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Abstract

This paper axiomatizes the robust control criterion of multiplier prefer-

ences introduced by Hansen and Sargent (2001). The axiomatization relates

multiplier preferences to other classes of preferences studied in decision theory.

Some properties of multiplier preferences are generalized to the broader class

of variational preferences, recently introduced by Maccheroni, Marinacci and

Rustichini (2006). The paper also establishes a link between the parameters

of the multiplier criterion and the observable behavior of the agent. This link

enables measurement of the parameters on the basis of observable choice data

and provides a useful tool for applications.
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1 Introduction

The concept of uncertainty has been studied by economists since the work of Keynes

(1921) and Knight (1921). As opposed to risk, where probability is well specified, un-

certainty, or ambiguity, is characterized by the decision maker’s inability to formulate

a single probability or by his lack of trust in any unique probability.

Indeed, as demonstrated by Ellsberg (1961), people often make choices that can-

not be justified by a unique probability, thereby exhibiting a preference for risky

choices over those involving ambiguity. Such ambiguity aversion has been one of the

central issues in decision theory, motivating the development of axiomatic models of

such behavior.1

The lack of trust in a single probability has also been a source of concern in

macroeconomics. In order to capture concern about model misspecification, Hansen

and Sargent (2001) formulated an important model of multiplier preferences. Thanks

to their great tractability, multiplier preferences are now being adopted in applica-

tions.2

Despite their importance in macroeconomics, multiplier preferences have not been

fully understood at the level of individual decision making. Although Maccheroni

et al. (2006a) showed that they are a special case of the variational preferences that

they axiomatized, an axiomatization of multiplier preferences has so far been elusive.

Indeed, some authors even doubted the existence of behaviorally meaningful axioms

that would pin down multiplier preferences within the broad class of variational

preferences.

The main contribution of this paper is precisely a set of axioms satisfying this

property. The proposed axiomatic characterization is important for three reasons.

First, it provides a set of testable predictions of the model that allow for its empir-

ical verification. This will help evaluate whether multiplier preferences, which are

useful in modeling behavior at the macro level, are an accurate model of individ-

ual behavior. Second, the axiomatization establishes a link between the parameters

of the multiplier criterion and the observable behavior of the agent. This link en-

1See, e.g., Gilboa and Schmeidler (1989); Schmeidler (1989); Ergin and Gul (2004); Klibanoff,
Marinacci, and Mukerji (2005); Maccheroni, Marinacci, and Rustichini (2006a).

2See, e.g. Woodford (2006); Barillas, Hansen, and Sargent (2007); Karantounias, Hansen, and
Sargent (2007); Kleshchelski and Vincent (2007).
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ables measurement of the parameters on the basis of observable choice data alone,

without relying on unverifiable assumptions. Finally, the axiomatization is helpful

in understanding the relation between multiplier preferences and other axiomatic

models of preferences and ways in which they can and cannot be used for modeling

Ellsberg-type behavior.

1.1 Background and Overview of Results

The Expected Utility criterion ranks payoff profiles f according to

V (f) =

∫
u(f) dq, (1)

where u is a utility function and q is a subjective probability distribution on the

states of the world. A decision maker with such preferences is considered ambiguity

neutral, because he is able to formulate a single probability that governs his choices.

In order to capture lack of trust in a single probability, Hansen and Sargent (2001)

formulated the following criterion

V (f) = min
p

∫
u(f) dp+ θR(p‖q), (2)

where θ ∈ (0,∞] is a parameter and function R(p ‖ q) is the relative entropy of p

with respect to q. Relative entropy, otherwise known as Kullback-Leibler divergence,

is a measure of “distance” between two probability distributions. An interpretation

of (2) is that the decision maker has some best guess q of the true probability dis-

tribution, but does not fully trust it. Instead, he considers other probabilities p to

be plausible, with plausibility diminishing proportionally to their “distance” from

q. The role of the proportionality parameter θ is to measure the degree of trust of

the decision maker in the reference probability q. Higher values of θ correspond to

more trust; in the limit, when θ = ∞, the decision maker fully trusts his reference

probability and uses the expected utility criterion (1).

Multiplier preferences also belong to the more general class of variational pref-

erences studied by Maccheroni et al. (2006a); those preferences have the following

representation:
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V (f) = min
p

∫
u(f) dp+ c(p), (3)

where c(p) is a “cost function”. The interpretation of (3) is like that of (2), and

multiplier preferences are a special case of variational preferences with c(p)=θR(p‖q).
In general, the conditions that the function c(p) in (3) has to satisfy are very weak,

which makes variational preferences a very broad class. In addition to expected utility

preferences and multiplier preferences, this class also nests the maxmin expected

utility preferences of Gilboa and Schmeidler (1989), as well as the mean-variance

preferences of Markowitz (1952) and Tobin (1958).

An important contribution of Maccheroni et al. (2006a) was to provide an ax-

iomatic characterization of variational preferences. However, because variational

preferences are a very broad class of preferences, it would be desirable to estab-

lish an observable distinction between multiplier preferences and other subclasses of

variational preferences. Ideally, an axiom, or set of axioms, would exist that, when

added to the list of axioms of Maccheroni et al. (2006a), would deliver multiplier

preferences. This is, for example, the case with the maxmin expected utility pref-

erences of Gilboa and Schmeidler (1989): a strengthening of one of the Maccheroni

et al.’s (2006a) axioms restricts the general cost function c(p) to be in the class used

in Gilboa and Schmeidler’s (1989) model. The reason for skepticism about the ex-

istence of an analogous strengthening in the case of multiplier preferences has been

that the relative entropy R(p‖q) is a very specific functional-form assumption, which

does not seem to have any behaviorally significant consequences. The main finding of

this paper is that these consequences are behaviorally significant. The main theorem

shows that standard axioms characterize the class of multiplier preferences within

the class of variational preferences.

1.2 Ellsberg’s Paradox and Measurement of Parameters

Ellsberg’s (1961) experiment demonstrates that most people prefer choices involving

risk (i.e., situations in which the probability is well specified) to choices involving

ambiguity (where the probability is not specified). Consider two urns containing

colored balls. The decision maker can bet on the color of the ball drawn from each

urn. Urn I contains 100 red and black balls in unknown proportion, while Urn II

contains 50 red and 50 black balls.
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In this situation, most people are indifferent between betting on red from Urn I

and on black from Urn I. This reveals that, in the absence of evidence against sym-

metry, they view those two contingencies as interchangeable. Moreover, most people

are indifferent between betting on red from Urn II and on black from Urn II. This

preference is justified by their knowledge of the composition of Urn II. However,

most people strictly prefer betting on red from Urn II to betting on red from Urn I,

thereby displaying ambiguity aversion.

Ambiguity aversion cannot be reconciled with a single probability governing the

distribution of draws from Urn I. For this reason, expected utility preferences are

incapable of explaining the pattern of choices revealed by Ellsberg’s experiment.

Such pattern can, however, be explained by multiplier preferences. Recall that

V (f) = min
p

∫
u(f) dp+ θR(p‖q). (2)

The curvature of the utility function u measures the decision maker’s risk aversion

and governs his choices when probabilities are well specified—for example, choices

between bets on red and black from Urn II. In contrast, the parameter θ measures

the decision maker’s attitude towards ambiguity, and influences his choices when

probabilities are not well specified—for example, choices between bets on red and

black from Urn I.

Formally, betting $100 on red from Urn II corresponds to an objective lottery rII

paying $100 with probability 1
2

and $0 with probability 1
2
. Betting $100 on black

from Urn II corresponds to lottery bII , which is equivalent to rII . The decision maker

values rII and bII at

V (rII) = V (bII) =
1

2
u(100) +

1

2
u(0).

Moreover, let x denote the certainty equivalent of rII and bII , i.e., the amount of

money that, when received for sure, would be indifferent to rII and bII . Formally

V (x) = u(x) = V (rII) = V (bII). (4)

On the other hand, betting $100 on red from Urn I corresponds to rI , which pays

$100 when a red ball is drawn and $0 otherwise. Similarly, betting $100 on black
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from Urn I corresponds to bI , which pays $100 when a black ball is drawn and $0

otherwise. The decision maker values rI and bI at

V (rI) = V (bI) = min
p∈[0,1]

pu(100) + (1− p)u(0) + θR(p‖q)

where q is the reference measure, assumed to put equal weights on red and black.

Moreover, let y be the certainty equivalent of rI and bI , i.e., the amount of money

that, when received for sure, would be indifferent to rI and bI . Formally

V (y) = u(y) = V (rI) = V (bI). (5)

In Ellsberg’s experiments most people prefer objective risk to subjective uncer-

tainty, implying that y < x. This pattern of choices is implied by multiplier prefer-

ences with θ <∞. The equality y = x holds only when θ =∞, i.e., when preferences

are expected utility and there is no ambiguity aversion.

Ellsberg’s paradox provides a natural setting for experimental measurement of

parameters of the model. The observable choice data reveals the decision maker’s

preferences over objective lotteries, and hence his aversion toward pure risk embodied

in the utility function u. The observed value of certainty equivalent x allows to infer

the curvature of u.3 Similarly, decision maker’s choices between uncertain gambles

reveal his attitude toward subjective uncertainty, represented by parameter θ. The

observed “ambiguity premium” x − y enables inferences about the value of θ: a

big difference x − y reveals that the decision maker has low trust in his reference

probability, i.e., θ is low.4

The procedure described above suggests that simple choice experiments could be

used for empirical measurement of both u and θ. Such revealed-preference measure-

ment of parameters would be a useful tool in applied settings, where it is important

to know the numerical values of parameters, and would be complementary to the

heuristic method of detection error probabilities developed by Anderson, Hansen,

and Sargent (2000) and Hansen and Sargent (2007).

3For example, let u(z) = (w+ z)1−γ , where w is the initial level of wealth. Then (4) establishes
a 1-1 relationship between x and γ. The value of γ can be derived from observed values of x and w.

4Continuing the example from footnote 3, holding γ and w fixed, (5) establishes a 1-1 relationship
between y and θ. Thus, the value of θ can be derived from observed values of y, x, and w.
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1.3 Outline of the Paper

The paper is organized as follows. After introducing some notation and basic con-

cepts in Section 2, Section 3 defines static multiplier preferences, discusses their

properties in the classic setting of Savage, and indicates that richer choice domains

are needed for axiomatization. Section 4 uses one of such richer domains, introduced

by Anscombe-Aumann, and discusses the class of variational preferences, which nests

multiplier preferences. Section 4 presents axioms that characterize the class of multi-

plier preferences within the class of variational preferences. Additionally, extending

a result of Marinacci (2002), Section 4 discusses the extent to which variational pref-

erences can be used for modelling the Allais paradox. Section 5 studies a different

enrichment of choice domain and presents an axiomatization of multiplier preferences

in a setting introduced by Ergin and Gul (2004), thereby obtaining a fully subjective

axiomatization of multiplier preferences. Section 6 presents an axiomatization of

dynamic multiplier preferences, which are central to applications in macroeconomics

and finance. Because of its relation to the model of Kreps and Porteus (1978), this

class exhibits a preference for earlier resolution of uncertainty. Section 6 establishes

that such preference is exhibited by all stationary variational preferences, except for

the subclass of maxmin expected utility preferences. Section 7 concludes.

2 Preliminaries

Decision problems considered in this paper involve a set S of states of the world,

which represents all possible contingencies that may occur. One of the states, s ∈ S,

will be realized, but the decision maker has to choose the course of action before

learning s. His possible choices, called acts, are mappings from S to Z, the set of

consequences. Each act is a complete description of consequences, contingent on

states.

Formally, let Σ be a sigma-algebra of subsets of S. An act is a finite-valued,

Σ-measurable function f : S → Z; the set of all such acts is denoted F(Z). If

f, g ∈ F(Z) and E ∈ Σ, then fEg denotes an act with fEg(s) = f(s) if s ∈ E

and fEg(s) = g(s) if s /∈ E. The set of all finitely additive probability measures

on (S,Σ) is denoted ∆(S); the set of all countably additive probability measures
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is denoted ∆σ(S); its subset consisting of all measures absolutely continuous with

respect to q ∈ ∆σ(S) is denoted ∆σ(q).

The choices of the decision maker are represented by a preference relation %,

where f % g means that the act f is weakly preferred to the act g. A functional

V : F(Z)→ R represents % if for all f, g ∈ F(Z) f % g if and only if V (f) ≥ V (g).

An important class of preferences are Expected Utility (EU) preferences, where

the decision maker has a probability distribution q ∈ ∆(S) and a utility function

which evaluates each consequence u : Z → R. A preference relation % has an EU

representation (u, q) if there exists a functional V : F(Z) → R that represents %

with V (f) =
∫
S
(u ◦ f) dq.

Let Z = R, i.e., acts have monetary payoffs. Risk aversion is the phenomenon

where sure payoffs are preferred to ones that are stochastic but have the same ex-

pected monetary value. Risk averse EU preferences have concave utility functions

u. Likewise, one preference relation is more risk averse than another if it has a

“more concave” utility function. More formally, a preference relation represented by

(u1, q1) is more risk averse than one represented by (u2, q2) if and only if q1 = q2 and

u1 = φ ◦ u2, where φ : R→ R is an increasing concave transformation.

A special role will be played by the class of transformations φθ, indexed by θ ∈
(0,∞]

φθ(u) =

− exp
(
− u

θ

)
for θ <∞,

u for θ =∞.
(6)

Lower values of θ correspond to “more concave” transformations, i.e., more risk

aversion.

3 Concern about model misspecification

3.1 Model Uncertainty

A decision maker with expected utility preferences formulates a probabilistic model

of the world, embodied by the subjective distribution q ∈ ∆(S). However, in many

situations, a single probability cannot explain people’s choices, as illustrated by the

Ellsberg paradox.
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Example 1 (Ellsberg Paradox). Consider two urns containing colored balls; the

decision maker can bet on the color of the ball drawn from each urn. Urn I contains

100 red and black balls in unknown proportion, while Urn II contains 50 red and 50

black balls.

In this situation, most people are indifferent between betting on red from Urn I

and on black from Urn I. This reveals that they view those two contingencies as

interchangeable. Moreover, most people are indifferent between betting on red from

Urn II and on black from Urn II. This preference is justified by their knowledge of the

composition of Urn II. However, most people strictly prefer betting on red from Urn

II to betting on red from Urn I, thereby avoiding decisions based on imprecise infor-

mation. Such a pattern of preferences cannot be reconciled with a single probability

distribution, hence the paradox. N

In addition to this descriptive failure, a single probabilistic model of the world

may also be too strong an assumption from a normative, or frequentist point of

view. In many situations the decision maker may not have enough information to

formulate a single probabilistic model. For example, it may be hard to statistically

distinguish between similar probabilistic models, and thus hard to select one model

and have full confidence in it. Hansen, Sargent, and coauthors (Hansen and Sargent,

2001; Hansen, Sargent, Turmuhambetova, and Williams, 2006) introduced a way of

modelling such situations. In their model the decision maker does not know the

true probabilistic model p, but has a “best guess”, or approximating model q, also

called a reference probability. The decision maker thinks that the true probability p

is somewhere near to the approximating probability q. The notion of distance used

by Hansen and Sargent is relative entropy.

Definition 1. Let a reference measure q ∈ ∆σ(S) be fixed. The relative entropy

R(·‖q) is a mapping from ∆(S) into [0,∞] defined by

R(p‖q) =


∫
S
(log dp

dq
) dp if p ∈ ∆σ(q),

∞ otherwise.

A decision maker who is concerned with model misspecification computes his

expected utility according to all probabilities p, but he does not treat them equally.

Probabilities closer to his “best guess” have more weight in his decision.
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Definition 2. A relation % has a multiplier representation if it is represented by

V (f) = min
p∈∆(S)

∫
S

(u ◦ f) dp+ θR(p‖q),

where u : Z → R, q ∈ ∆σ(S), and θ ∈ (0,∞]. In this case, % is called a multiplier

preference.

The multiplier representation of % may suggest the following interpretation.

First, the decision maker chooses an act without knowing the true distribution p.

Second, “Nature” chooses the probability p in order to minimize the decision maker’s

expected utility. Nature is not free to choose, but rather it incurs a “cost” for using

each p. Probabilities p that are farther from the reference measure q have a larger

potential for lowering the decision maker’s expected utility, but Nature has to incur

a larger cost in order to select them.

This interpretation suggests that a decision maker with such preferences is con-

cerned with model misspecification and makes decisions that are robust to such

misspecification. He is pessimistic about the outcome of his decision which leads

him to exercise caution in choosing the course of action.5 Such cautious behavior is

reminiscent of Ellsberg’s paradox from Example 1. However, the following theorem

shows that such caution is equivalent to increased risk aversion.

3.2 Link to Increased Risk Aversion

The following variational formula (see, e.g., Proposition 1.4.2 of Dupuis and Ellis,

1997) plays a critical role in the analysis and applications of multiplier preferences.

min
p∈∆S

∫
S

(u ◦ f) dp+ θR(p‖q) = −θ log

(∫
S

exp

(
− u ◦ f

θ

)
dq

)
. (7)

This formula links model uncertainty, as represented by the left hand side of for-

mula (7), to increased risk aversion, as represented by the right hand side of for-

5Hansen and Sargent also study a closely related class of constraint preferences, represented by
V (f) = min{p|R(p‖q)≤η}

∫
S

(u ◦ f) dp, which are a special case of Gilboa and Schmeidler’s (1989)
maxmin expected utility preferences. Due to their greater analytical tractability, multiplier, rather
than constraint, preferences are used in the analysis of economic models (see, e.g., Woodford, 2006;
Barillas et al., 2007; Karantounias et al., 2007; Kleshchelski and Vincent, 2007).
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mula (7). Jacobson (1973), Whittle (1981), Skiadas (2003), and Maccheroni, Mari-

nacci, and Rustichini (2006b) showed that in dynamic settings this link manifests

itself as an observational equivalence between dynamic multiplier preferences and a

(subjective analogue of) Kreps and Porteus (1978) preferences. As a consequence,

in a static Savage setting multiplier preferences become expected utility preferences.

Observation 1. The relation % has a multiplier representation (θ, u, q) if and only

if % has an EU representation V with

V (f) =

∫
S

(φθ ◦ u ◦ f) dq, (8)

where the transformation φθ is defined by (6).

Corollary 1. If % has a multiplier representation, then it has an EU representation

with utility bounded from above. Conversely, if % has an EU representation with

utility bounded from above, then for any θ ∈ (0,∞] preference % has a multiplier

representation with that θ.6

This observation suggests that multiplier preferences do not reflect model uncer-

tainty, because the decision maker bases his decisions on a well specified probability

distribution. For the same reason such preferences cannot be used for modeling

Ellsberg’s paradox in the Savage setting.

More importantly, given a multiplier preference %, only the function φθ ◦ u is

identified in absence of additional assumptions. Because of this lack of identification,

there is no way of disentangling risk aversion (curvature of u) from concern about

model misspecification (value of θ).

Example 2. Consider a multiplier preference %1 with u1(x) = − exp(−x) and θ1 =

∞. This representation suggests that the decision maker %1 is risk averse, while not

being concerned about model misspecification or ambiguity. In contrast, consider a

multiplier preference %2 with u2(x) = x and θ2 = 1. This representation suggests

that the decision maker with %2 is risk neutral, while being concerned about model

misspecification or ambiguity.

6It can be verified that % has an EU representation with utility bounded from above if and only
if % has an EU representation and the following axiom is satisfied: There exist z ≺ z′ in Z and a
non-null event E, such that wEz ≺ z′ for all w ∈ Z. According to Corollary 1, in the Savage setting
this axiom is the only behavioral consequence of multiplier preferences beyond expected utility.
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Despite the apparent differences between %1 and %2, it is true that φθ1 ◦u1 = φθ2 ◦
u2, so, by 1, the two preference relations are identical. Hence, the two decision makers

behave in exactly the same way and there are no observable differences between

them. N

This lack of identification means that, within this class of models, choice data

alone is not sufficient to distinguish between risk aversion and ambiguity. As a conse-

quence, any econometric estimation of a model involving such decision makers would

not be possible without additional ad-hoc assumptions about parameters. Likewise,

policy recommendations based on such a model would depend on a somewhat arbi-

trary choice of the representation. Different representations of the same preferences

could lead to different welfare assessments and policy choices, but such choices would

not be based on observable data.7

Sections 4 and 5 present two ways of enriching the domain of choice and thereby

making the distinction between model uncertainty and risk aversion based on observ-

able choice data. In both axiomatizations the main idea is to introduce a subdomain

of choices where, either by construction or by revealed preference, the decision maker

is not concerned about model misspecification. This subdomain serves as a point of

reference and makes it possible to distinguish between concern for model misspecifi-

cation (and related to it Ellsberg-type behavior) and Expected Utility maximization.

4 Axiomatization with Objective Risk

This section discusses an extension of the domain of choice to the Anscombe-Aumann

setting, where objective risk coexists with subjective uncertainty. In this setting a

recent model of variational preferences (introduced and axiomatized by Maccheroni

et al., 2006a) nests multiplier preferences as a special case. Despite this classification,

additional axioms that, together with the axioms of Maccheroni et al. (2006a), would

deliver multiplier preferences have so far been elusive. This section presents such

axioms. It is also shown that in the Anscombe-Aumann setting multiplier preferences

can be distinguished from expected utility on the basis of Ellsberg-type experiments.

7See, e.g., Barillas et al. (2007), who study welfare consequences of eliminating model uncertainty.
The evaluation of such consequences depends on the value of parameter θ.
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4.1 Introducing Objective Risk

One way of introducing objective risk into the present model is to replace the set

Z of consequences with (simple) probability distributions on Z, denoted ∆(Z).8 An

element of ∆(Z) is called a lottery. A lottery paying off z ∈ Z for sure is denoted δz.

For any two lotteries π, π′ ∈ ∆(Z) and a number α ∈ (0, 1) the lottery απ+(1−α)π′

assigns probability απ(z) + (1− α)π′(z) to each prize z ∈ Z.

Given this specification, preferences are defined on acts in F(∆(Z)). Every such

act f : S → ∆(Z) involves two sources of uncertainty: first, the payoff of f is

contingent on the state of the world, for which there is no objective probability

given; second, given the state, fs is an objective lottery.

The original axioms of Anscombe and Aumann (1963) and Fishburn (1970) im-

pose the same attitude towards those two sources. They imply the existence of a

utility function u : Z → R and a subjective probability distribution q ∈ ∆(S) such

that each act is evaluated by

V (f) =

∫
S

(∑
z∈Z

u(z)fs(z)

)
dq(s). (9)

Thus, in each state of the world s the decision maker computes the expected utility

of the lottery fs and then averages those values across states. By slightly abusing

notation, define u : ∆(Z) → R by u(π) =
∑

z∈Z u(z)π(z). Using this definition, the

Anscombe-Aumann Expected Utility criterion can be written as

V (f) =

∫
S

u(fs) dq(s).

4.2 Multiplier Preferences

In this environment, the multiplier preferences take the following form

V (f) = min
p∈∆S

∫
S

u(fs) dp+ θR(p‖q), (10)

8This particular setting was introduced by Fishburn (1970); settings of this type are usually
named after Anscombe and Aumann (1963), who were the first to work with them.
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The decision maker with such preferences makes a distinction between objective risk

and subjective uncertainty: he uses the expected utility criterion to evaluate lotteries,

while using the multiplier criterion to evaluate acts.

4.3 Variational Preferences

To capture ambiguity aversion, Maccheroni et al. (2006a) introduce a class of varia-

tional preferences, with representation

V (f) = min
p∈∆S

∫
S

u(fs) dp+ c(p), (11)

where c : ∆S → [0,∞] is a cost function.

Multiplier preferences are a special case of variational preferences where c(p) =

θR(p ‖ q). The variational criterion (11) can be given the same interpretation as

the multiplier criterion (10): Nature wants to reduce the decision maker’s expected

utility by choosing a probability distribution p, but she is not entirely free to choose.

Using different p’s leads to different values of the decision maker’s expected utility∫
S
u(fs) dp, but comes at a cost c(p).

In order to characterize variational preferences behaviorally, Maccheroni et al.

(2006a) use the following axioms.

Axiom A1 (Weak Order). The relation % is transitive and complete.

Axiom A2 (Weak Certainty Independence). For all f, g ∈ F(∆(Z)), π, π′ ∈ ∆(Z),

and α ∈ (0, 1),

αf + (1− α)π % αg + (1− α)π ⇒ αf + (1− α)π′ % αg + (1− α)π′.

Axiom A3 (Continuity). For any f, g, h ∈ F(∆(Z)) the sets {α ∈ [0, 1] | αf + (1−
α)g % h} and {α ∈ [0, 1] | h % αf + (1− α)g} are closed.

Axiom A4 (Monotonicity). If f, g ∈ F(∆(Z)) and f(s) % g(s) for all s ∈ S, then

f % g.

Axiom A5 (Uncertainty Aversion). If f, g ∈ F(∆(Z)) and α ∈ (0, 1), then

f ∼ g ⇒ αf + (1− α)g % f.
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Axiom A6 (Nondegeneracy). f � g for some f, g ∈ F(∆(Z)).

Axiom A7 (Unboundedness). There exist π′�π in ∆(Z) such that, for all α ∈ (0, 1),

there exists ρ ∈ ∆(Z) that satisfies either π � αρ+ (1−α)π′ or αρ+ (1−α)π � π′.

Axiom A8 (Weak Monotone Continuity). If f, g ∈ F(∆(Z)), π ∈ ∆(Z), {En}n≥1 ∈
Σ with E1 ⊇ E2 ⊇ · · · and

⋂
n≥1En = ∅, then f � g implies that there exists n0 ≥ 1

such that πEn0f � g.

Maccheroni et al. (2006a) show that preference % satisfies Axioms A1-A6 if

and only if % is represented by (11) with a non-constant u : ∆(Z) → R and

c : ∆S → [0,∞] that is convex, lower semicontinuous, and grounded (achieves

value zero). Moreover, Axiom A7 implies unboundedness of the utility function u,

which guarantees uniqueness of the cost function c, while Axiom A8 guarantees that

function c is concentrated only on countably additive measures.

The conditions that the cost function c satisfies are very general. For example,

if c(p) = ∞ for all measures p 6= q, then (11) reduces to (9), i.e., preferences are

expected utility. Axiomatically, this can be obtained by strengthening Axiom A2 to

Axiom A2’ (Independence). For all f, g, h ∈ F(∆(Z)) and α ∈ (0, 1),

f % g ⇔ αf + (1− α)h % αg + (1− α)h.

Similarly, setting c(p) = 0 for all measures p in a closed and convex set C and

c(p) =∞ otherwise, denoted c = δC , reduces (11) to

V (f) = min
p∈C

∫
S

(∑
z∈Z

u(z)fs(z)

)
dp,

which is a representation of the Maxmin Expected Utility preferences introduced by

Gilboa and Schmeidler (1989). Axiomatically, this can be obtained by strengthening

Axiom A2 to

Axiom A2” (Certainty Independence). For all f, g ∈ F(∆(Z)), π ∈ ∆(Z) and

α ∈ (0, 1),

f % g ⇔ αf + (1− α)π % αg + (1− α)π.

As mentioned before, multiplier preferences also are a special case of variational

preferences. They can be obtained by setting c(p) = θR(p ‖ q). However, because
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relative entropy is a specific functional form assumption, Maccheroni et al. (2006a)

were skeptical that a counterpart of Axiom A2’ or Axiom A2” exists that would

deliver multiplier preferences:

[. . . ] we view entropic preferences as essentially an analytically conve-

nient specification of variational preferences, much in the same way as,

for example, Cobb-Douglas preferences are an analytically convenient

specification of homothetic preferences. As a result, in our setting there

might not exist behaviorally significant axioms that would characterize

entropic preferences (as we are not aware of any behaviorally significant

axiom that characterizes Cobb-Douglas preferences).

Despite this seeming impasse, the next section shows that pinning down the

functional form is possible with behaviorally significant axioms. In fact, somewhat

unexpectedly, they are the well known Savage’s P2 and P4 axioms (together with his

technical axiom of continuity—P6).9

4.4 Axiomatization of Multiplier Preferences

Axiom P2 (Savage’s Sure-Thing Principle). For all E ∈ Σ and f, g, h, h′ ∈ F(∆(Z))

fEh % gEh⇒ fEh′ % gEh′.

Axiom P4 (Savage’s Weak Comparative Probability). For all E,F ∈ Σ and π, π′, ρ, ρ′ ∈
∆(Z) such that π � ρ and π′ � ρ′

πEρ % πFρ⇒ π′Eρ′ % π′Fρ′.

Axiom P6 (Savage’s Small Event Continuity). For all acts f � g and π ∈ ∆(Z),

there exists a finite partition {E1, . . . , En} of S such that for all i ∈ {1, . . . , n}

f � πEig and πEif � g.

9Those axioms, together with axioms A1-A8, imply other Savage axioms.
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Theorem 1. Suppose % is a variational preference. Then Axioms P2, P4, and P6,

are necessary and sufficient for % to have a multiplier representation (10). Moreover,

two triples (θ′, u′, q′) and (θ′′, u′′, q′′) represent the same multiplier preference % if and

only if q′ and q′′ are identical and there exist α > 0 and β ∈ R such that u′ = αu′′+β

and θ′ = αθ′′.

The two cases: θ = ∞ (lack of concern for model misspecification) and θ <

∞ (concern for model misspecification) can be distinguished on the basis of the

Independence Axiom (Axiom A2’).10 In the case when θ is finite, its numerical value

is uniquely determined, given u. A positive affine transformation of u changes the

scale on which θ operates, so θ has to change accordingly. This is reminiscent of the

necessary adjustments of the CARA coefficient when units of account are changed.

Alternative axiomatizations are presented in Appendix A.2.9. It is shown there

that Axiom A7 can be dispensed with in the presence of another of Savage’s axioms—

P3. Also, Savage’s axiom P6 can be be dispensed with if Axiom A8 is strengthened to

Arrow’s (1970) Monotone-Continuity axiom and an additional axiom of nonatomicity

is assumed.

4.5 Discussion

Any Anscombe-Aumann act can be viewed as a Savage act where prizes have an

internal structure: they are lotteries. Because of this, an Anscombe-Aumann setting

with the set of prizes Z can be viewed as a Savage setting with the set of prizes ∆(Z).

Compared to a Savage setting with the set of prizes Z, more choice-observations are

available in the Anscombe-Aumann setting. This additional information makes it

possible to distinguish EU preferences from multiplier preferences.

To understand this distinction, observe that by 1, multiplier preferences have the

following representation.

V (f) =

∫
S

φθ

(∑
z∈Z

u(z)fs(z)

)
dq(s), (12)

10The weaker Certainty Independence Axiom (Axiom A2”) is also sufficient for making such a
distinction. Alternatively, Machina and Schmeidler’s (1995) axiom of Horse/Roulette Replacement
could be used.
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Because of the introduction of objective lotteries, this equation does not reduce

to (8). The existence of two sources of uncertainty enables a distinction between

purely objective lotteries, i.e., acts which pay the same lottery π ∈ ∆(Z) irrespectively

of the state of the world and purely subjective acts, i.e., acts that in each state of the

world pay off δz for some z ∈ Z.

From representation (12) it follows that for any two purely objective lotteries

π′ % π if and only if ∑
z∈Z

u(z)π′(z) %
∑
z∈Z

u(z)π(z).

On the other hand, each purely subjective act f induces a lottery πf (z) = q(f−1(z)).

However, for any two such acts f ′ % f if and only if∑
z∈Z

φθ(u(z))πf ′(z) %
∑
z∈Z

φθ(u(z))πf (z).

What is crucial here is that the decision maker has a different attitude towards

objective lotteries and subjective acts. In particular, if θ < ∞ he is more averse

towards subjective uncertainty than objective risk. The coexistence of those two

sources in one model permits a joint measurement of those two attitudes.

It has been observed in the past that differences in attitudes towards risk and

uncertainty lead to Ellsberg-type behavior. Neilson (1993) showed that the following

Second-Order Expected Utility representation

V (f) =

∫
S

φ

(∑
z∈Z

u(z)fs(z)

)
dq(s), (13)

can be obtained by a combination of von Neumann-Morgenstern axioms on lotteries

and Savage axioms on acts.11 A similar model was studied by Ergin and Gul (2004),

see Section 5. From this perspective, multiplier preferences are a special case of (13)

where φ = φθ. Theorem 1 shows that this specific functional form of the function φ is

implied by Weak Certainty Independence (Axiom A2) and by Uncertainty Aversion

(Axiom A5).12 Thus, the class of multiplier preferences is the intersection of the class

11I am grateful to Peter Klibanoff for this reference.
12This stems from the fact that, as elucidated by Grant and Polak (2007), variational preferences

display constant absolute ambiguity aversion,
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of variational preferences and the class of second-order expected utility preferences.

The following example shows that, because of this property, multiplier preferences

can be used for modelling Ellsberg-type behavior.

Example 3 (Ellsberg’s Paradox revisited). Suppose Urn I contains 100 red and black

balls in unknown proportion, while Urn II contains 50 red and 50 black balls. Let

the state space S = {R,B} represent the possible draws from Urn I. Betting $100

on red from Urn I corresponds to an act fR = (δ100, δ0) while betting $100 on black

from Urn I corresponds to an act fB = (δ0, δ100). On the other hand, betting $100

on red from Urn II corresponds to a lottery πR = 1
2
δ100 + 1

2
δ0, while betting $100 on

black from Urn II corresponds to a lottery πB = 1
2
δ0 + 1

2
δ100. These correspondences

reflect the fact that betting on Urn I involves subjective uncertainty, while betting

on Urn II involves objective risks. Note in particular, that πR = πB.

Consider the two multiplier preferences from Example 2: %1 with u1(x) =

− exp(−x) and θ1 = ∞, and %2 with u2(x) = x and θ2 = 1. Suppose also, that

they both share the probability assessment q(B) = q(R) = 1
2
.

As explained in Example 2, the representation of %1 suggests that the deci-

sion maker is not concerned about model misspecification or ambiguity. Indeed, his

choices reveal that πB ∼ πR ∼ fR ∼ fB. This decision maker is indifferent between

objective risk and subjective uncertainty, avoiding the Ellsberg paradox.

In contrast, the representation of %2 suggests that the decision maker is con-

cerned about model misspecification or ambiguity. And indeed, his choices reveal

that πB ∼ πR � fR ∼ fB. This decision maker prefers objective risk to probabilis-

tically equivalent subjective uncertainty, displaying behavior typical in Ellsberg’s

experiments.

This means that introducing objective uncertainty makes it possible to disen-

tangle risk aversion from concern about model misspecification and thus escape the

consequences of 1. As a consequence, the interpretations of representations of %1

and %2 become behaviorally meaningful. N

It is worthwile to notice that for θ < ∞ the decision maker behaves according

to EU on the subdomain of objective lotteries and also on the subdomain of purely

subjective acts. What leads to Ellsberg-type behavior are violations of EU across

those domains: the decision maker’s aversion towards objective risk (captured by u) is
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lower than his aversion towards objective risk (captured by φθ◦u). This phenomenon

is called Second Order Risk Aversion.13

4.6 Probabilistically Sophisticated Variational Preferences

Probabilistic sophistication, introduced by Machina and Schmeidler (1992), means

that the decision maker treats subjective uncertainty in the same way as objective

risk. In order to do so, the decision maker formulates a subjective measure on the

state space. To evaluate an act, he first computes the distribution that the act induces

on prizes. Second, he uses some criterion evaluating objective lotteries over prizes.

This criterion may be expected utility, but it can also be one of many nonexpected

utility criteria, which allow for modeling choices consistent with the Allais (1953)

paradox.

In a setting where objective risk is explicitly present, such as in the Anscombe-

Aumann setup, the requirement that the decision maker treats subjective uncer-

tainty in the same way as objective risk imposes a uniform risk attitude towards

both sources. Such uniformity is a critical requirement of the definition of prob-

abilistic sophistication in the Anscombe-Aumann setting formulated by Machina

and Schmeidler (1995).14 In the class of variational preferences, this uniformity re-

quirement implies that preferences are Anscombe-Aumann expected utility, because

variational preferences use expected utility to evaluate objective lotteries.

A less restrictive notion of second-order probabilistic sophistication requires that

the decision maker’s preferences satisfy probabilistic sophistication on the subdomain

of purely subjective acts (in accordance with Machina and Schmeidler’s (1992) defi-

nition) and also on the subdomain of lotteries (by construction), but allow those two

criteria to differ.15 Preferences do not have to be probabilistically sophisticated over-

all because the decision maker’s attitude towards those two sources of uncertainty

is not required to be uniform. In particular, the decision maker could use a nonex-

pected utility criterion for evaluating subjective acts, while using an expected utility

criterion for evaluating objective lotteries. Another possibility is when expected util-

13This notion was introduced by Ergin and Gul (2004) in a setting with two subjective sources
of uncertainty (see Section 5).

14See also a recent analysis of Grant and Polak (2006).
15This notion was introduced by Ergin and Gul (2004), see Section 5. A related, but different,

notion was discussed by Halevy and Ozdenoren (2007).
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ity is used for both, but risk aversion depends on the source of uncertainty. The

latter case is exemplified by multiplier preferences (12) and, more generally, second

order expected utility (13).

For the class of variational preferences, Maccheroni et al. (2006a) obtain a gen-

eral characterization of second-order probabilistic sophistication. A corollary of their

result is that multiplier preferences are second-order probabilistically sophisticated.

As representation (12) reveals, they are in fact second-order expected utility, which

means that the criterion used by the decision maker to evaluate subjective acts is

expected utility. This raises the question of whether there exist variational prefer-

ences that are second-order probabilistically sophisticated, but are not second-order

EU. In other words: Can the Allais (1953) paradox be modeled using variational

preferences? Marinacci (2002) showed that for the subclass of Maxmin Expected

Utility preferences the answer is negative under a weak assumption of agreement of

probabilities. Theorem 2 below extends Marinacci’s (2002) result to the whole class

of variational preferences under an appropriately extended notion of agreement of

probabilities.

Assumption 1. For any r ∈ [0,∞) there exists an event Ar ∈ Σ such that if

c(p) = c(p′) = r, then 0 < p(Ar) = p′(Ar) < 1.

Assumption 1 requires that all measures with the same cost agree on some event.

This assumption is equivalent to Marinacci’s (2002) assumption for the subclass of

Maxmin Expected Utility preferences.16

Theorem 2. Suppose that % satisfies Axioms A1-A8. If Assumption 1 holds, then

the following two statements are equivalent

(i) % is Second-Order Probabilistically Sophisticated

(ii) % is an Anscombe-Aumann Expected Utility preference.

16In principle, another (stronger) generalization of Assumption 3 could be considered:
Assumption 2. There exists an event A ∈ Σ such that if c(p), c(p′) <∞, then 0<p(A) = p′(A)<1.

This assumption means that the state space contains outcomes of an objective randomizing
device, for example of a coin. All measures that the decision maker considers plausible attach
the same probability to events generated by such a device. This is a stronger requirement than
Assumption 1 and it may be harder to verify for a given cost function. However, as Theorem 2
shows, the weaker Assumption 1 is sufficient.
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Theorem 2 extends the result of Marinacci (2002) to the class of variational pref-

erences.17 The proof of Theorem 2 relies on different techniques than Marinacci’s

(2002) proof; it builds on the characterization of second-order probabilistically so-

phisticated variational preferences obtained by Maccheroni et al. (2006a).

4.7 Second-Order Variational Preferences

Multiplier preferences are an example of variational preferences having two represen-

tations:

V1(f) = min
p∈∆(S)

∫
S

u(f) dp+ θR(p‖q) (10)

and

V2(f) =

∫
S

φθ
(
u(f)

)
dq. (12)

One interpretation of this dichotomy is that model uncertainty in (10) manifests

itself as second order risk aversion in (12). This motivates the following definition.

Definition 3. Preference relation % is a Second-Order Variational Preference if %

is a variational preference with representation

V1(f) = min
p∈∆S

∫
S

u(f) dp+ c1(p)

17Strictly speaking, Theorem 2 is not a generalization, because Marinacci’s (2002) result holds
also for α-MEU preferences which are not ambiguity averse (they violate Axiom A5). Moreover,
he uses a weaker notion of probabilistic sophistication, that of probabilistic beliefs, and his results
for maxmin expected utility preferences do not rely on countable additivity. Additionally, his
theorem is presented in a Savage setting and makes an assumption about range-convexity of the
utility function. One way to escape the consequences of Marinacci’s (2002) theorem is to relax that
assumption. However, Theorem 2 can be formulated only in the Anscombe-Aumann setting, because
in the Savage setting the variational representation of preferences is not unique (as exemplified by
1 and Theorem 3 in the next section). Thus, because of the lottery structure, range convexity is
implicit in the Anscombe-Aumann setting and the consequences of the Theorem cannot be avoided
in the aforementioned way.
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and it also has representation

V2(f) = min
p∈∆S

∫
S

φθ
(
u(f)

)
dp+ c2(p)

for θ ∈ (0,∞) and some grounded, convex, and lower semicontinous cost function c2.

The following theorem characterizes this class of variational preferences.

Theorem 3. Suppose that S is a Polish space and that % satisfies A1-A8. Preference

% is a second-order variational preference if and only if c1(p) = minq∈Q θR(p‖q) for

some closed and convex set of measures Q ⊆ ∆σ(S). In this case c2 can be chosen

to satisfy c2 = δQ, i.e., V2(f) = minp∈Q
∫
S
φθ
(
u(fs)

)
dp.18

The analysis of probabilistic sophistication of Section 4.6 can be extended to

second-order variational preferences. In order to do so, the following weak agreement

assumption will be used.

Assumption 3. There exists an event A0 ∈ Σ such that if c(p) = c(p′) = 0, then

0 < p(A0) = p′(A0) < 1.

This is the agreement assumption used by Marinacci (2002). It means that there

exists an event A0, such that any two measures with zero cost agree on A0.

Theorem 4. Suppose that % is a Second-Order Variational Preference. If Assump-

tion 3 holds, then the following two statements are equivalent

(i) % is Second-Order Probabilistically Sophisticated

(ii) % is a Second-Order Expected Utility preference.

As a corollary of Theorem 2 another characterization of multiplier preferences is

obtained.

Corollary 2. Suppose that % satisfies Axioms A1-A8 and Assumption 3 holds. Then

% is a multiplier preference if and only if % is a Second-Order Variational Preference

and it is Second-Order Probabilistically Sophisticated.

18The function c2 in representation V2 may not be unique. Uniqueness is guaranteed if the
function u is unbounded from below.
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5 Axiomatization within Ergin-Gul’s model

This section discusses another enrichment of the domain of choice, which does not

rely on the assumption of objective risk. Instead, it is assumed that there are two

sources of subjective uncertainty, towards which the decision maker may have dif-

ferent attitudes. This type of environment was discussed by Chew and Sagi (2007),

Ergin and Gul (2004), and Nau (2001, 2006); for an empirical application see Abdel-

laoui, Baillon, and Wakker (2007).

5.1 Subjective Sources of Uncertainty

Assume that the state space has a product structure S = Sa × Sb, where a and b

are two separate issues, or sources of uncertainty, towards which the decision maker

may have different attitudes. In comparison with the Anscombe-Aumann framework,

where objective risk is one of the sources, here both sources are subjective. Let Aa
be a sigma algebra of subsets of Sa and Ab be a sigma algebra of subsets of Sb.

Let Σa be the sigma algebra of sets of the form A × Sb for all A ∈ Aa, Σb be the

sigma algebra of sets of the form Sa×B for all B ∈ Ab, and Σ be the sigma algebra

generated by Σa ∪ Σb. As before, F(Z) is the set of all simple acts f : S → Z.

In order to facilitate the presentation, it will be assumed that certainty equivalents

exist, i.e., for any f ∈ F(Z) there exists z ∈ Z with z ∼ f . The full analysis without

this assumption is contained in Appendices A.6 and A.7.

Ergin and Gul (2004) axiomatized preferences which are general enough to ac-

commodate probabilistic sophistication and even second-order probabilistic sophisti-

cation. An important subclass of those preferences are second-order expected utility

preferences.

V (f) =

∫
Sb

φ

(∫
Sa

u(f(sa, sb)) dqa(sa)

)
dqb(sb) (14)

where u : Z → R, φ : R → R is a strictly increasing and continuous function, and

the measures qa ∈ ∆(Sa) and qb ∈ ∆(Sb) are nonatomic.

To characterize preferences represented by (14), Ergin and Gul (2004) assume

Axioms A1, A6, and P3, together with weakenings of P2 and P4 and a strengthening

of P6. There is a close relationship between (14) and Neilson’s (1993) representation

(13). The role of objective risk is now taken by a subjective source: issue a. For each
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sb, the decision maker computes the expected utility of f(·, sb) and then averages

those values using function φ.

5.2 Second-Order Risk Aversion

In the Anscombe-Aumann framework, concavity of the function φ is responsible for

second-order risk aversion, i.e., higher aversion towards subjective uncertainty than

towards objective risk. This property is a consequence of the axiom of Uncertainty

Aversion (Axiom A5).19 Similarly, in the present setup, concavity of function φ is

responsible for higher aversion towards issue b than towards issue a. This prop-

erty was introduced by Ergin and Gul (2004) who formally defined it in terms of

mean-preserving spreads. However, this definition refers to the probability measures

obtained from the representation and hence is not directly based on preferences.

Theorems 2 and 5 of Ergin and Gul (2004) characterize second-order risk aversion in

terms of induced preferences over induced Anscombe-Aumann acts and an analogue

of Axiom A5 in that induced setting. However, just as with mean-preserving spreads,

those induced Anscombe-Aumann acts are constructed using the subjective proba-

bility measure derived from the representation. As a consequence, the definition is

not expressed directly in terms of observables.

In the presence of other axioms, the following purely behavioral axiom is equiv-

alent to Ergin and Gul’s (2004) definition.

Axiom A5’ (Second Order Risk Aversion). For any f, g ∈ Fb and any E ∈ Σa if

f ∼ g, then fEg % f .

This axiom is a direct subjective analogue of Schmeidler’s (1989) axiom of Un-

certainty Aversion (Axiom A5).

Theorem 5. Suppose % has representation (14). Then Axiom A5’ is satisfied if and

only if the function φ in (14) is concave.

5.3 Axiomatization of Multiplier Preferences

The additional axiom that delivers multiplier preferences in this framework is Con-

stant Absolute Second Order Risk Aversion.

19This follows from the proof of Theorem 1, see section A.2.6 in Appendix A.2.
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Axiom A2’’’(Constant Absolute Second Order Risk Aversion). There exists a non-

null event E ∈ Σa such that for all f, g ∈ Fb(Z), x, y ∈ Z

fEx % gEx⇒ fEy % gEy.

In addition, two technical axioms, similar to Axioms 7 and 8, are needed.

Axiom A7’ (Fa-Unboundedness). There exist x � y in Z such that, for all non-null

Ea ∈ Σa there exist z ∈ Z that satisfies either y � zEax or zEay � x.

Axiom A8’ (Fb-Monotone Continuity). If f, g ∈ F(Z), x ∈ Z, {En}n≥1 ∈ Σb with

E1 ⊇ E2 ⊇ · · · and
⋂
n≥1En = ∅, then f � g implies that there exists n0 ≥ 1 such

that xEn0f � g.

Theorem 6. Suppose % has representation (14). Then Axioms A2’’’, A5’, A7, and

A8 are necessary and sufficient for % to be represented by V , where

V (f) = min
pb∈∆Sb

∫
Sb

(∫
Sa

u(f(sa, sb)) dqa(sa)

)
dpb(sb) + θR(pb‖qb)

and u : Z → R, θ ∈ (0,∞], and qa, qb are nonatomic measures.

6 Dynamic Models

The main contributions of this section are an axiomatization of dynamic multiplier

preferences and a characterization of preference for earlier resolution of uncertainty

in the class of variational preferences. After the domain of choice is introduced in

Section 6.1, dynamic variational preferences are defined in Section 6.2 and dynamic

multiplier preferences are defined in Section 6.3. Section 6.4 presents an axiomati-

zation of the latter class. Section 6.5 extends the notion of IID ambiguity to the

class of variational preferences; this prepares the ground for studying the timing of

uncertainty. Finally, Section 6.6 presents a characterization of preference for earlier

resolution of uncertainty in the class of variational preferences.
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6.1 Domain of Choice

Hayashi (2005), who studied a dynamic model of stationary maxmin expected util-

ity preferences, used a domain of choice H, which proves useful also for studying

variational preferences. In each period the state space S is finite and the set of out-

comes is a compact set Z.20 The domain of temporal Anscombe-Aumann acts, H, is

constructed inductively

H0 = F(∆(Z))

and

Ht = F(∆(Z ×Ht−1))

for each t ≥ 1.21 Define f ∈
∏∞

t=0Ht to be coherent if for any t the act ft+1 induces

the same consumption process as ft. As asserted by Theorem 1 of Hayashi (2005),

the set H of such coherent acts satisfies the following homeomorphism

H ' F(∆(Z ×H)).

This recursive property facilitates axiomatizations of stationary preferences, because

H is a mixture space under the usual state-by-state mixing of Anscombe-Aumann

acts. An important subdomain of H is the space D of temporal lotteries of Kreps

and Porteus (1978) and Epstein and Zin (1989)

D ' F(∆(Z ×D)).

Another important subdomain consists of one-step-ahead acts H+1 where all subjec-

tive uncertainty resolves in the first period.

H+1 = {h+1 ∈ F(∆(Z ×H)) | h+1(s) ∈ D for all s ∈ S}.
20Finiteness of S and compactness of Z can be relaxed. This requires a different construction of

space H, which will be included in future versions of this paper.
21For any compact metric space X, the set of Borel probability measures ∆(X) is a compact

metric space with the Prohorov metric and the set F(X) = XS is a compact metric space under
the product metric.
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6.2 Dynamic Variational Preferences

Following Hayashi (2005), for each t ≥ 0 and history st = (s1, . . . , st) ∈ St the

decision maker’s preference %st over ∆(Z × H) is observed. For any z ∈ Z and

h ∈ H the degenerate lottery δ(z,h) will, with a slight abuse of notation, be denoted

(z, h).

Definition 4. Family {%st} is a Dynamic Variational Preference if it is represented

by a family of continuous, nonconstant functions Ust : ∆(Z ×H)→ R such that

Ust(µ) =

∫
Z×H

{
u(z) + β

[
min
p∈∆(S)

∫
S

U(st,s)

(
h(s)

)
dp(s) + cst(p)

]}
dµ(z, h)

for any p ∈ ∆(Z×H), where u : Z → R is continuous and nonconstant and β ∈ (0, 1)

and cost functions cst are grounded, convex, and lower semicontinous. Moreover, β

is unique and the function u is unique up to positive affine transformations.

An axiomatization of dynamic variational preferences can be obtained by modify-

ing Hayashi’s (2005) axiomatization of dynamic maxmin expected utility preferences,

in particular by relaxing certainty independence to weak certainty independence. Ap-

pendices A.8 and A.9 present this axiomatization.

6.3 Dynamic Multiplier Preferences

Definition 5 (Dynamic Multiplier Preference). Family {%st} is a dynamic multiplier

preference if it is represented by

Ust(µ) =

∫
Z×H

{
u(z) + β

[
min
p∈∆(S)

∫
S

U(st,s)

(
h(s)

)
dp(s) + θR(p‖qst)

]}
dµ(z, h) (15)

where u : Z → R is continuous and nonconstant, β ∈ (0, 1), θ ∈ (0,∞] and q ∈ ∆(S).

The reference probability qst in representation (15) can be history dependent,

which is natural in non-stationary environments or when learning takes place. How-

ever, the parameter θ is history-independent. Thus, a separation is achieved between

the attitude towards model uncertainty, which is constant, and the uncertainty it-

self can depend on the history of shocks, reflecting possible persistence of shocks or

learning about the environment.
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6.4 Axiomatization of Dynamic Multiplier Preferences

In the static version of the model, Savage’s axioms were used to characterize mul-

tiplier preferences. Because those axioms rely on infiniteness of the state space and

in the present setting S is finite, a different approach will be used, that of Wakker’s

tradeoff consistency (see, e.g., Köbberling and Wakker, 2003).22

Relation ∼∗st introduced below compares tradeoffs between pairs of temporal lot-

teries. Pair [d1, d2] is in relation with pair [d3, d4] if the utility difference between d1

and d2 is the same as the utility difference between d3 and d4.

Definition 6. For any d1, d2, d3, d4 ∈ D define [d1, d2] ∼∗st [d3, d4] if there exist acts

h′+1, h
′′
+1 ∈ H+1, and a st-nonnull state23 s ∈ S such that

(d1)s(h′+1) ∼st (d2)s(h′′+1) and (d3)s(h′+1) ∼st (d4)s(h′′+1).

Axiom B1 (Tradeoff Consistency). For any st ∈ St and d1, d2, d3, d4 ∈ D if [d1, d2] ∼∗st
[d3, d4], then improving any of the outcomes breaks the relation.

Axiom B1 implies multiplier representation of preferences in each period

Ust(µ) =

∫
Z×H

{
u(z) + β

[
min
p∈∆S

∫
S

U(st,s)

(
h(s)

)
dp(s) + θstR(p‖qst)

]}
dµ(z, h),

but allows the concern for model misspecification to be time- and state- dependent.

The following axiom guarantees constant θ.

Axiom B2 (Stationary Tradeoff Consistency). Relation ∼∗st is independent of st.

Theorem 7. Suppose that {%st} is a dynamic variational preference. Then Axioms

B1 and B2 are necessary and sufficient for {%st} to be a dynamic multiplier prefer-

ence. Moreover,
(
θ, u, {qst}

)
and

(
θ′, u′, {q′st}

)
represent the same dynamic multiplier

preference if and only if q′st = qst for all st and there exists a > 0 and b ∈ R such

that u′ = au+ b and θ′ = aθ.

22Using a construction of the space H that accommodates infinite S (as described footnote 20)
will allow to replace tradeoff consistency with Savage axioms in the future versions of this paper.

23A state s is st-non-null if there exist h′+1, h
′′
+1, g+1 ∈ H+1 such that (h′+1)s(g+1)�st (h′′+1)s(g+1).
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6.5 Stationary Variational Preferences and IID Ambiguity

The discussion so far has concentrated on variational preferences where the utility

function u and the discount factor β are constant, but the cost function cst is allowed

to depend on the history st. For example, in the case of multiplier preferences, the

reference measure qst can be history-dependent. This section introduces a class of

stationary preferences, where the preference on one-step-ahead acts is the same in

every time period. This permits writing % instead of %st .

Definition 7. Relation % is a Stationary Variational Preference if it is represented

by function U : H → R

U(µ) =

∫
Z×H

{
u(z) + β

[
min
p∈∆S

∫
S

U
(
h(s)

)
dp(s) + c(p)

]}
dµ(z, h) (16)

for β ∈ (0, 1), u : Z → R, and some grounded, convex, and lower semicontinous cost

function c.

This definition extends the notion of IID Ambiguity studied by Chen and Epstein

(2002) and Epstein and Schneider (2003) in the context of maxmin expected utility

to the class of variational preferences. Intuitively, IID ambiguity means that every

period the decision maker faces a new Ellsberg urn. His ex-ante beliefs about each

urn are identical, but because he observes only one draw from each urn, he cannot

make inferences across urns.24

Because the uncertainty that the decision maker faces in period t is identical to

the uncertainty in period t+ 1, and the only property that distinguishes them is the

timing of their resolution, attitudes towards such timing of resolution can be studied.

6.6 Attitudes Towards the Timing of Subjective Uncertainty

The main objective of this section is to determine which of the stationary variational

preferences exhibit preference for earlier resolution of uncertainty. In order to do

so, some notation will be introduced. Let h+1 ∈ H+1 be a one-step-ahead act and

z ∈ Z be a deterministic payoff. Define (1; z, h+1) to be a temporal act where the

24This failure of inference is known in econometrics as the problem of incidental parameters (see,
e.g., Neyman and Scott, 1948).

30



subjective uncertainty about h+1 is resolved in period 1, i.e., whose chance node for

period 0 is degenerate. Formally, define (1; z, h+1)(s) = (z, h+1) for all s ∈ S.

On the other hand, define (0; z, h+1) to be a one-step-ahead act where the sub-

jective uncertainty about h+1 is resolved already in period 0, i.e., whose chance node

for period 0 is not degenerate. Formally, define (0; z, h+1)(s) = (z, h+1(s)) for all

s ∈ S.

Note that both in (0; z, h+1) and in (1; z, h+1) the payoffs of h+1 are delivered

in period 1. The difference is when the decision maker learns about them. Some

decision makers may prefer one to the other.

Definition 8. Relation % exhibits preference for [resp., indifference to, preference

against] earlier resolution of uncertainty if

(0; z, h+1) % [resp., ∼,-] (1; z, h+1)

for all z ∈ Z, and h+1 ∈ H+1.

Given this definition, the preference for earlier resolution of uncertainty can be

studied in the class of stationary variational preferences. One initial observation is

that stationary multiplier preferences, which are represented by

U(µ) =

∫
Z×H

[
u(z) + βφ−1

θ

(∫
S

φθ
(
U
(
h(s)

))
dq(s)

)]
dµ(z, h) (17)

exhibit strict preference for earlier resolution of uncertainty (unless θ =∞).
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Theorem 8. Suppose % is a stationary multiplier preferencewith θ < ∞. Then for

all z ∈ Z, and h+1 ∈ H+1 such that h+1(s) � h+1(s′) for some s 6= s′

(0; z, h+1) � (1; z, h+1).

Similarly to stationary multiplier preferences, stationary second-order variational

preferences, which are represented by

U(µ) =

∫
Z×H

[
u(z) + βφ−1

θ

(
min
q∈Q

∫
S

φθ
(
U
(
h(s)

))
dq(s)

)]
dµ(z, h) (18)

exhibit strict preference for earlier resolution of uncertainty (unless θ =∞).

Theorem 9. Suppose % is a stationary second-order risk-averse variational prefer-

ence with θ <∞. Then for all z ∈ Z, and h+1 ∈ H+1 such that h+1(s) � h+1(s′) for

some s 6= s′

(0; z, h+1) � (1; z, h+1).

Both in Theorem 8 and in Theorem 9 the preference for earlier resolution of

uncertainty appears to be connected to the function φθ. Indeed, the strength of the

preference depends on the parameter θ; in the extreme case of θ =∞ the indifference

obtains. By Theorem 3, the second-order risk-averse variational preferences are the

largest subclass of variational preferences with representation

U(µ) =

∫
Z×H

[
u(z) + βφ−1

θ

(
min
p∈∆(S)

∫
S

φθ
(
U
(
h(s)

))
dp(s) + c(p)

)]
dµ(z, h)

For this reason, it may be tempting to conclude that all other variational preferences

satisfy indifference to the timing of resolution of uncertainty. However, as the next

theorem shows, quite the opposite is true.

Theorem 10. Suppose that % is a stationary variational preference. Relation %

satisfies indifference to the timing of resolution of uncertainty if and only if it is a

stationary maxmin expected utility preference, i.e., it is represented by

U(µ) =

∫
Z×H

[
u(z) + βmin

q∈Q

∫
S

U
(
h(s)

)
dq(s)

]
dµ(z, h). (19)
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Theorem 10 asserts that stationary variational preferences typically exhibit pref-

erence for earlier resolution of uncertainty. The only class that satisfies indifference

is precisely the class of stationary maxmin expected utility preferences studied by

Chen and Epstein (2002) and Epstein and Schneider (2003).

7 Conclusion

One of the challenges in decision theory lies in finding decision models that would

do better than Expected Utility in describing individual choices, but would at the

same time be easy to incorporate into economic models of aggregate behavior.

This paper studies the model of multiplier preferences which is known to satisfy

the latter requirement. By obtaining an axiomatic characterization of this model,

the paper studies its individual choice properties, which helps to determine whether

it also satisfies the first requirement mentioned above. The axiomatization provides

a set of testable implications of the model, which will be helpful in its empirical

verification. The axiomatization also enables measurement of the parameters of the

model on the basis of observable choice data alone, thereby providing a useful tool

for applications of the model.

In addition, the paper generalizes some of the properties of multiplier preferences

to the broader class of variational preferences and studies the extent to which this

more general class of preferences can be used for modelling the Allais paradox.

In a dynamic setting, the paper obtains an axiomatization of recursive multi-

plier preferences. This class displays an interesting property of preference for earlier

resolution of uncertainty. The paper shows that this property is generally shared

by dynamic variational preferences; the only subclass that displays indifference to

timing is that of recursive maxmin expected utility preferences.

A Appendix: Proofs

Let B0(Σ) denote the set of all real-valued Σ-measurable simple functions and let

B0(Σ, K) be the set of all functions in B0(Σ) that take values in a convex set K ⊆ R.
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A.1 Proof of Observation 1

Because θ−1 · (u ◦ f) is a bounded measurable function on (S,Σ), from Proposition

1.4.2 of Dupuis and Ellis (1997) it follows that

min
p∈∆S

∫
S

(u ◦ f) dp+ θR(p‖q) = −θ log

(∫
S

exp

(
− u ◦ f

θ

)
dq

)
.

Thus, % is a multiplier preference with θ, u, and q iff it is represented by U with

U(f) = −θ log

(∫
S

exp

(
− u ◦ f

θ

)
dq

)
.

Rewrite using the definition of φθ:

U(f) = φ−1
θ

(∫
S

(φθ ◦ u ◦ f) dq

)
.

Since φθ is a monotone transformation, % is also represented by V := φθ ◦ U , i.e.,

V (f) =

∫
S

(φθ ◦ u ◦ f) dq.

A.2 Proof of Theorem 1

A.2.1 Niveloidal Representation

By Lemmas 25 and 28 of Maccheroni et al. (2006a), Axioms A1-A7 imply that

there exists an unbounded affine function u : ∆(Z) → R and a normalized concave

niveloid I : B0(Σ, u(∆(Z))) → R such that for all f % g iff I(u ◦ f) ≥ I(u ◦ g).

Moreover, within this class, u is unique up to positive affine transformations. Define

U := u(∆(Z)). After normalization, there are three possible cases: U ∈ {R+,R−,R}.

A.2.2 Utility Acts

For each act f , define the utility act associated with f as u ◦ f ∈ B0(Σ,U). The

preference on acts induces a preference on utility acts: for any ξ′, ξ′′ ∈ B0(Σ,U)

define ξ′ %u ξ
′′ iff f ′ % f ′′, for some ξ′ = u ◦ f ′ and ξ′′ = u ◦ f ′′. The choice of
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particular versions of f ′ and f ′′ is irrelevant, because ξ′ %u ξ
′′ iff I(ξ′) ≥ I(ξ′′).

By Lemma 22 in Maccheroni, Marinacci, and Rustichini (2004), for all k ∈ U
and ξ ∈ B0(Σ,U) we have I(ξ + k) = I(ξ) + k. Thus, ξ′ %u ξ

′′ iff I(ξ′) ≥ I(ξ′′) iff

I(ξ′ + k) ≥ I(ξ′′ + k) iff ξ′ + k %u ξ
′′ + k for all k ∈ U and ξ′, ξ′′ ∈ B0(Σ,U).

A.2.3 Savage’s P3

In order to show that % have an additive representation (12), Savage’s theorem will

be used in A.2.4. To do this, it is necessary to show that his P3 axiom holds.

Definition 9. An event E ∈ Σ is non-null if there exist f, g, h ∈ F such that

fEh � gEh.

Axiom P3 (Savage’s Eventwise Monotonicity). For all x, y ∈ Z, h ∈ F , and non-

null E ∈ Σ

x % y ⇔ xEh % yEh.

Lemma 1. Axioms A1-A7, together with Axiom P2 imply axiom P3.

Proof. First, suppose that x % y. It follows from Axiom A4 (Monotonicity) that

xEh % yEh for any h ∈ F and any E. Second, suppose that y � x. It follows from

Monotonicity that yEh % xEh for any h ∈ F and any E. Towards contradiction,

suppose that yEh ∼ xEh for a non-null E ∈ Σ and some h ∈ F .

Because E is non-null, there exist f, g ∈ F such that fEh � gEh. Let {E1, . . . , En, E}
be a partition of S with respect to which both fEh and gEh are measurable. Let y′

be the most preferred element among {f(Ei) | i = 1, . . . , n} and let x′ be the least

preferred element among {g(Ei) | i = 1, . . . , n}. By Monotonicity, y′Eh % fEh and

gEh % x′Eh. Thus y′Eh � x′Eh.

Observe that there exist a, a′ ∈ U and k, k′ > 0, such that a = u(x), a + k =

u(y), a′ = u(x′) and a′+k′ = u(y′). Thus there exists ξ ∈ B0(Σ,U), such that aEξ =

u ◦ (xEh), (a+ k)Eξ = u ◦ (yEh), a′Eξ = u ◦ (x′Eh), and (a′ + k′)Eξ = u ◦ (y′Eh).

It follows that

I((a+ k)Eξ) = I(aEξ) (20)

I((a′ + k′)Eξ) > I(a′Eξ). (21)
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Suppose that U = R+. By translation invariance, it follows from (20) that I((a+

2k)E(ξ + k)) = I((a + k)E(ξ + k)) and by P2, that I((a + 2k)Eξ) = I((a + k)Eξ).

Hence, I((a+2k)Eξ) = I(aEξ). By induction I((a+nk)Eξ) = I(aEξ) for all n ∈ N,

and by Monotonicity I((a + r)Eξ) = I(aEξ) for all r ∈ R+. In particular, letting

r = k′, we have

I((a+ k′)Eξ) = I(aEξ). (22)

Suppose that a′ ≥ a. By translation invariance, I((a′+ k′)E(ξ+ a′− a) = I(a′E(ξ+

a′−a)) and by P2, I((a′+k′)Eξ) = I(a′Eξ). Contradiction with (22). Thus, it must

be that a > a′. By translation invariance, it follows from (21), that I((a+ k′)E(ξ +

a− a′)) > I(aE(ξ+ a− a′)) and by P2, I((a+ k′)Eξ) > I(aEξ). Contradiction with

(22). The proof is analogous in case when U = R− or U = R.

A.2.4 Application of Savage’s Theorem

It follows from Chapters 1-5 of Savage (1972) that there exists a (not necessarily

affine) function ψ : ∆(Z) → R and a measure q ∈ ∆S, such that for any f, g ∈ F ,

f % g iff
∫
S
(ψ ◦ f) dq ≥

∫
S
(ψ ◦ g) dq. Moreover, ψ is unique up to positive affine

transformations. From Theorem 1 in Section 1 of Villegas (1964) it follows that

Axiom A8 implies that q ∈ ∆σ(S).

A.2.5 Proof of representation (13)

By A.2.2, f % g iff
∫
S
(ψ ◦ f) dq ≥

∫
S
(ψ ◦ g) dq. In particular, x % y iff ψ(x) ≥ ψ(y).

From axioms A1-A6 it follows that x % y iff u(x) ≥ u(y). Thus, there exists a

unique strictly increasing function φ : R → R such that ψ = φ ◦ u. Thus, f % g iff∫
S
(φ ◦ u ◦ f) dq ≥

∫
S
(φ ◦ u ◦ g) dq. This leads to the following representation of %u:

ξ′ %u ξ
′′ iff

∫
S
(φ ◦ ξ′) dq ≥

∫
S
(φ ◦ ξ′′) dq.

A.2.6 Concavity of φ

Let a, b ∈ U . Let π, ρ ∈ ∆(Z) be such that a = u(π) and b = u(ρ). Because q is

range convex, there exists a set E with q(E) = 1
2
. Let f = πEρ and g = ρEπ and

observe that V (f) = 1
2
φ(a)+ 1

2
φ(b) = V (g); thus, f ∼ g. By Axiom A5, 1

2
f+ 1

2
g % f ,
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i.e., φ
(

1
2
a+ 1

2
b
)

= V
(

1
2
f + 1

2
g
)
≥ V (f) = 1

2
φ(a) + 1

2
φ(b). Thus,

φ

(
1

2
a+

1

2
b

)
≥ 1

2
φ(a) +

1

2
φ(b). (23)

Let α ∈ (0, 1). Let the sequence {αn} be a dyadic approximation of α. By

induction, inequality (23) implies that φ
(
αna+ (1− αn)b

)
≥ αnφ(a) + (1− αn)φ(b)

for all n. By continuity of φ, limn→∞ φ
(
αna+ (1− αn)b

)
= φ

(
αa+ (1− α)b

)
. Thus,

φ
(
αa+ (1− α)b

)
≥ αφ(a) + (1− α)φ(b).

A.2.7 Proof that φ = φθ

By defining φk(x) := φ(x + k) for all k, x ∈ U , it follows from A.2.2 and A.2.5 that∫
S
φk ◦ ξ′ dq ≥

∫
S
φk ◦ ξ′′ dq iff

∫
S
φ ◦ ξ′ dq ≥

∫
S
φ ◦ ξ′′ dq . Thus, (φ, q) and (φk, q) are

EU representations of the same preference on B0(Σ,U). By uniqueness, φ(x + k) =

α(k)φ(x) + β(k) for all k, x ∈ U . This is a generalization of Pexider’s equation (see

equation (3) of Section 3.1.3, p. 148 of Aczél, 1966). If U ∈ {R,R+}, then by

Corollary 1 in Section 3.1.3 of Aczél (1966), up to positive affine transformations,

the only strictly increasing concave solutions are of the form φθ, for θ ∈ (0,∞]. It is

easy to prove that the same is true for U = R−.

A.2.8 Conclusion of the Proof

Combining Steps 4 and 5, f % g iff
∫
S
(φθ ◦ u ◦ f) dq ≥

∫
S
(φθ ◦ u ◦ g) dq. Be-

cause q ∈ ∆σ, by 1, it follows that f % g iff minp∈∆S

∫
S
(u ◦ f) dp + θR(p ‖ q) ≥

minp∈∆S

∫
S
(u ◦ g) dp+ θR(p‖q).

A.2.9 Alternative Axiomatizations

Removing P6

Instead of Axiom P6, the following two axioms could be assumed:

Axiom A8” (Arrow’s Monotone Continuity). If f, g ∈ F , x ∈ Z, {En}n≥1 ∈ Σ

with E1 ⊇ E2 ⊇ · · · and
⋂
n≥1En = ∅, then f � g implies that there exists n0 ≥ 1

such that xEn0f � g and f � xEn0g.

37



Axiom A9 (Nonatomicity). Every nonnull event can be partitioned into two nonnull

events.

Axiom A8” is stronger than Axiom A8 and is necessary to obtain a countably

additive probability. Axiom A9 (see Villegas, 1964) is needed to obtain fineness and

tightness of the qualitative probability.

This leads to the following theorem: Axioms A1-A7, A8”, together with P2, P4,

and A9 are necessary and sufficient for % to have a multiplier representation. The

proof is analogous, but instead of Savage’s Theorem, as in A.2.4, Arrow’s (1970)

theorem is used (cf. Chapter 2 of his book).

Removing Unboundedness

Instead of Axiom A7, Savage’s axiom P3 could be assumed. as verified by Klibanoff

et al. (2005) in the proof of their Proposition 2, the family of functions φθ remains

to be the only solution of Pexider’s functional equation when domain is restricted to

an interval.

Savage Axioms Only on Purely Objective Acts

If the existence of certainty equivalents for lotteries is assumed, i.e., for any π ∈ ∆(Z)

there exists z ∈ Z with z ∼ π, then the Savage axioms can be weakened in the

following sense. In Theorem 1 Axioms P2, P4, and P6 were assumed to hold on all

(Anscombe-Aumann) acts. Assuming the existence of certainty equivalents makes

it possible to impose Savage axioms only on Savage acts, i.e., acts paying out a

degenerate lottery in each state.

A.3 Proof of Theorem 2

Let q ∈ ∆σ(S,Σ) and let L1(S,Σ, q) denote the set of all nonnegative measurable

functions on (S,Σ) with
∫
S
f dq = 1. For f, g ∈ L1(S,Σ, q) define f ∼cx g iff

q(s ∈ S | f(s) ≤ t) = q(s ∈ S | g(s) ≤ t)

for any t ≥ 0. Similarly, for any measures p, p′ ∈ ∆σ(S,Σ) define p ∼cx p′ iff
dp
dq
∼cx dp′

dq
. For p ∈ ∆σ(S,Σ), the set O(p) = {p′ ∈ ∆σ(S,Σ) | p′ ∼cx p} is called the
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orbit of p. A set of measures Γ ⊆ ∆σ(q) is called orbit-closed iff p ∈ Γ⇒ O(p) ⊆ Γ.

Lemma 2. Let f ∈ L1(S,Σ, q) and let F,G ∈ Σ be disjoint events, with q(F ) = q(G).

Then, there exists g ∈ L1(S,Σ, q) such that f = g on (F ∪ G)c,
∫
F
f dq =

∫
G
g dq,

and f ∼cx g.

Proof. For each n ∈ N and for 1 ≤ k ≤ n2n define sets

nF 0 = {s ∈ F | f(s) ≥ n}, nF k =

{
s ∈ F

∣∣∣∣ k − 1

2n
≤ f(s) ≤ k

2n

}
,

nG0 = {s ∈ G | f(s) ≥ n}, nGk =

{
s ∈ G

∣∣∣∣ k − 1

2n
≤ f(s) ≤ k

2n

}
.

Because q is nonatomic, it is also convex-ranged (see, e.g., Villegas, 1964). Thus, for

each n, partitions {nF ′k}n2n

k=0 of F and {nG′k}n2n

k=0 of G can be constructed such that

q(F ′n,k) = q(Gn,k) and q(G′n,k) = q(Fn,k)

for all 0 ≤ k ≤ n2n and

(n+1)G
′
(2k) ⊆ (n+1)G

′
(k) and (n+1)G

′
(2k+1) ⊆ (n+1)G

′
(k)

for all 0 ≤ k ≤ n2n and n ∈ N.

Define functions

fn =
n2n∑
k=1

(
k − 1

2n
1nFk

)
+ n1nFk + f|(E∪G)c

+
n2n∑
k=1

(
k − 1

2n
1nGk

)
+ n1nGk ,

gn =
n2n∑
k=1

(
k − 1

2n
1nF ′k

)
+ n1nF ′k + f|(E∪G)c

+
n2n∑
k=1

(
k − 1

2n
1nG′k

)
+ n1nG′k .

Observe, that functions fn satisfy 0 ≤ fn ≤ fn+1, and converge pointwise to f .

Similarly, functions gn satisfy 0 ≤ gn ≤ gn+1. Define g = limn→∞ gn. Observe that

f = g on (E ∪G)c. Moreover,
∫
S
fn dq =

∫
S
gn dq, so by the Monotone Convergence

Theorem
∫
S
f dq =

∫
S
g dq.
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To see that f ∼cx g, let t ≥ 0 and define sets

An = {s ∈ S | fn(s) ≤ t}, A = {s ∈ S | f(s) ≤ t},

Bn = {s ∈ S | gn(s) ≤ t}, B = {s ∈ S | g(s) ≤ t},

Verify, that by construction of fn and gn An ↓ A, Bn ↓ B, and q(An) = q(Bn) for all

n. By countable additivity of q, limn→∞ q(An) = q(A) and limn→∞ q(Bn) = q(B).

Lemma 3. Suppose that Γ ⊆ ∆σ(q) is an orbit-closed set of measures. Suppose also

that there exists A ∈ Σ such that 0 < p(A) = p′(A) < 1 for all p, p′ ∈ Γ. Then

Γ = {q}.

Proof. Let α = q(A). Observe, that wlog α ≤ 1
2
, because if all measures in Γ agree

on A, then they also agree on Ac. Also, if α = 0, then for any p ∈ Γ q(A) = 0 ⇒
p(A) = 0, contradicting the assumption. Thus, α ∈ (0, 1

2
].

Step 1: p(E) = p(A) for all p ∈ Γ and for all events E ∈ Σ with q(E) = α.

Let E ∈ Σ be such that q(E) = α and observe that q(A − E) = q(E − A). Let

p ∈ Γ and define f = dp
dq

. By Lemma 2 applied to (E −A) and (A−E), there exists

g ∈ L1(S,Σ, q) such that f = g on (A ∪ E)c ∪ (A ∩ E),
∫

(E−A)
f dq =

∫
(A−E)

g dq,

and f ∼cx g. Define measure p′ ∈ ∆σ(S,Σ) by p′(F ) =
∫
F
g dq and observe that

p′ ∼cx p. Moreover, p(E − A) = p′(A − E) and p(A ∩ E) = p′(A ∩ E). Thus,

p(E) = p(E − A) + p(A ∩ E) = p′(A − E) + p′(A ∩ E) = p′(A) = p(A), where the

last equality holds by orbit-closedness of Γ.

Step 2: p(F ) = p(F ′) for all p ∈ Γ and for all disjoint events F, F ′ ∈ Σ with

q(F ) = q(F ′) = β < α.

Observe that β < 1
2
, so α − β < 1 − 2β. Thus, by range-convexity of q, there

exists H ⊆ (F ∪ F ′)c with q(H) = α − β. By Step 1 applied to sets F ∪ H and

F ′∪H, it follows that p(F ) + p(H) = p(F ∪H) = p(A) = p(F ′∪H) = p(F ′) + p(H);

hence, p(F ) = p(F ′).

Step 3: p(G) = q(G) for all p ∈ Γ and for G ∈ Σ..

Let γ = q(G) and for each n ∈ N define kn = sup{k | k
n
≤ γ}. Observe, that

limn→∞
kn
n

= γ. For each n ∈ N, by range-convexity of q, there exists a partition

{F1, . . . , Fn} of F such that q(Fk) = 1
n

for k = 1, . . . , n, sets F1, . . . , Fkn ⊆ G, and

sets Fkn+2, . . . , Fn ⊆ Gc. By Step 2, p(Fk) = 1
n

for k = 1, . . . n, so kn
n
≤ p(G) ≤ kn+1

n
.

By letting n to infinity, p(G) = γ.
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Proof of Theorem 2. The direction (ii) ⇒ (i) is trivial. For (i) ⇒ (ii), observe

that for any r ∈ R+ let Cr = {p ∈ ∆(S,Σ) | c(p) = r} denote the level set of the

cost function c. Observe that

V (f) = min
p∈∆(S,Σ)

∫
S

(u ◦ f) dp+ c(p) = min
r∈R+

min
p∈Cr

∫
S

(u ◦ f) dp+ r

From the proof of Corollary 4 in Sarin and Wakker (2000) it follows that Axiom A8

implies that % is probabilistically sophisticated with respect to some q ∈ ∆σ(S). By

Theorem 14 of Maccheroni et al. (2006a), if % is probabilistically sophisticated with

respect to q ∈ ∆σ(S), then c is rearrangement invariant, i.e., p ∼cx p′ ⇒ c(p) = c(p′)

for all p, p′ ∈ ∆(S,Σ). Thus, each Cr is orbit-closed. Therefore, by Assumption 1

and Lemma 3, Cr = {q} for all r ∈ R+. Thus,

V (f) = min
r∈R+

∫
S

(u ◦ f) dq + r =

∫
S

(u ◦ f) dq.

A.4 Proof of Theorem 3

Lemma 4 establishes that c1(p) = minq∈Q θR(p ‖ q) is a legitimate cost function.

Lemma 5 is the main step in proving necessity. The rest of the proof deals with

sufficiency.

Lemma 4. Suppose S is a Polish space. For any convex closed set Q ⊆ ∆σ(S) the

function c1(p) = minq∈Q θR(p‖q) is nonnegative, convex, lower semicontinuous, and

{p ∈ ∆(S) | c1(p) ≤ r} ⊆ ∆σ(S) for each r ≥ 0. Moreover, the function c1 is

grounded and {p ∈ ∆(S) | c1(p) = 0} = Q.

Proof. Nonnegativity follows from R(p‖q) being nonnegative for any p, q ∈ ∆(S).

By Lemma 1.4.3 (b) in Dupuis and Ellis (1997), R(·‖ ·) is a convex, lower semi-

continuous function on ∆σ(S) × ∆σ(S). Thus, arg minq∈Q θR(p‖ q) is a nonempty

compact and convex set for any p ∈ ∆σ(S). Let λ ∈ (0, 1) and p′, p′′ ∈ ∆σ(S). Let

q′ ∈ arg minq∈Q θR(p′‖q) and q′′ ∈ arg minq∈Q θR(p′′‖q). Convexity follows from:
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c1(λp′ + (1− λ)p′′) = min
q∈Q

θR(λp′ + (1− λ)p′′‖q)

≤ θR
(
λp′ + (1− λ)p′′‖λq′ + (1− λ)q′′

)
≤ λθR(p′‖q′) + (1− λ)θR(p′′‖q′′)

= λc1(p′) + (1− λ)c1(p′′).

For lower semicontiuniuty define Proj : ∆σ(S)×Q×R→ ∆σ(S)×R to be a projection

Proj(p, q, r) = (p, r). Let Epi(R) = {(p, q, r) ∈ ∆σ(S)×Q×R | R(p‖q) ≤ r} be the

epigraph of R and Epi(c1) = {(p, r) ∈ ∆σ(S)× R | c1(p) ≤ r} be the epigraph of c1.

Observe that, by lower semicontinuity of R, the set Epi(R) is closed. Next, observe

that Epi(c1) = Proj
(
Epi(R)

)
.

To verify that, let (p, r) ∈ Epi(c1). Then c1(p) ≤ r; thus minq∈QR(p ‖ q) ≤ r.

Let q′ ∈ arg minq∈QR(p‖ q). It follows, that R(p‖ q′) ≤ r; thus, (p, q, r) ∈ Epi(R).

Conclude that (p, r) ∈ Proj
(
Epi(R)

)
. Conversely, let (p, r) ∈ Proj

(
Epi(R)

)
. Then

there exists q′ such that (p, q′, r) ∈ Epi(R), so that R(p ‖ q′) ≤ r. Thus, c1(p) =

minq∈QR(p‖q) ≤ R(p‖q′) ≤ r. Conclude that (p, r) ∈ Epi(c1).

Finally, observe that Proj(C) is closed for any closed set C ∈ ∆σ(S) × Q × R.

Let (pn, rn) be a sequence in Proj(C) with limit (p, r). Because (pn, rn) ∈ Proj(C),

there exists a sequence qn in Q such that (pn, qn, rn) ∈ C. Because Q is a compact

set subset of a metric space, limn→∞ qn = q ∈ Q by passing to a subsequence. By

closedness of C, it follows that limn→∞(pn, qn, rn) = (p, q, r) ∈ C. Thus, (p, r) ∈ C.

To see that {p ∈ ∆(S) | c1(p) ≤ r} ⊆ ∆σ(S) for each r ≥ 0, observe that

{p ∈ ∆(S) | R(p ‖ q) ≤ r} ⊆ ∆σ(S) and that by compactness of Q and lower-

semicontinuity of R(p‖·)

{p ∈ ∆(S) | c1(p) ≤ r} =
⋃
q∈Q

{p ∈ ∆(S) | R(p‖q) ≤ r}.

For groundedness, recall that by Lemma 1.4.1 in Dupuis and Ellis (1997) R(p‖
q) = 0 iff p = q. Thus, c1(q) ≤ R(q‖ q) = 0 for any q ∈ Q. Conversely, if c1(p) = 0,

then minq∈QR(p‖ q) = 0. By lower semincontinuity of R, there exists q ∈ Q such

that 0 = c1(p) = R(p‖q). Thus, by Lemma 1.4.1 in Dupuis and Ellis (1997), p = q;

hence, p ∈ Q.
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Lemma 5. Suppose % is a variational preference and Q ⊆ ∆σ(S) is a closed and

convex set. Then V1 with c1(p) = minq∈Q θR(p‖q) represents % if and only if V2 with

c2 = δQ represents %.

Proof. Observe that
V1(f) = min

p∈∆S

∫
S

u(fs) dp+ min
q∈Q

θR(p‖q)

= min
p∈∆S

min
q∈Q

∫
S

u(fs) dp+ θR(p‖q)

= min
q∈Q

min
p∈∆S

∫
S

u(fs) dp+ θR(p‖q)

= min
q∈Q

φ−1
θ

(∫
S

φθ
(
u(fs)) dq

)
= φ−1

θ

(
min
q∈Q

∫
S

φθ
(
u(fs)) dq

)
,

where the fourth inequality follows from Proposition 1.4.2 in Dupuis and Ellis (1997)

and the fifth from strict monotonicity of φ−1
θ . Thus, V1 is ordinally equivalent to

V2(f) = minq∈Q
∫
S
φθ
(
u(fs)) dq = V2(f) = minp∈∆S

∫
S
φθ
(
u(fs)) dp+ c2(p).

Proof of Theorem 3. Suppose that V1 with c1(p) = minq∈Q θR(p‖ q) represents

%. By Lemma 4 an by Theorems 3 and 13 of Maccheroni et al. (2006a), V1(f) =

minp∈∆S

∫
S
u(fs) dp+ c1(p) is a representation of a preference % that satisfies axioms

A1-A8. By Lemma 5, V2 with c2 = δQ represents %.

Conversely, suppose that % is a variational preference represented by V2(f) =

minp∈∆S

∫
S
φθ
(
u(fs)

)
dp + c2(p). Define niveloid I : B0(Σ, φθ(U)) → R by I(ξ) =

minp∈∆S

∫
S
ξ dp+ c2(p) and observe that V2(f) = I

(
φθ(u(f))

)
. Therefore,

V2(αf + (1− α)π) = I

(
φθ
(
αu(f) + (1− α)u(π)

))
= I

(
− φθ

(
(1− α)u(π)

)
· φθ
(
αu(fs)

))
(24)

for any f ∈ F(∆(Z)), π ∈ ∆(Z), and α ∈ (0, 1).

Niveloid I is homogeneous of degree one. To verify, suppose that U = u(∆(Z)) =

R+. (The case of U ∈ {R−,R} is analogous.) Let ξ ∈ B0(Σ, φθ(R+)) and b ∈ (0, 1]

(the case b ≥ 1 follows from this). Let scalar r = b−1I(bξ); observe that I(br) =

I(I(bξ)) = I(bξ). Let f ∈ F(∆(Z)) be such that φθ(
1
2
u(f)) = ξ and π ∈ ∆(Z)
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be such that φθ(
1
2
u(π)) = r. Their existence is guaranteed by unboundedness of U .

Furthermore, let ρ, ρ′ ∈ ∆(Z) be such that b = −φθ(1
2
u(ρ)) and u(ρ′) = 0. (In the

case of U = R−, prove homogeneity for b ≥ 1 and deduce for b ∈ (0, 1].) By (24),

I(bξ) = I(br) this implies V2

(
φθ(

1
2
u(f) + 1

2
u(ρ))

)
= V2

(
φθ(

1
2
u(π) + 1

2
u(ρ))

)
. Because

% satisfies Axiom A2, this implies V2

(
φθ(

1
2
u(f) + 1

2
u(ρ′))

)
= V2

(
φθ(

1
2
u(π) + 1

2
u(ρ′))

)
,

which, by (24), implies I(ξ) = I(r). Thus, I(bξ) = I(br) = bI(r) = bI(ξ).

If U = R+ or U = R−, then I is defined on B0(Σ, [−1, 0)) or B0(Σ, (−∞,−1]),

respectively. Extend I to B0(Σ,R−) by homogeneity. Note that I is monotone,

homogeneous of degree one, and vertically invariant on B0(Σ,R−). If U = R, then I

is already defined on B0(Σ,R−) and enjoys those properties.

By Lemma 23 of Maccheroni et al. (2004), I is niveloid on B0(Σ,R−). By Lemmas

21 and 22 of Maccheroni et al. (2004), the unique vertically invariant extension of

I to B0(Σ), defined by Ĩ(ξ + k) = I(ξ) + k for any ξ + k ∈ B0(Σ,R) such that

ξ ∈ B0(Σ,R−) is monotonic. Note that Ĩ is monotone homogeneous of degree one

on B0(Σ,R).

Therefore, Ĩ satisfies the assumptions of Lemma 3.5 of Gilboa and Schmei-

dler (1989). Thus, there exists a closed, convex set Q ⊆ ∆(S) such that Ĩ(ξ) =

minp∈Q
∫
ξ dp. Hence, I(ξ) = minp∈Q

∫
ξ dp for all ξ ∈ B0(Σ, φθ(U)).

Let En be a vanishing sequence of events and let x < y be elements of φθ(U).

Observe that by Axiom A8, for any k there exists a N such that I(xEny) > I(y− 1
k
)

for all n ≥ N . Thus, minp∈Q
∫
xEny dp > y− 1

k
. Therefore, (x−y) maxp∈Q p(En) > 1

k
.

Hence, p(En) < (k(y − x))−1 for any p ∈ Q. Therefore limn→∞ p(En) = 0 for any

p ∈ Q. Thus, Q ⊆ ∆σ(S).

Finally, by Lemma 5, c1(p) = minq∈Q θR(p‖q).

A.5 Proof of Theorem 4

The direction (ii)⇒ (i) is trivial. For (i)⇒ (ii), observe that by Theorem 3, % can

be represented by

V1(f) = min
p∈∆(S,Σ)

∫
S

(u ◦ f) dp+ c1(p)

with c1(p) = minq∈QR(p‖q) for some closed and convex set Q ⊆ ∆σ(S). From the

proof of Corollary 4 in Sarin and Wakker (2000) it follows that Axiom A8 implies that

% is probabilistically sophisticated with respect to some q ∈ ∆σ(S). By Theorem 14
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of Maccheroni et al. (2006a), if % is probabilistically sophisticated with respect to

q ∈ ∆σ(S), then c1 is rearrangement invariant, i.e., p ∼cx p′ ⇒ c1(p) = c1(p′) for all

p, p′ ∈ ∆(S,Σ). Thus, in particular, the set {p ∈ ∆(S) | c1(p) = 0} is orbit-closed.

Therefore, by Assumption 1 and Lemma 3, {p ∈ ∆(S) | c1(p) = 0} = {q}. But, by

Theorem 3, % can be represented by

V2(f) = min
p∈Q

∫
S

φθ(u ◦ f) dp.

Moreover, by Lemma 4, Q = {p ∈ ∆(S) | c1(p) = 0}. Conclude that % can be

represented by

V2(f) =

∫
S

φθ(u ◦ f) dq.

A.6 Proof of Theorem 5

In order to relax the assumption of existence of certainty equivalents, the following

definition will be used.

Definition 10. Act f ∈ Fa(Z) is symmetric with respect to E ∈ Σa if for all z ∈ Z

fEz ∼ zEf.

Symmetric acts have the same expected utility on each “half” of the state space.25

Axiom A5” (Second Order Risk Aversion). If acts f, g ∈ Fa are symmetric with

respect to E ∈ Σa, then for all F ∈ Σb

fFg ∼ gFf ⇒ (fFg)E(gFf) % fFg.

The proof of Theorem 5 follows from the proof of the following stronger theorem

Theorem 11. Suppose % has representation (14). Then Axiom A5” is satisfied if

and only if the function φ in (14) is concave.

25Symmetric acts are acts that can be “subjectively mixed”. Such subjective mixtures are differ-
ent from subjective mixtures studied by Ghirardato, Maccheroni, Marinacci, and Siniscalchi (2003),
whose construction relies on range-convexity of u. In the present setting, subjective mixtures are
not needed under range-convexity of u.
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Proof.

A.6.1 Necessity

Suppose f ∈ Fa(Z) is symmetric with respect to E ∈ Σa. Let α = qa(E). Axiom

A6 and representation (14) imply that there exist z′, z′′ ∈ Z with z′ � z′′. Thus,

fEz′ ∼ z′Ef and fEz′′ ∼ z′′Ef imply that∫
E

(u ◦ f) dqa + (1− α)u(z′) = αu(z′) +

∫
Ec

(u ◦ f) dqa, (25)∫
E

(u ◦ f) dqa + (1− α)u(z′′) = αu(z′′) +

∫
Ec

(u ◦ f) dqa. (26)

By subtracting (26) from (25)

(1− α)[u(z′)− u(z′′)] = α[u(z′)− u(z′′)];

thus, α = 1
2

and therefore ∫
E

(u ◦ f) dqa =

∫
Ec

(u ◦ f) dqa.

Let f, g ∈ Fa(Z). Denote U(f) =
∫
Sa

(u ◦ f) dqa and U(g) =
∫
Sa

(u ◦ g) dqa.

Because f and g are symmetric with respect to E ∈ Σa,∫
E

(u ◦ f) dqa =

∫
Ec

(u ◦ f) dqa =
1

2
U(f)∫

E

(u ◦ g) dqa =

∫
Ec

(u ◦ g) dqa =
1

2
U(g).

Let F ∈ Σb and β = qb(F ). If fFg ∼ gFf , then

βφ
(
U(f)

)
+ (1− β)φ

(
U(g)

)
= βφ

(
U(g)

)
+ (1− β)φ

(
U(f)

)
.

Thus,

(2β − 1)φ
(
U(f)

)
= (2β − 1)φ

(
U(g)

)
.
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If β 6= 1
2
, then U(f) = U(g) and trivially

V
(
(fFg)E(gFf)

)
= βφ

(
1

2
U(f) +

1

2
U(g)

)
+ (1− β)φ

(
1

2
U(g) +

1

2
U(f)

)
= βφ

(
U(f)

)
+ (1− β)φ

(
U(g)

)
= V (fFg).

If β = 1
2
, then

V
(
(fFg)E(gFf)

)
=

1

2
φ

(
1

2
U(f) +

1

2
U(g)

)
+

1

2
φ

(
1

2
U(g) +

1

2
U(f)

)
= φ

(
1

2
U(f) +

1

2
U(g)

)
≥ 1

2
φ
(
U(f)

)
+

1

2
φ
(
U(g)

)
= V (fFg),

where the inequality follows from concavity of φ.

A.6.2 Sufficiency

Convexity of Domain of φ

Let Dφ be the domain of function φ, i.e., Dφ = {U(f) | f ∈ Fa}. Suppose k, l ∈
Dφ and α ∈ (0, 1). Wlog k < l. Let f, g ∈ Fa be such that k = U(f) and

l = U(g). Define A = mins∈S f(s) and B = maxs∈S g(s) and let x, y ∈ Z be such

that u(x) = A and u(y) = B. By nonatomicity of qa, there exists E ∈ Σa with

qa(E) =
(
B − [αk + (1− α)l]

)
(B − A)−1. Verify, that U(xEy) = αk + (1 − α)l.

Hence, Dφ is a convex set.

Dyadic Convexity of φ

Suppose k, l ∈ Dφ and let f, g ∈ Fa be such that k = U(f) and l = U(g). Define

k = mins∈S f(s), k̄ = maxs∈S f(s), l = mins∈S g(s), and l̄ = maxs∈S g(s). Let

x, x̄, y, ȳ be such that u(x) = k, u(x̄) = k̄, u(y) = l, u(ȳ) = l̄. Also, define κ = k̄−k
k̄−k

and λ = l̄−l
l̄−l . By nonatomicity of qa there exist partitions {Eκ

1 , E
κ
2 , E

κ
3 , E

κ
4 } and

{Eλ
1 , E

λ
2 , E

λ
3 , E

λ
4 } of Sa such that Eκ

1 ∪Eκ
2 = Eλ

1 ∪Eλ
2 , qa(E

κ
1 ∪Eκ

2 ) = qa(E
λ
1 ∪Eλ

2 ) = 1
2
,

qa(E
κ
1 ∪ Eκ

3 ) = κ
2
, and qa(E

λ
1 ∪ Eλ

3 ) = λ
2
.

Define acts f = xEκ
1 x̄E

κ
2 xE

κ
3 x̄E

κ
4 and g = yEλ

1 ȳE
λ
2 yE

λ
3 ȳE

λ
4 . Verify that f and

g are symmetric with respect to E = Eκ
1 ∪ Eκ

2 = Eλ
1 ∪ Eλ

2 and satisfy U(f) = k and

U(g) = l. By nonatomicity of qb, there exists F ∈ Σb with qb(F ) = 1
2
. Verify that
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V (fFg) = 1
2
φ(k) + 1

2
φ(l) = V (gFf). Hence, by Axiom A5’,

φ

(
1

2
k +

1

2
l

)
=

1

2
φ

(
1

2
k +

1

2
l

)
+

1

2
φ

(
1

2
l +

1

2
k

)
= V

(
(fFg)E(gFf)

)
≥ V (fFg) =

1

2
φ(k) +

1

2
φ(l).

As a consequence,

φ

(
1

2
k +

1

2
l

)
≥ 1

2
φ(k) +

1

2
φ(l) (27)

for all k, l ∈ Dφ.

Limiting argument

Let α ∈ [0, 1]. From A.6.2 it follows that αk+(1−α)l ∈ Dφ. Let the sequence {αn} be

a dyadic approximation of α. By induction, inequality (27) implies that φ(αnk+(1−
αn)l) ≥ αnφ(k)+(1−αn)φ(l) for all n. By continuity of φ, limn→∞ φ(αnk+(1−αn)l) =

φ(αk + (1− α)l). Thus, φ(αk + (1− α)l) ≥ αφ(k) + (1− α)φ(l).

A.7 Proof of Theorem 6

By Theorem 3 of Ergin and Gul (2004), Axioms A1, A6, P2’, P3, P4’, and P6’

guarantee the existence of nonatomic measures qa ∈ ∆Sa and qb ∈ ∆Sb, function

u : Z → R, and a continuous and strictly increasing φ : R → R such that % is

represented by V with

V (f) =

∫
Sb

φ

(∫
Sa

u(f(sa, sb)) dqa(sa)

)
dqb(sb). (28)

Let x, y be as in Axiom A7’. Wlog u(y) = 0, thus u(x) > 0. Nonatomic-

ity of qa guarantees that there exists a sequence of events {En}n≥1 in Σa with

qa(En) = 1
n
. Axiom A7’ guarantees that there exist a sequence {z′n}n≥1 with

φ
(
0
)
> φ

(
1
n
u(z′n) + n−1

n
u(x)

)
or a sequence {z′′n}n≥1 with φ

(
1
n
u(z′′n)

)
> φ

(
u(x)

)
(or both such sequences exist). By strict monotonicity of φ if follows that, in the

first case, −(n − 1)u(x) > u(z′n); thus u(z′n) → −∞; hence, u is unbounded from

below. In the second case, u(z′′n) > nu(x); thus, u(z′′n) → +∞; hence, in this case u
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is unbounded from above. Define U := u(Z). After normalization, there are three

possible cases: U ∈ {R+,R−,R}.
Let E ∈ Σa be as in Axiom A2’’’ and let p := qa(E). For any k ∈ U define

a preference %k on Fb as follows. Let z ∈ Z be such that u(z) = k and for any

f, g ∈ Fb(Z) define f %k g iff fEz % gEz. (Because of Axiom A2’’’, the choice of

particular z does not matter.) Define φk(u) := φ(u+ (1− p)k). From representation

(28), it follows that %k is represented by V k with

V k(f) =

∫
Sb

φk
(∫

E

u(f(sa, sb)) dqa(sa)

)
dqb(sb).

By Axiom A2’’’, %k=%0 for all k ∈ U . Hence, φk and φ0 are equal up to positive

affine transformations, i.e., φ(u + (1 − p)k) = α(k)φ(u) + β(k) for all u, k ∈ U . By

changing variables: k′ := (1− p)k, α′(k′) = α(k
′

p
), and β′(k′) = β(k

′

p
), it follows that

φ(k′+u) = α′(k′)φ(u)+β′(k′) for all u, k′ ∈ U , which is is a generalization of Pexider’s

equation (see equation (3) of Section 3.1.3, p. 148 of Aczél, 1966). By Theorem 5,

φ is concave. By Corollary 1 in Section 3.1.3 of Aczél (1966), up to positive affine

transformations, the only strictly increasing quasiconcave solutions are of the form

φθ, for θ ∈ (0,∞].

It follows from Theorem 1 in Section 1 of Villegas (1964) that Axiom A8’ delivers

countable additivity of qb. A reasoning similar to 1 of this paper concludes the

proof.

A.8 Axiomatization of Recursive Variational Preferences

Definition 11. Family {%st} is a Recursive Variational Preference if it is represented

by a family of continuous, nonconstant functions Ust : ∆(Z ×H)→ R such that

Ust(µ) =

∫
Z×H

W

(
z, min

p∈∆S

∫
S

U(st,s)

(
h(s)

)
dp(s) + cst(p)

)
dµ(z, h) (29)

for any p ∈ ∆(Z × H), where the aggregator W : Z × RU → RU is continuous

and strictly increasing in the second argument and cost functions cst are grounded,

convex, and lower semicontinous. Here, RU =
⋃
t≥1

⋃
st∈St

⋃
p∈∆(Z×H) Ust(p).

The axiomatization of recursive variational preferences combines Hayashi’s (2005)
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axiomatization of recursive maxmin expected utility preferences with the axiomati-

zation of Maccheroni et al. (2006a). All of Hayashi’s (2005) axioms are retained,

except that certainty independence is relaxed to weak certainty independence.

Axiom D1 (Order). For any st ∈ St relation %st is a continuous, complete, transi-

tive, and there exist y, y′ ∈ Z∞ such that y �st y′.

Axiom D2 (Consumption Separability). For any st ∈ St, z, z′ ∈ Z, and h, h′ ∈ H

(z, h) %st (z, h′) if and only if (z′, h) %st (z′, h′).

Axiom D3 (Risk Preference). For any st, ŝt ∈ St, z ∈ Z, and d, d′ ∈ D

(i) (History-Independence)

d %st d
′ if and only if d %ŝt d

′,

(ii) (Stationarity)

(z, d) %st (z, d′) if and only if d %st d
′.

Axiom D4 (Risk Equivalence Preservation). For any st ∈ St, p, p′ ∈ ∆(Z × H),

d, d′ ∈ D, and α ∈ (0, 1)

[p ∼st d and p′ ∼st d′] =⇒ [αp+ (1− α)p′ ∼st αd+ (1− α)d′].

By Axiom D2, for each st ∈ St the preference %st over degenerate lotteries of

the form (z, h+1) induces a preference over one-step-ahead acts. By a slight abuse of

notation this induced preference will also be denoted %st .

Axiom D5 (One-Step-Ahead Variational Preference). For any st ∈ St, h, h′ ∈ H+1,

d, d′ ∈ D, and α ∈ (0, 1)

(i) (Weak Certainty Independence)

αh+1 + (1− α)d %st αh
′
+1 + (1− α)d

=⇒ αh+1 + (1− α)d′ %st αh
′
+1 + (1− α)d′,
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(ii) (Uncertainty Aversion)

h+1 ∼st h′+1

=⇒ αh+1 + (1− α)h′+1 %st h+1.

Axiom D6 (Dynamic Consistency). For any st ∈ St and h, h′ ∈ H+1[
h(s) %st,s h

′(s) for all s ∈ S
]

=⇒ h %st h
′.

Theorem 12. Family {%st} satisfies Axioms D1-D6 if and only if it has a variational

representation (29).

Proof. This proof adapts the proof of Hayashi’s (2005) Theorem 1.

A.8.1 Lemmas

The following Lemmas of Hayashi (2005) hold for {%st}
Lemma H8. For any st ∈ St, z ∈ Z, and h+1, h

′
+1 ∈ H+1 if (c, h+1(s)) %st (c, h′+1(s))

for every s ∈ S, then (c, h+1) %st (c, h′+1).

Lemma H9. For any s ∈ S, h ∈ H, and µ ∈ ∆(Z ×H) there exist risk equivalents

d, d′ ∈ D such that (z, h) ∼st (z, d) and µ ∼st d′.
Lemma H10. For any h ∈ H there exists h+1 ∈ H+1 such that (i) h(s) ∼st,s h+1(s)

for all s ∈ S, (ii) (z, h) ∼st (z, h+1).

Hayashi (2005) Lemma 11 relies on C-independence and has to be weakended.

Lemma H11’. For any st ∈ St, d, d′, d′′ ∈ D, and α ∈ (0, 1) if d ∼st d′ then

αd+ (1− α)d′′ ∼st αd′ + (1− α)d′′.

Proof. First show that 1
2
d + 1

2
d′′ ∼st 1

2
d′ + 1

2
d′′. This modifies part of the proof

of Lemma 28 of Maccheroni et al. (2006a). Towards contradiction, suppose wlog
1
2
d+ 1

2
d′′ �st 1

2
d′ + 1

2
d′′. By Axiom B5(i), 1

2
d+ 1

2
d �st 1

2
d′ + 1

2
d and, by Axiom B5(i)

again, 1
2
d+ 1

2
d′ �st 1

2
d′+ 1

2
d′; thus d �st d′; contradiction. Second, because continuity

implies mixture continuity, the conclusion follows from Theorem 2 of Herstein and

Milnor (1953).

From Axiom B4 and Lemma H11’ follows

Lemma H12’. For any st ∈ St, µ, µ′, µ′′ ∈ ∆(Z × H), and α ∈ (0, 1) if µ ∼st µ′

then αµ+ (1− α)µ′′ ∼st αµ′ + (1− α)µ′′.
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Following Hayashi (2005), risk preference is uniquely determined by a history-

independent preference % over D. By Theorem 2 of Grandmont (1972), % is repre-

sented by U : D → R where U(d) =
∫
u(z, d′) dd(z, d′). By continuity and compact-

ness, U can be chosen so that U(D) = [−M,M ].

By continuity and Lemma H12’, Theorem 2 of Grandmont (1972) implies that

{%st} is represented by a family {Ust} where Ust(µ) : ∆(Z × H) → R has Ust =∫
ust(z, h) dµ(z, h) with ust : Z ×H → R continuous.

By Axiom B2, ust = Wst(z, ust(ẑ, h)) for some fixed ẑ ∈ Z. Moreover, as argued

by Hayashi (2005), Wst can be chosen to be independent of history and time. It will

be denoted W .

A.8.2 Representation over one-step-ahead acts

As before, with a slight abuse of notation let h+1 %st h
′
+1 iff (z, h+1) %st (z, h′+1)

for some z ∈ Z (which doesn’t matter). By Axiom B1, %st is a continuous, non-

degenerate preference relation.

Thus, by Axiom B5 and Lemma H8 the assumptions of Maccheroni et al.’s

(2006a) Theorem 3 are satisfied. Therefore, there exists a nonconstant affine func-

tion vst : D → R and a grounded, convex and lower semicontinuous function

cst : ∆S → [0,∞] such that on H+1 preference %st is represented by Vst(h+1) =

minp∈∆S

∫
vst ◦ h+1 dp + cst(p) for all h+1 ∈ H+1. By Axiom B3(i), preference %st

on D is history independent, so wlog vst = U . Thus, on H+1 preference %st is

represented by Vst(h+1) = minp∈∆S

∫
U ◦ h+1 dp+ cst(p) for all h+1 ∈ H+1.

Define function U(st,h) by U(st,h)(s) = U(st,s)

(
h(s)

)
. The following lemma is proved

by Hayashi (2005).

Lemma H13. For any h ∈ H there exists h+1 ∈ H+1 such that U(st,h) = U(st,h+1).

Thus, Vst represents %st on the whole of H. The aggregator W and full support of

measures obtained as in Hayashi (2005)

A.9 Attitudes Towards the Timing of Objective Risk

As in the model of Kreps and Porteus (1978), the aggregator W in representation (29)

is responsible for preference for earlier resolution of objective risk. For any st ∈ S, z ∈
Z, d1, d2 ∈ D, and α ∈ [0, 1] define (1, α; z, d1, d2) to be a temporal lottery where risk
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is resolved in period 1, i.e., whose chance node for period 0 is degenerate. Formally,

define (1, α; z, d1, d2) = (z, αd1 +(1−α)d2). In contrast, define (0, α; z, d1, d2) to be a

temporal lottery where risk is resolved already in period 0, i.e., whose chance node for

period 0 is not degenerate. Formally , define (0, α; z, d1, d2) = α(z, d1)+(1−α)(z, d2).

Definition 12. Relation % exhibits preference for [resp., indifference to, preference

against] earlier resolution of risk if

(0, α; z, d1, d2) %st [resp., ∼st ,-st ] (1, α; z, d1, d2)

for all t ≥ 0, st ∈ St, z ∈ Z, d1, d2 ∈ D, and α ∈ (0, 1).

Preference for earlier resolution of purely objective risk is an important feature

of preferences studied by Kreps and Porteus (1978), but is conceptually unrelated to

uncertainty about subjective states.

Axiom D7 (Risk Timing Indifference). Preference % exhibits indifference to earlier

resolution of risk.

Another important property of preferences is that tradeoffs between consumption

at period t and t+ 1 are independent from consumption at later periods.26

Axiom D8 (Future Separability). For any st ∈ St, d0,1, d
′
0,1 ∈ ∆(Z × ∆(Z)), and

y, y′ ∈ Z∞

(d0,1, y) %st (d′0,1, y) ⇐⇒ (d0,1, y
′) %st (d′0,1, y

′).

The following theorem extends Hayashi’s (2005).

Theorem 13. The family {%st} satisfies Axioms D1-D8 if and only if the aggregator

W : Z × RU → RU in (29) has the form W (z, r) = u(z) + βr; thus, the family is

represented by

Ust(µ) =

∫
Z×H

{
u(z) + β

[
min
p∈∆S

∫
S

U(st,s)

(
h(s)

)
dp(s) + cst(p)

]}
dµ(z, h)

where u : Z → R is continuous and nonconstant and β ∈ (0, 1). Moreover, β is

unique and the function u is unique up to positive affine transformations.

26This is Assumption 5 in Epstein (1983) and Axiom 8 in Hayashi (2005).
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Proof. Follows from the proof of Corollary 1 in Hayashi (2005), which does not rely

on certainty independence.

A.10 Proof of Theorem 7

By Theorem 13, %st is represented by

Ust(µ) =

∫
Z×H

{
u(z) + β

[
min
p∈∆S

∫
S

U(st,s)

(
h(s)

)
dp(s) + cst(p)

]}
dµ(z, h).

Thus, %st on H+1 is represented by Vst where Vst(h+1) = Ist(U(st,h+1)), where, as

before U(st,h+1) is defined as U(st,h+1)(s) = U(st,s)

(
h+1(s)

)
.

Observe that %st on H+1 is continuous, monotone (by Lemma H8), and satis-

fies tradeoff consistency (by Axiom B1). Moreover, D is a connected topological

space. Thus, by Corollary 10 of Köbberling and Wakker (2003) there exists a unique

probability qst ∈ ∆(S) and a continuous function φ : D → R that represents %st .

Moreover, function φ is unique up to positive affine transformations.

As in other proofs, translation invariance of Ist leads to the Pexider equation for

φ. As verified by Klibanoff et al. (2005) in the proof of their Proposition 2, even when

the domain of φ is a bounded interval, as is the case here because of the compactness

of ∆(Z) and continuity of u, the only solutions of the Pexider equation are φθ, where

θ ∈ (0,∞] is uniquely pinned down.

Because relation ∼∗st is constant across st, the scalar θst is constant across st. To

see that, for each θ define x(θ) < 0 which satisfies φθ(1) − φθ(0) = φθ(0) − φθ(x).

Thus, x(θ) is implicitly defined by Φ(θ, x) = φθ(1) + φθ(x)− 2φθ(0). By the implicit

function theorem, dx
dθ

= − dΦ
dθ
/ dΦ

dx
= exp(−θ−1)−x · exp(−xθ−1)

θ · exp(−xθ−1)
> 0. Thus, for any two

different values of θ, the corresponding values of x(θ) are different.

Let st, ŝt̂ be distinct histories of possibly different length and recall that % over

D is history independent. Let U(d) = 1, U(d∗) = 0, and assume that U(dst) = x(θst)

and U(dŝt̂) = x(θŝt̂). Observe that [d, d∗] ∼∗st [d∗, dst ] and [d, d∗] ∼∗
ŝt̂

[d∗, dŝt̂ ]. If

θŝt̂ 6= θst , then, wlog, x(θŝt̂) > x(θst), so dŝt̂ is an improvement over dst . This

contradicts the equality ∼∗
ŝt̂

=∼∗st and tradeoff consistency of both ∼∗
ŝt̂

and ∼∗st .
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A.11 Proof of Theorem 8

Let us = U(h+1(s)) and let qs = q({s}). Observe that

U(0; z, h+1) = φ−1
θ

(∑
s∈S

φθ(u(z) + βus)qs

)
= φ−1

θ

(∑
s∈S

[
− φθ(u(z)) · φθ(βus)

]
qs

)
= u(z) + φ−1

θ

(∑
s∈S

φθ(βus)qs

)
and

U(1; z, h+1) = u(z) + βφ−1
θ

(∑
s∈S

φθ(us)qs

)
.

Thus, U(0; z, h+1) > U(1; z, h+1) if and only if

1

β
φ−1
θ

(∑
s∈S

φθ(βus)qs

)
> φ−1

θ

(∑
s∈S

φθ(us)qs

)
if and only if

φ−1
θ
β

(∑
s∈S

φ θ
β
(us)qs

)
> φ−1

θ

(∑
s∈S

φθ(us)qs

)
. (30)

Because β < 1, the function φθ is a strictly concave transformation of φ θ
β
. Moreover,

qs > 0 for all s ∈ S and by assumption there exist s′, s′′ ∈ S such that us′ 6= us′′ .

Thus, inequality (30) follows from Jensen’s inequality.

A.12 Proof of Theorem 9

Follows from the reasoning in the proof of Theorem 8.

A.13 Proof of Theorem 10

Let % be a stationary variational preference represented by

U(µ) =

∫
Z×H

[
u(z) + β min

p∈∆S

∫
S

U
(
h(s)

)
dp(s) + c(p)

]
dµ(z, h)
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As before, U(D) = [−M,M ] =: V . Define niveloid I : B0(Σ,V) → R as I(ξ) =

minp∈∆(S)

∫
ξ dp+ c(p).

Suppose that ξ ∈ B0(Σ,V). For each s ∈ S the value ξ(s) ∈ V , so there exists

ds ∈ D such that U(ds) = ξ(s). Define h ∈ H+1 by h(s) = ds for all s ∈ S. Let

z0, z1 ∈ Z. Because % satisfies indifference to the timing of resolution of uncertainty,

(z0, (0; z1, h)) ∼ (z0, (1; z1, h)). Thus, u(z0) + βI
(
u(z1) + βξ

)
= u(z0) + β

(
u(z1) +

βI(ξ)
)
. Hence, by translation invariance, I(βξ) = βI(ξ) for any ξ ∈ B0(Σ,V).

Let 0 < b < β and suppose that there exists ξ ∈ B0(Σ,V) such that I(bξ) 6= bI(ξ).

Observe that, I(bξ) = I(bξ + (1− b)0) ≥ bI(ξ), by concavity and because I(0) = 0.

Thus, I(bξ) > bI(ξ). Moreover, I(βnξ) = I(ββn−1ξ) = βI(βn−1ξ) = · · · = βnI(ξ) for

any n ∈ N. Choose n such that βn < b. For this n it follows that βnI(ξ) = I(βnξ) =

I
(
βn

b
bξ + b−βn

b
0
)
≥ βn

b
I(bξ) > βnI(ξ). Contradiction.

Let β < b < 1 and suppose that there exists ξ ∈ B0(Σ,V) such that I(bξ) 6= bI(ξ).

As above I(bξ) > bI(ξ) follows. Moreover, I(bnξ) = I(bn−1bξ) ≥ bn−1I(bξ) > bnI(ξ)

for any n ∈ N. Choose n such that bn < β. Contradiction with the case 0 < b < β.

As a consequence, I is a niveloid on B0(Σ,V) that is homogenous of degree one.

Extend I to B0(Σ) by homogeneity. Observe that the extension is a normalized

niveloid, thus it satisfies the assumptions of Lemma 3.5 of Gilboa and Schmeidler

(1989); therefore, there exists a closed and convex set C ⊆ ∆(S) such that I(ξ) =

minp∈C
∫
ξ dp for all ξ ∈ B0(Σ,V).

References

Abdellaoui, M., A. Baillon, and P. P. Wakker (2007): “Combining Bayesian
Beliefs and Willingness to Bet to Analyze Attitudes towards Uncertainty,” mimeo.

Aczél, J. (1966): Lectures on Functional Equations and Their Applications.,
NewYork: Academic Press.

Allais, M. (1953): “Le Comportement de l’Homme Rationnel devant le Risque:
Critique des Postulats et Axiomes de l’Ecole Americaine,” Econometrica, 21, 503–
546.

Anderson, E. W., L. P. Hansen, and T. J. Sargent (2000): “Robustness,
Detection, and the Price of Risk,” mimeo.

56



Anscombe, F. and R. Aumann (1963): “A Definition of Subjective Probability,”
The Annals of Mathematical Statistics, 34, 199–205.

Arrow, K. (1970): Essays in the Theory of Risk-Bearing, Amsterdam: North-
Holland.

Barillas, F., L. P. Hansen, and T. J. Sargent (2007): “Doubts or Variabil-
ity?” mimeo.

Chen, Z. and L. Epstein (2002): “Ambiguity, Risk, and Asset Returns in Con-
tinuous Time,” Econometrica, 70, 1403–1443.

Chew, S. H. and J. S. Sagi (2007): “Small Worlds: Modeling Attitudes towards
Sources of Uncertainty,” Journal of Economic Theory, forthcoming.

Dupuis, P. and R. S. Ellis (1997): A Weak Convergence Approach to the Theory
of Large Deviations, Wiley, New York.

Ellsberg, D. (1961): “Risk, Ambiguity, and the Savage Axioms,” The Quarterly
Journal of Economics, 75, 643–669.

Epstein, L. (1983): “Stationary cardinal utility and optimal growth under uncer-
tainty,” Journal of Economic Theory, 31, 133–152.

Epstein, L. and S. Zin (1989): “Substitution, Risk Aversion, and the Temporal
Behavior of Consumption and Asset Returns: A Theoretical Framework,” Econo-
metrica, 57, 937–969.

Epstein, L. G. and M. Schneider (2003): “IID: independently and indistin-
guishably distributed,” Journal of Economic Theory, 113, 32–50.

Ergin, H. and F. Gul (2004): “A Subjective Theory of Compound Lotteries,”
mimeo.

Fishburn, P. C. (1970): Utility Theory for Decision Making, Wiley, New York.

Ghirardato, P., F. Maccheroni, M. Marinacci, and M. Siniscalchi
(2003): “A Subjective Spin on Roulette Wheels,” Econometrica, 71, 1897–1908.

Gilboa, I. and D. Schmeidler (1989): “Maxmin expected utility with non-unique
prior,” Journal of Mathematical Economics, 18, 141–153.

Grandmont, J.-M. (1972): “Continuity Properties of a von Neumann-Morgenstern
Utility,” Journal of Economic Theory, 4, 45–57.

57



Grant, S. and B. Polak (2006): “Bayesian beliefs with stochastic monotonicity:
An extension of Machina and Schmeidler,” Journal of Economic Theory, 130, 264–
282.

——— (2007): “Absolute Ambiguity Aversion and Mean-Dispersion Preferences,”
mimeo.

Halevy, Y. and E. Ozdenoren (2007): “Uncertainty and Compound Lotteries:
Calibration,” mimeo.

Hansen, L. P. and T. J. Sargent (2001): “Robust Control and Model Uncer-
tainty,” The American Economic Review, 91, 60–66.

——— (2007): Robustness, Princeton University Press.

Hansen, L. P., T. J. Sargent, G. Turmuhambetova, and N. Williams
(2006): “Robust control and model misspecification,” Journal of Economic The-
ory, 128, 45–90.

Hayashi, T. (2005): “Intertemporal substitution, risk aversion and ambiguity aver-
sion,” Economic Theory, 25, 933–956.

Herstein, I. N. and J. Milnor (1953): “An Axiomatic Approach to Measurable
Utility,” Econometrica, 21, 291–297.

Jacobson, D. J. (1973): “Optimal Linear Systems with Exponential Performance
Criteria and their Relation to Differential Games,” IEEE Transactions on Auto-
matic Control, 18, 124–131.

Karantounias, A. G., L. P. Hansen, and T. J. Sargent (2007): “Ramsey
taxation and fear of misspecication,” mimeo.

Keynes, J. (1921): A Treatise on Probability, MacMillan.

Kleshchelski, I. and N. Vincent (2007): “Robust Equilibrium Yield Curves,”
mimeo.

Klibanoff, P., M. Marinacci, and S. Mukerji (2005): “A smooth model of
decision making under ambiguity,” Econometrica, 73, 1849–1892.

Knight, F. (1921): Risk, Uncertainty and Profit, Houghton Mifflin Company.
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