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Abstract

I explicitly derive the optimal dynamic incentive contract in a general continuous-time
agency problem where inducing static first-best action is not always optimal. My
framework generates two dynamic contracts new to the literature: (1) a “quiet-life”
arrangement and (2) a suspension-based endogenously renegotiating contract. Both
contractual forms induce a mixture of first-best and non-first-best action. These con-
tracts capture common features in many real life arrangements such as “up-or-out”,
partnership, tenure, hidden compensation and suspension clauses. In applications, I
explore the effects of taxes, bargaining and renegotiation on optimal contracting. My
technical work produces a new type of incentive scheme I call sticky incentives which
underlies the optimal, infrequent-monitoring approach to inducing a mixture of first-
best and non-first-best action. Furthermore, I show how differences in patience between
the principal and agent factor into optimal contracting.
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1 Introduction

The paper explicitly solves for the optimal contracts in a broad Brownian framework where
inducing static first-best action is not always optimal.2 This continuous-time setting models
a dynamic principal-agent relationship where some asset (a firm, a project etc.) owned by
a risk-neutral principal is contracted out to a risk-neutral agent to manage. The asset’s
variable cash flow is governed by a continuous stochastic process; the framework allows for
this process to be either Brownian Motion or geometric Brownian Motion.3 The profitability
of the asset is influenced by the hidden actions of the agent. At any moment in time, the
agent can either choose the first-best action or a non-first-best action I call the agency action.
Agency action provides a private benefit to the agent and can be naturally interpreted as
perks consumption or shirking depending on the specific realizations of the fundamentals.
The principal owns the cash flow. To properly motivate the agent, the principal writes a
contract which stipulates a compensation plan contingent on observables along with a ter-
mination clause.

This framework and its related discrete-time counterparts have been considered by a num-
ber of previous papers including Biais et al (2005), DeMarzo and Sannikov (2006), and
He (2009). All of these papers have two things in common: 1) they all solve for the best
contract that is restricted to always inducing first-best action, providing insights into some
high-powered incentive contracts used in practice, 2) they all find that this static first-best
action contract is, in general, not always optimal. The second fact is not necessarily sur-
prising. Empirical findings show perquisites play a large role in CEO contracts (Schwab
and Thomas, 2006). Moreover, many contractual arrangements such as tenure, partnership,
involuntary separation and suspension entail variable effort levels and do not fit neatly with
the first-best action or even the stationary action viewpoint. In this paper, I demonstrate
that the optimal contract of the Brownian framework reflects many of the aforementioned
contractual features frequently observed in practice.

Theorem 3.1 states that the optimal contract takes on one of four forms depending on
the fundamentals: 1) baseline form, 2) static form, 3) Quiet-Life form, 4) Renegotiating
Baseline form. Baseline contracts only induce first-best action. In baseline contracts, the
agent is rewarded with cash compensation, and his performance is constantly monitored by
the principal. In static contracts the agent applies agency action forever with salary, and
there is no monitoring. The main contributions of this paper involve the other two forms,
both of which mix in periods of agency action with first-best action.

Quiet-Life contracts provide hidden compensation to the agent by inducing agency action.
After a sustained period of good performance, a “Quiet-Life phase” is triggered. During
this phase the principal infrequently monitors the agent, and the agent frequently consumes
perks. The incentive scheme of the contract becomes somewhat unresponsive to asset perfor-

2Just to emphasize, in this setting an incentive-compatible contract that induces static first-best action
is not the same as the first-best contract, which is usually not incentive-compatible.

3The paper and its results are presented in the Brownian Motion setting. In Section 7.E, I explain how
the results translate into the geometric Brownian setting.
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mance. After the Quiet-Life phase concludes, the principal returns to constantly monitoring
the agent, and the agent applies first-best action. Then either sustained good performance
triggers another round of the Quiet-Life phase or sustained poor performance brings about
termination. Comparing Quiet-Life contracts with baseline contracts, I find that the hidden
compensation packages of Quiet-Life contracts tend to be less lucrative than the cash com-
pensation packages of baseline contracts. Termination also tends to be delayed in Quiet-Life
contracts (Corollary 4.1).

The last optimal form is the Renegotiating Baseline form. Renegotiating Baseline contracts
are baseline contracts where termination is replaced with suspension phases. There is a state
variable that both keeps track of the agent’s continuation payoff and serves as a dynamic
rating of the agent’s managerial performance. When poor performance pushes the agent’s
rating down to an endogenously determined low threshold, the contract triggers a suspen-
sion phase during which cash compensation is postponed, and the agent frequently exerts
low effort. While the agent serves his suspension, the performance rating is “pegged” around
the low threshold. Afterwards, the agent is forgiven for some of his prior poor performance,
and the agent’s rating is pushed upwards as the principal renegotiates some more slack for
the agent. The underlying baseline contract of a Renegotiating Baseline contract is usually
not renegotiation proof. In a baseline contract, it is important that the principal commits
not to renegotiate in order to preserve the first-best action incentive scheme of the contract.
A Renegotiating Baseline contract endogenously embeds some of the “renegotiable-ness” of
the underlying baseline contract allowing both the principal and agent to internalize some
of the value of renegotiation in an incentive-compatible way (Remark 5.1).

In this paper, I show the reason why the Quiet-Life and Renegotiating Baseline contracts
are sometimes optimal has much to do with the relative patience of the principal. There is
a contractual technique where the principal delays the enactment of a lucrative contract by
first enacting a less lucrative period of agency action either to reward or punish the agent.
This “saving-the-best-for-last” technique, which plays an important role in the construction
of the Quiet-Life and Renegotiating Baseline contracts, is only useful if the principal is rela-
tively patient (Remark 6.1). In fact, I show how in an equal patience setting, the inability of
the principal to profitably utilize this technique depresses the value of the optimal contract.
When the principal is more patient, saving-the-best-for-last implies a role for agency action
in optimal contracting even when agency action is inefficient - just not too inefficient. Pre-
vious papers have already made note of this fact that the optimal contract may not always
induce first-best action when agency action is not too inefficient. However, my paper is both
the first to formalize the reason for this fact by analyzing the value of saving-the-best-for-last
and the first to derive the optimal contract when agency action is not too inefficient.

With the optimal contract taking one of a number of forms, many natural comparative
statics can be performed on the form of the optimal contract by shifting the fundamentals.
I show how the optimal contract takes on the form that best highlights the contractual ad-
vantages of a particular realization of the agency action’s value to the agent and cost to the
principal (Section 7.A. The Domains of Optimality Theorem). For example, if agency action
is very valuable to the agent and not too bad for the principal, the optimal contract is the
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Quiet-Life contract which uses hidden compensation. I also show how the optimal contract
changes depending on the relative bargaining power of the agent. In particular, I look at
optimal contracting when 1) the agent can bargain for higher outside options and 2) when
the agent can bargain for higher contract payoffs.4

In addition, I analyze how optimal contracting is affected by the presence of taxes. In
this setting hidden compensation becomes more attractive due to the inefficiency of taxed
cash compensation. Proposition 7.3 states how a tax hike induces a simple shift of emphasis
from the two contract types that employ cash compensation (baseline and Renegotiating
Baseline) to the two that don’t (Quiet-Life and static). Specifically, taxes turn some situa-
tions where the baseline contract is optimal into situations where the Quiet-Life contract is
optimal and also turn some situations where the Renegotiating Baseline contract is optimal
to situations where the static contract is optimal.

Furthermore, I find that a subset of the Renegotiating Baseline contracts are renegotiation-
proof. Contracts in this model, optimal or otherwise, are usually not renegotiation-proof.
To design a renegotiation-proof contract inducing only first-best action, the principal would
have to employ randomization and bound the value of the contract to be equal to the value
of his outside option. However, renegotiation-proof Renegotiating Baseline contracts never
employ randomization, nor must they be worth less than the principal’s outside option.
Furthermore, costly termination is never exercised in any Renegotiating Baseline contract,
which is, again, in direct contrast to the renegotiation-proof static first-best action contracts
(Remark 7.4).

While the four forms of the optimal contract are all structurally simple, a proper under-
standing of their value requires a number of technical advancements. The incentive scheme
of the Quiet-Life and Renegotiating Baseline contracts follow what is known as Sticky Brow-
nian Motion. This motion has not previously appeared in the contracting literature. And
yet an understanding of Sticky Brownian Motion is a prerequisite to rigorously interpreting
the results of this paper (Proposition 4.1, Lemma 4.1). For example, take a look back at
the paragraph introducing the Quiet-Life contract. Much of the paragraph would not make
formal sense without knowledge of the dynamics of Sticky Brownian Motion. The concepts
of “infrequent” and “frequent”, the term “somewhat unresponsive”, and the comparative
results between Quiet-Life and baseline contracts all have their formal roots in Sticky Brow-
nian Motion.

The proof that the optimal contract only takes on the four listed forms is also technically
nontrivial. Typically, the strategy in continuous-time agency problems is to deduce the op-
timal value function and extract from it the optimal contract. In this setting, the optimal
value function is tied to two ODEs: the first-best action ODE deduced by DeMarzo and San-
nikov (2006) and the agency action ODE which I explicitly solve in Lemma 6.2. The optimal
value function pieced together from solutions to these two ODEs is, in general, not smooth.

4The emphasis is on agent bargaining power because the principal holds all the bargaining power in the
base model.
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So even applications of Ito’s Lemma and optional sampling, which are straightforward in the
previous literature, become complicated and require care. Moreover, the principal has great
flexibility in switching between first-best and agency action. Virtually any action sequence
can be made to be incentive-compatible. Whittling down this set can be challenging. For
example, a major step in the optimality theorem is to simply show that there is at most one
phase change point in the optimal value function - i.e. only one agent continuation payoff
value in the optimal contract at which the principal will induce a switch of actions.

The techniques developed in this paper pave the way for more work to be done in dy-
namic agency models where agency cost is not prohibitive. The explicit optimal contracts
derived in this paper represent a first step in the continuous-time literature to understanding
the specific roles of perks and shirking in business. Overall, the theory of this paper provides
some formal dynamic foundations for the agency action research that has already begun in
earnest on the empirical side.

Related Literature
Grossman and Hart (1983) demonstrated that simultaneously determining the optimal action
levels and the associated optimal incentive scheme is complex even in simple principal-agent
models. One strain of the literature gets around this difficulty by deriving the optimal static
first-best action contract or optimal stationary action contract, and providing some condi-
tions under which such contracts are optimal. Such papers include Holmstrom and Milgrom
(1987), Biais et al (2005), DeMarzo and Sannikov (2006), He (2009) and Edmans, Gabaix
and Landier (2009). Another solution is to formulate some general principle about how to
optimally induce arbitrary action sequences, but avoid the issue of finding the optimal action
sequence (e.g. Edmans and Gabaix, 2009). Yet another way is to use the powerful machin-
ery of stochastic calculus to produce theorems about the existence of optimal contracts in
general settings at the expense of concreteness. The notable example of this strain of the
literature is Sannikov (2008), which produces an existence theorem that implies a role for
shirking without specifying the exact nature of that role. Lastly, one can restrict attention to
static models. For example, two recent papers in the perks literature - Bennardo, Chiappori
and Song (2010) and Kuhnen and Zwiebel (2009) - produce explicit contracts that involve
perks consumption.

Thus there is a gap in the literature. On the one hand, papers like Sannikov (2008) (not to
mention the myriad real-life contracts) tell us that agency action ought to play an important
role in optimal contracting in general. But most of the explicit optimal dynamic contracts
produced either induce only first-best action or some fixed stationary action. The need to
close this gap is one of the primary motivations of my paper.

More broadly, this paper serves as a theoretical counterpart to a number of recent em-
pirical papers investigating the role agency action in business. The debate over agency
action started with the seminal papers Jensen and Meckling (1976) and Fama (1980). The
agency cost versus ex-post settling up perspectives espoused by these two papers serve as the
backdrop to the recent empirical work. Yermack (2006) shows that “the disclosed personal
use of company aircraft by CEOs is associated with severe and significant underperformance
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of their employers’ stocks.” However, the results do not unambiguously vindicate the agency
cost perspective. For example, there does not seem to be a significant correlation between
managers’ fractional stock ownership and personal aircraft use. It may be that the com-
pound problem of “managerial shirking in the presence of lavish perks” is symptomatic of
other human capital specific problems, and is not necessarily a blanket indictment on agency
action. Bertrand and Mullainathan (2003) suggests that observable CEO preferences may
indicate a desire for the “quiet life,” contrary to the active empire building theory that casts
a pall on agency action. Rajan and Wulf (2006) finds that “the evidence for agency [cost] as
an explanation of perks is, at best, mixed.” The paper argues that perks can be productivity
improving and can also serve as a form of tax-free hidden compensation. Thus, perks can
be justified as rational expenditures, and their findings point to more responsible practices
of using agency action. My paper posits some of the ways a responsible principal can justify
inducing agency action.

2 Model and Preliminaries

The paper is presented from the Brownian perspective. For a discussion about the geometric
Brownian model, see section 7.E.

A.1 Setting
There is an asset belonging to a principal, for which he contracts an agent to manage. The
asset produces a stochastic revenue stream. Over time, we assume that the cumulative
revenue stream behaves as Brownian Motion with a drift process influenced by the hidden
action applied by the contracted agent.

Formally, there is a stochastic process Z = {Zt}t≥0 defined on a probability space Ω with
probability law P µ. Under P µ, Z is Brownian motion with drift µdt. At time t, Zt is the
cumulative revenue stream of the asset up to time t. The µdt drift corresponds to the default
expected returns and can be interpreted as the intrinsic or maximum expected profitability
of the asset.

A.2 Actions
The agent affects asset performance by selecting an action at each moment in time. Over
time the agent’s action process a = {at}t≥0 is a stochastic process taking values in a set
{0, A} with A > 0. {0} is first-best action and {A} is agency action. The action process a
affects the underlying probability law: the default law P µ changes to P µ−a, which is defined
to be the law under which Z is Brownian motion with drift (µ− at)dt.

The principal can choose a compensation scheme for the agent. Compensation is repre-
sented by a random nondecreasing process I = {It}t≥0 started at zero that keeps track of
the cumulative cash payments made to the agent up to time t. Termination is a stopping
time τ .

A.3 Preferences
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The principal is risk neutral, discounts at rate r, retains the cash flow of the asset, compen-
sates the agent, and can exercise an outside option worth L < µ

r
after the termination of the

contract. His utility is

EPµ−a

[ ∫ τ

0

e−rs(dZs − dIs) + e−rτL

]
The agent is risk neutral, discounts at rate γ, receives compensation from the principal, and
can exercise an outside option worth K ≥ 0 after the termination of the contract. The agent
also receives an instantaneous utility flow φatdt by applying action at ∈ {0, A} at time t,
where φ > 0. His utility is

EPµ−a

[ ∫ τ

0

e−γs(dIs + φasds) + e−γτK

]
We assume for now that the principal is more patient: r < γ. Later on we will consider the
implications of having an equally patient agent: r = γ. The assumption that the principal
is at least as patient as the agent is an important one. Typically, one thinks of the agent as
an actual individual like a CEO who is separated from a principal representing ownership.
In certain cases ownership may also consist of a single individual. However, when there is
separation between ownership and control, the more typical case is where ownership repre-
sentation is in the form of an institution such as a board, shareholders, institutional investor
etc. It is then reasonable to assume that such a permanent or semi-permanent entity would
be relatively patient.

B. Incentive-Compatibility

Definition 2.1. A contract is a tuple (a, I, τ) consisting of an action process a, a compen-
sation scheme I, and a termination clause τ .

Fix a contract (a, I, τ). The agent’s continuation payoff Ut is defined to be the agent’s
expected future utility given the history Ft up to time t:

Ut = EPµ−a

[ ∫ τ

t

e−γ(s−t)(dIs + φasds
)

+ e−γ(τ−t)K

∣∣∣∣Ft

]
t ≤ τ

The evolution of Ut is the contract’s incentives. The motion of Ut is characterized by the
following stochastic differential equation:

Lemma 2.1. There exists a stochastic process β = {βt}t≥0 such that

dUt = γUtdt− dIt − φatdt+ βt(dZt − (µ− at)dt)

Proof. Standard.

The process βt drops out of the martingale representation theorem, and represents how
sensitive the contract’s incentive scheme is to asset performance. High sensitivity will induce
the agent to apply first-best action, and low sensitivity will mean the agent will apply agency
action. To determine whether a contract is incentive-compatible requires comparing the
contract’s action process to the sensitivity process.
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Lemma 2.2. (Incentive-Compatibility Criterion) A contract (a, I, τ) with sensitivity process
β is incentive-compatible if and only if for all t, Ut ≥ K and

i) at = 0⇒ βt ≥ φ ii) at = A⇒ βt ≤ φ

Proof. Standard.

The criterion tells us that in order to induce first-best action, the sensitivity factor needs to
be at least φ. However, the greater the sensitivity, the more volatile the incentives, which
entails a cost. Thus in optimality, whenever the principal wants to induce first-best action,
he will always choose the lowest possible sensitivity: φ. Similarly, the best way to induce
agency action is to select sensitivity 0. We can now pin down the two laws that will govern
the incentives of the optimal contract:

Definition 2.2. When the optimal contract stipulates first-best action, the continuation
payoff of the agent follows the first-best action law:

dUt = γUtdt− dIt + φ(dZt − µdt)

which says to induce first-best action the continuation payoff of the agent needs to be sen-
sitive to asset performance, and in expectation, compounds at the agent’s discount rate less
the cash dIt delivered to the agent right now.

Similarly, when the optimal contract stipulates agency action, the continuation payoff of
the agent follows the agency action law:

dUt = γUtdt− dIt − φAdt

which says the agent’s continuation payoff is not sensitive to asset performance, and com-
pounds at the agent’s discount rate less the cash dIt delivered to the agent right now and less
the utility φAdt the agent obtains from applying agency action A.

3 The Four Forms of the Optimal Contract

It turns out the optimal contract always follows a particular format which I describe in 3.A
- The General Form of the Optimal Contract. This general form is a set of rules governing
the motion of the optimal contract’s agent continuation payoff Ut. In 3.B I state the opti-
mality theorem which specifies the four realizations of the general form taken by the optimal
contract. Two of the realizations have appeared in the previous literature - baseline form
and static form, and I list a few relevant facts about them in 3.C.

A. The General Form of the Optimal Contract
The principal selects a good performance threshold U good and a poor performance threshold
Upoor subject to the condition K ≤ Upoor ≤ U good. These thresholds will be the upper and
lower bounds on the agent’s continuation payoff Ut. Next, a value U contract ∈ [Upoor, U good]
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Upoor U good

dUt = γUtdt+ φ(dZt − µdt)

axis for agent’s continuation payoff process and performance rating Ut

termination or cash compensation or

U0 = U contract

first-best action law

agency actionagency action
on (Upoor, U good)

Figure 1: Schematic diagram of the general form of the optimal contract.

is selected which is the total payoff of the contract to the agent. The continuation payoff of
the agent is started at this value:

U0 = U contract

While the agent’s continuation payoff Ut is in between Upoor and U good it follows the first-best
action law:

dUt = γUtdt+ φ(dZt − µdt) Ut ∈ (Upoor, U good)

When Ut reaches one of the thresholds we have the following possibilities:

At the good performance threshold the principal selects one of the following two options
to reward the agent:

1) Provide the agent with cash compensation dIt:

– Cash compensation is chosen in such a way so that the Brownian Ut reflects
downwards at U good.

2) Induce agency action as a form of hidden compensation:

– The law of Ut at the good performance threshold U good switches to the agency
action law dUt|Ugood = (γU good − φA)dt.

– This choice is available only if U good is chosen to be less than or equal to φ
γ
A.5

At the poor performance threshold the principal selects one of the following two options to
punish the agent:

1) Terminate the contract:

– This choice is incentive-compatible only if Upoor = K.

2) Induce agency action as a form of suspension:

– The law of Ut at the poor performance threshold Upoor switches to the agency
action law dUt|Upoor = (γUpoor − φA)dt.

– This choice is available only if Upoor is chosen to be greater than or equal to φ
γ
A.

5If Ugood was instead chosen to be greater φ
γA, then Ut would continue to go upwards at Ugood, contra-

dicting the upper bound assumption of Ugood.
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B. The Optimal Contract

Theorem 3.1. In the optimal contract the principal selects two thresholds: a poor perfor-
mance threshold Upoor and a good performance threshold U good. The agent’s continuation
value is started between these two values and follows the first-best action law

dUt = γUtdt+ φ(dZt − µdt)

While following this law, Ut is sensitive to asset performance and serves as a dynamic
rating of the agent’s managerial performance. When good performance pushes the rating up
to U good the principal rewards the agent either through cash compensation or through hidden
compensation by inducing agency action. When poor performance pushes the rating down to
Upoor the principal either terminates the contract or punishes the agent by inducing agency
action. The four different ways to choose between these options produce the four forms of
the optimal contract which are summarized in the table below:

Upoor

U good

cash compensation agency action

termination Baseline Quiet-Life
agency action Renegotiating Baseline Static

Baseline contracts always induce first-best action. Static contracts always induce agency
action. The Quiet-Life and Renegotiating Baseline contracts both induce agency action non-
permanently in between periods of first-best action.

C. Some Remarks on the Baseline and Static Contracts
The baseline form and the conditions under which it is optimal have already been derived in
the previous literature. It always induces first-best action and is identical to the credit limit
contract of DeMarzo and Sannikov (2006). It is also the additive version of the no-shirking
contract of He (2009) and the continuous-time version of the optimal contract of Biais et al
(2007).

The following are a few relevant facts about the static contracts:

1) Static contracts induce agency action forever and may supplement the agent with a
fixed salary sdt. Consequently, the good and poor performance thresholds coincide,
and the agent’s continuation payoff is permanently fixed at this value: Upoor,S = Ut =
U good,S = φA+s

γ
.

2) The optimal static contract supplements the agent with a salary sdt just enough to pre-
vent him from quitting: s = max{0, γK−φA}. The payoff to the agent is max{φA

γ
, K}

and the payoff to the principal is min{µ−A
r
, µ−A−(γK−φA)

r
}.

The rest of the paper is primarily concerned with the Quiet-Life form and the Renegotiating
Baseline form. Both forms induce agency action non-permanently.
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4 The Quiet-Life Contracts

This section analyzes the incentive scheme of Quiet-Life contracts, culminating in a rigor-
ous characterization of Quiet-Life contracts in 4.B. Dynamics of the Quiet-Life Contracts.
The concepts of infrequent monitoring (Proposition 4.1 and Definition 4.1) and sticky in-
centives (Lemma 4.1 and Proposition 4.2) are introduced. Infrequent monitoring and sticky
incentives are the key properties of the Quiet-Life and Renegotiating Baseline contracts that
differentiate these contracts from baseline contracts. These concepts imply certain appealing
contractual characteristics (Corollary 4.1) which, combined with the discussion of patience in
Section 6, help explain why Quiet-Life and Renegotiating Baseline contracts are sometimes
better than baseline contracts.

A.1 Quiet-Life: Agency Action as Reward
Recall, a Quiet-Life contract induces agency action non-permanently when the agent’s con-
tinuation payoff and performance rating Ut reaches the contract’s good performance thresh-
old. Termination is triggered when Ut drops down to the poor performance threshold. All
Quiet-Life contracts satisfy K = Upoor < U good < φA

γ
. The first equality is due to the fact

that termination means the agent exercises his outside option. The middle strict inequality
is there because if the thresholds were equal the instructions of the contract would contra-
dict. The last strict inequality comes from two observations: U good cannot be greater than
φA
γ

because such a threshold would constitute a promised continuation payoff greater than

what agency action utility alone can deliver, nor can it be equal to φA
γ

since that would

imply permanent agency action when Ut reaches U good, contradicting the assumption that
Quiet-Life contracts induce agency action non-permanently.

What Ut ≤ U good < φA
γ

implies is that when the agent finally reaches the good perfor-
mance threshold, he receives an agency action flow, which if extended indefinitely, would
represent a value greater than anything the contract actually promises. Thus agency action
in Quiet-Life contracts serves to reward the agent, as a form of hidden compensation.

A.2 Quiet-Life: Infrequent Monitoring
What does a typical hidden compensation package look like? Let H denote the nondecreas-
ing hidden compensation process (similar to the cash compensation process I), where Ht is
the amount of agency action utility received by the agent up to time t. We already know for
every moment t when Ut = U good the agent receives a fixed agency action utility flow φAdt.
This implies:

dHt =

{
0dt Ut < U good

φAdt Ut = U good

Thus to characterize H it suffices to characterize the random set of hidden compensation
times T U(U good) = {t|Ut = U good}.

Near the good performance threshold U good, the continuation payoff and performance rating
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t

Figure 2: A sample sequence of hidden compensation times.

Ut of the agent follows the first-best action law:

dUt|Ut<Ugood = γUt + φ(dZt − µdt)

which is sensitive to asset performance. This requires the principal to constantly monitor
asset performance to properly adjust Ut. At the good performance threshold U good, Ut follows
the agency action law:

dUt|Ut=Ugood = γU good − φAdt

and is no longer sensitive to asset performance. Consequently, the principal shuts down
monitoring. Thus around the U good threshold the principal mixes constant monitoring and
no monitoring, producing a set of hidden compensation times with the following properties:

Proposition 4.1. Any neighborhood of a hidden compensation time contains infinitely many
other times of hidden compensation. Formally, the random set of hidden compensation times
T U(U good) almost surely satisfies the following three properties: 1) positive measure, 2)
nowhere dense, 3) perfect.6 (See Figure 2)

Proof. This is a simple consequence of Lemma 4.1 of the next subsection.

The positive measure property implies that, in particular, T U(U good) does not look like this:

t

Hidden compensation takes time. This is because a fixed utility flow over a set of times of
measure 0 amounts to no utility at all. If a Quiet-Life contract’s hidden compensation times
were actually trivial then it would not be incentive-compatible.

The nowhere dense property implies that, in particular, T U(U good) does not look like this:

t

By dispersing an interval of hidden compensation, the principal can in expectation fit more
first-best action times before the end of a period of hidden compensation. The downside is
that by mixing first-best action with agency action there is an added risk that termination
may occur in the “gaps” between hidden compensation times. However, the risk is slight
provided the dispersion is not too great. This gives us the third property, T U(U good) is a
perfect set.

6Compare with the random set of cash compensation times of a baseline contract which is also nowhere
dense and perfect, but has zero measure. A set is perfect if it contains all of its limit points, and has no
isolated points.
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Definition 4.1. The characterization of the hidden compensation times T U(U good) implies a
local (around U good) monitoring structure where no monitoring times are inserted in between
the monitoring times in a temporally nontrivial, nowhere dense and perfect way. Call this
mixture infrequent monitoring. Call the periods of time in the Quiet-Life contract when
the principal is infrequently monitoring, the Quiet-Life phases.

A.3 Quiet-Life: Sticky Incentives
Given a Quiet-Life contract Q with some good performance threshold U good, we can design
the companion baseline contract B with the same threshold U good. Let UQ

t denote the
Quiet-Life contract’s agent continuation payoff process and define UB

t similarly. Obviously
these two contracts exhibit a large amount of structural similarity: they have the same
performance thresholds,7 the agent continuation payoffs of the two contracts follow the same
first-best action law on the open interval (Upoor = K,U good), and both contracts terminate
at Upoor = K. The only structural difference is at U good where Q induces agency action as
a form of hidden compensation and B delivers cash compensation.

Remark 4.1. Comparing Q and B allows us to isolate and study the comparative advantages
of using hidden-compensation-based versus cash-compensation-based incentives.

We know from the previous literature that UB
t is reflected Brownian motion.8 The technical

term for UQ
t is Sticky Brownian motion. The following is the crucial technical result on

Sticky Brownian motion:

Lemma 4.1. Sticky Brownian motion is reflected Brownian motion under a decelerated time
change.

Proof. See Harrison and Lemoine (1981).

This immediately implies:

Proposition 4.2. Hidden-compensation-based incentives are slower than those of cash com-
pensation. We call this slower incentive scheme of the Quiet-Life contract sticky incen-
tives. Formally, there is a decelerated time change which is a random nondecreasing process
S(t) ≥ t such that

UQ
S(t) =d U

B
t

Let HQ
t denote the hidden compensation process of Q, and τQ denote the termination time

of Q. Similarly, let IB
t denote the cash compensation process of B, and τB denote the

termination time of B. The following formalizes the value of slowing down incentives:

Corollary 4.1. A sticky incentive scheme implies that hidden compensation is more modest
than cash compensation:

HQ
S(t) =d I

B
t ⇒ E[HQ

t ] < E[IB
t ] for all t > 0

and delays termination:
τQ =d S(τB) ≥ τB

7Their poor performance thresholds are both K by assumption.
8For example, DeMarzo and Sannikov (2006).
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B. Dynamics of the Quiet-Life Contracts

We can now give a precise description of the dynamics of a Quiet-Life contract. In a Quiet-
Life contract the agent initially applies first-best action and his continuation payoff and per-
formance rating Ut follows the first-best action law. Sustained good performance brings Ut
up to the good performance threshold U good. At this point the contract enters the Quiet-Life
phase (Definition 4.1) where agency action is triggered as a form of hidden compensation
(see subsection A.1), and the agent frequently (Proposition 4.1) consumes perks. During
the Quiet-Life phase the principal infrequently monitors (Definition 4.1) the agent and as a
result Ut sticks around U good for a while (Proposition 4.2) following Sticky Brownian motion.

Eventually, poor performance brings Ut back down and the contract exits the Quiet-Life
phase. The principal resumes constant monitoring of the agent and this dynamic remains
until sustained good performance triggers another round of the Quiet-Life phase or sustained
poor performance finally triggers termination.

The Quiet-Life arrangement has some comparative advantages over the cash-compensation
arrangement of baseline contracts. In particular, termination tends to be delayed, and the
agent receives less expected compensation (Corollary 4.1). When perks consumption is not
too harmful to the principal, these advantages will imply that the optimally designed Quiet-
Life contract outperforms the optimal baseline contract.

5 Renegotiating Baseline Contracts

Definition 5.1. The underlying baseline contract of a Renegotiating Baseline contract
R is the baseline contract with the same good performance threshold as R.

This section shows how we can view a Renegotiating Baseline contract as the underlying
baseline contract under repeated renegotiation. I explain how agency action can be induced
as punishment in the form of suspension phases. The suspension phases allow the principal
to credibly renegotiate without compromising the first-best incentive structure of the un-
derlying baseline contract (Remark 5.1), and represent a potential advantage over baseline
contracts which require commitment to not renegotiate. The concepts of sticky incentives
and infrequent monitoring which were introduced in the previous section reappear. A char-
acterization of the dynamics of Renegotiating Baseline contracts is found in 5.B.

A.1 Renegotiating Baseline: Agency Action as Punishment
In Renegotiating Baseline contracts, agency action is induced at the poor performance thresh-
old Upoor which need not be equal to K. Mathematically, the dynamics of a Renegotiating
Baseline contract’s agent continuation payoff at Upoor is the mirror image of the dynamics
of a Quiet-Life contract’s agent continuation payoff at U good. Therefore, the concepts of
sticky incentives, infrequent monitoring, and the properties of the agency action times (e.g.
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positive measure, nowhere dense, perfect) all translate over.

However, the role of agency action and the value of the associated infrequent monitoring
and sticky incentives are different.

Unlike in Quiet-Life contracts, in Renegotiating Baseline contracts φA
γ
< Upoor ≤ Ut. This

means that when the agent’s continuation payoff and performance rating Ut drops down
to the poor performance threshold Upoor, he receives an agency action flow, which if ex-
tended indefinitely, would represent a value strictly less than anything the contract actually
promises. Thus agency action in Renegotiating Baseline contracts serves to punish the agent.

This is not to say the agent dislikes agency action. On the contrary, the application of
agency action is simply the best the agent can do for himself in this arrested phase of the
contract. The canonical example of this phenomenon is suspension. During a suspension,
the agent’s compensation is frozen, so he exerts low effort. Despite the agent’s fondness for
low effort, he would rather be working hard and receiving compensation then be stuck in
this low state.

A.2 Renegotiating Baseline: Suspension and Renegotiation
The idea of contractual punishment is not new. A termination clause serves the same pur-
pose. So why not just terminate like in a baseline contract?

In many baseline contracts (including the optimal one) when the agent’s continuation payoff
and performance rating Ut is near the poor performance threshold Upoor and termination is
probabilistically imminent, the principal is better off giving the agent some more slack. The
principal achieves this by simply shifting the performance rating Ut upwards, removing it
from the vicinity of Upoor. By forgiving the agent for his poor performance, the principal
is effectively renegotiating the baseline contract. Each time this is done the principal in-
creases his own continuation payoff as well as that of the agent. However, the value of this
renegotiation is predicated on the agent not expecting to be forgiven and applying first-best
action throughout. Unfortunately, if the agent expects that the principal will renege on
termination, then the incentives to apply first-best action will be destroyed. Thus such a
renegotiation is not incentive-compatible, and it is imperative that the principal commits to
not renegotiate.

However, the potential losses due to a premature end to the principal-agent relationship
may be great. Thus it is important to find a way to both induce first-best action most of the
time but still be able to back out of termination during periods of poor performance. The
Renegotiating Baseline contract achieves this by picking a poor performance threshold and
inducing agency action there as a suspension phase.

From our discussion of agency action phases in the Quiet-Life contracts we know two things
will happen when the principal induces agency action at Upoor:

1) Ut will eventually leave the vicinity of Upoor after the end of the suspension phase.
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2) The contract will spend a nontrivial amount of time at Upoor.

Remark 5.1. That the Renegotiating Baseline contract naturally pushes the agent’s continu-
ation payoff and performance rating Ut upwards (observation 1 above) after poor performance
means that this contract is endogenously renegotiating the underlying baseline contract. That
the renegotiation happens only after the suspension phase (observation 2 above) means that
the first-best action incentives of the underlying baseline contract are not compromised by
the renegotiation. The agent doesn’t get the extra slack of renegotiation for free. By having
to first suffer through suspension, the agent is effectively “buying” the principal’s forgive-
ness through the postponement of the cash compensation promised by the underlying baseline
contract.

B. Dynamics of the Renegotiating Baseline Contracts

A Renegotiating Baseline contract begins as its underlying baseline contract, inducing first-
best action and providing cash compensation whenever the agent’s continuation payoff and
performance rating Ut hits the good performance threshold U good.

However, when poor performance pushes Ut down to the poor performance threshold Upoor,
a suspension phase is triggered. During suspension, the principal infrequently monitors the
agent and the agent, lacking proper incentives to work, frequently exerts low effort. As a
result Ut sticks to or is “pegged” around Upoor for a period of time, following the dynamics
of Sticky Brownian motion.

Eventually, suspension ends, the agent is forgiven for some of his poor performance, and
Ut is allowed to float again as the principal renegotiates some more slack for the agent. The
contract returns to the first-best action incentives of the underlying baseline contract where
the principal constantly monitors and good performance is rewarded with cash compensa-
tion. This dynamic remains the norm until sustained poor performance triggers suspension
again.

6 Implementation

Given the optimality theorem, the most pertinent question is what form does the optimal
contract take? Naturally, the answer will depend on the fundamentals, specifically, on agency
action’s relative value to the agent and relative cost to the principal. This question will be
answered in full in Section 7.A - The Domains of Optimality Theorem. In this section let us
approach the general implementation problem by first exploring the following special case:
what form does the optimal contract take when agency action is inefficient (see Definition
6.3)? The answer is Lemma 6.5. The results developed for this particular case provide the ba-
sic language and intuition used to tackle the general implementation problem in Section 7.A.
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Specifically, this section shows that what role, if any, agency action plays in optimal con-
tracting has to do with the usefulness of the contractual technique saving-the-best-for-last
(Section 6.B). This technique arises from the following situation, in which the principal will
often find himself: at some point in time the principal will have access to a lucrative contract
(the “best” in saving-the-best-for-last) which he would like to exercise. However, the payoff
of this contract to the agent will not match the agent’s promised continuation payoff at this
particular moment in time. To achieve his goal of exercising the lucrative contract while still
maintaining incentive-compatibility, the principal can postpone implementing that lucrative
contract, and first induce agency action for a little while to get the agent continuation payoff
right. This technique is what I call saving-the-best-for-last.

We now begin our approach to the implementation problem with a discussion, in 6.A, of
some relevant value functions. These value functions, which will appear throughout the rest
of the paper, are useful because they contain information about an important contracting
process called the continuation payoff point process:

Definition 6.1. Fix a contract with agent continuation payoff process Ut. We can define
the corresponding principal continuation payoff process Vt. Together, (Ut, Vt) is the con-
tinuation payoff point process of the contract and (U0, V0) is the payoff point of the
contract.

A. Value Functions
Typically, the way optimal contracts are derived is by first deriving the optimal value function
and then extracting from it the optimal contract. This process requires that we have two
pieces of information:

1. The relevant differential conditions for the optimal value function.

2. The contractual interpretations of these relevant differential conditions.

There are two relevant differential conditions corresponding to the two types of actions:

• The first-best action ODE

ry = µ+ γxy′ +
φ2

2
y′′ (1)

• The agency action ODE

ry = µ− A+ (γx− φA)y′ (2)

Lemma 6.1 then tells us how to interpret solutions to the first-best action ODE and Lemma
6.3 tells us how to interpret solutions to the agency action ODE. In 6.A.2, I also explicitly
solve the agency action ODE (see Lemma 6.2).

A.1 Value Functions: A Review of the First-Best Action ODE
This subsection is distilled from the work of DeMarzo and Sannikov (2006).

16



F ext,B

(0, µ
r
)

(K,L)

FB

U contract U good,B

µ = ry + γx

Figure 3: The optimal baseline value function FB and the extended optimal baseline value function
F ext,B.

Lemma 6.1. Suppose there are two contracts, one with payoff point (U1, V 1) and the other
with payoff point (U2, V 2) with U1 < U2. There is a unique solution f to first-best action
ODE that connects these two points. Fix any point U contract between U1 and U2. Then
(U contract, f(U contract)) is the payoff point of the following contract:

• Start agent’s continuation payoff Ut at U0 = U contract.

• Ut follows the first-best action law until

1) Ut = U1 at which point the contract becomes the one with payoff point (U1, V 1).

2) Ut = U2 at which point the contract becomes the one with payoff point (U2, V 2).

This lemma implies a number of useful facts about static first-best action contracts and their
value functions (also see Figure 3):

1) Assume µ > rL+γK. The optimal baseline value function FB is a concave solution to
the first-best action ODE on [K,U good,B] where FB and U good,B are uniquely determined
by a smooth pasting condition.9

2) The optimal static first-best action contract delivering payoff x ∈ [K,U good,B] to the
agent exists. It is the baseline contract with good performance threshold U good,B,
the agent’s continuation payoff is started at U0 = x, and the payoff to the prin-
cipal is FB(x). Call this contract the optimal baseline contract delivering payoff
x ∈ [K,U good,B] to the agent.

9There exists a unique Ugood,B and a unique FB such that FB(K) = L, FB ′(Ugood,B) = −1, and
FB ′′(Ugood,B) = 0.
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3) One can extend FB to values of x > U good,B. More generally, the extended optimal
baseline value function F ext,B is FB with a straight line of slope -1 attached to the end.

4) The optimal static first-best action contract delivering payoff x > U good,B to the agent
exists. It first delivers a lump sum x−U good,B to the agent. Then the contract becomes
the optimal baseline contract delivering payoff U good,B to the agent. The payoff to the
principal is F ext,B(x). Call this contract the optimal baseline contract delivering payoff
x > U good,B to the agent.

5) The optimal baseline contract is the optimal baseline contract delivering payoff arg
max F ext,B = arg max FB to the agent. The payoff to the principal is maxF ext,B =
maxFB.

6) Fix an optimal baseline contract delivering some payoff to the agent. At time t if the
agent’s continuation payoff is Ut then the principal’s continuation payoff is F ext,B(Ut).

7) Cash compensation occurs when the principal’s and agent’s required expected cash
flows exhaust expected returns:

µ = rFB(U good,B) + γU good,B

8) Suppose µ ≤ rL + γK. Then FB is just the single point (K,L) and optimal baseline
contract is simply to terminate right away. Also F ext,B is just the straight line of slope
-1 starting at (K,L).

If we are only interested in static first-best action contracts then we would be done. But
since the optimal contract may induce agency action, we also need to analyze the ODE that
governs the value function of agency action periods in contracts.

A.2 Value Functions: Solving the Agency Action ODE
In this subsection, I explicitly solve the agency action ODE (Lemma 6.2) and show how to
contractually interpret it (Lemma 6.3).

Definition 6.2. The agency action point is defined to be (φA
γ
, µ−A

r
). This is the payoff

point of the static contract with no salary - the agent receives a utility flow φAdt forever and
the principal receives an expected flow (µ− A)dt forever.

Lemma 6.2. The family of solutions to the agency action ODE is characterized as follows:
Fix any point (U, V ) 6= (φA

γ
, µ−A

r
). The unique solution to equation (2) going through (U, V )

is the set of points (x, y) satisfying(
y − µ−A

r

V − µ−A
r

) 1
r

=

(
x− φA

γ

U − φA
γ

) 1
γ

(3)

Proof. Clear.

Thus solutions to the agency action ODE are just the power functions with power r
γ

and

base point equal to the agency action point (φA
γ
, µ−A

r
). See Figure 4.
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Figure 4: r < γ: Sample solutions to the agency action ODE. The middle point is the agency action
point (φAγ ,

µ−A
r ). All solutions emanate from the agency action point. The horizontal and vertical

lines are also solutions because they correspond to the limiting power functions with coefficients
equal to 0 and ∞ respectively.

Lemma 6.3. Suppose there is a contract with payoff point (Ũ , Ṽ ) 6= (φA
γ
, µ−A

r
). Let g be the

unique solution to the agency action ODE going through (Ũ , Ṽ ). Let (U0, V0) be any point
lying on g in between (Ũ , Ṽ ) and (φA

γ
, µ−A

r
). Then (U0, V0) is the payoff point of an initial

agency action period of length D followed by the contract with payoff point (Ũ , Ṽ ) where

D =
1

γ
log

(
Ũ − φA

γ

U0 − φA
γ

)
=

1

r
log

(
Ṽ − µ−A

r

V0 − µ−A
r

)
≥ 0

During the initial agency action period, the continuation payoff point process slides along
g, deterministically heading toward (Ũ , Ṽ ), which it reaches at the end of the agency action
period.

Proof. This is a simple consequence of optional sampling and a little algebra.

B. Saving the Best for Last

Now that we have some technical results about value functions, the next step is to apply
them to understand the value of a contracting technique called saving-the-best-for-last. Re-
mark 6.1 summarizes the potential usefulness of this technique. Determining the viability of
this technique helps us solve the motivating problem of this section, which is the problem of
determining the optimal contractual form when agency action is inefficient.

If the static contract with payoff point (φA
γ
, µ−A

r
) is not optimal, then there will be some

other contract C with payoff point (Ũ , Ṽ ) where Ṽ > µ−A
r

.

Over the course of designing an optimal contract, the principal at some point will be faced
with the problem of delivering some continuation payoff Ut to the agent which is between Ũ
and φA

γ
. To solve this problem, the principal can write a contract mixing C and the static

contract. One way to do this is to simply randomize over the two options. The other option
is the saving-the-best-for-last technique:
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g when r < γ

g when r > γ

(Ũ , Ṽ )

(φA
γ
, µ−A

r
)

Figure 5: Saving-the-best-for-last and Randomization - A Comparison

• First employ the static contract for some fixed duration of time D.

• Then employ the more lucrative contract C.

Randomization can generate any payoff point lying on the straight line between (Ũ , Ṽ ) and
(φA
γ
, µ−A

r
). Lemma 6.3 tells us that the saving-the-best-for-last technique can generate any

payoff point lying on the unique solution g to the agency action ODE between (Ũ , Ṽ ) and
(φA
γ
, µ−A

r
).

How do these two options compare? The decision over which option is preferable is dic-
tated by the relative patience of the principal, measured by the discount ratio r

γ
:

Remark 6.1. If the principal is more patient than the agent, saving-the-best-for-last is better
than randomization because the principal does not mind waiting out the agency action period
to get to the more desirable contract. On the other hand, if the principal were more impatient
than the agent, randomization is better. With randomization there is a chance the principal
can immediately enact the more desirable contract. Despite the risks involved (i.e. getting
stuck with the static contract), it is more efficient for an impatient principal to gamble than
wait out the predetermined agency action period required by saving-the-best-for-last.

This is graphically confirmed by the relevant solution g to the agency action ODE repre-
senting the potential payoff points generated by saving-the-best-for-last (see Figure 5). The
discount ratio r

γ
dictates the concavity of g. A patient principal implies r

γ
< 1 and the

concave g curves over the straight line representing the potential payoff points generated by
randomization. Conversely, an impatient principal implies r

γ
> 1 and the convex g curves

under the straight line representing the potential payoff points generated by randomization.

C. Warmup to the General Implementation Problem
I now solve the motivating problem of this section: the implementation problem in the case
when agency action is inefficient (Lemma 6.5).
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Definition 6.3. Agency action is inefficient when the agency action point (φA
γ
, µ−A

r
) lies

below the extended optimal baseline value function F ext,B.

Recall there are two contracting techniques that incorporate agency action: randomization
and saving-the-best-for-last. Because F ext,B is concave and because we have assumed that
agency action is inefficient:

Employing agency action through randomization is not useful.

However, Remark 6.1 tells us that saving-the-best-for-last is better than randomization. This
is not to say that saving-the-best-for-last is a surefire way to improve the optimal baseline
contract. But if the principal is artful in how he employs this technique, it is possible that
the optimal baseline contract can be beat. In particular, the principal needs to be mindful
of the following:

• The “last” can’t be too far away - depriving oneself of the best for too long is not
optimal.

• The “best” has to be good enough - saving-the-best-for-last is not worth using if the
best is only marginally better than the alternative.

• The “best” can’t be too good - if it’s too good, waiting for the best is inefficient.

The principal can always control the duration of the agency action period in saving-the-
best-for-last, so satisfying the first condition does not pose much of a challenge. That I
have assumed agency action is inefficient in this section means that the second condition is
not an issue either. The tricky part is the third condition. Now if agency action is “too”
inefficient, then the “best” is too good to give up, even for a little while, and that’s when
the optimal contract takes the baseline form. But when agency action is not too inefficient,
the value of saving-the-best-for-last implies that the optimal baseline contract can be beat.
This intuition is formalized in the following lemma:

Lemma 6.4. The optimal contract takes the baseline form (i.e. is the optimal baseline
contract) if and only if first-best action beats saving-the-best-for-last on the margin:

d

dx
F ext,B

∣∣
x=U
≥ r

γ

F ext,B(U)− µ−A
r

U − φA
γ

for all U ∈ [K,∞) (4)

Condition (4) is a modification of the one found in DeMarzo and Sannikov (2006) Proposition
8. Written in the form of (4), the condition can be understood to be a statement about the
superiority first-best action over saving-the-best-for-last. The left hand side d

dx
F ext,B

∣∣
x=U

simply denotes the marginal utility of delivering an extra unit of utility to the agent through
first-best action. What about the right hand side? Recall, randomization produces payoff
points lying on the straight line between some payoff point (U, F ext,B(U)) and the agency
action point (φA

γ
, µ−A

r
). Thus the marginal utility of delivering an extra unit of utility to the

agent through randomization is
F ext,B(U)−µ−A

r

U−φA
γ

. Remark 6.1 tells us that saving-the-best-for-

last introduces a value-added distortion by picking up the measure of relative patience of
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F ext,B

d
dx
F ext,B

∣∣
x=U
≥ r

γ

F ext,B(U)−µ−A
r

U−φA
γ

Baseline Domain

Quiet-Life Domain
Renegotiating Baseline Domain

?

?
?

for all U ∈ [K,∞)
(K,L)

Figure 6: The three regions under F ext,B determined by condition (4).

the principal: r
γ
. The marginal utility of delivering an extra unit of utility to the agent by

departing from first-best action and implementing saving-the-best-for-last is the right hand
side of (4):

r

γ

F ext,B(U)− µ−A
r

U − φA
γ

So condition (4) simply says that if the principal cannot profitably deviate on the margin
from first-best action by implementing saving-the-best-for-last, then the optimal contract is
the optimal baseline contract.

C.1 The Optimal Contract when Agency Action is Not Too Inefficient

Lemma 6.5. Lemma 6.4 splits the region under F ext,B into three regions (see Figure 6).
The bottom region is where condition (4) holds and Lemma 6.4 implies the optimal contract
is the optimal baseline contract. If instead, the agency action point is in the right region then
the optimal contract is the optimal Quiet-Life contract. Finally, if the agency action point
is in the left region then the optimal contract is the optimal Renegotiating Baseline contract.

I now give a heuristic proof that the optimal contract is the optimal Quiet-Life contract
when the agency action point is in the right region. One can mirror this argument to give
a heuristic proof that the optimal contract is the optimal Renegotiating Baseline contract
when the agency action point is in the left region. The formal proof of the general imple-
mentation problem (The Domains of Optimality Theorem of 7.A) is given in the Appendix.

So suppose the agency action point is in the right region. That condition (4) is not satis-
fied implies the existence of a contract payoff point (Ũ , F ext,B(Ũ)) such that if the principal
properly employs saving-the-best-for-last with this point as the “best,” then he can outdo
the optimal baseline contract. To understand this statement graphically, let g be the unique
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(Ũ , F ext,B(Ũ)

(U, g(U))

g

(φA
γ
, µ−A

r
)

F ext,B

Markov intuition

piece of a solution to the agency action ODE

(φA
γ
, µ−A

r
)

F ext,B

piece of a solution to the first-best action ODE

Figure 7: On the left: saving-the-best-for-last with (Ũ , F ext,B(Ũ)) as the “best” leads to an im-
provement over F ext,B. On the right: use Markov intuition to get an almost Quiet-Life contract.

solution to the agency action ODE going through (Ũ , F ext,B(Ũ)). Lemma 6.3 tells us that the
achievable payoff points when the principal uses saving-the-best-for-last with (Ũ , F ext,B(Ũ))
as the “best” are all the points on g between the agency action point and (Ũ , F ext,B(Ũ)).
Remark 6.1 tells us that g is concave. This upward curvature represents the extra value
of saving-the-best-for-last over randomization which is due to the relative patience of the
principal : r < γ. Graphically we see that the curvature of the relevant portion of g is great
enough to “pierce” the extended optimal baseline value function and the part that lies above
F ext,B are all the payoff points that represent improvements (see left graphic of Figure 7).
For example, the point (U, g(U)) is achieved if the principal uses saving-the-best-for-last with

(Ũ , F ext,B(Ũ)) as the best and waits for a duration of D = 1
γ

log

(
Ũ−φA

γ

U−φA
γ

)
= 1

r
log
(
Ṽ−µ−A

r

V−µ−A
r

)
before enacting the lucrative contract. Thus saving-the-best-for-last delivers U to the agent
more efficiently than does the optimal baseline contract.

The next step is to apply a little Markov intuition. If initially inducing agency action
for D-units of time is better than first-best action, then it should should be done every time
the agent’s continuation payoff Ut hits U . The resultant contract is structurally almost a
Quiet-Life contract - inducing agency action for a D-length duration every time the agent’s
continuation payoff and performance rating Ut hits the “good” performance threshold U .
The value graph10 of this almost Quiet-Life contract is a union of a piece of a solution to the
first-best action ODE and a piece of a solution to the agency action ODE (see right graphic
of Figure 7). And now we see that if the principal starts the agent’s continuation payoff at
the arg max of the value graph then he will have written a contract with a higher payoff
than that of the optimal baseline contract. Notice this contract’s agent continuation payoff
Ut travels through the interval (Ũ , U) in two ways over the course of the contract. During
agency action periods, it travels down the interval, with the continuation payoff point pro-
cess moving leftwards on the upper trajectory (which solves the agency action ODE). And
during first-best action periods, it travels stochastically in the interval, with the continua-

10I use graph because technically the value “function” of this contract is not a function.
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γ
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r
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Ũ U good,Q

FQ

Figure 8: On the left: a Quiet-Life contract. On the right: the optimal Quiet-Life contract which
is also the optimal contract.

tion payoff point process moving on the lower trajectory (which solves the first-best action
ODE). The gap between these two paths represents an efficiency loss and an opportunity
for improvement - the principal would always rather be on the top path. To eliminate the
efficiency loss, the principal will shift U downwards until U = Ũ . Now the gap is closed and
the new contract induces agency action at the good performance threshold U = Ũ , and we
have produced a true Quiet-Life contract. Notice that the solutions to the first-best action
and agency action ODEs which were used to build the value graph of the almost Quiet-Life
contract have now pasted together at a single point for the true Quiet-Life contract (see left
graphic of Figure 8). Pasting means that the derivatives of the two solutions coincide. The
value function of this true Quiet-Life contract is the first-best action solution going from
(K,L) to the pasting point plus the pasting point itself.11

Finally, optimality requires that the pasting point be smooth - the second derivatives must
coincide. So the final step is to shift the good performance threshold Ũ to the unique value
U good,Q where the smooth pasting condition holds. The resultant value function is the opti-
mal Quiet-Life value function FQ (see right graphic of Figure 8). I can now extract from FQ

the optimal Quiet-Life contract which is also the optimal contract. The good performance
threshold is U good,Q, the agent’s continuation payoff is started at U0 = U contract = arg max
FQ, and the payoff to the principal is maxFQ.

D. Equal Patience Versus a More Patient Principal
In the previous subsection I solved the implementation problem when agency action is ineffi-
cient under the model assumption that the principal is more patient: r < γ. The goal of the
present subsection is to give a formal statement (Lemma 6.6) of the importance of patience

11I emphasize the pasting point itself so the reader is not tempted to think of this as purely a first-best
action contract. The pasting point is part of the solution to the agency action ODE as well.
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and saving-the-best-for-last by describing how the results of the previous subsection change
when r = γ.

Throughout this subsection I will keep γ fixed and let r ≤ γ be variable.

Recall when r < γ, there is an extended optimal baseline value function F ext,B,r which
governs, among other things, the optimal baseline contract Br.12

When r = γ, there is no optimal baseline contract. However, there are arbitrarily close-to-
optimal baseline contracts. The principal can simply import the optimal baseline contract
Br from a setting where r < γ. As r ↑ γ, Br becomes arbitrarily close-to-optimal in the
r = γ setting.13 The extended close-to-optimal baseline value function F ext,B,γ is defined to
be

F ext,B,γ = lim
r↑γ

F ext,B,r

F ext,B,γ governs the close-to-optimal baseline contracts in the r = γ setting. Recall F ext,B,r

is concave for all r < γ,14 and indeed, so is F ext,B,γ.

Remark 6.2. F ext,B,r is concave for all 0 < r ≤ γ. Since F ext,B,r governs the optimal
baseline contract, concavity means the optimal baseline contract is randomization-proof. Why
is this so? Recall the two main effects of randomizing over contracts are:

• Increases variance of payoffs.

• Allows the principal to gamble on the possibility of immediately exercising the lucrative
contract in situations where the principal could alternatively choose saving-the-best-for-
last (see Remark 6.1).

Intuitively, since the principal and agent are both risk neutral and the principal is at least
as patient as the agent, neither of these effects should be utility improving over an otherwise
optimally designed baseline contract.

But this gives us the punchline for the r = γ case. When r = γ, saving-the-best-for-last is
utility-equivalent to randomization, and since F ext,B,γ is concave and therefore randomization-
proof, we have:

Lemma 6.6. When the principal and agent are equally patient, the best contracts are baseline
contracts if and only if agency action is inefficient.

For the complete domains of optimality result when r = γ see Appendix Figure 15.

7 Comparative Statics and Applications

A. The General Implementation Problem - Domains of Optimality
The domain of the agency action point is {(X, Y )|X > 0 and Y < µ

r
}. I now solve the

12An “r” superscript is added because r is allowed to vary in this subsection.
13The reason there is no Bγ is because as r ↑ γ, the good performance threshold Ugood,B,r ↑ ∞.
14See fact 1 about baseline contracts in Section 6.A.1.
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Figure 9: An example extended optimal static value function when agency action is efficient.

general implementation problem culminating in The Domains of Optimality Theorem. For
simplicity, I assume K = 0.15

In Section 6, I solved the implementation problem when agency action is inefficient (see
Lemma 6.5). Recall, I introduced a contractual technique called saving-the-best-for-last
which is useful only if the “best” is both good enough and not too good. Lemma 6.4 for-
malized this intuition which is summarized in the following remark.

Remark 7.1. When agency action is inefficient, the principal can always find a “best” that
is good enough. The only problem is that this “best” might be too good. If the best is too good
then the optimal contract is the optimal baseline contract. If the best isn’t too good then the
optimal contract is either the optimal Quiet-Life or optimal Renegotiating Baseline contract.

The second part of the implementation problem is when agency action is efficient (i.e. lies
above F ext,B). And we have a companion mirror-image intuition for the efficient agency
action case:

Remark 7.2. When agency action is efficient, the principal can always find a “best” that
is not too good. The only problem is that this “best” might not be good enough. If the best
is not good enough then the optimal contract is the optimal static contract. If the best isn’t
too good then the optimal contract is either the optimal Quiet-Life or optimal Renegotiating
Baseline contract.

Just as Lemma 6.4 formalizes the intuition of Remark 7.1, so will I derive a lemma to
formalize the intuition of Remark 7.2.

Definition 7.1. For any point (X, Y ) in the domain of the agency action point: {(X, Y )|X >
0 and Y < µ

r
}, define F ext,B

(X,Y ) to be the function that is the extended optimal baseline value

function in the alternate universe where the outside option point (K,L) is equal to (X, Y ).

Since K = 0, the optimal static contract provides no salary, and its payoff point is simply
the agency action point (φA

γ
, µ−A

r
).16 Since the agency action point is assumed to be efficient

15Higher K’s introduce boundary conditions that complicate the analysis. See Appendix for when K > 0.
16See fact 2 about static contracts in Section 3.C.
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F ext,B

∣∣
x=U
≥ r

γ
F ext,B(U)−Y
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(0, µ
r
)

(K = 0, L)

Example (X, Y ) points

Figure 10: The domains of optimality that determine the form of the optimal contract. The
pictured quadrant is the domain of the agency action point: {(X,Y )|X > 0 and Y < µ

r }.

The faint dotted curve near the bottom is the extended optimal baseline value function
F ext,B. There is a bold curve underneath F ext,B. Any point (X,Y ) below this bold curve satisfies

Condition (4) of Lemma 6.4: d
dxF

ext,B
∣∣
x=U

≥ r
γ
F ext,B(U)−Y

U−X for all U ∈ [K,∞). If the agency ac-
tion point lies in this region then it is too inefficient and the optimal contract takes the baseline form.

Above F ext,B there is a V-shaped bold curve. Any point (X,Y ) above this V-shaped bold

curve satisfies Condition (5) of Lemma 7.1: d−

dxF
ext,(X,Y )

∣∣
x=X

≥ 0 and d+

dxF
ext,(X,Y )

∣∣
x=X

≤ 0.
If the agency action point lies in this region then the optimal contract takes the static form.
Each branch of this V-shaped curve represents a boundary at which one of the two differential
inequalities of Condition (5) holds with equality.

The remaining two regions are where saving-the-best-for-last can be utilized in a manner
just like or mirroring the method of 6.C.1. These regions are the domains of the Quiet-Life and
Renegotiating Baseline forms.
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(i.e. lies above F ext,B), we know the optimal contract, whatever form it may be, will employ
agency action. The simplest method to incorporate agency action is to employ it in a
permanent way: use first-best action incentives when the agent’s continuation payoff is not
equal to φA

γ
, but when Ut = φA

γ
make a permanent switch to agency action. This method

leads to an improvement because by assumption permanent agency action delivers payoff φA
γ

to the agent more efficiently than any first-best action contract:

µ− A
r

> F ext,B

(
φA

γ

)
The resultant value function is what I call the extended optimal static value function. For-
mally,

Definition 7.2. The extended optimal static value function F ext,S is the unique so-
lution to the first-best action ODE going from (K,L) to the agency action point (φA

γ
, µ−A

r
)

plus the agency action point itself plus F ext,B

(φA
γ
,µ−A
r

)
(see Figure 9).

More generally, for a point (X, Y ) in the agency action domain, define F ext,(X,Y ) to the
union of the unique solution to the first-best action ODE going from (K,L) to (X, Y ) plus
the point (X, Y ) itself plus F ext,B

(X,Y ).

I can now state the lemma that formalizes the intuition of Remark 7.2.

Lemma 7.1. When agency action is efficient, the optimal contract takes on the static form
if and only if the principal can’t find a good enough “best” with which to use saving-the-best-
for-last either to the left or to the right of the agency action point:

d−

dx
F ext,S

∣∣
x=φA

γ

≥ 0 and
d+

dx
F ext,S

∣∣
x=φA

γ

≤ 0 (5)

Putting everything together, we have:

The Domains of Optimality Theorem. For any realization of the model parameters,
the domain of the agency action point {(X, Y )|X > 0 and Y < µ

r
} can be split into four

regions (see Figure 10). The boundaries of the four regions are determined by the differential
conditions of Lemmas 6.4 and 7.1. The bottom region is the Baseline Domain and the top
region is the Static Domain. The right region is the Quiet-Life Domain and the left region
is the Renegotiating Baseline Domain. Whichever domain contains the agency action point,
the optimal contract takes the corresponding form.

Proof. See Appendix.

B. Optimal Contracting Under Taxes
Introduce a tax T ∈ [0, 1) on cash compensation, so that for every dollar paid by the principal
the agent only receives a fraction 1 − T . To achieve a target agent continuation payoff, a
tax forces the principal to inflate the portion of the cash flow paid to the agent.
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Figure 11: The effect of a tax on the efficiency threshold and the extended optimal baseline value
function.

Definition 7.3. The taxed efficiency threshold is the line µ = ry + γx
1−T . The taxed

efficiency threshold is a locus of efficient payoff points in the first-best action setting taking
taxes into account (see fact 7 about baseline contracts in section 6.A.1). To achieve a contin-
uation payoff point (Ut, Vt) lying on the taxed efficiency threshold, the principal with access
to first-best returns µdt and subject to tax T simply diverts a portion γUt

1−T dt of the flow to
the agent.

If T = 0 then we call the threshold simply the efficiency threshold.

The following is a straightforward generalization to the tax setting of Proposition 1, DeMarzo
and Sannikov (2006) (proof omitted, see stronger version Lemma 9.1 in Appendix):

Lemma 7.2. The optimal static first-best action contract in the setting with tax T exists and
is a baseline contract: the optimal taxed baseline contract. Denote the corresponding
optimal taxed baseline value function by FB

T , and the good performance threshold by U good,B
T .

The cash compensation point (U good,B
T , FB

T (U good,B
T )) of the optimal taxed baseline contract

lies on the corresponding taxed efficiency threshold:

µ = rFB
T (U good,B

T ) +
γU good,B
T

1− T

and is determined by a smooth-pasting condition. FB
T is the unique solution to the first-best

action ODE going from the outside option point (K,L) to (U good,B
T , FB

T (U good,B
T )) and it is

concave.
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The optimal taxed baseline contract has good performance threshold U good,B
T , the agent’s con-

tinuation payoff is started at U0 = arg max FB
T , and the payoff to the principal is maxFB

T .

If the principal exercised cash compensation either before or after U good,B
T , then the cash

compensation point would lie below the taxed efficiency threshold and imply an efficiency
loss. Graphically, we observe that a tax T lowers the efficiency threshold, bringing down
with it the optimal baseline contract’s good performance threshold, principal’s payoff, and
agent’s payoff. The optimal taxed baseline contract is also more susceptible to termination.

Not surprisingly, a tax T alters the domains of optimality. Recall, the boundaries of the
domains of optimality are defined by differential conditions on the extended optimal base-
line and optimal static value functions (see conditions (4) and (5)). While the differential
conditions remain unchanged, the extended value functions are affected by the tax,17 leading
to altered boundaries (see Figure 11). A tax hike’s effect on the domains of optimality can
largely be summarized by two shifts from contracts emphasizing cash compensation (baseline
and Renegotiating Baseline) to those that don’t (Quiet-Life and static).

Remark 7.3. With a tax hike, a subset of the agency action point values in the domain of
the baseline form pre-tax now belong to the domain of the Quiet-Life form. This reflects the
increased attractiveness of tax-free perks-based hidden compensation over taxed cash compen-
sation.

Mirroring this shift, a subset of the agency action point values in the domain of the Renego-
tiating Baseline form pre-tax now belong to the domain of the static form. As taxes increase,
the underlying baseline contract that the Renegotiating Baseline contract is renegotiating be-
comes increasingly unprofitable, and not worth the trouble renegotiating. So the principal
drops it and the Renegotiating Baseline contract degenerates into the static contract.

C. Optimal Contracting with Bargaining
When the principal’s outside option L is very low (e.g. there is a threat of litigation by the
agent for termination) the principal will employ a static contract or a Renegotiating Baseline
contract to avoid termination. More generally, suppose the principal and agent can bargain
for their outside options along some efficient bargaining possibility frontier, which is a
concave decreasing function b. Assume that the principal can’t bargain for more than the
asset is worth (b < µ

r
) and the agent’s outside option will be at least zero (domain of b is

[0,∞)).

Lemma 7.3. Fix any bargaining possibility frontier and a tax T . For all agents with suf-
ficiently strong bargaining power, the optimal contract is either a low effort contract with
salary (optimal static contract) or a high-effort contract with a suspension clause (optimal

17Recall the extended optimal baseline value function F ext,B is defined to be FB with the straight line
of slope -1 attached to its end. In the tax T setting, the extended optimal taxed baseline value function
F ext,BT is similarly defined to be FBT with the straight line of slope 1

T −1 attached to its end. Just like F ext,B

in the no tax setting, F ext,BT implies the structure of the optimal first-best action contract delivering payoff
x ∈ [K,∞) to the agent in the tax setting.
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Figure 12: (a) The optimal baseline value function and above it the optimal Renegotiating Baseline
value function. The dotted lines are not part of the value function, but rather highlight the solutions
to the first-best action and agency action ODEs used to construct the value function. (b) There
are now three additional value functions. Of the three new value functions, the top one is not quite
renegotiation-proof, the middle one is just barely renegotiation-proof, and the bottom one is “too”
renegotiation-proof.

Renegotiating Baseline contract). The optimal choice is the low effort contract with salary
if and only if agency action lies on or above the taxed efficiency threshold.

In particular, sufficiently high taxes and agent bargaining power means the optimal contract
is the low effort contract with salary.

Proof. This is a consequence of the Domains of Optimality Theorem when K > 0 found in
the Appendix.

Other bargaining models include if the agent is able to bargain for a fixed salary sdt through-
out the duration of the contract. In this case the change in setting is isomorphic to a linear
change-of-variables (µ→ µ−s, φA→ φA+s, etc.) and all the previous optimal contracting
results apply.

Finally, the agent can bargain for a higher payoff than that of the optimal contract. The com-
plete optimal contracting theorem for higher agent payoffs can be found in the Appendix 9.D.

D. Renegotiation-Proof Contracts
Recall baseline contracts are usually not renegotiation-proof. Indeed, the main reason the
Renegotiating Baseline contract is sometimes optimal is because it allows the principal to
renegotiate the underlying baseline contract to some extent. Not surprisingly, Renegotiating
Baseline contracts are less renegotiable, and some are even renegotiation-proof.

A contract is renegotiation-proof if its value function is never upward sloping. Consider
the setting in Figure 12a which depicts the value functions of the optimal baseline contract
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Figure 13: The bottom value function is that of the optimal renegotiation-proof first-best action
contract. The lightly dotted line attached to it represents the contract stipulation that termination
be randomized at the poor performance threshold.

and the optimal Renegotiating Baseline contract (which is also the optimal contract). Both
value functions have upward sloping portions so neither contract is renegotiation-proof. How-
ever, the upward slope of the Renegotiating Baseline value function is less steep than that
of the baseline. Hence, the Renegotiating Baseline contract is closer to being renegotiation-
proof. This is achieved because the principal has set the poor performance threshold of the
Renegotiating Baseline contract to be higher than K - the poor performance threshold of
the baseline contract. This alteration prevents the agent’s continuation payoff from dropping
too low, which precipitates the need to renegotiate.

In general, the higher the poor performance threshold, the more renegotiation that is em-
bedded in the contract, and consequently, the closer the contract is to being renegotiation
proof. At some point, the poor performance threshold is high enough that the value function
no longer has an upward sloping portion. The value function simply starts with slope 0, then
gradually decreases form there. The corresponding Renegotiating Baseline contract is then
renegotiation-proof. (See Figure 12b)

Now the principal can continue to set even higher poor-performance thresholds, and the resul-
tant Renegotiating Baseline contracts will also be renegotiation-proof. But “over-forgiving”
the agent entails an efficiency loss, and these renegotiation-proof contracts are not as prof-
itable. (See Figure 12b)

Recall from DeMarzo and Sannikov (2006), there also exist renegotiation-proof first-best
action contracts which are basically modified baseline contracts. The poor performance
threshold of baseline contracts is always K, and termination always occurs there. In the
modified renegotiation-proof baseline contracts, the poor performance threshold is shifted
upwards, and termination is randomized there.

As Figure 13 demonstrates, the renegotiation-proof contracts using agency action may dom-
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inate those only inducing first-best action. Moreover:

Remark 7.4. Renegotiation-proof contracts that use agency action do not require random-
ization or termination, and their value to the principal is not bounded by the value of the
principal’s outside option L. This is in direct contrast to renegotiation-proof contracts only
inducing first-best action.

E. The Geometric Brownian Setting
All the results of this paper can be translated over to the corresponding geometric Brownian
setting. The model is as follows:

E.1 Setting
There is an asset belonging to a principal, for which he contracts an agent to manage. The
asset produces a stochastic revenue stream. Over time, we assume that the cumulative rev-
enue stream behaves as geometric Brownian Motion with a drift process influenced by the
hidden action applied by the contracted agent.

Formally, there is a stochastic process Z = {Zt}t≥0 defined on a probability space Ω with
probability law P µ. Under P µ, Z is Brownian motion with drift µdt. Upon Zt is defined a
geometric Brownian Motion:

dSt = StdZt

At time t, St is the cumulative revenue stream of the asset up to time t. The µdt drift
corresponds to the scaled, default expected returns and can be interpreted as the scaled,
intrinsic or maximum expected profitability of the asset.

E.2 Actions
The agent affects asset performance by selecting an action at each moment in time. Over
time the agent’s action process a = {at}t≥0 is a stochastic process taking values in a set
{0, A} with A > 0. {0} is first-best action and {A} is agency action. The action process a
affects the underlying probability law: the default law P µ changes to P µ−a, which is defined
to be the law under which Z is Brownian motion with drift (µ− at)dt.

The principal can choose a compensation scheme for the agent. Compensation is repre-
sented by a random nondecreasing process I = {It}t≥0 started at zero that keeps track of
the cumulative cash payments made to the agent up to time t. Liquidation is a stopping
time τ .

E.3 Preferences
The principal is risk neutral, discounts at rate r, retains the cash flow of the asset, com-
pensates the agent, and can retain a value LSt after the liquidation of the asset. His utility
is

EPµ−a

[ ∫ τ

0

e−rt(dSt − dIt) + e−rτLSτ

]
The agent is risk neutral, discounts at rate γ, receives compensation from the principal,
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and retains a value KSt after the liquidation of the contract. The agent also receives an
instantaneous utility flow φatStdt by applying action at ∈ {0, A} at time t, where φ > 0. His
utility is

EPµ−a

[ ∫ τ

0

e−γs(dIt + φatStdt) + e−γτKSt

]
We assume that the principal is at least as patient: r ≤ γ. We also require µ < r, L < 1

r−µ ,
and K ≥ 0.

E.4 Equivalence via Scaling
Despite the existence of two state variables now: the familiar agent continuation payoff Ut
and the new geometric Brownian St, the key is to realize that there is only one effective
state variable, which is the scaled agent continuation payoff ut = Ut

St
. This is the main point

of He (2009). Once the model is scaled, all of the technical constructs from the Brownian
model translate over: the first-best action and agency action laws fall out, as do the first-best
action ODE and agency action ODE. As a result, the optimal contracts, the notions of sticky
incentives and infrequent monitoring, the analysis of saving-the-best-for-last, the domains of
optimality, and the rest of the comparative statics all translate over largely unchanged.

8 Conclusion

In this paper I have explicitly solved for the optimal contract in a general Brownian frame-
work where agency action plays an integral role in optimal contracting. The framework
underlies the models of DeMarzo and Sannikov (2006), Biais et al (2007) and He (2009).
However, all of these papers focus on finding the optimal contract that is restricted to al-
ways inducing first-best action.

While static first-best action contracts have provided a great deal of insights into some
contracting problems observed in real-life, many arrangements do not always employ static
first-best action. Indeed, recent empirical work such as Yermack (2006) and Rajan and Wulf
(2006) have pointed to possible uses of agency action in business.

In my dynamic model, I find that the optimal contract takes on one of four forms de-
pending on fundamentals, including two that mix agency action phases in between periods
of first-best action: the Quiet-Life form and the Renegotiating Baseline form. Quiet-Life
contracts induce agency action as a form of reward and can be thought of as contracts that
allow for efficient perks consumption. Renegotiating Baseline contracts are contracts that
mostly induce first-best action but periodically trigger agency action phases as a form of
punishment. These agency action phases can be thought of as suspension during which the
agent applies low effort.

That the optimal contract may take one of these two forms helps demonstrate not only
the value of agency action but also more broadly, the value of infrequent monitoring and
slowing down incentives. Moreover, I show how taxes affect what form the optimal contract
takes and how agency action can be utilized to produce optimal renegotiation-proof contracts.
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Overall, the results of this paper help not only to bridge a gap in the dynamic contract-
ing literature, but also provide a theoretical counterpart to the ongoing empirical research
into the role of agency action.

9 Appendix

9.A Preliminary Results

It is best to skip directly to Section 9.B and to refer back to Section 9.A when needed.

The following lemma is an easy generalization of DeMarzo and Sannikov (2006) to the tax
setting stated without proof.

Lemma 9.1. Fix a setting with tax T ∈ (−∞, 1). The following set of facts characterize
optimal static first-best action contracting in the tax setting:

1) If the outside option point (K,L) is strictly below the taxed efficiency threshold:

µ > rL+
γK

1− T

then the optimal taxed baseline value function FB
T is a concave solution to the first-

best action ODE on [K,U good,B
T ] where FB

T and U good,B
T are uniquely determined by a

smooth pasting condition: There exists a unique U good,B
T and a unique FB

T such that
FB
T (K) = L, FB

T
′(U good,B
T ) = 1

T −1
, and FB

T
′′(U good,B

T ) = 0. FB
T is strictly concave on

(K,U good,B
T ) and FB

T
′(x) ≥ 1

T −1
for all x ∈ [K,U good,B

T ].

2) The optimal taxed static first-best action contract delivering payoff x ∈ [K,U good,B
T ] to

the agent exists. It is the baseline contract with good performance threshold U good,B
T ,

the agent’s continuation payoff is started at U0 = x, and the payoff to the principal
is FB

T (x). Call this contract the optimal taxed baseline contract delivering payoff x ∈
[K,U good,B

T ] to the agent.

3) One can extend FB
T to values of x > U good,B

T . More generally, the extended optimal
taxed baseline value function F ext,B

T is FB
T with a straight line of slope 1

T −1
attached to

the end. F ext,B
T ∈ C2[K,∞).

4) The optimal taxed static first-best action contract delivering payoff x > U good,B
T to the

agent exists. It first delivers a lump sum x − U good,B
T to the agent. Then the contract

becomes the optimal taxed baseline contract delivering payoff U good,B
T to the agent. The

payoff to the principal is F ext,B
T (x). Call this contract the optimal taxed baseline contract

delivering payoff x > U good,B
T to the agent.
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5) The optimal taxed baseline contract is the optimal taxed baseline contract deliv-
ering payoff arg max F ext,B

T = arg max FB
T to the agent. The payoff to the principal is

maxF ext,B
T = maxFB

T .

6) Fix an optimal taxed baseline contract delivering some payoff to the agent. At time
t if the agent’s continuation payoff is Ut then the principal’s continuation payoff is
F ext,B
T (Ut).

7) Cash compensation occurs when the principal’s and agent’s required expected cash flows
exhaust expected returns taking taxes into account:

µ = rFB
T (U good,B

T ) +
γU good,B
T

1− T

8) If the outside option point lies on or above the taxed efficiency threshold then FB
T is

just the single point (K,L) and optimal taxed baseline contract is simply to terminate
right away. Also F ext,B

T is just the straight line of slope 1
T −1

starting at (K,L).

9) Let T1 < T2 be two taxes. For all x > K, µ
r
> F ext,B

T1 (x) > F ext,B
T2 (x). Also F ext,B

T1
′(K) >

F ext,B
T2

′(K).

The Regularity Lemma. Let f1 and f2 be two distinct solutions to the first-best action
ODE and x∗ ≥ 0. If

f1(x∗) ≥ f2(x∗) and f ′′1 (x∗) ≤ f ′′2 (x∗)

then
f ′′1 (x) < f ′′2 (x) for all x ∈ (x∗,∞)

If
f1(x∗) ≥ f2(x∗) and f ′′1 (x∗) ≥ f ′′2 (x∗)

then
f ′′1 (x) > f ′′2 (x) for all x ∈ [0, x∗)

Proof. The straightforward, albeit tedious, proof of this lemma involves Euler’s Method. Fix
a set of initial conditions for the first-best action ODE: (x∗, f(x∗), f ′(x∗)) with x∗ ≥ 0. Then

f ′′(x∗) =
rf(x∗)− µ− γx∗f ′(x∗)

φ2/2

and by Euler’s Method, we have

f(x∗ + ∆x) ≈ f(x∗) + f ′(x∗)∆x

f ′(x∗ + ∆x) ≈ f ′(x∗) +
rf(x∗)− µ− γx∗f ′(x∗)

φ2/2
∆x

f ′′(x∗ + ∆x) ≈ rf(x∗ + ∆x)− µ− γ(x∗ + ∆x)f ′(x∗ + ∆x)

φ2/2
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=
r(f(x∗) + f ′(x∗)∆x)− µ− γ(x∗ + ∆x)(f ′(x∗) + rf(x∗)−µ−γx∗f ′(x∗)

φ2/2
∆x)

φ2/2

=
(1− γ(x∗ + ∆x) ∆x

φ2/2
)[rf(x∗)− µ− γx∗f ′(x∗)]− (γ − r)∆xf ′(x∗)

φ2/2

=

[
1− γ(x∗ + ∆x)

∆x

φ2/2

]
f ′′(x∗)− (γ − r)∆xf ′(x∗)

φ2/2

Now let f1 and f2 satisfy the hypothesis of the first half of the lemma at x∗ and fix an arbitrary
upper bound D with x∗ < D. Let ∆x be small enough so that 1− γ(D+ ∆x) ∆x

φ2/2
> 0. The

assumptions imply f ′1(x∗) > f ′2(x∗), and then it is easy to see that the Euler approximations
of f1 and f2 satisfy the hypothesis of the first half of the lemma at x∗ + ∆x as well. In fact,
the second derivative of the Euler approximation of f1 is now strictly less than that of the
Euler approximation of f2 at x∗ + ∆x. Then induction shows that the second derivative of
the Euler approximation of f1 is strictly less than that of the Euler approximation of f2 at
x∗ + n∆x, so long as x∗ + n∆x ∈ (x∗, D]. Letting ∆x→ 0, we have

f ′′1 (x) < f ′′2 (x) for all x ∈ (x∗, D]

Since D was arbitrary, the first half of the lemma holds.

Now suppose f1 and f2 satisfy the hypothesis of the second half of the lemma. If f1 > f2

on [0, x∗) then the second half of the lemma must hold. Suppose not, then there is some
x̃ ∈ [0, x∗) such that f ′′1 (x̃) ≤ f ′′2 (x̃). But then the first half of the lemma implies that
f ′′1 (x∗) < f ′′2 (x∗). Contradiction.

So it suffices to prove f1 > f2 on [0, x∗). The hypothesis of the second half of the lemma
immediately implies that f1 lies above f2 in a left neighborhood of x∗. This means that if it
is not true that f1 > f2 on [0, x∗) then there must be some point x̃ such that f1(x̃) = f2(x̃)
and f ′1(x̃) > f ′2(x̃). But then this implies that f ′′1 (x̃) < f ′′2 (x̃) and once again the first half of
the lemma implies a contradiction.

Corollary 9.1. Let f1 and f2 be two distinct solutions to the first-best action ODE and
x∗ ≥ 0. If

f1(x∗) ≥ f2(x∗) and f ′1(x∗) ≥ f ′2(x∗)

then
f ′1(x) > f ′2(x) for all x ∈ (x∗,∞)

If
f1(x∗) ≥ f2(x∗) and f ′1(x∗) ≤ f ′2(x∗)

then
f ′1(x) < f ′2(x) for all x ∈ [0, x∗)

Proof. If f1 and f2 satisfy the assumptions of the second half of the corollary, then f ′′1 (x∗) <
f ′′2 (x∗). Then the second half of the corollary follows from the second half of the Regularity
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Lemma.

Now suppose f1(x∗) ≥ f2(x∗) and f ′1(x∗) ≥ f ′2(x∗) and there exists an x ∈ (x∗,∞) such
that f ′1(x) ≤ f ′2(x). Without loss of generality, we may choose x so that f1(x) > f2(x). But
then the second half of the corollary implies a contradiction.

Corollary 9.2. Let T1 < T2 be two taxes and x ≥ K. Then

F ext,B
T1

′(x) > F ext,B
T2

′(x)

Proof. F ext,B
T1

′(x) = F ext,B
T1

′(x ∧ U good,B
T1 ) > F ext,B

T2
′(x ∧ U good,B

T1 ) ≥ F ext,B
T2

′(x). If x ∧ U good,B
T1

is in the domain of the linear branch of F ext,B
T2 then the middle inequality comes from Lemma

9.1. If x ∧ U good,B
T1 is in the domain of FB

T2 then the middle inequality comes from Corollary
9.1.

Corollary 9.3. The limit FB
−∞ of the extended optimal taxed baseline value functions:

FB
−∞(x) = lim

T ↓−∞
F ext,B
T (x) for all x ≥ K

is a solution to the first-best action ODE. For all x ≥ K, FB
−∞

′(x) > 0 and

FB
−∞

′(x) = lim
T ↓−∞

F ext,B
T

′(x)

Proof. For any tax T , define sT ≡ F ext,B
T

′(K). For any slope s, define fs to be the unique
solution to the first-best action ODE starting at (K,L) with initial slope s.

We will need to make use of the fact that µ
r

is a constant solution to the first-best action ODE.

We begin by proving some results that show fsT and F ext,B
T are close to each other.

Let us first show that |f ′sT − F ext,B
T

′| ≤ 1
1−T . Since FB

T = fsT |[K,Ugood,BT ), f
′
sT

(U good,B
T ) =

F ext,B
T

′(x) = 1
T −1

for all x ≥ U good,B
T , so it suffices to show that fsT |[Ugood,BT ,∞) is decreasing,

convex. fsT |[Ugood,BT ,∞) is certainly initially decreasing. If it is not always decreasing then

there is some value x∗ > U good,B
T such that fsT (x∗) < µ

r
and f ′sT (x∗) = 0. Comparing fsT and

µ
r
, Corollary 9.1 tells us that fsT is increasing on [K, x∗). Contradiction. So fsT |[Ugood,BT ,∞) is

always decreasing. Furthermore, we know that f ′′sT (U good,B
T ) = 0. Again comparing fsT and

µ
r
, the Regularity Lemma tells us that fsT |[K,Ugood,BT ) is convex.

From this result we can easily deduce the following two results. On any bounded interval
[K,D] we have |fsT − F

ext,B
T | ≤ D

1−T . Also, since FB
T
′ ≥ 1

T −1
(Lemma 9.1), FB

T
′(U good,B
T ) =

1
T −1

(Lemma 9.1), and fsT is convex after U good,B
T , it must be that f ′sT (x) ≥ 1

T −1
for all x ≥ K.

Let us now show that s−∞ ≡ limT ↓−∞ sT is finite. Let x > 0 and let hx be the solution
to the first-best action ODE such that hx(x) = µ

r
and h′x(x) = 1. By comparing hx to µ

r
,
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The Regularity Lemma tells that hx is concave increasing on [0, x]. Now if x = K + µ
r
− L,

then hx(K) < L. By intermediate value theorem, there is some x∗ ∈ (K,K + µ
r
− L) such

that hx∗(K) = L. Thus we have found a solution to the first-best action ODE starting at
(K,L) that crosses the line y = µ

r
. Clearly, sT < h′x∗(K) for all T and we have shown

s−∞ ≤ h′x∗(K) <∞.

Clearly, fs−∞ = limT ↓−∞ fsT and f ′s−∞ = limT ↓−∞ f
′
sT

. Since we have already shown that

f ′sT (x) ≥ 1
T −1

, it must be that f ′s−∞(x) ≥ 0 for all x ≥ K.

Let us now prove the stronger result claimed by the Corollary: f ′s−∞(x) > 0 for all x ≥ K.
Suppose not. Then there is some value x∗ such that f ′s−∞(x∗) = 0. Now compare fs−∞ to
µ
r
. If fs−∞(x∗) ≥ µ

r
then Corollary 9.1 tells us that fs−∞ either is µ

r
or always lies above µ

r

on [K,∞). Both are contradictions. So fs−∞(x∗) < 0. But then f ′′s−∞(x∗) < 0 which means
that fs−∞ is decreasing after x∗. Contradiction.

We can now prove the last part of the Corollary. Fix a bounded interval [K,D]. Then
on this interval:

lim
T ↓−∞

|fs−∞ − F
ext,B
T | ≤ lim

T ↓−∞
|fs−∞ − fsT |+

D

1− T
= 0

Since D is arbitrary, we have fs−∞ = limT ↓−∞ F
ext,B
T . Moreover,

lim
T ↓−∞

|f ′s−∞ − F
ext,B
T

′| ≤ lim
T ↓−∞

|f ′s−∞ − f
′
sT
|+ 1

1− T
= 0

and so we have f ′s−∞ = limT ↓−∞ F
ext,B
T

′. Thus FB
−∞ = fs−∞ and we are done.

Corollary 9.4. Recall F ext,B
(X,Y ) is F ext,B in the alternate universe where the outside option

point is (X, Y ) (see Definition 7.1). Similarly define FB
(X,Y ) and U good,B

(X,Y ) . Fix an X and let

Y1 > Y2 be two numbers such that (X, Y1) and (X, Y2) are below the efficiency threshold. Let
x ∈ [X,U good,B

(X,Y1) ]. Then

FB
(X,Y1)

′(x) < FB
(X,Y2)

′(x)

Proof. We have FB
(X,Y1)

′(U good,B
(X,Y1) ) < FB

(X,Y2)
′(U good,B

(X,Y1) ). Corollary 9.1 implies the result.

Definition 9.1. The first-best action inequality is the first-best action ODE with equality
replaced with a “≥”:

ry ≥ µ+ γxy′ +
φ2

2
y′′

Similarly, the agency action inequality is:

ry ≥ µ− A+ (γx− φA)y′

The C1 Maximum Principle. Let F ext be some function on [K,∞) such that F ext(K) ≥
L, F ext is concave, F ext ∈ C1[K,∞), F ext ′ ≥ −1, and F ext ′ is absolutely continuous. If
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F ext satisfies both the first-best action and agency action inequalities, then F ext is an upper
bound on the optimal value function.

More restrictive versions of the maximum principle have appeared in the previous literature.
The main difference here is that the function F ext is not assumed to be continuously twice
differentiable, so it is not immediately apparent how to apply Ito’s lemma. However, there
is a more general Ito’s Lemma for functions satisfying the hypotheses of this principle. See
Theorem 22.5, Kallenberg (2001).

9.B Proof of Theorem 3.1 and The Domains of Optimality Theorem

The Domains of Optimality Theorem implies Theorem 3.1, so I will prove The Domains
of Optimality Theorem. Also, Lemmas 6.4 and 7.1 pertaining to when the optimal contract
takes on the baseline and static forms have already been proven in DeMarzo and Sannikov
(2006). It remains to be shown that the two remaining unclaimed regions in Figure 10 in
section 7.A are the domains of the Quiet-Life and Renegotiating Baseline contracts. For ex-
positional simplicity, I assume K = 0 and the optimal baseline value function has an interior
optimum.

The strategy of the proof is quite straightforward. When the agency action point is in
the right domain, I begin by noting that if the principal was in an alternate universe with
very negative taxes then the optimal taxed baseline contract would be the optimal contract.
As I start shifting up the tax parameter, at some point the principal is going to be indifferent
between sticking with the optimal taxed baseline contract and some other contract that uses
agency action. The punchline is that the “other contract” is a Quiet-Life contract which is
the optimal contract in the actual no tax universe. Similarly, when the agency action point
is in the left domain I begin by noting that if the principal was in an alternate universe where
his outside option was very high then the optimal baseline contract would be the optimal
contract. As I start lowering the principal’s outside option parameter, at some point the
principal is going to be indifferent between sticking with the optimal baseline contract and
some other contract that uses agency action. The punchline is that the “other contract” is
a Renegotiating Baseline contract which is the optimal contract in the actual universe.

Case 1: Quiet-Life Domain
Let the agency action point be in the right region.

For all sufficiently low (negative) taxes, F ext,B
T satisfies the agency action inequality and

is therefore an upper bound for the optimal value function. For example, Corollary 9.3
implies the existence of a unique (negative) tax T such that:

F ext,B

T
′
(
φA

γ

)
= 0
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Since the agency action point is in the right region,

d−

dx
F ext,S

(
φA

γ

)
< 0

and since both F ext,B

T and F ext,S meet at the outside option point, so Corollary 9.1 implies
that:

F ext,B

T

(
φA

γ

)
>
µ− A
r

This means that F ext,B

T satisfies the agency action inequality.18 Now pick the least negative

such tax T ∗. By continuity, there will be at least one point (a, F ext,B
T ∗ (a)) that satisfies the

agency action inequality with equality. This simply means:

g′a(a) = F ext,B
T ∗

′(a)

where ga is the unique solution to the agency action ODE going through (a, F ext,B
T ∗ (a)). Fur-

thermore, a must be in the domain of FB
T ∗ . If not, then the pasting point (a, F ext,B

T ∗ (a)) lies
on the linear branch of F ext,B

T ∗ and a < φA
γ

. But then for all ã in a small left neighborhood

of a, we have g′ã(ã) > F ext,B
T ∗

′(ã) where gã is the unique solution to the agency action ODE
going through (ã, F ext,B

T ∗ (ã)). This then implies that F ext,B
T ∗ does not satisfy the agency action

inequality at ã. Contradiction.

By the least negativity property of T ∗, it must be that T ∗ > T . Then Corollary 9.2 tells us
that F ext,B

T ∗ must also be downward sloping to the right of φA
γ

, which implies that a < φA
γ

.

Ito’s Lemma and optional sampling imply FQ ≡ F ext,B
T ∗

∣∣
[0,a]

= FB
T ∗
∣∣
[0,a]

is the value function

of a Quiet-Life contract.

F ext,B
T ∗ satisfies the assumptions of the C1 Maximum Principle, so it is an upper bound on the

optimal value function. And since the FQ portion is an actual value function and includes
the maximum point of F ext,B

T ∗ , FQ must be the optimal value function. The optimal contract
is then the Quiet-Life contract with good performance threshold U good,Q = a, the agent’s
continuation payoff is started at U0 = arg max FQ, and the payoff to the principal is maxFQ.

Case 2: Renegotiating Baseline Domain
Let the agency action point be in the left domain.

Using arguments similar to before, for all sufficiently high alternate principal outside op-
tions l, F ext,B

(0,l) (see Definition 7.1) satisfies the agency action inequality. Then the idea is

the same as before: find the lowest alternate outside option l∗ such that F ext,B
(0,l∗) satisfies the

agency action inequality. l∗ > L since by assumption F ext,B does not satisfy the agency
action inequality.

18Indeed, any concave function attaining its maximum at φA
γ and with maximum greater than or equal to

µ−A
r satisfies the agency action inequality.
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Again like before, the minimality of l∗ implies the existence of a pasting point (a, F ext,B
(0,l∗) (a)).

Mirroring the argument in Case 1, Corollary 9.4 implies a > φA
γ

. Call the good performance

threshold of FB
(0,l∗), U

good,R. Then define the function FR to be FB
(0,l∗)

∣∣
[a,Ugood,R]

. F r is of

course the value function of a Renegotiating Baseline contract.

The C1 Maximum Principle implies that F ext,B
(0,l∗) is an upper bound of the optimal value

function. The FR portion contains the maximum point, so FR is the optimal value func-
tion. The optimal contract is the Renegotiating Baseline contract with poor performance
threshold Upoor,R = a, good performance threshold U good,R, the agent’s continuation payoff
is started at U0 = arg max FR, and the payoff to the principal is maxFR.

The Domains of Optimality Theorem when K > 0
Recall, the previous proof and section 7.A assumed that K = 0. How does the Domains of
Optimality Theorem change when K > 0? There’s not much change (see Figure 14):

When the agency action point is in the region {(X, Y )|X ≥ K and Y < µ
r
} the boundaries

are defined exactly like in the K = 0 case. Thus the only question is how to appropriately
extend the boundaries to the region O = {(X, Y )|0 < X < K and Y < µ

r
}.

Recall in the K = 0 case there is a bottom curve that is a byproduct of Condition (4)
Lemma 6.4. Since the value function F ext,B of the condition is independent of the agency
action point, the bottom curve can be naturally extended using the same condition.

Now suppose the agency action point is in O, above the bottom curve. For any l < µ
r
,

define gl to be the unique agency action solution going through (K, l) and recall F ext,B
(K,l) (see

Definition 7.1). The agency action point is above the efficiency threshold if and only if the

optimal static payoff point (K, µ−A−(γK−φA)
r

) is as well. If this is the case, then the C1

Maximum Principle implies that F ext,B

(K,
µ−A−(γK−φA)

r
)

is an upper bound on the optimal value

function and the optimal contract is the optimal static contract.

I now claim that if the agency action point is in O and between the bottom curve and
the efficiency threshold, then the optimal contract is a Renegotiating Baseline contract. The
method is almost identical to the K = 0 case. Because the agency action point is assumed
to be below the efficiency threshold, F ext,B

(K,µ−γK
r

)
satisfies the agency action inequality and is

an upper bound on the optimal value function. Pick the minimal l∗ such that F ext,B
(K,l∗) satisfies

the agency action inequality. Then (K, l∗) is below the efficiency threshold which means
that F ext,B

(K,l∗) (see Lemma 9.1) is nontrivial with a good performance threshold which I will

call U good,R. Furthermore, by the minimality of l∗ there exists a pasting point (a, F ext,B
(K,l∗)(a)).

Then FR ≡ F ext,B
(K,l∗)

∣∣
[a,Ugood,R]

is the optimal value function. The optimal contract is the Rene-

gotiating Baseline contract with poor performance threshold Upoor,R = a, good performance
threshold U good,R, the agent’s continuation payoff is started at U0 = arg max FR, and the
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F ext,B

Quiet-Life Domain

Baseline Domain

Static Domain

Renegotiating
Baseline Domain

d+

dx
F ext,(X,Y )

∣∣
x=X

= 0

d−

dx
F ext,(X,Y )

∣∣
x=X

= 0

d
dx
F ext,B

∣∣
x=U
≥ r

γ
F ext,B(U)−Y

U−X for all U ∈ [K,∞)

(0, µ
r
)

(K > 0, L)

Efficiency Threshold

Figure 14: The Domains of Optimality Theorem when K > 0. The heavy bold lines are how the
boundaries of the domains of optimality are extended to the region to the left of K.

payoff to the principal is maxFR.

We can now extended the V-shaped curve: starting at the left most point of the old V-curve,
go straight up until the efficiency threshold is hit, then travel up the efficiency threshold
until reaching (0, µ

r
). See Figure 14.

The Domains of Optimality when r = γ

Recall that the good performance threshold U good of a Quiet-Life contract is restricted to be
< φA

γ
. If however U good = φA

γ
then Ut = U good is an absorbing event. I call such a contract

a tenure contract. Similarly, the poor performance threshold Upoor of a Renegotiating
Baseline contract is restricted to be > φA

γ
. If however Upoor = φA

γ
then Ut = Upoor is an

absorbing event. I call such a contract an inside option baseline contract. The domains
of optimality theorem when r = γ is summarized in Figure 15.

Notice, in particular, if K = 0 then contracts that induce agency action non-permanently
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F ext,B

Tenure Domain

Baseline Domain

Static Domain

Inside Option
Baseline Domain

d+

dx
F ext,(X,Y )

∣∣
x=X

= 0

d−

dx
F ext,(X,Y )

∣∣
x=X

= 0

d
dx
F ext,B

∣∣
x=U
≥ F ext,B(U)−Y

U−X for all U ∈ [K,∞)

(0, µ
r

= µ
γ
)

(K,L)

Efficiency Threshold

straight line of slope F ext,B ′(K)

Renegotiating
Baseline Domain

Figure 15: The Domains of Optimality Theorem when r = γ.

(e.g. Quiet-Life and Renegotiating Baseline) are never optimal. This is a reflection of the in-
tuition that saving-the-best-for-last is not useful. The reason why the Renegotiating Baseline
contract is sometimes optimal when K > 0 is because the principal is required to keep the
agent’s continuation payoff Ut ≥ K. This boundary condition prevents incentive-compatible
contracts from using permanent agency action without salary.

The proof of this result is similar to the r < γ case and is omitted.

9.C Smooth-Pasting

Definition 9.2. Two functions paste at a point (x, y) if both functions go through (x, y)
and have the same derivative there.

Definition 9.3. A point (a, b) such that a 6= φA
γ

is called a concave smooth pasting
point if the following condition is satisfied:

f ′′(a) = g′′(a) < 0
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where g is the unique solution to the agency action ODE and f is the unique solution to the
first-best action ODE such that f and g paste at (a, b).

The Concave Smooth Pasting Lemma. Consider the following concave smooth-
pasting function

S(x) =
µ− A
r

+
γ

rφ

(x− φA
γ

)2

φ
2A

(1− r
γ
)− (x− φA

γ
)

defined on the open interval (−∞, φ
2A

(1− r
γ
)+ φA

γ
). A point (a, b) is a concave smooth pasting

point or the agency action point if and only if a ∈ (−∞, φ
2A

(1− r
γ
) + φA

γ
) and b = S(a).

S is a differentiable, convex function with unique interior minimum point equal to the agency
action point (φA

γ
, µ−A

r
).

Proof. Suppose a point (x, y) is a concave smooth pasting point. Let g, f be the associated
functions. Then

g′(x) =
r

γ

y − µ−A
r

x− φA
γ

g′′(x) =
r

γ

(
r

γ
− 1

)
y − µ−A

r(
x− φA

γ

)2

f ′′(x) =
ry − µ− γxf ′(x)

φ2/2
=
ry − µ− γx r

γ

y−µ−A
r

x−φA
γ

φ2/2

Setting f ′′(x) = g′′(x) < 0 and solving for y produces the function S(x) and the associated
domain.

Corollary 9.5. Let ga denote the unique solution to the agency action ODE going through
(a, S(a)) with a < φA

γ
. Suppose ga and some F ext,B

(X,Y ) paste at some point (x∗, ga(x
∗)) with

x∗ ∈ [a, φA
γ

). Then

F ext,B
(X,Y ) > ga on

[
a,
φA

γ

)
− {x∗}

Proof. First assume x∗ ∈ (a, φA
γ

), continuity will take care of the x∗ = a case. Now note

that in any pasting between some ga and some F ext,B
(X,Y ) satisfying the hypotheses of the the

corollary, ga is always strictly more concave at the pasting point. This is because S is convex,
ga is concave, and so g(x∗) > S(x∗). This means the corollary holds locally.

Let E : {(x, y) | x < φA
γ
− ε} → R2 be a (smooth) embedding that is both x-coordinate

and orientation preserving (i.e. (x, y1) is above (x, y2)⇒ E((x, y1)) is above E((x, y2))), and
maps solutions to the agency action ODE into the horizontal lines. Assume ε is small enough
so that x∗ ∈ (a, φA

γ
− ε)

Now suppose that F ext,B
(X,Y )(x̃) = ga(x̃) for some x̃ ∈ [a, φA

γ
) − {x∗}. This implies that E ◦
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F ext,B
(X,Y )(x

∗) = E◦F ext,B
(X,Y )(x̃). Furthermore, since the corollary holds locally, (x∗, E◦F ext,B

(X,Y )(x
∗))

is a local minimum for E ◦F ext,B
(X,Y ). That means there is a point x̃′ in between x∗ and x̃ where

(x̃′, E ◦F ext,B
(X,Y )(x̃

′)) is a local maximum. The pullback of the horizontal line y = E ◦F ext,B
(X,Y )(x̃

′)
is a solution g̃ to the agency action ODE. The pullback of the local maximum condition says
that F ext,B

(X,Y ) and g̃ paste at (x̃′, g̃(x̃′)) but that g̃ is less concave at the pasting point. But

g(x̃′) > S(x̃′). Contradiction.

Corollary 9.6. Fix a point (a, S(a)) with a ∈ [0, φA
γ

). Let ga be the unique solution to the

agency action ODE going through (a, S(a)). Suppose

g′a(a) ≥ F ext,B
(a,ga(a))

′(a)

Then there is unique point (x∗, ga(x
∗)) such that x∗ ∈ [a, φA

γ
) and

g′a(x
∗) = F ext,B

(x∗,ga(x∗))
′(x∗)

Furthermore, F ext,B
(x∗,ga(x∗)) satisfies the agency action inequality.

Proof. Define the continuous function δ(x) = g′a(x)−F ext,B
(x,ga(x))

′(x). By assumption δ(a) ≥ 0

and clearly lim
x→φA

γ

δ(x) = −∞. Existence of the pasting is implied.

Now suppose there were two distinct values x∗1, x∗2 such that x∗i ∈ [a, φA
γ

) and

g′a(x
∗
i ) = F ext,B

(x∗i ,ga(x∗i ))
′(x∗i ) i = 1, 2

By extending F ext,B
(x∗i ,ga(x∗i )) leftwards through the first-best action ODE, one can find Y1 and Y2

such that
F ext,B

(x∗i ,ga(x∗i )) ⊂ F ext,B
(0,Yi)

Clearly, F ext,B
(0,Y1) and F ext,B

(0,Y2) are distinct, and therefore do not intersect. But both F ext,B
(0,Y1) and

F ext,B
(0,Y2) paste with ga and Corollary 9.5 implies that they both lie above ga on [a, φA

γ
). Con-

tradiction.

Finally, recall the embedding function E of the previous corollary. We know E ◦ F ext,B
(x∗,ga(x∗))

is locally increasing to the right of x∗. Indeed, Corollary 9.5 implies it cannot decrease
on [x∗, φA

γ
). The pullback of the nondecreasing condition says that F ext,B

(x∗,ga(x∗)) satisfies the

agency action ODE on [x∗, φA
γ

). That F ext,B
(x∗,ga(x∗)) satisfies the agency action inequality on

[φA
γ
,∞) comes form the more general fact that any decreasing concave function f defined on

[φA
γ
,∞) satisfies the agency action inequality if and only if f(φA

γ
) ≥ µ−A

r
(which F ext,B

(x∗,ga(x∗))

satisfies by Corollary 9.5).

9.D Bargaining
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Let FOpt denote the optimal value function. Let U contract = arg max FOpt and let U good

and Upoor be the good and poor performance thresholds of the optimal contract. The opti-
mal value function gives us the optimal contracts delivering payoffs x ∈ [Upoor, U good] to the
agent. I will now derive the extended optimal value function F ext,Opt which, in addition to
governing optimal contracts delivering payoffs x ∈ [Upoor, U good] to the agent, also governs
the optimal contracts delivering payoffs x > U good to the agent.

It is already known that when FOpt = FB then F ext,Opt = F ext,B. Recall from 9.B FR

was defined as F ext,B
(K,l∗)

∣∣
[a=Upoor,R,Ugood,R]

. Using similar reasoning one can easily show that

if FOpt = FR then F ext,Opt = F ext,R ≡ F ext,B
(K,l∗)

∣∣
[Upoor,R,∞)

. Also if the optimal contract is

the optimal static contract with payoff (φA+s
γ
, µ−A−s

r
) where s = max{0, γK − φA}, then

F ext,Opt = F ext,B

(φA+s
γ

,µ−A−s
r

)
.

The only nontrivial case is when FOpt = FQ. Recall FQ was defined as F ext,B
T ∗

∣∣
[K,a=Ugood,Q]

.

It was shown that
g′a(a) = F ext,B

T ∗
′(a) < 0

where ga is the unique solution to the agency action ODE going through (a, F ext,B
T ∗ (a)). In

fact, (a, F ext,B
T ∗ (a)) is a concave smooth pasting point:

g′′a(a) = F ext,B
T ∗

′′(a)

This is because if
g′′a(a) > F ext,B

T ∗
′′(a) or g′′a(a) < F ext,B

T ∗
′′(a)

then F ext,B
T ∗ does not satisfy the agency action inequality in a neighborhood of a. For exam-

ple, suppose g′′a(a) < F ext,B
T ∗

′′(a), then pick a slightly higher solution g̃ to the agency action
ODE. Then g̃ crosses F ext,B

T ∗ twice in the neighborhood of a: once from the below and once
from above. At the point where g̃ crosses from above, the agency action inequality is not
satisfied. This means that g′a(a) ≥ F ext,B

(a,ga(a))
′(a).

Now Corollary 9.6 implies the existence of a F ext,B
(x∗,ga(x∗)). F ext,Q is then F ext,B

T ∗
∣∣
[K,a=Ugood,Q]

plus ga
∣∣
[a,x∗]

plus F ext,B
(x∗,ga(x∗)). This is because not only is every point on the function a pay-

off point of a contract but also because the function satisfies the assumptions of the C1

Maximum Principle.
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