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Abstract

Unpredictable behavior is central for optimal play in many strategic situations because

a predictable pattern leaves a player vulnerable to exploitation. A theory of unpredictable

behavior is presented in the context of repeated two-person zero-sum games in which the

stage games have no pure strategy equilibrium. Computational complexity considerations

are introduced to restrict players’ strategy sets. The use of Kolmogorov complexity allows

us to obtain a sufficient condition for equilibrium existence. The resulting theory has

implications for the empirical literature that tests the equilibrium hypothesis in a similar

context. In particular, the failure of some tests for randomness does not justify rejection

of equilibrium play.
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1 Introduction

Unpredictable behavior is central for optimal play in many strategic situations because a

predictable pattern leaves a player vulnerable to exploitation—think of the direction of

tennis serves or soccer penalty kicks or the pattern of bluffing in poker. In fact, Walker

and Wooders [36] for tennis and Palacios-Huerta [29] for soccer find evidence that supports

such unpredictable behavior. In this paper, we propose a theory of unpredictable behavior

in the context of (infinitely) repeated two-person zero-sum games in which the stage games

have no pure strategy equilibrium. We focus on repeated play because equilibrium makes

no predictions about a single play (von Neumann and Morgenstern [23], p. 147, expresses

a similar concern). Recognizing this fact, there is a literature which identifies mixed

strategies with beliefs and which makes predictions about beliefs in one-shot games (see,

for example, Harsanyi [10] and Aumann and Brandenburger [2]). In contrast, our theory,

based on computational complexity considerations, has predictions about players’ actions.

For example, in a repeated matching pennies game, the sequence of plays that alternates

between heads and tails is not an equilibrium play in our theory—even though it could

have resulted from an i.i.d. random process (and, in fact, is no more likely or unlikely

than any other sequence). Moreover, our theory has implications for empirical tests of

unpredictable behavior. We find that the failure of some tests for randomness does not

justify rejection of equilibrium play.

We model players’ computational power by introducing a computability constraint for

each player, which is the set of functions that the player can use to implement strategies.

We assume that the computability constraint includes all functions that can be computed

with a Turing-machine alone, and we impose conditions on the constraint so that all

implementable strategies of a player can be computed in a mechanical fashion. The

resulting strategy set is countable. Our framework then has three ingredients: a finite

zero-sum game as the stage game, and a computability constraint for each player. For

payoffs, we adopt the long-run average criterion, which we will argue is more appropriate

in this context, and we show that there is no equilibrium with the discounting criterion.

Our first result is a necessary condition for equilibrium existence. If the stage game
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has no pure strategy equilibrium, then, to obtain equilibrium in the repeated game with

computability constraints, it is necessary that each player’s constraint contains a function

outside his opponent’s constraint. One corollary of this result is that if equilibrium exists,

the equilibrium strategy of one player is not computable by the other.

To obtain a sufficient condition for existence, we use Kolmogorov complexity [13] to

consider the complexity of functions, which can be identified with sequences over natural

numbers, in the constraints. This complexity measures the minimal description length of

a finite object by using functions in a given constraint as descriptions, and we use this

measure to define complex sequences—sequences that are hard to describe. Specifically,

a sequence is complex relative to a constraint if the Kolmogorov complexities (relative

to that constraint) of its initial segments are essentially the lengths of those segments.

A complex sequence is itself uncomputable, but it can be thought of as the limit of

finite sequences that are hard to compute. The sufficient condition we find is called

mutual complexity : it assumes that each player can compute a complex sequence relative

to the other player’s computability constraint. We show that, if the constraints are

mutually complex, then for any mixed strategy equilibrium of the stage game, there is a

corresponding equilibrium in the repeated game with the constraints. This result cannot

be obtained with the complexity notion in the machine game literature (see Ben-Porath [3]

and Osborn and Rubinstein [27]), which uses finite automata to implement strategies and

measures complexity with the number of states in a player’s automaton. Existence result

in that literature still relies on the use of mixed strategies. We overcome this difficulty

by considering uncomputable sequences (which are necessary for equilibrium) relative to

the other player.

Our theory has implications for the empirical literature that tests the equilibrium hy-

pothesis by implementing statistical tests for randomness. In that empirical literature,

it is assumed that equilibrium behavior is so unpredictable to pass all such tests (see,

for example, Brown and Rosenthal [4], Walker and Wooders [36], and Palacios-Huerta

[29]). However, O’Neill [26] doubts the relevance of all such tests to reject the equilibrium

hypothesis. To understand what tests are relevant, we follow Martin-Löf [19] to define
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idealized statistical tests relative to a computability constraint. Such a test is based on a

property with zero probability that can be detected with the functions in the computabil-

ity constraint. Mutual complexity turns out to be the necessary and sufficient condition

for the existence of an equilibrium strategy for each player that passes all such tests (w.r.t.

an equilibrium mixed strategy of the stage game) relative to the other player. However,

this does not show that all tests are relevant to the equilibrium hypothesis. We find that,

under mutual complexity, there are always equilibrium strategies that will fail some tests.

In matching pennies, there is an equilibrium strategy that has more heads than tails in all

its initial segments. Moreover, we find a notion of unpredictability, weaker than random-

ness, such that any sequence of play satisfying that notion is also an equilibrium strategy

under mutual complexity. This notion corresponds to a proper subset of the above tests.

This result suggests that only those tests are relevant to the equilibrium hypothesis.

The rest of the paper is organized as follows: in section 2 we formulate collective

games (the version of repeated games we study) and present nonexistence results; section

3 has two parts: first we formulate the notion of complex sequences using Kolmogorov

complexity and give an existence result; then we discuss the statistical tests that equilib-

rium behavior should pass; in section 4 we give some discussions of our results and further

research; the proofs of the main theorems are in section 5.

2 Repeated games with computability constraints

In this section we formulate our framework formally. We consider two alternative formu-

lations of the repeated game, which are called the horizontal game (HG) and the vertical

game (V G), respectively. In general we may refer to either of them as a collective game.

Both the two games consist of infinite repetitions of a finite zero-sum game, but they

differ in their information structures. In both games we impose computability constraints

on implementable strategies. Before the formulation, we give a necessary review of com-

putability theory, of which our main reference is Pippenger [28]. We present nonexistence

results in the end.
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2.1 Computability

In this section we will review some material from computability theory. We view com-

putability as a constraint on the set of functions available to a player. Following the

computability theory literature, we consider the set of all partial functions:

F = {f : Nk → N | k > 0; if for some i, xi = ⊥, f(x1, ..., xk) = ⊥},

where N = N ∪ {⊥}, and the symbol ⊥ means that the function is not defined there. An

important subset of F is the set of total functions

G = {f : Nk → N | k ∈ N, k > 0},

which includes functions that are well-defined everywhere. For any set P ⊂ F , we use PT
to denote the set P ∩ G.

In general, computational power can be expressed as a set P ⊂ F , interpreted as the

set of functions that can be computed by a player. We impose four axioms on the set P ,

following the modern development of computability theory. We borrow the formulations

from Pippenger [28].

Definition 2.1. A set P ⊂ F is called a computability constraint1 if it satisfies the

following conditions:

FC1 P is closed under composition.

FC2 P contains the following functions:

(a) The constant zero function Z defined by Z(x) = 0.

(b) The successor function S defined by S(x) = x+ 1.

(c) The projection function Pki defined by Pki(x1, ..., xk) = xi, for all k, i ∈ N+.

(d) The pair function o defined by o(x, y) = (x+ 1) + (x+ y + 1)(x+ y)/2.

(e) The conditional function c defined by c(v, w, x, y) = x if v = w and c(v, w, x, y) = y

otherwise.

1It is also called a reflexive class in the literature.
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FC3 P contains a function u that satisfies the following: for each function f ∈ P with k

arguments, there is a number e ∈ N such that for all x1, ..., xk ∈ N,

f(x1, ..., xk) = uk(e, x1, ..., xk),

where the function uk is defined inductively: u0 = u and for all e, x1, ..., xk+1 ∈ N,

uk+1(e, x1, ..., xk+1) = uk(o(e, x1), x2, ..., xk+1).

FC4 P contains a total function m that satisfies the following two conditions:

(a) For all e, t ∈ N, 0 ≤ m(e, t) ≤ m(e, t+ 1) ≤ 1.

(b) For all e ∈ N, u(e) ∈ N if and only if for some t ∈ N, m(e, t) = 1.

The set of all computability constraints is denoted by R.

Conditions FC1 and FC2 assume that the player is able to compute some simple

functions and is able to perform compositions. Conditions FC3 and FC4 requires that

the player has a universal machine (the function u) to perform all computations. In

particular, FC4 requires any computation is finished in finite steps. These conditions are

meant to axiomatize computable functions by Turing-machines with a fixed oracle. As a

result, if P is a computability constraint, it includes all Turing-computable functions, and

the set of all Turing-computable functions, denoted by P∗, is the smallest computability

constraint. In our framework, a player will be endowed with a computability constraint

P . The player’s computability constraint is interpreted as the set of functions available

to implement strategies. Therefore, the computational constraints are put on the set of

available strategies, but we give no constraints in computing optimal strategies.

2.2 Horizontal and vertical games

In this section we formulate our model, which are obtained from finite zero-sum two-person

games by extending them to infinitely repeated games with computability constraints.

First we define the stage games: A zero-sum two-person game g is a triple 〈X, Y, h〉,
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where X = {x1, ...., xm} is the set of actions for player 1, Y = {y1, ..., yn} is the set of

actions for player 1, and h : X×Y → Q is the von Neumann-Morgenstern utility function

for player 1. We use

∆(X) = {p ∈ [0, 1]m : p ∈ Q,
∑
x∈X

px = 1}

and

∆(Y ) = {q ∈ [0, 1]n : q ∈ Q,
∑
y∈Y

qy = 1}

to denote the set of mixed strategies (with rational probability values) for player 1 and

2, respectively. Notice that since h is rational-valued, there is always a mixed strategy

equilibrium with rational probability values in g. We use X<N (Y <N) to denote the set of

finite sequences over X (Y ). For any sequence ξ ∈ XN, we use ξ[T ] to denote its initial

segment with length T , i.e., ξ[T ] = (ξ0, ξ1, ..., ξT−1). Given the stage game g, we formulate

the vertical and the horizontal games as follows:

Definition 2.2. The vertical game V G(g,P1,P2) associated with a stage game g and

computability constraints P1, P2 is a triple 〈X ,Y , uh〉:

(a) X = {a : Y <N → X : a ∈ P1
T};

(b) Y = {b : X<N → Y : b ∈ P2
T};

(c) uh(a, b) = lim infT→∞
∑T−1

t=0
h(θa,bt )

T
, where θa,b = (θa,b,1, θa,b,2) ∈ (X × Y )N is the se-

quence of actions taken by the players under strategy profile (a, b):

θa,b0 = (a(ε), b(ε));

θa,bt = (a(θa,b,2[t]), b(θa,b,1[t])) for all t ≥ 1.

Definition 2.3. The horizontal game HG(g,P1,P2) associated with a stage game g and

computability constraints P1, P2 is a triple 〈X ,Y , uh〉:

(a) X = {a : N→ X : a ∈ P1
T};

(b) Y = {b : N→ Y : b ∈ P2
T};

(c) uh(a, b) = lim infT→∞
∑T−1

t=0
h(at,bt)

T
.
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The V G resembles the standard formulation of repeated games, but we impose com-

putability constraints on implementable strategies. In the HG, the stage games are played

simultaneously. In both games, the set X consists of strategies available to player 1 and

Y consists of strategies available to player 2. For the definition of V G, in (a) and (b) we

implicitly use the fact that any function from Y <N to X can be regarded as a function

from natural numbers to natural numbers (because there is an effective way to assign each

history in Y <N a number).2 Any strategy in HG can be identified with a corresponding

strategy in V G which is history-independent: let a be a strategy for player 1 in HG, then

we say that a′, as a strategy in V G for player 1, is a history-independent strategy based

on a if a′(σ) = a(|σ|) for all σ ∈ Y <N. As a result, any equilibrium in V G that consists

of history-independent strategies is also an equilibrium in HG.

The two games HG and V G differ in their information structures. In the HG, players

cannot predict their opponents’ actions based on previous observations, but they can in

the V G. However, HG seems more appropriate to capture the unpredictable behavior

behind mixed strategy equilibrium in the standard framework. An example of HG can

be found in Luce and Raiffa [18], where they discuss two aerial strategists deciding the

actions of their pilots in a conflict consisting of many identical aircraft fights. They use

this example to illustrate the meaning of a mixed strategy, which is interpreted as the

distribution of different actions assigned to the pilots. However, in many applications, V G

seems a more faithful description. Thus, we consider both the vertical and the horizontal

games in our discussions.

For the payoffs, we also define both the games V G and HG to be zero-sum games,

and uh is the payoff function for player 1 but the payoff to player 2 is determined by

−uh. This implies that player 1 uses the lim inf criterion while player 2 uses the lim sup

criterion. However, our main results are robust to this asymmetry. An alternative payoff

criterion commonly used in repeated games is the discounting criterion, which is defined

as follows:

vh(a, b) = (1− δ)
∞∑
t=0

δth(θa,bt ), (1)

2Although this assignment not unique, it does not matter which one we use.
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where δ ∈ (0, 1) is the discounting factor. We adopt the long-run average for several

reasons. First of all, the discounting criterion does not seem appropriate in HG. Second,

in our framework, there is no probability involved, and so the von Neumann-Morgenstern

utility function needs a foundation that uses no probability as fundamentals. In Hu [11],

such a foundation is given and the long-run average criterion is used in place of expected

utility criterion. The third reason, which may be the most substantial, is that both the

vertical and the horizontal games thus defined may have no equilibrium at all with the

discounting criterion. This result is reported in the next section.

2.3 Nonexistence results

In this section we give a preliminary analysis of the games V G and HG. First we show

that, if the discounting criterion is adopted, then for games without pure strategy equi-

libria, the associated vertical games have no equilibrium. The proof of the following

proposition is in Section 5.

Proposition 2.1. Let g = 〈X, Y, h〉 be a two-person zero-sum game without any pure

strategy equilibrium. There is no equilibrium in V G′(g,P1,P2) = 〈X ,Y , vh〉, with vh(a, b)

being the discounted payoff defined in (1).

This result holds for HG with the discounting criterion as well. In this proposition,

there is no assumptions on P1 and P2 except for being computability constraints. This

shows that, if we are interested in investigating unpredictability of the equilibrium behav-

ior in our framework, then we cannot take the discounting criterion.

From now on, we shall consider only the long-run average criterion, that is, the HG

and V G. Our main interest is to find the conditions on the computability constraints

so the resulting equilibrium behavior is unpredictable in the collective games. We first

consider the natural ordering on the computability constraint in terms of set-inclusion.

The following proposition gives us a necessary condition for the existence of equilibrium

in the collective games with the same value as their stage games. Its proof can be found

in Section 5.
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Proposition 2.2. Let g = 〈X, Y, h〉 be a two-person zero-sum game without any pure

strategy equilibrium for either player. Let P1, P2 be two computability constraints.

(a) If P1 = P2, then there is no equilibrium in V G(g,P1,P2).

(b) Suppose that P2 ⊂ P1. The value of the game V G(g,P1,P2), if it exists, is

min
y∈Y

max
x∈X

h(x, y).

We know from part (a) of this proposition that there is no equilibrium in the ver-

tical games if the two players share the same computability constraint. Part (b) shows

that, if P2 ⊂ P1 and if there is no pure strategy equilibrium in the stage game, the

value of the vertical game is different from that of the stage game. The case P1 ⊂ P2

is completely symmetric. Both results hold for HG as well with necessary modifica-

tion. This result resembles the findings in Ben-Porath [3]3, which obtains the same value

(miny∈Y maxx∈X h(x, y)) when player 1 has a substantially stronger computational power.

However, mixed strategies are allowed there and the existence problem is trivial. Nonethe-

less, that result and our proof suggest that this proposition does not rely on the assump-

tion that both players’ computability constraints include all Turing-computable functions.

We are not able to obtain a general nonexistence result with one player’s constraint being

more restrictive than the other player’s, but in some examples, we are able to show that

there is no equilibrium in HG in this case. The following is one example.

Example 2.1. Consider the matching pennies game g = 〈{H,T}, {H,T}, h〉 with

h(H,H) = 1 = h(T, T ) and h(H,T ) = 0 = h(T,H).

Suppose that P2 ⊂ P1. Then the value of the game HG(g,P1,P2) is 1, if it exists. Let

a∗ be an equilibrium strategy of player 1 in that horizontal game. Then we have

lim inf
T→∞

h(a∗, H)

T
= 1 = lim inf

T→∞

h(a∗, T )

T
,

and hence,

lim inf
T→∞

|{0 ≤ t ≤ T − 1 : a∗t = H}|
T

= 1 = lim inf
T→∞

|{0 ≤ t ≤ T − 1 : a∗t = T}|
T

.

3In that paper, players use finite automata to implement strategies.
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But this implies that

1 = lim inf
T→∞

|{0 ≤ t ≤ T − 1 : a∗t = H}|+ |{0 ≤ t ≤ T − 1 : a∗t = T}|
T

≥ lim inf
T→∞

|{0 ≤ t ≤ T − 1 : a∗t = H}|
T

+ lim inf
T→∞

|{0 ≤ t ≤ T − 1 : a∗t = T}|
T

= 2,

a contradiction. Thus, there is no equilibrium in HG(g,P1,P2).

Now, Proposition 2.2 and the above example shows that, to obtain existence, it is

necessary that both P1 − P2 and P2 − P1 are nonempty.4 Moreover, this shows that

if equilibrium exists in a collective game, one player’s equilibrium strategy is necessarily

uncomputable to the other player. The exact necessary and sufficient condition for exis-

tence seems very hard; however, in the next section, we will find a sufficient condition for

existence.

3 Complexity and unpredictable behavior

In this section we give a sufficient condition, called mutual complexity, on the computabil-

ity constraints that guarantees equilibria existence in the collective games. To formulate

this condition, we will consider Kolmogorov complexity, which is introduced by Kol-

mogorov [13] to study the foundation of probability theory. Then, we show that, under

this condition, there is an equilibrium that passes all the idealized statistical tests with

respect to any mixed equilibrium of the stage game. This result in turn implies the mutual

complexity condition. However, we are able to show that, under mutual complexity, there

exists an equilibrium strategy that fails some tests.

3.1 Kolmogorov complexity and existence

In this section we define the notion of Kolmogorov complexity. Although our intention

is to measure the complexity of functions in P , which can be identified with infinite

4In fact, in Example 2.1, our simple argument for nonexistence relies on the fact that P2 ⊂ P1.

However, if we assume that both players maximizes limsup of the average payoffs, then the nonexistence

result remains.
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sequences over N, we begin with complexity of finite sequences over {0, 1}, denoted by

{0, 1}<N. Then, we measure the complexity of an infinite sequence by considering the

complexity of its initial segments, following the Algorithmic Randomness literature.5

The idea behind this notion is to measure the complexity of a finite object with the

length of its shortest description. In our case, we consider the complexity of strings in

{0, 1}<N and use strings in {0, 1}<N as descriptions. Any partial function d : {0, 1}<N →

{0, 1}<N may be regarded as a description method, and we call elements in

dom(d) = {σ ∈ {0, 1}<N : d(σ) 6= ⊥}

code-words. However, to ensure the descriptions are complete, we consider only partial

functions d : {0, 1}<N → {0, 1}<N that are prefix-free, 6 i.e., for any two code-words

σ, τ ∈ dom(f), σ ⊂ τ (meaning that σ is an initial segment of τ) implies that σ = τ . For

a given computability constraint P , we define

D(P) = {f ∈ P | f : {0, 1}<N → {0, 1}<N and f is prefix-free}.

For any set P , this complexity measure is asymptotically absolute in the sense that there

is a function that gives the shortest descriptions among all functions in D(P) within a

constant.

To measure the complexity of infinite sequences in {0, 1}N, we shall consider the com-

plexity of their initial segments. In this way, we do not have a numerical measure for each

sequence, but we are still able to discriminate different sequences in terms of complexity

qualitatively. We first define complex sequences.

Definition 3.1. Let P ∈ R. A sequence ξ ∈ {0, 1}N is a complex sequence relative to P

if for all f ∈ D(P), there is a constant b such that for all T > 0,

Kf (ξ[T ]) ≥ T − b,

where ξ[T ] = (ξ0, ..., ξT−1) is the initial segment of ξ with length T .

5See, for example, Downey et al. [9].
6For the motivation to use prefix-free functions, please see van Lambalgen [15] and references there.
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Intuitively, a sequence is complex relative to P if it is hard to describe for all description

methods in D(P). In our definition, a sequence is complex if its initial segments can only

be described by strings with almost the same lengths. As a consequence, if a sequence

is complex relative to P , then it is not in P . A complex sequence, however, may not

be maximally complex, because we know that there are sequences whose initial segments

have complexity significantly higher than their lengths.7

Now we are ready to formulate our sufficient condition for general existence in the

vertical and the horizontal games. We say that two computability constraints P1, P2 are

mutually complex if there are there are ξ1 ∈ P1, ξ2 ∈ P2 such that for both i = 1, 2, ξi is

a complex sequence relative to P−i. Our theorem is stated in the following, and its proof

is in Section 5.

Theorem 3.1. Let g be a finite zero-sum game with value v. Suppose that P1, P2 are mu-

tually complex. Then there is an equilibrium for both V G(g,P1,P2) and HG(g,P1,P2).

Moreover, the value of both HG and V G is also v.

In the next section, we shall discuss what the statistical tests are that the equilibrium

strategies should pass. Before we turn to those results, we conclude with a proposition that

gives an estimation of the pervasiveness of mutually complex computability constraints.

Its proof is in the appendix.

Proposition 3.1. There are uncountably many different pairs of computability constraints

that satisfy mutual complexity.

3.2 Unpredictable behavior: randomness

In this section we consider the unpredictable behavior in the games V G and HG. In

particular, we address the question of whether the equilibrium strategies should pass

all statistical tests. The question corresponds to a criterion of unpredictability in the

7To be precise, there are infinitely many sequences ξ such that for any description method f , there is

some constant b such that for all T , Kf (ξ[T ]) ≥ T +Kf (T ) + b. This result is reported in Li and Vitányi

[17].
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literature, which is called Martin-Löf randomness [19]. This notion begins with a formal

formulation of idealized statistical tests: a test with respect to a measure relative to

a computability constraint is defined to be a property that has zero probability, i.e., a

measure-zero event (w.r.t. that measure) that can be detected with functions in the

constraint. Before we lay out the formal definition, we need some notations.

Let X be a finite set. We endow the product topology on the set of infinite sequences

over X, which is denoted by XN. For our purpose, we consider only Borel probability

measures on it. Any open set can be written as a union of basic sets, where a basic set

has the form Nσ = {ζ ∈ XN : σ = ζ[|σ|]} for some σ ∈ X<N. It is well known that any

Borel measure µ is uniquely determined by its values on Nσ’s, i.e., if for all σ ∈ X<N,

µ(Nσ) = ν(Nσ), then µ = ν. We give a formal definition of randomness in the following.

Definition 3.2. Let X be a finite set and let P be a computability constraint. Suppose

that µ is a computable probability measure over XN, i.e., the mapping σ 7→ µ(Nσ) belongs

to P∗. A sequence of open sets {Vt}∞t=0 is a µ-test relative to P if it satisfies the following

conditions:

(1) There is a function f : N→ N×X<N in PT such that for all t ∈ N and for all ξ ∈ XN,

ξ ∈ Vt ⇔ (∃n)(f(n) = (t, σ) ∧ σ = ξ[|σ|]).

(2) For all t ∈ N, µ(Vt) ≤ 2−t.

A sequence ξ ∈ XN is µ-random relative to P if it passes all µ-tests relative to P , i.e., for

any µ-test {Vt}∞t=0 relative to P , ξ /∈
⋂∞
t=0 Vt.

Implicitly in the definition we assume that µ(Nσ) is always a rational number for µ to

be computable. In the literature, computability of a measure is defined more generally,

but this definition is sufficient for our purpose.

Each test {Vt}∞t=0 is used to test a zero probability property that corresponds to the

event
⋂∞
t=0 Vt. Clearly, such an event has probability zero w.r.t. the measure. Conditions

(1) and (2) require that this property can be detected by functions in P : the measure of

the corresponding event is proved to be zero by a list of open sets that can be generated
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by functions in the computability constraint. A sequence is random if it passes all such

tests. As a consequence, the set of random sequence, given a fixed measure, depends on

the computability constraint in a monotonic manner. If the constraint P1 is a subset of

another constraint P2, then any test relative to P1 is also a test relative to P2. Therefore,

the set of random sequences relative to P2 is a subset of random sequences relative to P1.

We conclude the comments with an existence theorem for random sequences. Its proof

for the case with P = P∗ can be found in Martin-Löf [19] (with some minor modifications

to accommodate general computable measures). See also Downey et al. [9].

Proposition 3.2. Suppose that X is a finite set and µ is a computable measure over XN.

Let P be a computability constraint. Then

µ({ξ ∈ XN : ξ is µ-random relative to P}) = 1.

Now we are ready to show that, if the collective game satisfies mutual complexity,

then there is an equilibrium strategy that is random with respect to the i.i.d. measure

generated by a mixed strategy equilibrium of the stage game. For any p ∈ ∆(X), we use

µp to denote the measure over XN such that for all σ ∈ X<N,

µp(Nσ) =

|σ|−1∏
t=0

pσt .

The measure µq for any q ∈ ∆(Y ) is defined in a similar manner. Moreover, this holds for

any equilibrium strategy profile of the stage game as well, for which we need to consider

distribution over X × Y . For any probability distribution p ∈ ∆(X) and q ∈ ∆(Y ), we

use p ⊗ q to denote the product measure of p and q over X × Y and use µp⊗q to denote

the i.i.d. Bernoulli measure generated by p⊗ q over (X ×Y )N. The proof of the following

theorem is in section 5.

Theorem 3.2. Suppose that P1,P2 are mutually complex. Let g be a finite zero-sum

game. Then, in HG(g,P1,P2),

(a) if (p, q) ∈ ∆(X) × ∆(Y ) is an equilibrium of g, then there is an equilibrium (a, b)

such that a (b) is a µp-random (µq-random) sequence relative to P2 (P1); moreover, any
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µp-random (µq-random) sequence relative to P2 (P1) is an equilibrium strategy for player

1 (2);

(b) for such an equilibrium (a, b), the sequence (at, bt)
∞
t=0 is a µp⊗q-random sequence (rel-

ative to P∗).

This theorem holds for V G as well, if we replace the strategies in HG mentioned above

with the corresponding history-independent strategies in V G. Part (a) of this theorem

shows that, under mutual complexity, each player has some equilibrium strategies that

pass all the statistical tests relative to his opponent. This result shows that equilibrium

strategies can satisfy a very strong independence condition. For each player, his opponent

has an equilibrium strategy that appears random w.r.t. an i.i.d. distribution. Part (b) of

this theorem is of interest because such independence may not be observable to outsiders.

However, this part shows that, relative to the Turing-computability, such equilibrium

strategies from both players appear to be generated by two independent random processes.

Our next concern is the necessity of mutual complexity to derive this result. We

show that part (a) of Theorem 3.2 implies mutual complexity. The proof of the following

theorem is in Section 5.

Theorem 3.3. Let g be a finite zero-sum game without pure strategy equilibrium. Let

P1, P2 be two computability constraints and let (p, q) ∈ ∆(X)×∆(Y ) be non-degenerate

distributions.8 Suppose that there is a µp-random sequence relative to P2 in X and there

is a µq-random relative to P1 in Y. Then P1, P2 are mutually complex.

This result shows that if each player has a strategy that is random relative to his

opponent, then their computability constraints satisfy mutual complexity. This suggests

that the usual assumption that players are able to randomize independently requires high

complexity in their computational powers. Moreover, this shows that mutual complexity is

indispensable if we require the equilibrium strategies to pass all statistical tests. However,

in the next section, we show that, under mutual complexity, some equilibrium strategies

will fail some tests.

8A distribution p is non-degenerate if px1 > 0 and px2 > 0 for two different elements x1, x2.
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3.3 Unpredictable behavior: stochasticity

In this section we show that there are equilibrium strategies that fail some tests in both

the vertical and the horizontal games that satisfy mutual complexity. To understand

what laws are violated, we introduce a weaker criterion of unpredictability proposed by

von Mises [20], called stochasticity. Before we show the main results, we first define

this notion and show that this criterion gives sufficient unpredictability to be optimal in

equilibrium.

Intuitively, a sequence ξ over a finite set X is p-stochastic w.r.t. some p ∈ ∆(X)

if there is no subsequence of ξ that has relative frequency different from p. Clearly, if

there is no restriction on how one could select the subsequences, there is no p-stochastic

sequence unless p is degenerate. As randomness, we shall define stochasticity relative to

computability constraint P , and consider only subsequences that can be selected by a

function from P .

Formally, a function r : X<N → {0, 1} is called a selection function. Given a sequence

ξ ∈ XN, we define a partial function πr : N→ N as follows:

for t = 0, πr(0) = min{T : r(ξ[T ]) = 1}; (2)

for t > 0, πr(t) = min{T : T > πr(t− 1), r(ξ[T ]) = 1}.

Then, we define the subsequence ξr chosen by r as follows:

for all t ∈ N, ξrt = ξπr(t). (3)

It is easy to see that ξr ∈ XN if and only if πr is a total function. Now, we are ready to

define stochasticity.

Definition 3.3. Let p ∈ ∆(X) be a probability distribution and let P ∈ R be a com-

putability constraint. We say that a sequence ξ ∈ XN is p-stochastic relative to P if for

any selection function r ∈ PT such that ξr ∈ XN, we have for all x ∈ X,

lim
T→∞

T−1∑
t=0

cx(ξ
r
t )

T
= px,

where cx(y) = 1 if x = y, and cx(y) = 0 otherwise.
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We now show that, if p is a mixed equilibrium strategy in the stage game, then any

p-stochastic sequence is an equilibrium strategy in the collective game satisfying mutual

complexity.

Theorem 3.4. Let g be a finite zero-sum game. Suppose that P1, P2 are mutually

complex. Then, for any equilibrium strategy p∗ ∈ ∆(X) in g, if a ∈ X is p∗-stochastic

relative to P2, then it is an equilibrium strategy of player 1 in HG(g,P1,P2).

Moreover, for such p∗, there is an equilibrium strategy a that is a p∗-stochastic se-

quence, but not a µp∗-random sequence.

This theorem holds as well for V G if we replace the strategies in HG mentioned

above with the corresponding history independent strategies in V G. In fact, for HG, we

can replace stochasticity with a weaker requirement, in which we consider only selection

functions that are history independent, i.e., functions with the form r : N→ {0, 1}. This

theorem shows that, in equilibrium, the behavior does not have to appear as random as

an i.i.d. process. Moreover, Ambos-Spies et al. [1] shows that each selection function

(together with a deviation from the specified frequency) corresponds to a test.9 This

theorem shows that only those tests are relevant to the equilibrium hypothesis in our

framework.

Although stochasticity is formally defined, we are not able to explicitly construct the

tests corresponding to this criterion. However, in matching pennies, some more informa-

tion is available, as the following example shows.

Example 3.1. Consider the matching pennies game g with X = Y = {H,T}. Suppose

that P1,P2 satisfy mutual complexity. By Theorem 3.4, any (1
2
, 1

2
)-stochastic sequence

9The result in Ambos-Spies [1] shows that a sequence is stochastic if and only if there is no simple

computable martingales that succeeds over it (which means that the martingale can accumulates infinite

wealth by betting against the sequence). A martingale is simply a betting strategy, and it is simple if the

bet is a constant proportion to the wealth. It is well-known that each martingale corresponds to a test

and thus to a probability law, and so a sequence is random if and only if no approximately computable

martingale succeeds over it (see Downey et al. [9] for a precise definition). Thus, simple martingales

correspond to a proper subset of tests.
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relative to P2 is an equilibrium strategy of player 1 in HG(g,P1,P2). However, by Ville

[32], there is such a stochastic sequence ξ such that for all T ∈ N,

|{t : 0 ≤ t ≤ T − 1, ξt = H}|
T

≥ 1

2
.

This shows that ξ violates the Law of the Iterated Logarithm.

Such an equilibrium strategy (that violates the Law of the Iterated Logarithm in a

similar manner) exists for any horizontal games with 2× 2 stage games. Such a sequence

is certainly not deemed to be random in any sense. The lack of randomness has been used

to reject the equilibrium hypothesis in the empirical literature (see, for example, Brown

and Rosenthal [4] and Walker and Wooders [36]), but we show that, in our framework,

the equilibrium behavior does not have to be so unpredictable.

4 Discussions

In this section, we discuss the implications of our results to the literature, and then

consider alternative formulations. In particular, we discuss the possibility of extending

our framework to finitely repeated games and the difficulties of this extension.

4.1 Mixed strategies and complexity

Our results give a correspondence between the complexity of players’ computability con-

straints and the unpredictability of equilibrium behavior. We find the necessary and suf-

ficient condition for equilibrium behavior to pass all idealized statistical tests (relative to

each other), which requires extremely high complexity in players’ computational powers.

This finding implies that the usual assumption that players are able to use mixed strate-

gies actually implies that they have enough complexity in their computational abilities

relative to one another and to the outside observer, which is a very strong assumption.
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4.2 Extensions to finitely repeated games

There are two strong assumptions in our framework—the game is infinitely repeated and

both players have Turing-computability. Although we find the relevant tests for equilib-

rium strategies in our framework, the applicability of these results to the real world is

limited by these assumptions. In particular, even in the usual formulation, this infinitely

repeated game with long-run average criterion does not have unique mixed strategy equi-

librium even if the stage game has a unique equilibrium. Nonetheless, we show that some

tests are not relevant because they do not correspond to profitable deviations, and hence,

even though they are failed by a sequence of plays, this sequence may still be optimal.

Notice that in the context of a repeated zero-sum game without pure strategy equilib-

rium, given a sequence of play of one player, the other player can only gain by selecting a

subsequence which has a frequency different form the equilibrium mixed strategy of the

stage game. This requirement is fully captured by the notion of stochasticity.

Conceptually, our framework does not depend on the infinite structures. In princi-

ple, we can put computability constraints on implementation of strategies in a finitely

repeated game, and consider conditions under which unpredictable behavior is an equi-

librium phenomenon. To this end, it is necessary to have both players unable to compute

some Turing-computable functions. However, such a project involves many theoretical

and technical difficulties. First, although the Kolmogorov complexity is well-defined for

finite objects, it is independent of machines only asymptotically. Thus, the measure of

complexity is machine-dependent and thus the choice of an appropriate model of compu-

tation becomes crucial to the results. In contrast, relative Turing-computability, which we

use in the paper, is invariant with different formulations of machines. Second, even though

in principle we can define randomness for finite sequences, there are not as many good

properties as infinite random sequences. Moreover, any such definition is also machine-

dependent.
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5 Proofs of the main theorems

In this section we give the proofs of the main theorems. In the appendix, we review

some extant results regarding Kolmogorov complexity and Martin-Löf randomness that

are necessary in the proofs. We begin with the proofs of the nonexistence results, and

then we present the proofs of the other theorems in the second subsection.

5.1 Proofs of the nonexistence results

Proof of Proposition 2.1: Suppose that (a∗, b∗) is an ε-equilibrium. Let

c = max
(x,y)∈X×Y

|h(x, y)|.

For each T ∈ N, consider the following strategy b′ such that for all σ ∈ X<N, b′(σ) = yζ|σ| ,

where ζ is defined as follows:

for t = 0, ζ0 = min{i : yi ∈ arg min
y∈Y

h(a∗(ε), y)}; (4)

for t = 1, ...., T, ζt = min{i : yi ∈ arg min
y∈Y

h(a∗(yζ [t]), y)};

for t > T + 1, ζt = 1.

Since ζt is constant for all t > T , ζ ∈ P2 and so b′ ∈ Y . We have

v(a∗, b′) ≤ (1− δ)
T∑
t=0

δtv1 + (1− δ)
∞∑

t=T+1

c = v1 + δT+1(c− v1).

Since (a∗, b∗) is an ε-equilibrium, it follows that

v(a∗, b∗) ≤ v(a∗, b′) + ε ≤ v1 + ε+ δT+1(c− v1).

Since this holds for all T , we have

v(a∗, b∗) ≤ lim
T→∞

v1 + ε+ δT+1(c− v1) = v1 + ε.

Similarly, we can show that

v(a∗, b∗) ≥ v2 − ε.

21



It then follows that, for any ε < v2−v1
2

,

v1 + ε < v2 − ε ≤ v(a∗, b∗) ≤ v1 + ε,

a contradiction. 2

Proof of Proposition 2.2: (a) We consider V G here, and the proof for HG is almost

identical. We first index the actions in Y as Y = {y1, ..., yn}. Since there is no pure

strategy equilibrium in g, it follows that

v1 = max
x∈X

min
y∈Y

h(x, y) < min
y∈Y

max
x∈X

h(x, y) = v2.

Suppose that, to the contrary, (a∗, b∗) is an equilibrium strategy profile in V G(g,P ,P).

Consider the strategy b′ such that for all σ ∈ X<N, b′(σ) = yζ|σ| , where ζ is defined as

follows:

t = 0, ζ0 = min{i : yi ∈ arg min
y∈Y

h(a∗(ε), y)}; (5)

t > 0, ζt = min{i : yi ∈ arg min
y∈Y

h(a∗(yζ [t]), y)},

where yζ [t] = (yζ0 , ..., yζt−1). ζ ∈ P because a∗ ∈ P and P is closed under composition

and primitive recursion. Thus, b′ ∈ Y . By construction, we have that

h(a∗(yζ [t]), ζt) ≤ max
x∈X

min
y∈Y

h(x, y) = v1.

Then,

u(a∗, b′) ≤ lim inf
T→∞

v1 = v1.

Since b∗ is a best response to a∗, it follows that

u(a∗, b∗) ≤ u(a∗, b′) ≤ v1.

Similarly, we can show that

u(a∗, b∗) ≥ v2.

But then

v2 > v1 ≥ u(a∗, b∗) ≥ v2,

a contradiction.
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(b) We first index the actions in X as X = {x1, ..., xm}. For any b ∈ Y , construct the

strategy a′ such that for all σ ∈ Y <N, a′(σ) = xζ|σ| , where ζ is defined as follows:

t = 0, ζ0 = min{i : xi ∈ arg max
x∈X

h(x, b(ε))}; (6)

t > 0, ζt = min{i : xi ∈ arg max
x∈X

h(x, b(xζ [t]))},

with xζ [t] = (xζ0 , ..., xζt−1). ζ ∈ P2 because b ∈ P2 and P2 is closed under composition

and primitive recursion. Thus, a′ ∈ X since P2 ⊂ P1. By construction, we have that for

all t ∈ N,

h(ζt, b(xζ [t])) ≥ min
y∈Y

max
x∈X

h(x, y) = v2.

Then, uh(a
′, b) ≥ lim infT→∞ v2 = v2. It follows that supa∈X uh(a, b) ≥ v2. Now, let

y∗ ∈ arg miny∈Y (maxx∈X h(x, y)). Let b ∈ P2 be such that b(τ) = y∗ for all τ ∈ X<N.

Then supa∈X uh(a, b) = v2. Thus, we have that minb∈Y infa∈X uh(a, b) = v2, and hence, the

value of V G(g,P1,P2) is v2. 2

5.2 Proofs of the existence and the unpredictable behavior re-

sults

In this section, we will begin with a theorem (Theorem 5.1) that shows that, if each player

has a stochastic sequence relative to his opponent’s computability constraint which has

an equilibrium frequency in the stage game, then these stochastic sequences constitute an

equilibrium in both HG and V G.

With this result, to show that Theorem 3.2 holds, it suffices to show that there are

µp-random sequences relative to P2 for any equilibrium strategy p ∈ ∆(X) of g for player

1. It is completely symmetric for player 2. Moreover, Theorem 3.1 is a corollary of that

theorem.

To prove Theorem 3.4, we consider a sequence of probability distributions p = {pt}∞t=0

that converges to an equilibrium strategy p ∈ ∆(X) in g. Then, by Theorem 6.6, which

can be found in the appendix, any sequence that is µp-random relative to P2 (for all

σ ∈ X<N, µp(Nσ) =
∏|σ|−1

t=0 ptσt) is also p-stochastic relative to P2. By Theorem 5.1,
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this sequence is an equilibrium strategy. It then remains to show that this sequence is

not µp′-random for any p′ ∈ ∆(X). We use the result form Vovk [33] to prove this for

sequences p that are distant from p, which is an effective version of the result obtained

in Kakutani [12].

To prove Theorem 3.3, first we show that any binary random sequence with respect to

the uniform distribution is a complex sequence, and any random sequence that is generated

by an non-degenerate i.i.d. measure can be used to compute a binary random sequence

with respect to the uniform distribution. Of course, all these have to be relativized with

respect to a computability constraint. This theorem is closely related to the principle

that randomness is equivalent to extreme complexity, and interested readers may go to

the survey paper Downey et al. [9].

First we give a lemma concerning expected values. For stochastic sequences, the

expected values correspond to long-run averages.

Lemma 5.1. Let X be a finite set. Let P ∈ R and let p ∈ ∆(X) be a distribution.

Suppose that h : X → Q is a function over X. If ξ is a p-stochastic sequence relative to

P, then, for any selection function r in P such that ξr ∈ XN, we have

lim
T→∞

T−1∑
t=0

h(ξrt )

T
=

∑
x∈X

pxh(x).

Proof. Let r be a selection function in P such that ξr ∈ XN. Then, for any x ∈ X,

lim
T→∞

T−1∑
t=0

cx(ξ
r
t )

T
= px.

Therefore,

lim
T→∞

T−1∑
t=0

h(ξrt )

T
= lim

T→∞

∑
x∈X

T−1∑
t=0

cx(ξ
r
t )h(x)

T
=

∑
x∈X

pxh(x).

Now, we shall give a theorem that guarantees the existence of equilibrium in the

vertical and the horizontal games that has the same value as the stage game.
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Theorem 5.1. Let g be a finite zero-sum game and let (p∗, q∗) ∈ ∆(X) × ∆(Y ) be an

equilibrium of g. Suppose that there are ξ ∈ P1, ζ ∈ P2 such that ξ is p∗-stochastic

relative to P2 and ζ is q∗-stochastic relative to P1. Then, in V G(g,P1,P2), any strategy

a ∈ X that is a history independent strategy based on a p-stochastic relative P2 for some

equilibrium mixed strategy p ∈ ∆(X) is an equilibrium strategy.

Proof. Consider the game V G(g,P1,P2). First we show that

(∀a ∈ X )(lim sup
T→∞

T−1∑
t=0

h(θa,b
∗

t )

T
≤ h(p∗, q∗)), (7)

where b∗ is such that b∗(σ) = ζ|σ| for all σ ∈ X<N. Since (p∗, q∗) is the value of the game

g, it follows that h(x, q∗) ≤ h(p∗, q∗) for all x ∈ X.

Suppose that a ∈ X , and so a ∈ P1. For each x ∈ X, let rx : Y <N → {0, 1} be the

selection function such that rx(σ) = 1 if a(σ) = x, and rx(σ) = 0 otherwise. Define (see

equation (3))

Lx(T ) = |{t ∈ N : 0 ≤ t ≤ T − 1, rx(ζ[t]) = 1}| and ζx = ζr
x

.

It is easy to see that rx is in P1 since a is. Let

E1 = {x ∈ X : lim
T→∞

Lx(T ) =∞} and E2 = {x ∈ X : lim
T→∞

Lx(T ) <∞}.

For each x ∈ E2, let Bx = limT→∞ Lx(T ) and let Cx =
∑Bx

t=0 h(x, ζxt ). Then, for any

x ∈ E1, by Lemma 5.1,

lim
T→∞

T−1∑
t=0

h(x, ζxt )

T
= h(x, q∗) ≤ h(p∗, q∗).

We claim that for any ε > 0, there is some T ′ such that T > T ′ implies that

T−1∑
t=0

h(a(ζ[t]), ζt)

T
≤ h(p∗, q∗) + ε. (8)

Fix some ε > 0. Let T1 be so large that T > T1 implies that, for all x ∈ E1,

T−1∑
t=0

h(x, ζxt )

T
≤ h(p∗, q∗) +

ε

|X|
, (9)
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and, for all x ∈ E2,

Cx
T

<
ε

|X|
. (10)

Let T ′ be so large that, for all x ∈ E1, Lx(T
′) > T1. If T > T ′, then

T−1∑
t=0

h(a(ζ[t]), ζt)

T
=

∑
x∈E1

Lx(T )

T

Lx(T )−1∑
t=0

h(x, ζxt )

Lx(T )
+

∑
x∈E2

Lx(T )−1∑
t=0

h(x, ζxt )

T

≤
∑
i∈E1

Lx(T )

T
(h(p∗, q∗) +

ε

|X|
) +

∑
x∈E2

ε

|X|
≤ h(p∗, q∗) + ε. (11)

Notice that Lx is weakly increasing, and Lx(T ) ≤ T for all T . Thus, T > T ′ implies that

Lx(T ) ≥ Lx(T
′) > T1, and so T > T1.

This proves the inequality (8), and it in turn implies that, for any ε > 0, there is some

T such that

αT = sup
T ′>T

T ′−1∑
t=0

h(a(η[t]), ηt)

T ′
≤ h(p∗, q∗) + ε.

Now, the sequence {αT}∞T=0 is a decreasing sequence, and the above inequality shows that

for any ε > 0, limT→∞ αT ≤ h(p∗, q∗) + ε. Thus, we have limT→∞ αT ≤ h(p∗, q∗). This

proves (7).

Now, (7) implies that

(∀a ∈ X )(lim inf
T→∞

T−1∑
t=0

h(θa,b
∗

t )

T
≤ h(p∗, q∗)). (12)

Similarly, we can show that

(∀b ∈ Y)(lim sup
T→∞

T−1∑
t=0

−h(θa
∗,b
t )

T
≤ −h(p∗, q∗)), (13)

where a∗ is such that a∗(σ) = ξ|σ| for all σ ∈ Y <N. This implies that

(∀b ∈ Y)(lim inf
T→∞

T−1∑
t=0

h(θa
∗,b
t )

T
≥ h(p∗, q∗)). (14)

By (12), we have for all a ∈ X , uh(a, b
∗) ≤ h(p∗, q∗). By (14), we have for all b ∈ Y ,

uh(a
∗, b) ≥ h(p∗, q∗). Therefore, we have

uh(a
∗, b∗) ≤ h(p∗, q∗) ≤ uh(a

∗, b∗).

Therefore, (a∗, b∗) is an equilibrium.
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In this theorem, we have weaker conditions than that in Theorem 3.2, but we obtain

weaker results as well. In Theorem 3.2, for any equilibrium mixed strategy p ∈ ∆(X),

there is a corresponding equilibrium strategy a that is µp-random relative to P2 in HG.

In Theorem 5.1, however, we only shows that if there are stochastic sequences relative to

each other’s computability constraints, then these sequences are equilibrium strategies.

Now we are ready to give proofs of the theorems in section 3. Notice that Theorem 3.1 is

a direct implication of Theorem 3.2.

Proof of Theorem 3.2: (a) Consider the game V G(g,P1,P2). Suppose that (p, q) ∈

∆(X)×∆(Y ) is an equilibrium of g. By Theorem 6.2, there is a sequence ζ1 ∈ XN in P1

that is µp-random relative to P2, and there is a sequence ζ2 ∈ Y N in P2 that is µq-random

relative to P1. Define a as a(σ) = ζ1
|σ| for all σ ∈ Y <N and define b ∈ X as b(σ) = ζ2

|σ|

for all σ ∈ X<N. By Theorem 6.6, ζ1 is a p-stochastic random sequence relative to P2

and ζ2 is a p-stochastic random sequence relative to P1, and, hence, by Theorem 5.1,

a is an equilibrium strategy for player 1 and b is an equilibrium strategy for player 2.

By Theorem 6.6, any µp-random sequence relative to P2 is also a p-stochastic sequence

relative to P2. The result then follows directly from Theorem 5.1.

(b) By Theorem 6.3, ζ1 ⊗ ζ2 is µp⊗q-random. Thus, the outcome θa,b is a µp⊗q-random

sequence. 2

Proof of Theorem 3.3: Let p ∈ ∆(X). Since p is not degenerate, there are x1 6= x2 ∈ X

such that px1 > 0 and px2 > 0. Let ξ be a strategy for player 1 in HG that is µp-random

relative to P2, and let ξ′ be a strategy for player 2 in HG that is µq-random relative to

P1. Construct a new sequence ζ ∈ (X ×X)N as follows: ζt = (ξ2t, ξ2t+1) for all t ∈ N. It

is easy to check that ζ is µp⊗p-random. Define θ : N→ N as follows:

(a) θ(0) = min{t : ζt = (x1, x2) ∨ ζt = (x2, x1)};

(b) for t > 0, θ(t) = min{t′ : t′ > θ(t− 1) ∧ (ζt′ = (x1, x2) ∨ ζt′ = (x2, x1))}.

θ is total since ζ is µp⊗p-random and px1px2 > 0. Define ξ1 as ξ1
t = 0 if ζθ(t) = (x1, x2)

and ξ1
t = 1 if ζθ(t) = (x2, x1) for all t ∈ N. By Theorem 6.4, it is easy to see that ξ1 is

µ( 1
2
, 1
2

)-random.

27



Clearly, ξ1 ∈ P1, and so by Theorem 6.3, ξ′ is µq-random relative to ξ1, and, hence, by

Theorem 6.3 again, ξ1 is µ( 1
2
, 1
2

)-random relative to P2. By Theorem 6.1, ξ1 is a complex

sequence relative to P2. The existence of ξ2 is completely symmetric. 2

Proof of Theorem 3.4: Let p ∈ ∆(X) be an equilibrium strategy for player 1 in g.

Since g has no pure strategy equilibrium, there are x1, x2 ∈ X such that px1 > 0 and

px2 > 0. Let ε =
min{px1 ,px2}

3
. For any number t, let x

√
ty be the largest integer less than

or equal to
√
t. Construct the sequence p = (p0, p1, ...) as follows:

(a) ptx = px if x 6= x1 and x1 6= x2;

(b) ptx1
= px1 if x

√
ty ≤ 1

ε
and ptx1

= px1 − 1
x
√
ty

otherwise;

(c) ptx2
= px2 if x

√
ty ≤ 1

ε
and ptx2

= px2 + 1
x
√
ty

otherwise.

By construction, ptx = 0 if and only if px = 0, and limt→∞ p
t = p. Clearly, p is

computable. By Theorem 6.2, there is a µp-random sequence ξ relative to P2 in P1.

Now, let X0 = {x ∈ X : px > 0}, then the sequence ξ is µp-random can be regarded as a

sequence in XN
0 . Therefore, Theorem 6.6 is applicable and so ξ is p-stochastic. Thus, by

Theorem 5.1, ξ is an equilibrium strategy for player 1 in HG.

Moreover, we have that

∞∑
t=0

∑
x∈X

(
√
ptx −

√
px)

2 ≥
∞∑
t=T0

(
1

4x
√
ty2

) ≥
∞∑
t=T0

1

4t
=∞,

where T0 is the smallest number such that x
√
T0y ≥ 1

ε
. By Theorem 3 in Vovk [33], ξ is

not µp-random. Since ξ is p-stochastic, it cannot be µp′-random for any p′ ∈ ∆(X) other

than p either. 2

6 Appendix

6.1 Recursive functions

In this section we introduce C(ξ), the set of functions computable in ξ, for any ξ ∈ {0, 1}N.
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Definition 6.1. Let ξ ∈ {0, 1}N, which can be identified as a total function in F . Define

C(ξ) to be the minimal class of functions in F that satisfies the following conditions:

(a) C(ξ) contains functions ξ, Z, S, and Pki for all k, i > 0.

(b) C(ξ) is closed under composition, primitive recursion, and minimization.

The formal definitions of operations in (b) can be found in Pippenger [28]. If f ∈ C(ξ),

we say that f is ξ-computable. We also say that f is computable if f ∈ P∗. For any finite

set X, we can also consider the space XN, which is called the Cantor space. Any element

in XN is called a Turing oracle. In the same manner, we can also consider functions

that are ξ-computable for any ξ ∈ XN. For any computability constraint P , there is an

oracle ξ such that P is the set of functions that can be computed by a Turing machine

with oracle ξ. For a detailed discussion and proofs, please see Pippenger [28], chapter 4.

For any such a machine, we can give it a Gödel number, and we use ϕ
(k),ξ
e to denote the

function that is computed by the machine with Gödel number e and with oracle ξ, and

the index k indicates that we put k numbers as input in the computation. We shall use

this enumeration of functions to analyze the tests defined for randomness in section 3.

Consider a sequence {Vt}∞t=0 of subsets of XN. Suppose there is a total function

f : N→ N×X<N in C(ξ) such that for all t ∈ N and for all ζ ∈ XN,

ζ ∈ Vt ⇔ (∃n)(f(n) = (t, σ) ∧ σ = ζ[|σ|]). (15)

Then, we can find a total function h ∈ P∗ such that10

ζ ∈ Vt ⇔ ϕ
(1),ξ⊕ζ
h(t) (0) ↓, (16)

where for any partial function f , f(x1, ..., xk) ↓ holds iff f(x1, ..., xk) 6= ⊥.

In the following, we shall also consider functionals Ψ : XN×N2 → N. Such a functional

Ψ is ξ-computable if there is a number e such that for all ζ and for all x, y,

Ψ(ζ, x, y) ' ϕ(2),ξ⊕ζ
e (x, y).

10This follows directly from the Parametrization Theorem for relative computability. Please see Downey

et al. [9] for a more detailed discussion.
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It can also be shown that, for any sequence {Vt}∞t=0, there is some f ∈ C(ξ) such that

(15) holds if and only if there is a computable functional such that

ζ ∈ Vt ⇔ (∃s)(Ψ(ξ, t, s) = 0). (17)

If there is such a ξ-computable that the above relation holds, then we say that {Vt} is of

Σ0,ξ
1 . In case that Ψ is computable, we say that {Vt} is of Σ0

1.

6.2 Effective randomness

In this section we review some results from effective randomness. We include this section

mainly for self-containment. We will not give all the proofs, but will refer the readers to

the survey paper Downey et al. [9].

6.2.1 Transformations

There is a close connection between complex sequences and random sequences: any com-

plex sequences is random with respect to the uniform distribution. The following theorem

is well-known in this literature. The proof of this theorem with P = P∗ can be found in

Downey et al. [9], and all the arguments there can be relativized and the proof is general

enough to cover the general case.

Theorem 6.1. Let P ∈ R. Then, ξ ∈ {0, 1}N is a complex sequence relative to P if and

only if ξ is a λ-random sequence relative to P, where λ(Nσ) = 2−|σ| for all σ ∈ {0, 1}<N.

Our first task is to show that if P1 includes a complex sequence relative to P2, then

it also includes a µp-random sequence relative to P2. As the following theorem shows,

in fact, a slightly stronger result holds. The proof for the case |X| = 2 can be found in

Zvonkin and Levin [37]. We follow a similar logic.

Theorem 6.2. Let P ∈ R. Let X be a finite set. Suppose that ξ ∈ {0, 1}N is a complex

sequence relative to P. Let p = {pt}∞t=0 be a sequence over ∆(X) that is computable, i.e.,

is in P∗. Then, there is a µp-sequence ζ ∈ XN relative to P belonging to C(ξ).
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Proof. First we claim that there is a λX-random sequence ξ′ ∈ XN relative to P that is

in C(ξ), where λX(Nσ) = |X|−|σ| for all σ ∈ X<N. For a proof, see Calude [6], Theorem

7.18.

There is a natural mapping Γ between XN and [0, 1]:

Γ(ζ) =
∞∑
t=0

ι(ζt)
1

nt+1
,

where X = {x1, ..., xn} and ι(x) = i−1 if and only if x = xi. Γ is onto but not one-to-one.

However, the set {ζ ∈ Xω : Γ(ζ) = Γ(ζ ′) for some ζ ′ 6= ζ} is countable, since for any such

ζ, Γ(ζ) is a rational number.

If Φ : XN → XN is a (Borel) measurable function, then λXΦ defined as λXΦ (A) =

λX(Φ−1(A)) is also a measure over XN. We will construct a computable mapping Φ such

that Φ maps a λX-random sequence relative to P to a µp-random sequence relative to P .

We will define Φ via a monotone function φ : S → T , where S is a and T are trees

over X (a tree is a subset of X<N that is closed under initial segments). Such a function

is monotone if σ ⊂ τ implies φ(σ) ⊂ φ(τ). If S is a tree, [S] = {ζ ∈ XN : (∀t)ζ[t] ∈ S}.

Given such a function, let

D(φ) = {ζ ∈ [S] : lim
t→∞

φ(ζ[t]) =∞}.

Then, define Φ : D(φ) → XN by Φ(ζ) =
⋃∞
t=0 φ(ζ[t]). We say that Φ is obtained from φ

via a monotone function.

We claim that there exists a computable monotone function φ such that µp = λXΦ and

λX(D(φ)) = 1, where Φ : D(φ)→ XN is obtained from φ via a monotone function.

Extend Γ to X<N as Γ(σ) =
∑|σ|−1

t=0
ι(σt)
nt+1 . Define g : [0, 1]→ [0, 1] as

g(r) = µp({ζ : Γ(ζ) ≤ r}),

i.e., the distribution function of µp over [0, 1]. Define h = g−1. Therefore, r ≤ g(s) if and

only if h(r) ≤ s. Then,

µp(Γ−1([0, r])) = g(r) = λX(Γ−1([0, g(r)])) = λX(Γ−1(h−1([0, r]))).

31



Define g0(ε) = 0 and g1(ε) = 1, and, for τ ∈ X<N − {ε}, define

g0(τ) =
∑
{µp(Nσ) : Γ(σ) ≤ Γ(τ)− 1

n|τ |
, |σ| = |τ |},

where
∑
∅ = 0, and

g1(τ) =
∑
{µp(Nσ) : Γ(σ) ≤ Γ(τ), |σ| = |τ |}.

For any ζ ∈ XN,

Γ(ζ) ≤ Γ(τ)⇔ Γ(ζ[|τ |]) ≤ Γ(τ)− 1

n|τ |
∨ Γ(ζ) = Γ(τ),

and

Γ(ζ) ≤ Γ(τ) +
1

n|τ |
⇔ Γ(ζ[|τ |]) ≤ Γ(τ) ∨ Γ(ζ) = Γ(τ) +

1

n|τ |
.

Since µp has no atoms, we have that

g0(τ) = g(Γ(τ)) and g1(τ) = g(Γ(τ) +
1

n|τ |
).

Therefore, for each t > 0, the class of intervals

{[g0(τ), g1(τ)] : τ ∈ X<N, |τ | = t} (18)

forms a partition of [0, 1].

Construct φ as follows: Given a string σ ∈ XN, let

aσ = Γ(σ) and bσ = Γ(σ) +
1

n|σ|
.

Let φ(σ) be the longest τ with |τ | ≤ |σ| such that [aσ, bσ] ⊂ [g0(τ), g1(τ)]. Now, for

any σ ∈ X<N, φ(σ) is well-defined, since the intervals in (18) forms a partition and

[g0(ε), g1(ε)] = [0, 1]. To see that φ is monotone, suppose that σ ⊂ σ′ and τ = φ(σ),

τ ′ = φ(σ′). It is easy to check that aσ ≤ aσ′ and bσ′ ≤ bσ. Now, if Γ(τ ′) ≥ Γ(τ) + 1
n|τ |

,

then

aσ′ ≥ g0(τ ′) = g(Γ(τ ′)) ≥ g(Γ(τ) +
1

n|τ |
) = g1(τ) ≥ bσ ≥ bσ′ ,

a contradiction. On the other hand, we have |τ ′| ≥ |τ |. If Γ(τ ′) < Γ(τ), then Γ(τ ′) ≤

Γ(τ)− 1
n|τ |

, and hence,

bσ ≤ bσ′ ≤ g1(τ ′) = g(Γ(τ ′) +
1

n|τ ′|
) ≤ g(Γ(τ)) = g0(τ) ≤ aσ,
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a contradiction. Thus, we have τ ⊂ τ ′.

Then we show that XN − {ζ ∈ XN : h(Γ(ζ)) = m
nt

for some m,n, t ∈ N} ⊆ D(φ).

Suppose that h(Γ(ζ)) 6= m
nt

for any m,n, t ∈ N. Let K be given. There exists some l ∈ N

such that h(Γ(ζ)) ∈ ( l
nK
, l+1
nK

). Let

ε = min{h(Γ(ζ))− l

nK
,
l + 1

nK
− h(Γ(ζ))}.

Since h is continuous, there is some T such that t ≥ T implies that

min{|h(bζ[t])− h(Γ(ζ))|, |h(Γ(ζ)− h(aζ[t])|} ≤
ε

2
and so [h(aζ[t]), h(bζ[t])] ⊆ (

l

nK
,
l + 1

nK
).

Thus, if t ≥ max{T,K}, then

[aζ[t], bζ[t]] ⊂ [g(
l

nK
), g(

l + 1

nK
)] = [g0(

l

nK
), g1(

l

nK
)],

and so |φ(ζ[t])| ≥ K. Therefore, λX(D(φ)) = 1.

Now, we claim that if ζ ∈ D(φ), then Γ(Φ(ζ)) = h(Γ(ζ)). Let ε be given, and let K

be so large that ε < 1
nK−1 . Since ζ ∈ D(φ), there exists T such that t ≥ T implies that

|φ(ζ[t])| ≥ K. Then, for all t ≥ T ,

h(Γ(ζ)) ∈ [h(aζ[t]), h(bζ[t])] ⊆ [aφ(ζ[t]), bφ(ζ[t])],

and so

h(Γ(ζ))− Γ(φ(ζ[t])) ≤ 1

nK
≤ ε.

Thus,

Γ(Φ(ζ)) = lim
t→∞

Γ(φ(ζ[t])) = h(Γ(ζ)).

Moreover, for any r ∈ [0, 1], there is a sequence ζ ∈ XN such that Γ(Φ(ζ)) = r, since h is

strictly increasing and is continuous. Also, we have that

Γ(Φ(ζ)) ≥ Γ(Φ(ζ ′))⇔ Γ(ζ) ≥ Γ(ζ ′).

Now, we show that λXΦ = µp by demonstrating that they share the same distribution

function:

λXΦ ({ζ : Γ(ζ) ≤ Γ(Φ(ζ∗))}) = λX({ζ : Γ(Φ(ζ)) ≤ Γ(Φ(ζ∗))})
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= λX({ζ : Γ(ζ) ≤ Γ(ζ∗)}) = Γ(ζ∗) = g(Γ(Φ(ζ∗))).

Notice that if Γ(ζ) = g(m
nt

) ∈ Q, then ζ is computable. Thus, ξ′ ∈ D(φ). Let

ζ ′ = Φ(ξ′). Now we show that ζ ′ is µp-random relative to P . Suppose not. Then there

is a µp-test {Vt}∞t=0 relative to P such that ζ ′ ∈
⋂∞
t=0 Vt. Let Ut = Φ−1(Vt). Then,

for all t, λX(Ut) = µp(Vt) ≤ 1
2t

. Moreover, since φ is computable, {Ut}∞t=0 is a λX-test

relative to P . But ξ′ ∈
⋂∞
t=0 Ut since ζ ′ ∈

⋂∞
t=0 Vt, a contradiction. Since φ is computable,

ζ ′ ∈ C(ξ′) ⊂ C(ξ).

6.2.2 Independence

Next, we shall consider independence. This concept is crucial to prove Theorem 3.2, part

(1), because in that part, we claim that not only equilibrium strategy for each player is

random, but their joint behavior is random as well. First we give some notations. For

any distribution (p, q) ∈ ∆(X) × ∆(Y ), we define p ⊗ q to be the product measure of

them over X × Y . For any two sequences ξ ∈ XN and ζ ∈ Y N, we define ξ ⊗ ζ as

(ξ ⊗ ζ)t = (ξt, ζt) for all t ∈ N. In the axiomatic probability theory, independence of

random variables is defined in terms of product measures: a random variable on X and a

random variable on Y are independent in the standard theory if their joint distribution is a

product distribution over X×Y . Similar to Definition 3.2, we can define µp⊗q-randomness

(relative to P∗) in (X × Y )N, where for all x ∈ X, y ∈ Y , p⊗ q(x,y) = pxqy. The following

theorem, essentially due to van Lambalgen [15], characterizes independence in terms of

randomness with respect to product measures, which establishes a connection between

our definition of independence and the measure theoretical definition. The proof for the

case |X| = |Y | = 2 and p = (1
2
, 1

2
) = q can be found in Downey et al. [9], Theorem 12.12,

12.13.

Theorem 6.3. Consider two finite sets X and Y . Suppose ξ ∈ XN and ζ ∈ Y N, and

suppose p ∈ ∆(X) and q ∈ ∆(Y ).

(a) If ξ ⊗ ζ is µp⊗q-random, then ξ is µp-random relative to C(ζ).

(b) If ξ is µp-random relative to C(ζ) and ζ is µq-random, then ξ ⊗ ζ is µp⊗q-random.
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Proof. (a) Suppose that ξ is not p-random relative to C(ζ). Then ξ ∈
⋂∞
t=0 U

ζ
t for some

uniformly µp-test {U ζ
t }∞t=0 relative to C(ζ) in XN such that µp(U

ζ
t ) ≤ 1

2t
. Since it is a test,

by (16), let h be a total computable function such that ξ′ ∈ U ζ
t if and only if ϕ

(1),ζ⊕ξ′
h(t) (0) ↓.

For any ζ ′ ∈ Y N, define

U ζ′

t,s = {ξ′ ∈ XN : ϕ
(1),(ζ′⊕ξ′)[2s]
h(t) (0) ↓}, U ζ′

t [
1

2t
] =

⋃
µp(Uρt,s)≤

1
2t

U ζ′

t,s. (19)

Let

Vt = {ξ′ ⊗ ζ ′ : ξ′ ∈ XN, ζ ′ ∈ Y N, ξ′ ∈ U ζ′

t [
1

2t
]}. (20)

We claim that {Vt}∞t=0 is a µp⊗q-test.

Now, by (19) and (20), ξ′ ⊗ ζ ′ ∈ Vt if and only if (∃s)(µp(U ζ′

t,s) ≤ 1
2t
∧ ξ′ ∈ U ζ′

t,s) if and

only if (∃s)(µp(U ζ′

t,s) ≤ 1
2t
∧ϕ(1),ζ′⊕ξ′[2s]

h(t) (0) ↓). We claim that the predicates ϕ
(1),ζ′⊕ξ′[2s]
h(t) (0) ↓

and µp(U
ζ′

t,s) ≤ 1
2t

are computable.

(a.1) The functional (ξ′⊗ ζ ′, s) 7→ ζ ′⊕ ξ′[2s] is computable in (X×Y )N×N, and so is the

predicate ϕ
(1),σ
h(t) (0) ↓ in N2 (in t and σ). Thus, by generalized composition, the predicate

ϕ
(1),ζ′⊕ξ′[2s]
h(t) (0) ↓ is computable in (X × Y )N × N2 (in ξ′ ⊗ ζ ′, t, and s).

(a.2) It is easy to check that

U ζ′

t,s =
⋃
{Nσ : ϕ

(1),(ζ′[s]⊕σ)
h(t) (0) ↓, |σ| = s},

and

µp(U
ζ′

t,s) =
∑
σ

{
∏

j=0,...,s−1

pσj : ϕ
(1),(ζ′[s]⊕σ)
h(t) (0) ↓ ∧|σ| = s}.

The functional (ξ′ ⊗ ζ ′, s) 7→ ζ ′[s] is computable in (X × Y )N ×N and so is the predicate∑
σ{

∏
j=0,...,s−1 pσj : ϕ

(1),(σ′⊕σ)
h(t) (0) ↓ ∧|σ| = s} in N3 (in σ′, t, and s). By generalized

composition, the functional (ξ′ ⊗ ζ ′, s) 7→ µp(U
ζ′

t,s) is computable, and so the predicate

µp(U
ζ′

t,s) ≤ 1
2t

is computable.

Thus, there is a f in P∗ such that (15) holds. Moreover,

µp⊗q(Vt) =
∫

(X×Y )N χVt(ξ
′ ⊗ ζ ′)dµp⊗q(ξ′ ⊗ ζ ′)

=
∫
Y N

∫
XN χUζ′t [ 1

2t
]
(ξ′)dµp(ξ

′)dµq(ζ
′)

=
∫
Y N µp(U

ζ′

t [ 1
2t

])dµq(ζ
′) ≤ 1

2t
.
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{Vt}∞t=0 is a µp⊗q-test. But ξ ⊗ ζ ∈ Vt for all t ∈ N, and so ξ ⊗ ζ is not µp⊗q-random.

(b) Suppose that ξ ⊗ ζ ∈ (X × Y )N is not µp⊗q-random. Then, ξ ⊗ ζ ∈
⋂∞
t=0 Ut for some

µp⊗q-test {Ut} in (X×Y )N such that µp⊗q(Ut) ≤ 1
4t

. Suppose that ξ′⊗ ζ ′ ∈ Ut if and only

if ϕ
(1),ξ′⊗ζ′
h(t) (0) ↓, where h is a total and computable function. Let ζ ′ ∈ Y N, and define

V ζ′

t = {ξ′ ∈ XN : ξ′ ⊗ ζ ′ ∈ Ut}, Wt = {ζ ′ ∈ Y N : µp(V
ζ′

t ) >
1

2t
}. (21)

We claim that, for each ζ ′ ∈ Y N, there is a ζ ′-computable functional such that (17) holds

for {V ζ′

t }∞t=0.

(b.1) Now,

ξ′ ∈ V ζ′

t ⇔ ϕ
(1),ξ′⊗ζ′
h(t) (0) ↓ ⇔ (∃s)ϕ(1),(ξ′⊗ζ′)[s]

h(t) (0) ↓ .

Since the functional (ξ′, s) 7→ (ξ′⊗ ζ ′)[s] is ζ ′-computable, and the predicate ϕ
(1),σ
h(t) (0) ↓ is

computable in (t, σ), the claim is proved.

We claim that there is a computable functional that satisfies (17) for {Wt} and

µq(Wt) ≤ 1
2t

.

(b.2) ζ ′ ∈ Wt if and only if µp(V
ζ′

t ) > 1
2t

. But if we define

V ζ′

t,s =
⋃
{Nσ ⊆ XN : σ ∈ Xs ∧ ϕ(1),σ⊗(ζ′[s])

h(t) (0) ↓},

then V ζ′

t,s ⊆ V ζ′

t,s+1 for all s ∈ N and V ζ′

t =
⋃∞
s=0 V

ζ′

t,s. Thus, µp(V
ζ′

t ) > 1
2t

if and only if

(∃s)(µp(V ζ′

t,s) >
1
2t

). It is easy to check that

µp(V
ζ′

t,s) =
∑
σ

{
∏

j=0,...,s−1

pσj : ϕ
(1),σ⊗(ζ′[s])
h(t) (0) ↓ ∧σ ∈ Xs},

which is a computable functional of (ζ ′, s, t), and so {Wt}∞t=0 is uniformly Σ0
1. Now,

µp⊗q(Ut) =
∫

(X×Y )N χUt(ξ
′ ⊗ ζ ′)dµp⊗q(ξ′ ⊗ ζ ′)

=
∫

(X×Y )N χV ζ′t
(ξ′)dµp⊗q(ξ

′ ⊗ ζ ′) =
∫
Y N µp(V

ζ′

t )dµq(ζ
′)

>
∫
Y N

1
2t
χWt(ζ

′)dµq(ζ
′) = 1

2t
µq(Wt).

Thus,

µq(Wt) < 2tµp⊗q(Ut) ≤
1

2t
.
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Since ζ is µq-random, by Solovay’s Theorem (see Downey et al. Definition 3.2), there

is some L ∈ N such that ζ /∈ Wt for all t ≥ L. Thus, by (21), for all t ≥ L, µp(V
ζ
t ) ≤ 1

2t
.

By (b.1), {V ζ
t }∞t=0 is a µp-test relative to C(ζ). But ξ ∈ V ζ

t for all t, and so ξ is not

p-random relative to C(ζ).

6.2.3 Decomposition

Now we shall consider conditional probability and decomposition. We use the result here

only for Theorem 3.3. Let ξ be a sequence in XN. For any A ⊂ X, we define νξ,A ∈ {0, 1}N

to be the sequence such that νξ,At = 1 if ξt ∈ A and νξ,At = 0 otherwise. νξ,A records the

occurrences of the event A.

For any ν ∈ {0, 1}N, we define θν : N→ N as follows:

θν(0) is the least t′ such that νt′ = 1; (22)

θν(t+ 1) is the least t′ such that νt′ = 1 and t′ > θν(t). (23)

θν is then a partial ν-computable function. We can extend this for strings τ in {0, 1}N as

well:

θτ (0) is the least t′ such that τt′ = 1;

θτ (t+ 1) is the least t′ such that τt′ = 1 and t′ > θτ (t).

In this case, θτ is always a partial function.

Applying the construction to νξ,A, θν
ξ,A

is then ξ-computable and is total if elements

in A appear in ξ infinitely often. Define ξAt = ξ
θν
ξ,A

(t)
, t ∈ N. ξA ∈ AN if and only if θν

ξ,A

is total. The sequence ξA records the happenings in ξ given the event A. Intuitively, ξA

should be a random sequence as well, and it should follow the conditional distribution. If

A = X−{x} for some x ∈ X, then νξ,A is also denoted as νξ,−x and ξA is denoted as ξ−x.

On the other hand, let ξ, ζ ∈ XN and let ν ∈ {0, 1}N. We shall define an inverse

operator that is intended to model composite random processes. We shall now define the

shuffle of ξ and ζ using ν, denoted by ξ �ν ζ, as follows: for all t ∈ N,

(ξ �ν ζ)t = (1− νt)ξ∑t−1
s=0(1−νs) + νtζ∑t−1

s=0 νs
. (24)
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The two sequences ξ and ζ can be thought of as two independent processes, and the shuffle

of them using ν is the composite process taking ν as a random device. Intuitively, the

shuffle is expected to be random and follow the distribution that is a convex combination

of the two processes. Notice that for all t ∈ N such that θν(t) is defined, (ξ�ν ζ)θν(t) = ζt.

Similarly, for all t ∈ N such that θν(t) is defined, (ξ �ν ζ)θ1−ν(t) = ξt.

Likewise, for strings σ, σ′ ∈ X<N with and τ ∈ {0, 1}N such that |σ| = |τ | = |σ′| = s,

σ �τ σ′ ∈ Xs is defined as the follows: for all t = 0, .., s− 1,

(σ �τ σ′)t = (1− τt)σ∑t−1
u=0(1−τu) + τtσ

′∑t−1
u=0 τu

.

For any x ∈ X, let x denote the sequence in XN such that xt = x for all t ∈ N. Then, it

is easy to check that x�νξ,−x ξ−x = ξ for any ξ ∈ XN.

Now we shall show that all these intuitions are true. The way we prove this is to

establish some measure theoretical lemmas, and then apply them to construct tests.

Lemma 6.1. Consider any finite set X with |X| ≥ 2.

(a) Let x ∈ X. Consider the mapping T : (X − {x})N × {0, 1}N → XN such that

T (ξ, ν) =x�ν ξ, and consider the probability distribution p ∈ ∆(X) such that px < 1. For

any measurable set V ⊆ XN, we have

µp(V ) = µp−x⊗(px,1−px)(T
−1(V )), (25)

where p−x ∈ ∆(X − {x}) is defined as p−xx′ =
px′

1−px for all x′ 6= x.

(b) Let p, q ∈ ∆(X) and let α ∈ [0, 1]∩Q. Let T : XN×XN×{0, 1}N → XN be such that

T (ξ, ζ, ν) = ξ �ν ζ. For any measurable set V ⊆ XN,

µp⊗q⊗(α,1−α)(T
−1(V )) = µαp+(1−α)q(V ). (26)

Proof. (a) Since µp is regular, it suffices to show that (25) holds for all open sets V in XN.

First we remark two facts. For any σ, σ′ ∈ X<N, T−1(Nσ∩N ′σ) = T−1(Nσ)∩T−1(N ′σ). For

any collection G ⊆ X<N,
⋃
σ∈G T

−1(Nσ) = T−1(
⋃
σ∈GNσ). Now, any open set V ⊆ XN

can be written as V =
⋃
σ∈GNσ for some prefix-free set G ⊆ X<N, and so if

µp−x⊗(px,1−px)(T
−1(Nσ)) = µp(Nσ) (27)
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holds for all σ ∈ X<N, then

µp−x⊗(px,1−px)(T
−1(V )) =

∑
σ∈G

µp−x⊗(px,1−px)(T
−1(Nσ)) =

∑
σ∈G

µp(Nσ) = µp(V ),

for any such open set V .

Now we show that (27) holds for any σ ∈ X<N. It is easy to check that T−1(Nσ) =

Nσ′ ×Nτ ′ , where τ ′t = 0 if σt = x, τ ′t = 1 otherwise, and σ′t = σθτ (t) for t = 0, ..., |σ′| − 1,

where |σ′| = |{t : 0 ≤ t ≤ |σ| − 1 : σt 6= x}|.

Thus, µp−x⊗(px,1−px)(T
−1(Nσ))

= µp−x(Nσ′)× µ(px,1−px)(Nτ ′)

= p
|τ ′|−

∑|τ ′|−1
t=0 τ ′t

x (1− px)
∑|τ ′|−1
t=0 τ ′t( 1

1−px )|σ
′|∏|σ′|−1

t=0 pσ′t

= p
|τ ′|−

∑|τ ′|−1
t=0 τ ′t

x

∏|σ′|−1
t=0 pσ′t (|σ′| =

∑|τ ′|−1
t=0 τ ′t)

=
∏|σ|−1

t=0 pσt = µp(Nσ).

(b) As in (a), it suffices to show that (26) holds for all basic open sets. Let σ ∈ X<N.

(ξ, ζ, ν) ∈ T−1(Nσ) if and only if there are τ ∈ {0, 1}<N, σ1, σ2 ∈ X<N such that

(b.1) |τ | = |σ|;

(b.2) |σ1| = |{s : 0 ≤ s ≤ |τ | − 1, τs = 0}| and |σ2| = |{s : 0 ≤ s ≤ |τ | − 1, τs = 1}|;

(b.3) for all t = 0, ..., |σ1| − 1, σθ1−τ (t) = σ1
t , and for all t = 0, ..., |σ2| − 1, σθτ (t) = σ2

t ;

(b.4) σ1 ⊂ ξ, σ2 ⊂ ζ, and τ ⊂ ν.

Hence,

T−1(Nσ) =
⋃
{Nσ1 ×Nσ2 ×Nτ : τ, σ1, σ2satisfy (b.1-3) above}. (28)

Notice that for each τ ∈ {0, 1}N, there is a unique pair (σ1, σ2) that satisfy (b.1-3) above.

µp⊗q⊗(α,1−α)(T
−1(Nσ))

=
∑
|τ |=|σ|

∏|τ |−1
s=0 (αpσs)

1−τs((1− α)qσs)
τs

=
∏|σ|−1

s=0 (αpσs + (1− α)qσs) = µαp+(1−α)q(Nσ).
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The following theorem states that Martin-Löf randomness is closed under conditional

probability.

Theorem 6.4. Let A be a subset of X and let p ∈ ∆(X) be such that pA =def

∑
x∈A px >

0. Suppose that ξ ∈ XN is p-random. Then,

(a) νξ,A is (1− pA, pA)-random relative to ξA;

(b) ξA is pA-random relative to νξ,A, where pAx = px
pA

for all x ∈ A and pAx = 0 otherwise.

Proof. We first show that the theorem holds for A of the form X − {x}.

(a) (for A = X − {x}) Suppose that νξ,−x ∈
⋂∞
t=0 Ut, where {Ut}∞t=0 is a µ(px,1−px)-test

relative to ξ−x with µ(px,1−px)(Ut) ≤ 1
2t

. Let Ut = {ν ∈ {0, 1}N : ϕ
(1),ν⊕ξ−x
h(t) (0) ↓}, where

h is a total computable function. For each ζ ∈ (X − {x})N, define U ζ
t,s = {ν ∈ {0, 1}N :

ϕ
(1),(ν⊕ζ)[2s]
h(t) (0) ↓}. Let

U ζ
t [

1

2t
] =

⋃
µ(px,1−px)(U

ζ
t,s)≤

1
2t

U ζ
t,s.

For each σ ∈ (X − {x})<N, we define

Uσ
t = {ν ∈ {0, 1}N : ϕ

(1),ν[|σ|]⊕σ
h(t) (0) ↓}.

By construction, we have that νξ,−x ∈
⋂∞
t=0 U

ξ−x

t =
⋂∞
t=0 U

ξ−x

t [ 1
2t

].

For each t ∈ N, we define Vt ⊆ XN as follows: ξ′ ∈ Vt if and only if there is some s ∈ N

such that (notice that (ξ′)−x[s] is defined if and only if (∀j < s)(θν
ξ′,−x

(j) ↓))

(a1) (∀j < s)(θν
ξ′,−x

(j) ↓);

(a2) ϕ
(1),νξ

′,−x[s]⊕(ξ′)−x[s]
h(t) (0) ↓;

(a3) µ(px,1−px)(U
(ξ′)−x[s]
t ) ≤ 1

2t
.

We claim that {Vt}∞t=0 is is a µp-test with µp(Vt) ≤ 1
2t

.

For the first half of the claim, it suffices to check that all predicates in (a1-3) are of

Σ0
1.

(a1) The functional (ξ′, j) 7→ θν
ξ′,−x

(j) is computable, and so the predicate in (a1) is of

Σ0
1 in XN × N2.
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(a2) The functional (ξ′, s) 7→ (νξ
′,−x[s]⊕(ξ′)−x[s]) is computable (it is undefined if θν

ξ′,−x
(j)

is undefined for some j < s). Thus, the predicate in (a2) is of Σ0
1 in XN × N2.

(a3) The functional (ξ′, s, t) 7→ µ(px,1−px)(U
(ξ′)−x[s]
t ) is computable since

Uσ
t =

⋃
{Nτ : τ ∈ {0, 1}N, |τ | = |σ|, ϕ(1),τ⊕σ

h(t) (0) ↓}

and so

µ(px,1−px)(U
(ξ′)−x[s]
t ) =

∑
τ∈{0,1}<N

{
∏

j=0,...,s−1

p1−τj
x (1− px)τj : ϕ

(1),(τ⊕(ξ′)−x[s])
h(t) (0) ↓ ∧|τ | = s}.

Thus, the predicate ξ′ ∈ Vt is Σ0
1, and so {Vt}∞t=0 is uniformly Σ0

1.

Let Γ = {ξ′ ∈ XN : (∀t)(θνξ
′,−x

(t) ↓)}. Let Γs = {ξ′ ∈ XN : ξ′s 6= x}. Then

µp(Γs) = 1− px, and {Γs}∞s=0 is a sequence of independent events. Since px < 1,

∞∑
s=0

µp(Γs) =
∞∑
s=0

(1− px) =∞

and so by the second Borel-Cantelli lemma,

µp(Γ) = µp(
∞⋂
t=0

∞⋃
s=t

Γs) = 1.

For each t ∈ N, let V 1
t = Γ ∩ Vt and let V 0

t = (XN − Γ) ∩ Vt. So

µp(Vt) = µp(V
0
t ) + µp(V

1
t ) = µp(V

1
t ).

Moreover, ξ′ ∈ V 1
t if and only if

ξ′ ∈ Γ ∧ (∃s)(ϕ(1),νξ
′,−x[s]⊕(ξ′)−x[s]

h(s) (0) ↓ ∧µ(px,1−px)(U
(ξ′)−x[s]
t ) ≤ 1

2t
)

if and only if θν
ξ′,−x

is total and νξ
′,−x ∈ U (ξ′)−x

t [ 1
2t

]. Thus, if we define T to be such that

T (ζ, ν) = x�ν ζ, then, by Lemma 6.1 (a),

µp(V
1
t ) = µp−x⊗(px,1−px)(T

−1(V 1
t ))

≤
∫

(X−{x})N

∫
{0,1}N χUζt [ 1

2t
](ν)dµ(px,1−px)(ν)dµp−x(ζ)

≤
∫

(X−{x})N µ(px,1−px)(U
ζ
t [ 1

2t
])dµp−x(ζ) ≤ 1

2t
.
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Therefore, {Vt}∞t=0 is a µp-test, and we have ξ = x�νξ,−x ξ−x ∈ V 1
t ⊆ Vt for all t ∈ N.

Hence, ξ is not µp-random in XN.

(b) (for A = X − {x}) Suppose that ξ−x ∈
⋂∞
t=0 U

νξ,−x
t , where {Uνξ,−x

t }∞t=0 is a uniformly

Σ0,νξ,−x

1 sequence of sets in (X − {x})N with µp−x(U
νξ,−x
t ) ≤ 1

2t
. Let

Uνξ,−x

t = {ζ ∈ (X − {x})N : ϕ
(1),ζ⊕νξ,−x
h(t) (0) ↓},

where h is a total computable function. For each ν ∈ {0, 1}N, define

Uν
t,s = {ζ ∈ (X − {x})N : ϕ

(1),(ζ⊕ν)[2s]
h(t) (0) ↓}, U ν

t [
1

2t
] =

⋃
µp−x (Uνt,s)≤

1
2t

Uν
t,s.

For each τ ∈ {0, 1}<N, we define

U τ
t = {ζ ∈ (X − {x})N : ϕ

(1),ζ[|τ |]⊕τ
h(t) (0) ↓}.

For each t ∈ N, we define Vt ⊆ XN as follows: ξ′ ∈ Vt if and only if there is some s ∈ N

such that (notice that (ξ′)−x[s] is defined if and only if (∀j < s)(θν
ξ′,−x

(j) ↓))

(b1) (∀j < s)(θν
ξ′,−x

(j) ↓);

(b2) ϕ
(1),(ξ′)−x[s]⊕νξ′,−x[s]
h(t) (0) ↓;

(b3) µp−x(U
νξ
′,−x[s]

t ) ≤ 1
2t

.

Using similar arguments as in (a), we can show that {Vt}∞t=0 is uniformly Σ0
1 and

µp(Vt) ≤ 1
2t

.

Define the set Γ as in (a). We have seen that µp(Γ) = 1. For each t ∈ N, let V 1
t = Γ∩Vt

and let V 0
t = (XN − Γ) ∩ Vt. So µp(Vt) = µp(V

0
t ) + µp(V

1
t ) = µp(V

1
t ). Moreover, ξ′ ∈ V 1

t

if and only if

ξ′ ∈ Γ ∧ (∃s)(ϕ(1),(ξ′)−x[s]⊕νξ′,−x[s]
h(t) (0) ↓ ∧µp−x(Uνξ

′,−x[s]
t ) ≤ 1

2t
)

if and only if θν
ξ′,−x

is total and (ξ′)−x ∈ Uνξ
′,−x

t [ 1
2t

]. Thus, if we define T to be such that

T (ζ, ν) = x�ν ζ, then, by Lemma 6.1 (a),

µp(V
1
t ) = µp−x⊗(px,1−px)(T

−1(V 1
t ))
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≤
∫
{0,1}N

∫
(X−{x})N χUνt [ 1

2t
](ζ)dµp−x(ζ)dµ(px,1−px)(ν)

≤
∫
{0,1}N µp−x(U

ν
t [ 1

2t
])dµ(px,1−px)(ν) ≤ 1

2t
.

Therefore, {Vt}∞t=0 is an µp-test, and we have ξ = x �νξ,−x ξ−x ∈ Vt for all t ∈ N.

Hence, ξ is not µp-random.

Now we prove the theorem for general A. Let Y = A ∪ {y}, where y /∈ X. Define

Γ : XN → Y N as Γ(ξ′)t = ξ′t if ξ′t ∈ A and Γ(ξ′)t = y otherwise. Γ is clearly computable.

Let q ∈ ∆(Y ) be such that qx = px for all x ∈ A and qy = 1 − pA. We first show that

Γ(ξ) = ζ is µq-random. Suppose not. Then ζ ∈
⋂∞
t=0 Ut for some µq-test {Ut}∞t=0. Define

Vt ⊂ XN as Vt = {ξ′ ∈ XN : Γ(ξ′) ∈ Ut}. We claim that for any open set U ⊂ Y N,

µq(U) = µp(Γ
−1(U)). To see this, let U =

⋃
σ∈GNσ for some prefix-free G ⊂ Y <N. Then

Γ−1(U) =
⋃
σ∈G

⋃
τ∈Hσ Nτ , where

Hσ = {τ ∈ X<N : |σ| = |τ | and σt = τt if σt ∈ A, τt ∈ A otherwise}.

Notice that H =
⋂
σ∈GHσ is also prefix-free. For each σ ∈ G,

µq(Nσ) =

|σ|−1∏
t=0

qσt =
∏
σt∈A

pσt
∏
σt /∈A

(1− pA) =
∑
τ∈Hσ

|τ |−1∏
t=0

pτt =
∑
τ∈Hσ

µp(Nτ ),

and thus

µq(U) =
∑
σ∈G

µq(Nσ) =
∑
σ∈G

∑
τ∈Hσ

µp(Nτ ) = µp(Γ
−1(U)).

Since Vt = Γ−1(Ut), it follows that µp(Vt) = µq(Ut) ≤ 1
2t

for all t. Hence, {Vt}∞t=0 is a test.

ζ ∈
⋂∞
t=0 Ut implies that ξ ∈

⋂∞
t=0 Vt and so this is a contradiction to the fact that ξ is

µp-random.

By construction, νζ,−y = νξ,A and ξA = ζ−y. As we have shown, νζ,−y is µ(qy ,1−qy) =

µ(1−pA,pA)-random relative to ζ−y, and ζ−y is q−y = µpA-random.

6.2.4 Martingales and stochastic sequences

In this section we shall give a proof of Theorem 6.6. To this end, we need a new concept

called martingales. A martingale is a formalization of a betting strategy. As we shall
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see, it is easy to show stochasticity using martingales instead of tests, and there is a

characterization of Martin-Löf randomness using martingales. First we give the formal

definition.

Definition 6.2. Let X be a finite set and let p = (p0, p1, ...) be a computable se-

quence of distributions over X such that ptx > 0 for all x ∈ X and for all t ∈ N.

A function M : X<N → R+ is a martingale with respect to µp if for all σ ∈ X<N,

M(σ) =
∑

x∈X p
|σ|
x M(σ〈x〉).

Let P ∈ R. A martingale M is P-effective if there is a sequence of martingales {Mt}∞t=0

that satisfies the following properties:

(a) Mt(σ) ∈ Q+ for all t ∈ N and for all σ ∈ X<N;

(b) for each t ∈ N, Mt ∈ PT ;

(c) limt→∞Mt(σ) ↑M(σ) for all σ ∈ X<N.

In this case, we say that the sequence {Mt}∞t=0 supports M .

The following theorem characterizes randomness in terms of martingales. The proof

for the case P = P∗ can be found in Downey et al. [9], and the proof there can be easily

relativized to cover the general case.

Theorem 6.5. Let P ∈ R let p be a computable sequence such that ptx > 0 for all x ∈ X

and for all t ∈ N. A sequence ξ ∈ XN is µp-random relative to P if and only if for any

P-effective martingale M w.r.t. µp,

lim sup
T→∞

M(ξ[t]) <∞.

We shall then discuss selection function and stochastic sequences. Let X be a finite

set, and let r : X<N → {0, 1} be a selection function. Let Lξr(k) = |{0 < t < k + 1 :

r(ξ[t − 1]) = 1}| to be the number of elements selected by r in ξ[k]. We have defined ξr

before as the sequence obtained from ξ by applying r to it. With these notations, we now

show that any µp-random sequence with limt→∞ p
t = p is a p-stochastic sequence.
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Theorem 6.6. Let P ∈ R. Let u : X → N be a function. Suppose that ξ is µp-random

relative to P with ptx > 0 for all t ∈ N and for all x ∈ X and limt→∞ p
t = p, and suppose

that r is a function in PT . If ξr is total, then

lim
T→∞

T−1∑
t=0

u(ξrt )

T
=

∑
x∈X

pxu(x).

Consequently, ξ is a p-stochastic sequence relative to P.

Proof. By Theorem 6.5, for any P-effective martingale M ,

lim sup
T→∞

M(ξ[t]) <∞.

It is sufficient to show that for each x ∈ X,

limT→∞

T−1∑
t=0

χx(ξ
r
t )

T
= px,

where χx(y) = 1 if x = y, χx(y) = 0 otherwise.

Suppose that there exists some ε > 0 and a sequence {Tk}∞k=0 such that for all k ∈ N,

Tk−1∑
t=0

χx(ξ
r
t )

Tk
≥ px + ε.

We shall define a martingale M as follows:

(a) M(ε) = 1;

(b) M(σ〈x〉) = (1 + κ(1 − p
|σ|
x ))M(σ) and M(σ〈y〉) = (1 − κp

|σ|
x )M(σ) for all y 6= x if

r(σ) = 1;

(c) M(σ〈y〉) = M(σ) for all y ∈ X if r(σ) = 0.

To check that M is a martingale, note that if r(σ) = 1, then∑
y∈X

p|σ|y M(σ〈y〉) = p|σ|x (1 + κ(1− p|σ|x ))M(σ) +
∑
y 6=x

p|σ|y (1− κp|σ|x )M(σ)

= M(σ) + κM(σ)(p|σ|x (1− p|σ|x )− (1− p|σ|x )p|σ|x ) = M(σ);

if r(σ) = 0, then
∑

y∈X p
|σ|
y M(σ〈y〉) =

∑
y∈X p

|σ|
y M(σ) = M(σ).
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M is in PT since r is. For k ≥ 1, define

Dk = {t ≤ k − 1 : r(ξ[t]) = 1, ξt+1 = x} and Ek = {t ≤ k − 1 : r(ξ[t]) = 1, ξt+1 6= x}.

Then,

M(ξ[k]) =
∏
t∈Dk

(1 + κ(1− pt+1
x ))

∏
t∈Ek

(1− κpt+1
x ).

Let lk = (Lξr)
−1(Tk). Since ξr is total, lk is well defined for all k ∈ N.

Let δ = min{px, 1− px, ε2}. Since limt→∞ p
t = p, let T be so large that t ≥ T implies

that |ptx − px| < δ. Let K be the first k such that Tk > T . Then, for all k > K,

M(ξ[lk]) =
∏
t∈Dlk

(1 + κ(1− pt+1
x ))

∏
t∈Elk

(1− κpt+1
x )

≥
∏
t∈DlK

(1 +κ(1− pt+1
x )

∏
t∈ElK

(1−κpt+1
x ))(1 +κ(1− px− δ))|Dlk−DlK |(1−κpx−κδ)|Elk−ElK |.

Let

A =

∏
t∈DlK

(1 + κ(1− pt+1
x )

∏
t∈ElK

(1− κpt+1
x ))

(1 + κ(1− px − δ))L1(1− κpx − κδ)L2 ,

where

L1 = |DlK | and L2 = |ElK |.

Since for each k, |Dlk | ≥ Tkpx + Tkε,

M(ξ[lk]) ≥ A((1 + κ(1− px − δ))px+ε(1− κpx − κδ)1−px−ε)Tk .

Define

F (κ) = (1 + κ(1− px − δ))px+ε(1− κpx − κδ)1−px−ε.

We have lnF (0) = 1 and

(lnF )′(0) = (px + ε)(1− px − δ)− (1− px − ε)(px + δ) = ε− δ > 0.

Thus, for κ small enough, F (κ) > 1, and so

lim sup
T→∞

M(ξ[T ]) =∞,

a contradiction.
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6.3 Proofs

Proof of Proposition 3.1: By Theorem 6.1, we know that, for any ξ, ζ ∈ {0, 1}N, if ξ

is µ( 1
2
, 1
2

)-random relative to C(ζ), then ξ is complex relative to C(ζ). Moreover, we know

that, by Theorem 6.3, if ξ ⊗ ζ is λ4-random, then ξ is µ( 1
2
, 1
2

)-random relative to C(ζ) and

vice versa. Hence, C(ξ) and C(ζ) are mutually complex. Now, by Proposition 3.2, the

set

A = {ξ ⊗ ζ : ξ ⊗ ζ is λ4-random} ⊂ {ξ ⊗ ζ : C(ξ) and C(ζ) are mutually complex}

has measure 1. Therefore, the set A is uncountable. Since for any ξ, the set of sequences

ξ′ such that C(ξ) = C(ξ′) is countable, we can then conclude that there are uncountably

many different pairs of computability constraints that are mutually complex. 2
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