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1 Introduction

Financial economists are now in the fortunate situation of having a huge amount of high-

frequency financial data for a large number of assets. Over the past fifteen years the econo-

metric methods to analyze the high-frequency data for a small number of assets has grown

exponentially. At the same time the field of large dimensional data analysis has exploded pro-

viding us with a variety of tools to analyze a large cross-section of financial assets over a long

time horizon. This paper merges these two literatures by developing statistical methods for

estimating the systematic pattern in high frequency data for a large cross-section. One of the

most popular methods for analyzing large cross-sectional data sets is factor analysis. Some

of the most influential economic theories, e.g. the arbitrage pricing theory of Ross (1976) are

based on factor models. While there is a well-developed inferential theory for factor models

of large dimension with long time horizon and for factor models of small dimension based on

high-frequency observations, the inferential theory for large dimensional high-frequency factor

models is an area of active research.

This paper develops the statistical inferential theory for approximate factor models of large

dimensions based on high-frequency observations. Conventional factor analysis requires a long

time horizon, while this methodology also works with short time horizons, e.g. a week. If

a large cross-section of firms and sufficiently many high-frequency asset prices are available,

we can estimate the number of systematic factors and derive consistent and asymptotically

mixed-normal estimators of the latent loadings and factors. These results are obtained for

very general stochastic processes, namely Itô semimartingales with jumps, and an approximate

factor structure which allows for weak serial and cross-sectional correlation in the idiosyncratic

errors. The estimation approach can separate factors for systematic large sudden movements,

so-called jumps factors, from continuous factors.

This methodology has many important applications as it can help us to understand system-

atic risk better. First, we obtain guidance on how many factors might explain the systematic

movements and see how this number changes over short time horizons. Second, we can analyze

how loadings and factors change over short time horizons and study their persistence. Third, we

can analyze how continuous systematic risk factors, which capture the variation during “normal”

times, are different from jump factors, which can explain systematic tail events. Fourth, after

identifying the systematic and idiosyncratic components we can apply these two components

separately to previous empirical high-frequency studies to see if there is a different effect for

systematic versus nonsystematic movements. For example we can examine which components

drive the leverage effect. In a separate paper, Pelger (2015), I apply my estimation method to

a large high-frequency data set of the S&P500 firms to test these questions empirically.

My estimator for the loadings and factors is essentially the well-known principal component
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based estimator of Bai (2003), where I just use properly rescaled increments for the covariance

estimation. However, except for very special cases the necessary assumptions and the proofs

cannot be mapped into the long-horizon factor model and hence require new derivations. The

asymptotic distribution results are in general different from the long-horizon factor model.1

Furthermore conventional factor analysis does not distinguish between continuous and jump

risk. Using a truncation approach, I can separate the continuous and jump components of the

price processes, which I use to construct a “jump covariance” and a “continuous risk covariance”

matrix. The latent continuous and jump factors can be separately estimated by principal

component analysis.

This paper develops a new estimator for the number of factors that requires only the same

weak assumptions as the loadings estimator in my model. The basic idea in most estimation

approaches is that the systematic eigenvalues of the estimated covariance matrix or quadratic

covariation matrix will explode, while the other eigenvalues of the idiosyncratic part will be

bounded. Prominent estimators with good performance in simulations2 impose the additional

strong assumptions of random matrix theory that imply that a certain fraction of the small

eigenvalues will be bounded from below and above and the largest residual eigenvalues will

cluster. I propose the novel idea of perturbing the eigenvalues before analyzing the eigenvalue

ratio. As long as the eigenvalue ratio of the perturbed eigenvalues is close to one, the spectrum

is due to the residuals. Due to a weaker rate argument and not the strong assumptions of

random matrix theory the eigenvalue ratio of perturbed idiosyncratic eigenvalues will cluster.

The important contribution of my estimator is that it can estimate the number of continuous,

jump and total factors separately and that it can deal with strong and weak factors as we are

focussing on the residual spectrum. The approach is robust to the choice of the perturbation

value. Simulations illustrate the excellent performance of my new estimator.

I extend my model into two directions. First, I include microstructure noise and develop an

estimator for the variance of microstructure noise and for the impact of microstructure noise

on the spectrum of the factor estimator, allowing us to test if a frequency is sufficiently coarse

to neglect the noise. Second, I develop a new test to determine if a set of estimated statistical

factors can be written as a linear combination of observed economic variables. The challenge is

that factor models are only identified up to invertible transformations. I provide a new measure

for the distance between two sets of factors and develop its asymptotic distribution under the

1(1) After rescaling the increments, we can interpret the quadratic covariation estimator as a sample covariance
estimator. However, in contrast to the covariance estimator, the limiting object will be a random variable and
the asymptotic distribution results have to be formulated in terms of stable convergence in law, which is stronger
than convergence in distribution. (2) Models with jumps have “heavy-tailed rescaled increments” which cannot
be accommodated in the relevant long-horizon factor models. (3) In stochastic volatility or stochastic intensity
jump models the data is non-stationary. Some of the results in large dimensional factor analysis do not apply to
non-stationary data. (4) In contrast to long-horizon factor analysis the asymptotic distribution of my estimators
have a mixed Gaussian limit and so will generally have heavier tails than a normal distribution.

2E.g. Onatski (2010) and Ahn and Horenstein (2013)
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same weak assumptions as for the estimation of the factors.

My work builds on the fast growing literatures in the two separate fields of large-dimensional

factor analysis and high-frequency econometrics.3 The notion of an “approximate factor model”

was introduced by Chamberlain and Rothschild (1983), which allowed for a non-diagonal co-

variance matrix of the idiosyncratic component. They applied principal component analysis

to the population covariance. Connor and Korajczyk (1988, 1993) study the use of principal

component analysis in the case of an unknown covariance matrix, which has to be estimated.

The general case of a static large dimensional factor model is treated in Bai (2003). He develops

an inferential theory for factor models for a large cross-section and long time horizons based

on a principal component analysis of the sample covariance matrix. His paper is the closest

to mine from this literature. As pointed out before for general continuous-time processes we

cannot map the high-frequency problem into the long horizon model. Forni, Hallin, Lippi and

Reichlin (2000) introduced the dynamic principal component method. Fan, Liao and Mincheva

(2013) study an approximate factor structure with sparsity. Some of the most relevant estima-

tors for the number of factors in large-dimensional factor models based on long-horizons are the

Bai and Ng (2002), Onatski (2010) and Ahn and Horenstein (2013) estimators.4 The last two

estimators perform well in simulations, but their arguments which are based on random matrix

theory seem not to be transferable to our high-frequency problem without imposing unrealisti-

cally strong assumptions on the processes.5 Many of my asymptotic results for the estimation

of the quadratic covariation are based on Jacod (2008), where he develops the asymptotic prop-

erties of realized power variations and related functionals of semimartingales. Aı̈t-Sahalia and

Jacod (2009a), Lee and Mykland (2008) and Mancini (2009) introduce a threshold estimator

for separating the continuous from the jump variation, which I use in this paper.6 Bollerslev

and Todorov (2010) develop the theoretical framework for high-frequency factor models for a

low dimension. Their results are applied empirically in Bollerslev, Li and Todorov (2015).

So far there are relatively few papers combing high-frequency analysis with high-dimensional

regimes, but this is an active and growing literature. Important recent papers include Wang

and Zou (2010), Tao, Wang and Chen (2013), and Tao, Wang and Zhou (2013) who establish

results for large sparse matrices estimated with high-frequency observations. Fan, Furger and

3Bai and Ng (2008) provide a good overview of large dimensional factor analysis. An excellent and very
up-to-date textbook treatment of high-frequency econometrics is Aı̈t-Sahalia and Jacod (2014).

4There are many alternative methods, e.g. Hallin and Lisak (2007), Aumengual and Watson (2007), Alessi et
al. (2010) or Kapetanious (2010), but in simulations they do not seem to outperform the above methods.

5The Bai and Ng (2002) paper uses an information criterion, while Onatski applies an eigenvalue difference
estimator and Ahn and Horenstein an eigenvalue ratio approach. If the first systematic factors are stronger than
other weak systematic factors the Ahn and Horenstein method can fail in simulations with realistic values, while
the Onatski method can perform better as it focuses only on the residual eigenvalues.

6In an influential series of papers, Barndorff-Nielsen and Shephard (2004b, 2006) and Barndorff-Nielsen,
Shephard, and Winkel (2006) introduce the concept of (bi-)power variation - a simple but effective technique to
identify and measure the variation of jumps from intraday data.
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Xiu (2014) estimate a large-dimensional covariance matrix with high-frequency data for a given

factor structure. My results were derived simultaneously and independently to results in the

two papers by Aı̈t-Sahalia and Xiu (2015a+b). Their papers and my work both address the

problem of finding structure in high-frequency financial data, but proceed in somewhat different

directions and achieve complementary results. In their first paper Aı̈t-Sahalia and Xiu (2015a)

develop the inferential theory of principal component analysis applied to a low-dimensional

cross-section of high-frequency data. I work in a large-dimensional setup which requires the

additional structure of a factor model and derive the inferential theory for both the continuous

and jump structures. In their second paper Aı̈t-Sahalia and Xiu (2015b) considers a large-

dimensional high-frequency factor model and they derive consistent estimators for the factors

based on continuous processes.7 Their identification is based on a sparsity assumption on

the idiosyncratic covariance matrix. My main identification condition is a bounded eigenvalue

condition on the idiosyncratic covariance matrix which allows me to also consider jumps and

to derive the asymptotic distribution theory of the estimators.

The rest of the paper is organized as follows. Section 2 introduces the factor model. In

Section 3 I explain my estimators. Section 4 summarizes the assumptions and the asymptotic

consistency results for the estimators of the factors, loadings and common components. In

Subsection 4.3 I also deal with the separation into continuous and jump factors. In Section

5 I show the asymptotic mixed-normal distribution of the estimators and derive consistent

estimators for the covariance matrices occurring in the limiting distributions. In Section 6 I

develop the estimator for the number of factors. The extension to microstructure noise is treated

in Section 7. The test for comparing two sets of factors is presented in Section 8. Section 9

discusses the differences with long horizon models and Section 10 presents some simulation

results. Concluding remarks are provided in Section 11. All the proofs are deferred to the

appendices.

2 Model Setup

Assume the N -dimensional stochastic process X(t) can be explained by a factor model, i.e.

Xi(t) = Λ>i F (t) + ei(t) i = 1, ..., N and t ∈ [0, T ]

where Λi is a K × 1 dimensional vector and F (t) is a K-dimensional stochastic process in

continuous time. The loadings Λi describe the exposure to the systematic factors F , while

the residuals ei are stochastic processes that describe the idiosyncratic component. X(t) will

7Aı̈t-Sahalia and Xiu (2015b) also develop an estimator for the number of factors which is essentially an
extension of the Bai and Ng (2002) estimator to high-frequency data. Aı̈t-Sahalia and Xiu’s techniques assume
continuous processes. I also allow for jumps and my approach can deal with strong and weak factors.
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typically be the log-price process. However, we only observe the stochastic process X at M

discrete time observations in the interval [0, T ]. If we use an equidistant grid8, we can define

the time increments as ∆M = tj+1 − tj = T
M and observe

Xi(tj) = Λ>i F (tj) + ei(tj) i = 1, ..., N and j = 1, ...,M

or in vector notation

X(tj) = ΛF (tj) + e(tj) j = 1, ...,M.

with Λ = (Λ1, ...,ΛN )>. In my setup the number of cross-sectional observations N and the

number of high-frequency observations M is large, while the time horizon T and the number of

systematic factors K is fixed. The loadings Λ, factors F , residuals e and number of factors K

are unknown and have to be estimated.

3 Estimation Approach

We have M observations of the N -dimensional stochastic process X in the time interval [0, T ].

For the time increments ∆M = T
M = tj+1 − tj we denote the increments of the stochastic

processes by

Xj,i = Xi(tj+1)−Xi(tj) Fj = F (tj+1)− F (tj) ej,i = ei(tj+1)− ei(tj).

In matrix notation we have

X
(M×N)

= F
(M×K)

Λ>
(K×N)

+ e
(M×N)

.

For a given K our goal is to estimate Λ and F . As in any factor model where only X is

observed Λ and F are only identified up to K2 parameters as FΛ> = FAA−1Λ> for any

arbitrary invertible K × K matrix A. Hence, for my estimator I impose the K2 standard

restrictions that Λ̂>Λ̂
N = IK which gives us K(K+1)

2 restrictions and that F̂>F̂ is a diagonal

matrix, which yields another K(K−1)
2 restrictions.

Denote the K largest eigenvalues of 1
NX

>X by VMN . The estimator for the loadings Λ̂

is defined as the K eigenvectors of VMN multiplied by
√
N . The estimator for the factor

increments is F̂ = 1
NXΛ̂. Note that 1

NX
>X is an estimator for 1

N [X,X] for a finite N . We

study the asymptotic theory for M,N →∞. As in Bai (2003) we consider a simultaneous limit

which allows (N,M) to increase along all possible paths.

8Most of my results would go through under a time grid that is not equidistant as long as the largest time
increment goes to zero with speed O

(
1
M

)
.

6



The systematic component of X(t) is the part that is explained by the factors and defined

as C(t) = ΛF (t). The increments of the systematic component Cj,i = FjΛ
>
i are estimated by

Ĉj,i = F̂jΛ̂
>
i .

We are also interested in estimating the continuous component, jump component and the

volatility of the factors. Denoting by FC the factors that have a continuous component and by

FD the factor processes that have a jump component, we can write

X(t) = ΛCFC(t) + ΛDFD(t) + e(t).

Note, that for factors that have both, a continuous and a jump component, the corresponding

loadings have to coincide. In the following we assume a non-redundant representation of the

KC continuous and KD jump factors. For example if we have K factors which have all exactly

the same jump component but different continuous components, this results in K different total

factors and KC = K different continuous factors, but in only KD = 1 jump factor.

Intuitively under some assumptions we can identify the jumps of the process Xi(t) as the

big movements that are larger than a specific threshold. Set the threshold identifier for jumps

as α∆ω̄
M for some α > 0 and ω̄ ∈

(
0, 1

2

)
and define X̂C

j,i = Xj,i1{|Xj,i|≤α∆ω̄
M} and X̂D

j,i =

Xj,i1{|Xj,i|>α∆ω̄
M}.

9 The estimators Λ̂C , Λ̂D, F̂C and F̂D are defined analogously to Λ̂ and F̂ ,

but using X̂C and X̂D instead of X.

The quadratic covariation of the factors can be estimated by F̂>F̂ and the volatility com-

ponent of the factors by F̂C>F̂C . I show that the estimated increments of the factors F̂ , F̂C

and F̂D can be used to estimate the quadratic covariation with any other process.

The number of factors can be consistently estimated through the perturbed eigenvalue

ratio statistic and hence, we can replace the unknown number K by its estimator K̂. Denote

the ordered eigenvalues of X>X by λ1 ≥ ... ≥ λN . We choose a slowly increasing sequence

g(N,M) such that g(N,M)
N → 0 and g(N,M) → ∞. Based on simulations a good choice for

the perturbation term g is the median eigenvalue rescaled by
√
N . Then, we define perturbed

eigenvalues λ̂k = λk + g(N,M) and the perturbed eigenvalue ratio statistic

ERk =
λ̂k

λ̂k+1

for k = 1, ..., N − 1.

The estimator for the number of factors is defined as the first time that the perturbed eigenvalue

ratio statistic does not cluster around 1 any more:

K̂(γ) = max{k ≤ N − 1 : ERk > 1 + γ} for γ > 0.

9Choices of α and ω̄ are standard in the literature (see, e.g. Aı̈t-Sahalia and Jacod (2014)) and are discussed
below when implemented in simulations.
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If ERk < 1 + γ for all k, then we set K̂(c) = 0. The definition of K̂C(γ) and K̂D(γ) is

analogous but using λCi respectively λDi of the matrices X̂C>X̂C and X̂D>X̂D. Based on

extensive simulations a constant γ between 0.05 and 0.2 seems to be good choice.

4 Consistency Results

4.1 Assumptions on Stochastic Processes

All the stochastic processes considered in this paper are locally bounded special Itô semimartin-

gales as defined in Definition 1 in Appendix B. These particular semimartingales are the most

general stochastic processes for which we can develop an asymptotic theory for the estimator of

the quadratic covariation. A d-dimensional locally bounded special Itô semimartingale Y can

be represented as

Yt = Y0 +

∫ t

0
bsds+

∫ t

0
σsdWs +

∫ t

0

∫
E
δ(s, x)(µ− ν)(ds, dx)

where bs is a locally bounded predictable drift term, σs is an adapted cádlág volatility process, W

is a d-dimensional Brownian motion and
∫ t

0

∫
E δ(s, x)(µ−ν)(ds, dx) describes a jump martingale.

µ is a Poisson random measure on R+×E with (E,E) an auxiliary measurable space on the space

(Ω,F, (Ft)t≥0,P). The predictable compensator (or intensity measure) of µ is ν(ds, dx) = ds×
v(dx) for some given finite or sigma-finite measure on (E,E). These dynamics are very general

and completely non-parametric. They allow for correlation between the volatility and asset price

processes. I only impose some week regularity conditions in Definition 1. The model includes

many well-known continuous-time models as special cases: for example stochastic volatility

models like the CIR or Heston model, the affine class of models in Duffie, Pan and Singleton

(2000), Barndorff-Nielsen and Shephard’s (2002) Ornstein-Uhlenbeck stochastic volatility model

with jumps or Andersen, Benzoni, and Lund’s (2002) stochastic volatility model with log-normal

jumps generated by a non-homogenous Poisson process.

I denote by ∆jY the jth observed increment of the process Y , i.e. ∆jY = Y (tj+1)− Y (tj)

and write ∆Y (t) = Y (t) − Y (t−) for the jumps of the process Y . Of course, ∆Y (t) = 0 for

all t ∈ [0, T ] if the process is continuous. The sum of squared increments converges to the

quadratic covariation for M →∞:

M∑
j=1

∆jYi∆jYk
p→ [Yi, Yk]. i, k = 1, ..., d.

The predictable quadratic covariation 〈Yi, Yk〉 is the predictable conditional expectation of

[Yi, Yk], i.e. it is the so-called compensator process. It is the same as the realized quadratic
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covariation [Xi, Xk] for a continuous process, but differs if the processes have jumps. The

realized quadratic covariation [Yi, Yk]t and the conditional quadratic covariation 〈Yi, Yk〉t are

themselves stochastic processes. If I leave out the time index t, it means that I am considering

the quadratic covariation evaluated at the terminal time T , which is a random variable. For

more details see Rogers (2004) or Jacod and Shiryaev (2002).

4.2 Consistency

The key assumption for obtaining a consistent estimator for the loadings and factors is an ap-

proximate factor structure. It requires that the factors are systematic in the sense that they

cannot be diversified away, while the idiosyncratic residuals are nonsystematic and can be di-

versified away. The approximate factor structure assumption uses the idea of appropriately

bounded eigenvalues of the residual quadratic covariation matrix, which is analogous to Cham-

berlain and Rothschild (1983) and Chamberlain (1988). Let ‖A‖ = (tr(A>A))1/2 denote the

norm of a matrix A and λi(A) the i’s largest singular value of the matrix A, i.e. the square-root

of the i’s largest eigenvalue of A>A. If A is a symmetric matrix then λi is simply the i’s largest

eigenvalue of A.

Assumption 1. Factor structure assumptions

1. Underlying stochastic processes

F and ei are Itô-semimartingales as defined in Definition 1

F (t) = F (0) +

∫ t

0
bF (s)ds+

∫ t

0
σF (s)dWs +

∑
s≤t

∆F (s)

ei(t) = e(0) +

∫ t

0
bei(s)ds+

∫ t

0
σei(s)dWs +

∑
s≤t

∆ei(s)

In addition each ei is a square integrable martingale.

2. Factors and factor loadings

The quadratic covariation matrix of the factors ΣF is positive definite a.s.

M∑
j=1

FjF
>
j

p−→ [F, F ]T =: ΣF

and ∥∥∥∥Λ>Λ

N
− ΣΛ

∥∥∥∥→ 0.
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where the matrix ΣΛ is also positive definite. The loadings are bounded, i.e. ‖Λi‖ < ∞
for all i = 1, ..., N .

3. Independence of F and e

The factor process F and the residual processes e are independent.

4. Approximate factor structure

The largest eigenvalue of the residual quadratic covariation matrix is bounded in probabil-

ity, i.e.

λ1([e, e]) = Op(1).

As the predictable quadratic covariation is absolutely continuous, we can define the in-

stantaneous predictable quadratic covariation as

d〈ei, ek〉t
dt

= σei,k(t) +

∫
δei,k(z)vt(z) =: Gi,k(t).

We assume that the largest eigenvalue of the matrix G(t) is almost surely bounded for all

t:

λ1(G(t)) < C a.s. for all t for some constant C.

5. Identification condition All Eigenvalues of ΣΛΣF are distinct a.s..

The most important part of Assumption 1 is the approximate factor structure in point

4. It implies that the residual risk can be diversified away. Point 1 states that we can use

the very general class of stochastic processes defined in Definition 1. The assumption that

the residuals are martingales and hence do not have a drift term is only necessary for the

asymptotic distribution results. The consistency results do not require this assumption. Point

2 implies that the factors affect an infinite number of assets and hence cannot be diversified

away. Point 3 can be relaxed to allow for a weak correlation between the factors and residuals.

This assumption is only used to derive the asymptotic distribution of the estimators. The

approximate factor structure assumption in point 4 puts a restriction on the correlation of the

residual terms. It allows for cross-sectional (and also serial) correlation in the residual terms as

long as it is not too strong. We can relax the approximate factor structure assumption. Instead

of almost sure boundedness of the predictable instantaneous quadratic covariation matrix of

the residuals it is sufficient to assume that

1

N

N∑
i=1

N∑
k 6=i

ΛiGi,k(t)Λ
>
k < C a.s. for all t
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Then, all main results except for Theorem 6 and 9 continue to hold. Under this weaker as-

sumption we do not assume that the diagonal elements of G are almost surely bounded. By

Definition 1 the diagonal elements of G are already locally bounded which is sufficient for most

of our results.

Note that point 4 puts restrictions on both the realized and the conditional quadratic co-

variation matrix. In the case of continuous residual processes, the conditions on the conditional

quadratic covariation matrix are obviously sufficient. However, in our more general setup it is

not sufficient to restrict only the conditional quadratic covariation matrix.

Assumption 2. Weak dependence of error terms

The row sum of the quadratic covariation of the residuals is bounded in probability:

N∑
i=1

‖[ek, ei]‖ = Op(1) ∀k = 1, ..., N

Assumption 2 is stronger than λ1([e, e]) = Op(1) in Assumption 1. As the largest eigenvector

of a matrix can be bounded by the largest absolute row sum, Assumption 2 implies λ1([e, e]) =

Op(1). If the residuals are cross-sectionally independent it is trivially satisfied. However it

allows for a weak correlation between the residual processes. For example, if the residual part

of each asset is only correlated with a finite number of residuals of other assets, it will be

satisfied.

As pointed out before, the factors F and loadings Λ are not separately identifiable. However,

we can estimate them up to an invertible K×K matrix H. Hence, my estimator Λ̂ will estimate

ΛH and F̂ will estimate FH>
−1

. Note, that the common component is well-identified and

F̂ Λ̂> = F̂H>
−1
H>Λ>. For almost all purposes knowing ΛH or FH>

−1
is as good as knowing

Λ or F as what is usually of interest is the vector space spanned by the factors. For example

testing the significance of F or FH>
−1

in a linear regression yields the same results.10

In my general approximate factor models we require N and M to go to infinity. The rates of

convergence will usually depend on the smaller of these two values denoted by δ = min(N,M).

As noted before we consider a simultaneous limit for N and M and not a path-wise or sequential

limit. Without further assumptions the asymptotic results do not hold for a fixed N or M .

In this sense the large dimension of our problem, which makes the analysis more complicated,

also helps us to obtain more general results and turns the “curse of dimensionality” into a

“blessing”.

Note that Fj is the increment ∆jF and goes to zero for M →∞ for almost all increments.

It can be shown that in a specific sense we can also consistently estimate the factor increments,

but the asymptotic statements will be formulated in terms of the stochastic process F evaluated

10For a more detailed discussion see Bai (2003) and Bai and Ng (2008).
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at a discrete time point tj . For example FT =
∑M

j=1 Fj denotes the factor process evaluated at

time T . Similarly we can evaluate the process at any other discrete time point Tm = m ·∆M as

long as m ·∆M does not go to zero. Essentially m has to be proportional to M . For example,

we could chose Tm equal to 1
2T or 1

4T . The terminal time T can always be replaced by the time

Tm in all the theorems. The same holds for the common component.

Theorem 1. Consistency of estimators:

Define the rate δ = min(N,M) and the invertible matrix H = 1
N

(
F>F

) (
Λ>Λ̂

)
V −1
MN . Then

the following consistency results hold:

1. Consistency of loadings estimator: Under Assumption 1 it follows that

Λ̂i −H>Λi = Op

(
1√
δ

)
.

2. Consistency of factor estimator and common component: Under Assumptions 1 and 2 it

follows that

F̂T −H−1FT = Op

(
1√
δ

)
, ĈT,i − CT,i = Op

(
1√
δ

)
.

3. Consistency of quadratic variation: Under Assumptions 1 and 2 and for any stochastic

process Y (t) satisfying Definition 1 we have for
√
M
N → 0 and δ →∞:

M∑
j=1

F̂jF̂
>
j = H−1[F, F ]TH

−1> + op(1) ,
M∑
j=1

F̂jYj = H−1[F, Y ]T + op(1)

M∑
j=1

êj,iêj,k = [ei, ek] + op(1) ,

M∑
j=1

êj,iYj = [ei, Y ] + op(1)

M∑
j=1

Ĉj,iĈj,k = [Ci, Ck] + op(1) ,
M∑
j=1

Ĉj,iYj = [Ci, Y ] + op(1).

for i, k = 1, ..., N .

This statement only provides a pointwise convergence of processes evaluated at specific

times. A stronger statement would be to show weak convergence for the stochastic processes.

However, weak convergence of stochastic processes requires significantly stronger assumptions11

and will in general not be satisfied under my assumptions.

11See for example Prigent (2003)
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4.3 Separating Continuous and Jump Factors

Using a thresholding approach we can separate the continuous and jump movements in the

observable process X and estimate the systematic continuous and jump factors. The idea is

that with sufficiently many high-frequency observations, we can identify the jumps in X as

the movements that are above a certain threshold. This allows us to separate the quadratic

covariation matrix of X into its continuous and jump component. Then applying principal

component analysis to each of these two matrices we obtain our separate factors. A crucial

assumption is that the thresholding approach can actually identify the jumps:

Assumption 3. Truncation identification

F and ei have only finite activity jumps and factor jumps are not “hidden” by idiosyncratic

jumps:

P
(

∆Xi(t) = 0 if ∆(Λ>i F (t)) 6= 0 and ∆ei(t) 6= 0
)

= 0.

The quadratic covariation matrix of the continuous factors [FC , FC ] and of the jump factors

[FD, FD] are each positive definite a.s. and the matrices ΛC>ΛC

N and ΛD>ΛD

N each converge in

probability to positive definite matrices.

Assumption 3 has three important parts. First, we require the processes to have only finite

jump activity. This mean that on every finite time interval there are almost surely only finitely

many jumps. With infinite activity jump processes, i.e. each interval can contain infinitely many

small jumps, we cannot separate the continuous and discontinuous part of a process. Second,

we assume that a jump in the factors or the idiosyncratic part implies a jump in the process

Xi. The reverse is trivially satisfied. This second assumption is important to identify all times

of discontinuities of the unobserved factors and residuals. This second part is always satisfied

as soon as the Lévy measure of Fi and ei have a density, which holds in most models used in

the literature. The third statement is a non-redundancy condition and requires each systematic

jump factor to jump at least once in the data. This is a straightforward and necessary condition

to identify any jump factor. Hence, the main restriction in Assumption 3 is the finite jump

activity. For example compound poisson processes with stochastic intensity rate fall into this

category.

Theorem 2. Separating continuous and jump factors:

Assume Assumptions 1 and 3 hold. Set the threshold identifier for jumps as α∆ω̄
M for some α >

0 and ω̄ ∈
(
0, 1

2

)
and define X̂C

j,i = Xj,i1{|Xj,i|≤α∆ω̄
M} and X̂D

j,i = Xj,i1{|Xj,i|>α∆ω̄
M}. The estima-

tors Λ̂C , Λ̂D, F̂C and F̂D are defined analogously to Λ̂ and F̂ , but using X̂C and X̂D instead of

X. Define HC = 1
N

(
FC
>
FC
)(

ΛC
>

Λ̂C
)
V C
MN

−1
and HD = 1

N

(
FD
>
FD
)(

ΛD
>

Λ̂D
)
V D
MN

−1
.
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1. The continuous and jump loadings can be estimated consistently:

Λ̂Ci = HC>ΛCi + op(1) , Λ̂Di = HD>ΛDi + op(1).

2. Assume that additionally Assumption 2 holds. The continuous and jump factors can only

be estimated up to a finite variation bias term

F̂CT = HC−1
FCT + op(1) + finite variation term

F̂DT = HD−1
FDT + op(1) + finite variation term.

3. Under the additional Assumption 2 we can estimate consistently the covariation of the

continuous and jump factors with other processes. Let Y (t) be an Itô-semimartingale

satisfying Definition 1. Then we have for
√
M
N → 0 and δ →∞:

M∑
j=1

F̂Cj Yj = HC−1
[FC , Y ]T + op(1) ,

M∑
j=1

F̂Dj Yj = HD−1
[FD, Y ]T + op(1).

The theorem states that we can estimate the factors only up to a finite variation term,

i.e. we can only estimate the martingale part of the process correctly. The intuition behind

this problem is simple. The truncation estimator can correctly separate the jumps from the

continuous martingale part. However, all the drift terms will be assigned to the continuous

component. If a jump factor also has a drift term, this will now appear in the continuous part

and as this drift term affects infinitely many cross-sectional Xi, it cannot be diversified away.

5 Asymptotic Distribution

5.1 Distribution Results

The assumptions for asymptotic mixed-normality of the estimators are stronger than those

needed for consistency. Although asymptotic mixed-normality of the loadings does not require

additional assumptions, the asymptotic normality of the factors needs substantially stronger

assumptions. This should not be surprising as essentially all central limit theorems impose

restrictions on the tail behavior of the sampled random variables.

In order to obtain a mixed Gaussian limit distribution for the loadings we need to assume

that there are no common jumps in σF and ei and in σei and F . Without this assumption

the estimator for the loadings still converges at the same rate, but it is not mixed-normally

distributed any more. Note that Assumption 1 requires the independence of F and e, which

implies the no common jump assumption.

14



Theorem 3. Asymptotic distribution of loadings

Assume Assumptions 1 and 2 hold and define δ = min(N,M). Then

√
M
(

Λ̂i −H>Λi

)
= V −1

MN

(
Λ̂>Λ

N

)
√
MF>ei +Op

(√
M

δ

)

1. If
√
M
N → 0, then

√
M(Λ̂i −H>Λi)

L−s−→ N
(

0, V −1QΓiQ
>V −1

)
where V is the diagonal matrix of eigenvalues of Σ

1
2
ΛΣFΣ

1
2
Λ and plim

N,M→∞

Λ̂>Λ
N = Q =

V
1
2 Υ>σ

1
2
F with Υ being the eigenvectors of V . The entry {l, g} of the K × K matrix

Γi is given by

Γi,l,g =

∫ T

0
σF l,F gσ2

eids+
∑
s≤T

∆F l(s)∆F g(s)σ2
ei(s) +

∑
s′≤T

∆e2
i (s
′)σF g ,F l(s′).

F l denotes the l-th component of the the K dimensional process F and σF l,F g are the

entries of its K ×K dimensional volatility matrix.

2. If lim inf
√
M
N ≥ τ > 0, then N(Λ̂i − ΛiH) = Op(1).

The asymptotic expansion is very similar to the conventional factor analysis in Bai (2003),

but the limiting distributions of the loadings is obviously different. The mode of convergence is

stable convergence in law, which is stronger than simple convergence in distribution.12 Here we

can see very clearly how the results from high-frequency econometrics impact the estimators in

our factor model.

Assumption 4. Asymptotically negligible jumps of error terms

Assume Z is some continuous square integrable martingale with quadratic variation 〈Z,Z〉t.
Assume that the jumps of the martingale 1√

N

∑N
i=1 ei(t) are asymptotically negligible in the

sense that

Λ>[e, e]tΛ

N

p→ 〈Z,Z〉t ,
Λ>〈eD, eD〉tΛ

N

p→ 0 ∀t > 0.

Assumption 4 is needed to obtain an asymptotic mixed-normal distribution for the factor

estimator. It means that only finitely many residual terms can have a jump component. Hence,

the weighted average of residual terms has a quadratic covariation that depends only on the

continuous quadratic covariation. This assumption is essentially a Lindeberg condition. If

12For more details see Aı̈t-Sahalia and Jacod (2014).
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it is not satisfied and under additional assumptions the factor estimator converges with the

same rate to a distribution with the same variance, but with heavier tails than a mixed-normal

distribution.

Assumption 5. Weaker dependence of error terms

• Assumption 5.1: Weak serial dependence

The error terms exhibit weak serial dependence if and only if∥∥∥∥∥∥E
ejiejr∑

l 6=j
eli
∑
s 6=j

esr

∥∥∥∥∥∥ ≤ C ‖E[ejiejr]‖

∥∥∥∥∥∥E
∑
l 6=j

eli
∑
s 6=j

elr

∥∥∥∥∥∥
for some finite constant C and for all i, r = 1, ..., N and for all partitions [t1, ..., tM ] of

[0, T ].

• Assumption 5.2: Weak cross-sectional dependence

The error terms exhibit weak cross-sectional dependence if and only if

M∑
j=1

1

N2

N∑
i=1

N∑
r=1

E
[
e2
jie

2
jr

]
= O

(
1

δ

)

for all i, r = 1, ..., N and for all partitions [t1, ..., tM ] of [0, T ] for M,N →∞ and

N∑
i=1

|Gk,i(t)| ≤ C a.s. for all k = 1, ..., N and t ∈ (0, T ] and some constant C.

Assumption 5 is only needed to obtain the general rate results for the asymptotic distribution

of the factors. If N
M → 0, we don’t need it anymore. Lemma 1 gives sufficient conditions for

this assumption. Essentially, if the residual terms are independent and “almost” continuous

then it holds. Assumption 5 is not required for any consistency results.

Lemma 1. Sufficient conditions for weaker dependence

Assume Assumptions 1 and 2 hold and that

1. ei has independent increments.

2. ei has 4th moments.

3. E
[∑N

i=1〈eDi , eDi 〉
]
≤ C for some constant C and for all N .

4.
∑N

i=1 |Gk,i(t)| ≤ C a.s. for all k = 1, ..., N and t ∈ (0, T ] and some constant C.

Then Assumption 5 is satisfied.
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Theorem 4. Asymptotic distribution of the factors:

Assume Assumptions 1 and 2 hold. Then

√
N
(
F̂T −H−1FT

)
=

1√
N
eTΛH +OP

(√
N√
M

)
+Op

(√
N

δ

)

If Assumptions 4 and 5 hold and
√
N
M → 0 or only Assumption 4 holds and N

M → 0:

√
N
(
F̂T −H−1FT

)
L−s−→ N

(
0, Q−1>ΦTQ

−1
)

with ΦT = plim
N→∞

Λ>[e]Λ
N .

The assumptions needed for Theorem 4 are stronger than for all the other theorems. Al-

though they might not always be satisfied in practice, simulations indicate that the asymptotic

distribution results still seem to provide a very good approximation even if the conditions are

violated. As noted before it is possible to show that under weaker assumptions the factor esti-

mators have the same rate and variance, but an asymptotic distribution that is different from

a mixed-normal distribution.

The next theorem about the common components essentially combines the previous two

theorems.

Theorem 5. Asymptotic distribution of the common components

Define CT,i = Λ>i FT and ĈT,i = Λ̂>i F̂T Assume that Assumptions 1 - 4 hold.

1. If Assumption 5 holds, i.e. weak serial dependence and cross-sectional dependence, then

for any sequence N,M

√
δ
(
ĈT,i − CT,i

)
√

δ
NWT,i + δ

M VT,i

D→ N(0, 1)

2. Assume N
M → 0 (but we do not require Assumption 5)

√
N
(
CT,i − ĈT,i

)
√
WT,i

D→ N(0, 1)

with

WT,i = Λ>i Σ−1
Λ ΦTΣ−1

Λ Λi

VT,i = F>T Σ−1
F ΓiΣ

−1
F FT .
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5.2 Estimating Covariance Matrices

The asymptotic covariance matrix for the estimator of the loadings can be estimated consistently

under relatively weak assumptions, while the asymptotic covariance of the factor estimator

requires stricter conditions. In order to estimate the asymptotic covariance for the loadings,

we cannot simply apply the truncation approach to the estimated processes. The asymptotic

covariance matrix of the factors runs into a dimensionality problem, which can only be solved

under additional assumptions.

Theorem 6. Feasible estimator of covariance matrix of loadings

Assume Assumptions 1 and 2 hold and
√
M
N → 0. Define the asymptotic covariance matrix of

the loadings as ΘΛ,i = V −1QΓiQ
>V −1. Take any sequence of integers k →∞, k

M → 0. Denote

by I(j) a local window of length 2k
M around j. Define the K ×K matrix Γ̂i by

Γ̂i =M
M∑
j=1

(
X̂C
j Λ̂

N

)(
X̂C
j Λ̂

N

)>(
X̂C
j,i −

X̂C
j Λ̂

N
Λ̂i

)2

+
M

2k

M−k∑
j=k+1

(
X̂D
j Λ̂

N

)(
X̂D
j Λ̂

N

)> ∑
h∈I(j)

(
X̂C
h,i −

X̂C
h Λ̂

N
Λ̂i

)2


+
M

2k

M−k∑
j=k+1

(
X̂D
j,i −

X̂D
j Λ̂

N
Λ̂i

)2
 ∑
h∈I(j)

(
X̂C
h Λ̂

N

)(
X̂C
h Λ̂

N

)>
Then a feasible estimator for ΘΛ,i is Θ̂Λ,i = V −1

MN Γ̂iV
−1
MN

p→ ΘΛ,i and

√
MΘ̂

−1/2
Λ,i (Λ̂i −H>Λi)

D−→ N (0, IK) .

Theorem 7. Consistent estimator of covariance matrix of factors

Assume the Assumptions of Theorem 4 hold and
√
N
(
F̂T −H−1FT

)
L−s−→ N (0,ΘF )

with ΘF = plim
N,M→∞

H>Λ>[e]Λ
N H. Assume that the error terms are cross-sectionally independent.

Denote the estimator of the residuals by êj,i = Xj,i − Ĉj,i. Then a consistent estimator is

Θ̂F = 1
N

∑N
i=1 Λ̂iê

>
i êiΛ̂

>
i

p−→ ΘF and

√
NΘ̂

−1/2
F (F̂T −H−1FT )

D−→ N(0, IK).

The assumption of cross-sectional independence here is somewhat at odds with our general

approximate factor model. The idea behind the approximate factor model is exactly to allow

for weak dependence in the residuals. However, without further assumptions the quadratic

covariation matrix of the residuals cannot be estimated consistently as its dimension is growing
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with N . Even if we knew the true residual process e(t) we would still run into the same problem.

Assuming cross-sectional independence is the simplest way to reduce the number of parameters

that have to be estimated. We could extend this theorem to allow for a parametric model

capturing the weak dependence between the residuals or we could impose a sparsity assumption

similar to Fan, Liao and Mincheva (2013). In both cases the theorem would continue to hold.

Theorem 8. Consistent estimator of covariance matrix of common components

Assume Assumptions 1-5 hold and that the residual terms e are cross-sectionally independent.

Then for any sequence N,M(
1

N
ŴT,i +

1

M
V̂T,i

)−1/2 (
ĈT,i − CT,i

)
D→ N(0, 1)

with ŴT,i = Λ̂>i Θ̂F Λ̂i and V̂T,i = F̂>T

(
F̂>F̂

)−1
Γ̂i

(
F̂>F̂

)−1
F̂T .

6 Estimating the Number of Factors

I have developed a consistent estimator for the number of total, continuous and jump factors,

that does not require stronger assumptions than those needed for consistency. Intuitively the

large eigenvalues are associated with the systematic factors and hence the problem of estimat-

ing the number of factors is roughly equivalent to deciding which eigenvalues are considered

to be large with respect to the rest of the spectrum. Under the assumptions that we need for

consistency I can show that the first K “systematic” eigenvalues of X>X are Op(N), while

the nonsystematic eigenvalues are Op(1). A straightforward estimator for the number of factors

considers the eigenvalue ratio of two successive eigenvalues and associates the number of factors

with a large eigenvalue ratio. However, without very strong assumptions we cannot bound the

small eigenvalues from below, which could lead to exploding eigenvalue ratios in the nonsys-

tematic spectrum. I propose a perturbation method to avoid this problem. As long as the

eigenvalue ratios of the perturbed eigenvalues cluster, we are in the nonsystematic spectrum.

As soon as we do not observe this clustering any more, but a large eigenvalue ratio of the

perturbed eigenvalues, we are in the systematic spectrum.

Theorem 9. Estimator for number of factors

Assume Assumption 1 holds and O
(
N
M

)
≤ O(1). Denote the ordered eigenvalues of X>X

by λ1 ≥ ... ≥ λN . Choose a slowly increasing sequence g(N,M) such that g(N,M)
N → 0 and

g(N,M)→∞. Define perturbed eigenvalues

λ̂k = λk + g(N,M)
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and the perturbed eigenvalue ratio statistics:

ERk =
λ̂k

λ̂k+1

for k = 1, ..., N − 1

Define

K̂(γ) = max{k ≤ N − 1 : ERk > 1 + γ}

for γ > 0. If ERk < 1 + γ for all k, then set K̂(γ) = 0. Then for any γ > 0

K̂(γ)
p→ K.

Assume in addition that Assumption 3 holds. Denote the ordered eigenvalues of X̂C>X̂C by

λC1 ≥ ... ≥ λCN and analogously for X̂D>X̂D by λD1 ≥ ...λDN . Define K̂C(γ) and K̂D(γ) as above

but using λCi respectively λDi . Then for any γ > 0

K̂C(γ)
p→ KC K̂D(γ)

p→ KD

where KC is the number of continuous factors and KD is the number of jump factors.

Some of the most relevant estimators for the number of factors in large-dimensional factor

models based on long-horizons are the Bai and Ng (2002), Onatski (2010) and Ahn and Horen-

stein (2013) estimators. The Bai and Ng (2002) paper uses an information criterion, while

Onatski applies an eigenvalue difference estimator and Ahn and Horenstein an eigenvalue ratio

approach. In simulations the last two estimators seem to perform well.13 My estimator com-

bines elements of the Ahn and Horenstein estimator as I analyze eigenvalue ratios and elements

of the Onatski estimator as I use a clustering argument. In contrast to these two approaches

my results are not based on random matrix theory. Under the strong assumptions of random

matrix theory a certain fraction of the small eigenvalues will be bounded from below and above

and the largest residual eigenvalues will cluster. Onatksi analyses the difference in eigenvalues.

As long as the eigenvalue difference is small, it is likely to be part of the residual spectrum

because of the clustering effect. The first time the eigenvalue difference is above a threshold,

it indicates the beginning of the systematic spectrum. The Ahn and Horenstein method looks

for the maximum in the eigenvalue ratios. As the smallest systematic eigenvalue is unbounded,

while up to a certain index the nonsystematic eigenvalues are bounded from above and below,

consistency follows. However, if the first systematic factor is stronger than the other weak sys-

tematic factors the Ahn and Horenstein method can fail in simulations with realistic values.14

13See for example the numerical simulations in Onatski (2010) and Ahn and Horenstein (2013).
14Their proposal to demean the data which is essentially the same as projecting out an equally weighted market

20



In this sense the clustering argument of Onatksi is more appealing as it focusses on the residual

spectrum and tries to identify when the spectrum is unlikely to be due to residual terms. For

the same reason my perturbed eigenvalue ratio estimator performs well in simulations with

strong and weak factors.

My estimator depends on two choice variables: the perturbation g and the cutoff γ. In

contrast to Bai and Ng, Onatski or Ahn and Horenstein we do not need to choose some upper

bound on the number of factors. Although consistency follows for any g or γ satisfying the

necessary conditions, the finite sample properties will obviously depend on them. As a first

step for understanding the factor structure I recommend plotting the perturbed eigenvalue ratio

statistic. In all my simulations the transition from the idiosyncratic spectrum to the systematic

spectrum is very apparent. Based on simulations a good choice for the perturbation is g =
√
N ·

median({λ1, ..., λN}). Obviously this choice assumes that the median eigenvalue is bounded

from below, which is not guaranteed by our assumptions but almost always satisfied in practice.

In the simulations I also test different specifications for g, e.g. log(N) ·median({λ1, ..., λN}).
My estimator is very robust to the choice of the perturbation value. A more delicate issue is

the cutoff γ. Simulations suggest that γ between 0.05 and 0.2 performs very well. As we are

actually only interested in detecting a deviation from clustering around 1, we can also define

1 + γ to be proportional to a moving average of perturbed eigenvalue ratios.

What happens if we employ my eigenvalue ratio estimator with a constant perturbation

or no perturbation at all? Under stronger assumptions on the idiosyncratic processes, the

eigenvalue ratio estimator is still consistent as Proposition 1 shows:

Proposition 1. Onatski-type estimator for number of factors

Assume Assumptions 1 and 3 hold and N
M → c > 0. In addition assume that

1. The idiosyncratic terms follow correlated Brownian motions:

e(t) = Aε(t)

where ε(t) is a vector of N independent Brownian motions.

2. The correlation matrix A satisfies:

(a) The eigenvalue distribution function FAA> converges to a probability distribution

function FA.

(b) The distribution FA has bounded support, u(F) = min(z : F(z) = 1) and u(FAA>)→
u(FA) > 0.

(c) lim infz→0 z
−1
∫ u(FA)
u(FA)−z dFA(λ) = kA > 0.

portfolio does not perform well in simulations with a strong factor. The obvious extension to project out the
strong factors does also not really solve the problem as it is unclear how many factors we have to project out.
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Denote the ordered eigenvalues of X>X by λ1 ≥ ... ≥ λN . Define

K̂ON (γ) = max

{
k ≤ KON

max :
λk
λk+1

≥ γ
}

for any γ > 0 and slowly increasing sequence KON
max s.t. KON

max
N → 0. Then

K̂ON (γ)
p→ K.

Under the Onatski assumptions in Proposition 1, we could also set g = C to some constant,

which is independent of N and M . We would get

ERK = Op(N)

ERk =
λk + C

λk+1 + C

p→ 1 k ∈ [K + 1,KON
max].

However, the Onatski-type estimator in Proposition 1 fails if we use the truncated data X̂C or

X̂D. Proposition 1 shows that Theorem 9 is in some sense robust to the perturbation if we are

willing to make stronger assumptions. The stronger assumptions are needed to use results from

random matrix theory to obtain a clustering in the residual spectrum.

7 Microstructure noise

While my estimation theory is derived under the assumption of synchronous data with negligible

microstructure noise, I extend the model to estimate the effect of microstructure noise on the

spectrum of the factor estimator. Inference on the volatility of a continuous semimartingale

under noise contamination can be pursued using smoothing techniques. Several approaches

have been developed, prominent ones by Aı̈t-Sahalia and Zhang (2005b), Barndorff-Nielsen et

al. (2008) and Jacod et al. (2009) in the one-dimensional setting and generalizations for a noisy

non-synchronous multi-dimensional setting by Aı̈t-Sahalia et al. (2010), Podolskij and Vetter

(2009), Barndorff-Nielsen et al. (2011), Zhang (2011) and Bibinger and Winkelmann (2014)

among others. However, neither the microstructure robust estimators nor the non-synchronicity

robust estimators can be easily extended to our large dimensional problem. It is beyond the

scope of this paper to develop the asymptotic theory for these more general estimators in the

context of a large dimensional factor model and I leave this to future research.

The main results of my paper assume synchronous data with negligible microstructure noise.

Using for example 5-minute sampling frequency as commonly advocated in the literature on

realized volatility estimation, e.g. Andersen et al. (2001) and the survey by Hansen and Lunde

(2006), seems to justify this assumption and still provides enough high-frequency observations
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to apply my estimator to a monthly horizon.

Here I extend the model and show how the microstructure noise affects the largest eigenvalue

of the residual matrix. The estimation of the number of factors crucially depends on the size

of this largest idiosyncratic eigenvalue. This theorem can be used to show that the estimator

for the number of factors does not change in the presence of microstructure noise. It can also

be used to derive an estimator for the variance of the microstructure noise. This is the first

estimator for the variance of microstructure noise that uses the information in a large cross-

section. If we do not use microstructure noise robust estimators for the quadratic covariation

matrix, the usual strategy is to use a lower sampling frequency that trades off the noise bias

with the estimation variance. This theorem can provide some guidance if the frequency is

sufficiently low to neglect the noise.

Theorem 10. Upper bound on impact of noise

Assume we observe the true asset price with noise:

Yi(tj) = Xi(tj) + ε̃j,i

where the noise ε̃j,i is i.i.d. (0, σ2
ε ) and independent of X and has finite fourth moments.

Furthermore assume that Assumption 1 holds and that N
M → c < 1. Denote increments of the

noise by εj,i = ε̃j+1,i − ε̃j,i. Then we can bound the impact of noise on the largest eigenvalue of

the idiosyncratic spectrum:

λ1

(
(e+ ε)>(e+ ε)

N

)
− λ1

(
e>e

N

)
≤ min
s∈[K+1,N−K]

(
λs

(
Y >Y

N

)
1

1 + cos
(
s+r+1
N π

))

· 2
(

1 +
√
c

1−
√
c

)2

+ op(1).

The variance of the microstructure noise is bounded by

σ2
ε ≤

c

2(1−
√
c)2

min
s∈[K+1,N−K]

(
λs

(
Y >Y

N

)
1

1 + cos
(
s+r+1
N π

))+ op(1)

where λs

(
Y >Y
N

)
denotes the sth largest eigenvalue of a symmetric matrix Y >Y

N .

Remark 1. For s = 1
2N −K − 1 the inequality simplifies to

λ1

(
(e+ ε)>(e+ ε)

N

)
− λ1

(
e>e

N

)
≤ λ1/2N−K−1

(
Y >Y

N

)
· 2
(

1 +
√
c

1−
√
c

)2

+ op(1)
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respectively

σ2
ε ≤

c

2(1−
√
c)2
· λ1/2N−K−1

(
Y >Y

N

)
+ op(1).

Hence, the contribution of the noise on the largest eigenvalue of the idiosyncratic part and the

microstructure noise variance can be bounded by approximately the median eigenvalue of the

observed quadratic covariation matrix multiplied by a constant that depends only on the ratio

of M and N .

8 Identifying the Factors

This section develops a new estimator for testing if a set of estimated statistical factors is the

same as a set of observable economic variables. As I have already noted before, factor models

are only identified up to invertible transformations. Two sets of factors represent the same fac-

tor model if the factors span the same vector space. When trying to interpret estimated factors

by comparing them with economic factors, we need a measure to describe how close two vector

spaces are to each other. As proposed by Bai and Ng (2006) the generalized correlation is a

natural candidate measure. Let F be our K-dimensional set of factor processes and G be a KG-

dimensional set of economic candidate factor processes. We want to test if a linear combination

of the candidate factors G can replicate some or all of the true factors F . The first generalized

correlation is the highest correlation that can be achieved through a linear combination of the

factors F and the candidate factors G. For the second generalized correlation we first project

out the subspace that spans the linear combination for the first generalized correlation and then

determine the highest possible correlation that can be achieved through linear combinations of

the remaining K − 1 respectively KG − 1 dimensional subspaces. This procedure continues

until we have calculated the min(K,KG) generalized correlation. Mathematically the gener-

alized correlations are the square root of the min(K,KG)15 largest eigenvalues of the matrix

[F,G]−1[F, F ][G,G]−1[G,F ]. If K = KG = 1 it is simply the correlation as measured by the

quadratic covariation. If for example for K = KG = 3 the generalized correlations are {1, 1, 0}
it implies that there exists a linear combination of the three factors in G that can replicate two

of the three factors in F .16 I show that under general conditions the estimated factors F̂ , F̂C

and F̂D can be used instead of the true unobserved factors.

15Using min(K,KG) instead of max(K,KG) is just a labeling convention. All the generalized correlations
after min(K,KG) are zero and hence usually neglected.

16Although labeling the measure as a correlation, we do not demean the data. This is because the drift term
essentially describes the mean of a semimartingale and when calculating or estimating the quadratic covariation
it is asymptotically negligible. Hence, the generalized correlation measure is based only on inner products and
the generalized correlations correspond to the singular values of the matrix [F,G] if F and G are orthonormalized
with respect to the inner product [., .].
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Unfortunately, in this high-frequency setting there does not seem to exist a theory for confi-

dence intervals for the individual generalized correlations.17 It is well-known that if F and G are

observed and i.i.d. normally distributed then
√
M(ρ̂2

k−ρ
2
k)

2ρk(1−ρ2
k)

D→ N(0, 1) for k = 1, ...,min(KF ,KG)

where ρk is the kth generalized correlation.18. The result can also be extended to elliptical

distributions. However, the normalized increments of stochastic processes that can realistically

model financial time series are neither normally nor elliptically distributed. Hence, we cannot

directly make use of these results as for example in Bai and Ng (2006). However, I have devel-

oped an asymptotic distribution theory for the sum of squared generalized correlations, which

I label as total generalized correlation. With the total generalized correlation we can test if a

set of economic factors represents the same factor model as the statistical factors.

The total generalized correlation denoted by ρ̄ is defined as the sum of the squared gener-

alized correlations ρ̄ =
∑min(KF ,KG)

k=1 ρ2
k. It is equal to

ρ̄ = trace
(
[F, F ]−1[F,G][G,G]−1[G,F ]

)
.

The estimator for the total generalized correlation is defined as

ˆ̄ρ = trace
(

(F̂>F̂ )−1(F̂>G)(G>G)−1(G>F̂ )
)
.

As the trace operator is a differentiable function and the quadratic covariation estimator is

asymptotically mixed-normally distributed we can apply a delta method argument to show

that
√
M(ˆ̄ρ− ρ̄) is asymptotically mixed-normally distributed as well.

A test for equality of two sets tests if ρ̄ = min(KF ,KG). As an example consider KF =

KG = 3 and the total generalized correlation is equal to 3. In this case F (t) is a linear

transformation of G(t) and both describe the same factor model. Based on the asymptotic

normal distribution of ˆ̄ρ we can construct a test statistic and confidence intervals. The null

hypothesis is ρ̄ = min(KF ,KG).

In the simple case of KF = KG = 1 the squared generalized correlation and hence also the

total generalized correlation correspond to a measure of R2, i.e. it measures the amount of

variation that is explained by G1 in a regression of F1 on G1. My measure of total generalized

correlations can be interpreted as a generalization of R2 for a regression of a vector space on

another vector space.

Theorem 11. Asymptotic distribution for total generalized correlation

Assume F (t) is a factor process as in Assumption 1. Denote by G(t) a KG-dimensional process

satisfying Definition 1. The process G is either (i) a well-diversified portfolio of X, i.e. it can

17Aı̈t-Sahalia and Xiu’s (2015a) distribution results on the eigenvalues of estimated quadratic covariation
matrixes can potentially be extended to close this gap.

18See for example Anderson (1984)

25



be written as G(t) = 1
N

∑N
i=1wiXi(t) with ‖wi‖ bounded for all i or (ii) G is independent of

the residuals e(t). Furthermore assume that
√
M
N → 0. The M ×KG matrix of increments is

denoted by G. Assume that19

√
M

((
F>F F>G

G>F G>G

)
−

(
[F, F ] [F,G]

[G,F ] [G,G]

))
L−s→ N(0,Π).

Then

√
M
(
ˆ̄ρ− ρ̄

) L−s→ N(0,Ξ) and

√
M√
Ξ

(
ˆ̄ρ− ρ̄

) D→ N(0, 1)

with Ξ = ξ>Πξ and

ξ = vec

((
−
(
[F, F ]−1[F,G][G,G]−1[G,F ][F, F ]−1

)>
[F, F ]−1[F,G][G,G]−1

[G,G]−1[G,F ][F, F ]−1 −
(
[G,G]−1[G,F ][F, F ]−1[F,G][G,G]−1

)>
))

.

Here a I present a feasible test statistic for the estimated continuous factors. A feasible test

for the jump factors can also be derived.

Theorem 12. A feasible central limit theorem for the generalized continuous cor-

relation

Assume Assumptions 1 to 3 hold. The process G is either (i) a well-diversified portfolio of

X, i.e. it can be written as G(t) = 1
N

∑N
i=1wiXi(t) with ‖wi‖ bounded for all i or (ii) G is

independent of the residuals e(t). Furthermore assume that
√
M
N → 0. Denote the threshold

estimators for the continuous factors as F̂C and for the continuous component of G as ĜC .

The total generalized continuous correlation is

ρ̄C = trace
(
[FC , FC ]−1[FC , GC ][GC , GC ]−1[GC , FC ]

)
and its estimator is

ˆ̄ρC = trace

(
(F̂C

>
F̂C)−1(F̂C

>
ĜC)(ĜC

>
ĜC)−1(ĜC

>
F̂C)

)
.

19As explained in for example Barndorff-Nielsen and Shephard (2004a) the statement should be read as
√
M

(
vec

((
F>F F>G

G>F G>G

))
− vec

((
[F, F ] [F,G]
[G,F ] [G,G]

)))
L−s→ N(0,Π), where vec is the vectorization opera-

tor. Inevitably the matrix Π is singular due to the symmetric nature of the quadratic covariation. A proper
formulation avoiding the singularity uses vech operators and elimination matrices (See Magnus (1988)).
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Then

√
M√
Ξ̂C

(
ˆ̄ρC − ρ̄C

) D→ N(0, 1)

Define the M × (KF +KG) matrix Y =
(
F̂C ĜC

)
. Choose a sequence satisfying k →∞ and

k
M → 0 and estimate spot volatilities as

v̂i,rj =
M

k

k−1∑
l=1

Yj+l,iYj+l,r.

The estimator of the (KF +KG)× (KF +KG) quarticity matrix Π̂C has the elements

Π̂C
r+(i−1)(KF +KG),n+(m−1)(KF +KG) =

1

M

(
1− 2

k

)M−k+1∑
j=1

(
vi,rj v

m,n
j + vi,nj vr,mj

)

for i, r,m, n = 1, ...,KF +KG. Estimate ξ̂C = vec(S) for the matrix S with block elements

S1,1 = −
((

F̂C>F̂C
)−1

F̂C>ĜC
(
ĜC>ĜC

)−1
ĜC>F̂C

(
F̂C>F̂C

)−1
)>

S1,2 =
(
F̂C>F̂C

)−1
F̂C>ĜC

(
ĜC>ĜC

)−1

S2,1 =
(
ĜC>ĜC

)−1
ĜC>F̂C

(
F̂C>F̂C

)−1

S2,2 = −
((

ĜC>ĜC
)−1

ĜC>F̂C
(
F̂C>F̂C

)−1
F̂C>ĜC

(
ĜC>ĜC

)−1
)>

.

The estimator for the covariance of the total generalized correlation estimator is Ξ̂C = ξ̂C>Π̂C ξ̂C .

The assumption that G has to be a well-diversified portfolio of the underlying asset space

is satisfied by essentially all economic factors considered in practice, e.g. the market factor or

the value, size and momentum factors. Hence, practically it does not impose a restriction on

the testing procedure. This assumption is only needed to obtain the same distribution theory

for the quadratic covariation of G with the estimated factors as with the true factors.

9 Differences to Long-Horizon Factor Models

The estimation approach of my high-frequency factor model can in general not be mapped

into Bai’s (2003) general long-horizon factor model. After rescaling the increments, we can

interpret the quadratic covariation estimator as a sample covariance estimator. However, in

contrast to the covariance estimator, the limiting object will be a random variable and the
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asymptotic distribution results have to be formulated in terms of stable convergence in law,

which is stronger than convergence in distribution. Models with jumps have “heavy-tailed

rescaled increments” which cannot be accommodated in Bai’s (2003) model. In stochastic

volatility or stochastic intensity jump models the data is non-stationary. Some of the results

in large dimensional factor analysis do not apply to non-stationary data. In contrast to long-

horizon factor analysis the asymptotic distribution of my estimators have a mixed Gaussian

limit and so will generally have heavier tails than a normal distribution.

I start with a simple case where the high-frequency problem is nested in the long-horizon

model. First, I assume that all stochastic processes are Brownian motions:

XT =


Λ11 · · · Λ1K

...
. . .

...

Λ1K · · · ΛNK



WF1(t)

...

WFK
(t)

+


σ11 · · · 0

...
. . .

...

0 · · · σNN



We1(t)

...

WeN (t)


where all Brownian motions WFk

and Wei are independent of each other. In this case the

quadratic covariation equals

[X,X] = Λ[F, F ]Λ> + [e, e] = ΛΛ>T +


σ2

11 · · · 0
...

. . .
...

0 · · · σ2
NN

T

Under standard assumptions ΛΛ> is a N ×N matrix of rank K and its eigenvalues will go to

infinity for N → ∞. On the other hand [e, e] has bounded eigenvalues. The problem is the

estimation of the unobserved quadratic covariation matrix [X,X] for large N . Although, we

can estimate each entry of the matrix with a high precision, the estimation errors will sum up

to a non negligible quantity if N is large. In the case of a large-dimensional sample covariance

matrix Bai (2003) has solved the problem. If we divide the increments by the square root of the

length of the time increments ∆M = T/M , we end up with a conventional covariance estimator:

M∑
j=1

(∆jXi)
2 =

T

M

M∑
j=1

(
∆jXi√

∆M

)2

with
∆jXi√

∆M
∼ i.i.d. N(0,ΛiΛ

>
i + σ2

ii).

These rescaled increments satisfy all the assumptions of Bai (2003)’s estimator.

However, for general stochastic process we violate the assumptions in Bai’s paper. Assume

that the underlying stochastic processes have stochastic volatility and jumps. Both are features
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that are necessary to model asset prices realistically.

F (t) =

∫ t

0
σF (s)dWF (s) +

∑
s≤t

∆F (s) e(t) =

∫ t

0
σe(s)dWe(s) +

∑
s≤t

∆e(s).

First, if Xi is allowed to have jumps, then it is easy to show that the rescaled increments
∆jXi√

∆M

do not have fourth moments. However, Bai (2003) requires the random variables to have at

least 8 moments.20 Second, the quadratic covariation matrices evaluated at time T will now be

random variables given by21

[F, F ] =

∫ T

0
σ2
F (s)ds+

∑
s≤T

∆F 2(s) [ei, ek] =

∫ T

0
σei,k(s)ds+

∑
s≤T

∆ei(s)∆ek(s).

and [X,X] = Λ[F, F ]Λ>+[e, e]. The high-frequency estimator is based on path-wise arguments

for the stochastic processes, while Bai’s estimator is based on population assumptions. Third,

the mode of convergence is now stable convergence in law, which is stronger than simple conver-

gence in distribution.22 Although the estimator for the quadratic covariation is
√
M consistent,

it has now an asymptotic mixed-Gaussian law:

√
M

M∑
j=1

Fjeji
L−s→ N

0,

∫ T

0
σ2
Fσ

2
eids+

∑
s≤T

∆F 2(s)σ2
ei(s) +

∑
s′≤T

∆e2
i (s
′)σ2

F (s′)

 .

This directly affects the distribution of the loadings estimator. Similar arguments apply to the

factor estimator.

10 Simulations

This section considers the finite sample properties of my estimators through Monte-Carlo sim-

ulations. In the first subsection I use Monte-Carlo simulations to analyze the distribution of

my estimators for the loadings, factors and common components. In the second subsection I

provide a simulation study of the estimator for the number of factors and compare it to the

most popular estimators in the literature.

My benchmark model is a Heston-type stochastic volatility model with jumps. In the general

20Assumption C in Bai (2003)
21Here I assume that there is only one factor, i.e. K = 1.
22Assumption F in Bai (2003).

29



case I assume that the K factors are modeled as

dFk(t) = (µ− σ2
Fk

(t))dt+ ρFσFk
(t)dWFk

(t) +
√

1− ρ2
FσFk

(t)dW̃Fk
(t) + JFk

dNFk
(t)

dσ2
Fk

(t) = κF
(
αF − σ2

Fk
(t)
)
dt+ γFσFk

(t)dW̃Fk
(t)

and the N residual processes as

dei(t) = ρeσei(t)dWei(t) +
√

1− ρ2
eσei(t)dW̃ei(t) + JeidNei(t)− E[Jei ]νedt

dσ2
ei(t) = κe

(
αe − σ2

ei(t)
)
dt+ γeσei(t)dW̃ei(t)

The Brownian motions WF , W̃F ,We, W̃e are assumed to be independent. I set the parameters

to values typically used in the literature: κF = κe = 5, γF = γe = 0.5, ρF = −0.8, ρe = −0.3,

µ = 0.05, αF = αe = 0.1. The jumps are modeled as a compound Poisson process with intensity

νF = νe = 6 and normally distributed jumps with JFk
∼ N(−0.1, 0.5) and Jei ∼ N(0, 0.5). The

time horizon is normalized to T = 1.

In order to separate continuous from discontinuous movements I use the threshold 3σ̂X(j)∆0.48
M .

The spot volatility is estimated using Barndorff-Nielsen and Shephard’s (2006) bi-power volatil-

ity estimator on a window of
√
M observations. Under certain assumptions the bi-power esti-

mator is robust to jumps and estimates the volatility consistently.

In order to capture cross-sectional correlations I formulate the dynamics of X as

X(t) = ΛF (t) +Ae(t)

where the matrix A models the cross-sectional correlation. If A is an identity matrix, then

the residuals are cross-sectionally independent. The empirical results suggest that it is very

important to distinguish between strong and weak factors. Hence the first factor is multiplied

by the scaling parameter σdominant. If σdominant = 1 then all factors are equally strong. In

practice, the first factor has the interpretation of a market factor and has a significantly larger

variance than the other weaker factors. Hence, a realistic model with several factors should set

σdominant > 1.

The loadings Λ are drawn from independent standard normal distributions. All Monte-

Carlo simulations have 1000 repetitions. I first simulate a discretized model of the continuous

time processes with 2000 time steps representing the true model and then use the data which

is observed on a coarser grid with M = 50, 100, 250 or 500 observations. My results are robust

to changing the number of Monte-Carlo simulations or using a finer time grid for the “true”

process.
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10.1 Asymptotic Distribution Theory

In this subsection I consider only one factor in order to assess the properties of the limiting

distribution, i.e. K = 1 and σdominant = 1. I consider three different cases:

1. Case 1: Benchmark model with jumps. The correlation matrix A is a Toplitz matrix

with parameters (1, 0.2, 0.1), i.e. it is a symmetric matrix with diagonal elements 1 and

the first two off-diagonals have elements 0.2 respectively 0.1.

2. Case 2: Benchmark model without jumps. This model is identical to case 1 but

without the jump component in the factors and residuals.

3. Case 3: Toy model. Here all the stochastic processes are standard Brownian motions

X(t) = ΛWF (t) +We(t)

After rescaling case 3 is identical to the simulation study considered in Bai (2003).

Obviously, we can only estimate the continuous and jump factors in case 1.

In order to assess the accuracy of the estimators I calculate the correlations of the estimator

for the loadings and factors with the true values. If jumps are included, we have additionally

correlations for the continuous and jump estimators. In addition for t = T and i = N/2 I

calculate the asymptotic distribution of the rescaled and normalized estimators:

CLTC =

(
1

N
V̂T,i +

1

M
ŴT,i

)−1/2 (
ĈT,i − CT,i

)
CLTF =

√
NΘ̂

−1/2
F (F̂T −H−1FT )

CLTΛ =
√
MΘ̂

−1/2
Λ,i (Λ̂i −H>Λi)

Table 1 reports the mean and standard deviation of the correlation coefficients between F̂T

and FT and Λ̂i and Λi based on 1000 simulations. In case 1 I also estimate the continuous

and jump part. The correlation coefficient can be considered as a measure of consistency.

For the factor processes the correlation is based on the quadratic covariation between the

true and the estimated processes. I run the simulations for four combinations of N and M :

N = 200,M = 250, N = 100,M = 100, N = 500,M = 50 and N = 50,M = 500. The

correlation coefficients in all cases are very close to one, indicating that my estimators are

very precise. Note, that we can only estimate the continuous and jump factor up to a finite

variation part. However, when calculating the correlations, the drift term is negligible. For

a small number of high-frequency observations M the continuous and the jump factors are

estimated with a lower precision as the total factor. This is mainly due to an imprecision in the

estimation of the jumps. In all cases the loadings can be estimated very precisely. The simpler

the processes, the better the estimators work. For sufficiently large N and M , increasing M
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N=200, M=250 N=100, M=100
Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

Total Cont. Jump Total Cont. Jump
Corr. FT 0.994 0.944 0.972 0.997 0.997 0.986 0.789 0.943 0.994 0.997
SD FT 0.012 0.065 0.130 0.001 0.000 0.037 0.144 0.165 0.002 0.000
Corr. Λ 0.995 0.994 0.975 0.998 0.998 0.986 0.966 0.949 0.994 0.998
SD Λ 0.010 0.008 0.127 0.001 0.000 0.038 0.028 0.157 0.002 0.000

N=500, M=50 N=50, M=500
Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

Total Cont. Jump Total Cont. Jump
Corr. FT 0.997 0.597 0.926 0.999 0.999 0.973 0.961 0.954 0.988 0.990
SD FT 0.006 0.196 0.151 0.001 0.000 0.067 0.028 0.141 0.005 0.002
Corr. Λ 0.979 0.921 0.906 0.987 0.990 0.991 0.997 0.974 0.999 0.999
SD Λ 0.027 0.051 0.175 0.005 0.002 0.053 0.002 0.128 0.001 0.000

Table 1: Mean and standard deviations of estimated correlation coefficients between F̂T and
FT and Λ̂i and Λi based on 1000 simulations.

improves the estimator for the loadings, while increasing N leads to a better estimation of the

factors. Overall, the finite sample properties for consistency are excellent.
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Figure 1: Case 1 with N = 200 and M = 250. Histogram of standardized common components
CLTC , factors CLTF and loadings CLTΛ. The normal density function is superimposed on the
histograms.

Table 2 and Figures 1 to 3 summarize the simulation results for the normalized estimators

CLTC , CLTF and CLTΛ. The asymptotic distribution theory suggests that they should be

N(0, 1) distributed. The tables list the means and standard deviations based on 1000 simula-

tions. For the toy model in case 3 the mean is close to 0 and the standard deviation almost

1, indicating that the distribution theory works. Figure 3 depicts the histograms overlaid with

a normal distribution. The asymptotic theory provides a very good approximation to the fi-
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N=200, M=250 CLTC CLTF CLTΛ N=100, M=100 CLTC CLTF CLTΛ

Case 1
Mean 0.023 0.015 0.051

Case 1
Mean -0.047 0.025 -0.006

SD 1.029 1.060 1.084 SD 0.992 1.139 1.045

Case 2
Mean 0.004 -0.007 -0.068

Case 2
Mean -0.005 0.030 0.041

SD 1.040 1.006 1.082 SD 1.099 1.046 1.171

Case 3
Mean 0.000 0.002 0.003

Case 3
Mean 0.024 -0.016 -0.068

SD 1.053 1.012 1.049 SD 1.039 1.060 1.091

N=500, M=50 CLTC CLTF CLTΛ N=50, M=500 CLTC CLTF CLTΛ

Case 1
Mean -0.026 -0.012 -0.029

Case 1
Mean -0.005 -0.044 0.125

SD 0.964 1.308 1.002 SD 1.055 4.400 1.434

Case 2
Mean -0.028 -0.009 0.043

Case 2
Mean 0.012 -0.018 -0.020

SD 1.120 1.172 1.178 SD 0.989 1.038 1.178

Case 3
Mean -0.064 0.003 0.018

Case 3
Mean 0.053 0.030 -0.013

SD 1.079 1.159 1.085 SD 1.015 1.042 1.141

Table 2: Mean and standard deviation of normalized estimators for the common component,
factors and loadings based on 1000 simulations

nite sample distributions. Adding stochastic volatility and weak cross-sectional correlation still

provides a good approximation to a normal distribution. The common component estimator is

closer to the asymptotic distribution than the factor or loading estimator. Even in case 1 with

the additional jumps the approximation works well. The common component estimator still

performs the best. Without an additional finite sample correction the loading estimator in case

1 would have some large outliers. In more detail, the derivations for case 1 assume that the time

increments are sufficiently small such that the two independent processes F (t) and ei(t) do not

jump during the same time increment. Whenever this happens the rescaled loadings statistic

explodes. For very few of the 1000 simulations in case 1 we observe this problem and exclude

these simulations. I have set the length of the local window in the covariance estimation of

the loadings estimator to k =
√
M . The estimator for the covariance of the factors assumes

cross-sectional independence, which is violated in the simulation example as well as Assumption

5. Nevertheless in the simulations the normalized statistics approximate a normal distribution

very well. Overall, the finite sample properties for the asymptotic distribution work well.

10.2 Number of Factors

In this subsection I analyze the finite sample performance of my estimator for the number of

factors and show that it outperforms or is at least as good as the most popular estimators in the

literature. One of the main motivations for developing my estimator is that the assumptions

needed for the Bai and Ng (2002), Onatski (2010) and Ahn and Horenstein (2013) estimator

33



−5 0 5
0

20

40

60

80

100
Common components

−5 0 5
0

20

40

60

80

100
Factors

−5 0 5
0

20

40

60

80

100
Loadings

Figure 2: Case 2 with N = 200 and M = 250. Histogram of standardized common components
CLTC , factors CLTF and loadings CLTΛ. The normal density function is superimposed on the
histograms.
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Figure 3: Case 3 with N = 200 and M = 250. Histogram of standardized common components
CLTC , factors CLTF and loadings CLTΛ. The normal density function is superimposed on the
histograms.

cannot be extended to the general processes that we need to consider. In particular all three

estimators assume essentially that the residuals can be written in the form BEA, where B is

a T × T matrix capturing serial correlation, A is a N ×N matrix modeling the cross-sectional

correlation and E is a T × N matrix of i.i.d. random variables with finite fourth moments.

Such a formulation rules out jumps and a complex stochastic volatility structure.

In the first part of this section we work with a variation of the toy model such that we can

apply all four estimators and compare them:

X(t) = ΛWF (t) + θAWe(t)

where all the Brownian motions are independent and the N × N matrix A models the cross-

sectional dependence, while θ captures the signal-to-noise ratio. The matrix A is a Toplitz

matrix with parameters (1, a, a, a, a2), i.e. it is a symmetric matrix with diagonal element 1

34



and the first four off-diagonals having the elements a, a, a and a2. A dominant factor is modeled

with σdominant > 1. Note, that after rescaling this is the same model that is also considered

in Bai and Ng, Onatski and Ahn and Horenstein. Hence, these results obviously extend to

the long horizon framework. In the following simulations we always consider three factors, i.e.

K = 3.

I simulate four scenarios:

1. Scenario 1: Dominant factor, large noise-to signal ratio, cross-sectional correlation

σdominant =
√

10, θ = 6 and a = 0.5.

2. Scenario 2: No dominant factor, large noise-to signal ratio, cross-sectional correlation

σdominant = 1, θ = 6 and a = 0.5.

3. Scenario 3: No dominant factor, small noise-to signal ratio, cross-sectional correlation

σdominant = 1, θ = 1 and a = 0.5.

4. Scenario 4: Toy model

σdominant = 1, θ = 1 and a = 0.

My empirical studies in Pelger (2015) suggest that in the data the first systematic factor is

very dominant with a variance that is 10 times larger then those of the other weaker factors.

Furthermore the idiosyncratic part seems to have a variance that is at least as large as the

variance of the common components. Both findings indicate that scenario 1 is the most realistic

case and any estimator of practical relevance must also work in this scenario.

My perturbed eigenvalue ratio statistic has two choice parameters: the perturbation g(N,M)

and the cutoff γ. In the simulations I set the cutoff equal to γ = 0.2. For the perturba-

tion I consider the two choices g(N,M) =
√
N ·median{λ1, ..., λN} and g(N,M) = log(N) ·

median{λ1, ..., λN}. The first estimator is denoted by ERP1, while the second is ERP2. All

my results are robust to these choice variables. The Onatski (2010) estimator is denoted by

Onatski and I use the same parameters as in his paper. The Ahn and Horenstein (2013) es-

timator is labeled as Ahn. As suggested in their paper, for their estimator I first demean the

data in the cross-sectional and time dimension before applying principal component analysis.

Bai denotes the BIC3 estimator of Bai and Ng (2002). The BIC3 estimator outperforms the

other versions of the Bai and Ng estimators in simulations. For the last three estimators, we

need to define an upper bound on the number of factors, which I set equal to kmax = 20. The

main results are not affected by changing kmax. For ERP1 and ERP2 we consider the whole

spectrum. The figures and plots are based on 1000 simulations.

Obviously there are more estimators in the literature, e.g. Harding (2013), Alessi, Barigozzi

and Capasso (2010) and Hallin and Liska (2007). However, the simulation studies in their

papers indicate that the Onatski and Ahn and Horenstein estimators dominate most other

estimators.
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Figure 4: RMSE (root-mean squared error)
for the number of factors in scenario 1 for
different estimators with N = M .
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Figure 5: RMSE (root-mean squared error)
for the number of factors in scenario 2 for
different estimators with N = M .

ERP1 ERP2 Onatski Ahn Bai

RMSE 0.32 0.18 0.49 4.00 3.74
Mean 2.79 2.88 2.76 1.00 1.09
Median 3 3 3 1 1
SD 0.52 0.41 0.66 0.00 0.28
Min 1 1 1 1 1
Max 3 4 5 1 2

Table 3: Scenario 1: N = M = 125, K = 3.

ERP1 ERP2 Onatski Ahn Bai

RMSE 1.48 0.87 1.99 0.73 3.99
Mean 2.39 2.62 2.31 2.56 1.00
Median 3 3 3 3 1
SD 1.05 0.85 1.23 0.73 0.06
Min 0 0 0 1 1
Max 4 4 6 4 2

Table 4: Scenario 2: N = M = 125, K = 3.

Figures 4 to 7 plot the root-mean squared error for the different estimators for a growing

number N = M and show that my estimators strongly outperform or are at least as good as the

other estimators. In the most relevant Scenario 1 depicted in Figure 4 only the ERP1, ERP2

and Onatski estimator are reliable. This is because these three estimators focus on the residual

spectrum and are not affected by strong factors. Although we apply the demeaning as proposed

in Ahn and Horenstein, their estimator clearly fails. Table 3 shows the summary statistics for

this scenario. Ahn and Bai severely underestimate the number of factors, while the ERP1

and ERP2 estimators are the best. Note, that the maximal error for both ERP estimators is

smaller than for Onatski. In Figure 5 we remove the strong factor and the performance of Ahn

drastically improves. However ERP1 and ERP1 still show a comparable performance. In the

less realistic Scenarios 3 and 4, all estimators are reliable and perform equally well.
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Figure 6: RMSE (root-mean squared error)
for the number of factors in scenario 3 for
different estimators with N = M .
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Figure 7: RMSE (root-mean squared error)
for the number of factors in scenario 4 for
different estimators with N = M .

ERP1 ERP2 Onatski Ahn Bai

RMSE 0.00 0.01 0.06 0.00 0.00
Mean 3.00 3.01 3.03 3.00 3.00
Median 3 3 3 3 3
SD 0.03 0.08 0.24 0.00 0.00
Min 3 3 3 3 3
Max 4 4 7 3 3

Table 5: Scenario 3: N = M = 125, K = 3.

ERP1 ERP2 Onatski Ahn Bai

RMSE 0.00 0.00 0.05 0.00 0.00
Mean 3.00 3.00 3.03 3.00 3.00
Median 3 3 3 3 3
SD 0.00 0.03 0.22 0.00 0.00
Min 3 3 3 3 3
Max 3 4 7 3 3

Table 6: Scenario 4: N = M = 125, K = 3.

Figures 8 and 9 show ERP1 applied to the benchmark model Case 1 from the last subsection.

The first dominant factor has a continuous and a jump component, while the other two weak

factors are purely continuous. Hence, we have K = 3, KC = 3, KD = 1 and σdominant = 3.

I simulate 100 paths for the perturbed eigenvalue ratio and try to estimate K, KC and KD.

We can clearly see that ERP1 clusters for k > 3 in the total and continuous case respectively

k > 1 in the jump case and increases drastically at the true number of factors. How the cutoff

threshold γ has to be set, depends very much on the data set. The choice of γ = 0.2, that

worked very well in my previous simulations, would potentially not have been the right choice

for Figures 8 and 9. Nevertheless, just by looking at the plots it is very apparent what the right

number of factors should be. Therefore, I think plotting the perturbed eigenvalue ratios is a

very good first step for understanding the potential factor structure in the data.
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Figure 8: Perturbed eigenvalue ratios (ERP1) in the benchmark case 1 with K = 3, KC = 3,
KD = 1, σdominant = 3, N = 200 and M = 250 for 100 simulated paths.
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Figure 9: Perturbed eigenvalue ratios (ERP1) in the benchmark case 1 with K = 3, KC = 3,
KD = 1, σdominant = 3, N = 100 and M = 100 for 100 simulated paths.

11 Conclusion

This paper studies factor models in the new setting of a large cross section and many high-

frequency observations under a fixed time horizon. I propose a principal component estimator

based on the increments of the observed time series, which is a simple and feasible estimator. For

this estimator I develop the asymptotic distribution theory. Using a simple truncation approach
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the same methodology allows to estimate continuous and jump factors. My results are obtained

under very general conditions for the stochastic processes and allow for cross-sectional and serial

correlation in the residuals. I also propose a novel estimator for the number of factors, that can

also consistently estimate the number of continuous and jump factors under the same general

conditions. In two extensions I propose a new test for comparing estimated statistical factors

with observed economic factors and a new estimator for the variance of microstructure noise.

In an extensive empirical study in Pelger (2015) I apply the estimation approaches developed

in this paper to 5 minutes high-frequency price data of S&P 500 firms from 2003 to 2012. I

can show that the continuous factor structure is highly persistent in some years, but there is

also time variation in the number and structure of factors over longer horizons. For the time

period 2007 to 2012 I estimate four continuous factors which can be approximated very well

by a market, oil, finance and electricity factor. The value, size and momentum factors play

no significant role in explaining these factors. From 2003 to 2006 one continuous systematic

factor disappears. Systematic jump risk also seems to be different from systematic continuous

risk. There seems to exist only one persistent jump factor, namely a market jump factor. Using

short-maturity, at-the-money implied volatilities from option price data for the same S&P 500

firms from 2003 to 2012 I analyze the systematic factor structure of the volatilities. There there

seems to be only one persistent market volatility factor, while during the financial crisis an

additional temporary banking volatility factor appears. Based on the estimated factors, I can

decompose the leverage effect, i.e. the correlation of the asset return with its volatility, into a

systematic and an idiosyncratic component. The negative leverage effect is mainly driven by

the systematic component, while the idiosyncratic component can be positively correlated with

the volatility. These findings are important as they can rule out popular explanations of the

leverage effect, which do not distinguish between systematic and non-systematic risk.

Arbitrage pricing theory links risk premiums to systematic risk. In future projects I want

to analyze the ability of the high-frequency factors to price the cross-section of returns. Fur-

thermore I would like to explore the possibility to use even higher sampling frequencies by

developing a microstructure noise robust estimation method.
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A Structure of Appendix

The appendix is structured as follows. Appendix B specifies the class of stochastic processes

used in this paper. In Appendix C I collect some intermediate asymptotic results, which will

be used in the subsequent proofs. Appendix D proves the results for the loading estimator.

Appendix E treats the estimation of the factors. In Appendix F I show the results for the

common components. In Appendix G I derive consistent estimators for the covariance matrices

of the estimators. Appendix H deals with separating the continuous and jump factors. The

estimation of the number of factors is in Appendix I. Appendix J proves the test for identifying

the factors. Last but not least I discuss the proofs for microstructure noise in Appendix K.

Finally, for convenience Appendix L contains a collection of limit theorems. In the proofs C is

a generic constant that may vary from line to line.

B Assumptions on Stochastic Processes

Definition 1. Locally bounded special Itô semimartingales

The stochastic process Y is a locally bounded special Itô semimartingale if it satisfies the fol-

lowing conditions. Y is a d-dimensional special Itô semimartingale on some filtered space

(Ω,F, (Ft)t≥0,P), which means it can be written as

Yt = Y0 +

∫ t

0
bsds+

∫ t

0
σsdWs +

∫ t

0

∫
E
δ(s, x)(µ− ν)(ds, dx)

where W is a d-dimensional Brownian motion and µ is a Poisson random measure on R+ ×E
with (E,E) an auxiliary measurable space on the space (Ω,F, (Ft)t≥0,P). The predictable com-

pensator (or intensity measure) of µ is ν(ds, dx) = ds× v(dx) for some given finite or sigma-

finite measure on (E,E). This definition is the same as for an Itô semimartingale with the

additional assumption that ‖
∫ t

0

∫
E δ(s, x)1{‖δ‖>1}ν(ds, dx)‖ <∞ for all t. Special semimartin-

gales have a unique decomposition into a predictable finite variation part and a local martingale

part.

The coefficients bt(ω), σt(ω) and δ(ω, t, x) are such that the various integrals make sense

(see Jacod and Protter (2012) for a precise definition) and in particular bt and σt are optional

processes and δ is a predictable function.

The volatility σt is also a d-dimensional Itô semimartingale of the form

σt =σ0 +

∫ t

0
b̃sds+

∫ t

0
σ̃sdWs +

∫ t

0
σ̃′sdW

′
s +

∫ t

0

∫
E
1{‖δ̃‖≤1}δ̃(s, x)(µ− ν)(ds, dx)

+

∫ t

0

∫
E
1{‖δ̃‖>1}δ̃(s, x)µ(ds, dx)
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where W ′ is another Wiener process independent of (W,µ). Denote the predictable quadratic co-

variation process of the martingale part by
∫ t

0 asds and the compensator of
∫ t

0

∫
E 1{‖δ̃‖>1}δ̃(s, x)µ(ds, dx)

by
∫ t

0 ãsds.

1. I assume a local boundedness condition holds for Y :

• The process b is locally bounded and càdlàg.

• The process σ is càdlàg.

• There is a localizing sequence τn of stopping times and, for each n, a determin-

istic nonnegative function Γn on E satisfying
∫

Γn(z)2v(dz) < ∞ and such that

‖δ(ω, t, z)‖ ∧ 1 ≤ Γn(z) for all (ω, t, z) with t ≤ τn(ω).

2. The volatility process also satisfy a local boundedness condition:

• The processes b̃ a and ã are locally bounded and progressively measurable

• The processes σ̃ and b̃ are càdlàg or càglàd

3. Furthermore both processes σσ> and σt−σ
>
t− take their values in the set of all symmetric

positive definite d× d matrices.

More details on high frequency models and asymptotics can be found in the book by Aı̈t-

Sahalia and Jacod (2014).

C Some Intermediate Asymptotic Results

C.1 Convergence Rate Results

Proposition C.1. Assume Y is a d-dimensional Itô-semimartingale satisfying Definition 1:

Yt = Y0 +

∫ t

0
bY (s)ds+

∫ t

0
σY (s)dWY (s) +

∫ t

0
δY ? (µ− ν)t

Assume further that Y is square integrable. Assume Z̄N = 1√
N

∑N
i=1 Zi, where each Zi is a

local Itô-martingale satisfying Definition 1:

Zi(t) =

∫ t

0
σZi(s)dWi(s) + δZi ? (µZi − νZi)t

and each Zi is square integrable. Assume that [Z̄N , Z̄N ]T and 〈Z̄N , Z̄N 〉T are bounded for all

N . Divide the interval [0, T ] into M subintervals. Assume further that Y is either independent

of ZN or a square integrable martingale.
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Then, it holds that

√
M

 M∑
j=1

∆jY∆jZN − [Y, ZN ]T

 = Op (1)

Proof. Step 1: Localization

Using Theorem L.1 and following the same reasoning as in Section 4.4.1 of Jacod (2012), we can

replace the local boundedness conditions with a bound on the whole time interval. I.e. without

loss of generality, we can assume that there exists a constant C and a non-negative function Γ

such that

‖σZi‖ ≤ C, ‖Zi(t)‖ ≤ C, ‖δZi‖2 ≤ Γ,

∫
Γ(z)νZi(dz) ≤ C

‖σY ‖ ≤ C, ‖Y (t)‖ ≤ C, ‖δY ‖2 ≤ Γ,

∫
Γ(z)νY (dz) ≤ C

‖bY ‖ ≤ C

σZN
, δZ̄N

and νZ̄N
are defined by

〈Z̄N , Z̄N 〉t =

∫ t

0

(
σ2
Z̄N

(s) +

∫
δ2
Z̄N

(z, s)νZ̄N
(dz)

)
ds

Given our assumptions, we can use wlog that

‖σZ̄N
‖ ≤ C, ‖Z̄N (t)‖ ≤ C, ‖δ2

Z̄N
‖ ≤ Γ,

∫
Γ(z)νZ̄N

(dz) ≤ C

Step 2: Bounds on increments

Denote the time increments by ∆M = T/M . Lemmas L.4, L.5 and L.6 together with the bounds

on the characteristics of Y and ZN imply that

E

[
sup

0≤s≤∆M

‖Yt+s − Yt‖2
]
≤C∆ME

[∫ t+∆M

t
‖bY (s)‖2ds

]
+ CE

[∫ t+∆M

t
‖σY (s)‖2ds

]
+ CE

[∫ t+∆M

t

∫
‖δY (s, z)‖2νY (dz)ds

]
≤ C

M

and similarly

E

[
sup

0≤s≤∆M

‖Z̄N (s+ t)− Z̄N (t)‖2
]
≤ C
M

Step 3: Joint convergence
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Define GMN =
√
M
(∑M

j=1 ∆jY∆jZ̄N − [Y, Z̄N ]T

)
. We need to show, that ∀ε > 0 there exists

an n and a finite constant C such that

P (‖GMN‖ > C) ≤ ε ∀M,N > n

By Markov’ s inequality, if E
[
‖GMN‖2

]
<∞

P (‖GMN‖ > C) ≤ 1

C2
E
[
‖GMN‖2

]
Hence it remains to show that E

[
‖GMN‖2

]
<∞ for M,N →∞.

Step 4: Bounds on sum of squared increments

By Itô’s lemma, we have on each subinterval

∆jY∆jZ̄N −∆j [Y, Z̄N ] =

∫ tj+1

tj

(Y (s)− Y (tj))dZ̄N (s) +

∫ tj+1

tj

(Z̄N (s)− Z̄N (tj))dY (s)

As Z̄N is square integrable and a local martingale, it is a martingale. By assumption Y is either

independent of Z̄N or a martingale as well. In the first case it holds that

E
[
∆jY∆jZ̄N −∆j [Y, Z̄N ]|Ftj

]
= E

[
∆jY |Ftj

]
E
[
∆jZ̄N |Ftj

]
= 0

In the second case both stochastic integrals
∫ t

0 Y (s)dZ̄N (s) and
∫ t

0 Z̄N (s)dY (s) are martingales.

Hence in either case, ∆jY∆jZ̄N −∆j [Y,ZN ] forms a sequence of martingale differences and we

can apply Burkholder’s inequality for discrete time martingales (Lemma L.2):

E
[
‖GMN‖2

]
≤M

M∑
j=1

E
[
‖∆jY∆jZ̄N −∆j [Y, Z̄N ]‖2

]
≤M

M∑
j=1

E

[
‖
∫ tj+1

tj

(Y (s)− Y (tj))dZ̄N (s) +

∫ tj+1

tj

(Z̄N (s)− Z̄N (tj))dY (s)‖2
]

≤M
M∑
j=1

E

[
‖
∫ tj+1

tj

(Y (s)− Y (tj))dZ̄N (s)‖2
]

+M

M∑
j=1

E

[
‖
∫ tj+1

tj

(Z̄N (s)− Z̄N (tj))dY (s)‖2
]

It is sufficient to show that E
[
‖
∫ tj+1

tj
(Y (s)− Y (tj))dZ̄N‖2

]
= C

M2 and E
[
‖
∫ tj+1

tj
(Z̄N (s)− Z̄N (tj))dY ‖2

]
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= C
M2 . By Lemma L.3 and step 1 and 2:

E

[
‖
∫ tj+1

tj

(Y (t)− Y (tj))dZ̄N‖2
]
≤ E

[∫ tj+1

tj

‖Y (t)− Y (tj)‖2d〈Z̄N 〉

]

≤ E
[∫ T

0
‖Y (t)− Y (tj)‖2

(
σ2
Z̄N

(t) +

∫
δ2
Z̄N

(z, t)νZ̄N
(z)

)
dt

]
≤ CE

[∫ tj+1

tj

‖Y (t)− Y (tj)‖2dt

]

≤ CE

[
sup

tj≤t≤tj+1

‖Y (t)− Y (tj)‖2
]

1

M

≤ C

M2
.

Similarly using Lemma L.4 for the drift of Y and L.3 for the martingale part, we can bound

the second integral:

E

[
‖
∫ tj+1

tj

(Z̄N (t)− Z̄N (tj))dY ‖2
]
≤ E

[
‖
∫ tj+1

tj

(Z̄N (t)− Z̄N (tj))bY dt‖2
]

+ E

[
‖
∫ tj+1

tj

(Z̄N (t)− ZN (tj)) (σY dWY + δY d(µ− ν)) dt‖2
]

≤ 1

M
CE

[∫ tj+1

tj

(Z̄N (t)− Z̄N (tj))
2‖bY (t)‖2dt

]

+ CE

[∫ tj+1

tj

(Z̄N (t)− Z̄N (tj))
2

(
‖σY (t)‖2 +

∫
‖δY ‖2(z, t)νY (z)

)
dt

]

≤ 1

M
CE

[∫ tj+1

tj

(Z̄N (t)− Z̄N (tj))
2dt

]

+ CE

[∫ tj+1

tj

(Z̄N (t)− Z̄N (tj))
2(t)dt

]

≤ CE

[
sup

tj≤t≤tj+1

(Z̄N (t)− Z̄N (tj))
2

]
1

M

≤ C

M2

Putting things together, we obtain:

E
[
‖GMN‖2

]
≤M

M∑
j=1

C

M2
≤ C
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which proves the statement.

Lemma C.1. Assumption 1 holds. Then

1

N
FeΛ = Op

(
1√
MN

)
Proof. Apply Proposition C.1 with Y = F and Z̄N = 1√

N

∑N
k=1 Λkek.

Lemma C.2. Assumption 1 holds. Then

1

N

N∑
k=1

 M∑
j=1

ejiejk − [ei, ek]

Λk = Op

(
1√
MN

)

Proof. Apply Proposition C.1 with Y = ei and Z̄N = 1√
N

∑N
k=1 Λkek.

Lemma C.3. Assume Assumption 1 holds. Then

1

N

N∑
i=1

Λiei(T ) = Op

(
1√
N

)

Proof. By Burkholder’s inequality in Lemma L.3 we can bound

E

( 1

N

N∑
i=1

Λiei(T )

)2
 ≤ E

[
1

N2
Λ>〈e, e〉Λ

]
≤ C

N

based on Assumption 1.

Lemma C.4. Assume Assumption 1 holds. Then

M∑
j=1

ejiejk − [ei, ek]T = Op

(
1√
M

)

Proof. Apply Theorem L.2.

Proof of Lemma 1:

Proof. If ei has independent increments it trivially satisfies weak serial dependence. The harder

part is to show that the second and third condition imply weak cross-sectional dependence. We
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need to show

M∑
j=1

1

N2

N∑
i=1

N∑
r=1

E
[
e2
j,ie

2
j,r

]
= O

(
1

δ

)

Step 1: Decompose the residuals into their continuous and jump component respectively:

M∑
j=1

1

N2

N∑
i=1

N∑
r=1

E
[(
eCj,i + eDj,i

)2 (
eCj,r + eDj,r

)2]

≤C
M∑
j=1

1

N2

N∑
i=1

N∑
r=1

(
E
[
eCj,i

2
eCj,r

2
]

+ E
[
eDj,i

2
eDj,r

2
]

+ E
[
eCj,i

2
eDj,r

2
]

+ E
[
eCj,ie

D
j,ie

C
j,r

2
]

+ E
[
eCj,ie

D
j,ie

D
j,i

2
]

+ E
[
eCj,ie

D
j,ie

C
j,re

D
j,r

])
.

Step 2: To show:
∑M

j=1
1
N2

∑N
i=1

∑N
r=1 E

[
eCj,i

2
eCj,r

2
]

= Op
(

1
δ

)
This is a a consequence the Cauchy-Schwartz inequality and Burkholder’s inequality in Lemma

L.3:

E
[
eCj,i

2
eCj,r

2
]
≤ CE

[
eCj,i

4
]1/2

E
[
eCj,r

4
]1/2
≤ C

M2

Step 3: To show:
∑M

j=1
1
N2

∑N
i=1

∑N
r=1 E

[
eDj,i

2
eDj,r

2
]

= Op
(

1
δ

)
M∑
j=1

1

N2

N∑
i=1

N∑
r=1

E
[
eDj,i

2
eDj,r

2
]
≤ max

j,r
|eDj,r

2| · 1

N

N∑
i=1

M∑
j=1

E
[
eDj,i

2
]

≤C 1

N

N∑
i=1

M∑
j=1

E
[
∆j〈eDi , eDi 〉

]
≤ C

N
E

[
N∑
i=1

〈eDi , eDi 〉

]
≤ O

(
1

δ

)

where we have used the second and third condition.

Step 4: To show:
∑M

j=1
1
N2

∑N
i=1

∑N
r=1 E

[
eCj,ie

D
j,ie

C
j,re

D
j,r

]
= Op

(
1
δ

)
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M∑
j=1

1

N2

N∑
i=1

N∑
r=1

E
[
eCj,ie

D
j,ie

C
j,re

D
j,r

]
≤ 1

N2

N∑
i=1

N∑
r=1

E

 M∑
j=1

|eDj,i||eDj,r| sup
j,i,r

(
|eCj,i||eCj,r|

)
≤ C 1

N2

N∑
i=1

N∑
r=1

E


 M∑
j=1

eDj,i
2

1/2 M∑
j=1

eDj,r
2

1/2

sup
j,i

(eCj,i
2
)


≤ CE

[
sup
j,i

(eCj,i
2
)

]
≤ C

M
.

Step 5: The other moments can be treated similarly as in step 2 to 4.

Proposition C.2. Consequence of weak dependence

Assume Assumption 1 holds. If additionally Assumption 5, i.e. weak serial dependence and

weak cross-sectional dependence, holds then we have:

1

N

N∑
i=1

M∑
j=1

Fjeji

M∑
l=1

eli = Op

(
1

δ

)

Proof. By the localization procedure in Theorem L.1, we can assume without loss of generality

that there exists a constant C such that

‖bF (t)‖ ≤ C ‖σF (t)‖ ≤ C ‖F (t)‖ ≤ C ‖δF (t, z)‖2 ≤ Γ(z)

∫
Γ(z)vF (dz) ≤ C

‖σei(t)‖ ≤ C ‖ei(t)‖ ≤ C ‖δei(t, z)‖2 ≤ Γ(z)

∫
Γ(z)vei(dz) ≤ C

We want to show

1

N

N∑
i=1

M∑
j=1

Fjejiei(T ) = Op

(
1

δ

)

where ei(T ) =
∑M

l=1 eli. I proceed in several steps: First, I define

Z̃ =
1

N

N∑
i=1

M∑
j=1

(
Fjejiei(T )− Ej

[
bFj ∆j〈ei, ei〉

])
with the notation Ej [.] = E[.|Ftj ] as the conditional expectation and bFj =

∫ tj+1

tj
bF (s)ds as the

increment of the drift term of F . The proof relies on the repeated use of different Burkholder

inequalities, in particular that bFj = Op
(

1
M

)
,∆j〈ei, ei〉 = Op

(
1
M

)
and E[F 2

j ] ≤ C
M .
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Step 1: To show 1
N

∑N
i=1

∑M
j=1 Ej

[
bFj ∆j〈ei, ei〉

]
= Op

(
1
δ

)
∣∣∣∣∣∣ 1

N

N∑
i=1

M∑
j=1

Ej
[
bFj ∆j〈ei, ei〉

]∣∣∣∣∣∣ ≤ sup |Ej [bFj ]| 1
N

N∑
i=1

M∑
j=1

|Ej [∆j〈ei, ei〉] | ≤ Op
(

1

M

)
Op(1)

Step 2: To show: Z̃ = Op
(

1
δ

)
Note that by the independence assumption between F and e, the summands in Z̃ follow a

martingale difference sequence. Thus, by Burkholder’s inequality for discrete time martingales:

E
[
Z̃2
]
≤CE

 M∑
j=1

(
1

N

N∑
i=1

(
Fjejiei(T )− Ej [bFj ∆j〈ei, ei〉]

))2


≤CE

[
M∑
j=1

1

N2

N∑
i=1

N∑
r=1

F 2
j ejiejrei(T )er(T ) +

1

N2

N∑
i=1

N∑
r=1

(
Ej [bFj ]2Ej [∆j〈ei, ei〉]Ej [∆j〈er, er〉]

)
− 1

N2

N∑
i=1

N∑
r=1

(
Fjejiei(T )Ej [bFj ]Ej [∆j〈er, er〉] + Fjejrer(T )Ej [bFj ]Ej [∆j〈ei, ei〉]

) ]

The first term can be written as

E

 M∑
j=1

1

N2

N∑
i=1

N∑
r=1

F 2
j ejiejrei(T )er(T )


=E

 M∑
j=1

1

N2

N∑
i=1

N∑
r=1

F 2
j ejiejr

∑
l 6=j

eli
∑
s 6=j

esr

+ E

 M∑
j=1

1

N2

N∑
i=1

N∑
r=1

F 2
j e

2
jie

2
jr


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Under the assumption of weak serial dependence in Assumption 5 the first sum is bounded by

E

 M∑
j=1

1

N2

N∑
i=1

N∑
r=1

F 2
j ejiejr

∑
l 6=j

eli
∑
s 6=j

esr


≤C

 M∑
j=1

1

N2

N∑
i=1

N∑
r=1

E[F 2
j ]|E[ejiejr]|

∣∣∣∣∣∣E
∑
l 6=j

eli
∑
s 6=j

esr

∣∣∣∣∣∣


≤C

 M∑
j=1

1

N2

N∑
i=1

N∑
r=1

E[F 2
j ]|E[ejiejr]|

∣∣∣∣∣∣E
∑
l 6=j

elielr

∣∣∣∣∣∣


≤C 1

M

M∑
j=1

1

N2

N∑
i=1

N∑
r=1

|E[∆j〈ei, er〉]|

≤C 1

M

M∑
j=1

1

N2

N∑
i=1

N∑
r=1

|E

[∫ tj+1

tj

Gi,r(s)ds

]
|

≤C 1

M

M∑
j=1

1

N2

N∑
r=1

E

[∫ tj+1

tj

N∑
i=1

|Gi,r(s)|ds

]

≤C 1

MN

Next, we turn to the second sum of the first term:

M∑
j=1

1

N2

N∑
i=1

N∑
r=1

E
[
F 2
j

]
E
[
e2
jie

2
jr

]
≤ C
M

M∑
j=1

1

N2

N∑
i=1

N∑
r=1

E
[
e2
jie

2
jr

]
≤ C

Mδ

In the last line, we have used weak cross-sectional dependence in Assumption 5. The third term

can be bounded as follows

M∑
j=1

1

N2

N∑
i=1

N∑
r=1

E
[
Ej [bFj ]2Ej [∆j〈ei, ei〉]Ej [∆j〈er, er〉]

]
≤ C

M2

1

N2

N∑
i=1

N∑
r=1

M∑
j=1

C

M2
≤ C

M3
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The final two terms can be treated the same way:

M∑
j=1

1

N2

N∑
i=1

N∑
r=1

E
[
Fjejiei(T )Ej

[
bFj ∆j〈ei, ei〉

]]
≤

M∑
j=1

1

N2

N∑
i=1

N∑
r=1

E
[
FjEj [bFj ]

]
E [ejiei(T )Ej [∆j〈er, er〉]]

≤
M∑
j=1

E
[
FjEj [bFj ]

]
E

[∣∣∣∣∣ 1

N

N∑
i=1

ejiei(T )

∣∣∣∣∣Ej
[

1

N

N∑
r=1

∆j〈er, er〉

]]

≤ C

M3/2

M∑
j=1

E

[∣∣∣∣∣ 1

N

N∑
i=1

ejiei(T )

∣∣∣∣∣
]
C

M

≤ C

M3/2

1

N

N∑
i=1

E [|eji|] ≤
C

M2

Lemma C.5. Convergence rate of sum of residual increments: Under Assumptions 1

and 2 it follows that

1

N

N∑
i=1

Λiej,i = Op

(
1

δ

)

Proof. We apply Burkholder’s inequality from Lemma L.3 together with Theorem L.1:

E

( 1

N

N∑
i=1

Λiej,i

)2
 ≤ CE [ 1

N2
Λ>∆j〈e, e〉Λ

]
≤ CE

[
1

N2
Λ>
∫ tj+1

tj

G(s)dsΛ

]
≤ C

NM

which implies

1

N

N∑
i=1

Λiej,i = Op

(
1√
NM

)
.

C.2 Central Limit Theorems

Lemma C.6. Central limit theorem for covariation between F and ei
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Assume that Assumptions 1 and 2 hold. Then

√
M

M∑
j=1

Fjeji
L−s→ N(0,Γi)

where the entry {l, g} of the K ×K matrix Γi is given by

Γi,l,g =

∫ T

0
σF l,F gσ2

eids+
∑
s≤T

∆F l(s)∆F g(s)σ2
ei(s) +

∑
s′≤T

∆e2
i (s
′)σF g ,F l(s′)

F l denotes the l-th component of the the K dimensional process F and σF l,F g are the entries

of its K ×K dimensional volatility matrix.

Proof. Apply Theorem L.2 using that independence of F and ei implies [F, ei] = 0.

Lemma C.7. Martingale central limit theorem with stable convergence to Gaussian

martingale

Assume Zn(t) is a sequence of local square integrable martingales and Z is a Gaussian martin-

gale with quadratic characteristic 〈Z,Z〉. Assume that for any t > 0

1.
∫ t

0

∫
|z|>ε z

2νn(ds, dx)
p→ 0 ∀ε ∈ (0, 1]

2. [Zn, Zn]t
p→ [Z,Z]t

Then Zn
L−s→ Z.

Proof. The convergence in distribution follows immediately from Lemma L.1. In order to show

the stable weak convergence in Theorem L.4, we need to show that the nesting condition for

the filtration holds. We construct a triangular array sequence Xn(t) = Zn([tkn]) for 0 ≤ t ≤ 1

and some kn →∞. The sequence of histories is Fnt = Hn[tkn]; 0 ≤ t ≤ 1, where Hn is the history

of Zn. Now, tn = 1√
kn

is a sequence that satisfies the nesting condition.

Lemma C.8. Martingale central limit theorem for sum or residuals

Assume that Assumption 1 is satisfied and hence, in particular ei(t) are square integrable mar-

tingales. Define ZN = 1√
N

∑N
i=1 Λie(t). Assume that for any t > 0

1. 1
NΛ>〈e, e〉Dt Λ

p→ 0

2. 1
NΛ>[e, e]Dt Λ

p→ 0

3. 1
NΛ>[e, e]tΛ

p→ Φt

Then, conditioned on its quadratic covariation ZN converges stably in law to a normal distri-

bution.

ZN
L−s→ N(0,Φt).
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Proof. By Lemma C.7 ZN
L−s→ Z, where Z is a Gaussian process with 〈Z,Z〉t = Φt. Conditioned

on its quadratic variation, the stochastic process evaluated at time t has a normal distribution.

D Estimation of the Loadings

Lemma D.1. A decomposition of the loadings estimator

Let VMN be the K × K matrix of the first K largest eigenvalues of 1
NX

>X. Define H =
1
N

(
F>F

)
Λ>Λ̂V −1

MN . Then we have the decomposition

VMN

(
Λ̂i −H>Λi

)
=

1

N

N∑
k=1

Λ̂k[ei, ek]T +
1

N

N∑
k=1

Λ̂kφki +
1

N

N∑
k=1

Λ̂kηki +
1

N

N∑
k=1

Λ̂kξki

with

φki =

M∑
j=1

ejiejk − [ei, ek]T

ηki = Λ>k

M∑
j=1

Fjeji

ξki = Λ>i

M∑
j=1

Fjejk

Proof. This is essentially the identity in the proof of Theorem 1 in Bai and Ng (2002). From(
1

N
X>X

)
Λ̂ = Λ̂VMN

it follws that 1
NX

>XΛ̂V −1
MN = Λ̂. Substituting the definition of X, we obtain(

Λ̂− ΛH
)
VMN =

1

N
e>eΛ̂ +

1

N
ΛF>FΛ>Λ̂ +

1

N
e>FΛ>Λ̂ +

1

N
ΛF>eΛ̂− ΛHVMN

H is chosen to set

1

N
ΛF>FΛ>Λ̂− ΛHVMN = 0.

Lemma D.2. Mean square convergence of loadings estimator Assume Assumption 1
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holds. Then

1

N

N∑
i=1

‖Λ̂i −H>Λi‖2 = Op

(
1

δ

)
.

Proof. This is essentially Theorem 1 in Bai and Ng (2002) reformulated for the quadratic

variation and the proof is very similar. In Lemma D.4 it is shown that ‖VMN‖ = Op(1). As

(a+ b+ c+ d)2 ≤ 4(a2 + b2 + c2 + d2), we have ‖Λ̂i − ΛiH‖2 ≤ (ai + bi + ci + di) ·Op(1) with

ai =
1

N2
‖

N∑
k=1

Λ̂k[ek, ei]‖2

bi =
1

N2
‖

N∑
k=1

Λ̂kφki‖2

ci =
1

N2
‖

N∑
k=1

Λ̂kηki‖2

di =
1

N2
‖

N∑
k=1

Λ̂kξkI‖2

Step 1: To show: 1
N

∑N
i=1 ai = Op

(
1
N

)

1

N

N∑
i=1

ai ≤
1

N

N∑
i=1

(
1

N2
‖

N∑
k=1

Λ̂k[ek, ei]‖2
)

≤ 1

N

(
1

N

N∑
k=1

‖Λ̂k‖2
)(

1

N

N∑
i=1

N∑
k=1

[ek, ei]
2
T

)

= Op

(
1

N

)
The first term is 1

N

∑N
i=1 ‖Λ̂k‖2 = Op(1). The second term can be bounded by using the norm

equivalence between the Frobenius and the spectral norm. Note that
∑N

i=1

∑N
k=1[ek, ei]

2
T is

simply the squared Frobenius norm of the matrix [e, e]. It is well-known that any N×N matrix

A with rank N satisfies ‖A‖F ≤
√
N‖A‖2. Therefore

1

N

N∑
i=1

N∑
k=1

[ek, ei]
2
T ≤ ‖[e, e]‖22 = Op(1).

Step 2: To show: 1
N

∑N
i=1 bi = Op

(
1
M

)
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1

N

N∑
i=1

bi ≤
1

N

N∑
i=1

(
1

N2
‖

N∑
k=1

Λ̂kφki‖2
)

≤ 1

N

1

N2

N∑
i=1

N∑
k=1

N∑
l=1

Λ̂>k Λ̂lφkiφli

≤ 1

N

(
1

N2

N∑
k=1

N∑
l=1

(
Λ̂>k Λ̂l

)2
)1/2

 1

N2

N∑
k=1

N∑
l=1

(
N∑
i=1

φkiφli

)2
1/2

≤ 1

N

(
1

N2

N∑
k=1

N∑
l=1

Λ̂>k Λ̂l

)1/2
 1

N2

N∑
k=1

N∑
l=1

(
N∑
i=1

φkiφli

)2
1/2

The second term is bounded by (
N∑
i=1

φkiφli

)2

≤ N2 max
k,l

φ4
kl

As φ4
kl =

(∑M
j=1 ejkejl − [ek, el]

)4
= Op

(
1
M2

)
, we conclude

1

N

N∑
i=1

bi ≤
1

N
Op

(
N

M

)
= Op

(
1

M

)

Step 3: To show: 1
N

∑N
i=1 ci = Op

(
1
M

)
1

N3

N∑
i=1

‖
N∑
k=1

Λ̂kηki‖2 ≤
1

N

N∑
i=1

‖F>ei‖2
(

1

N

N∑
k=1

‖Λ̂k‖2
)(

1

N

N∑
k=1

‖Λk‖2
)

≤ 1

N

(
N∑
i=1

‖F>ei‖2
)
Op(1) ≤ Op

(
1

M

)

The statement is a consequence of Lemma C.6.

Step 4: To show: 1
N

∑N
i=1 di = Op

(
1
M

)
1

N2
‖

N∑
k=1

Λ̂kξki‖2 =
1

N2
‖

N∑
k=1

M∑
j=1

Λ̂kΛ
>
i Fjejk‖2

≤ ‖Λi‖2
(

1

N

N∑
k=1

‖Λ̂k‖2
) 1

N

N∑
k=1

‖
M∑
j=1

Fjejk‖2

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The statement follows again from Lemma C.6.

Step 5: From the previous four steps we conclude

1

N

N∑
i=1

(ai + bi + ci + di) = Op

(
1

δ

)

Lemma D.3. Convergence rates for components of loadings estimator

Under Assumptions 1 and 2, it follows that

1. 1
N

∑N
k=1 Λ̂k[ek, ei]T = Op

(
1√
Nδ

)
2. 1

N

∑N
k=1 Λ̂kφki = Op

(
1√
Mδ

)
3. 1

N

∑N
k=1 Λ̂kηki = Op

(
1√
δ

)
4. 1

N

∑N
k=1 Λ̂kξki = Op

(
1√
Mδ

)
Proof. This is essentially Lemma A.2 in Bai (2003). The proof follows a similar logic to derive

a set of inequalities. The main difference is that we use Lemmas C.1, C.2, C.4 and C.6 for

determining the rates.

Proof of (1.):

1

N

N∑
k=1

Λ̂k[ek, ei] =
1

N

N∑
k=1

(
Λ̂k −H>Λk

)
[ek, ei] +

1

N

N∑
k=1

H>Λk[ek, ei]

The second term can be bounded using Assumption 2

1

N

N∑
k=1

H>Λk[ek, ei] ≤ max
k
‖Λk‖‖H‖

1

N

N∑
k=1

‖[ek, ei]‖ = Op

(
1

N

)

For the first term we use Lemma D.2:∥∥∥∥∥ 1

N

N∑
k=1

(
Λ̂k −H>Λk

)
[ek, ei]

∥∥∥∥∥ ≤
(

1

N

N∑
k=1

‖Λ̂k −H>Λk‖2
)1/2

1√
N

(
N∑
k=1

[ek, ei]
2

)1/2

= Op

(
1√
δ

)
Op

(
1√
N

)
= Op

(
1√
Nδ

)
The local boundedness of every entry of [e, e] and Assumption 2 imply that

N∑
k=1

‖[ek, ei]‖2 ≤ maxl=1,...N‖[el, ei]‖
N∑
k=1

‖[ek, ei]‖ = Op(1)
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Proof of (2.):

1

N

N∑
k=1

Λ̂kφki =
1

N

N∑
k=1

φki

(
Λ̂k −H>Λk

)
+

1

N

N∑
k=1

H>Λkφki

Using Lemma C.4 we conclude that the first term is bounded by

(
1

N

N∑
k=1

‖Λ̂k −H>Λk‖2
)1/2

 1

N

N∑
k=1

‖
M∑
j=1

ejiejk − [ei, ek]T ‖2
1/2

= Op

(
1√
δ

)
Op

(
1√
M

)

The second term is Op

(
1√
Mδ

)
by Lemma C.4.

Proof of (3.):

1

N

N∑
k=1

Λ̂kηki =
1

N

N∑
k=1

(
Λ̂k −H>Λk

)
Λk
>F>ei +

1

N

N∑
k=1

H>ΛkΛk
>F>ei

Applying the Cauchy-Schwartz inequality to the first term yields

1

N

N∑
k=1

(
Λ̂k −H>Λk

)
ηki ≤

(
1

N

N∑
k=1

‖Λ̂k −H>Λk‖2
)1/2(

1

N

N∑
k=1

η2
ki

)1/2

≤ Op
(

1√
δ

)(
1

N

N∑
k=1

‖Λk‖2‖F>ei‖2
)1/2

≤ Op
(

1√
δ

)(
‖F>ei‖2

)1/2
≤ Op

(
1√
δM

)
.

For the second term we obtain the following bound based on Lemma C.6:

1

N

N∑
k=1

H>ΛkΛk
>F>ei = H>

(
1

N

N∑
k=1

ΛkΛk
>

)(
F>ei

)
≤ Op

(
1√
M

)

Proof of (4.): We start with the familiar decomposition

1

N

N∑
k=1

Λ̂kξki =
1

N

N∑
k=1

(
Λ̂k −H>Λk

)
ξki +

1

N

N∑
k=1

H>Λkξki
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The first term is bounded by

‖ 1

N

N∑
k=1

(
Λ̂k −H>Λk

)
Λi
>F>ek‖ ≤

(
1

N

N∑
k=1

‖Λ̂k −H>Λk‖2
)1/2(

1

N

N∑
k=1

‖F>ek‖2
)1/2

‖Λi‖

≤ Op
(

1√
δ

)(
1

N

N∑
k=1

‖F>ek‖2
)1/2

≤ Op
(

1√
δM

)
The rate of the second term is a direct consequence of Proposition C.1:

1

N

N∑
k=1

H>Λke
>
k FΛi = Op

(
1√
MN

)

This very last step is also different from the Bai (2003) paper. They essentially impose this last

conversion rate as an assumption (Assumption F.2), while I derive explicit conditions for the

stochastic processes in Proposition C.1.

Lemma D.4. Limit of VMN

Assume Assumptions 1 and 2 hold. For M,N →∞, we have

1

N
Λ̂>
(

1

N
X>X

)
Λ̂ = VMN

p→ V

and

Λ̂>Λ

N

(
F>F

) Λ>Λ̂

N

p→ V

where V is the diagonal matrix of the eigenvalues of Σ
1/2
Λ

>
ΣFΣ

1/2
Λ

Proof. See Lemma A.3 in Bai (2003) and the paper by Stock and Watson (2002b).

Lemma D.5. The matrix Q

Under Assumptions 1 and 2

plimM,N→∞
Λ̂>Λ

N
= Q

where the invertible matrix Q is given by V 1/2Υ>Σ
−1/2
F with Υ being the eigenvector of Σ

1/2
F ΣΛΣ

1/2
F

Proof. The statement is essentially Proposition 1 in Bai (2003) and the proof follows the same

logic. Starting with the equality 1
NX

>XΛ̂ = Λ̂VMN , we multiply both sides by 1
N (F>F )1/2Λ>
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to obtain

(F>F )1/2 1

N
Λ>
(
X>X

N

)
Λ̂ = (F>F )1/2

(
Λ>Λ̂

N

)
VMN

Plugging in X = FΛ> + e, we get

(F>F )1/2

(
Λ>Λ

N

)
(F>F )

(
Λ>Λ̂

N

)
+ dNM = (F>F )1/2

(
Λ>Λ̂

N

)
VMN

with

dNM = (F>F )1/2

(
Λ>e>F

N

Λ>Λ̂

N
+

Λ>Λ

N

F>eΛ̂

N
+

Λ>e>eΛ̂

N2

)

Applying Lemmas C.1 and C.2, we conclude dNM = op(1). The rest of the proof is essentially

identical to Bai’s proof.

Lemma D.6. Properties of Q and H Under Assumptions 1 and 2

1. plimM,N→∞H = Q−1

2. Q>Q = ΣΛ

3. plimM,N→∞HH
> = Σ−1

Λ

Proof. Lemma D.5 yields H = (F>F )
(

Λ>Λ̂
N

)
V −1 p→ ΣFQ

>V −1 and the definition of V is

ΥVΥ> = Σ
1/2
F

>
ΣΛΣ

1/2
F . Hence, the first statement follows from

H>Q = V −1QΣFQ
> + op(1)

= V −1V 1/2Υ>Σ
−1/2
F ΣFΣ

−1/2
F

>
ΥV 1/2 + op(1)

= V −1V + op(1) = I + op(1)

The second statement follows from the definitions:

Q>Q = Σ
−1/2
F

>
ΥV 1/2V 1/2Υ>Σ

1/2
F

= Σ
−1/2
F

>
Σ

1/2
F

>
ΣΛΣ

1/2
F Σ

−1/2
F

= ΣΛ

The third statement is a simple combination of the first two statements.

Proof of Theorem 3:
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Proof. Except for the asymptotic distribution of
√
MF>ei, the proof is the same as for Theorem

1 in Bai (2003). By Lemma D.3

(
Λ̂i −H>Λi

)
VMN = Op

(
1√
Mδ

)
+Op

(
1√
Nδ

)
+Op

(
1√
M

)
+Op

(
1√
Mδ

)
The dominant term is 1

N

∑N
k=1 Λ̂kηki. Hence, we get the expansion

√
M
(

Λ̂i −H>Λi

)
= V −1

MN

1

N

N∑
k=1

Λ̂kΛ
>
k

√
MF>ei +Op

(√
M

δ

)

If
√
M
N → 0, then using Lemmas C.6 and D.5, we obtain

√
M(Λ̂i −H>Λi)

L−s−→ N
(

0, V −1QΓiQ
>V −1

)
If lim inf

√
M
N ≥ τ > 0, then

N(Λ̂i − ΛiH) = Op

(
N√
Mδ

)
+Op

(√
N√
δ

)
+Op

(
N√
M

)
+Op

(
N√
Mδ

)
= Op(1)

Lemma D.7. Consistency of loadings

Assume Assumption 1 holds. Then

Λ̂i −H>Λi = Op

(
1√
δ

)
.

Proof. If we impose additionally Assumption 2, then this lemma is a trivial consequence of

Theorem 3. However, even without Assumption 2, Lemma D.3 can be modified to show that

VMN

(
Λ̂i −H>Λi

)
= Op

(
1√
δ

)
+Op

(
1√
Nδ

)
+Op

(
1√
M

)
+Op

(
1√
Mδ

)
.
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E Estimation of the Factors

Lemma E.1. Assume that Assumptions 1 and 2 hold. Then

M∑
j=1

1

N
Fj(Λ− Λ̂H−1)>Λ̂ = Op

(
1

δ

)

Proof. The overall logic of the proof is similar to Lemma B.1 in Bai (2003), but the underlying

conditions and derivations of the final bounds are different. It is sufficient to show that

1

N
(Λ̂− ΛH)>Λ = Op

(
1

δ

)
.

First using Lemma D.1 we decompose this term into

1

N
(Λ̂− ΛH)>Λ =

1

N

N∑
i=1

(
1

N

N∑
k=1

Λ̂kφik +
1

N

N∑
k=1

Λ̂k[ei, ek] +
1

N

N∑
k=1

Λ̂kηki +
1

N

N∑
k=1

Λ̂kξki

)
Λi
>

= I + II + III + IV

We will tackle all four terms one-by-one.

Term I: The first term can again be decomposed into

1

N2

N∑
i=1

N∑
k=1

Λ̂kφikΛi
> =

1

N2

N∑
i=1

N∑
k=1

(Λ̂k −H>Λk)φikΛi
> +

1

N2

N∑
i=1

N∑
k=1

H>ΛkφikΛi
>

Due to Lemmas C.2 and D.2 the first term of I is bounded by

1

N2

N∑
i=1

N∑
k=1

(Λ̂k −H>Λk)φikΛi
> ≤

(
1

N

N∑
k=1

‖Λ̂k −H>Λk‖2
)1/2(

1

N

N∑
k=1

‖ 1

N

N∑
i=1

φikΛi
>‖2
)1/2

≤ Op
(

1√
δ

) 1

N

N∑
k=1

‖ 1

N

N∑
i=1

M∑
j=1

(ejiejk − [ei, ek])Λi
>‖2
1/2

= Op

(
1√
δ

)
Op

(
1√
MN

)
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Now we turn to the second term, which we can bound using Lemma C.2 again:

‖ 1

N2

N∑
i=1

N∑
k=1

H>ΛkφikΛi
>‖ ≤ ‖H‖‖ 1

N

N∑
k=1

Λk
1

N

N∑
i=1

φikΛi
>‖

≤ Op(1)

(
1

N

N∑
k=1

‖Λk‖2
)1/2(

1

N

N∑
k=1

‖ 1

N

N∑
i=1

φikΛi
>‖2
)1/2

≤ Op
(

1√
MN

)

Hence, I is bounded by the rate Op

(
1√
MN

)
.

Term II: Next we deal with II:

1

N2

N∑
i=1

N∑
k=1

Λ̂k[ei, ek]Λi
> =

1

N2

N∑
i=1

N∑
k=1

(Λ̂k −H>Λk)[ei, ek]Λi
> +

1

N2

N∑
i=1

N∑
k=1

H>Λk[ei, ek]Λi
>

Cauchy-Schwartz applied to the first term yields

1

N2

N∑
i=1

N∑
k=1

(Λ̂k −H>Λk)[ei, ek]Λi
> ≤

(
1

N

N∑
k=1

‖Λ̂k −H>Λk‖2
)1/2(

1

N

N∑
k=1

‖ 1

N

N∑
i=1

[ei, ek]Λi
>‖2
)1/2

= Op

(
1√
δN

)
We used Lemma D.2 for the first factor and Assumption 2 in addition with the boundedness

of ‖Λi ‖ for the second factor. By the same argument the second term of II converges at the

following rate

1

N2

N∑
i=1

N∑
k=1

H>Λk[ei, ek]Λi
> ≤

(
1

N

N∑
k=1

‖Λk‖2
)1/2(

1

N

N∑
k=1

‖ 1

N

N∑
i=1

[ei, ek]Λi
>‖2
)1/2

≤ Op
(

1

N

)
Thus, the rate of II is Op

(
1
N

)
. Next, we address III.

Term III: We start with the familiar decomposition

1

N2

N∑
i=1

N∑
k=1

Λ̂kηkiΛi
> =

1

N2

N∑
i=1

N∑
k=1

(
Λ̂k −H>Λk

)
ηkiΛi

> +
1

N2

N∑
k=1

N∑
i=1

H>ΛkηkiΛi
>
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We use Lemmas C.1 and D.2 and the boundedness of ‖Λk‖. The first term is bounded by

1

N2

N∑
i=1

N∑
k=1

(
Λ̂k −H>Λk

)
ηkiΛi

> ≤

(
1

N

N∑
k=1

‖Λ̂k −H>Λk‖2
)1/2

 1

N

N∑
k=1

‖ 1

N

N∑
i=1

M∑
j=1

Λk
>FjejiΛi‖2

1/2

≤ Op
(

1√
δNM

)
The second term is bounded by

1

N2

N∑
k=1

N∑
i=1

H>ΛkηkiΛi
> ≤

(
1

N

N∑
k=1

‖H>Λk‖2
)1/2

 1

N

N∑
k=1

‖ 1

N

N∑
i=1

M∑
j=1

Λk
>FjejiΛi‖2

1/2

≤ Op
(

1√
NM

)

This implies that III is bounded by Op

(
1√
MN

)
.

Term IV: Finally, we deal with IV :

1

N2

N∑
i=1

N∑
k=1

Λ̂kξkiΛi
> =

1

N2

N∑
i=1

N∑
k=1

(
Λ̂k −H>Λk

)
ξkiΛi

> +
1

N2

N∑
i=1

N∑
k=1

H>ΛkξkiΛi
>.

The first term can be bounded using Lemmas D.2 and Lemma C.6:

‖ 1

N2

N∑
i=1

N∑
k=1

(
Λ̂k −H>Λk

)
ξkiΛi

>‖ ≤

(
1

N

N∑
k=1

‖Λ̂k −H>Λk‖2
)1/2(

1

N

N∑
k=1

‖ 1

N

N∑
i=1

Λi
>F>eiΛi

>‖2
)1/2

≤ Op
(

1√
δM

)
For the second term we need the boundedness of Λi and a modification of Proposition C.1:

‖ 1

N2

N∑
i=1

N∑
k=1

H>ΛkξkiΛi
>‖ = ‖ 1

N

N∑
k=1

M∑
j=1

H>ΛkejkF
>
j

(
1

N

N∑
i=1

ΛiΛi
>

)
‖

≤ ‖

(
1

N

N∑
i=1

Λi
>Λi

)
‖‖ 1

N

N∑
k=1

M∑
j=1

FjejkΛ
>
kH‖

≤ Op
(

1√
MN

)
.
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In conclusion, IV is bounded by Op

(
1√
MN

)
. Putting things together, we get

1

N
(Λ̂− ΛH)>Λ = Op

(
1√
MN

)
+Op

(
1

N

)
+Op

(
1√
MN

)
+Op

(
1√
MN

)
= Op

(
1

δ

)
.

Lemma E.2. Assume that Assumptions 1 and 2 hold. Then

M∑
j=1

N∑
k=1

1

N

(
Λ̂k −H>Λk

)
ejk = Op

(
1

δ

)
+Op(1)

 1

N

N∑
i=1

M∑
j=1

Fjeji

M∑
l=1

eli


Without further assumptions the RHS is Op

(
1
δ

)
+Op

(
1√
M

)
.

Proof. The general approach is similar to Lemma B.2 in Bai (2003), but the result is different,

which has important implications for Theorem 4.

Note that ei(T ) =
∑M

j=1 eji. We want to show:

1

N

N∑
i=1

(
Λ̂i −H>Λi

)
ei(T ) = Op

(
1

δ

)
+Op(1)

 1

N

N∑
i=1

M∑
j=1

Fjeji

M∑
l=1

eli

 .

We substitute the expression from Lemma D.1:

1

N

N∑
i=1

(
Λ̂i −H>Λi

)
ei(T ) =

1

N2

N∑
i=1

N∑
k=1

Λ̂k[ei, ek]ei(T ) +
1

N2

N∑
i=1

N∑
k=1

Λ̂kφikei(T )

+
1

N2

N∑
i=1

N∑
k=1

Λ̂kηikei(T ) +
1

N2

N∑
i=1

N∑
k=1

Λ̂kξikei(T )

= I + II + III + IV

Term I: We first decompose I into two parts:

1

N2

N∑
i=1

N∑
k=1

Λ̂k[ei, ek]ei(T ) =
1

N2

N∑
i=1

N∑
k=1

(Λ̂k −H>Λk)[ei, ek]ei(T ) +
1

N2

N∑
i=1

N∑
k=1

H>Λk[ei, ek]ei(T ).

Lemma D.2, Assumption 2 and the boundedness of ei(T ) yield for the first term of I:

‖ 1

N2

N∑
i=1

N∑
k=1

(Λ̂k −H>Λk)[ei, ek]ei(T )‖ ≤

(
1

N

N∑
k=1

‖Λ̂k −H>Λk‖2
)1/2(

1

N

N∑
k=1

‖ 1

N

N∑
i=1

ei(T )[ei, ek]‖2
)1/2

≤ Op
(

1√
δ

)
Op

(
1

N

)
.
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Using Assumption 2 , we bound the second term

1

N2

N∑
i=1

N∑
k=1

H>Λk[ei, ek]ei(T ) = Op

(
1

N

)
.

Hence, I is Op
(

1
N

)
.

Term II: We split II into two parts:

1

N2

N∑
i=1

N∑
k=1

Λ̂kφikei(T ) =
1

N2

N∑
i=1

N∑
k=1

(Λ̂k −H>Λk)φikei(T ) +
1

N2

N∑
i=1

N∑
k=1

H>Λkφikei(T )

As before we apply the Cauchy-Schwartz inequality to the first term and then we use Lemma

C.4:

‖ 1

N2

N∑
i=1

N∑
k=1

(Λ̂k −H>Λk)φikei(T )‖ ≤

(
1

N

N∑
k=1

‖Λ̂k −H>Λk‖2
)1/2

·

 1

N

N∑
k=1

‖ 1

N

N∑
i=1

ei(T )

 M∑
j=1

ejiejk − [ei, ek]

 ‖2
1/2

≤Op
(

1√
δ

)
Op

(
1√
M

)
The second term can be bounded by using a modification of Lemma C.2 and the boundedness

of ei(T ):

1

N2

N∑
i=1

N∑
k=1

H>Λk

 M∑
j=1

ejiejk − [ei, ek]

 ei(T ) ≤ Op
(

1√
MN

)
.

Thus, II is Op

(
1√
δM

)
.

Term III: This term yields a convergence rate different from the rest and is responsible for

the extra summand in the statement:

1

N2

N∑
i=1

N∑
k=1

Λ̂kηikei(T ) =
1

N2

N∑
i=1

N∑
k=1

(
Λ̂k −H>Λk

)
ηikei(T ) +

1

N2

N∑
i=1

N∑
k=1

H>Λkηikei(T )
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The first term can be controlled using Lemma D.2 and Lemma C.6:

‖ 1

N2

N∑
i=1

N∑
k=1

(
Λ̂k −H>Λk

)
ηikei(T )‖ ≤

(
1

N

N∑
k=1

‖Λ̂k −H>Λk‖2
)1/2

 1

N

N∑
k=1

‖ 1

N

N∑
i=1

ei(T )Λk
>

M∑
j=1

Fjeji‖2
1/2

≤ Op
(

1√
δ

)
Op

(
1√
M

)
Without further assumptions, the rate of the second term is slower than of all the other sum-

mands and can be calculated using Lemma C.6:

1

N2

N∑
i=1

N∑
k=1

H>ΛkΛk
>

M∑
j=1

Fjejiei(T ) = Op(1)

 1

N

N∑
i=1

M∑
j=1

Fjeji

M∑
l=1

eli

 = Op

(
1√
M

)

Term IV : We start with the usual decomposition for the last term:

1

N2

N∑
i=1

N∑
k=1

Λ̂kξikei(T ) =
1

N2

N∑
i=1

N∑
k=1

(Λ̂k −H>Λk)ξikei(T ) +
1

N2

N∑
i=1

N∑
k=1

H>Λkξikei(T )

For the first term we use Lemma D.2 and Lemmas C.6 and C.8:

‖ 1

N2

N∑
i=1

N∑
k=1

(Λ̂k −H>Λk)ξikei(T )‖ ≤

(
1

N

N∑
k=1

‖Λ̂k −H>Λk‖2
)1/2

 1

N

N∑
k=1

‖ 1

N

N∑
i=1

ei(T )Λi
>

M∑
j=1

Fjejk‖2
1/2

≤ Op
(

1√
δMN

)
.

Similarly for the second term:

1

N2

N∑
i=1

N∑
k=1

H>Λkξikei(T ) =
1

N

N∑
k=1

H>Λk

(
1

N

N∑
i=1

ei(T )Λi
>

) M∑
j=1

Fjejk


= Op

(
1√
MN

)

In conclusion, IV is Op

(
1√
MN

)
. Putting the results together, we obtain

I + II + III + IV = Op

(
1

N

)
+Op

(
1√
δM

)
+Op

(
1√
M

)
+Op

(
1√
MN

)
= Op

(
1

δ

)
+Op

(
1√
M

)
.

Term III is responsible for the low rate of convergence.

Proof of Theorem 4:
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Proof.

F̂ − FH−1> =
1

N
XΛ̂− FH−1>

= (F (Λ− Λ̂H−1 + Λ̂H−1)> + e)
1

N
Λ̂− FH−1>

= FΛ>Λ̂
1

N
− FH−1>Λ̂>Λ̂

1

N
+ FH−1> + eΛ̂

1

N
− FH−1>

=
1

N
F (Λ− Λ̂H−1)>Λ̂ +

1

N
eΛ̂

=
1

N
F (Λ− Λ̂H−1)>Λ̂ +

1

N
e(Λ̂− ΛH) +

1

N
eΛH.

By Lemmas E.1 and E.2, only the last term is of interest

M∑
j=1

(
F̂j −H−1Fj

)
=

1

N

M∑
j=1

N∑
k=1

Λ̂k

(
Λk −H−1>Λ̂k

)>
Fj +

1

N

M∑
j=1

N∑
k=1

(
Λ̂k −H>Λk

)
ejk

+
1

N

M∑
j=1

N∑
k=1

H>Λkejk

=Op

(
1

δ

)
+Op(1)

 1

N

N∑
i=1

M∑
j=1

Fjeji

M∑
l=1

eli

+
1

N
e(T )ΛH.

Under Assumption 5 Proposition C.2 implies
(

1
N

∑N
i=1

∑M
j=1 Fjeji

∑M
l=1 eli

)
= Op

(
1
δ

)
. If

√
N
M → 0 then

√
N

M∑
j=1

(
F̂j −H−1Fj

)
= op(1) +

1√
N

N∑
i=1

H>Λiei(T )

By Lemma C.8, we can apply the martingale central limit theorem and the desired result

about the asymptotic mixed normality follows. In the case
(

1
N

∑N
i=1

∑M
j=1 Fjeji

∑M
l=1 eli

)
=

Op

(
1√
M

)
, the arguments are analogous.

Lemma E.3. Consistency of factors

Assumptions 1 and 2 hold. Then F̂T −H−1FT = Op

(
1√
δ

)
.

Proof. The Burkholder-Davis-Gundy inequality in Lemma L.3 implies 1
N eTΛH = Op

(
1√
N

)
.

In the proof of Theorem 4, we have shown that Assumptions 1 and 2 are sufficient for

M∑
j=1

(
F̂j −H−1Fj

)
= Op

(
1

δ

)
+Op

(
1√
M

)
+

1

N
eTΛH.
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Lemma E.4. Consistency of factor increments

Under Assumptions 1 and 2 we have

F̂j = H−1Fj +Op

(
1

δ

)
Proof. Using the same arguments as in the proof of Theorem 4 we obtain the decomposition

F̂j −H−1Fj =
1

N

N∑
k=1

Λ̂k

(
Λk −H−1>Λ̂k

)>
Fj +

1

N

N∑
k=1

ejk

(
Λ̂k −H>Λk

)
+

1

N

N∑
k=1

H>Λkejk.

Lemma E.1 can easily be modified to show that

1

N

N∑
k=1

Λ̂k

(
Λk −H−1>Λ̂k

)>
Fj = Op

(
1

δ

)
.

Lemma E.2 however requires some additional care. All the arguments go through for el,i instead

of
∑M

l=1 el,i except for the term
(

1
N

∑N
i=1

∑M
j=1 Fjejieli

)
. Based on our previous results we have∑M

j=1 Fjej,i = Op

(
1√
M

)
and el,i = Op

(
1√
M

)
. This yields

 1

N

N∑
i=1

M∑
j=1

Fjejieli

 = Op

(
1

M

)
= Op

(
1

δ

)

Therefore

1

N

N∑
k=1

ejk

(
Λ̂k −H>Λk

)
= Op

(
1

δ

)
.

Lemma C.5 provides the desired rate for the last term 1
N

∑N
k=1H

>Λkejk = Op
(

1
δ

)
.

Lemma E.5. Consistent estimation of factor covariation

Under Assumptions 1 and 2 we can consistently estimate the quadratic covariation of the factors

if
√
M
N → 0. Assume Y (t) is a stochastic process satisfying Definition 1. Then

‖F̂>F̂ −H−1[F, F ]TH
−1>‖ = op(1) ‖

M∑
j=1

F̂jYj −H−1[F, Y ]‖ = op(1)
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Proof. This is a simple application of Lemma E.4:

M∑
j=1

F̂jF̂
>
j = H−1

 M∑
j=1

FjF
>
j

H−1> +Op

(
1

δ

) M∑
j=1

|Fj |+
M∑
j=1

Op

(
1

δ2

)

= H−1

 M∑
j=1

FjF
>
j

H−1> +Op

(√
M

δ

)
+Op

(
M

δ2

)

By Theorem L.2  M∑
j=1

FjF
>
j

− [F, F ]T = Op

(
1√
δ

)

The desired result follows for
√
M
N → 0. The proof for [F, Y ] is analogous.

F Estimation of Common Components

Proof of Theorem 5:

Proof. The proof is very similar to Theorem 3 in Bai (2003). For completeness I present it here:

ĈT,i − CT,i =
(

Λ̂i −H>Λi

)>
H−1FT + Λ̂>i

(
F̂T −H−1FT

)
.

From Theorems 3 and 4 we have

√
δ
(

Λ̂i −H>Λi

)
=

√
δ

M
V −1
MN

1

N

N∑
k=1

Λ̂kΛ
>
k

√
MF>ei +Op

(
1√
δ

)
√
δ
(
F̂T −H−1Ft

)
=

√
δ

M

N∑
i=1

H>ΛieT,i +Op

(√
δ

M

)
+Op

(
1√
δ

)
.

If Assumption 5 holds, the last equation changes to

√
δ
(
F̂T −H−1Ft

)
=

√
δ

M

N∑
i=1

H>ΛieT,i +Op

(
1√
δ

)
.

In the following, we will assume that weak serial dependence and cross-sectional dependence

holds. The modification to the case without it is obvious. Putting the limit theorems for the
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loadings and the factors together yields:

ĈT,i − CT,i =

√
δ

M
F>H−1>V −1

MN

(
1

N
Λ>Λ̂

)√
MF>ei

+

√
δ

N
Λ>i HH

>

(
1√
N

N∑
i=1

Λie
T,i

)
+Op

(
1√
δ

)
.

We have used

Λ̂>i

(
F̂T −H−1FT

)
= Λ>i H(F̂T −H−1FT ) +

(
Λ̂>i − Λ>i H

)(
F̂T −H−1FT

)
= Λ>i H(F̂T −H−1FT ) +Op

(
1

δ

)
.

By the definition of H it holds that

H−1>V −1
MN

(
Λ̂>Λ

N

)
=
(
F>F

)−1
.

Using the reasoning behind Lemma D.6, it can easily be shown that

HH> =

(
1

N
Λ>Λ

)−1

+Op

(
1

δ

)
.

Define

ξNM = F>T

(
F>F

)−1√
MF>ei

φNM = Λ>i

(
1

N
Λ>Λ

)−1 1√
N

Λ>eT

By Lemmas C.6 and C.8, we know that these terms converge stably in law to a conditional

normal distribution:

ξNM
L−s→ N(0, VT,i) , φNM

L−s→ N(0,WT,i)

Therefore,

√
δ
(
ĈT,i − CT,i

)
=

√
δ

M
ξNM +

√
δ

N
φNM +Op

(
1√
δ

)
ξNM and φNM are asymptotically independent, because one is the sum of cross-sectional random

variables, while the other is the sum of a particular time series of increments. If δ
M and δ

N

converge, then asymptotic normality follows immediately from Slutzky’s theorem. δ
M and δ

N
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are not restricted to be convergent sequences. We can apply an almost sure representation

theory argument on the extension of the probability space similar to Bai (2003).

Lemma F.1. Consistency of increments of common component estimator

Under Assumptions 1 and 2 it follows that

Ĉj,i = Cj,i +Op

(
1

δ

)
êj,i = ej,i +Op

(
1

δ

)
with êj,i = Xj,i − Ĉj,i.

Proof. As in the proof for Theorem 5 we can separate the error into a component due to the

loading estimation and one due to the factor estimation.

Ĉj,i − Cj,i =
(

Λ̂i −H>Λi

)>
H−1Fj + Λ̂>i

(
F̂j −H−1Fj

)
.

By Lemmas D.7 and E.4 we can bound the error by Op
(

1
δ

)
.

Lemma F.2. Consistent estimation of residual covariation Assume Assumptions 1 and

2 hold. Then if
√
M
δ → 0 we have for i, k = 1, ..., N and any stochastic process Y (t) satisfying

Definition 1:

M∑
j=1

êj,iêj,k = [ei, ek] + op(1),

M∑
j=1

Ĉj,iĈj,k = [Ci, Ck] + op(1).

M∑
j=1

êj,iYj = [ei, Y ] + op(1),
M∑
j=1

Ĉj,iYj = [Ci, Y ] + op(1).

Proof. Using Lemma F.1 we obtain

M∑
j=1

êj,iêj,k =

M∑
j=1

ej,iej,k +

M∑
j=1

Op

(
1

δ2

)
+

M∑
j=1

|ej,i|Op
(

1

δ

)
=

M∑
j=1

ej,iej,k + op(1) = [ei, ek] + op(1).

The rest of the proof follows the same logic.

Proof of Theorem 1:

Proof. This is a collection of the results in Lemmas D.7, E.3, E.5, F.1 and F.2.
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G Estimating Covariance Matrices

Proposition G.1. Consistent unfeasible estimator of covariance matrix of loadings

Assume Assumptions 1, 2 and 3 hold and
√
M
N → 0. By Theorem 1

√
M(Λ̂i −H>Λi)

L−s−→ N (0,ΘΛ)

with

ΘΛ,i = V −1QΓiQ
>V −1

where the entry {l, g} of the K ×K matrix Γi is given by

Γi,l,g =

∫ T

0
σF l,F gσ2

eids+
∑
s≤T

∆F l(s)∆F g(s)σ2
ei(s) +

∑
s′≤T

∆e2
i (s
′)σF g ,F l(s′).

F l denotes the l-th component of the the K dimensional process F and σF l,F g are the entries

of its K × K dimensional volatility matrix. Take any sequence of integers k → ∞, k
M → 0.

Denote by I(j) a local window of length 2k
M around j with some α > 0 and ω ∈

(
0, 1

2

)
.

Define a consistent, but unfeasible, estimator for Γi by

Γ̄i,l,g =M

M∑
j=1

F ljF
g
j e

2
j,i1{|F l

j |≤α∆ω
M ,|F g

j |≤α∆ω
M ,|ej,i|≤α∆ω

M}

+
M

2k

M−k∑
j=k+1

F ljF
g
j 1{|F l

j |≥α∆ω
M ,|F g

j |≥α∆ω
M}

 ∑
h∈I(j)

e2
h,i1{|eh,i|≤α∆ω

M}


+
M

2k

M−k∑
j=k+1

e2
j,i1{|ej,i|≥α∆ω

M}

 ∑
h∈I(j)

F lhF
g
h1{|F l

h|≤α∆ω
M ,|F g

h |≤α∆ω
M}


Then

V −1
MN

(
Λ̂>Λ

N

)
Γ̄i

(
Λ>Λ̂

N

)
V −1
MN

p→ ΘΛ,i

Proof. The Estimator for Γi is an application of Theorem L.3. Note that we could generalize

the statement to include infinite activity jumps as long as their activity index is smaller than

1. Finite activity jumps trivially satisfy this condition. The rest follows from Lemmas D.4 and

D.5.

Proof of Theorem 6:
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Proof. By abuse of notation the matrix e1{|X|≤α∆ω̄
M} has elements ej,i1{|Xj,i|≤α∆ω̄

M} and the

matrix F1{|X|≤α∆ω̄
M}Λ

> has elements Fj1{|Xj,i|≤α∆ω̄
M}Λ

>
i . A similar notation is applied for

other combinations of vectors with a truncation indicator function.

Step 1: To show: 1
N X̂

C
j Λ̂−

∑N
i=1 1{|Xj,i|≤α∆ω̄

M}
Λ̂iΛ̂

>
i

N H−1Fj = Op
(

1
δ

)
We start with a similar decomposition as in Theorem 4:

X̂CΛ̂

N
− F1{|X|≤α∆ω̄

M}H
−1> Λ̂>Λ̂

N
=

1

N
F1{|X|≤α∆ω̄

M}

(
Λ− Λ̂H−1

)>
Λ̂ +

1

N
e1{|X|≤α∆ω̄

M}

(
Λ̂− ΛH

)
+

1

N
e1{|X|≤α∆ω̄

M}ΛH.

It can be shown that

1

N
Fj1{|X|≤α∆ω̄

M}

(
Λ− Λ̂H−1

)>
Λ̂ = Op

(
1

δ

)
1

N
ej1{|X|≤α∆ω̄

M}

(
Λ̂− ΛH

)
= Op

(
1

δ

)
1

N
ej1{|X|≤α∆ω̄

M}ΛH =
1

N
eCj ΛH +

1

N

(
ej1{|X|≤α∆ω̄

M} − e
C
j

)
ΛH = Op

(
1

δ

)
.

The first statement follows from Lemma E.1. The second one can be shown as in Lemma E.4.

The first term of the third statement can be bounded using Lemma C.5. The rate for the

second term of the third equality follows from the fact that the difference ej,i1{|Xj,i|≤α∆ω̄
M}−e

C
j,i

is equal to some drift term which is of order Op
(

1
M

)
and to − 1

N e
C
j,i if there is a jump in Xj,i.

Step 2: To show: 1
N X̂

D
j Λ̂−

∑N
i=1 1{|Xj,i|>α∆ω̄

M}
Λ̂iΛ̂

>
i

N H−1Fj = Op
(

1
δ

)
As in step 1 we start with a decomposition

X̂DΛ̂

N
− F1{|X|>α∆ω̄

M}H
−1> Λ̂>Λ̂

N
=

1

N
F1{|X|>α∆ω̄

M}

(
Λ− Λ̂H−1

)>
Λ̂ +

1

N
e1{|X|>α∆ω̄

M}

(
Λ̂− ΛH

)
+

1

N
e1{|X|>α∆ω̄

M}ΛH.

It follows

1

N
Fj1{|X|>α∆ω̄

M}

(
Λ− Λ̂H−1

)>
Λ̂ = Op

(
1

δ

)
1

N
ej1{|X|>α∆ω̄

M}

(
Λ̂− ΛH

)
= Op

(
1

δ

)
1

N
ej1{|X|>α∆ω̄

M}ΛH =
1

N
eDj ΛH +

1

N

(
ej1{|X|>α∆ω̄

M} − e
D
j

)
ΛH = Op

(
1

δ

)
.

The first rate is a consequence of Lemma E.1, the second rate follows from Lemma D.7 and the

third rate can be derived using similar arguments as in step 1.
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Step 3: To show: X̂C
j,i −

X̂C
j Λ̂

N Λ̂i − ej,i1{|Xj,i|≤α∆ω̄
M} = Op

(
1
δ

)
By a similar decomposition as in Lemma F.1 we obtain

X̂C
j,i −

X̂C
j Λ̂

N
Λ̂i − ej,i1{|Xj,i|≤α∆ω̄

M} =
(

Λ̂i −H>Λi

)>
H−1Fj1{|Xj,i|≤α∆ω̄

M}

+ Λ̂>i

(
Λ̂>X̂C

j
>

N
−H−1Fj1{|Xj,i|≤α∆ω̄

M}

)

=Op

(
1√
δ

)
‖Fj1{|Xj,i|≤α∆ω̄

M}‖+Op

(
1

δ

)
=Op

(
1√
δM

)
+Op

(
1

δ

)
The first rate follows from Lemma D.7 and the second rate can be deduced from step 1.

Step 4: To show X̂D
j,i −

X̂D
j Λ̂

N Λ̂i − ej,i1{|Xj,i|>α∆ω̄
M} = Op

(
1
δ

)
+Op

(
1√
δ

)
‖Fj1{|Xj,i|>α∆ω̄

M}‖
A similar decomposition as in the previous step yields

X̂D
j,i −

X̂D
j Λ̂

N
Λ̂i − ej,i1{|Xj,i|>α∆ω̄

M} =
(

Λ̂i −H>Λi

)>
H−1Fj1{|Xj,i|>α∆ω̄

M}

+ Λ̂>i

(
Λ̂>X̂D

j
>

N
−H−1Fj1{|Xj,i|>α∆ω̄

M}

)

≤ Op
(

1√
δ

)
‖Fj1{|Xj,i|>α∆ω̄

M}‖+Op

(
1

δ

)
where the first rate follows from Lemma D.7 and the second from step 2.

Step 5: To show: M
∑M

j=1

(
X̂C

j Λ̂

N

)(
X̂C

j Λ̂

N

)>(
X̂C
j,i −

X̂C
j Λ̂

N Λ̂i

)2

= M
∑M

j=1

(
H−1Fj1{|Fj |≤α∆ω̄

M}

)> (
H−1Fj1{|Fj |≤α∆ω̄

M}

)(
e2
j,i1{|ej,i|≤α∆ω̄

M}

)
+ op(1)

Step 1 and 3 yield

M

M∑
j=1

(
X̂C
j Λ̂

N

)(
X̂C
j Λ̂

N

)>(
X̂C
j,i −

X̂C
j Λ̂

N
Λ̂i

)2

=M
M∑
j=1

(
N∑
i=1

1{|Xj,i|≤α∆ω̄
M}

Λ̂iΛ̂
>
i

N
H−1Fj

)>( N∑
i=1

1{|Xj,i|≤α∆ω̄
M}

Λ̂iΛ̂
>
i

N
H−1Fj

)(
e2
j,i1{|Xj,i|≤α∆ω̄

M}

)
+ op(1)

We need to show

N∑
i=1

1{|Xj,i|≤α∆ω̄
M}

Λ̂iΛ̂
>
i

N
H−1Fj −H−1Fj1{{|Fj |≤α∆ω̄

M} = op

(
1√
δ

)
.
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By Mancini (2009) the threshold estimator correctly identifies the jumps for sufficiently large

M . By Assumption 3 a jump in Xj,i is equivalent to a jump in Λ>i Fj or/and a jump in ej,i.

Hence, it is sufficient to show that

N∑
i=1

1{FD
j Λi=0,eDi =0,|FD

j |6=0}
Λ̂iΛ̂

>
i

N
+

N∑
i=1

1{eDi 6=0}
Λ̂iΛ̂

>
i

N
− IK

N∑
i=1

1{eDj,i 6=0,|FD
j |=0} = op(1)

Note that

P
(
eDj,i 6= 0

)
= E

[
1{eDj,i 6=0}

]
= E

[∫ tj+1

tj

∫
R−0

dµei(ds, dx)

]

= E

[∫ tj+1

tj

∫
R−0

dνei(ds, dx)

]
≤ C

∫ tj+1

tj

ds = O

(
1

M

)
.

It follows that
∑N

i=1 1{eDi 6=0}
Λ̂iΛ̂

>
i

N = op(1) as

E

[
N∑
i=1

1{eDi 6=0}
Λ̂iΛ̂

>
i

N

]
=

N∑
i=1

P
(
eDi 6= 0

) Λ̂iΛ̂i
N

= Op

(
1

M

)

and

E

( N∑
i=1

1{eDi 6=0}
Λ̂iΛ̂

>
i

N

)2
 = E

[
1

N2

N∑
i=1

N∑
k=1

Λ̂iΛ̂
>
i Λ̂kΛ̂

>
k 1{eDi 6=0}1{eDk 6=0}

]

≤

(
E

[
1

N2

N∑
i=1

N∑
k=1

‖Λ̂iΛ̂>i Λ̂kΛ̂
>
k ‖2
])1/2(

E

[
1

N2

N∑
i=1

N∑
k=1

1
2
{eDi 6=0}1

2
{eDk 6=0}

])1/2

≤ C

E

tj+1∑
tj

1

N2

N∑
i=1

N∑
k=1

Gi,kdt

1/2

≤ C√
NM

By the same logic it follows that
∑N

i=1 1{eDj,i 6=0,|FD
j |=0} = op(1). Last but not least

‖
N∑
i=1

1{FD
j Λi=0,eDi =0,|FD

j |6=0}
Λ̂iΛ̂

>
i

N
‖ ≤ ‖

N∑
i=1

1{|FD
j |6=0}

Λ̂iΛ̂
>
i

N
‖

≤ 1{|FD
j |6=0}‖

N∑
i=1

Λ̂iΛ̂
>
i

N
‖ ≤ Op

(
1√
M

)
.

On the other hand there are only finitely many j for which ej,i1{|Xj,i|≤α∆ω̄
M} 6= ej,i1{|ej,i|≤α∆ω̄

M}

and the difference is Op

(
1√
M

)
, which does not matter asymptotically for calculating the mul-
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tipower variation.

Step 6: To show: M
2k

∑M−k
j=k+1

(
X̂D

j Λ̂

N

)(
X̂D

j Λ̂

N

)>(∑
h∈I(j)

(
X̂C
h,i −

X̂C
h Λ̂
N Λ̂i

)2
)

=M
2k

∑M−k
j=k+1

(
H−1Fj1{|Fj |>α∆ω̄

M}

)> (
H−1Fj1{|Fj |>α∆ω̄

M}

)(∑
h∈I(j)

(
e2
h,i1{|eh,i|≤α∆ω̄

M}

))
+op(1)

We start by plugging in our results from Steps 2 and 3:

M

2k

M−k∑
j=k+1

(
X̂D
j Λ̂

N

)(
X̂D
j Λ̂

N

)> ∑
h∈I(j)

(
X̂C
h,i −

X̂C
h Λ̂

N
Λ̂i

)2


=
M

2k

M−k∑
j=k+1

(
N∑
i=1

1{|Xj,i|>α∆ω̄
M}

Λ̂iΛ̂
>
i

N
H−1Fj

)>( N∑
i=1

1{|Xj,i|>α∆ω̄
M}

Λ̂iΛ̂
>
i

N
H−1Fj

)

·

 ∑
h∈I(j)

(
e2
h,i1{|Xh,i|≤α∆ω̄

M}

)+ op(1).

We need to show that
∑N

i=1 1{|Xj,i|>α∆ω̄
M}

Λ̂iΛ̂
>
i

N H−1Fj = H−1Fj1{|Fj |>α∆ω̄
M} + op

(
1√
δ

)
. This

follows from

N∑
i=1

(
1{|FD

j Λi|>0}
Λ̂iΛ̂

>
i

N
− IK1{|FD

j |6=0}

)
−

N∑
i=1

1{|FD
j Λi|>0,|FD

j |>0,eDj,i=0}IK +

N∑
i=1

1{eDj,i 6=0}
Λ̂iΛ̂

>
i

N
= op(1)

which can be shown by the same logic as in step 5.

Step 7: To show: M
2k

∑M−k
j=k+1

(
X̂D
j,i −

X̂D
j Λ̂

N Λ̂i

)2
(∑

h∈I(j)

(
X̂C

h Λ̂
N

)(
X̂C

h Λ̂
N

)>)
=M

2k

∑M−k
j=k+1

(
e2
j,i1{|ej,i|>α∆ω̄

M}

)(∑
h∈I(j)

(
H−1Fh1{|Fh|≤α∆ω̄

M}

)> (
H−1Fh1{|Fh|≤α∆ω̄

M}

))
+op(1)

In light of the previous steps we only need to show how to deal with the first term. By step 4

we have

M

2k

M−k∑
j=k+1

(
X̂D
j,i −

X̂D
j Λ̂

N
Λ̂i

)2
 ∑
h∈I(j)

(
X̂C
h Λ̂

N

)(
X̂C
h Λ̂

N

)>
=
M

2k

∑
j∈J

(
ej,i1{|Xj,i|>α∆ω̄

M} +Op

(
1

δ

)
+OP

(
1√
δ

)
‖Fj1{|Xj,i|>α∆ω̄

M}‖
)2

·

 ∑
h∈I(j)

(
H−1Fh1{|Fh|≤α∆ω̄

M}

)> (
H−1Fh1{|Fh|≤α∆ω̄

M}

)+ op(1)

where J denotes the set of jumps of the process Xi(t). Note that J contains only finitely many

elements. The difference between ej,i1{|Xj,i|>α∆ω̄
M} and ej,i1{|ej,i|>α∆ω̄

M} is of order Op

(
1√
M

)
as
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there might be increments j where there is a jump in the factors but not in the residuals. As

we consider only finitely many increments j the result follows.

Proof of Theorem 7:

Proof. Under cross-sectional independence of the error terms the asymptotic variance equals

ΘF = plim
N,M→∞

H>
∑N

i=1 Λi[ei, ei]Λ
>
i

N
H

By Lemmas D.7 and F.2 we know that
∑M

j=1 êj,iêj,k = [ei, ek]+op(1) and Λ̂i = H>Λi+Op

(
1√
δ

)
and the result follows immediately.

H Separating Continuous and Jump Factors

Lemma H.1. Convergence rates for truncated covariations

Under Assumptions 1 and 3 and for some α > 0 and ω̄ ∈
(
0, 1

2

)
it follows that

1

N

N∑
i=1

‖
M∑
j=1

Fjej,i1{|Xj,i|≤α∆ω̄
M}‖ = Op

(
1√
M

)
+Op

(
1

N

)
1

N

N∑
i=1

‖
M∑
j=1

Fjej,i1{|Xj,i|>α∆ω̄
M}‖ = Op

(
1√
M

)
1

N

N∑
i=1

‖
M∑
j=1

(
ej,iej,k1{|Xj,i|≤α∆ω̄

M}1{|Xj,k|≤α∆ω̄
M} − [eCi , e

C
k ]
)
‖ = Op

(
1√
M

)
+Op

(
1

N

)
1

N

N∑
i=1

‖
M∑
j=1

(
ej,iej,k1{|Xj,i|>α∆ω̄

M}1{|Xj,k|>α∆ω̄
M} − [eDi , e

D
k ]
)
‖ = Op

(
1√
M

)
.

Proof. I will only prove the first statement as the other three statements can be shown analo-

gously. By Theorem L.6

M∑
j=1

Fjej,i1{‖Fj‖≤α∆ω̄
M ,|ej,i|≤α∆ω̄

M} = Op

(
1√
M

)
.

However, as F and ei are not observed our truncation is based on X. Hence we need to

characterize

M∑
j=1

Fjej,i

(
1{‖Fj‖≤α∆ω̄

M ,|ej,i|≤α∆ω̄
M} − 1{|Xj,i|≤α∆ω̄

M}

)
.
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If there is a jump in X, there has to be also a jump in ei or F . By Assumption 3 if there is

a jump in ei or Λ>i F , there has to be a jump in X. However, it is possible that two factors

Fk and Fl jump at the same time but their weighted average Λ>i F is equal to zero. Hence, we

could not identify these jumps by observing only Xi. This can only happen for a finite number

of indices i as limN→∞
Λ>Λ
N = ΣΛ has full rank. Hence

1

N

N∑
i=1

∥∥∥∥∥∥
M∑
j=1

Fjej,i

(
1{‖Fj‖≤α∆ω̄

M , ej,i≤α∆ω̄
M} − 1{|Xj,i|≤α∆ω̄

M}

)∥∥∥∥∥∥ = Op

(
1

N

)
.

In the reverse case where we want to consider only the jump part, |Xj,i| > α∆ω̄
M implies that

either Λ>i Fj or ej,i has jumped. If we wrongly classify an increment ej,i as a jump although

the jump happened in Λ>i Fj , it has an asymptotically vanishing effect as we have only a finite

number of jumps in total and the increment of a continuous process goes to zero with the rate

Op

(
1√
M

)
.

Proof of Theorem 2:

Proof. I only prove the statement for the continuous part. The proof for the discontinuous part

is completely analogous.

Step 1: Decomposition of the loading estimator:

First we start with the decomposition in Lemma D.1 that we get from substituting the definition

of X into 1
N X̂

C>X̂CΛ̂CV C
MN

−1
= Λ̂C . We choose HC to set 1

NΛCFC
>
FCΛC

>
Λ̂C = ΛCHV C

MN .

V C
MN

(
Λ̂Ci −HC>ΛCi

)
=

1

N

M∑
j=1

N∑
k=1

Λ̂Ck ej,kej,i1{|Xj,i|≤α∆ω̄
M ,|Xj,k|≤α∆ω̄

M}

+
1

N

M∑
j=1

N∑
k=1

Λ̂Ck ΛCk
>
FCj ej,i1{|Xj,i|≤α∆ω̄

M ,|Xj,k|≤α∆ω̄
M}

+
1

N

M∑
j=1

N∑
k=1

Λ̂Ck ej,kF
C
j
>
1{|Xj,i|≤α∆ω̄

M ,|Xj,k|≤α∆ω̄
M}Λ

C
i +RC
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with

RC = +
1

N

M∑
j=1

N∑
k=1

ΛDk ej,kF
D
j
>
1{|Xj,i|≤α∆ω̄

M ,|Xj,k|≤α∆ω̄
M}Λ

C
i

+
1

N

M∑
j=1

N∑
k=1

Λ̂Ck ΛDk
>
FDj ej,i1{|Xj,i|≤α∆ω̄

M ,|Xj,k|≤α∆ω̄
M}

+
1

N

M∑
j=1

N∑
k=1

Λ̂Ck ΛDk
>
FDj F

D
j
>
1{|Xj,i|≤α∆ω̄

M ,|Xj,k|≤α∆ω̄
M}Λ

D
i

+
1

N

M∑
j=1

N∑
k=1

Λ̂Ck ΛCk
>
FCj F

D
j
>
1{|Xj,i|≤α∆ω̄

M ,|Xj,k|≤α∆ω̄
M}Λ

D
i

+
1

N

M∑
j=1

N∑
k=1

Λ̂Ck ΛDk
>
FCj F

D
j
>
1{|Xj,i|≤α∆ω̄

M ,|Xj,k|≤α∆ω̄
M}Λ

C
i

+
1

N

M∑
j=1

N∑
k=1

Λ̂Ck ΛCk
>
FCj F

C
j
>
1{|Xj,i|≤α∆ω̄

M ,|Xj,k|≤α∆ω̄
M}Λ

C
i

− 1

N

M∑
j=1

N∑
k=1

Λ̂Ck ΛCk
>
FCj F

C
j
>

ΛCi

=op(1)

The convergence rate of RC would be straightforward if the truncations were in terms of F and

ei instead of X. However using the same argument as in Lemma H.1, we can conclude that

under Assumption 3 at most for a finite number of indices i it holds that Fj1{|Xj,i|≤α∆ω̄
M} −

Fj1{‖Fj‖≤α∆ω̄
M} = Op

(
1√
δ

)
for M sufficiently large and otherwise the difference is equal to 0.

Likewise if there is no jump in F ej,i1{|Xj,i|≤α∆ω̄
M} = ej,i1{|ej,i|≤α∆ω̄

M} except for a finite number

of indices. Hence, we have a similar decomposition for
(

Λ̂Ci −HC>ΛCi

)
as in Lemma D.1 using

only truncated observations.

Step 2: Λ̂Ci −HC>ΛCi = Op

(
1√
δ

)
:

We need to show Lemmas D.2 and D.3 for the truncated observations. Note that Proposition

C.1 does not hold any more because the truncated residuals are not necessarily local martingales

any more. For this reason we obtain a lower convergence rate of Op

(
1√
δ

)
instead of Op

(
1
δ

)
.

The statement follows from a repeated use of Lemma H.1.

Step 3: Convergence of F̂CT −HC−1
FCT :

We try to extend Theorem 4 to the truncated variables. By abuse of notation I denote by

Λ>F1{|X|≤α∆ω̄
M} the matrix with elements Λ>i Fj1{|Xj,i|≤α∆ω̄

M} and similarly e1{|X|≤α∆ω̄
M} is the
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matrix with elements ej,i1{|Xj,i|≤α∆ω̄
M}.

F̂C − FCHC−1>
=

1

N
X̂CΛ̂C − FCHC−1>

=
1

N

(
FC1{|X|≤α∆ω̄

M}Λ
C> + FD1{|X|≤α∆ω̄

M}Λ
D> + e1{|X|≤α∆ω̄

M}

)
Λ̂C − FCHC−1>

=
1

N
FC1{|X|≤α∆ω̄

M}Λ
C>Λ̂C − FC1{|X|≤α∆ω̄

M}H
C−1>

+ FC1{|X|≤α∆ω̄
M}H

C−1>

+
1

N
FD1{|X|≤α∆ω̄

M}Λ
D>Λ̂C +

1

N
e1{|X|≤α∆ω̄

M}Λ̂
C − FCHC−1>

=
1

N
FC1{|X|≤α∆ω̄

M}

(
ΛC
> −HC−1>

Λ̂C>
)

Λ̂C +
(
FC1{|X|≤α∆ω̄

M} − F
C
)
HC−1>

+ FD1{|X|≤α∆ω̄
M}

(
1

N
ΛD
>

ΛCHC

)
+ FD1{|X|≤α∆ω̄

M}
1

N
ΛD
> (

Λ̂C − ΛCHC
)

+
1

N
e1{|X|≤α∆ω̄

M}

(
Λ̂C − ΛCHC

)
+

1

N
e1{|X|≤α∆ω̄

M}Λ
CHC .

Using the result Λ̂Ci −HC>ΛCi = Op

(
1√
δ

)
and a similar reasoning as in Lemma H.1, we conclude

that

F̂CT −HC−1
FCT =op(1) +

(
1

N
ΛD
>

ΛCHC

)>
FDT 1{|X|≤α∆ω̄

M} +
1

N
HC>ΛC

>
e>T 1{|X|≤α∆ω̄

M}

The term FDT 1{|X|≤α∆ω̄
M}

(
1
NΛD

>
ΛCHC

)
goes to zero only if FD has no drift term or ΛD is

orthogonal to ΛC . Note that in general FD can be written as a pure jump martingale and a

finite variation part. Even when FD does not jump its value does not equal zero because of

the finite variation part. Hence in the limit FDT 1{|X|≤α∆ω̄
M} estimates the drift term of FD. A

similar argument applies to 1
N eT1{|X|≤α∆ω̄

M}Λ
CHC . By definition ei are local martingales. If

the residuals also have a jump component, then this component can be written as a pure jump

process minus its compensator, which is a predictable finite variation process. The truncation

estimates the continuous part of ei which is the continuous martingale plus the compensator

process of the jump martingale. Hence, in the limit ei1{|X|≤α∆ω̄
M} is not martingale any more. In

particular the weighted average of the compensator drift process does not vanish. In conclusion,

if the jump factor process has a predictable finite variation part or more than finitely many

residual terms have a jump component, there will be a predictable finite variation process as

bias for the continuous factor estimator.

Step 4: Convergence of quadratic covariation:
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The quadratic covariation estimator of the estimator F̂C with another arbitrary process Y is

M∑
j=1

F̂CjYj =HC−1
M∑
j=1

FCj Yj + op(1) +
1

N

N∑
i=1

M∑
j=1

HC>ΛCi
>
ej,iYj1{|Xj,i|≤α∆ω̄

M}

+
1

N

N∑
i=1

M∑
j=1

HC>ΛCi ΛDi
>
FDj Yj1{|Xj,i|≤α∆ω̄

M}.

The first term converges to the desired quantity. Hence, we need to show that the other two

terms go to zero.

1

N

N∑
i=1

M∑
j=1

HC>ΛCi
>
ej,iYj1{|Xj,i|≤α∆ω̄

M} =
1

N

N∑
i=1

HC>ΛCi
>

[eCi , Y ]T

+
1

N

N∑
i=1

M∑
j=1

HC>ΛCi
>
ej,iYj

(
1{|Xj,i|≤α∆ω̄

M} − 1{|ej,i|≤α∆ω̄
M}

)

+
1

N

N∑
i=1

HC>ΛCi
>

 M∑
j=1

ej,iYj1{|ej,i|≤α∆ω̄
M} − [eCi , Y ]T


The last two term are op(1) by a similar argument as in Lemma H.1. Applying the Cauchy

Schwartz inequality and Assumption 1 to the first term yields

‖ 1

N

N∑
i=1

HC>ΛCi
>

[eCi , Y ]T ‖2 ≤ ‖
1

N2
HC>ΛC

>
[eC , eC ]TΛCHC‖ · ‖[Y, Y ]T ‖ = Op

(
1

N

)

Thus Assumption 1 implies that 1
N

∑N
i=1

∑M
j=1H

C>ΛCi
>

[eCi , Y ]T = Op

(
1√
N

)
. The last result

follows from that fact that the quadratic covariation of a predictable finite variation process

with a semimartingale is zero and FDj 1{‖FD
j ‖≤α∆ω̄

M}
converges to a predictable finite variation

term:

1

N

N∑
i=1

M∑
j=1

HC>ΛCi ΛDi
>
FDj Yj1{|Xj,i|≤α∆ω̄

M} =
1

N

N∑
i=1

M∑
j=1

HC>ΛCi ΛDi
>
FDj Yj1{‖FD

j ‖≤α∆ω̄
M}

+ op(1)

= op(1)

I Estimation of the Number of Factors

Lemma I.1. Weyl’s eigenvalue inequality
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For any M ×N matrices Qi we have

λi1+...+iK−(K−1)

(
K∑
k=1

Qk

)
≤ λi1 (Q1) + ...+ λiK (QK)

where 1 ≤ i1, ..., iK ≤ min(N,M)), 1 ≤ i1 + ...+ iK − (K − 1) ≤ min(N,M) and λi(Q) denotes

the ith largest singular value of the matrix Q.

Proof. See Theorem 3.3.16 in Horn and Johnson (1991).

Lemma I.2. Bound on non-systematic eigenvalues

Assume Assumption 1 holds and O
(
N
M

)
≤ O(1). Then

λk(X
>X) ≤ Op(1) for k ≥ K + 1.

Proof. Note that the singular values of a symmetric matrix are equal to the eigenvalues of this

matrix. By Weyl’s inequality for singular values in Lemma I.1 we obtain

λk(X) ≤ λk(FΛ>) + λ1(e).

As λk(FΛ>) = 0 for k ≥ K + 1, we conclude

λk(X
>X) ≤ λ1(e>e) for k ≥ K + 1

Now we need to show that λk(e
>e) ≤ Op(1) ∀k ∈ [1, N ]. We start with a decomposition

λk(e
>e) = λk(e

>e− [e, e] + [e, e])

≤ λ1(e>e− [e, e]) + λk([e, e]).

By Assumption 1 [e, e] has bounded eigenvalues, which implies λk([e, e]) = Op(1).
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Denote by V the eigenvector of the largest eigenvalue of (e>e− [e, e]).

λ1

(
e>e− [e, e]

)
= V >

(
e>e− [e, e]

)
V

=

N∑
i=1

N∑
l=1

Vi

(
e>i el − [ei, el]

)
Vl

≤

 N∑
i=1

(
N∑
l=1

(e>i el − [ei, el])Vl

)2
 1

2 ( N∑
i=1

V 2
i

) 1
2

≤

 N∑
i=1

(
N∑
l=1

(e>i el − [ei, el])Vl

)2
 1

2

as V is an orthonormal vector. Apply Proposition C.1 with Y = ei and Z̄ =
∑N

l=1 elVl. Note

that [Z̄, Z̄] = V >[e, e]V is bounded. Hence

N∑
l=1

(
e>i el − [ei, el]

)
Vl = Op

(
1√
M

)
.

Therefore

λ1

(
e>e− [e, e]

)
=

(
N∑
i=1

Op

(
1

M

)) 1
2

≤ Op

(√
N√
M

)
≤ Op(1).

Lemma I.3. Bound on systematic eigenvalues

Assume Assumption 1 holds and O
(
N
M

)
≤ O(1). Then

λk(X
>X) = Op(N) for k = 1, ...,K

Proof. By Weyl’s inequality for singular values in Lemma I.1:

λk(FΛ>) ≤ λk(X) + λ1(−e)

By Lemma I.2 the last term is λ1(−e) = −λN (e) = Op(1). Therefore

λk(X) ≥ λk(FΛ>) +Op(1)

which implies λk(X
>X) ≥ Op(N) as

(
F>F Λ>Λ

N

)
has bounded eigenvalues for k = 1, ...,K. On
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the other hand

λk(X) ≤ λk(FΛ>) + λ1(e)

and λ1(e) = Op(1) implies λk(X
>X) ≤ Op(N) for k = 1, ...,K.

Lemma I.4. Bounds on truncated eigenvalues

Assume Assumptions 1 and 3 hold and O
(
N
M

)
≤ O(1). Set the threshold identifier for jumps

as α∆ω̄
M for some α > 0 and ω̄ ∈

(
0, 1

2

)
and define X̂C

j,i = Xj,i1{|Xj,i|≤α∆ω̄
M} and X̂D

j,i =

Xj,i1{|Xj,i|>α∆ω̄
M}. Then

λk

(
X̂C>X̂C

)
= Op(N) k = 1, ...,KC

λk

(
X̂C>X̂C

)
≤ Op(1) k = KC + 1, ..., N

λk

(
X̂D>X̂D

)
= Op(N) k = 1, ...,KD

λk

(
X̂D>X̂D

)
≤ Op(1) k = KD + 1, ..., N

where KC is the number of factors that contain a continuous part and KD is the number of

factors that have a jump component.

Proof. By abuse of notation the vector 1{|e|≤α∆ω̄
M}e has the elements 1{|ej,i|≤α∆ω̄

M}ej,i. e
C is the

continuous martingale part of e and eD denotes the jump martingale part.

Step 1: To show: λk

((
1{|e|≤α∆ω̄

M}e
)> (

1{|e|≤α∆ω̄
M}e

))
≤ Op(1) for k = 1, ..., N .

By Lemma I.1 it holds that

λk(1{|e|≤α∆ω̄
M}e) ≤ λ1(1{|e|≤α∆ω̄

M}e− e
C) + λk(e

C)

Lemma I.2 applied to eC implies λk(e
C) ≤ Op(1). The difference between the continuous

martingale part of e and the truncation estimator 1{|e|≤α∆ω̄
M}e − e

C equals a drift term from

the jump martingale part plus a vector with finitely many elements that are of a small order:

1{|ei|≤α∆ω̄
M}ei − e

C
i = bei + dei

where bei is a vector that contains the finite variation part of the jump martingales which is

classified as continuous and dei is a vector that contains the negative continuous part−eCj,i for the

increments j that are correctly classified as jumps and hence are set to zero in 1{|ej,i|≤α∆ω̄
M}ej,i.

Using the results of Mancini (2009) we have 1{eDj,i=0} = 1{|ej,i|≤α∆ω̄} almost surely for sufficiently

large M and hence we can identify all the increments that contain jumps. Note, that by

83



Assumption 3 we have only finitely many jumps for each time interval and therefore deihas only

finitely many elements not equal to zero. By Lemma I.1 we have

λ1(1{|e|≤α∆ω̄
M}e− e

C) ≤ λ1(be) + λ1(de)

It is well-known that the spectral norm of a symmetric N ×N matrix A is bounded by N times

its largest element: ‖A‖2 ≤ N maxi,k |Ai,k|. Hence

λ1(b>e be) ≤ N ·max
k,i
|b>eibek | ≤ N ·Op

(
1

M

)
≤ Op

(
N

M

)
≤ Op(1)

where we have use the fact that the increments of a finite variation term are of order Op
(

1
M

)
.

Similarly

λ1

(
d>e de

)
≤ N ·max

k,i
|d>eidek | ≤ N ·Op

(
1

M

)
≤ Op

(
N

M

)
≤ Op(1)

as dei has only finitely many elements that are not zero and those are of order Op

(
1√
M

)
.

Step 2: To show: λk

((
1{|X|≤α∆ω̄

M}e
)> (

1{|X|≤α∆ω̄
M}e

))
≤ Op(1) for k = 1, ..., N .

Here we need to show that the result of step 1 still holds, when we replace 1{|ej,i|≤α∆ω̄
M} with

1{|Xj,i|≤α∆ω̄
M}. It is sufficient to show that

λ1

(
e1{|e|≤α∆ω̄} − e1{|X|≤α∆ω̄}

)
:= λ1(h) = Op(1)

As by Assumption 3 only finitely many elements of h are non-zero and those are of order

Op

(
1√
M

)
, it follows that

λ1(h) ≤ N max
k,i
|h>i hk| ≤ Op

(
N

M

)
≤ Op(1).

Step 3: To show: λk(X̂
C>X̂C) ≤ Op(1) for k ≥ KC + 1.

By definition the estimated continuous movements are

X̂C = FC1{|X|≤α∆ω̄
M}Λ

C + F pure jump
1{|X|≤α∆ω̄

M}Λ
pure jump> + e1{|X|≤α∆ω̄

M}

where F pure jump denotes the pure jump factors that do not have a continuous component and

Λpure jump are the corresponding loadings. By Weyl’s inequality for singular values in Lemma

I.1 we have

λ1

(
X̂C
)
≤ λ1

(
FC1{|X|≤α∆ω̄

M}Λ
C
)

+ λ1

(
F pure jump

1{|X|≤α∆ω̄
M}Λ

pure jump>
)

+ λ1

(
e1{|X|≤α∆ω̄

M}

)
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For k ≥ K + 1 the first term vanishes λ1

(
FC1{|X|≤α∆ω̄

M}Λ
C
)

= 0 and by step 2 the last term

is λ1

(
e1{|X|≤α∆ω̄

M}

)
= Op(1). The second term can be bounded by

λ1

(
F pure jump

1{|X|≤α∆ω̄
M}Λ

pure jump>
)2
≤‖Λpure jump>Λpure jump‖22·

‖
(
F pure jump

1{|X|≤α∆ω̄
M}

)>
F pure jump

1{|X|≤α∆ω̄
M}‖

2
2

The first factor is ‖Λpure jump>Λpure jump‖22 = O(N), while the truncated quadratic covariation

in the second factor only contains the drift terms of the factors denoted by bFD which are of

order Op
(

1
M

)
:∥∥∥∥(F pure jump

1{|X|≤α∆ω̄
M}

)>
F pure jump

1{|X|≤α∆ω̄
M}

∥∥∥∥2

2

≤ ‖bFD
>bFD‖22 ≤ Op

(
1

M

)

Step 4: To show: λk

((
1{|X|>α∆ω̄

M}e
)> (

1{|X|>α∆ω̄
M}e

))
≤ Op(1) for k = 1, ..., N .

We decompose the truncated error terms into two components.

λk(1{|e|>α∆ω̄
M}e) > λ1(1{|e|>α∆ω̄

M}e− e
D) + λk(e

D).

By Proposition C.1 the second term is Op(1). For the first term we can apply a similar logic as

in step 1. Then we use the same arguments as in step 2.

Step 5: To show: λk

(
X̂C>X̂C

)
= Op(N) for k = 1, ...,KC .

By Lemma I.1 the first KC singular values satisfy the inequality

λk

(
FC1{|X|≤α∆ω̄

M}Λ
C>
)
≤ λk

(
X̂C
)

+ λ1

(
−F pure jump

1{|X|≤α∆ω̄
M}Λ

pure jump>
)

+ λ1

(
−e1{|X|≤α∆ω̄

M}

)
.

Hence by the previous steps

λk

(
X̂C
)
≥ λk

(
FC1{|X|≤α∆ω̄

M}Λ
C>
)

+Op(1).

By Assumption 1 for k = 1, ...,KC

λ2
k

(
FCΛC

>)
= λk

(
FC
>
FC

ΛC
>

ΛC

N

)
N = Op(N).

On the other hand

λk

(
FC1{|X|≤α∆ω̄}Λ

C> − FCΛC
>)2
≤ Op

(
N

M

)
≤ Op(1)
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where we have used the fact that the difference between a continuous factor and the truncation

estimator applied to the continuous part is just a finite number of terms of order Op

(
1√
M

)
.

Hence

λ2
k

(
FC1{|X|≤α∆ω̄}Λ

C>
)

= Op(N)

Similarly we get the reverse inequality for X̂C :

λk

(
X̂C
)
≤ λk

(
FC1{|X|≤α∆ω̄}Λ

C>
)

+ λ1

(
F pure jump

1{|X|≤α∆ω̄}Λ
pure jump>

)
+ λ1

(
e1{|X|≤α∆ω̄}

)
which yields

Op(N) ≤ λk
(
X̂C>X̂C

)
≤ Op(N)

Step 6: To show: λk

(
X̂D>X̂D

)
= Op(N) for k = 1, ...,KD.

Analogous to step 5.

Proof of Theorem 9:

Proof. I only prove the result for K̂(γ). The results for K̂C(γ) and K̂D(γ) follow exactly the

same logic.

Step 1: ERk for k = K

By Lemmas I.2 and I.3 the eigenvalue ratio statistic for k = K is asymptotically

ERk =
λK + g

λK+1 + g
=

Op(N)
g + 1

λK+1

g + 1
=

Op(N)
g + 1

op(1) + 1
= Op

(
N

g

)
→∞

Step 2: ERk for k ≥ K + 1

ERk =
λk + g

λk+1 + g
=

λk
g + 1

λk+1

g + 1
=
op(1) + 1

op(1) + 1
= 1 + op(1).

Step 3: To show: K̂(γ)
p→ K

As ERk goes in probability to 1 for k ≥ K + 1 and grows without bounds for k = K, the

probability for ERk > 1 goes to zero for k ≥ K + 1 and to 1 for k = K.

Remark: Although it is not needed for this proof, note that for k = 1, ...,K − 1

ERk =
λk + g

λk+1 + g
=
Op(N) + g

Op(N) + g
=
Op(1) + g

N

Op(1) + g
N

= Op(1).
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Proof of Proposition 1:

Proof. Apply Theorem L.7 to 1√
M
Xj,i = 1√

M
FjΛ

>
i + 1√

M
ej,i. Note that 1√

M
e can be written as

1√
M
e = Aε with εj,i being i.i.d. (0, 1) random variables with finite fourth moments.

J Identifying the Factors

Proof of Theorem 11:

Proof. Define

B =

(
F>F F>G

G>F G>G

)
B̂ =

(
F̂>F̂ F̂>G

G>F̂ G>G

)
B∗ =

(
H−1F>FH−1> H−1F>G

G>FH−1> G>G

)
.

As the trace is a linear function it follows that
√
M
(
trace(B)− trace(B̂)

)
p→ 0 if

√
M(B−B̂)

p→
0. By assumption H is full rank and the trace of B is equal to the trace of B∗. Thus it is

sufficient to show that
√
M(B̂ −B∗) p→ 0. This follows from

(i)
√
M
(

(F̂>F̂ )−1 − (H−1F>FH−1>)−1
)

p→ 0

(ii)
√
M
(
F̂>G−H−1F>G

)
p→ 0.

We start with (i). As

(F̂>F̂ )−1 − (H−1F>FH−1>)−1 = (F̂>F̂ )−1
(
H−1F>FH−1> − F̂>F̂

)(
H−1F>FH−1>

)−1

it is sufficient to show

√
M
(
H−1F>FH−1> − F̂>F̂

)
=
√
MH−1F>(FH−1> − F̂ ) +

√
M(H−1F> − F̂>)F̂

p→ 0

It is shown in the proof of Theorem 4 that

F̂ − FH−1> =
1

N
F (Λ− Λ̂H−1)>Λ̂ +

1

N
e(Λ̂− ΛH) +

1

N
eΛH.

Hence the first term equals

−H−1F>(F̂ − FH−1>) =
1

N
H−1F>F (Λ− Λ̂H−1)>Λ̂ +

1

N
H−1F>e(Λ̂− ΛH) +

1

N
H−1F>eΛH

Lemmas D.2 and E.1 applied to the first summand yield 1
NH

−1F>F (Λ− Λ̂H−1)>Λ̂ = Op
(

1
δ

)
.

Lemmas C.1 and D.2 provide the rate for the second summand as 1
NH

−1F>e(Λ̂−ΛH) = Op
(

1
δ

)
.
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Lemma C.1 bounds the third summand: 1
NH

−1F>eΛH = Op

(
1√
NM

)
.

For the second term note that(
H−1F> − F̂>

)
F̂ =

(
H−1F> − F̂>

)(
FH−1> − F̂

)
+
(
H−1F> − F̂>

)
FH−1>

Based on Lemmas D.2 and E.1 it is easy to show that
(
H−1F> − F̂>

)(
FH−1> − F̂

)
= Op

(
1
δ

)
.

Term (ii) requires the additional assumptions on G:

(
F̂> −H−1F>

)
G =

(
1

N
Λ̂>
(

Λ− Λ̂H−1
)
F>G+

1

N

(
Λ̂− ΛH

)>
e>G+

1

N
H>Λ>e>G.

By Lemma E.1 it follows that
(

1
N Λ̂>

(
Λ− Λ̂H−1

))
F>G = Op

(
1
δ

)
. Now let’s first assume that

G is independent of e. Then Proposition C.1 applies and 1
NH

>Λe>G = Op

(
1√
NM

)
. Otherwise

assume that G = 1
N

∑N
i=1Xiw

>
i = F 1

N

∑N
i=1 Λiw

>
i + 1

N

∑N
i=1 eiw

>
i . Proposition C.1 applies to

1

N
H>Λe>F

(
1

N

N∑
i=1

Λiw
>
i

)
= Op

(
1√
NM

)

and

1

N

N∑
i=1

(
1

N
H>Λ>

(
e>ei − [e, ei]

))
w>i = Op

(
1√
NM

)

separately. As by Assumption 2

N∑
i=1

1

N2
H>Λ>[e, ei]w

>
i =

1

N2

(
N∑
i=1

N∑
k=1

H>Λk[ek, ei]w
>
i

)
= Op

(
1

N

)

the statement in (ii) follows. The distribution result is a consequence of the delta method for

the function

f




[F, F ]

[F,G]

[G,F ]

[G,G]


 = trace

(
[F, F ]−1[F,G][G,G]−1[G,F ]

)

88



which has the partial derivates

∂f

∂[F, F ]
= −

(
[F, F ]−1[F,G][G,G]−1[G,F ][F, F ]−1

)>
∂f

∂[F,G]
= [F, F ]−1[F,G][G,G]−1

∂f

∂[G,F ]
= [G,G]−1[G,F ][F, F ]−1

∂f

∂[G,G]
= −

(
[G,G]−1[G,F ][F, F ]−1[F,G][G,G]−1

)>

Hence

√
M
(
ˆ̄ρ− ρ̄

)
= ξ>

√
M

(
vec

((
[F, F ] [F,G]

[G,F ] [G,G]

)
−B

))
+
√
M · trace

(
B∗ − B̂

)

The last term is Op

(√
M
δ

)
which goes to zero by assumption.

Proof of Theorem 12:

Proof. The theorem is a consequence of Theorem 11 and Section 6.1.3 in Aı̈t-Sahalia and Jacod

(2014).

K Microstructure Noise

Lemma K.1. Limits of extreme eigenvalues

Let Z be a M×N double array of independent and identically distributed random variables with

zero mean and unit variance. Let S = 1
MZ

>Z. Then if E[|Z11|4] < ∞, as M → ∞, N → ∞,
N
M → c ∈ (0, 1), we have

limλmin(S) =
(
1−
√
c
)2

a.s.

limλmax(S) =
(
1 +
√
c
)2

a.s.

where λi(S) denotes the ith eigenvalue of S.

Proof. See Bai and Yin (1993)

Proof of Theorem 10:

Proof. Step 1: To show: λ1

(
(e+ε)>(e+ε)

N

)
− λ1

(
e>e
N

)
≤ λ1

(
ε>ε
N

)
+ λ1

(
e>ε
N + ε>e

N

)
This is an immediate consequence of Weyl’s eigenvalue inequality Lemma I.1 applied to the
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matrix

(e+ ε)>(e+ ε)

N
=
e>e

N
+
ε>ε

N
+
e>ε

N
+
ε>e

N
.

Step 2: To show: λ1

(
e>ε
N + ε>e

N

)
= Op

(
1
N

)
Let V be the eigenvector for the largest eigenvalue of e>ε

N + ε>e
N . Then

λ1

(
e>ε

N
+
ε>e

N

)
= V >

e>ε

N
V + V >

ε>e

N
V

= 2
1

N

M∑
j=1

N∑
i=1

N∑
k=1

Viεj,iej,iVk.

Define ε̄j =
∑N

i=1 Viεj,i and ēj =
∑N

k=1 Vkej,k. As can be easily checked ε̄j ēj form a martingale

difference sequence and hence we can apply Burkholder’s inequality in Lemma L.2:

E

 M∑
j=1

ε̄j ēj

2 ≤ C M∑
j=1

E
[
ε̄2j ē

2
j

]
≤ C

M∑
j=1

E
[
ε̄2j
]
E
[
ē2
j

]
≤ C

M

M∑
j=1

E
[
ε̄2j
]

≤ C

M
E

( N∑
i=1

Viεj,i

)2
 ≤ C

M

N∑
i=1

V 2
i E
[
ε2j,i
]
≤ C.

We have used the Burkholder inequality to conclude E
[
ē2
j

]
≤ CV >E[∆j〈e, e〉]V ≤ C

M . This

shows that V > e
>ε
N V = Op

(
1
N

)
.

Step 3: To show: λ1

(
ε>ε
N

)
≤ 1

c (1 +
√
c)

2
λ1(B>B)σ2

ε + op(1)

Here we define B as

B =



1 −1 0 · · · 0

0 1 −1 · · · 0
...

. . .
. . .

...

0 · · · 0 1 −1

0 0 · · · 0 1


and note that ε = Bε̃ (up to the boundaries which do not matter asymptotically). Now we can

split the spectrum into two components:

λ1

(
ε>ε

N

)
= λ1

(
ε̃>B>Bε̃

N

)
≤ λ1

(
ε̃>ε̃

N

)
λ1

(
B>B

)
.
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By Lemma K.1 it follows that

λ1

(
ε̃>ε̃

N

)
=

1

c

(
(1 +

√
c)2σ2

ε

)
+ op(1).

Step 4: To show: σ2
ε ≤ c

(1−
√
c)

2

λs
(

Y>Y
N

)
λs+K(B>B)

+ op(1)

Weyl’s inequality for singular values Lemma I.1 implies

λs+K(e+ ε) ≤ λK+1(FΛ>) + λs(Y ) ≤ λs(Y )

as λK+1(FΛ>) = 0. Lemma A.6 in Ahn and Horenstein (2013) says that if A and B are N ×N
positive semidefinite matrices, then λi(A) ≤ λi(A+B) for i = 1, ..., N . Combining this lemma

with step 2 of this proof, we get

λs+K

(
ε>ε

N

)
≤ λs

(
Y >Y

N

)
Lemma A.4 in Ahn and Horenstein (2013) yields

λN (ε̃>ε̃)λs+K(B>B) ≤ λs+K(ε>ε)

Combining this with lemma K.1 gives us

1

c

(
(1−

√
c)2σ2

ε

)
λs+K(B>B) + op(1) ≤ λs

(
Y >Y

N

)
Solving for σ2

ε yields the statement.

Step 5: To show: λs(B
>B) = 2

(
1 + cos

(
s+1
N+1π

))
B>B is a symmetric tridiagonal Toeplitz matrix with 2 on the diagonal and -1 on the off-

diagonal. Its eigenvalues are well-known and equal 2− 2 cos
(
N−s
N+1π

)
= 2

(
1 + cos

(
s+1
N+1π

))
.

Step 6: Combining the previous steps.

λ1

(
(e+ ε)>(e+ ε)

N

)
− λ1

(
e>e

N

)
≤
(

1 +
√
c

1−
√
c

)2 2
(

1 + cos
(

2
N+1π

))
2
(
1 + cos

(
s+1+K
N π

))λs(Y >Y
N

)
+ op(1)

≤
(

1 +
√
c

1−
√
c

)2
2

1 + cos
(
s+K+1
N π

)λs(Y >Y
N

)
+ op(1)

for all s ∈ [K + 1, NK ]. Here we have used the continuity of the cosinus function.
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L Collection of Limit Theorems

Theorem L.1. Localization procedure

Assume X is a d-dimensional Itô semimartingale on (Ω,F, (Ft)t≥0,P) defined as

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs +

∫ t

0

∫
E
1{‖δ‖≤1}δ(s, x)(µ− ν)(ds, dx) +

∫ t

0

∫
E
1{‖δ‖>1}δ(s, x)µ(ds, dx)

where W is a d-dimensional Brownian motion and µ is a Poisson random measure on R+ ×E
with (E,E) an auxiliary measurable space on the space (Ω,F, (Ft)t≥0,P) and the predictable

compensator (or intensity measure) of µ is ν(ds, dx) = ds× v(dx).

The volatility σt is also a d-dimensional Itô semimartingale of the form

σt =σ0 +

∫ t

0
b̃sds+

∫ t

0
σ̃sdWs +

∫ t

0
σ̃′sdW

′
s +

∫ t

0

∫
E
1{‖δ̃‖≤1}δ̃(s, x)(µ− ν)(ds, dx)

+

∫ t

0

∫
E
1{‖δ̃‖>1}δ̃(s, x)µ(ds, dx)

where W ′ is another Wiener process independent of (W,µ). Denote the predictable quadratic co-

variation process of the martingale part by
∫ t

0 asds and the compensator of
∫ t

0

∫
E 1{‖δ̃‖>1}δ̃(s, x)µ(ds, dx)

by
∫ t

0 ãsds.

Assume local boundedness denoted by Assumption H holds for X:

1. The process b is locally bounded and cádlág.

2. The process σ is càdlàg.

3. There is a localizing sequence τn of stopping times and, for each n, a deterministic nonneg-

ative function Γn on E satisfying
∫

Γn(z)2v(dz) <∞ and such that ‖δ(ω, t, z)‖∧1 ≤ Γn(z)

for all (ω, t, z) with t ≤ τn(ω).

The volatility process also satisfies a local boundedness condition denoted by Assumption K:

1. The processes b̃, a and ã are locally bounded and progressively measurable

2. The process σ̃ is càdlàg or càglàd and adapted

We introduce a global boundedness condition for X denoted by Assumption SH: Assumption

H holds and there are a constant C and a nonnegative function Γ on E such that

‖bt(ω)‖ ≤ C ‖σt(ω)‖ ≤ C ‖Xt(ω)‖ ≤ C ‖δ(ω, t, z)‖ ≤ Γ(z)

Γ(z) ≤ C
∫

Γ(z)2v(dz) ≤ C.

Similarly a global boundedness condition on σ is imposed and denoted by Assumption SK: We

have Assumption K and there are a constant and a nonnegative function Γ on E, such that
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Assumption SH holds and also

‖b̃t(ω)‖ ≤ C ‖σ̃t(ω)‖ ≤ C ‖at(ω)‖ ≤ C ‖ãt(ω)‖ ≤ C.

The processes Un(X) and U(X) are subject to the following conditions, where X and X ′ are

any two semimartingales that satisfy the same assumptions and S is any (Ft)-stopping time:

Xt = X ′t a.s. ∀t < S ⇒

• t < S ⇒ Un(X)t = Un(X ′)t a.s.

• the F-conditional laws of (U(X)t)t<S and (U(X ′)t)t<S are a.s. equal.

The properties of interest for us are either one of the following properties:

• The processes Un(X) converge in probability to U(X)

• The variables Un(X)t converge in probability to U(X)t

• The processes Un(X) converge stably in law to U(X)

• The variables Un(X)t converge stably in law to U(X)t.

If the properties of interest hold for Assumption SH, then they also hold for Assumption H.

Likewise, if the properties of interest hold for Assumption SK, they also hold for Assumption

K.

Proof. See Lemma 4.4.9 in Jacod and Protter (2012).

Theorem L.2. Central limit theorem for quadratic variation

Let X be an Itô semimartingale satisfying Definition 1. Then the d× d-dimensional processes

Z̄n defined as

Z̄nt =
1√
∆

(
[X,X]nt − [X,X]∆[t/∆]

)
converges stably in law to a process Z̄ =

(
Z̄ij
)

1≤i,j≤d defined on a very good filtered extension

(Ω̃, F̃, (F̃t)t≥0, P̃) of (Ω,F, (Ft)t≥0,P) and which, conditionally on F, is centered with independent

increments and finite second moments given by

E
[
Z̄ijt Z̄

kl
t |F

]
=

1

2

∑
s≤t

(
∆Xi

s∆X
k
s (cjls− + cjls ) + ∆Xi

s∆X
l
s(c

jk
s− + cjks )

+ ∆Xj
s∆Xk

s (cils− + cils ) + ∆Xj
s∆X l

s(c
ik
s− + ciks )

)
+

∫ t

0

(
ciks c

jl
s + cils c

jk
s

)
ds

with ct = σ>t σt. This process Z̄ is F-conditionally Gaussian, if the process X and σ have no

common jumps.
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Moreover, the same is true of the process 1√
∆

([X,X]n − [X,X]), when X is continuous,

and otherwise for each t we have the following stable convergence of variables

1√
∆

([X,X]nt − [X,X]t)
L−s→ Z̄t.

Proof. See Jacod and Protter (2013) Theorem 5.4.2.

Theorem L.3. Consistent Estimation of Covariance in Theorem L.2

We want to estimate

Dt =
∑
s≤t
|∆X|2(σs− + σs)

Let X be an Itô semimartingale satisfying Definition 1. In addition for some 0 ≤ r < 1 it

satisfies the stronger assumption that there is a localizing sequence τn of stopping times and for

each n a deterministic nonnegative function Γn on E satisfying
∫

Γn(z)λ(dz) < ∞ and such

that ‖δ(ω, t, z)‖r ∧ 1 ≤ Γn(z) for all (ω, t, z) with t ≤ τn(ω).

Assume that 1
2(2−r) ≤ ω̄ < 1

2 and let uM be proportional to 1
M ω̄ . Choose a sequence kn of

integers with the following property:

k →∞, k

M
→ 0

We set

σ̂(ω̄)j =
M

k

k−1∑
m=0

(∆j+mX)2
1{|∆j+mX|≤uM}

Define D̂ =
∑[t·M ]−k

j=k+1 |∆jX|21{|∆jX|>uM} · (σ̂j−k + σ̂j+1) Then

D̂
p→ D

Proof. See Theorem A.7 in Aı̈t-Sahalia and Jacod (2014).

Lemma L.1. Martingale central limit theorem

Assume Zn(t) is a sequence of local square integrable martingales and Z is a Gaussian martin-

gale with quadratic characteristic 〈Z,Z〉. Assume that for any t ∈ (t, T ]

1.
∫ t

0

∫
|z|>ε z

2νn(ds, dx)
p→ 0 ∀ε ∈ (0, 1]

2. [Zn, Zn]t
p→ [Z,Z]t

Then Zn
D→ Z for t ∈ (0, T ].
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Proof. See Lipster and Shiryayev (1980)

Theorem L.4. Martingale central limit theorem with stable convergence

Assume Xn = {(Xn
t ,F

n
t ; 0 ≤ t ≤ 1} are cádlág semimartingales with Xn

0 = 0 and histories

Fn = {Fnt ; 0 ≤ t ≤ 1}.

Xn
t = Xn

0 +

∫ t

0
bX

n

s ds+

∫ t

0
σX

n

s dWs +

∫ t

0

∫
E
1{‖x‖≤1}(µ

Xn − νXn
)(ds, dx) +

∫ t

0

∫
E
1{‖x‖>1}µ

Xn
(ds, dx)

We require the nesting condition of the Fn: There exists a sequence tn ↓ 0 such that

1. Fntn ⊆ Fn+1
tn+1

2.
∨
n F

n
tn =

∨
n F

n
1

Define C = { g: continuous real functions, zero in a neighborhood of zero, with limits at ∞ }
Suppose

1. D is dense in [0, 1] and 1 ∈ D.

2. X is a quasi-left continuous semimartingale.

3. (a) ∀t ∈ D sups≤t |bX
n

s − bXs |
p→ 0.

(b) ∀t ∈ D 〈Xnc〉t +
∫ t

0

∫
|x|<1 x

2dνX
n −

∑
s≤t |∆bX

n

s |2
p→ 〈Xc〉t +

∫ t
0

∫
|x|<1 x

2νX(ds, dx).

(c) ∀t ∈ D ∀g ∈ C
∫ t

0

∫
R g(x)νX

n
(ds, dx)

p→
∫ t

0

∫
R g(x)νX(ds, dx).

Then

Xn L−s→ X

in the sense of stable weak convergence in the Skorohod topology.

Proof. See Theorem 1 in Feigin (1984).

Lemma L.2. Burkholder’s inequality for discrete martingales

Consider a discrete time martingale {Sj ,Fj , 1 ≤ j ≤M}. Define X1 = S1 and Xj = Sj − Sj−1

for 2 ≤ j ≤ M . Then, for 1 < p < ∞, there exist constants C1 and C2 depending only on p

such that

C1E

 M∑
j=1

X2
i

p/2 ≤ E|SM |p ≤ C2E

 M∑
j=1

X2
j

p/2 .
Proof. See Theorem 2.10 in Hall and Heyde (1980).
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Lemma L.3. Burkholder-Davis-Gundy inequality

For each real p ≥ 1 there is a constant C such that for any local martingale M starting at

M0 = 0 and any two stopping times S ≤ T , we have

E

[
sup

t∈R+:S≤t≤T
|Mt −MS |p|FS

]
≤ CE

[
([M,M ]T − [M,M ]S)p/2 |FS

]
.

Proof. See Section 2.1.5 in Jacod and Protter (2012).

Lemma L.4. Hölder’s inequality applied to drift term

Consider the finite variation part of the Itô semimartingale defined in Definition 1. We have

sup
0≤u≤s

‖
∫ T+u

T
brdr‖2 ≤ s

∫ T+s

T
‖bu‖2du.

Proof. See Section 2.1.5 in Jacod and Protter (2012).

Lemma L.5. Burkholder-Davis-Gundy inequality for continuous martingales

Consider the continuous martingale part of the Itô semimartingale defined in Definition 1.

There exists a constant C such that

E

[
sup

0≤u≤s
‖
∫ T+u

T
σrdWr‖2|FT

]
≤ CE

[∫ T+s

T
‖σu‖2du|FT

]
Proof. See Section 2.1.5 in Jacod and Protter (2012).

Lemma L.6. Burkholder-Davis-Gundy inequality for purely discontinuous martin-

gales

Suppose that
∫ t

0

∫
‖δ(s, z)‖2v(dz)ds < ∞ for all t, i.e. the process Y = δ ? (µ − ν) is a locally

square integrable martingale. There exists a constant C such that for all finite stopping times

T and s > 0 we have

E

[
sup

0≤u≤s
‖YT+u − YT ‖2|FT

]
≤ CE

[∫ T+s

T

∫
‖δ(u, z)‖2v(dz)du|FT

]
.

Proof. See Section 2.1.5 in Jacod and Protter (2012).

Theorem L.5. Detecting Jumps

Assume X is an Itô-semimartingale as in Definition 1 and in addition has only finite jump

activity, i.e. on each finite time interval there are almost surely only finitely many bounded
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jumps. Denote ∆M = T
M and take a sequence vM such that

vM = α∆ω̄
M for some ω̄ ∈

(
0,

1

2

)
and a constant α > 0.

Our estimator classifies an increment as containing a jump if

∆jX > vM .

Denote by IM (1) < ... < IM (R̂) the indices j in 1, ...,M such that ∆jX > vM . Set T̂jump(q) =

IM (q) ·∆M for q = 1, ..., R̂. Let R = sup(q : Tjump(q) ≤ T ) be the number of jumps of X within

[0, T ]. Then we have

P
(
R̂ = R, Tjump(q) ∈ (T̂jump(q)−∆M , T̂jump(q)] ∀q ∈ {1, ..., R}

)
→ 1

Proof. See Theorem 10.26 in Aı̈t-Sahalia and Jacod (2014).

Theorem L.6. Estimation of continuous and discontinuous quadratic covariation

Assume X is an Itô-semimartingale as in Definition 1 and in addition has only finite jump

activity, i.e. on each finite time interval there are almost surely only finitely many bounded

jumps. Denote ∆M = T
M and take some ω̄ ∈

(
0, 1

2

)
and a constant α > 0. Define the continuous

component of X by XC and the discontinuous part by XD. Then

M∑
j=1

X2
j 1{|Xj |≤α∆ω̄

M} = [XC , XC ] +Op

(
1√
M

)
M∑
j=1

X2
j 1{|Xj |>α∆ω̄

M} = [XD, XD] +Op

(
1√
M

)
.

Proof. See Theorem A.16 in Aı̈t-Sahalia and Jacod (2014). Actually they make a much stronger

statement and characterize the limiting distribution of the truncation estimators.

Theorem L.7. Onatski estimator for the number of factors

Assume a factor model holds with

X = FΛ> + e

where X is a M × N matrix of N cross-sectional units observed over M time periods. Λ is

a N × K matrix of loadings and the factor matrix F is a M × K matrix. The idiosyncratic
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component e is a M ×N matrix and can be decomposed as

e = AεB

with a M ×M matrix A, a N ×N matrix B and a M ×N matrix ε.

Define the eigenvalue distribution function of a symmetric N ×N matrix S as

FS(x) = 1− 1

N
#{i ≤ N : λi(S) > x}

where λ1(S) ≥ ... ≥ λN (S) are the ordered eigenvalues of S. For a generic probability distri-

bution having bounded support and cdf F(x), let u(F) be the upper bound of the support, i.e.

u(F) = min{x : (x) = 1}. The following assumptions hold:

1. For any constant C > 0 and δ > 0 there exist positive integers N0 and M0 such that for

any N > N0 and M > M0 the probability that the smallest eigenvalue of Λ>Λ
N

F>F
M is below

C is smaller than δ.

2. For any positive integers N and M , the decomposition e = AεB holds where

(a) εt,i, 1 ≤ i ≤ N , 1 ≤ t ≤ M are i.i.d. and satisfy moment conditions E[εt,i] = 0,

E[ε2t,i] = 1 and E[ε4t,i] <∞.

(b) FAA> and FBB> weakly converge to probability distribution functions FA and FB
respectively as N and M go to infinity.

(c) Distributions FA and FB have bounded support, u(FAA>)→ u(FA) > 0 and u(FBB>)→
u(FB) > 0 almost surely as N and M go to infinity. lim infδ→0 δ

−1
∫ u(FA)
u(FA)−δ dFA(λ) =

kA > 0 and lim infδ→0 δ
−1
∫ u(FB)
u(FB)−δ dFB(λ) = kB > 0.

3. Let M(N) be a sequence of positive integers such that N
M(N) → c > 0 as N →∞.

4. Let ε either have Gaussian entries or either A or B are a diagonal matrix

Then as N →∞, we have

1. For any sequence of positive integers r(N) such that r(N)
N → 0 as N →∞ and r(N) > K

for large enough N the r(N)th eigennvalue of X>X
NM converges almost surely to u(Fc,A,B)

where Fc,A,B is the distribution function defined in Onatski (2010).

2. The K-th eigenvalue of X>X
NM tends to infinity in probability.

3. Let {KN
max, N ∈ N} be a slowly increasing sequence of real numbers such that KN

max/N → 0

as N →∞. Define

K̂δ = max{i ≤ KN
max : λi − λi+1 ≥ δ}

For any fixed δ > 0 K̂(δ)→ K in probability as N →∞.
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Proof. See Onatski (2010).
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