ], where τ is
an exponential random variable with mean 1/r, independent of process Xt, and X̄t =
sup0≤s≤t Xs is the supremum process. See Boyarchenko and Levendorskǐi (2000, 2002,
2005b), Mordecki (2002) and Alili and Kyprianou (2004) for the results of the increasing
degree of generality and completeness of the proofs, and further references. Therefore,
at the spot level x, the fair price for the instantaneous gain u(cT ) in the future is

K = κ+(γ)−1e−rT Ex[uG(cT )].

Once again we obtain the quasi-hyperbolic discounting model with the correction factor
δ = Dc

G = κ+(γ)−1. Trajectories of the supremum process are non-decreasing, hence
δ ≤ 1; and for a Lévy process whose upward movements have positive probability, they
are increasing with non-zero probability, hence δ = Dc

G < 1.
Similarly, the optimal exercise boundary for the perpetual American put option with

the payoff g(x) = K − eγx−T (r−Ψ(γ)) is given by

eγh∗ = κ−(γ)eT (r−Ψ(γ))K, (A.2)

where κ−(γ) = E[eγXτ ], τ is an exponential random variable with mean 1/r, independent
of the process Xt, and X t = inf0≤s≤t Xs is the infimum process. Therefore, at the spot
level x, the fair price for the instantaneous loss u(cT ) in the future is

K = κ−(γ)−1e−rT Ex[uL(cT )].

Once again we obtain the quasi-hyperbolic discounting model with the correction factor
δ = Dc

L = κ−(γ)−1. Trajectories of the infimum process are non-increasing, hence δ ≥ 1;
and for a Lévy process whose downward movements have positive probability, they are
decreasing with non-zero probability, hence δ = Dc

L > 1. For T < − log κ−(γ)/(r−Ψ(γ)),
we observe the negative discounting. Comparing the correction factors for gains and
losses, we can explain the delay-speedup asymmetry and sign effect but not magnitude
effect.
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A.2. Random walks. Consider a discrete time model. Let Xt = X0 + Y1 + Y2 + · · ·Yt

be a random walk, that is, X0, Y1, Y2, . . . are pairwise independent, and Y1, Y2, . . . are
i.i.d. Suppose that an individual discounts future using the discount factor β ∈ (0, 1).
Set M(γ) = E[eγY1 ], and to rule out bubbles, assume that 1 − βM(γ) > 0. Let τ be
the exponential random variable with mean β/(1 − β), and X̄t and X t the supremum
and infimum processes for the random walk Xt. Define κ+(γ) and κ−(γ) as above.
Then it follows from the general results Darling et al. (1972) and Mordecki (2002)
that the optimal exercise price for the perpetual American put option with the payoff
K − βT Ex[eγXT ] = K − (βM(γ))T eγx is given by

eγh∗ = κ−(γ)(βM(γ))−T K,

and the optimal exercise price for the perpetual American call with the payoff

βT Ex[eγXT ]−K = (βM(γ))T eγx −K

is given by

eγh∗ = κ+(γ)(βM(γ))−T K.

Therefore, if the individual may pay K dollars now for the gain cT in the future, and
the spot value of the stochastic factor is x, she considers the price

K = κ+(γ)−1(βM(γ))T eγx = κ+(γ)−1βT Ex[uG(cT )]

as fair. We obtain the correction factor for gains Dc
G = κ+(γ)−1, which is less than 1 if

upward movements happen with positive probability, and recover the (β, δ)-model (with
βM(γ) in place of β, and δ = Dc

G). Similarly, we obtain the correction factor for losses
Dc

L = κ−(γ)−1, which is greater than 1 if downward movements happen with positive
probability, and obtain the (β, δ)–model for losses, with δ = Dc

L > 1. The negative
discounting follows for T < log κ−(γ)/ log(βM(γ)). Comparing the correction factors
for gains and losses, we can explain the delay-speedup asymmetry and sign effect but
not magnitude effect.

A.3. Finite deadline and random deadline. The case of a finite deadline corresponds
to American options with finite time horizon. For random walks, the early exercise
boundary is separated by non-zero margin from the strike, and the same holds for many
Lévy processes (see Boyarchenko and Levendorskǐi (2002), Levendorskǐi (2004a,b) ).
Hence, the analysis in Section 3 applies, and we conclude that all the discounted utility
anomalies discussed above should be observed in the case of a finite deadline and random
deadline even if the deadline is imminent.

Appendix B. Ornstein-Uhlenbeck processes

B.1. Instantaneous consumption. In this section, we model the uncertainty of con-
sumption ct = exp Xt as the exponential Ornstein-Uhlenbeck process; this is a mean-
reverting model, which is more appropriate for modelling of inflation uncertainty than the
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geometric Brownian motion model. We assume that Xt is the solution of the stochastic
differential equation

dXt = κ(θ −Xt)dt + σdWt, (B.1)

where κ > 0 is the speed of reversion, θ is the “normal” level of Xt, and dWt is the
increment of the standard Brownian motion. For simplicity, we confine ourselves to the
simplest utility function uG(c) = cγ over gains and disutility function uL(c) = cγ over
losses although the case of more general uG and uL can be studied as well. Since the
law of XT conditioned on X0 = x is normal with mean θ + (x − θ)e−κT and variance
(σ2/2κ)(1− e−2κT ) (see, for example, Dixit and Pindyck (1996)), we have

Ex[eγXT ] = exp

[
γe−κT x +

σ2γ2

4κ
(1− e−2κT ) + θγ(1− e−κT )

]
. (B.2)

An individual, who can pay K dollars for delivery of consumption, cT , T periods after
the payment, can be regarded as a holder of the perpetual American call option with
the payoff g(x) = eB(T )−rT+A(T )x − K, where A(T ) = γe−κT and B(T ) = σ2γ2(1 −
e−2κT )/(4κ) + θγ(1 − e−κT ). Set ν = r/κ, σ̄ = σ/

√
2κ, h̄ = (h − θ)/σ̄, and recall the

notation D−ν for the Weber-Hermite parabolic cylinder functions. For the definition and
basic properties, see e.g. Borodin and Salminen (2002), A 2.9, p. 639, and Buchholz
(1969). Values of D−ν can be calculated using the standard packages, MAPLE, for
instance.

Theorem B.1. The optimal exercise boundary, h, is the unique solution of the equation

ν

σ̄

D−ν−1(−h̄)

D−ν(−h̄)
=

g′(h)

g(h)
, (B.3)

on interval ((log K −B(T ) + rT )/A(T ), +∞).

Equation (B.3) is of the same form as equation (3.11) in Levendorskǐi (2005); the proof
is similar to the proof in the Gaussian case. For the sake of completeness, we reproduce
the proof in Subsection B.2.

Clearly, the RHS decreases on the interval ((log K−B(T )+rT )/A(T ), +∞) from +∞
(this is an interval, where g(x) is positive), and it can be shown that the LHS in (B.3)
increases on R to +∞ – see Section 2.1 in Levendorskǐi (2005). Therefore, a unique
solution of (B.3) exists, and it can be found numerically quite easily. Suppose, that
at the current level x = X0, the individual considers the price K as fair; then, using
g′(x) = A(T )eB(T )−rT+A(T )x, we find that

K = eB(T )−rT+A(T )x

(
1− γe−κT σ̄

ν

D−ν(−(x− θ)/σ̄)

D−ν−1(−(x− θ)/σ̄)

)
. (B.4)

Comparing with (B.2), we find the correction factor for gains:

Dc
G(uG; T, x) = 1− γe−κT σ̄

ν

D−ν(−(x− θ)/σ̄)

D−ν−1(−(x− θ)/σ̄)
. (B.5)
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Figure 2. Ornstein-Uhlenbeck model. Correction factors and discount
factors for gains: hyperbolic effect and magnitude effect. Utility function
over gains: uG(c) = cγ, γ = 0.5. Parameters: θ = 0, κ = 0.1, σ2 = 0.2;
r = 0.05.

We see that the correction factor for gains is less than 1, and it is bounded away from 1
for T ∈ (0, +∞). Moreover, γe−κT σ̄/ν > 0, and D−ν(−(x − θ)/σ̄)/D−ν−1(−(x − θ)/σ̄)
decreases as x → +∞ (see Section 2.1 in Levendorskǐi (2005)), therefore we observe both
the hyperbolic effect and magnitude effect. See Fig. 2 for a numerical example. Notice
the slight hump of the discount curve for c = 0.4, which indicates that in some cases, the
discount factor ex ante for gains may increase as T increases - but up to a certain limit
only. This effect can be regarded as an analog of the negative discounting for losses.

Now consider an individual who assesses the fair compensation K for the loss of
consumption, cT , T periods later. Using the equation (3.13) in Levendorskǐi (2005) for
the optimal exercise boundary for the perpetual American put option with the payoff
function g(x) = K − e−rT Ex[eγXT ]:

ν

σ̄

D−ν−1(h̄)

D−ν(h̄)
=

g′(h)

g(h)
, (B.6)
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Figure 3. Ornstein-Uhlenbeck model. Correction factors and discount
factors for losses: negative discounting and magnitude effect. Disutility
function for losses: uL(c) = cγ, γ = 0.5. Parameters: θ = 0, κ = 0.1, σ2 =
0.2; r = 0.05.

we conclude that at the current value x = X0, the individual considers the following
compensation as fair:

K = eB(T )−rT+A(T )x

(
1 + γe−κT σ̄

ν

D−ν((x− θ)/σ̄)

D−ν−1((x− θ)/σ̄)

)
(B.7)

Comparing with (B.2), we find the correction factor for losses:

Dc
L(uL; T, x) = 1 + γe−κT σ̄

ν

D−ν((x− θ)/σ̄)

D−ν−1((x− θ)/σ̄)
. (B.8)

This correction factor is greater than 1, hence for moderate values of T , we observe
the negative discounting. As x → +∞, D−ν((x − θ)/σ̄)/D−ν−1((x − θ)/σ̄) decreases,
therefore we observe the magnitude effect of the correct sign; this time, for any γ > 0.
See Fig. 3 for a numerical example.
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B.2. Proof of Theorem B.1. The free boundary problem for the rational price V (x)
of the option is

(r − σ2

2
∂2 − κ(θ − x)∂)V (x) = 0, x < h, (B.9)

V (h) = g(h), (B.10)

V ′(h) = g′(h), (B.11)

where ∂ = ∂x, so that ∂V (x) = V ′(x). Naturally, we also impose the condition

V (x) → 0, as x → −∞. (B.12)

To solve the free boundary problem (B.9)–(B.12), we fix h, a candidate for the exercise
log-price, set σ̄ = σ/

√
2κ, and change the variable z = (x− θ)/σ̄ and unknown function

V (x) = ez2/4w(z). Equation (B.9) becomes

(r − κ∂2
z + κz∂z)e

z2/4w(z) = 0, z < h̄, (B.13)

where h̄ = (h− θ)/σ̄. Set ν = r/κ, divide (B.13) by −κez2/4, and use the commutation

relation e−z2/4∂ze
z2/4 = ∂z + z/2. We obtain

(∂2
z +

1

2
− ν − z2

4
)w(z) = 0, z < h̄. (B.14)

Since −ν is not a positive integer, the general solution of (B.14) can be represented in
the form

w(z) = AD−ν(−z) + BD−ν(z), (B.15)

where D−ν(±z) are the parabolic cylinder functions or Weber-Hermite functions. For
the representations of D−ν as a series or integral, see, e.g., Buchholz (1969) or Borodin
and Salminen (2002), A 2.9, p. 639. For completeness, we give the series representation:

D−ν(z) := e−z2/4

√
π

2ν

{
1

Γ((ν + 1)/2)

(
1 +

∞∑

k=1

ν(ν + 2) · · · (ν + 2k − 2)

(2k)!
z2k

)

− z
√

2

Γ(ν/2)

(
1 +

∞∑

k=1

(ν + 1)(ν + 3) · · · (ν + 2k − 1)

(2k + 1)!
z2k

)}
,

although in numerical examples, we will use the built-in procedures in the standard
packages. We will need the formula for the derivative(

ez2/4D−ν(z)
)′

= −νez2/4D−ν−1(z) (B.16)

(see e.g. Borodin and Salminen (2002), A 2.9, p. 639), and asymptotic formulas, as
z → +∞ (see equations (5a) and (5b) on p. 92 and (25) on p.40 in Buchholz (1969)):

D−ν(z) = z−νe−z2/4(1 + O(z−2)), (B.17)

D−ν(−z) =

√
2π

Γ(ν)
ez2/4|z|ν−1(1 + O(z−2)). (B.18)
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Notice also that for positive ν, D−ν has no zeroes on the real line. Hence, from (B.16),
we see that D−ν is decreasing.

From (B.15), V (x) can be represented in the form

V (x) = ez2/4 (AD−ν(−z) + BD−ν(z)) , (B.19)

and we see from (B.17) and (B.18), that V (x) satisfies (B.12) if and only if B = 0. We
set B = 0, substitute (B.19) into (D.2) and (D.3) and use(B.16):

Aeh̄2/4D−ν(−h̄) = g(h), (B.20)

and

A
ν

σ̄
eh̄2/4D−ν−1(−h̄) = g′(h). (B.21)

Now we can exclude A, and obtain equation (B.3) for the optimal exercise price.

B.3. Consumption of durable goods. Consider utility and disutility functions of the
form uG(c) = cγ, uL(c) = cγ. Using (B.2), we can represent the expected present value
of the utility stream uG(ct) = eγXt from moment T till T + T ′ as

∫ T+T ′

T

e−rtEx[eγXt ]dt = v(T, T ′; x), (B.22)

where

v(T, T ′; x) =

∫ T+T ′

T

exp

[
−rt + γe−κtx +

σ2γ2

4κ
(1− e−2κt) + θγ(1− e−κt)

]
dt. (B.23)

An individual, who can pay K dollars for this utility stream, can be viewed as a holder
of the American call option with the payoff g(x) = v(T, T ′; x) − K. It can be shown
that v′(T, T ′; x)/(v(T, T ′; x) − K) is decreasing on the interval {x | v(x) > K} from
+∞ (see Section 3.1 in Levendorskǐi (2005)), therefore equation (3.11) in Levendorskǐi
(2005) gives the equation (B.3) for the optimal exercise threshold. Here and below, v′

denotes the derivative w.r.t. x. Suppose, that at the current level x = X0, the individual
considers the price K as fair; then, using

g′(x) = v′(T, T ′; x) =

∫ T+T ′

T

A(t)eB(t)−rt+A(t)xdt, (B.24)

where A(t) = γe−κt and B(t) = σ2γ2

4κ
(1− e−2κt) + θγ(1− e−κt), we find that

K = v(T, T ′; x)− v′(T, T ′; x)
σ̄

ν

D−ν(−(x− θ)/σ̄)

D−ν−1(−(x− θ)/σ̄)
. (B.25)

Comparing with (B.22), we find the correction factor for gains:

Dc
G(uG; T, T ′, x) = 1− v′(T, T ′; x)

v(T, T ′; x)
· σ̄

ν

D−ν(−(x− θ)/σ̄)

D−ν−1(−(x− θ)/σ̄)
. (B.26)
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We see that the correction factor for gains is less than 1, and it depends on x. Thus, we
can reproduce the hyperbolic discounting. It is difficult to prove analytically that the
magnitude effect is observed; however, numerical examples support this claim.

The correction factor for losses can be derived similarly:

Dc
L(uL; T, T ′, x) = 1 +

v′(T, T ′; x)

v(T, T ′; x)
· σ̄

ν

D−ν((x− θ)/σ̄)

D−ν−1((x− θ)/σ̄)
, (B.27)

and we observe the negative discounting. Once again, the magnitude effect can be shown
numerically.

Appendix C. Options of finite maturity

C.1. Valuation of future gains and American call options of finite maturity.
An individual who believes that her option to acquire payoff cT (T periods after the
decision had been made) will never expire is too optimistic. Suppose, that she expects
that there is a deadline T1 after which she will lose the right to choose the fair price for
the gain cT . Then she is a holder of the American call option with the maturity date T1,
and the payoff

g(Xt) = e−rT Et[uG(ct+T )]−K = e−(r−Ψ(γ))T eγXt −K.

We may regard St := e−(r−Ψ(γ))T eγXt as the spot price of a stock at time t. The optimal
exercise rule is of the form: exercise the option the first time St reaches the early exercise
boundary S = H∗(K, T1, t) from below. It is well-known (see e.g. Duffie (1996) and Hull
(2000)) that for fixed K and T1, the curve S = H∗(K, T1, t) is downward sloping, and it
is above the line S = K for all t < T1. This implies that at the spot level x = Xt, at
time t < T1, the individual perceives the price K as fair if K satisfies

e−(r−Ψ(γ))T eγXt = H∗(K, T, T1, t).

Unfortunately, an explicit analytical expression for H∗(K,T, T1, t) is not available, and
therefore, we cannot find analytically K = K(x, T, T1, t) (there exist many numerical
methods, though). However, since H∗(K,T, T1, t) > K, we conclude that the fair price
which the individual should be willing to pay, is smaller than the naive present value
e−(r−Ψ(γ))T eγXt by factor K/H∗(K, T, T1, t). Hence, the correction discount factor for
gains is Dc

G(T1, t; T, x) = K/H∗(K, T, T1, t) < 1, and the discount factor ex ante for
gains is

DG(T1, t; T, x) =
K

H∗(K,T, T1, t)
e−(r−Ψ(γ))T . (C.1)

(Here we have suppressed the dependence of the early exercise boundary, hence of
H∗(K, T, T1, t), Dc

G and DG on uG, equivalently, on γ = γG, and the fact that K is
determined by T, T1, t, x). Note that now the discount factor depends not on the delay
period T but on time to deadline τ = T1 − t as well, so it seems reasonable to talk
about the term structure of discount factors ex ante. For a fixed t < T1, equation (C.1)
demonstrates the quasi-hyperbolic discounting.



30 S. BOYARCHENKO AND S. LEVENDORSKǏI

Since the correction factor increases as the deadline is getting closer, one may expect
that in the limit t → T1 − 0, the correction factor becomes 1, and the discount factor ex
ante becomes the discount factor ex post. If Ψ(γ) ≤ 0, then, indeed, the limit is 1 because
H∗(K, T, T1, t) → K as t → T1 − 0, but if Ψ(γ) > 0, then the limit of the correction
factor is δ = (r − Ψ(γ))/r = 1 − Ψ(γ)/r < 1 because H∗(K,T, T1, t) → r

r−Ψ(γ)
K as

t → T1 − 0. Condition Ψ(γ) > 0 may seem too stringent. However, if the process Xt

has jumps, then the limit H∗(K, T, T1, T1 − 0) = limt→T1−0 H∗(K, T, T1, t) can be larger
than K even if Ψ(γ) ≤ 0 (See Levendorskǐi (2004b)). We conclude that a non-negligible
quasi-hyperbolic discounting can be observed even if the deadline for making a decision
is imminent.

C.2. Valuation of future losses and American put options of finite maturity.
Now our individual can be regarded as a holder of the American put option with the
maturity date T1, and the payoff

g(Xt) = K − e−rT Et[uG(ct+T )] = K − e−(r−Ψ(γ))T eγXt .

We may view St := e−(r−Ψ(γ))T eγXt as the spot price of a stock at time t. The optimal
exercise rule is of the form: exercise the option the first time St reaches the early exercise
boundary S = H∗(K,T1, t) from above. It is well-known (see e.g. Duffie (1996) and Hull
(2000)) that for fixed K and T1, the curve S = H∗(K, T1, t) is upward sloping, and it is
below the line S = K for all t < T1. This implies that at the spot level x = Xt, at time
t prior to the deadline T1, the individual perceives the price K as fair if K solves the
equation

e−(r−Ψ(γ))T eγXt = H∗(K, T, T1, t).

Unfortunately, an explicit analytical expression for H∗(K,T, T1, t) is not available. How-
ever, since H∗(K, T, T1, t) < K, we conclude that the fair compensation, which the
individual should be willing to accept for the loss in the future, is higher than the naive
present value e−(r−Ψ(γ))T eγXt by factor K/H∗(K, T, T1, t). Hence, the correction discount
factor for gains is Dc

L(T1, t; T, x) = K/H∗(K,T, T1, t) > 1, and the discount factor ex
ante for gains is

DL(T1, t; T, x) =
K

H∗(K,T, T1, t)
e−(r−Ψ(γ))T . (C.2)

(We have suppressed the dependence of the early exercise boundary, hence of
H∗(K,T, T1, t), Dc

L and DL on uL, equivalently, on γ = γL, and the fact that K is
determined by T, T1, t, x). For a fixed t < T1, equation (C.2) demonstrates the quasi-
hyperbolic discounting for losses, with δ = Dc

L > 1, and for small T , the negative
discounting results.

Since the correction factor decreases as the deadline is getting closer, one may expect
that in the limit t → T1− 0, the correction factor becomes 1, and the discount factor ex
ante becomes the discount factor ex post. If Ψ(γ) ≥ 0, then, indeed, the limit is 1 because
H∗(K,T, T1, t) → K as t → T1−0, but if Ψ(γ) < 0, then the limit of the correction factor
is δ = (r−Ψ(γ))/r = 1−Ψ(γ)/r > 1 because H∗(K,T, T1, t) → r

r−Ψ(γ)
K as t → T1 − 0.
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Condition Ψ(γ) < 0 may seem too stringent. However, if the process Xt has jumps, then
the limit H∗(K, T, T1, T1 − 0) can be smaller than K even if Ψ(γ) ≥ 0 (See Levendorskǐi
(2004a,b)). We conclude that a non-negligible quasi-hyperbolic discounting and negative
discounting can be observed even if the deadline for making a decision is imminent.

C.3. The sign effect and the delay-speedup asymmetry. The same arguments as
in the case of no deadline apply; essentially, we only need to know that if uL = uG, then
the correction factor for losses is larger than the correction factor for gains.

C.4. The case of a random deadline. In our opinion, intuitively, the most appealing
approach would be when the individual realizes that the option to exchange future
gains/losses for current ones cannot be perpetual, and at the same time, the individual
does not have any specific maturity date in mind. In other words, she perceives the
option at hand as an American option with the random maturity date. Whatever a
random maturity date is, the early exercise boundary for the American call with a
random maturity date is higher than the limit H∗(K, T, T1, T1−0), and the early exercise
boundary for the American put with a random maturity date is lower than the limit
H∗(K,T, T1, T1 − 0). If the former limit is higher than K, and the latter is lower than
K, then the arguments above apply and all the discounted utility anomalies but the
magnitude effect can be reproduced. Note that using the explicit formulas for the case
of a random maturity date in Carr (1998), Levendorskǐi (2004a,b) and Boyarchenko and
Levendorskǐi (2005), one can derive explicit formulas for the correction factors; these
formulas are rather involved, and so we omit them.

Appendix D. Technical proofs

D.1. Proof of Lemma 4.2. Let V (x) be the value of the perpetual American option
with the payoff function g(x) = e−rT Ex[v(XT )] − K. Function g is increasing, and it
satisfies conditions (4.3)-(4.4) since v does. The unknown function V and boundary h
solve the following free boundary problem

rV (x)− µV ′(x)− σ2

2
V ′′(x) = 0, x < h, (D.1)

V (h) = g(h), (D.2)

V ′(h) = g′(h). (D.3)

(These are the stationary Black-Scholes equation, and the value matching and smooth
pasting conditions). The general solution of (D.1) is of the form

V (x) = Aeβ+x + Beβ−x, (D.4)

where β− < 0 < β+ are negative and positive roots of the “fundamental quadratic”
r − Ψ(β) = 0. Since the option value decreases as x → −∞, we must have B = 0.
Substituting V (x) = Aeβ+x into (D.2)-(D.3), we can write (D.3) as β+V (h) = g′(h), and
dividing (D.3) by (D.2), obtain g(h) = g′(h)/β+. Since g(x) = e−rT Ex[v(XT )]−K, and
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g′(x) = e−rT Ex[v′(XT )], the equation for the optimal exercise boundary can be written
as (4.5). On the strength of (4.3) and (4.4), the RHS of (4.5) increases, a solution of
equation (4.5) exists, and it is unique.

D.2. Proof of Lemma 4.3. Let V (x) be the value of the perpetual American option
with the payoff function g(x) = K − e−rT Ex[v(XT )]. Function g is decreasing, and −g
satisfies conditions (4.6)-(4.7) since v does. The unknown function V and boundary h
solve the following free boundary problem

rV (x)− µV ′(x)− σ2

2
V ′′(x) = 0, x > h, (D.5)

V (h) = g(h), (D.6)

V ′(h) = g′(h). (D.7)

The general solution of (D.5) is of the form (D.4). Since the option value decreases as
x → +∞, we must have A = 0. Substituting V (x) = Beβ−x into (D.6)-(D.7), we can
write (D.3) as β−V (h) = g′(h), and dividing (D.7) by (D.6), obtain g′(h)/β− = g(h).
Since g(x) = K − e−rT Ex[v(XT )], and g′(x) = −e−rT Ex[v′(XT )], the equation for the
optimal exercise boundary can be written as (4.8). On the strength of (4.6) and (4.7),
the RHS of (4.8) increases, a solution of equation (4.8) exists, and it is unique.

D.3. Magnitude effect and hyperbolic effect: moderate consumption levels.
Assume that ct is a martingale: E[ct] = c0, and Tσ2

T is small, so that we can use
approximations

u(cT ) = u(c0) + u′(c0)(cT − c0) +
1

2
u′′(c0)(cT − c0)

2 + · · · ,

u′(cT ) = u′(c0) + u′′(c0)(cT − c0) +
1

2
u′′′(c0)(cT − c0)

2 + · · · ,

cT u′(cT ) = c0u
′(c0) + c0u

′′(c0)(cT − c0) +
1

2
c0u

′′′(c0)(cT − c0)
2

+u′(c0)(cT − c0) + u′′(c0)(cT − c0)
2 + · · · ,

to calculate expectations in (4.1):

Ec[u(cT )] = u(c) +
1

2
u′′(c)c2σ2

T + · · · ,

Ec[cT u′(cT )] = cu′(c) + c2[u′′(c) +
1

2
cu′′′(c)]σ2

T + · · ·

Substituting into (4.1), we obtain an approximation

Dc
G(c, T ) =

uG(c)− (1/β+)cu′G(c)− c2[(1/β+ − 1/2)u′′G(c) + cu′′′G(c)/(2β+)]σ2
T

uG(c) + u′′G(c)c2σ2
T /2

, (D.8)
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and even more rough approximation

Dc
G(c, T ) =

uG(c)− (1/β+)cu′G(c)

uG(c)
= 1− 1

β+
· cu′G(c)

uG(c)
. (D.9)

Similarly to (D.8)-(D.9), we obtain

Dc
L(c, T ) =

uL(c)− (1/β−)cu′L(c)− c2[(1/β− − 1/2)u′′L(c) + cu′′′L (c)/(2β−)]σ2
T

uL(c) + u′′L(c)c2σ2
T /2

, (D.10)

and even more rough approximation

Dc
L(c, T ) =

uL(c)− (1/β−)cu′L(c)

uL(c)
= 1− 1

β−
· cu′L(c)

uL(c)
. (D.11)

Since β− < 0 < β+ and cu′L(c)/uL(c) is increasing iff cu′(c)/u(c) is decreasing, the
following theorem is immediate from (D.9) and (D.11).

Theorem D.1. If cu′(c)/u(c) is decreasing, then large outcomes are discounted less than
small ones.

The derivative of the RHS in (D.8) w.r.t. σ2
T is equal to FG/u2

G(c), where

FG := (uG(c)−(1/β+)cu′G(c))(−u′′G(c)c2/2)−c2[(1/β+−1/2)u′′G(c)+cu′′′G(c)/(2β+)]uG(c).

Simplifying, we find

Dc
G(c, T )

dσ2
T

=
−u′′G(c)

2β+uG(c)

{
2 + c

(
u′′′G(c)

u′′G(c)
− u′G(c)

uG(c)

)}
. (D.12)

Therefore, the correction factor for gains depends on T unless

2 + c

(
u′′′G(c)

u′′G(c)
− u′G(c)

uG(c)

)
= 0, (D.13)

and it increases as T increases, that is, the ex ante discount rate for gains decreases, if

2 + c

(
u′′′G(c)

u′′G(c)
− u′G(c)

uG(c)

)
> 0. (D.14)

Similarly, we derive from (D.10)

Dc
L(c, T )

dσ2
T

=
−u′′L(c)

2β−uL(c)

{
2 + c

(
u′′′L (c)

u′′L(c)
− u′L(c)

uL(c)

)}
. (D.15)

The utility function u is concave, therefore uL is convex, and since β− < 0, we conclude
that the correction factor for losses depends on T unless

2 + c

(
u′′′L (c)

u′′L(c)
− u′L(c)

uL(c)

)
= 0, (D.16)

and it increases as T increases, that is, the ex ante discount rate for losses decreases, if

2 + c

(
u′′′L (c)

u′′L(c)
− u′L(c)

uL(c)

)
> 0. (D.17)
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Remark. a) For uG(c) = cγ the exact formulas (4.1) and (4.2) give the correction factors
Dc

G(c, T ) = 1 − γ/β+ and Dc
L(c, T ) = 1 − γ/β−, and an approximate conditions (D.13)

and (D.16) hold as well.
b) The approximate conditions (D.14) and (D.17) cannot be used in the region of

small values of c. For instance, the asymptotic calculations for uG(c) = (1 + c)γG − 1,
0 < γG < 1, in the region of small and large values of c, and numerical calculations in
the region of moderate levels of c show that the discount rate ex-ante decreases as T
increases. However, for small c, the RHS in (D.14) is negative.
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International Journal of Theoretical and Applied Finance, 3, 549–552.
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