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Abstract

We address the question of designing dynamic menus to sell experience goods. A

dynamic menu consists of a set of price-quantity pairs in each period. The quality of

the product is initially unknown, and more information is generated through experi-

mentation. The amount of information in the market is increasing in the total quantity

sold in each period, and the �rm can control the information �ow to the market by

adjusting the level of sales. We derive the optimal menu as a function of consumers�

beliefs about product quality, and characterize the changes in prices and quantities

resulting from information di¤usion and its e¤ects on beliefs.

The equilibrium menu prices are the result of a dynamic trade-o¤ between im-

mediate gains from trade, information production, and information rents. The �rm

initially charges lower prices, in order to increase sales above the static optimum, sac-

ri�cing short-term gains in order to invest in information. As the market obtains more

information, the �rm gradually shifts to a policy designed to extract revenue from

high-valuation buyers. This policy may eventually exclude low-valuation buyers from

the market, even if the product�s underlying quality is in fact high.
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1 Introduction

1.1 Motivation

Learning plays a crucial role in many markets and other strategic environments. In par-

ticular, in markets for new products and services, sellers often face uncertainty over the

product�s �t for consumers�needs. Consider, for example, new software products and new

online services such as DVD rentals, data backup, Internet telephony, and Internet access

itself. The quality of these products is only revealed to market participants through con-

sumption, as buyers learn from their own experience and from that of others. Another salient

feature of these markets is that consumers�willingness to pay is heterogeneous. This creates

the opportunity for �rms to pro�tably adopt price discrimination techniques (such as menu

pricing) to elicit the buyers�private information and extract more surplus.

In markets for new products and services, demand conditions evolve over time. As

consumers gradually learn about the quality of the product, they modify their purchasing

behavior. In consequence, the di¤usion of information induces �rms to modify their menu

prices. In particular, in markets for experience goods, the di¤usion of information is en-

dogenous to the behavior of market participants. Buyers and sellers in�uence the amount

of information conveyed to the market through the level of sales, which is determined by

consumers�purchasing behavior and �rms�pricing strategies. Moreover, information about

these products�performance is widely and publicly available through an increasing number

of channels.1 The availability of aggregate information provides �rms with an additional

instrument in a dynamic environment. Firms are able to condition their product lines and

prices on the aggregate opinion of their customers.

In this scenario, the forward looking �rm�s problem is to screen consumers in order to

maximize revenues, while taking into account the informational value of sales. By selling

additional units of the product (by o¤ering introductory discounts for example), the �rm

accelerates the buyers�learning process, which can lead to higher pro�ts in the long run.

In this paper, we address the question of designing dynamic menus to sell experience

goods. We focus on the dynamics of prices and quantities to answer questions such as: should

�rms o¤er quantity discounts to high-valuation buyers? How does the range of o¤ered prices

and quantities vary over time? Which buyers bene�t from the di¤usion of information?

We develop a dynamic screening model in which a monopolist in each period o¤ers a

menu of contracts to a population of buyers. These buyers have private information about

their willingness to pay, providing the �rm with an incentive to charge discriminatory prices.

1For example, http://www.consumerreports.org, http://www.cnet.com, or feedback reports on large re-
tailers�websites such as Amazon.com.
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The quality of the product is initially unknown, and more information is generated through

experimentation. As purchases are made, both the �rm and the consumers observe signals

about the product�s quality and, as a result, revise their beliefs. The amount of information

in the market is increasing in the total quantity sold in each period. The �rm can therefore

control the information �ow to the market by adjusting the level of sales. Learning about

the product occurs faster as more units are sold, and so the �rm may use low introductory

prices.

The uncertainty about the quality of the product introduces a new dynamic element

into the standard trade-o¤ between e¢ ciency and rent extraction. More speci�cally, the

determination of the quantity levels supplied to each buyer is the combination of three

e¤ects. The �rst of these components is one of information generation. Since learning occurs

through consumption, each unit sold provides additional information value. This leads the

�rm to sell additional units when uncertainty about quality is high and beliefs are more

responsive to news. The second component is related to e¢ ciency. As consumers�beliefs

improve, their willingness to pay is higher, hence creating the opportunity to realize larger

gains from trade. Therefore the �rm o¤ers larger quantities in these cases. The third e¤ect

and �nal component is an adverse selection e¤ect. Positive signals about quality increase

the spread in buyers�valuations for the product. This makes the incentive compatibility

constraints more di¢ cult to satisfy, and induces the �rm to o¤er lower quantity levels to

buyers with low willingness to pay.

While the �rm simultaneously pursues the dual objectives of generating information

and screening consumers, the balance between the two shifts over time. Initially, the �rm

increases the level of sales to all buyers above the static optimum: it sacri�ces short-term

gains in order to invest in information production. As more information is revealed, the

�rm gradually shifts to a policy that targets the consumers with the highest valuations,

in order to extract more surplus. This policy may eventually exclude low-valuation buyers

from the market, even if the product�s underlying quality is in fact high. As consumers�

beliefs improve, the cost of providing incentives to high-valuation buyers increases due to

the adverse selection e¤ect. This leads the �rm to reduce the supply of its product to

low-valuation buyers. Consequently, the quantity levels o¤ered to a low-valuation buyer

need not be monotonic in the beliefs about product quality. The model also predicts that

successful products should be characterized by a greater price dispersion and a wider variety

of available quantities. In particular, the �rm expands the range of o¤ered quantities through

the addition of new options both at the top and at the bottom of the menu.

In the model, learning takes place based on aggregate information. More precisely, we

assume that each consumer�s action (quantity choice) and payo¤ (experienced quality level)
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is observable to other buyers and to the �rm. In other words, all information is publicly

available to the market. While this is an important assumption, it suits the purpose of this

paper for two reasons. First, in large markets, consumers realize that others�experience is

also indicative of the underlying product quality and take public information into account.

More importantly, this paper is interested in modeling the �rm�s optimal response to vari-

ations in demand arising from the arrival of new information. As such, it focuses only on

information the �rm that can condition its strategies upon. In an alternative model, demand

for the product would be determined by consumers�private experiences, while the �rm only

observes the market�s average experience. In the context of this paper, the introduction of

private information would add noise to the demand process, but would not alter the qualita-

tive properties of the �rm�s behavior. We therefore abstract away from further heterogeneity

in demand, and only consider the market�s observable aggregate experience.

1.2 Examples

The model is well suited to analyze several di¤erent markets. Consider �rst the market for

online DVD rentals. Companies like Net�ix or Blockbuster allow consumers to subscribe to

plans specifying the number of movies they may rent at the same time. While buyers di¤er in

their personal willingness to pay for watching DVD movies, the quality of the recommender

system is a common component in determining the overall quality of the service. With this

interpretation, each rented movie constitutes an informative experiment about the product�s

quality. It is reasonable to assume that customers with higher willingness to pay also care

more about the �t of the recommendation to their own preferences. Furthermore, both the

prices for each plan and the plan choice by the consumer are easily adjustable. Finally,

Net�ix subscribers exchange information about their experience through a surprisingly large

number of channels.2 This means that information about the overall performance of the

service circulates very rapidly.

Net�ix launched the rental service in 2001 and held a near-monopoly position for several

years. Figure 1 reports the menus o¤ered by Net�ix over the years 2002 through 2005, that

is, immediately before Blockbuster established itself as a serious competitor. In 2002, the

Net�ix menu o¤er consisted of two plans, allowing for the simultaneous rental of two and

four titles, respectively. The variety of the plans o¤ered increased over time, as the service

soon proved to be a clear success.3 In 2003, Net�ix modi�ed its o¤er of plans to a four-item

2For example, http://www.hackingnet�ix.com and http://blog.net�ix.com are two of the most popular
blogs among Net�ix customers.

3The total number of users grew from 900,000 in 2002 to 3.3 million at the end of 2004 according to the
company�s Investor Relations website http://ir.net�ix.com.
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Figure 1: Net�ix DVD Rental Plans 2002-2005

menu, while raising unit prices across the product line. It then raised its prices further in

2004, and added several more options in 2005. At the same time, it reduced all prices slightly,

possibly due to competitive pressures. Consistent with the model�s predictions, the range of

total charges (in dollars per month) went from a minimum of $12 and a maximum of $20 in

2002 to $5 and $48, respectively, in 2005. At the same time, the set of available quantities

increased from the two options o¤ered in 2002 to the 2005 menu, which allows consumers

to choose any number of simultaneous rentals, with a minimum of one and a maximum of

eight. Finally, notice that the lowest quantity o¤ered decreased from two rentals at a time

in 2002 to one in 2005.4

The market for enterprise software provides an alternate application. An emerging con-

tractual arrangement in this industry is given by software-as-a-service (SaaS). Under this

contractual form, �rms have the option of renting a given number of licenses for the use

of a given software product (for example, a customer database system or an online backup

program). Larger �rms need to rent more licenses seats and bene�t more from a higher

quality product. In this market, each employee using the software constitutes an experiment

for product quality, so that the number of seats may be directly tied to the arrival rate of

information. Moreover, the rental contracts and their corresponding prices are easily ad-

justable. Finally, network externalities between �rms are not a signi�cant issue in enterprise

software (as it is designed for internal use), making the private values framework realistic.5

4We are ignoring plans which impose a limit to the number of monthly rentals. If we were to include
them, then the lowest quantity would be given by a one DVD at a time, up to four per month.

5Larkin (2008) provides a detailed analysis of some frequently used contractual arrangements in this
industry.
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1.3 Related Literature

This paper enriches the screening literature by extending nonlinear pricing techniques beyond

the canonical, static environment to a model where information is revealed over time. It

builds upon both the classic work in price discrimination (e.g. Mussa and Rosen (1978),

Maskin and Riley (1984)), and the strategic experimentation literature (e.g. Bolton and

Harris (1999), Keller and Rady (1999), Moscarini and Smith (2001)).

Our analysis is also tightly connected to models of introductory and dynamic pricing

under product quality uncertainty. The main work in this area is due to Bergemann and

Välimäki (1997, 2002, 2006) and to Villas-Boas (2004, 2006). In particular, Bergemann and

Välimäki (2002) analyze a duopoly model of price competition with vertically di¤erentiated

products. In Bergemann and Välimäki (2002), market participants are uncertain about the

degree of vertical di¤erentiation of the two �rm�s products. In this paper, as in Bergemann

and Välimäki (2002), consumers are heterogeneous in terms of their willingness to pay.

However, we allow consumers to have multi-unit demands and the �rm to price discriminate.

The problem of generating information through sales, was �rst studied, in the context of a

screening model, by Braden and Oren (1994). In their model, a monopolist is uncertain about

the probability distribution over each buyer�s willingness to pay. One buyer arrives in each

period, and her choice from the �rm�s menu provides information about this distribution.

In contrast, in our paper both sides of the market are learning, and the inference procedure

is based on aggregate information. This framework provides a more realistic description

of markets with a large number of customers (such as the DVD rentals or the enterprise

software markets).

The techniques used in this paper also relate to the model of dynamic regulation of

Lewis and Yildirim (2002). In their model, a planner o¤ers a menu of contracts to a �rm

whose production costs decrease by a deterministic amount, but where innovation follows

a stochastic process. Compared to their paper, our analysis emphasizes learning and the

buyer-speci�c e¤ects of information. Furthermore, with a slight change in interpretation, our

framework can be applied to the analysis of repeated procurement, when both the regulator

and the �rm are uncertain over a production cost parameter.

Finally, a recent empirical literature attempts to quantify the importance of learning

considerations on consumers�dynamic purchasing behavior. In these studies, consumer learn

from their individual experience, revise their beliefs about product quality, and consequently

modify their choices. A non�exhaustive list of empirical papers on learning and dynamic

consumer choice includes Ackerberg (2003), Akçura, Gonul, and Petrova (2004), Crawford

and Shum (2005), Erdem and Keane (1996), Goettler and Clay (2006), Gowrisankaran and

Rysman (2007), and Israel (2005). From a di¤erent perspective, Hitsch (2006) and Song
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and Chintagunta (2003) analyze learning about the demand on the �rm�s side, but focus on

investment decisions such as product adoption or exit, not on pricing strategies. This paper

complements this literature with a theoretical framework for nonlinear pricing, in which

�rms�learning is just as important as buyers�, and in which information is obtained from

aggregate experience.

The remainder of this paper is organized as follows: section 2 introduces the model, sec-

tion 3 derives the equilibrium conditions and discusses the comparative statics properties of

the optimal menu; section 4 speci�es the model to a linear utility - quadratic cost structure

and fully characterizes the equilibrium menu; section 5 derives predictions for the intertem-

poral patterns of prices and quantities; section 6 extends our analysis to a competitive setting

through a duopoly example; and section 7 concludes. All proofs are in the Appendix.

2 The Model

2.1 Payo¤s

We consider a dynamic model with a monopolist �rm and a continuum of small consumers.

Consumers purchase repeatedly and have multi-unit demands in each period. Each con-

sumer�s valuation for the �rm�s product depends both on a private value and a common

value component. We denote by � an idiosyncratic, private value component, representing

the buyer�s personal willingness to pay for the product. For each buyer, � belongs to the

interval � = [�L; �H ]. The idiosyncratic component � is the consumer�s private information.

It is distributed in the population according to a distribution

F : �! [0; 1] .

Assumption 1 (Monotone Hazard Rate)
F (�) satis�es the monotone hazard rate condition: (1� F (�)) /f (�) is decreasing.

We denote by � a common value component representing the inherent quality of the

product. This parameter may only take one of two values, � 2 f�L; �Hg with 0 < �L < �H .
Each consumer�s valuation for q units of a product is a separable function of the product�s

quality � and of the consumer�s willingness to pay �. The complete information utility of a

consumer with willingness to pay �, who purchases q units of a product of quality �, for a

total charge of p, is given by

U (�; �; q; p) = � � � � u (q)� p.
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The function u (q) is assumed to be strictly increasing. As a consequence, the consumer�s

utility function U (�; �; q; p) displays the single crossing property in (�; q). Furthermore,

quality and personal taste are complement goods for the consumer. We assume that each

buyer makes a purchase decision in every period, and that she can freely switch between

di¤erent quantity levels. We normalize each buyer�s outside option to zero. Finally, we

assume that production costs are given by a strictly increasing function c (q).

Product quality � is initially unknown to both the �rm and the consumers, and all market

participants share the common prior belief

�0 = Pr (� = �H) .

At each time t, the expected product quality, given current beliefs �t, is denoted by

� (�t) , E�t� = �t�H + (1� �t)�L.

In each period, a monopolist posts a menu of price-quantity pairs. We require the �rm

to price anonymously, and we allow for prices and quantities to be �exibly adjusted. In a

direct mechanism, the �rm�s strategy is a pair of functions qt : �! R+ and pt : �! R+ in
each period. These functions determine the quantity level and the total charges assigned to

each buyer �. Suppose each buyer purchases quantity level qt (�) and pays total charges of

pt (�). The �rm then obtains �ow pro�ts of

�(qt; pt) ,
Z �H

�L

(pt (�)� c (qt (�))) f (�) d�.

In our environment, the social gains from trade realized by selling quantity q to type �,

when product quality is �, are given by ��u (q) � c (q). In order to ensure that the �rm�s
problem has an interior solution, we introduce the following assumptions on the social gains

from trade.

Assumption 2 (Social Gains from Trade)

1. Gains from trade ��u (q)� c (q) are strictly concave in q for all � and �.

2. For all � and �, ��u0 (0)� c0 (0) > 0.

3. For all � and �, lim
q!1

[��u0 (q)� c0 (q)] = �1.
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2.2 Information and Learning

Information about product quality is obtained through consumption. The level of aggregate

sales determines the total number of experiments with the product. In turn, the level of

experimentation in�uences the rate at which the �rm and the consumers learn about its

quality. We assume that beliefs �t evolve according to the following di¤usion process:

d�t = �t (1� �t)
�H � �L

�

p
Qtdzt, (1)

where dzt denotes the standard Wiener process. We also de�ne the total quantity sold at

time t as:

Qt =

Z �H

�L

qt (�) f (�) d�.

In the Appendix, we present a model which provides a micro foundation for the belief

process based on individual signals. At this stage, note that beliefs follow a martingale, and

thus the process has a zero drift. We de�ne following function:

� (�t) ,
1

2

�
�t (1� �t)

�H � �L
�

�2
. (2)

The function � (�t) captures the marginal contribution of each unit sold to the variance of

the belief process (d�t)2 = Qt� (�t) dt. The variance is increasing in the degree of dispersion

�t (1� �t) and in the signal-to-noise ratio (�H � �L) /� . Beliefs evolve more quickly when
current uncertainty is high, and when signals are precise. Finally, we stress that the evolution

of the belief process is endogenously determined, since the total quantity sold Qt depends

on the �rm�s pricing and on the consumers�purchasing decisions.

3 Equilibrium Analysis

We now turn to the equilibrium analysis, starting with a characterization of the incentive

compatible menus of contracts. In our model, each individual buyer has a negligible impact

on the information �ow. Therefore, each buyer chooses the price-quantity pair that maxi-

mizes her expected utility, given beliefs �t and the �rm�s menu o¤er. The two-point prior

on quality � ensures that, at every point in time, the value of �t is a su¢ cient statistic for

the �rm�s problem. Therefore, we denote by (q (�t; �) ; p (�t; �)) the menu o¤ered by the �rm

when the market belief is given by �t. We also denote by U (�t; �; �
0) the expected utility of

a buyer with beliefs �t and willingness to pay � who purchases the item (q (�t; �
0) ; p (�t; �

0))
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intended for a buyer of type �0:

U (�t; �; �
0) = � (�t) � � � u (q (�t; �0))� p (�t; �0) . (3)

Let U (�t; �) = U (�t; �; �) denote buyer ��s indirect utility when reporting truthfully. The

incentive compatibility constraints for the �rm�s problem are then given by the consumer�s

�rst and second order conditions for truthful revelation:

@U (�t; �)

@�
= � (�t) � u (q (�t; �)) , (4)

@q (�t; �)

@�
� 0, for all �t and �. (5)

Each buyer�s valuation for q units of the product depends positively on her beliefs �t.

Positive signals therefore allow the �rm to charge higher prices. However, when beliefs

become more optimistic, the �rm must concede higher information rents to the buyers, as

shown by equation (4). This e¤ect is due to the complementarity between product quality

and buyers�willingness to pay. As beliefs �t increase, the di¤erence between any two buyers�

willingness to pay also increases, creating stronger incentives to misreport one�s type. This

means that for high values of �t the incentive compatibility constraints are harder to satisfy.

Finally, the buyers�participation constraints are given by

U (�t; �) � 0, for all �t and �. (6)

3.1 Myopic Benchmark

We now provide a benchmark for the �rm�s problem. We consider an impatient (myopic)

�rm, who only maximizes the current �ow pro�ts. By expressing total charges p (�t; �) in

terms of the buyers�indirect utilities U (�t; �), we can rewrite the �rm�s �ow pro�ts as

�(�t; q; U) ,
Z �H

�L

(� (�t) � � � u (q (�t; �))� c (q (�t; �))� U (�t; �)) f (�) d�.

The myopic �rm maximizes �(�t; q; U) subject to the incentive compatibility constraints (4)

and (5) and to the participation constraint (6). As in many screening problems, Assumption

1 ensures that (5) holds in equilibrium. We then substitute the incentive compatibility

constraint (4) in the objective, and integrate by parts. As a result, we can express the

�rm�s �ow pro�ts as a function of only beliefs �t and quantities q (�t; �). Denote by � (�) ,
�� (1� F (�)) /f (�) the virtual valuation of buyer �. The �rm�s �ow pro�ts are then given
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by

�(�t; q) ,
Z �H

�L

(� (�t)� (�)u (q (�t; �))� c (q (�t; �))) f (�) d�, (7)

and the myopic equilibrium pro�t function is de�ned as

�m (�t) , max
q:�!R+

�(�t; q) .

The myopically optimal menu is determined by maximizing (7) pointwise. The �rst order

condition for quantity provision is given by

� (�t)� (�)u
0 (q)� c0 (q) = 0. (8)

The myopic equilibrium quantity level qm (�t; �) is then given by the solution to (8), when-

ever this solution is positive, and by zero otherwise. The �rm equalizes marginal cost and

the buyer�s marginal utility. Notice that the expected product quality � (�t) acts as scale

parameter for marginal utilities, and hence for equilibrium quantity provision. The following

proposition describes the key properties of the myopic solution.

Proposition 1 (Myopic Solution)

1. The myopic quantity qm (�t; �) is strictly increasing in both �t and �.

2. The myopic pro�t function �m (�t) is strictly increasing and strictly convex in �t.

Higher beliefs about product quality improve every buyer�s willingness to pay, and the

�rm �nds it pro�table to sell a larger number of units. Convexity of the myopic pro�t

function implies, that as beliefs improve, the �rm can also charge higher unit prices. The

convexity of the myopic pro�t function has implications for the �rm�s incentives to learn

about the quality of its product. In the myopic world, the �rm would be willing to pay in

order to enter a fair bet between the two states � = �L and � = �H . De�ne the complete

information average pro�t as

v (�t) , �t�m (1) + (1� �t)�m (0) . (9)

For all interior �t, we then have v (�t) > �m (�t), with �m (1) = v (1) and �m (0) = v (0).

3.2 Dynamic Solution

We now turn to the dynamic version of the problem. A strategy for the �rm consists of a

sequence of quantity supply functions qt : � ! R+. The corresponding total charges are
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determined by the incentive compatibility constraints. Given the prior belief �0, the �rm�s

objective function may then be written as

�� (�0) , sup
qt:�!R+

lim
T!1

E�
�Z T

0

e�rt�(�t; qt) d�t j �0
�
, (10)

where the evolution of beliefs �t is given by the law of motion (1). Using the law of motion for

beliefs and Itô�s Lemma, the Hamilton-Jacobi-Bellman (HJB) equation for this maximization

problem is given by

rV (�t) = max
q:�!R+

[� (�t; q) +Q� (�t)V
00 (�t)] . (11)

The expression for rV (�t) di¤ers from the �ow pro�ts �(�t; q) only through the term

Q� (�t)V
00 (�t). This term is proportional to the total quantity sold Q, and its sign depends

on whether V 00 (�t) ? 0. Each unit sold provides an informative signal whose e¤ect on beliefs
depends on the variance � (�t). Therefore, the termQ� (�t)V 00 (�t) can be interpreted as the

informational value generated through sales. In particular, the marginal value of information

is given by the second derivative of the value function V 00 (�t). The convexity of the value

function is related to the �rm�s incentives to amplify the variance of the belief process, and

hence to learn faster about the product�s quality. Finally, note that information has no value

when �t = 0 and �t = 1, since beliefs no longer change in those cases. Writing the HJB

equation (11) more explicitly, we obtain an expression that may be maximized pointwise:

rV (�t) = max
q:�!R+

�Z �H

�L

(� (�t)� (�)u (q (�t; �))� c (q (�t; �))) f (�) d� (12)

+

Z �H

�L

q (�t; �) � (�t)V
00 (�t) f (�) d�

�
.

We now prove existence of a solution to the �rm�s dynamic problem. We then return

to the optimal menu of contracts and illustrate the role of the value of information in de-

termining the equilibrium prices and quantities. Our approach to proving existence of a

solution consists of turning the HJB equation into a second order di¤erential equation, and

using the two boundary conditions rV (0) = �m (0) and rV (1) = �m (1). Since �t is the

independent variable in our boundary value problem, we drop time subscripts. Our existence

and uniqueness result is stated in the following theorem.
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Theorem 1 (Existence and Uniqueness)

1. There exists a unique solution V (�) to the HJB equation (12). V (�) is C2 and satis�es
�m (�) � rV (�) � v (�) for all �.

2. The policy function q (�; �) maximizing the right hand side of (12) pointwise is the

unique optimal control. It is continuous and di¤erentiable in � and �.

3. The solution V (�) coincides with the supremum value �� (�) of (10).

The proofs of (1.) and (2.) adapt an existence and uniqueness result for second-order

boundary value problems from Bernfeld and Lakshmikantham (1974). The proof of (3.)

uses a veri�cation theorem from Fleming and Soner (2006). We now derive some elementary

properties of the policy function. We �rst show that the �rm assigns positive value to

information.

Theorem 2 (Convexity of the Value Function)
The �rm�s value function V (�) is convex in �:

Theorem 2 shows that the �rm�s value function inherits the convexity property of the

myopic pro�t function. A convex value function implies that the forward-looking �rm is

willing to give up some revenue in the short run (i.e. to depart from �m (�)) in order to

generate more information through sales. We relate the degree of patience and the incentives

to invest in information in the following comparative statics result. We normalize the �rm�s

payo¤s by focusing on the return (or annuity) function rV (�).

Proposition 2 (Value of Information)

1. The return function rV (�) and the value of information � (�)V 00 (�) are decreasing

in � and in r; for all �.

2. For all �H and �L such that ��H + (1� �)�L = � for some � > 0, rV (�) and

� (�)V 00 (�) are increasing in the di¤erence (�H � �L).

These results show that the �rm�s patience level, the precision of the available signals, and

the relevance of the learning process provide the �rm with greater incentives to experiment.

A measure of the relevance of the learning process is given by the di¤erence between the two

possible quality levels.
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3.3 Properties of the Equilibrium Menus

We now turn to the properties of the equilibriummenus of contracts. Pointwise maximization

of the right-hand side of the HJB equation (12) yields an expression for the optimal quantity

provision, as a function of the value of information V 00 (�t). The equilibrium q (�t; �) is given

by the solution to the �rst order condition

� (�t)� (�)u
0 (q (�t; �))� c0 (q (�t; �)) + � (�t)V 00 (�t) = 0, (13)

whenever this solution is positive, and by zero otherwise. This condition di¤ers from that

of the myopic �rm because of the marginal value of information. In particular, the forward-

looking �rm equalizes marginal cost to the buyer�s marginal utility, augmented by the mar-

ginal value of information � (�t)V 00 (�t). Notice that the �rm�s incentives to experiment,

captured by � (�t)V 00 (�t), are uniform across buyers, as this term does not depend on the

buyer�s type �. We summarize our comparative statics results for the forward-looking �rm�s

problem in the following proposition.

Proposition 3 (Quantity Supply)

1. The quantity level q (�; �) is everywhere higher than the myopic quantity qm (�; �).

2. The quantity level q (�; �) is increasing in the value of information � (�)V 00 (�).

Proposition 3 shows that the comparative statics results of Proposition 2 have important

implications for the properties of the equilibrium menus. In particular, the �rm experiments

by selling quantity levels larger than the myopic optima for all � and �. This leads, for

example, to a (weakly) larger set of types receiving positive quantities in the dynamic solution

than in the myopic one. Combining the results of propositions 2 and 3, we obtain that the

number of additional units sold is increasing in the �rm�s patience level, and in the precision

of the signals. However, the value of information � (�)V 00 (�), as well as quantities and

market coverage levels, are typically not monotonic in beliefs. In particular, the �rm has no

incentive to experiment when beliefs are degenerate and � 2 f0; 1g.
The quantity levels q (�; �) in the direct mechanism can be linked to the actual price-

quantity menus o¤ered by the �rm in an indirect mechanism. We can represent the �rm�s

strategy through a nonlinear price function p̂ (�; q). This function de�nes the total amount

charged by the �rm for q units of the product, when the market beliefs are given by �.

Similarly, we denote by � (�; q) the buyer who purchases quantity level q in equilibrium, as

a function of the beliefs. Consumers maximize their utility given the �rm�s current menu
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o¤er. This allows us to characterize the marginal prices charged by the �rm on each unit.

The equilibrium marginal prices must in fact solve the buyer�s �rst order condition

� (�) � (�; q)u0 (q)� p̂q (�; q) = 0.

Since any quantity sold is de�ned by equation (13) for some type �, the equilibrium marginal

prices are given by

p̂q (�; q) , � (�)u0 (q)��1
�
c0 (q)� � (�)V 00 (�)

� (�)u0 (q)

�
.

Proposition 4 (Marginal Prices)

1. Marginal prices p̂q (�; q) are everywhere lower than in the myopic benchmark.

2. Marginal prices p̂q (�; q) are decreasing in the value of information � (�)V 00 (�).

As in all screening problems, a precise characterization of prices requires knowledge of the

distribution of types F (�). However, regardless of the distribution of types, Proposition 4

shows that experimentation reduces the marginal prices paid by each consumer. The �rm is

willing to give up revenue (by lowering prices) to induce experimentation, while the consumer

has no incentives to pay for information.

To summarize our results so far, the solution to the �rm�s dynamic optimization problem

implies higher sales and lower marginal prices, compared to the myopic benchmark. The

level of experimentation depends positively on the �rm�s patience level and on the precision

of the available signals. It also depends positively on the di¤erence between the two possible

quality levels of the product. In the next section, we examine how the optimal menus adjust

to the evolution of beliefs for the case of linear utility and quadratic costs.

4 Linear-Quadratic Model

In this section, we adopt the Mussa and Rosen (1978) functional form assumptions: u (q) = q

and c (q) = q2=2. We characterize the solution for a setting in which all buyers participate,

and discuss the properties of the equilibrium menu with positive discounting. We turn to

the undiscounted limit to describe the e¤ects of information more in detail. We then discuss

the properties of the equilibrium menu that extend to the case of small positive discounting.

Finally, we extend the analysis to the case of imperfect market coverage.
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The �rst order condition (13) can now be written as

q (�; �) = max f� (�)� (�) + � (�)V 00 (�) ; 0g . (14)

This explicit expression for quantity provision allows us to separately identify the role of the

value of information in determining the evolution of the equilibrium menus as a function of

beliefs.

4.1 Full Market Coverage and Positive Discounting

Full market coverage is obtained in equilibrium when � (�L) > 0. In this case, the myopic

solution, in terms of quantities and total charges, is given by

qm (�; �) = � (�)� (�) ,

pm (�; �) = �2 (�)

�
�� (�)�

Z �

�L

� (s) ds

�
.

The following proposition relates the equilibrium menus to the myopic benchmark.

Proposition 5 (Full Market Coverage)

1. The equilibrium quantities and prices are

q (�; �) = qm (�; �) + � (�)V
00 (�) ,

p (�; �) = pm (�; �) + � (�) �L� (�)V
00 (�) .

2. The marginal value of information is

V 00 (�) = � (�)�1
�
�� (�)E� [�] +

q
(� (�)E� [�])2 + 2 (rV (�)� �m (�))

�
. (15)

A few remarks are in order. First, each type receives � (�)V 00 (�) units over and above

the myopic quantity level. These additional units constitute the marginal level of experi-

mentation. In this setting, the marginal level of experimentation is constant across types.

The number of additional units � (�)V 00 (�) need not, however, be monotonic in beliefs

�. Second, quantities increase above qm by � (�)V 00 (�), but prices only exceed pm by

� (�) �L� (�)V
00 (�). This means that each additional unit sold is priced uniformly at

� (�) �L. In other words, the �rm charges the lowest type�s willingness to pay. Hence it

cannot extract any more surplus on the additional units sold. This is a consequence of the

fact that buyers are not willing to pay for experimentation, and need to be o¤ered a low

enough price in order to be convinced to purchase more. Third, unlike many experimentation
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models, the value of information does not only depend on the di¤erence rV (�) � �m (�),
but also directly on the current level of demand, captured by � (�)E� [�]. This term, in
fact, is equal to the total quantity sold by the myopic seller. As such, it is a measure of

the �default�level of experimentation. It in�uences the speed of the learning process in the

absence of any additional investment in information production by the �rm.

Another implication of Proposition 5 is that the e¤ects of new information on the supplied

quantity levels depend on the consumer�s willingness to pay �. In particular, types with a

virtual valuation above the average E� [�] bene�t more from an improvement in beliefs than
those with below-average virtual valuations. At the same time, di¤erences between the

quantity levels o¤ered to di¤erent buyers do not depend on the level of experimentation.

The following proposition focuses on the variations in the price-quantity pairs o¤ered to

each consumer. These variations constitute the basis for our results on the dynamics of the

equilibrium menu�s variety.

Proposition 6 (Contract Variety)

1. For all � > �0, di¤erences in quantity levels q (�; �)� q (�; �0) are increasing and linear
in �.

2. For all � > �0, di¤erences in total prices charged p (�; �)� p (�; �0) are increasing and
convex in �.

If we let � = �H and �0 = �L, this result implies that higher values of beliefs � bring

about a wider range of options, in terms of o¤ered quantities, and a higher dispersion of

total charges.

We would now like to explicitly characterize the behavior of the equilibrium menus as a

function of beliefs �. This requires solving the di¤erential equation (15) for the �rm�s value

function. Unfortunately, this di¤erential equation does not have an analytical solution, as it

is a second order, nonlinear problem. However, we are able to obtain closed form solutions

by analyzing the undiscounted version of the �rm�s problem.

4.2 No Discounting

For the analysis of the undiscounted version of the problem, we adopt the strong long run

average criterion.6 This approach identi�es the limit of the discounted policy functions

as the discount rate approaches zero. The solution provided through the strong long run

6This criterion was pioneered by Ramsey (1928). In more recent work, Dutta (1991) discusses the rela-
tionship between the strong long run average and other undiscounted optimization criteria.
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average criterion therefore preserves the qualitative properties of the optimal solution for

small discount rates. This criterion also allows us to preserve the recursive formulation of

the problem, and to obtain analytical solutions for the policy function. More importantly,

the analysis in the previous sections has established a clear link between the �rm�s patience

level and the e¤ects of learning. As the latter are the focus of this paper, considering high

degrees of patience removes the risk of assuming learning away because of a high discount

rate.

With reference to our model, the strong long run average criterion may be informally

summarized as follows: we know beliefs will convergence either to �L or to �H . In the limit

for r ! 0, given beliefs �, the return function rV (�) converges to the long run average payo¤

v (�) de�ned in (9). However, many policy functions attain the long run average value v (�),

independently of their �nite time properties.7 The main contribution of Dutta (1991) is to

prove that the policy function maximizing the undiscounted stream of payo¤s, net of their

long run averages

V (�0) , sup
qt:�!R+

E�
�Z 1

0

(� (�t; qt)� v (�t)) d�t j �0
�
,

represents the limit (for r ! 0) of the policy functions maximizing the discounted stream

of payo¤s (10). The strong long run average solution combines the �nite time properties

of catching-up optimality and the recursive representation of criteria like the limit of the

means. We can therefore write the undiscounted analog of the HJB equation (11) as

v (�) = max
q:�!R+

[� (�; q) +Q� (�)V 00 (�)] , (16)

where now � (�)V 00 (�) represents the limit marginal value of information. This value does

not vanish as r ! 0. On the contrary, Proposition 2 showed that the value of information

is increasing in the �rm�s patience level. In the undiscounted case, we directly solve for this

value in closed form. In particular, in the linear quadratic case, the undiscounted equilibrium

quantity supply function is given by

q (�; �) = � (�) (� (�)� E� [�]) +
q
(� (�)E� [�])2 + (Var [�] + E�[�]2)� (1� �) (�H � �L)

2.

(17)

7In particular, any policy that prescribes myopically optimal behavior after beliefs have converged achieves
an average payo¤ of v (�) in the absence of discounting.
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Theorem 3 (Undiscounted Equilibrium Quantities)

1. The equilibrium quantity q (�; �) is strictly concave in � for all �:

2. There exists a threshold type ~� such that q (�; �) is �rst increasing then decreasing in

� for all types � � ~�, and strictly increasing in � for all types � > ~�.

The main result of Theorem 3 is that experimentation has buyer-dependent implications

for the evolution of equilibrium quantities. Contrary to the myopic case, a set of types

[�L; ~�] does not always receive a larger number of units as beliefs improve. In particular, the

threshold type ~� satis�es the following equation:

�
�
~�
�
=
Var [�] + E� [�]2

2E� [�]
�H � �L
�H

. (18)

The set of types whose consumption levels are nonmonotonic in beliefs is increasing in the

relative quality di¤erence (�H � �L) =�H and in the dispersion of buyers�valuations. This is
a consequence of the fact that the �rm�s pro�t p (�; �)�c (q (�; �)) is convex in �. Therefore,
an increase in the spread of the distribution F (�) improves the �rm�s pro�ts makes the

learning process more signi�cant. The concavity of equilibrium quantities suggests that

experimentation is higher for intermediate values of the beliefs. Figure 2(a) con�rms this

intuition. In this �gure, we show the quantity levels supplied to three di¤erent buyers

� < �0 < �00 as a function of the market belief �. The lowest type has a zero virtual valuation,

and would never be served in the static solution. Figure 2(b) illustrates the equilibrium total

charges. Consistent with the result from Proposition 6, the di¤erences between total charges

paid by di¤erent buyers are increasing and convex in beliefs.
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Figure 2: Undiscounted Equilibrium Quantities and Prices: � � U [1; 2], �L = 1, �H = 8
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The main properties of the equilibrium menu are best understood by decomposing the

implications of the arrival of information into three e¤ects. The �rst component is one of

informational value. Each unit sold generates additional value to the �rm by facilitating

learning. This e¤ect is highest for intermediate values of the market belief. Conversely, as

beliefs approach zero or one, the value of information declines, and so do the incentives for

additional quantity provision. This e¤ect in�uences all types in the same way, since the

informational content of a unit sold is independent of the buyer purchasing it. However, the

e¤ects of new information are not uniform across buyers because of the second and third

components.

The second component is related to e¢ ciency. When positive news arrive, consumers are

willing to pay more for each unit, and gains from trade increase. This e¤ect is stronger for

high consumer types, who bene�t the most from a quality increase.

The third e¤ect is related to rent extraction. Under adverse selection, the di¤erential

increase in buyer�s valuations tightens the incentive compatibility constraints and increases

the informational rents. This raises the cost of providing the appropriate incentives to

high-valuation buyers. To understand this, remember that in the two-type static adverse

selection model, the high type�s rent is given by U(�H) = U(�L)+(�H��L)qL: The equivalent
formulation for this model would be U (�H) = U (�L)+� (�) (�H � �L) qL, which is increasing
in �. In other words, positive signals generate additional costs to the seller, driving down

consumption for low-valuation buyers as beliefs approach one. In principle, the �rst two

e¤ects could su¢ ce to determine decreasing quantity provision for some types, as � goes to

one. However, in several cases, the adverse selection e¤ect is necessary in order to overcome

the myopic incentives that lead to increasing quantities. The uniform distribution with

�H < 2�L (i.e. under full market coverage) is one such case.

The balance of the value of information, e¢ ciency, and rent extraction e¤ects determines

a set of types for which quantity provision is nonmonotonic in �: These types consume the

largest quantities for intermediate values of �, where the value of information is highest.

Figures 3(a) and 3(b) show the construction of the equilibrium quantities from the marginal

value of information and the myopic solution for two di¤erent buyers.

The equilibrium quantities are given by the vertical sum of the curve � (�)V 00 (�) with

each straight line qm (�; �). The shape of the resulting quantity allocation depends on the

buyer�s willingness to pay �. Finally, notice that the value of information (hence the dif-

ference between the equilibrium and the myopic quantities for each type) peaks at a value

of � lower than one-half. To understand why this is the case, consider equation (16). The

total informational value Q� (�)V 00 (�) is equal to the di¤erence between long run average

and current �ow pro�ts v (�) � �(�; q). The marginal value of information � (�)V 00 (�)
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Figure 3: Myopic Quantities and Value of Information: � � U [1; 2], �L = 1, �H = 8

therefore indicates the contribution of each unit sold to �compensate� for this di¤erence,

(v (�)� �(�; q)) =Q. The numerator of this ratio depends positively on the degree of un-
certainty � (1� �), which is a measure of how much beliefs can be in�uenced by the signals
observed in the current period. At the same time, the total quantity Q is increasing in �,

implying that the ratio of the two terms is decreasing at � = 1=2. In words, each (additional)

unit�s contribution to the learning process depends negatively on the level of sales, which

determines the speed of the learning process in the absence of any (additional) experimen-

tation.

4.3 Nonlinear Prices

Combining our results on contract variety and nonmonotonic quantity provision, we can

conclude that the arrival of good news extends the range of o¤ered quantities. In particular,

when the value of information is initially high, an improvement in beliefs reduces the quantity

level o¤ered to the lowest-valuation buyers. This e¤ect corresponds to a strategy based

on introductory pricing. When uncertainty is high, even low-valuation buyers are induced

to purchase larger quantities through quantity discounts. As the market obtains positive

signals, buyers�valuations increase, but introductory discounts are greatly reduced. As a

consequence, low-valuation buyers reduce their demands. This feature distinguishes the

response of the equilibrium menu to the arrival of information from that of the myopic �rm�s

menu. As the market obtains positive signals, the myopic �rm increases the quantity level

supplied to all buyers. Figure 4 compares the equilibrium menus (q; p̂ (�; q)) o¤ered by a

myopic �rm (4(a)) with those o¤ered by a forward-looking �rm (4(b)), as described in this
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section, for several values of �. Figure 4(b) also highlights the response of the lowest available

quantity to the arrival of information.
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Figure 4: Equilibrium Menus: � � U [1; 2], �L = 1, �H = 8

The slope of the equilibrium menus corresponds to the marginal prices. When buyers�

types are uniformly distributed, marginal prices are given by

p̂q (�; q) =
1

2
((q � � (�)V 00 (�)) + � (�) �H) :

In the undiscounted uniform case, marginal prices are convex in �. Learning has an intuitive

e¤ect on marginal prices. Marginal prices are increasing in � for all quantity levels, provided

the di¤erence in quality levels �H � �L is not too high. Conversely, marginal prices are
U-shaped in � for all q if learning is relevant enough. Finally, note that the convex costs

assumption is responsible for the increasing marginal prices p̂qq (�; q) > 0. We use the

linear-quadratic setting since it allows for the most straightforward illustration of our results.

However, our formulation is essentially equivalent to a model with constant marginal costs

and a non separable, quadratic utility function of the form U (�; �; q) = � (�) �q � q2=2.
This demand speci�cation, as well as others used in Maskin and Riley (1984), would yield

quantity discounts (p̂qq (�; q) < 0) for all �; q.

As we have shown, the analysis of the undiscounted problem under full market coverage

delivers explicit solutions that provide insights into the properties of the equilibrium menus.

We now extend our �ndings, by separately relaxing the assumptions of in�nite patience and

full market coverage.
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4.4 Small Positive Discounting

Our �rst result under small positive discounting uses bounds for the convexity of the value

function to establish the concavity of equilibrium quantities in the discounted case. This

procedure presents some di¢ culties, since the second derivative of the value function is

unbounded when � goes to zero or one. The only exceptions are given by the myopic pro�ts

(since �00m (�) is a constant), and by the undiscounted pro�ts (since v
00 (�) � 0). In general,

as r decreases, the return function rV (�) moves from the quadratic function �m (�) to the

linear function v (�). As in the case of the function (x (1� x))k for k 2 [1; 2], the second
derivative is equal to in�nity at x = 0 and x = 1, except for the two limit cases, k = 1

and k = 2. Our �rst result extends the concavity property of quantity provision through a

careful treatment of the order of limits.

Proposition 7 (Concave Quantities)
For any " 2 (0; 1), there exists a value of the discount rate r" such that, for all r < r", the
quantity supply function q (�; �) is concave in � for all � 2 ["; 1� "] and for all � 2 �.

Our second result establishes that all o¤ered quantities are strictly increasing in beliefs

when � = 0. More importantly, it identi�es the minimum patience requirements that allow

us to extend the nonmonotonicity of quantity to an arbitrary set of low-valuation buyers.

Let ~� be the threshold type de�ned by (18).

Proposition 8 (Nonmonotonic Quantity Provision)

1. The quantity q (�; �) is increasing in � at � = 0 for all r and all �.

2. For every � < ~�, there exists a value of the discount rate r� such that, whenever r < r�,

@q (1; �0; r) /@� < 0 for all �0 2 [�L; �].

In the next subsection, we relax the full market coverage assumption and analyze the

properties of the equilibrium market coverage level.

4.5 Partial Market Coverage

When � (�L) < 0, it is not always optimal for the monopolist to serve the entire market.

We focus on the undiscounted version of the problem and apply the strong long-run average

criterion. For buyers who receive positive quantity provision in equilibrium, the optimal

sales level is characterized by �rst order condition (14):

q (�; �) = � (�)� (�) + � (�)V 00 (�) .
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However, the equilibrium value of information a¤ects the set of buyers receiving positive

quantities. In other words, � (�)V 00 (�) determines the lowest type served �� (�). After

substituting the optimal policy rule as a function of � (�)V 00 (�), we can rewrite the �rm�s

problem as follows:

v (�) =

Z �H

��(�)

1

2
(� (�)� (�) + � (�)V 00 (�))

2
f (�) d�.

The critical type is determined through the equation q (�; �� (�)) = 0. In order to obtain

a closed form expression for � (�)V 00 (�), and hence for q (�; �), we assume types are uni-

formly distributed. We then characterize the equilibrium quantities and market shares in

the following proposition.

Proposition 9 (Market Coverage)
The undiscounted equilibrium quantities and market coverage level are given by:

q (�; �) = (12� (�) (�H � �L) v (�))1=3 � 2� (�) (�H � �) ,

1� F (�� (�)) =
�H

2 (�H � �L)

�
��2H + (1� �)�2L

� (�)2

�1=3
.

The incentives to experiment lead the �rm to serve a larger fraction of types, compared to

the myopic solution. These incentives are clearly strongest when the value of information is

highest. Market coverage is therefore highest for intermediate values of �, where information

is more valuable. However, as in the case of full market coverage, the fraction of buyers served

attains a maximum for values of � lower than 1=2.

The case of partial market coverage allows us to clearly show how the arrival of new

information is bene�cial for some high valuation buyers, but not for others. Figure 5 (on the

next page) shows the indirect utility levels for three buyers, as a function of beliefs.

In particular, the lowest valuation buyer shown (�00) is excluded for high and low enough

values of �, while buyers � and �0 are served for all values of �. However, buyer �0 does not

always bene�t from the arrival of new (positive) information.

5 Intertemporal Patterns

We now consider the dynamics of the equilibrium menus. We derive predictions for the

intertemporal evolution of the quantities and prices. The �rst part of the analysis considers

the expected intertemporal patterns from the point of view of market participants. Their

beliefs �t follow the di¤usion process described by equation (1). Therefore, by Itô�s Lemma,

24



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

α=Pr(µ=µH)

In
di

re
ct

 U
til

ity
 U

(α
,θ

)
U(α,θ')

U(α,θ)

U(α,θ'')

Figure 5: Equilibrium Utility Levels: � � U [0; 1], �L = 1, �H = 8

any di¤erentiable function of beliefs h (�t; �), such as prices and quantities, also follows a

di¤usion process. In particular, the evolution of the process dh (�t; �) is given by

dh (�t; �) =
@h (�t; �)

@�
d�t +

1

2

@2h (�t; �)

(@�)2
(d�t)

2 . (19)

Since E [d�t] = 0, the sign of the drift component of the process dh (�t; �) is determined by
the second derivative. In other words, the concavity and convexity properties of any func-

tion h (�t; �) may be directly translated into statements about the sign of its unconditional

expected change.

Proposition 10 (Unconditional Intertemporal Patterns)

1. For r = 0, the quantity q (�t; �) is a supermartingale for all �:

2. For all r and all � and �0, quantity di¤erences q (�t; �)� q (�t; �0) are martingales.

3. For all r and all � > �0, total charge di¤erences p (�t; �)�p (�t; �0) are submartingales.

Proposition 10 shows that, from the point of view of the agents, supplied quantity levels

are expected to decrease over time. Similarly, di¤erences between quantity levels are expected

to shrink. At the same time, di¤erences in the total prices charged to two di¤erent buyers are

expected to increase. All these �ndings are consistent with the use of introductory pricing

by the �rm, which combines lower charges and larger quantities when uncertainty is higher.

While market participants expect beliefs to follow the di¤usion process (1), an external

observer (i.e. the econometrician) knows that the evolution of the process d�t depends on
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the true state. Therefore, any empirical prediction about the intertemporal patterns of prices

and quantities must be based on the evolution of beliefs conditional on the true quality level.

The conditional evolution of beliefs has a non-zero drift component, whose sign depends on

the true �: In particular, for �i 2 f�L; �Hg, the general �ltering equation (see Liptser and
Shiryaev (1977)) is given by

d�t (�i) = �t (1� �t)
�H � �L

�

p
Qt

�
�i � � (�t)

�

p
Qtdt+ dzt

�
.

Conditional on either state, the drift component of any process dh (�t; �) is no longer uniquely

determined by the second partial derivative @2h (�t; �) = (@�)
2, but also depends on the �rst

partial derivative @h (�t; �) =@�. In particular, using expression (19), and factoring out

common terms, the sign of the drift component of the process dh (�t; �) is determined by the

following expressions:

E [dh (�H)] /
�
@h (�t; �)

@�
+
�t
2

@2h (�t; �)

(@�)2

�
dt, (20)

E [dh (�L)] /
�
�@h (�t; �)

@�
+
1� �t
2

@2h (�t; �)

(@�)2

�
dt. (21)

These expressions can be used to derive su¢ cient conditions under which the expected change

in quantities and total charges has an unambiguous sign. In this case, the concavity of

the equilibrium quantities does not su¢ ce to conclude that supplied quantities decrease in

expectation for all buyers. However, conditional on the bad state �L, quantities are expected

to decrease for all high-valuation buyers, whose equilibrium quantities are always increasing

in �.

Proposition 11 (Conditional Intertemporal Patterns)

1. Conditional on the good state (� = �H):

(a) for r = 0, quantities are expected to decrease whenever @q (�t; �) /@� � 0;

(b) for all r and all � > �0, q (�t; �)� q (�t; �0) are submartingales;

(c) for all r and all � > �0, p (�t; �)� p (�t; �0) are submartingales.

2. Conditional on the bad state (� = �L):

(a) for r = 0, quantities are expected to decrease whenever @q (�t; �) /@� � 0;

(b) for all r and all � > �0, q (�t; �)� q (�t; �0) are supermartingales.
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If we let � = �H and �0 = �L, Proposition 11 suggests that the variety of the o¤ered

menu for high quality goods increases over time. Opposite conclusions hold for low quality

products.

To summarize, the linear-quadratic model predicts that successful product lines should

be characterized by increasing dispersion in prices and in the range of o¤ered quantities.

Figure 6(a) shows the results of numerical simulations for the quantity levels o¤ered to two

di¤erent buyers, conditional on the true quality being high. Figure 6(b) shows the results

of numerical simulations for the total charges paid by the same two buyers. As time passes,

the quantity supplied to the lower-valuation buyer decreases. However, total charges stay

approximately constant, as the �rm exploits the consumer�s increasing willingness to pay

per unit of the product.
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Figure 6: Simulated Quantities and Total Charges: �0 = 1=20, � � U [1; 2], �L = 1, �H = 8

6 Nonlinear Pricing with Competition

The analysis of the monopoly case has allowed us to make precise predictions for the evo-

lution of menus of contracts in markets for experience goods. The monopoly assumption

is appropriate in some cases, and the early days of Net�ix provide an example. However,

often these markets are characterized by imperfect competition, and pricing is strategic. In

recent years, for example, Net�ix and Blockbuster compete in the market for online DVD

rentals. We are therefore motivated to extend our analysis of dynamic menu pricing to a

competitive setting. When we introduce strategic pricing in our environment, the role infor-

mation becomes even more important. The number of units sold by each �rm determines the
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amount of information obtained by the market about its product. Therefore, from a �rm�s

point of view, increasing its market share contributes towards both revenue maximization

and information production. However, a �rm might also follow the alternative strategy of

reducing market penetration, in order to learn more quickly about its competitors.

The main questions we address in this section are: under which conditions are �rms will-

ing to invest in information production about their own product? Are �rms willing to invest

in information about other products, or do they assign a negative value to learning about

their competitors? How do learning incentives a¤ect the equilibrium menus of contracts?

Our answers are based on a duopoly model with one product of uncertain quality and one of

well-known quality. We measure the two �rms�relative strength by comparing the quality

of the well-known product and the range of possible qualities for the uncertain product. We

�nd that �rms always value learning about their own product, as in the monopoly case. We

also �nd that a �rm is willing to invest in learning about its competitor, by reducing its

market share, provided it does not hold a particularly strong position.

Consider a duopoly model with menu pricing in a horizontal di¤erentiation framework.

Firm 1 is new to the market, and produces a good of uncertain quality �1 2 f�L; �Hg. Firm
2 produces a good of known (safe) quality �2 = s. As in our monopoly analysis, consumers

value quality uniformly, but have idiosyncratic preferences for the products of each �rm.

Consumers are indexed by their location � 2 [0; 1] on a Hotelling line. Firm 1 is located at

position 1 and �rm 2 at position 0. A consumer�s location determines her idiosyncratic taste

for each �rm�s product. For a consumer located at �, these tastes are given by

(�1; �2) = (1 + �; 2� �) .

We assume linear utility, quadratic costs, and uniformly distributed consumers. Given our

formulation for (�1; �2), the uniform distribution implies that every consumer�s virtual valu-

ation for each product is non-negative. The net utility of a buyer type � purchasing q units

from �rm j is given by

Uj
�
�; �j; qj; pj

�
= �j � �j � qj � pj (qj) .

Note that each consumer�s idiosyncratic valuations for the goods of the two �rms are perfectly

negatively correlated. In other words, the intensity of a consumer�s idiosyncratic taste for

her favorite product also determines the intensity of her brand preferences. More speci�cally,

consumers with a higher � have a higher value for �rm 1 and a lower value for �rm 2. The

incentive compatibility constraints then require �rm 1 to provide increasing indirect utility,

and �rm 2 to provide decreasing indirect utility, as a function of �.
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For each �rm j = 1; 2, the incentive compatibility constraint is given by

U 0j (�) = (3� 2j) � �jqj (�) .

In particular, if a type x 2 [0; 1] is indi¤erent between the two �rms, incentive compatibility
implies �rm 1 will attract all consumers located at � � x and �rm 2 will serve consumers � <
x. As �rst shown by Spulber (1989), �rms o¤er the monopoly quantity levels to customers

in their market segment, and compete only through the utility o¤ered to the marginal buyer.

In this framework, only the units sold by �rm 1 constitute experiments for quality. Firm

2 does not directly control the level of experimentation on each type. Therefore, given

market shares [0; x] and [x; 1], �rm 2 sets quantity provision at the myopically optimal level.

While �rm 2 cannot control experimentation on the intensive margin, it can do so on the

extensive margin. By letting �rm 1 acquire a larger market share, �rm 2 can generate more

information. Conversely, by pricing more aggressively, �rm 2 can increase its own market

share, and reduce the overall level of experimentation. Denote by �j
�
�j (�) ; �; qj

�
the pro�t

level obtained by �rm j when selling quantity qj to buyer � holding beliefs �j (�) about the

product j�s quality (we clearly have �2 (�) � s). Given a marginal type x 2 [0; 1], the two
�rms�HJB equations may be written as

rV1 (�) = max
q1:�!R+

�Z 1

x

�1 (�1 (�) ; �; q1) d� + �(�)V
00
1 (�)

Z 1

x

q1 (�; �) d�

�
,

rV2 (�) = max
q2:�!R+

�Z x

0

�2 (�2 (�) ; �; q2) d� + �(�)V
00
2 (�)

Z 1

x

q1 (�; �) d�

�
.

Substituting the incentive compatibility constraints and integrating by parts, we obtain

formulations for the HJB equations which can be maximized pointwise. The resulting �rst

order conditions determine the equilibrium quantity levels as a function of the value of

information:

q1 (�; �; V
00
1 ) = 2�1 (�) � + �(�)V

00
1 (�) (22)

q2 (�) = 2s (1� �) . (23)

Equations (22) and (23) determine the optimal quantity provision given market shares. When

competing over market shares, �rms trade-o¤the pro�ts made on the marginal buyer (�j�u)
with the cost of increasing their market shares, given by the increment in every type�s utility

U 0j (x) necessary to lure more customers from the competition. Each �rm also considers the

impact of a marginal change in market shares in terms of information � (�)V 00j (�) � q1 (�; x).
The �rst order conditions determining the equilibrium indi¤erent type x and her indirect
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utility level u are given by:

�1 (�1 (�) ; x; q1 (�; x; V
00
1 ))� u� (1� x) sq2 (x) + � (�)V 001 (�) q1 (�; x; V 001 ) = 0 (24)

�2 (�2 (�) ; x; q2 (x))� u� x� (�) q1 (�; x; V 001 )� � (�)V 002 (�) q1 (�; x; V 001 ) = 0 (25)

For each value of �, equations (24) and (25) can be solved for the equilibrium market

shares and utility level x (�) and u (�) as a function of the marginal values of information

� (�)V 00j (�). The corresponding myopic equilibrium values xm (�) and um (�) are obtained

by ignoring the terms � (�)V 00j (�), and solving the same equations. The analytical expres-

sions for the myopic pro�ts allow us to establish conditions under which both �rms assign

positive value to information. Analogously to the monopoly case, when beliefs � are high,

the risky �rm bene�ts in terms of both pro�t margins and market shares, so information

is valuable. The same logic does not apply in a straightforward way to �rm 2. The safe

�rm might be willing to invest in its own market share, in order to delay learning about its

competitor�s product. At the same time, when beliefs � are low, �rm 2 will also bene�t,

both in terms of quantities sold to each buyer, and in terms of market shares. We show that

the direction of �rm 2�s learning incentives depends on the relative strength of the two �rms.

For this reason, let � denote the ratio �L=s.

Proposition 12 (Value Function Convexity)

1. �1;m (�) is convex for all �.

2. There exists ~� > 0 such that, if � � ~�, then �2;m (�) is convex:

3. If �j;m (�) is convex, then Vj (�) is also convex.

These results con�rm the intuition that the risky �rm is willing to invest in information

generation. Moreover, the safe �rm assigns positive value to information when its relative

quality is not particularly high. Finally, convexity extends from the myopic pro�t function

to the value function by the same logic as in Theorem 2.

To solve for the Markov equilibrium of this model, we work directly in the undiscounted

case. We compute the long run averages vj (�), as well as the pro�t levels as a function

of both values of information. Once we have done so, the strong long-run average criterion

allows us to substitute rVj (�) with vj (�) in the two HJB equations, and to solve for the

values of information � (�)V 00j (�). This system must be solved numerically for each �:

Figure 7 shows the equilibrium market share of �rm 1 as a function the beliefs �.

Just as the incentives for learning imply additional sales in the monopoly model, �rm 1�s

market share lies above the myopic equilibrium level for all values of �. Both �rms want to
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Figure 7: Equilibrium Market Shares: s = 3, �L = 2, �H = 8

accelerate learning by leaving higher market shares to �rm 1. As in the monopoly case, the

amount of experimentation is not monotonic in �, and vanishes as beliefs approach zero or

one. Furthermore, market shares need not be monotonic in �. When learning about quality

is particularly relevant, the dynamic incentives to increase �rm 1�s sales for intermediate

values of � dominate the static forces yielding larger market shares to �rm 1 for higher

values of �.

7 Concluding Remarks

We have analyzed a �rm�s dynamic menu pricing strategy in a market characterized by uncer-

tain product quality and heterogeneous buyers. In this environment, the �rm can pro�tably

practice second degree price discrimination. Moreover, by adjusting the quantity levels of-

fered to each buyer, the �rm can manage the �ow of information to the market, and balance

information production with short-run revenue maximization. Our model yields tractable

closed-form solutions that are informative of the qualitative properties of the optimal con-

tract. It also allows us to predict the patterns of the o¤ered prices and quantities over

time. The �rm�s optimal strategy involves selling larger quantities, even to low-valuation

consumers, to generate information when uncertainty is high. As learning occurs, the �rm

gradually shifts to a more targeted policy that focuses on high-valuation buyers, possibly

excluding low-valuation buyers, to extract more surplus.

The model also has clear welfare implications. The additional informational value of each

unit sold induces the �rm to increase the quantity supplied to each buyer beyond the ideal

point of a myopic seller. This counters the distortions induced by adverse selection, which re-
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duce quantities below the e¢ cient level. As a consequence, the �rm�s incentives to learn lead

to an increase in each buyer�s utility and in the overall e¢ ciency of the equilibrium quantity

allocation. However, the gradual resolution of the uncertainty is not equally bene�cial to all

buyers. For example, low-valuation buyers who may be excluded as learning occurs, expect

their utility level to decrease over time. Not only them, but also intermediate-valuation buy-

ers, who su¤er from more severe distortions when lower types are excluded. This is in sharp

contrast with the e¤ects of learning on the highest-valuation buyers. These buyers enjoy

larger numbers of units when the product turns out to be of high quality. Moreover, they

assign a higher value to each unit. As a consequence, these buyers bene�t from information,

in expectation terms. These di¤erences in the value of information for di¤erent consumers

would play an important role in in�uencing the timing of buyers�choices, in the context of

one-time (durable goods) purchases.

The model developed in this paper focuses almost entirely on learning on the �rm�s side,

by abstracting from the e¤ects of individual experience on consumers�beliefs and demand.

Though considerably more complicated, a model integrating idiosyncratic and aggregate

learning would enable the �rm to manage the �ow of information to various consumer groups.

For example, the �rm might o¤er large quantity discounts to the buyers with the highest

valuations, in order to accelerate their learning process, and increase the spread in the

distribution of their willingness to pay.

The analysis of strategic environments constitutes a natural extension of this paper. A

crucial issue for �rms competing in the environment considered here is whether to invest in

learning about their own product, and about competitors�. We have provided some intuition

for the main trade-o¤s in a duopoly model. Extending the competitive analysis to richer

speci�cations of brand preferences might provide more insights into the characteristics of

menu pricing in imperfectly competitive markets for experience goods.

Another question of interest for future research regards the relative pro�tability of menu

pricing. Several empirical studies have tried to quantify the pro�t gains due to menu pricing,

in comparison to simpler strategies. Our theoretical framework might provide insights into

the relationship between �rms� choice of pricing scheme and the di¤usion of information

about the product. Quite surprisingly, evidence from the online DVD and the enterprise

software market (more speci�cally, online hard drive backup services) suggests that �rms�

strategies follow a pattern that moves away from nonlinear pricing, in favor of linear or

�at-rate contracts, as the market gains familiarity with the product.
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8 Appendix

8.1 Micro-founded Model for the Belief Process

We now provide a formal derivation of the law of motion of beliefs about product quality. We

start with the case of a �nite number of buyers and discrete time, then extend the model to

an in�nite population of agents and continuous time. Let K be the number of buyers, with

each buyer�s willingness to pay �i independently drawn from the distribution F (�i). Let each

unit j purchased by buyer i generate a normally distributed payo¤ ~xij � N (� /K ;�2 /K ).

The utility function of a buyer with type �i who consumes qi units is given by

~U (�i; qi) =  (qi) � �i �
qiX
j=1

xij,

where each xij is a realization from ~xij. Note that total utility is allowed to depend directly

on the number of units consumer. The resulting expected utility function

E~x
h
~U (�i; qi) j �

i
=  (qi) � �i �

�

K
� qi

is then consistent with (3). The agent�s quantity choice is observable to all players. Therefore,

the outcome of buyer i�s experiment provides a normally distributed signal with mean qi� /K

and variance qi�2 /K . In doing so, we omit the weights �i, which pertain to the particular

utility level generated by the experiment outcome to buyer i, while the informative content

of the experiment is a measure of the product�s inherent quality. Alternatively, if each buyer

type purchases a di¤erent number of units (i.e. in the absence of bunching), then observing

of the quantity choice qi is su¢ cient to infer the idiosyncratic component �i:

If each buyer �i consumes a quantity level q (�i), the market experience is equivalent to ob-

serving a comprehensive signal with mean (� /K )
PK

i=1 q (�i) and variance (�
2 /K )

PK
i=1 q (�i).

Denote the average number of units purchased byQ = (1 /K )
PK

i=1 q (�i). As we let the num-

ber of drawsK from the distribution F (�) go to in�nity, we obtain that the average number of

units purchased converges to the expected purchased quantity, Q!
R �H
�L
q (�) f (�) d�. Thus,

the aggregate market experience is equivalent to observing a public signal ~x � N (Q�;Q�2).
As we take the continuous-time limit and use subscripts for time dependence, the �ow of

new information follows a Brownian motion with drift Qt� and variance Qt�2:

d~xt = Qt�dt+
p
Qtdzt.
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With this structure for the information �ow, one can use the �ltering equations (see Theorem

9.1 in Liptser and Shiryaev (1977)) to derive the evolution of beliefs �t:

d�t = �t (1� �t)
�H � �L

�

p
Qtdz.

8.2 Proofs of Propositions

Proof of Proposition 1. (1.) By the implicit function theorem and assumption 2, the �rst
partial derivatives of the myopic solution are given by

@qm (�; �)

@�
= � (�H � �L)� (�)u0 (q)

� (�)� (�)u00 (q)� c00 (q) > 0,

@qm (�; �)

@�
= � � (�)�0 (�)u0 (q)

� (�)� (�)u00 (q)� c00 (q) > 0.

(2.) Apply the envelope theorem and use part (1.) to obtain the following expressions for

the derivatives of �m (�):

�0m (�) = E� [(�H � �L)� (�)u (qm)] > 0,

�00m (�) = E�
�
(�H � �L)� (�)u0 (qm)

@qm (�; �)

@�

�
> 0.

The next lemma shows how to reformulate the HJB equation (11) as a second order di¤er-

ential equation.

Lemma 1 (Boundary-Value Problem)
Let � (�) be de�ned by (2) and let Q =

R
�
q (�) dF (�). For all � 2 (0; 1), the HJB equation

(11) may be written as the following boundary value problem:

V 00 (�) = min
q:�!R+

rV (�)� �(�; q)
� (�)Q

, (26)

with boundary conditions

rV (0) = �m (0) , (27)

rV (1) = �m (1) . (28)

Proof. The ratio in (26) is well de�ned for all � 2 (0; 1), since Q must be positive for any

q solving the HJB equation (11). Suppose instead that Q = 0: Then we know q 6= qm,
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since qm (�; �) > 0 for all � and �. Therefore, �(�; q) < �m (�) : However, in the HJB

equation (11), Q = 0 would imply rV (�) = 0, which is impossible since we know the �rm

can guarantee itself �m (�) in every period by setting q = qm. It follows that, if a function

V (�) solves the HJB equation (11), then it must also solve the di¤erential equation (26).

We now state an existence theorem for boundary value problems due to Bernfeld and Laksh-

mikantham (1974), which we then use to prove Theorem 1. This result requires the concept

of supersolution and subsolution and the introduction of a regularity condition.

Consider a second order di¤erential equation of the form

V 00 = G (�; V; V 0) (29)

on an open interval J" = ("; 1� ") with " � 0. Let VL and VH be functions with continuous
second derivatives on J . The function VL is a called a subsolution of (29) if V 00L � G (�; VL; V 0L)
on J . Similarly, a function VH is a supersolution if V 00H � G (�; VH ; V 0H) on J: If these inequal-
ities are strict, these functions are called strict sub- and supersolutions. Fix two functions VH
and VL such that VL � VH on �J . The function G (�; V; V 0) is said to be regular with respect
to VH and VL if it is continuous on S" f(�; V0; V1) 2 J" � R� R : VL (�) � V0 � VH (�)g and
there is a constant C (") such that jG (�; V; V1)j � C (")

�
1 + jV1j2

�
on S".

We can adapt Theorem 1.5.1 in Bernfeld and Lakshmikantham (1974) to our framework, to

show existence of a solution.

Lemma 2 (Existence and Uniqueness)
Consider an interval J" , ("; 1� "). Suppose VL is a subsolution and VH a supersolution

of (29) on J", and VL � VH : Suppose further that G is regular with respect to VL and

VH on �J". Given any pair of boundary conditions V (") 2 [VL (") ; VH (")] and V (1� ") 2
[VL (1� ") ; VH (1� ")], (29) has a C2 solution on J" which satis�es the boundary conditions.
Moreover, for all � 2 �J", VL (�) � V (�) � VH (�). If VL is a strict subsolution, V > VL

and if VH is a strict supersolution V < VH on J". Moreover, for all � 2 J", jV 0 (�)j < N ,
where N only depends on C (") and on the functions VL and VH .

We also adapt Corollary 1.5.1 from Bernfeld and Lakshmikantham (1974) to show conver-

gence properties of our solution.

Lemma 3 (Uniform Convergence)
Under the assumptions of Lemma 2, any in�nite sequence of solutions of (29), with VL (�) �
V (�) � VH (�) on J" has a uniformly convergent subsequence converging to a solution of

(29) on J".
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We apply these results to prove existence and uniqueness of a solution in a series of steps.

Claim 1 The myopic pro�t function �m (�) /r is a strict subsolution of (26) on (0; 1).

Proof. By Proposition 1, �00m (�) > 0 and min
q
((�m (�)� �(�; q)) /� (�)Q) = 0.

Claim 2 The long run payo¤ v (�) /r is a strict supersolution of (26) on (0; 1).

Proof.We know that v (�) is linear by de�nition, whilemin
q
((v (�)� �(�; q)) /� (�)Q) > 0:

In fact, max
q
f�(�; q)g , �m (�), is a strictly convex function. Therefore, �m (�) < v (�)

on (0; 1), and v (�)� �(�; q) > 0 for all � 2 (0; 1) and all functions q.

Claim 3 Fix an interval J" = ("; 1� "). The boundary value problem (26) is regular with

respect to �m and v on J".

Proof. It su¢ ces to show that there exists a constant C > 0 such that, for all (�; V ) 2 J"�R+
with rV 2 [�m (�) ; v (�)], the following obtains:

min
q

rV � �(�; q)
� (�)Q

� C. (30)

We know that this ratio is always positive and that the �rst term in the numerator is

bounded from above by v (�). Furthermore, we can show that Q is bounded from below by

Qm. Suppose in fact that

~q = argmin
q
((rV � �(�; q)) /� (�)Q) ,

and that ~Q < Qm. Then we would have

(rV � �(�; ~q))
.
� (�) ~Q < (rV � �(�; qm)) /� (�)Qm ,

which yields a contradiction. In fact, ~Q < Qm implies the right hand side�s denominator is

larger than the left hand side�s, while �(�; qm) = �m (�) > �(�; ~q) implies the numerator

of the right hand side is smaller than the left hand side�s. Moreover, if the solution to (30)

is di¤erent from qm, then it must achieve a lower value than qm does. We can then de�ne

the uniform bound as

C (") = max
�2J"

�
v (�)� �m (�)
� (�)Qm (�)

�
, (31)

which ends the proof.
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Proof of Theorem 1. (1.) We know the HJB is equivalent to the boundary value problem
(26). Furthermore, this problem satis�es all conditions of Lemma 2. Therefore, for all " > 0,

the boundary value problem (26) admits a C2 solution on ["; 1� "] with boundary conditions
rV (") 2 [�m (") ; v (")] and rV (1� ") 2 [�m (1� ") ; v (1� ")].
Now let " = 1=n and �x the closed interval �Jn , [1 /n ; 1� 1 /n ]. Similarly, let s � n

and consider a solution Vs (�) to (26) on the interval [1 /s ; 1� 1 /s ]. De�ne a sequence of
functions V ns , where for each sj > n, V

n
sj
(�) is the restriction of Vsj (�) to �Jn. By Lemma 3,

for each n, the sequence V ns has a converging subsequence. By a standard diagonalization

argument, there exist a convergent subsequence (which we de�ne as Vn) converging pointwise

to a function de�ned on V : (0; 1)! R. By Lemma 2, jV 0nj is uniformly bounded, hence on
any closed subinterval �Jn � (0; 1), Vn ! V uniformly on I: Moreover, for a given interval
�Jn, the bound C (n) de�ned in (31) constitutes a uniform bound on jV 00n j. Therefore, V 0n is
locally Lipschitz, hence it converges uniformly to V 0 on any closed subinterval �Jn � (0; 1).
The solution to the boundary value problem (26) is unique. Suppose instead there were two

solutions V1 (�) and V2 (�) to (26), with V1 (�) 6= V2 (�) :Without loss of generality, suppose
V2 > V1 for some �. De�ne G (�; V; V 0) , min

q
((rV � �(�; q)) /� (�)Q). The function

G is strictly increasing in V by the envelope theorem. Since the boundary conditions are

identical, the function V2 � V1 attains a local maximum on (0; 1) with V2 > V1. At the

maximum, V 002 � V 001 < 0; therefore, the HJB equations imply G (�; V1; V 0) > G (�; V2; V
0)

which contradicts V1 < V2.

(2.) Under assumption 2, the pointwise maximization of (12) admits a unique solution. We

know from part (1.) that a solution V (�) exists. Therefore q (�; �) is the only policy attaining

it. We can then apply the implicit function theorem to obtain the following expressions for

the �rst partial derivatives:

@q (�; �)

@�
= �(�H � �L)� (�)u

0 (q) + (d=d�) (� (�)V 00 (�))

� (�)� (�)u00 (q)� c00 (q) ,

@q (�; �)

@�
= � � (�)�0 (�)u0 (q)

� (�)� (�)u00 (q)� c00 (q) .

By assumption (b), these ratios are well de�ned. Moreover, formulation (26) and the envelope

theorem imply that (d=d�) (� (�)V 00 (�)) is equal toQ�1 (rV 0 (�)� (�H � �L)E� [� (�) � u (q)]),
and therefore it is continuous in �.

(3.) We verify three necessary conditions for the application of a veri�cation theorem. First,

by part (1.), there exists a C2 solution V (�) to the HJB equation. Second, the solution to
the HJB equation delivers bounded expected pro�ts for all � (since V (�) is bounded by

v (�) =r). It follows that lim supt!1 e
�rtE� (V (�t)) = 0. Third, from part (2.), there exists
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a C1 policy q : [0; 1]��! R+ that maximizes the right-hand side of the HJB equation (11).
We can therefore apply Theorem 9.1 in Fleming and Soner (2006) and conclude that V (�)

achieves the maximum of (10).

Proof of Theorem 2. From the HJB equation (11), it follows that rV (0) = �m (0) and

rV (1) = �m (1). Consequently, if there exists a point � for which �m (�) > rV (�), then

there must also exist a point �̂ where that the function �m � rV attains a local maximum.
Therefore, �00m (�̂)�rV 00 (�̂) < 0: By Proposition 1, this implies rV is convex at �̂. However,
whenever V 00 (�) is positive, the HJB equation implies rV (�) > max

q
[� (�; q)] , �m (�),

contradicting �m (�) > rV (�) :We therefore know that rV (�) � �m (�) for all �: A similar
argument rules out the case V 00 (�) < 0 and rV (�) � �m (�) for any �: It follows that we
must have V 00 (�) � 0 for all �.

Proof of Proposition 2. (1.) De�ne the return functionWr (�) , rV (�), and the function
G (�;W;W 0) , min

q

�
r�2 (W � �(�; q))

�
(�H � �L)

2 (� (1� �))2Q
�
. The boundary condi-

tions for (26) are given by W (�) = �m (�) for � 2 f0; 1g. To prove the result, let r2 > r1
and suppose that for some �, Wr2 (�) > Wr1 (�). Then Wr2 � Wr1 must attain a local

maximum. At the maximum point, we then have W 00
r2
�W 00

r1
< 0. The formulation (26) of

the HJB equation then implies G
�
�;Wr1 ;W

0
r1

�
> G

�
�;Wr2 ;W

0
r2

�
, contradicting r2 > r1 and

Wr2 (�) > Wr1 (�). Since � and r both enter (26) multiplicatively, an identical argument

shows that W (�), and hence V (�), depend negatively on �.

(2.) Holding � (�0) constant while increasing (�H � �L) induces a mean-preserving spread
in the process �t. Since the pro�t function is linear in �, the value function �

� (�0) increases,

and so does the return function W (�0; r). Since � (�)V 00 (�) is related to Wr (�) by equa-

tion (26), a straightforward application of the envelope theorem delivers that the value of

information depends positively on the value of the problem, and hence on the return function

Wr (�), and on the di¤erence (�H � �L).

Proof of Proposition 3. (1.) Let � (�) = � (�)V 00 (�). From �rst order condition (13)

and the implicit function theorem, we have

@q (�; �;�)

@�
= � 1

� (�)� (�)u00 (q)� c00 (q) > 0.

Since the value of information � (�) � 0 in the myopic case and � (�) > 0 in the forward-
looking case, quantity is higher in the latter setting.

(2.) Similarly, quantity is increasing in the value of information � (�) for all � and �.

38



Proof of Proposition 4. (1.) Since � (�)V 00 (�) � 0 and � (�) is increasing, for any level
q o¤ered at � both by the myopic and the forward looking �rm, the corresponding marginal

price p̂q (�; q) is lower in the latter case.

(2.) Since � (�) is increasing, the higher the value of information, the lower the marginal

prices.

Proof of Proposition 5. (1.) Directly substituting � (�)V 00 (�) = 0 in (14) gives us the
expression for qm (�; �) : From �rst order condition (14), and using constraint (4), we obtain

p (�; �) = � (�) �q (�; �)� U (�; �)

= � (�)

�
� (� (�)� (�) + � (�)V 00 (�))�

Z �

�L

(� (�)� (s) + � (�)V 00 (�)) ds

�
= �2 (�)

�
�� (�) +

Z �

�L

� (s) ds

�
+ � (�) �L� (�)V

00 (�) . (32)

(2.) Substituting �rst order condition (14) into the objective function, we obtain:

rV (�) =

Z �H

�L

1

2
(� (�)� (�) + � (�)V 00 (�))

2
f (�) d�

=

Z �H

�L

1

2
(� (�)� (�))2 f (�) d� + � (�)E� [�] � (�)V 00 (�) +

1

2
(� (�)V 00 (�))

2
:(33)

The �rst term in (33) is exactly the expression for the �rm�s myopic pro�ts �m (�) in this

context. We can then solve explicitly for � (�)V 00 (�) and obtain

� (�)V 00 (�) = �� (�)E� [�] +
q
(� (�)E� [�])2 + 2 (rV (�)� �m (�)),

which ends the proof.

Proof of Proposition 6. (1.) From condition (14), the di¤erence in the quantity levels

supplied to types � and �0 is equal to � (�) (� (�)� � (�0)), hence it is linear in �.
(2.) Di¤erences between total charges are given by p (�; �) � p (�; �0) which simpli�es to
�2 (�)

R �
�0 s�

0 (s) ds: Hence, these di¤erences are positive and convex in � for all � > �0.

Proof of Theorem 3. (1.) The �rst term in expression (17) is linear in �: The term inside
the square root is concave, since its second derivative with respect to � is given by

2 (E� [�] (�H � �L))
2 � 2

�
Var [�] + E� [�]2

�
(�H � �L)

2 = �2 (�H � �L)
2Var [�] :

Therefore, q (�; �) is a concave function of �.
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(2.) Using the concavity of q (�; �), and the fact that @2q (�; �) =@�@� = (�H � �L)�0 (�) > 0,
we can identify the critical type ~� receiving nonmonotonic quantity provision by setting

@q
�
1; ~�
�
=@� = 0.

@q (1; �)

@�
/ �� E� [�] +

2�HE� [�]
2 �

�
Var [�] + E� [�]2

�
(�H � �L)

2�HE� [�]

/
2�HE� [�] (�� E� [�]) + 2�H (E� [�])

2 �
�
Var [�] + E� [�]2

�
(�H � �L)

2�HE� [�]
:

The threshold ~� is de�ned by the following equation:

�
�
~�
�
=
Var [�] + E� [�]2

2E� [�]
�H � �L
�H

,

which completes the proof.

Proof of Proposition 7. Consider �rst order condition (14) for the equilibrium quantity

function q (�; �). Parametrize the solution q (�; �) and the value function V (�) by the

discount rate r. The �rst derivative with respect to � is given by

@q (�; �; r)

@�
= (�H � �L) (� (�)� E� [�]) +

rV 0 (�; r)� (�H � �L)� (�)Var [�]q
2rV (�; r)� � (�)2Var [�]

. (34)

The second derivative is given by

@2q (�; �; r)

(@�)2
=
rV 00 (�; r)� (�H � �L)

2Var [�]� (rV 0 (�; r)� (�H � �L)� (�)Var [�])
2q

2rV (�; r)� � (�)2Var [�]
.

(35)

Now consider an interval ["; 1� "] with " > 0. By equation (30), the second derivative

of the value function V 00 (�; r) is uniformly bounded from above by C (") for all r. The

bound C (") is de�ned in equation (31). From expression (35), it is clear that rV 00 (�; r) �
(�H � �L)

2Var [�] � 0 ensures that @2q (�; �; r)
�
(@�)2 < 0. Therefore, if the discount

rate r is lower than the threshold r" , (�H � �L)
2Var [�] /C (") , then quantity provision

q (�; �; r) is concave in � over the interval ["; 1� "]. Furthermore, since the second derivative
@2q (�; �; r)

�
(@�)2 does not depend on the buyer�s type, the result holds for all �.

Proof of Proposition 8. (1.) Consider again the derivative @q (�; �; r) =@�, given in

equation (34). Evaluate expression (34) at � = 0. Since we know that rV (�; r) � �m (�)
for all � and for all r, we can conclude that rV 0 (0; r) � �0m (0). Using the fact that
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rV (0; r) = �m (0) for all r, and that �0m (�) = (�H � �L)� (�)E�
�
�2
�
, we obtain the

following expressions:

@q (0; �; r)

@�
= (�H � �L) (� (�)� E� [�]) +

rV 0 (0; r)� (�H � �L)�LVar [�]q
�2L
�
E�
�
�2
�
� Var [�]

�
� (�H � �L) (� (�)� E� [�]) + (�H � �L)

q
E�
�
�2
�
� Var [�]

= (�H � �L)� (�) > 0:

Therefore, quantity provision is increasing in � around � = 0 for all types � with positive

virtual valuation � (�) :

(2.) Evaluate expression (34) at � = 1 and let Wr (�) = rV (�; r). We can then write

@q (�; �; r) =@� as

@q (1; �; r)

@�
= (�H � �L) (� (�)� E� [�]) +

W 0
r (1)� (�H � �L)�H Var [�]

�HE� [�]
. (36)

We know the derivative W 0
r (1) is increasing in r, since Wr (�) is convex in � and decreasing

in r for all �, and, at � = 1, we have Wr (1) = �m (1) for all r. It follows the right-hand

side of (36) is increasing in r. The right-hand side of (36) is also increasing in �, since it

depends positively on � (�). In the undiscounted case, we have W 0
r (1) = v

0 (1). When r = 0,

we can identify a threshold type ~� that solves @q
�
1; ~�; 0

�
=@� = 0. Moreover, sinceW� (1; r)

is increasing in r, for each " we can �nd a discount rate r" such that jW 0
r (1)� v0 (1)j < "

for all r < r". Since the right-hand side of (36) is increasing in �, for any �
0 lower than the

undiscounted threshold ~�, we can �nd a value for the discount rate r low enough so that �0

solves @q (1; �0; r) /@� = 0. For all r < r�0, we then obtain decreasing quantities q (�; �) at

� = 1 for all � 2 [�L; �0].

Proof of Proposition 9. The �rm�s HJB equation is given by

v (�) =

Z �H

��(�)

1

2
(� (�)� (�) + � (�)V 00 (�))

2
f (�) d�,

which may also be written as

v (�) =
1

6� (�)

Z �H

��(�)

d

d�
(� (�)� (�) + � (�)V 00 (�))

3 f (�)

�0 (�)
d�.

We assume that types � are uniformly distributed on [�L; �H ]. Under the uniform distribution

f (�) =�0 (�) is a constant equal to (2 (�H � �L))�1. We can then integrate out the previous
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expression, solve the equation

v (�) =
(� (�) �H + �(�)V

00 (�))3

12� (�) (�H � �L)
,

for the value of information, and obtain the result.

Proof of Proposition 10. Since the drift component of the process dh (�t; �) is given by

E [dh (�t; �)] =
@2h (�t; �)

(@�)2
� (�t)Qtdt, (37)

the result follows directly from equation (37), Proposition 6 and Theorem 3.

Proof of Proposition 11. This result follows directly from equations (20) and (21), from

Proposition 6, and from Theorem 3.

Proof of Proposition 12. (1.) Imposing � (�)V 00j (�) � 0 in conditions (24) and (25), one
obtains the following expressions for the myopic equilibrium market shares and utility levels

xm (�) =
4s2

�1 (�)
2 + 3s2 +

q�
�1 (�)

2 + 3s2
�2
+ 8s2

�
�1 (�)

2 � s2
� ,

um (�) = 2 (1� xm (�)) s2 � 2 (xm (�)�1 (�))
2 ,

The resulting myopic pro�t levels are given by

�1;m (�) =

Z 1

xm(�)

�
1

2
(2�1 (�) �)

2 � um (�)
�
d�,

�2;m (�) =

Z xm(�)

0

�
1

2
(2s (1� �))2 � um (�)

�
d�.

De�ning k (�) , �1 (�) =s, one can show that the sign of the second derivative of the pro�t
functions only depends on k. This allows us to prove that �001;m (�) > 0 for all � and all k.

(2.) Similarly, �002;m (�) > 0 whenever k (�) � ~�, with ~� > 0. Moreover, � = min� k (�) =

�L=s. Therefore, if � > ~�, then �2;m (�) is convex:

(3.) The proof that convexity of �j;m (�) implies convexity of Vi (�) follows the same steps

as the proof of Theorem 2, for each �rm j separately.
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