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Abstract

I study the motivations for and implications of exclusive contracts, with an application to
smartphones. Why would Apple choose to distribute its smartphone through only one carrier,
and why would AT&T bid the most for exclusivity? I develop a model which shows that if
upstream handset manufacturers face a relatively low price elasticity for their good compared
to downstream wireless carriers, exclusive contracts can maximize their joint profits. An ex-
clusive contract reduces price competition in the final good market but also increases returns to
innovation for parties outside the contract, such as Google’s Android. Different price elastici-
ties among downstream firms due to network quality differences lead to different valuations of
the exclusive contract. I estimate the relative elasticities of smartphone and carrier demand us-
ing simulation and MCMC methods on a detailed monthly dataset of consumer decisions over
2008-2010. Counterfactual simulations show the importance of recomputing the price equilib-
rium to understanding the observed market structure. Accounting for price effects, AT&T had
the highest value of exclusivity with Apple, and was willing to compensate Apple $148 per
unit sale foregone. Apple’s exclusivity increased entry incentives for Android handset makers
by approximately $1B.
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1 Introduction

A final good in the smartphone market consists of both a smartphone handset and the wireless
service that enables it to function. Exclusive contracts in this market between upstream firms
(handset manufacturers) and downstream firms (wireless carriers) are common.1 Perhaps the most
well-known is the contract between Apple and AT&T, which saw the former’s iPhone handset
exclusively available on AT&T’s network in the United States. An exclusive contract such as this
restricts Apple from engaging in trade with competing wireless carriers, and so the contract must
compensate Apple for the lost market potential. Early models of exclusive contracts argued that
such arrangements must be efficient, as AT&T would only be willing to sufficiently compensate
Apple for the lost sales if the exclusive arrangement was efficient.2 However, later approaches
showed that such arrangements could lead to inefficient outcomes, such as the foreclosure of entry
(Aghion & Bolton, 1987). While these contracts may have anti-competitive effects, they have
also been shown to be pro-competitive in some settings, such as for protecting investments and
addressing externalities (Bernheim & Whinston, 1998; Segal & Whinston, 2000).3 Indeed, courts
in the United States evaluate non-price vertical restraints under the Rule of Reason, instead of
declaring them to be illegal per se.4

This paper proposes a simple motivation for exclusivity in the mobile telecommunications mar-
ket based on the relative substitutability of the upstream goods (handsets) versus the downstream
goods (wireless service). If the downstream goods are near-perfect substitutes, then downstream
firms face high price elasticities for their goods and are only able to charge low markups above
marginal cost for their goods in equilibrium. If the upstream goods are poor substitutes, those
firms face low price elasticities and are able to charge large markups over marginal cost in equi-
librium. I show that in such a setting, an exclusive contract can maximize the joint profits of the
contracting parties by reducing price competition in the final goods market. However, these con-
tracts also increase incentives for new upstream firms to enter. Finally, I investigate the willingness
to pay of differentiated downstream firms, and find that firms with lower quality goods may be
willing to bid the most for an exclusive contract as they have more to lose from a rival gaining
exclusivity.

Apple launched its first ever smartphone in 2007, the iPhone, exclusively on AT&T (then Cin-
gular) in the United States. Many handsets are released exclusively, although the Apple arrange-

1For example, in Consumer Reports’ 2009 annual review of smartphones, 6 of the 10 devices that were rated as
“Recommended” were exclusive to one of the four major US wireless carriers (Consumers Union of United States,
2009).

2These arguments, referred to as the Chicago School approach to this topic, are articulated in Posner (1976) and
Bork (1978).

3See Katz (1989) for a survey of the literature on vertical contracts.
4Continental Television v. GTE Sylvania, 433 U.S. 36 (1977)
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ment was notable for its 5 year term.5 The popular press devoted much attention to the wisdom of
the Apple decision, as AT&T was plagued by complaints of poor network quality with the iPhone,
despite being the largest carrier in the US at the time.6 In addition, many customers of other wire-
less carriers expressed interest in purchasing an iPhone, but could not do so without switching
carriers. This led to political and regulatory attention being paid to exclusive contracts between
handset makers and wireless networks. The Federal Communications Commission (FCC) and
United States Senate have held hearings on the potentially negative impact on consumers of these
arrangements.7 The view of the major wireless carriers was that these arrangements increased
welfare through greater incentives for innovation, as wireless carriers have a stronger incentive
to invest in new innovations for which they will be the exclusive provider.8 The view of con-
sumer groups was that exclusivity leads welfare losses from higher prices and fewer choices for
consumers.9 Indeed, the effect on welfare is ambiguous.10

Some alternative mechanisms have been put forward to explain Apple’s choice to enter into
an exclusive contract. A first such argument was that Apple had a limited supply capacity: this
was their first mobile phone, and so they were concerned that they could not meet demand if they
launched on all carriers. However, if this were the case, it is unlikely that they would then have en-
tered into a 5-year exclusive contract. Apple launched the iPhone globally less than 6 months after
the initial US launch, indicating that any supply issues were short-term. A second argument was
that exclusivity was essential to guarantee carrier investments in network technologies to support
the iPhone. However, this argument was specifically rejected by the French competition authori-
ties when they prematurely ended Apple’s exclusive contract in that country. The exclusive carrier
there was unable to show a significant investment that needed to be protected.11

5For example, the Palm Pre smartphones launched exclusively on Sprint, while the first touchscreen Blackberry
was exclusive to Verizon and the first Blackberry Pearl exclusive to T-Mobile. Exclusive contracts are typically in the
6-12 month range.

6Apple Press Release “Apple Reinvents the Phone with iPhone,” http://www.apple.com/pr/library/2007/01/09Apple-
Reinvents-the-Phone-with-iPhone.html

7See Press Release, “Kerry, Wicker, Dorgan, Klobuchar Call for Increased Choice for Wireless Consumers”, Sen.
John Kerry, Jun 15, 2009.

8AT&T gave its “visual voicemail” feature for the iPhone as an example of such an investment. However, other car-
riers subsequently added this capability to their networks for handsets running Windows Mobile, Blackberry, Android,
and Symbian operating systems.

9A specific concern was that, at the time, AT&T did not have a wireless network in several rural areas as well as
the states of Vermont and Alaska. Consumers in those areas could not purchase an iPhone even if they were willing to
switch carriers.

10This paper will not provide an estimate of the welfare effect of allowing exclusive contracts. There are two
competing forces affecting welfare: higher prices in a static context, but increased entry in the dynamic context. While
the effect of exclusive contracts on entry incentives can be measured, the change in entry probability is not identified,
and so the latter force cannot be estimated. I can provide bounds on the latter force, but they are not informative for
setting policy. For a paper that focuses on the welfare question of Apple’s exclusivity, see Zhu, Liu & Chintagunta
(2011).

11Conseil de la concurrence: Décision n° 08-MC-01 du 17 décembre 2008 relative à des pratiques mises en oeuvre
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This paper begins with a theoretical analysis of firm decisions before moving into an empirical
analysis and counterfactual simulations. The theory model builds on the approach taken by Rey
& Stiglitz (1995), which shows that upstream competition can lead to exclusive contracts with
undifferentiated downstream firms if the upstream goods are imperfect substitutes and prices are
strategic complements.12 The mechanism is that exclusivity decreases the interbrand price com-
petition among upstream firms. This is more closely related to the setting at hand, as handsets
are horizontally differentiated. However, the result also relies on the downstream firms being per-
fect substitutes and having no market power. This paper contributes a more general model that
allows for downstream horizontal differentiation. I find that when upstream demand is relatively
less sensitive to price than downstream demand, exclusive contracts can lessen price competition
and overcome the losses associated with being available with fewer downstream firms. Further-
more, if downstream firms face different price elasticities for their goods, their willingness to pay
for exclusivity will differ. I show that if consumers are willing to substitute between handset and
network quality, a lower quality carrier may benefit more from an exclusive contract. Finally, I
show that the existence of exclusive contracts can increase entry incentives for parties outside of
the contract.

In order to estimate the magnitudes of these competing forces, we require estimates of the
price elasticities of the various handsets and wireless carriers. However, estimating demand in
such a setting poses several challenges. Demand is dependent between months as this is a durable
good where a consumer’s current demand is a function of the consumer’s current “state” (her
current handset, contract status with her wireless carrier, and any switching costs that her contract
imposes). A consumer’s state evolves according to a known process and the consumer’s history of
choices. I build a choice model closely related to the Pure Characteristics Model of Berry and Pakes
(2007), where random coefficients rationalize decisions and individual tastes are invariant over
time. Consumers will choose between bundles every period by comparing discounted future utility
flows conditional on their current state. I avoid a fully-dynamic sequential model by simplifying
consumer beliefs, and argue that the simplification is supported by the data.13 Advantages of
my approach are that I avoid i.i.d. taste shocks for every product in every period. I contrast my
approach with a standard Logit demand model in Appendix E.

The econometric approach taken in this paper follows a simulated non-linear least squares
(SNLLS) estimator developed by Laffont, Ossard and Vuong (1995), which explicitly corrects for

dans la distribution des iPhones.
12If the prices of two firms’ products are strategic complements, then an increase in the price of one good gives the

other firm an incentive to increase the price of the other good as well.
13An important contribution to the dynamic discrete choice literature is Gowrisankaran and Rysman (2011), which

nests a demand system within a dynamic optimization decision framework, fully internalizing for a consumer the
decision to buy now or wait. An example of a prior paper which avoids dynamic programming in such a setting is
Geweke & Keane (1996).

4



simulation bias introduced by simulation methods. This estimator is feasible for a small set of
markets, but as the number of parameters grows, it becomes computationally challenging. To esti-
mate the full model, the SNLLS estimator is nested inside an MCMC routine developed by Cher-
nozhukov and Hong (2003), enabling the estimation of a large number of unobserved heterogeneity
terms that are not recoverable via an inversion mapping, as is common in demand estimation.

This paper’s contributions to the literature are an extension of the theoretical understanding of
exclusive contracting to the case of horizontal differentiation at both the upstream and downstream
levels and an empirical investigation of such a setting, where magnitudes of the competing forces
are estimated. Empirical applications of vertical exclusivity models are limited; for examples see
Asker (2005) and Lee (2010). This paper’s setting is an advantageous one in which to study the
effect of downstream market power, as upstream goods are bundled one-to-one with the down-
stream good. The goal of the econometric analysis is to understand the the impact of consumer
preferences on the observed vertical structure of an important market in the United States. The
results from the econometric analysis are then used to answer three counterfactual questions: first,
how much would each of the carriers have been willing to pay for exclusivity with Apple in 2007?
Second, did Apple’s exclusivity with AT&T increase entry incentives for Android handset makers,
and if so, by how much? Finally, how much was AT&T willing to compensate Apple for each unit
sale foregone due to exclusivity? Of particular interest is that the answer to the first of these ques-
tions is highly dependent on recomputing a price equilibrium. That is, if a new price equilibrium
is not computed, the observed market outcome appears inefficient.

The paper proceeds as follows: Section 2 develops a theoretical model for the choice of vertical
contracts in this setting. Section 3 describes the industry and data I will use for the empirical
analysis. Section 4 develops an econometric model of consumer choices. Section 5 discusses the
results from estimation. Section 6 provides the results from counterfactual simulations. Section 7
summarizes. All proofs are found in the Appendix.

2 A Theoretical Model of Upstream Entrant Decisions

The setting in question is one where upstream firms (say, handset manufacturers) sell a good to
downstream firms (say, wireless carriers), who bundle this good with their own product and sell
the final bundle to consumers. While models of vertical settings are common in economic theory,
most models are limited to “triangular” market structures, with either one upstream firm and two
downstream firms, or vice versa.14 This section begins with an example where downstream goods

14Whinston (2006) notes this and further states that most markets in reality have multiple participants at each level.
One exception is Besanko & Perry (1994), which has two upstream firms and multiple downstream firms spatially
differentiated as in a Salop circle model. However, the contracts are restricted to be linear and an exclusive contract in
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are homogenous to illustrate the static incentive for exclusive contracts in a simplified setting.
Specifically, exclusive contracts lead to steeper reaction functions for the upstream firms, resulting
in higher prices in equilibrium. The model is then generalized to allow for differentiated goods at
both levels, to match the reality of the US mobile telecommunications industry and establish the
main theoretical results. The main findings are that exclusivity is optimal when the downstream
goods are good substitutes for one another, that exclusive contracts can lead to entry that would
not be profitable in their absence, and that the value of the exclusive contract to a downstream
firm depends on whether consumers are willing to substitute between quality of the upstream and
downstream goods.

The specific terms of vertical contracts are unobserved in the mobile telecommunications sec-
tor, and so I wish to abstract away from bargaining over surplus between the contract parties. In-
stead I look at the joint surplus of the contracting parties as the determinant of the market structure.
This is consistent with other research on exclusivity, such as Bernheim & Whinston (1998).15,16

I will refer to the case of non-exclusivity as common agency, denoted by C below, the case of
single-firm exclusivity as E, and of all upstream firms exclusive by EE.

2.1 An Example

An important distinction in this setting is the fact that a new smartphone is an imperfect substitute
for an existing one; that is, while a given consumer may prefer an iPhone to, say, a Blackberry,
there exists a set of prices at which the consumer would prefer the Blackberry. This imperfect
competition allows for a static motivation for exclusive contracts.

Consider a simplified static setup (see Appendix C for all derivations): Firm A could invest K

to develop a new smartphone. If it enters the market, it would have a smartphone with quality δA

and marginal cost c, that would compete against Firm B that produces a smartphone with quality
δB at marginal cost c. Consumer tastes for smartphones are as in a standard Hotelling model where
consumers are distributed uniformly over an interval of length 1, with tastes for each smartphone
for consumer i at location θi given by:

uAi = δA− pA−θi

uBi = δB− pB− (1−θi)

their setting only restricts the upstream competitor from every 2nd downstream firm.
15The first principle from Bernheim & Whinston’s analysis of manufacturers and exclusive retailers: “the form of

representation (exclusivity or common representation) that arises in equilibrium maximizes the joint surplus of the
manufacturers and the retailer, subject to whatever inefficiencies may (or may not) characterize incentive contracting
between the retailer and the manufacturers.”

16To this end, I will allow for flexible contracts so that classic results such as double-marginalization are not an
issue.
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The smartphones are purchased from the manufacturers at wholesale prices qA and qB by N

identical wireless carriers. These carriers compete in the downstream market by bundling the
devices with their homogenous wireless networks that have marginal cost of zero, and selling the
handset-network bundle to consumers at prices pA and pB. See Figure 1 for a diagram of this setup.
Appendix C, shows the derivation of final consumer demand as a function of prices, DA (pA, pB)

and DB (pA, pB), by locating the indifferent consumer and using the properties of the uniform
distribution, as is standard for a Hotelling setup.

Figure 1: Hotelling Model

Firm A could choose to sell its handset to all carriers, or limit itself to a single exclusive carrier.
I will first hold Firm B’s choice fixed at non-exclusivity for now, but will revisit Firm B’s choice
at the end. I begin by analyzing Firm A’s expected profits from common-agency, followed by the
profits from exclusivity. The order of moves for this full-information setup is (1) upstream firms
simultaneously choose wholesale prices, (2) carriers simultaneously choose retail prices, and (3)
the market is realized.17

If no exclusive contracts are permitted, then all carriers will offer a bundle with each smart-
phone, and Bertrand competition will ensure that markups are competed to zero. Knowing this,
the smartphone firms will choose wholesale prices in equilibrium to maximize their profits given
that the downstream firms will not charge a markup:

π
c
A = (qA− c)DA (qA,qB)

π
c
B = (qB− c)DB (qA,qB)

17Given the full-information setup of the game, the sequential nature merely facilitates exposition.
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Assuming an interior solution,18 the equilibrium wholesale price and profits for firm A if it
enters with no exclusive arrangement are πC∗

A , shown in Table 1 with the resulting retail price. This
is identical to the level profits earned if the two smartphone firms competed directly for consumers,
due to Bertrand competition among the homogenous carriers.

Now suppose that Firm A could instead sign an agreement with one carrier guaranteeing ex-
clusivity: Firm A could not sell its smartphone to any other carrier, but the carrier would be free to
offer smartphone B. This is more closely aligned with the concept of “exclusive territories” than
“exclusive contracts” in the literature (Katz, 1989). In this case, Firm A would expect its exclu-
sive wireless carrier w to choose a retail price to maximize profits, where the carrier’s profits and
optimal retail price are given by:

π
E
w = (pA−qA)DA (pA,qB)

pE∗
A =

(
1+δA−δB + pB +qA

2

)
The upstream firms choose wholesale prices knowing this markup. Upstream profits19 are now

π
E
A =

(
pE∗

A (qA,qB)− c
)

DA (pE∗
A (qA,qB) ,qB

)
π

E
B = (qB− c)DB (pE∗

A (qA,qB) ,qB
)

Solving for equilibrium wholesale prices, we see that Firm B reaction function now takes the
downstream optimization into account, and so is more inelastic with respect to Firm A’s wholesale
price. Consequently, both smartphones have higher prices over the range of interior solutions.
Firm A’s profit under exclusivity πE∗

A , is greater than its profits under common agency.
If Firm B were also exclusive, both firms would internalize the downstream pricing behavior,

and Firm A’s profits from exclusivity would rise further. Table 1 summarizes the outcomes of this
setup.

Table 1: Equilibrium Outcomes of Hotelling Model

Form of Representation Retail Price, A Profits, Firm A
Common Agency (C) c+1+ 1

3 (δA−δB)
1
18 (3+δA−δB)

2

A Exclusive (E) c+ 5
4 +

1
4 (δA−δB)

1
32 (5+δA−δB)

2

A, B Exclusive (EE) c+2+ 2
5 (δA−δB)

1
25 (5+δA−δB)

2

We may now draw a few conclusions from this model:

18Interior refers to the case where δ A and δ B are such that neither firm captures the entire market in equilibrium.
19Note that Firm A’s profits include the downstream firm’s markup. It is assumed that when exclusive, upstream

firms are able to extract the full surplus via a fixed fee in a two-part tariff.
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1. Firm A will earn greater profits under exclusivity. This result is not particularly novel: Rey
and Stiglitz (1995) proved this in the setting of producers and retailers for a general quasi-
concave profit function where δA = δB and both upstream firms move simultaneously. Their
Proposition 3 states that if retail prices are strategic complements and profit functions are
quasi-concave, then both smartphone firms would choose exclusivity. The model described
above meets their criteria.

2. There exist values of K such that a rational Firm A would choose not to enter in the absence
of exclusive contracts. Furthermore, if the incumbent is exclusive, the entry incentive is
even greater when exclusive contracts are available. This is a direct result of the above,
but is interesting in that it provides evidence that exclusive contracts increase the returns to
innovation.

What is driving this result? A major force at work is that downstream Bertrand competition drives
markups to zero, and so exclusivity provides a buffer against price competition. The exclusive
contract alters the response curves of the upstream firms, taking advantage of the fact that prices are
strategic complements. Below I will extend the general model to the case of differentiated goods
at both upstream and downstream levels and show that under certain conditions, exclusivity is the
optimal contract. In many realistic settings, downstream firms are differentiated or contributed a
differentiated good to the end product, and so this generalization is relevant.20

2.2 General Model

We can think of the case above as a limit case where downstream firms are perfect substitutes
to consumers. Another limit case is where downstream firms are not substitutes at all, or where
wireless carriers are effectively monopolists over their customers. In that setting, it is clear that
exclusivity can not be optimal for an upstream firm, as they could do strictly better selling to 2
or more downstream firms, as each carrier is effectively a separate market. Figure 2 illustrates
the profits to the entering upstream firm at different levels of downstream market power, and for
different contracts, providing a roadmap to this section. I maintain throughout the assumption
that competing handsets are imperfect substitutes and that prices of handsets are strategic com-
plements. For simplicity, I will assume that the underlying demand system captures downstream
“substitutability” with a parameter η ∈ [0,∞), such that under common agency, when η = 0, down-
stream firms are perfect substitutes as in the above section so that for carrier n , where sAn is the
share of handset A on carrier n, we have that ∂ sAn

∂ pAn
=−∞. As η increases, so does ∂ sAn

∂ pAn
, and in the

limit ∂ sAn
∂ pAn
→ ∂ sA

∂ pA
as η → ∞. This allows us to characterize the limit cases of carrier monopolists

20Whinston (2006) states with regard to multibuyer/multiseller settings that “developing models that reflect this
reality is a high priority.”
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(η = ∞), carriers as perfect substitutes (η = 0), and cases in-between. As an example of how such
a parameterization could arise, consider a standard Hotelling setup where the transport cost across
the unit interval is given by η : when η = 0, all consumers are equally willing to go to either end of
the interval, and as η increases, consumers are less willing to substitute to the firm that is located
further from them. Appendix D details additional examples of demand systems with this property.

We will now consider the general case of two upstream firms as before, but now N downstream
firms that are imperfect substitutes. Under non-exclusivity for both A and B, the maximum possible
profits for firm A under a two-part tariff are given by the profits earned from selling directly to
consumers:

π
C∗
A =

sA
(

pC∗
A , pC∗

B
)2

− ∂ sA
∂ pA

The details of how this is achieved at any η are in Appendix D.
Under exclusivity, carriers 1 and 2 have exclusivity of products A and B respectively, and

choose markups based on the wholesale prices they are charged. It is easy to show that these
markups are greater than the markups they choose under common agency at a given wholesale
price. Knowing the expected markup functions, the handset makers choose wholesale prices to
maximize their joint profits with their exclusive carrier. This yields a best response function for
each of the handset makers that is far steeper than the common-agency setting. Let mh (qA,qB)

denote the carrier’s markup function for handset h, and note that it is decreasing in own wholesale
price but increasing in opposite wholesale price. We have a best response function for Firm A of

qA− c =−mA +

(
1+ ∂mA

∂qA

)
sA1

−
(

∂ sA1
∂ pA1

(
1+ ∂mA

∂qA

)
+ ∂ sA1

∂ pB2

∂mB
∂qA

)
We see that the handset maker effectively replaces the carrier’s markup with a more optimal

one, which is based on a lower elasticity when prices are strategic complements (as captured by
∂ sA1
∂ pB2

∂mB
∂qB

). This results in a higher retail price for both handsets, and profits under exclusivity of
πEE∗

A . Figure 2 summarizes the upstream profits under different contract forms at different levels
of downstream market power.

10



Figure 2: Upstream Firm Profits by Contract and Downstream Market Power

We can now turn to our first result:

Proposition 1. In the above model, if (a) prices are strategic complements, (b) shares are smooth

and twice continuously differentiable in prices, (c) the price equilibrium exists, is unique, and con-

tinuous, then there exists a value η∗such that for all η <η∗, exclusivity is jointly profit maximizing.

The proof follows from the fact that final retail prices are higher under exclusivity, but market
share is lower (except in the case of carriers as perfect substitutes). The formal proof relies on
continuity and the Intermediate Value Theorem, since πEE∗

A (η = 0) > πC∗
A , but πEE∗

A (η = ∞) <

πC∗
A . From the proof, we can see that the range of downstream elasticity over which exclusivity is

optimal is (a) decreasing with N, the number of wireless carriers, (b) increasing with the degree of
complementarity of prices, and (c) decreasing with the elasticity of upstream demand. These are
all intuitive findings: the first captures the fact that as the number of downstream firms increases, so
does the opportunity cost of exclusivity. The second captures the degree of the pricing advantage
of exclusive contracting, and the third captures the influence exclusivity will have on downstream
market shares.

Lemma. The existence of exclusive contracts can lead to entry in cases where it would not be

profitable otherwise.

This lemma is a direct consequence of the above proposition. There is a non-empty range of
entry costs such that entry is not profitable in the absence of exclusive contracts, but is profitable
with exclusivity.

Until now we have considered downstream firms to be identical and horizontally differentiated.
Suppose now that for simplicity there are only two downstream firms (carriers) and that they also
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differ in a vertical characteristic. One example of this for wireless carriers could be the quality
of their network (e.g. dropped call rate). Suppose further that a handset maker has decided to
enter exclusively. When might we expect one carrier or the other to be the most profitable match
for exclusivity? Assume that a carrier would be willing to pay up to its profit difference between
exclusivity and rival exclusivity (i.e. AT&T would have been willing to pay Apple up to its profit
difference between AT&T-Apple exclusivity and Verizon-Apple exclusivity).

Based on the model above, it seems intuitive that a carrier that faces more elastic demand would
have the most to lose from a rival gaining exclusivity, as it would face a larger change in equilibrium
price. Assume that consumers observe a vertical characteristic of each carrier n, δn, with δn 6= δn′

and price elasticity at a given price decreasing in δn. Further assume that consumer utility for the
handset-network bundle (δA,δn) takes the form uAn = δA+δn+βδAδn− pAn. This form is chosen
as the interaction term allows consumers to “substitute” between handset and network quality
(β < 0), or it allows a better network to make a handset even better (β > 0).

Proposition 2. For the case of two otherwise identical carriers with δ1 < δ2, there exists a β ∗ such

that the carrier 1 is willing to pay more for exclusivity for all β < β ∗.

If consumers are willing to trade-off handset and network quality, then the handset is worth
relatively more to the lower quality carrier. Once β gets high enough, its value is sufficiently
augmented by the higher quality carrier for it to be willing to pay more. This tells us that measuring
whether or not consumers are willing to substitute between handset and network quality will be a
determinant of a carrier’s willingness to pay.

This section has established that exclusive contracts can be jointly profit maximizing depending
on the relative elasticities of the two markets. The primary mechanism is through an increase in
effective elasticity when setting prices, although these contracts can also encourage new entrants.
When carriers are also vertically differentiated, we see that consumers’ willingness to substitute
between handset and network quality will affect which downstream firm values exclusivity more.

3 Industry and Data Description

3.1 The United States Wireless Market

There are four nationwide wireless carriers in the United States who together control approximately
85% of the market: Verizon, AT&T, Sprint, and T-Mobile. Smaller, regional carriers account for
the balance. Mobile phone penetration is high, with 95% of adults owning mobile telephones
by the end of 2010. Smartphones are a fast-growing segment of mobile telephones: despite the
first smartphones appearing in the 1990s, smartphones never achieved widespread consumer adop-
tion until advances in cellular data networks and increases in the power of mobile devices led
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smartphones to dominate new mobile telephone purchases in 2011.21 Smartphones differ from
traditional mobile phones (“feature phones”) in that they offer rich data services such as e-mail,
web browsing, photo and video capture, and multiple software applications in addition to voice
features. The dominant smartphone operating systems are Apple’s iOS, Google’s Android, and
Research in Motion’s Blackberry. Of those three, Android is the only one whose owner does not
control hardware as well: Google has several hardware partners that build and market smartphones,
including Motorola, Samsung and HTC.

Wireless carriers purchase spectrum from the US government and construct and operate wire-
less networks, offering consumers various monthly packages of voice and data usage. Smartphones
are typically sold on subsidized two year contracts: consumers commit to two years of a monthly
plan that includes a data component in exchange for being able to purchase a smartphone at a re-
duced price. The subsidized price of a smartphone typically falls between $0 and $250, whereas
the unsubsidized retail price is often between $500-$700. Monthly plans for smartphones range
from $65 to $130, depending on the features that are included.

The fact that smartphones are sold on two-year contracts introduces the fact that the choice to
buy a new handset is a dynamic one. Purchasing a handset-network bundle in the current month
creates a switching cost for the next 24 months due to the early termination fee (ETF) clause
common in all contracts. These fees start between $175 and $350, and decrease by $0-10 per
month over the length of the contract.22 Smartphones are subsidized by wireless carriers, so this
fee prevents consumers from leaving before the subsidy has been recovered by the carrier.

3.2 Demand data

I use proprietary datasets gathered by The Nielsen Company in my estimation: Nielsen conducts
a monthly survey of the United States wireless telecommunications market. Between 20,000 and
25,000 individuals are contacted every month (though, not the same individuals every month) and
are asked a series of individual questions including income range, age, race, gender, household
size, employment, and education level. They are also asked whether or not they subscribe to
mobile phone service, and if so, on which carrier and using which handset with which price plan.
The geographic market of the individual is also observed, as is the time since they acquired their
current handset, and whether or not they have switched carriers in the previous 12 months.23 I have

21See Nielsen Press Release “In US, Smartphones Now Majority of New Cellphone Purchases,” June 30, 2011.
22Over the time period in question, T-Mobile’s ETF is $200 for the entire contract length. Verizon and AT&T are

both $175 decreasing by $5 per month at the beginning of the data period but switch to $350 less $10 per month in
November 2009 (Verizon) and $325 less $10 per month (AT&T) in June 2010. Sprint starts at $200 and falls by $10
per month until it reaches $50, where it remains until the end of the contract.

23Unfortunately, I do not observe the previous handset-network bundle, or even the identity of the previous carrier
for these individuals.
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access to the survey months of November 2008 until December 2010. I omit people under 18 years
of age and people who identify that their employer provided their phone to them.24 The survey
observations are assigned weights to correspond to census data. Appendix Table 10 provides some
summary statistics.

3.3 Product data

The demand dataset contains the name of the chosen handset and carrier as well as basic data
on product characteristics: flags for keyboard, touch screen, smartphone, and brand. I have aug-
mented the dataset with additional characteristics for smartphones including software operating
system, processor speed, and the number of “apps” available.25 Self-reported prices are available
by device in the demand dataset, but due to the high variance in the price reported for a handset on
a given carrier purchased in a given month, I omit self-reported prices for purchases that occurred
more than 3 months before the survey and take the mode of reported values for a given month of
purchase. Further, as some models have few reported purchases in a given month, I impose that
handset prices be weakly decreasing over time.26 Discussions with industry sources confirm that at
the monthly level, prices for a given handset rarely increase. Network prices are publicly available.
I choose the network price for each carrier’s introductory smartphone bundle, which during this
sample consists of 450 “peak” minutes (500 on T-Mobile), unlimited evening and weekend min-
utes, unlimited in-network calling, unlimited text message, and unlimited data. There are many
combinations of features that can result in different prices, but I chose this price as many add-ons
and features are the same price across networks, and so this provides a benchmark. There are
other minor differences between the plan prices I use, such as different hours for what qualifies as
“evening” and different definitions of “in-network calling”, however I allow these differences to
be absorbed by carrier fixed effects.27

I further augment the demand data with carrier network performance data at the market level
taken from periodic “Drive Tests”, where a team from Nielsen drives around a market with devices
that simulate cell phones and record signal strength, dropped calls, and other performance data of
all of the available carriers in the market. This data is collected every 4-6 months for approximately
100 markets across the USA. I linearly interpolate in-between months for these metrics and match
the markets to the markets identified in the demand data. The 90 markets for which I have both
demand and network quality data form the basis of estimation. These 90 markets represent most

24Combined, these represent approximately 4% of observations.
25The primary source for the added data was the database of handset characteristics maintained by the website

www.phonearena.com.
26That is, if the median reported prices paid for a handset in months t and t+1 are pt and pt+1, I impose that the

price in month t +1 is pt in the event that pt+1 > pt .
27For example, Sprint allows free calls to any mobile number, not just other Sprint customers.

14



of the 100 largest MSAs, covering over 190 million Americans.
I collapse all non-smartphones into a single “feature phone”, available on every carrier at the

same fixed price with a mean utility to be estimated. I am left with 211 handset-network bundles
over the course of 26 months.28 In terms of individual handsets, I observe 4 models of iPhones, 18
models of Blackberries, and 43 models of Android phones.

3.4 Data Description and Trends

There are two dominant wireless carriers in the United States: AT&T and Verizon, who each
control approximately 30% of mobile customers. They are followed by Sprint (16%) and T-Mobile
(11%). Network quality data appears to be highly persistent over time within a market, but exhibits
significant variation across markets for all of the carriers. Figure 3 shows a non-parametric density
plot of the rate of dropped calls across markets for each carrier in a given month, a plot of the
dropped call rates within a sample market over time, and a summary of each carrier’s network
quality ranks. Note that for contractual reasons, there are certain pieces of data that cannot be
fully labeled.29 In the density plot, it is apparent that each of the carriers competes in markets
where their network quality is “good” (few dropped calls) and others where it is “bad” (many
dropped calls). However, it is also apparent that some some networks are generally “better”, with
their distributions concentrated to the left, and some are generally “worse”, with their distributions
more diffuse. The second plot shows that, in a sample market, the relative rankings of the carriers’
network quality does not change over the 26 months that I use for estimation. In fact, the rates
barely move at all over the 26 months. The third shows that every carrier has markets where they
are ranked each of 1st, 2nd, 3rd and 4th out of the four major carriers in terms of network quality.
As a comparison, Consumer Reports conducts an annual survey of 50,000 cell phone customers
and publishes carrier ratings for approximately 25 metropolitan areas in every January issue.30

For the years 2008-2011, Verizon is the highest rated carrier in their survey, although there are
individual markets where other carriers are rated superior.

A key trend in this time period is the rapid adoption of smartphones. In the first month of
my data, 8% of adults own a smartphone, which triples to 24% in the final month. The share of
device purchases in a given month that are smartphones increases from 4% to nearly 20% during
this period. In the same period, the share of adults that own any phone increases from 89% to
95%. The solid lines in Figure 5 shows this smartphone trend split out by income group. The mix
of smartphones that consumers own also undergoes a dramatic swing: iOS (the operating system

28I perform additional data-cleaning activities, such as removing observations of T-Mobile iPhones, which were
unauthorized “unlocked” models of the original iPhone.

29As some summary statistics from Nielsen’s research are made public, there will be occasions where firm names
are included.

30See, for example, Consumers Union of United States (2009).
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used on iPhones) and Android see strong growth, while Blackberry’s growth lags the growth of
smartphones overall. The solid lines in Figure 6 show the share of adults that own a given type
of smartphone over time. By the end of 2010, iOS and Android each control nearly 30% of
smartphones.

Another interesting trend is the share of customers under contract. Figure 4 shows that the share
of customers that are currently on a contract for their mobile phone does not change much over
the sample period, even when restricted to only smartphones. Over 90% of smartphone consumers
report signing a two-year contract that includes an ETF.

Additional plots of raw data are discussed with the estimation results in Section 5, where plots
of actual versus fitted moments of the data are discussed to illustrate how well the model fits the
data at the estimated parameter vector.

3.5 Reduced-Form Evidence

To determine whether or not consumers respond to my measure of network quality, I performed a
regression of carrier share on dropped calls for a single month of my data, including carrier fixed
effects and clustering standard errors at the market level. The results (Appendix B) show an effect
of dropped calls significant to the 99% level, and estimate that a 1% increase in a carrier’s dropped
call rate translates into a decrease of market share of 0.84%. This indicates that consumers do
indeed respond to differences in network quality.

From the theory model, we are interested in estimating the substitutability of handsets versus
wireless carriers. However, since the data are not a true panel, we cannot directly look at switching
rates between different handset-network bundles. We are interested in distinguishing whether the
market is composed of, say, consumers who want a Blackberry regardless of which carrier it is
on, or consumers who want to be on Verizon regardless of what handset they have. Treating each
market as an independent realization of preferences, we can look at the cross-section for evidence
of substitution.

Consider the following: if carriers are good substitutes for one another, we would expect to
see wide variance in carrier market shares across markets, relative to the variance in smartphone
market shares. See Appendix Figure 9 for plots of these shares across markets in the raw data. We
can see that there does appear to be more variation in carrier market shares than in smartphone
market shares across markets. However, there are obvious confounds to this: we believe that
differences in network quality affect a carrier’s market share, as discussed above. Similarly, since
the iPhone is exclusive to AT&T, we would expect AT&T’s strength in a market to affect the
different smartphone market shares. Appendix Figure 10 plots the residuals from regressions of
market shares on controls. We clearly see that, controlling for relevant confounds, there is little
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variation in smartphone shares across markets, but large variation in carrier shares across markets,
lending support to the idea that carriers are good substitutes for one another, but smartphones are
poor substitutes for one another.

4 Empirical Model of Demand for Smartphones

Utility maximizing consumers choose every month to either consume a handset-network bundle, or
to have no mobile phone (with discounted present value of utility normalized to 0). A consumer’s
state in a given month is what device she currently owns, the months remaining on her contract (if
any), and any early termination fee (ETF) that would apply if she chose to switch to a new device
or carrier. The consumer chooses between alternatives every month based on the discounted utility
from each handset-network bundle.

Monthly Flow Utility I begin with monthly flow utility: An individual i in market m receives
flow utility from handset h on network n in month t that consists of a handset component, a network
component, an interaction between those two, and a monthly access fee:

uimnht = (1−βt)
(t−ti0) [δimnt +δiht +β

c ·δimnt ·δiht ]−αi · pn(1)

δimnt = βin ·Xmnt +ξnm

δiht = βih ·Xht

The term (1−βt)
(t−ti0) captures a deterministic rate of decay of a handset purchased in month

ti0 over time, with the monthly decay rate βt to be estimated. The term β c is analogous to the
one from Section 2.2, and allows consumer utility to be non-linear in the utility of the individual
bundle components. Utilities from the handset and network, δimnt and δiht respectively, are modeled
as projections on to the characteristics of the networks and handsets. Consumers have individual-
specific tastes over network characteristics, which consist of network n’s rate of dropped calls
in market m in period t.31 There is also a fixed network-market effect ξnm that is constant over
time that captures unobserved heterogeneity in carriers across markets. Similar to network quality,
handset quality depends on a vector of handset characteristics over which consumers have random
and fixed coefficients: random coefficients over indicators for the Android, iOS, and Blackberry
handheld operating systems, and fixed coefficients over processor speed, indicators for feature

31The dropped call rates used in estimation are relative to the market average. There exist markets where, for
geographic reasons, all major carriers have poor quality networks, but I do not observe less adoption of mobile phones
in those markets. Instead, the primary driver of differences in overall mobile phone adoption across markets is the
income distributions of the markets. Conditional on owning a mobile phone, the relative shares of the carriers is
heavily influenced by their relative quality, as discussed in Section 3.5.
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phone and smartphone, time trends in feature phone and smartphone, the log of the number of
“apps” available on the handset platform, and whether or not a given device is that network’s
“flagship” device32 at that time.33 The network’s monthly access fee is pn. An individual’s price
sensitivity, αi, will be modeled as

αi = Zi ·βα +η
α
i(2)

where Zi are indicators for an individual’s income group,34 βα are fixed coefficients and ηα
i is

an i.i.d. mean-zero normal draw with variance ση to be estimated. The individual-specific random
coefficients βi = [βin βih] multiply the network quality characteristic and a vector of handset oper-
ating system dummies, respectively, and are distributed jointly normal according to βi ∼N

(
β ,Σ

)
.

All off-diagonal elements of Σ are set to 0, except those corresponding to covariances between
random coefficients of the handset OS dummies and the rate of dropped calls, which are to be esti-
mated. Note that these random coefficients are not subscripted by time period; they are persistent
over time.

Discounted Flow Utility A consumer’s decision on which device to purchase is clearly a dy-
namic one: purchasing a device today and signing a two-year contract increases my cost of chang-
ing to a new device in the next 24 periods. However, the state space over the 24 months of a
smartphone contract consists of all possible characteristics, prices, and availabilities, and so some
simplification must be made to make the problem tractable. I assume that at the time of contract
signing, a consumer does not expect to break her contract: she evaluates discounted utility without
explicitly accounting for the option value of switching in every period between the current one and
the end of her contract.35 In the data, less than 1.4% of observations report paying termination
fees in the previous 12 months. Discussions with industry sources indicate that consumers who
pay such fees have often either broken their handset, rendering it useless, or are responding to a
another truly unexpected event such as a relocation.36 These are consistent with consumers not

32While I observe advertising spending by carrier and market, I do not observe it at the device level. Conversations
with industry sources confirm that carriers focus their device advertising on one “flagship” device at a time. Therefore,
I have identified each network’s “flagship” device for the period in question, and assigned it an indicator equal to that
carrier’s share of advertising spending in that market and month.

33Additional characteristics such as GPS, wifi, memory, screen size, screen resolution, and camera resolution have
also been gathered. However, trends in these are highly collinear with processor speed, and so they are not included.

34I use 7 income groups in total, as all groups above $100K in income have similar rates of ownership of smart-
phones in the dataset. Note that the mean income coefficient of the lowest income group is normalized to -1, but for
the remaining groups is estimated freely.

35When estimating the model, consumers are indeed able to break their contract and switch to a different bundle.
Unreported estimates from a model where consumers are not able to switch while under contract yields similar results.

36Given the high “retail” (unsubsidized) listed prices of handsets, if a handset is broken, it can often be less expensive
to pay an ETF and purchase a new subsidized handset than to replace the previous handset.
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expecting to break their contract at the time of signing.37 A second challenge is how to model the
continuation value at the end of a contract. I will borrow a suggestion from other dynamic discrete
choice studies38 and assume that the maximum discounted utility available from a handset-network
combination in the current period is sufficient to predict future values of the maximum discounted
utility available from a handset-network bundle. This is captured in the continuation value function
γit () described below.

Given the flow utility, consumer i in market m that currently owns handset h on network n

with rit months remaining on their contract has the following present value of utility from that
handset-network combination:

Uimhnt =
rit−1

∑
m′=0

bm′uimnht +brit · γit (rit)(3)

In every period, a consumer will compare this value to other possible choices available to
them. I use the notation (nh)′ to indicate an alternative handset-network bundle. A consumer’s
information set in the current month consists of all characteristics and prices of the products that
are available. Specifically, every other handset available on every network, and the outside good of
having no mobile telephone. The present value of utility from purchasing a new bundle handset-
network pair in period t in market m is

Uim(nh)′t = αi ·
(

p(nh)′t +ET Fit +β
s
i

)
+

23

∑
m′=0

bm′uim(nh)′t +b24 · γit (24)(4)

The discount factor b is fixed at 0.9916 = 0.9(1/12), giving an effective annual discount rate of
10%. The term γit is a reduced-form representation of the consumer’s continuation value at the end
of their contract. It can be thought of as that person’s value of being off contract, and will be mod-
eled as γit (x) = θ x

γ max(nh) {Uimnht}. That is, a consumer looks at the discounted utility available
from other bundles this month, and expects the maximum of that set to grow by a percentage every
month.39

The first term in the above equation captures the cost of purchasing the handset at price p(nh)′t ,
paying an early termination fee (ETF) of ET Fit , and paying some individual specific intrinsic
switching cost β s

i , designed to capture the cost of learning about new devices, learning how to use
a new device, and transferring data. Early termination fees vary by carrier and typically decrease
every month from the date of purchase until the contract expires after two years. Consumers who

37Unreported estimates of this model omitting observations who claimed to have broken contracts yields similar
results to the reported results.

38See Gowrisankaran & Rysman (2007) and Geweke & Keane (1996)
39The maximum of the set is selected as though the consumer were not currently on a contract, as that is the proper

benchmark for modeling the value of being off-contract.
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are off-contract in period t have ET Fit = 0. The 24-month discounting reflects the two-year length
of contract.

Therefore, the consumer’s decision to consume handset h on network n in a given period is
captured by the inequality

Uimnht ≥Uim(nh)′t ∀(nh)′

4.1 An Alternative Logit Approach

The above model is similar to the Pure Characteristics model described by Berry & Pakes (2007),
which omits i.i.d. Logit draws for each possible good and opts instead for only random coefficients
to rationalize tastes. If, instead, we were interested in estimating a version of this model with Logit
tastes, we could indeed add i.i.d. Logit errors to each discounted flow utility Uimnht and directly
estimate a likelihood for each survey respondent. However, such a model has several drawbacks,
which are discussed in Appendix E.

4.2 Estimation Approach

The approach taken to estimate the above model will be to use a simulation estimator for a small
number of markets, but to nest that estimator with a Markov Chain Monte Carlo method to recover
estimates for the full dataset.

The simulation estimator I use is the simulated non-linear least squares (SNLLS) estimator pro-
posed by Laffont, Ossard and Vuong (1995). The model described above could also be estimated
using a simulated GMM estimator in the spirit of McFadden (1989) or Pakes & Pollard (1989).
Given a parameter vector, the model would predict market outcomes for every market and every
month given product characteristics and prices. Simulation methods could be used to integrate
over the random coefficients, and the simulated moments of the model could then be matched to
observed moments of the data. However, as is well-known in this literature, minimizing a naive
sum-of-squares of the difference between simulated and observed moments is biased for any fixed
number of simulation draws.40 The SNLLS estimator explicitly corrects for the simulation bias in
the objective function, resulting in a consistent estimator that is far less computationally demanding
than alternative approaches.41

40See Appendix F or Laffont, Ossard & Vuong (1995) for details.
41An alternative approach to this problem proposed by Gourieroux & Monfort (1993) uses moment conditions of

the form

E
[(

ψ
0
l −ψ

NS
l (θ)

) ∂ψNS
l (θ)

∂θ

]
= 0

where different sets of draws are used to compute the simulated moments and their derivatives, respectively, to
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A second challenge is that the unobserved heterogeneity parameters, ξnm, introduce 450 param-
eters that must be recovered when all 90 markets are included. In practice, no optimization routine
would be able to find a global extremum over such a parameter space. The remaining parameters
are not independent of the ξnm terms, complicating estimation of the full set of parameters. My
approach is to use a Markov Chain Monte Carlo (MCMC) method proposed by Chernozhukov and
Hong (2003) which nests the SNLLS estimator inside an MCMC framework.42 As they show, for
an estimator such as SNLLS, a Markov Chain can be constructed that shares the same distribution
as the asymptotic distribution of the estimated parameter vector. Parameter estimates can be taken
as the mean of the Markov Chain.

A final challenge is that this type of model faces the “initial conditions problem” (Heckman
1981), where the process that determines a sequence of outcomes must somehow be initialized.
For example, when simulating this model, most individuals already own a mobile phone in my
first month of data. I cannot take this empirical distribution as given and assume that the random
coefficients are distributed independently of the state observed in the first month; a given parameter
vector must rationalize that initial state (as discussed in Appendix E). If the conditional distribution
is not known, then the ideal approach is to start where there is no initial condition (Pakes 1986).
Therefore, I simulate starting 5 years before my data begins, allowing consumers to make decisions
once per year in a random month, and then up to 4 times in the final year depending on their random
month.43 The choice set in this initial period is limited to a smaller set of smartphones than truly
existed, but that captures the most popular models observed in the first month of data.44

For practical reasons, I will first estimate the parameters of the model for a small number of
markets using SNLLS, and then use these estimates as the starting point for the MCMC estimation.
Estimation using the simulation estimator proceeds as follows:

1. For each of the M markets and N = 7 income groups, draw a set of S vectors to represent the
unobservable types.

eliminate correlation. Computing the derivative of the simulated moment is computationally costly in this setting.
42Nesting a simulation-based estimator within an MCMC approach creates a minor problem: the correction term

proposed by Laffont, Ossard & Vuong is consistent for any linear transformation of the objection function. However,
the MCMC method involves an exponential transform when calculating jump probabilities to construct the chain. This
results in a bias in jump probability for a fixed number of simulations, that goes to zero as the number of simulations
goes to infinity. The author is aware of this issue and is currently pursuing multiple approaches to correcting for this
issue. Monte Carlo experiments indicate no effect on consistency of estimates. Estimates from Specifications (1) and
(2) are not affected by this issue, and comparing estimates from Specification (3) to (2) suggest it does not have a
material effect on results.

43 I chose 5 years because 98.6% of observations in the first month of data claim to have purchased their current
smartphone within 5 years; 98.0% is the average for all months.

44The prices and release dates for the smartphones available in this “initial period” were gathered by hand. The
smartphones included are all iPhones, the Blackberry Curve, Pearl, Bold, 7200 series and 8800 series, the Motorola Q
series of Windows phones, the Nokia N75 series, and a “generic” smartphone available on each carrier to capture all
others. The generic “feature phone” is also included for each carrier.
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2. For each market m, determine a set of weights that, when applied to the N individuals drawn
in Step 1, match the observed distributions of the N types in that market. That is, each market
is expressed as a mixture of finite types of consumers. Similarly, determine weights for each
market that represent their share of the national market.

3. Search over parameter vectors to minimize an objective function (discussed below). For each
candidate parameter vector,

(a) Transform a set of S draws to correspond to the random coefficients βi ∼ N
(

β ,Σ
)

in
accordance with the candidate parameter vector.

(b) For all N · S “drawn individuals” in each of the M markets, simulate the sequence of
choices for every month.45

(c) Calculate moments of these sequences that can be matched against observed moments
of the dataset.

(d) Calculate the bias-corrected objective function.

What does a sequence of choices for a “drawn individual” look like? As an example, a sequence
of choices may be that an individual in a certain market with a set of taste draws emerges from
the initial period and arrives in month 1 of my data with a Blackberry on Sprint and four months
remaining on contract. In months 2-7, this individual perceives greater discounted flow utility from
her current device, even though her contract expired in month 5 and her handset is decaying at a
monthly rate of βt . However, in month 8, a new iPhone is released and this consumer perceives
a higher level of discounted flow utility from the iPhone-AT&T bundle, even after paying for the
new handset and paying an internal “switching cost”.46 This consumer buys that bundle and then
remains with this bundle through month 26, as no other bundle offered enough of an increase
in discounted flow utility in any of months 9-26 to overcome her contract termination fees and
internal switching cost. This is a single sequence for a single drawn individual in a single market:
I simulate many of such sequences for each market based on different draws of unobservables.47

Once many sequences have been simulated, they can then be aggregated into moments such as
market shares or average characteristics of products (the exact moments used in estimation are
discussed in Section 4.3).

45The sequences of choices is begun 5 years prior to the start of the dataset, as discussed in Section 4.4.
46I estimate the distribution of the switching cost, β s

i , as a normal truncated at 0 with mean µs and standard deviation
σs. While this captures the implicit cost of learning a new device and transferring data between old and new devices,
it may also be capturing frictions such as search costs.

47An important feature is that the same draw of unobservables may result in different paths in different markets, due
to differences in network quality.

22



For each moment l = 1..L, we want to match the simulated moment ψNS
l (θ) to its observed

value in the data, ψ0
l . The bias-corrected objective function subtracts a consistent estimate of the

simulation error (discussed in Appendix F), resulting in

QLNS (θ) =
1
L

L

∑
l=1

{(
ψ

0
l −ψ

NS
l (θ)

)2
− 1

S (S−1)

S

∑
s=1

(
ψ

NS
sl (θ)−ψ

NS
l (θ)

)2
}

where ψNS
sl (θ) is the value of the simulated moment for a single simulation draw and ψNS

l (θ)=
1
S ∑

S
s=1 ψNS

sl (θ). Thus, our consistent estimate of the parameter vector is θ ∗ = argminθ QLNS (θ).
Once the above method has recovered an estimate θ ∗ of the true parameter vector θ 0, the

standard inference methods for simulation estimators can be used to recover confidence intervals
for all parameter estimates. See Specifications (1) and (2) in the results section for estimates for
limited numbers of markets using SNLLS.

The MCMC estimator uses the method developed by Chernozhukov and Hong (2003), which
nests an extremum operator within an MCMC framework. The approach is to construct a quasi-
posterior density over the parameter of interest according to

p(θ) =
e−QLNS(θ)π (θ)∫

Θ
e−QLNS(θ)π (θ)dθ

where Θ is a compact convex subset of Rk that contains θ 0, π (θ) is a prior probability distri-
bution, and QLNS is the objective function from the SNLLS estimator described above. Inspection
of this density reveals that it places most weight in areas of the parameter space where QLNS (θ)

is small, or where the simulated model closely matches the observed data. In order to compute
an estimate of θ 0, we can construct a Markov chain whose marginal density is given by p(θ)

and recover our estimates as the mean of the chain. To construct the Markov Chain, I will use
the Metropolis-Hastings algorithm with quasi-posteriors suggested by Chernozhukov and Hong
(2003), where from a starting value θ (0), I generate a new candidate vector θ ′ from a conditional
density q(θ ′|θ), and I update according to

θ
( j+1) =

 θ ′ w.p.ρ
(

θ ( j),θ ′
)

θ ( j) w.p.
(

1−ρ

(
θ ( j),θ ′

))
where the transition probability is given by

ρ

(
θ
( j),θ ′

)
= min

 e−QLNS(θ
′)π (θ ′)q

(
θ ( j)|θ ′

)
e−QLNS(θ ( j))π

(
θ ( j)

)
q
(
θ ′|θ ( j)

) ,1
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I use a standard normal for q(θ ′|θ), making the chain a random walk. That is, each candidate
vector is centered at the current vector. Further, I specify a flat prior for all terms.48 This simplifies
the transition probabilities for my specification to:

ρ

(
θ
( j),θ ′

)
= min

(
e−QLNS(θ

′)

e−QLNS(θ ( j))
,1

)

Therefore, if a candidate vector improves the objective function, the chain moves to that point
with probability 1. If a candidate vector worsens the objective function, the chain moves to that
point with some positive probability that depends on the change in the objective function. Because
of this, the chain spends relatively more time in the parameter space where the simulated model
fits the observed data. Once the chain reaches a sufficient length, its mean θ̄ can be used to provide
a consistent estimate of θ 0.

In summary, consumers have individual-specific taste draws for each carrier, for each of the
three handset operating systems, for price sensitivity (as a function of income), for network quality,
and for switching costs. These individual tastes are persistent over time. I simulate a large number
of sequences of consumer decisions and match moments of the simulated model to moments of
the raw data, correcting for bias introduced by simulation error. The total number of parameters
to estimate is 34, plus the 5 carrier-market fixed effects per market, for a total of 485 parameters
when using all data.

4.3 Identification and Moments

Given that this is a non-linear model, there is not a one-to-one mapping between moments and
the parameters that they identify. Nonetheless, it is useful to consider what sources of variation in
the data are likely to be influencing different parameters. Network monthly access prices do not
change over this period, and so identification of preferences for networks comes primarily from
cross-sectional variation in the quality and market share of each network, controlling for each
market’s income distribution. Prices and characteristics of handsets are changing significantly
over time but are the same across markets, and so the time-series variation in these are identifying
preferences for handsets, as well as parameters relating to switching costs and the handset decay
rate. The variation in ownership rates of feature phones and smartphones between income groups
identifies differences in price sensitivities between income groups.

A common concern when estimating tastes for a bundle of two goods (a handset and a network
in this case) is confounding correlation of tastes with complementarity between the elements of

48The correlation parameters are constrained to be within the interval [−0.9,0.9] . The handset decay rate is con-
strained to be non-negative.
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the bundle.49 In this setting, these separate elements are identified by the cross-section variance
in network quality. If, for example, tastes for Blackberries and network quality are correlated, I
would expect to see the share of consumers with Blackberries roughly similar across markets, but
that consumers sort into the higher quality carriers in each market. If instead, the two elements of
the bundle are complements, then I would expect a carrier’s share of consumers with smartphones
to increase across markets as its network quality increases.

The moments used in estimation are the following for each of the 26 months of data: The
first set of moments are market-level shares of each carrier for all phones, and for smartphones
only. These influence parameters of tastes for network quality, as well as the variance of network
tastes and the market-carrier fixed effects. The second set of moments are national-level shares
of each smartphone operating system and average characteristics by smartphone operating system
(including network quality). These moments drive the taste parameters for the handset operating
systems and characteristics, as well as the correlation parameters between handset types and net-
work quality. The third set is the rate of smartphones purchase. This informs structural parameters
such as switching costs and the rate of handset decay. The fourth set of moments are the share of
ownership of smartphones, and any phone, by income group. These help isolate price coefficients
as well as mean utilities and time trends. The total number of moments being estimated is 24,076
when all 90 markets are included in estimation. When estimating for a single market, the number
of moments is 936.

4.4 Other details

Estimation of the SNLLS parameters was done using a simulated annealing algorithm in Matlab,
using “mex” files to simulate consumer choices and calculate moments and the objective function.
I use Halton Sequence draws to improve coverage and reduce spurious correlation. The distribution
of random coefficients for dropped calls and for switching costs are truncated at 0, so that no one
may get positive utility from dropping calls or switching devices. The MCMC chain constructed
has a total length of 100,000 after a burn-in of 10,000 draws. I group the parameters for the
Metropolis-Hastings algorithm into the following groups: (1) price coefficients, (2) characteristics,
(3) the ξnm, and (4) all remaining parameters. The variance of the draws for each parameter group
is adjusted after every 100 draws per group to maintain an acceptance rate as close as possible to
0.5.

49See Gentzkow (2007) for an analysis of this issue in the context of online newspapers versus print newspapers.
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5 Estimation Results and Discussion

See Figures starting at 5 for plots of fitted moments (dashed lines) versus actual moments (solid
lines). Parameter estimates start in Table 2 for four different specifications: the first specification is
estimated using SNLLS on a single market with 2,800 effective draws from the unobserved param-
eter vector. The second is estimated using SNLLS on 6 markets using 4,200 effective draws. The
third uses the identical setup as Specification 2 but switches the estimation approach to MCMC,
to show that the SNLLS and MCMC approaches produce similar results. The fourth is estimated
using MCMC on 90 markets with 18,900 effective draws. Figure 8 gives examples of the MCMC
process. The first panel shows the acceptance rate for the first parameter group. The second panel
shows the movements of a single parameter, the price coefficient mean for group with income of
$100K+. The vertical black bars indicate the transition between the burn-in period and the pe-
riod used in calculating estimates. As can be seen, the process appears to settle into a stationary
distribution before the end of the burn-in period.

5.1 Discussion

There are a number of trends to highlight in the parameter estimates. First, many parameters are
estimated more sharply as the number of draws and number of markets used increase. A large
number of parameters are not significant when using only a single market (Specification 1). This is
to be expected, as characteristics such as the network quality vary across markets much more than
they do over time. Therefore, we would expect parameters such as the distribution of tastes for
network quality and the correlation parameters to be poorly estimated with few markets. Second,
the MCMC method provides similar results to the SNLLS for the overlapping specifications. This
comparison provides a consistency check that the MCMC method provides an equivalent approach
to the SNLLS method. The parameters that are least similar between the two are parameters such
as the correlations, which are poorly estimated in general with a small number of markets. Third,
note that the 6 markets used for Specifications 2 and 3 are the six largest markets in the sample.
These appear to be a selected group, as some parameters show large swings when moving to the
90 markets, particularly those that are identified by cross-market variation.

Looking at the parameter estimates themselves, we see that the price coefficients are sharply
estimated and are decreasing in magnitude as income increases. All characteristic coefficients have
the expected sign. Other parameters of interest show that there is weak evidence of consumers sub-
stituting between handset and network quality, and that the most significant correlation between
handset and network tastes is with the Blackberry, where consumers who have positive taste for
Blackberries also have stronger disutility from dropped calls. The estimated distribution of switch-
ing costs has a mean of approximately $80, but a large standard deviation. Handsets decay at a rate
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of approximately 1% per month.
The plots of fitted moments versus actuals based on Specification 4 show that at the estimated

parameter vector, the simulated model fits most of the data well (starting at Figure 5).

6 Counterfactuals

6.1 Willingness to Pay for Exclusivity

This counterfactual examines, ex-ante, which of the national wireless carriers had the most to gain
from an exclusive contract with Apple in 2007. Of most interest are the values for AT&T and
Verizon, as these are the carriers that were rumored at the time to be in discussions with Apple.
Prices for the iPhone device are fixed at their values from AT&T regardless of the carrier, but
monthly access prices are allowed to re-adjust where indicated in Table 8. The scenarios determine
the net change in monthly fee income from November 2008 until December 2010 for all carriers
when the exclusive carrier is Sprint, Verizon, and AT&T. The willingness to pay is defined as
the total profit with exclusivity less the profits from AT&T having exclusivity (for AT&T, it is
compared to Verizon having exclusivity).50

If prices are held fixed (first column of Table 8), we see that Verizon has the highest willingness
to pay, as they are able to attract a large number of subscribers when offering the iPhone. How-
ever, the theory motivation presented earlier indicated that the primary driver of exclusivity being
optimal is the change in price equilibrium. In order to determine a new price equilibrium, I nu-
merically estimate the price elasticity of demand for each carrier at the estimated parameter vector,
and use this to recover an estimate of each carrier’s marginal cost. Then, taking that marginal cost
as given, I re-assign the iPhone devices to other carriers, and starting at the observed prices, iterate
best responses for each carrier until a new equilibrium is found.51 I then determine the change in
profits at the new equilibrium.

Once prices are allowed to adjust (second column of Table 8), we see that AT&T has a signif-
icantly higher willingness to pay. This is due to the fact that AT&T’s equilibrium price without
exclusivity is lower than Verizon’s. Verizon enjoys less elastic demand, and so has less harm from
rival exclusivity than AT&T.

The final two columns change the estimate of β c, the degree to which consumers are willing
to trade-off between handset and network quality, to 0. The purpose of this is to determine how
much this substitution is affecting willingness to pay. Since setting this parameter to 0 effectively
increases utility from all handsets, we cannot compare the values to those of the first two columns.

50Verizon is considered to include Alltel, even though that merger was announced in June of 2008.
51I cannot prove that there is a unique equilibrium.
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However, we still observe the large reversal in willingness to pay once prices float. This is evidence
that consumers’ substituting handset and network quality is far less of a factor in determining
willingness to pay than the shift in price equilibrium.

6.2 Effect of Apple Exclusivity on Android Entry Incentives

This counterfactual considers the expected profits of the Open Handset Alliance52 had Apple in-
stead chosen to be available on more than one carrier. The scenario compares the variable profits
from handsets earned from sales of Android units between November 2008 and December 2010
under the assumptions that the iPhone had initially launched on AT&T and Verizon, or on all four
national carriers. All characteristics are held constant at their observed values.53 Estimates are re-
ported for the case where network prices are held constant at their observed values, and also when
they are allowed to float to new optimal prices. Marginal contribution per handset is assumed to
be $139, and is the average handset subsidy paid by the three largest wireless carriers in Q4 2010.

As can be seen in Table 9, the exclusivity between Apple and AT&T created a significant
opportunity for the Android handset manufacturers. Consistent with the theory model, had Apple
not chosen to be exclusive, expected profits for Android handset makers would have been lower by
approximately $850M if the iPhone had also launched on Verizon, and nearly $1B if the iPhone had
launched on all carriers. In the interest of comparing magnitudes, the 2010 net profit of HTC, one
of the most successful Android handset makers, was $1.3B.54 Therefore, this is a sizable change
in incentives.55 We can conclude that the existence of exclusive contracts creates a significant
incentive for entry in this setting.

6.3 Apple Exclusivity vs Non-Exclusivity

This counterfactual combines the results from the previous two to answer the question of how
much Apple could have been compensated for the sales it lost due to exclusivity. Looking at
AT&T’s willingness to pay calculated above, the amount that AT&T would have willing to pay
Apple for every iPhone that they could have sold, had they not been exclusive, is $148.33. This is
based on AT&T’s willingness to pay as computed in Counterfactual 1, and the number of handsets

52The “Android Consortium”, a consortium of 84 companies that includes 22 handset manufacturers, among them
Motorola, Samsung, and HTC.

53The most obvious characteristic that may change would be the number of “apps” available on Android, as we
might expect this to be a function of the installed base of Android phones. This leads to a more conservative estimate
of the number of lost sales. Future work will examine this more closely.

54HTC Corporation 2010 Annual Report.
55Furthermore, it is a conservative estimate. In addition to the issue mentioned in the previous footnote, this does

not take into account changes in subsidies or handset prices. It is not feasible to recompute a new handset price
equilibrium given the number of prices this would involve (every handset, every month).
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Apple could have sold under non-exclusivity in Counterfactual 2. As a comparison, Apple’s 2010
net income for the entire firm was $14B, and the firm sold 40M iPhones worldwide.56 If half of
the current year’s profits are from current iPhone unit sales, we get $175 profit per unit, which is
comparable to what AT&T would have willing to compensate Apple for unit sales foregone due to
exclusivity. Without more details on Apple’s per-unit profit level, it is not possible to conclusively
state that exclusivity was optimal, but this calculation shows that AT&T’s willingness to pay was
comparable to what Apple is likely able to earn per iPhone sold.57

7 Conclusions

This paper proposes a simple motivation for exclusive contracting in the smartphone market: since
consumers are more willing to substitute between downstream goods (wireless networks), an ex-
clusive contract with an upstream firm (handset maker) can reduce price competition and lead to
higher equilibrium prices. However, since the downstream goods are not in fact perfect substi-
tutes, exclusivity leads to a smaller market potential, and so the question of whether or not it leads
to higher joint profits of the contracting parties is an empirical question.

An econometric analysis of this market shows that consumers are far more price sensitive with
respect to wireless networks than handsets, and so exclusivity may be a profit-maximizing strategy.
Counterfactual simulations show that AT&T was indeed willing to sufficiently compensate Apple
for the smaller market potential caused by exclusivity, and that this exclusive contract significantly
increased the entry incentives of rival smartphones, such as those running Google’s Android oper-
ating system.

Future research directions include extending the theory model to examine the optimal length
of exclusivity under some alternative assumptions, such as decreasing marginal costs or positive
usage externalities. These may explain why we observe shorter length exclusive contracts and why
Apple renegotiated its exclusivity with AT&T before the end of the 5-year term.

56Apple Corporation 2010 Annual Report
57Some may argue that the relevant comparison is with the case where Google’s Android does not enter, as Ap-

ple may not have anticipated Android’s 2008 entry into the market. However, Google had purchased the software
developer responsible for Android in 2005, and so it is reasonable to assume that Apple anticipated such an entry.
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Figures

Figure 3: Network Quality Across Markets vs Within Market
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33



Figure 4: Share of Consumers on Mobile Phone Contracts
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Figure 5: Fitted vs Actual: Smartphone Ownership by Income
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Note: Solid lines represent actual data. Dotted lines are fitted. Different shades represent different
income groups; top (lightest) line is incomes of 100K+, decreasing in order to lowest line repre-
senting incomes of $15K or less. Ordering reflects ordering in Table 2. Based on results from
Specification 4.
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Figure 6: Fitted vs Actual: Handset O/S Shares
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Figure 7: Fitted vs Actual: Carrier Shares of Smartphones
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Note: This graph stacks the share of American adults with a smartphone on a given carrier, showing
actual (solid line) versus fitted (dashed line), using estimated from Specification 4.

Figure 8: MCMC Convergence Charts
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Tables
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In all tables, a dash (-) for a standard error indicates that the parameter was fixed in the given
specification. Any parameters listed with a µ or σ are indicating that the estimated parameters are
means and standard deviations of random normal variables, respectively.

Table 2: Price Coefficient Estimates

Specification
Income Group (1) (2) (3) (4)

<$15K -1 -1 -1 -1
- - - -

$15-25K -0.97614 -0.9759 -0.9871 -0.9758
(0.0692) (0.0464) (0.0406) (0.0325)

$25-35K -0.9345 -0.9340 -0.9556 -0.9340
(0.0993) (0.0382) (0.0241) (0.0118)

$35K-50K -0.9143 -0.9138 -0.9337 -0.9139
(0.0416) (0.0389) (0.0341) (0.0252)

$50-75K -0.8978 -0.8973 -0.8966 -0.8973
(0.1033) (0.0489) (0.0416) (0.0275)

$75-100K -0.8579 -0.8578 -0.8589 -0.8578
(0.2419) (0.0936) (0.1223) (0.0439)

$100K+ -0.80818 -0.8129 -0.8296 -0.8231
(0.4109) (0.0217) (0.0330) (0.0207)

Standard Deviation 0.1583 0.1578 0.1595 0.1623
(0.0472) (0.0319) (0.0388) (0.0176)
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Table 3: Handset Parameter Estimates

Specification
(1) (2) (3) (4)

Android µ -9.8975 -9.9737 -9.923 -10.225
(6.918) (4.353) (4.541) (2.232)

Android σ 7.1402 7.1697 6.8054 7.1763
(7.164) (5.291) (4.541) (2.366)

iOS µ -3.9514 -3.9692 -3.842 -3.969
(8.662) (7.930) (6.837) (2.461)

iOS σ 5.8701 5.887 6.063 5.897
(2.214) (5.024) (4.622) (1.752)

Blackberry µ -21.517 -22.162 -22.046 -22.204
(11.449) (8.702) (10.377) (5.297)

Blackberry σ 18.721 18.647 18.602 18.581
(13.201) (5.092) (3.836) (3.771)

Log(Apps) 1.9621 1.9792 1.7743 1.9796
(0.553) (0.848) (0.750) (0.320)

Processor Speed (GHz) 1.1777 1.1857 1.2754 1.1773
(0.778) (0.821) (0.684) (0.727)

Flagship Device 0.7843 0.7898 0.7113 0.7896
(0.485) (0.352) (0.257) (0.0674)

Table 4: Network Parameter Estimates

Specification
(1) (2) (3) (4)

Voice Mean Utility 44.793 44.221 44.855 44.551
(4.457) (1.972) (1.378) (0.570)

Voice Time Trend 5.3892 5.6967 5.8096 5.7028
(1.964) (1.591) (1.735) (0.671)

Data Time Trend 2.0452 1.9618 1.9479 1.9796
(0.775) (0.646) (0.781) (0.201)

Dropped Calls µ -20 -24.024 -24.084 -24.056
- (14.265) (8.163) (1.310)

Dropped Calls σ 20 17.077 16.896 17.072
- (9.002) (10.816) (4.524)

Time trends are based on log(month), where month begins at 1 in the “initial period”, 5 years
before the data begin.
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Table 5: Carrier Parameter Estimates

Specification
(1) (2) (3) (4)

Carrier 0 σ - 0.2314 0.2196 0.2314
(“all other” carriers) - (0.2613) (0.2648) (0.0725)

Carrier 1 σ 0.2969 0.3086 0.2968 0.3015
(0.2495) (0.3114) (0.2967) (0.0964)

Carrier 2 σ 0.4108 0.4138 0.4319 0.4139
(0.1613) (0.2409) (0.2512) (0.0941)

Carrier 3 σ 0.5300 0.5376 0.5449 0.5341
(0.4688) (0.2062) (0.2552) (0.117)

Carrier 4 σ 0.3317 0.3373 0.3708 0.3668
(0.1328) (0.3325) (0.4352) (0.1964)

Table 6: Correlation Coefficient Estimates

Specification
Dropped Call Correlation with (1) (2) (3) (4)

Android - -0.125 -0.129 -0.127
- (0.1858) (0.1602) (0.0661)

iOS - -0.0582 0.0745 -0.0519
- (0.1645) (0.1786) (0.1412)

Blackberry - -0.394 -0.102 -0.2951
- (0.2187) (0.0404) (0.0812)

Note: Since dropped calls are considered “bad”, a negative correlation between handset taste and
dropped calls indicates that people who prefer that handset also dislike dropped calls.

Table 7: Remaining Parameter Estimates

Specification
(1) (2) (3) (4)

Switching Cost µ 73.613 84.273 83.997 84.396
(22.331) (24.850) (18.367) (7.774)

Switching Cost σ 93.942 97.013 96.616 97.074
(30.029) (21.826) (32.143) (14.218)

Handset Decay Rate (βt) 0.00229 0.00232 0.0018 0.007305
(0.00443) (0.00571) (0.00169) (0.00231)

Continuation Value
(
θγ

)
1.0023 1.0035 1.0052 1.0049

(0.00585) (0.00581) (0.00214) (0.00199)
Handset-Network Complementarity (β c) -0.00155 -0.00156 -0.00211 -0.00185

(0.00079) (0.00155) (0.00144) (0.000861)
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Table 8: Counterfactual Simulation 1: Carrier Willingness to Pay

Scenario
Carrier Prices Fixed Prices Recomputed Prices Fixed, β c = 0 Prices Recomputed, β c = 0
AT&T $14.12B $21.81B $19.85B $23.90B
Verizon $20.54B $3.20B $32.12B $5.43B
Sprint $3.02B $6.82B $5.66B $9.86B

Note: Table shows each carrier’s maximum willingness to pay for exclusivity with Apple, defined
as the profit difference between exclusivity and the worst case of rival exclusivity.

Table 9: Counterfactual Simulation 2: Android Entry Incentives

Apple enters on:
Two Carriers Four Carriers

Android Entry Incentive -$875.2M -$961.4M
Note: Table shows projected change in contribution margin for Android handset makers from
Apple entering on multiple carriers instead of being exclusive to AT&T.
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Appendix

A Summary Statistics

Table 10: Summary Statistics

Main Sample
Number of Markets 90
Number of Months 26
Total Observations 573,121

Monthly Respondents: Minimum 18,836
Monthly Respondents: Maximum 24,030

Average monthly share who own no mobile phone 7.50%
Average monthly rate of smartphone purchase 1.36%

Main Sample (Weighted) Census
% Female 51.97% 52.06%

% of Adult Population Age 60+ 25.54% 24.37%
% Income $100K+ 17.22% 15.73%

B Reduced-Form Evidence

First, a regression to show that consumers do indeed respond to network quality differences:

Table 11: Effect of Dropped Calls on Market Share

Independent Variable: Market Share
Parameter Estimate S.E.

Dropped Calls −0.8393 0.2089
Carrier 1 0.05204 0.01096
Carrier 2 0.1668 0.01460
Carrier 3 0.1398 0.01491
Carrier 4 0.003632 0.01012
Constant 0.1230 0.009399

Results are from an OLS regression. Standard errors are clustered at the market level. The number
of observations is 419; the R2 = 0.4453. The data are for the 6th month of survey data. The omitted
fixed effect is for Carrier 0, which represents all carriers other than the top four.

The following figure shows raw shares across markets for carriers and smartphones.
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Figure 9: Across-Market Variance in Shares of Carriers vs Smartphones
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Note: shares are averaged over final three months of sample to reduce sample noise in smaller
markets.

The following figure shows residuals from regressions of the market-level shares of carriers
and smartphones on a set of controls, including network quality and income distributions.

Figure 10: Across-Market Residuals from Controlled Regressions
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Note: shares are averaged over final three months of sample to reduce sample noise in smaller mar-
kets. Controls include income distributions and network quality (for carriers) and AT&T market
share (for smartphones).

C Derivation of Hotelling Case

In the Hotelling case, consumer utility from the final good takes the form

uAi = δA− pA−θi
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uBi = δB− pB− (1−θi)

Demand for each good at prices pA,pB is given by integrating over the uniform distribution of
types,

DA (pA, pB) = Pr (δA− pA−θi > δB− pB− (1−θi))

= Pr
(

θi <
δA−δB + pB− pA +1

2

)
=

δA−δB + pB− pA +1
2

DB (pA, pB) =
δB−δA + pA− pB +1

2

Throughout we will assume that the equilibrium lies in the interior. This is satisfied whenever

1+ pA− pB > δA−δB > pA −pB−1

In the common agency case, downstream firms charge no markups and so upstream firms set
the wholesale prices to be the profit-maximizing retail prices:

π
C
A = (qA− c)DA (pA = qA, pB = qB)

π
C
B = (qB− c)DB (pA = qA, pB = qB)

First-order conditions for profit maximization are given by

qA =
δA−δB +qB +1+ c

2

qB =
δB−δA +qA +1+ c

2

The equilibrium is therefore given by wholesale and retail prices of

qC∗
A = pC∗

A =
1
3
(δA−δB)+1+ c

qC∗
B = pC∗

B =
1
3
(δB−δA)+1+ c

Profits to the upstream firms in equilibrium are thus

π
C∗
A =

1
18

(δA−δB +3)2

π
C∗
B =

1
18

(δB−δA +3)2
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In the exclusive case, the exclusive carrier chooses a price to maximize profits given the whole-
sale price qA:

π
E
w = (pA−qA)DA (pA, pB = qB)

pA =

(
1+δA−δB + pB +qA

2

)
To avoid double marginalization, Firm A will offer a two-part tariff with wholesale price equal

to marginal cost and a tariff equal to all of the profits. The two upstream firms profits are given by:

π
E
A =

(
1+δA−δB + pB + c

2
− c
)

DA
(

pA =

(
1+δA−δB + pB + c

2

)
, pB = qB

)
π

E
B = (qB− c)DB

(
pA =

(
1+δA−δB + pB +qA

2

)
, pB = qB

)
Firm B’s optimal wholesale price rises now, leading to a higher retail price as well:

qE∗
B = pE∗

B = c+
3
2
+

1
2
(δB−δA)

Equilibrium profits when A is exclusive and B is not are given by

π
E∗
A =

1
32

(δA−δB +5)2

π
E∗
B =

1
16

(δB−δA +3)2

Finally, consider the case when Firm B is also exclusive, which we will denote by EE. Now
two carriers set final retail prices to maximize their profits according to

π
E
wA = (pA−qA)DA (pA, pB)

π
E
wB = (pB−qB)DB (pA, pB)

Solving, the equilibrium prices they will set as a function of wholesale prices are

pEE∗
A =

δA−δB +2qA +qB

3
+1

pEE∗
B =

δB−δA +2qB +qA

3
+1

Similar to above, we have that both A and B set two-part tariffs to avoid marginalization, and
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so set wholesale prices to marginal cost and earn tariff profits of

π
EE
A =

(
δA−δB +2qA +qB

3
+1− c

)
DA
(

δA−δB +2qA +qB

3
+1,

δB−δA +2qB +qA

3
+1
)

π
EE
B =

(
δB−δA +2qB +qA

3
+1− c

)
DB
(

δA−δB +2qA +qB

3
+1,

δB−δA +2qB +qA

3
+1
)

Optimizing, the two firms maximize profits, resulting in the following equilibrium:

qEE∗
A = c+1+

1
5
(δA−δB)

pEE∗
A = c+2+

2
5
(δA−δB)

π
EE∗
A =

1
25

(δA−δB +5)2

Firm B’s outcome is symmetric to this (swapping δA and δB).

D Proofs for General Case

The following assumptions stand throughout:

1. Tastes for handsets are independent of tastes for carriers.

2. Handsets A and B are substitutes and their prices are strategic complements.

3. The upstream firms set wholesale prices and tariffs independently (i.e. no collusion is possi-
ble).

4. Share functions are continuous and differentiable in all prices. Pricing equilibria exist and
are unique.

5. For simplicity, I will assume that the underlying demand system captures downstream “mar-
ket power” with a parameter η ∈ [0,∞), such that under common agency, when η = 0,
downstream firms are homogenous as in the above section so that for carrier n, ∂ sAn

∂ pAn
=−∞.

As η increases, so does ∂ sAn
∂ pAn

, and in the limit ∂ sAn
∂ pAn
→ ∂ sA

∂ pA
as η → ∞. This allows us to char-

acterize the limit cases of carrier monopolists (η = ∞), carriers as homogenous (η = 0), and
cases in-between. The analogous values for cross-partials are that ∂ sAn

∂ pAn′
goes from ∞ to 0 as

η goes from zero to ∞.

An example of a demand system that would satisfy A5: if consumers have taste draws θ j for each
firm j = 1..J, drawn from distributions Fj, and utility from the downstream good of firm j were of
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the form ui j = κ +ηθ j− p j for some constant κ . This is, in effect, a more general version of a
Hotelling model. Note that a demand system of the Logit family would not satisfy this assumption,
as downstream firms are always imperfect substitutes in that setting, and so the limit cases are not
attainable.

One challenge is that as downstream firms gain more market power, total market power and the
equilibrium prices increase, making direct comparisons of equilibrium prices for different levels of
downstream market power difficult. For example, when carriers are monopolists, we would expect
the carriers to retain some of the joint surplus; it would be unreasonable to expect that handset
firms could extract the complete amount of joint surplus. Therefore, to simplify the comparisons,
we will assume that when bargaining over the joint surplus, the outside alternative is to have the
upstream firms sell handsets directly to consumers. This allows us to characterize the maximum
surplus achievable by the upstream firms as the “direct” profits whenever joint profits are greater
than that.

We will first analyze the common-agency case, where each carrier n = 1..N offers both hand-
sets. We will look for a symmetric equilibrium outcome. The upstream firms choose the wholesale
prices qAn and qBn (and can further extract surplus from a flat tariff). Downstream firms choose
final retail prices pAn and pBn, n ∈ {1, ...,N} according to

πn = (pAn−qAn)sAn (pAn, p−An)+(pBn−qBn)sBn (pBn, p−Bn)(5)

Maximizing downstream profits yields two first-order conditions that must be satisfied for both
carriers at the optimal retail prices pC∗

A , pC∗
B :

(pAn−qAn) =

(
−∂ sAn (p)

∂ pAn

)−1(
sAn (pAn, p−An)+(pBn−qBn)

∂ sBn (p)
∂ pAn

)

(pBn−qBn) =

(
−∂ sBn (p)

∂ pBn

)−1(
sBn (pBn, p−Bn)+(pAn−qAn)

∂ sAn (p)
∂ pBn

)
Notice that the share derivatives must take into account the indirect effect of prices on compet-

ing prices, since we have assumed that prices are strategic complements. For example, we have

∂ sAn (p)
∂ pAn

=
∂ sAn

∂ pAn
+

∂ sAn

∂ pBn

∂ pBn

∂ pAn
+(N−1)

(
∂ sAn

∂ pAn′

∂ pAn′

∂ pAn
+

∂ sAn

∂ pBn′

∂ pBn′

∂ pAn

)
(6)

∂ sBn (p)
∂ pAn

=
∂ sBn

∂ pBn

∂ pBn

∂ pAn
+

∂ sBn

∂ pAn
+(N−1)

(
∂ sBn

∂ pAn′

∂ pAn′

∂ pAn
+

∂ sBn

∂ pBn′

∂ pBn′

∂ pAn

)
(7)
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where we make use of the fact that we are looking for symmetric equilibria to simplify. Since
prices are strategic complements, all derivatives of prices with respect to other prices are positive.
We can immediately analyze the limit cases of downstream competition: if carrier demand is per-
fectly elastic (η = 0), cross-carrier partial derivatives are infinite, resulting in zero markups. The
resulting market outcome is identical to that where the upstream firms compete directly for con-
sumers: handset makers effectively set the final price since qA and qB are passed through directly
to consumers as pA and pB, resulting in equilibrium handset markups under common agency given
by

(
qC∗

A − c
)

=

(
− ∂ sA

∂ pA

)−1

sA

(
pC∗
)∣∣∣∣∣ pA = qA, pB = qB

(
qC∗

B − c
)

=

(
− ∂ sB

∂ pB

)−1

sB

(
pC∗
)∣∣∣∣∣ pA = qA, pB = qB

Profits for the upstream firms are then

π
C∗
A =

(
− ∂ sA

∂ pA

)−1

NsAn

(
pC∗
)2

= π
C∗
B

In the other limit case where downstream firms are monopolists (and so each carrier effectively
serves a different “market”), we have η = ∞ and zero cross-carrier effects, and are left with only
the first two terms of equations 2 and 3. The carrier then maximizes the joint profits as though
the upstream firms were colluding (the carrier effectively vertically integrates with both upstream
firms); these profits are maximized when handset manufacturers offer marginal cost pricing to
eliminate the double-marginalization (qA = qB = c) and instead extract surplus through a tariff.
Total profits are greater than in the previous limit case, although the upstream firms would not be
able to extract the full surplus without actually colluding in setting wholesale prices, which we
assume is not possible. Following the bargaining assumption made above, the monopolist carrier
retains at least the surplus created from internalizing both upstream firms’ profits, the upstream
firms are left with maximal profits of πC∗

A and πC∗
B .

In the intermediate cases, we can assume that upstream firms are effectively able to choose
the final retail price as they know the markup function used by carriers and are free to set any
wholesale price. The combination of variable profits and tariffs can not exceed πC∗

A due to the
bargaining assumption (i.e. carriers retain surplus generated by their market power).
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Now consider the case of exclusivity: handsets A and B are exclusive to carriers 1 and 2,
respectively. The equilibrium first-order conditions for optimal prices pEE∗

A and pEE∗
B are now

(pA1−qA1) =

(
− ∂ sA1

∂ pA1

)−1

(sA1 (pA1, pB2))

(pB2−qB2) =

(
− ∂ sB2

∂ pB2

)−1

(sB2 (pA1, pB2))

As η goes from zero to ∞, we have that ∂ sA1
∂ pA1

goes from ∂ sA
∂ pA

to ∂ s1
∂ p1

. The handset competition
dominates at low η , and the carrier competition dominates at high η .

Define these markup functions as m(qA1,qB2) and note that the markup is decreasing in own
wholesale price but increasing in opposite wholesale price. Upstream firms, anticipating this
markup function, now choose wholesale prices to maximize joint profits, according to

π
EE
A = (qA1 +mA1 (qA1,qB2)− c)sA1 (qA1 +mA1 (qA1,qB2) ,qB2 +mB2 (qA1,qB2))

π
EE
B = (qB2 +mB2 (qA1,qB2)− c)sB2 (qA1 +mA1 (qA1,qB2) ,qB2 +mB2 (qA1,qB2))

Optimizing, we get Firm A’s first-order condition given by

qA− c =−mA +

(
1+ ∂mA

∂qA

)
sA1

−
(

∂ sA1
∂ pA1

(
1+ ∂mA

∂qA

)
+ ∂ sA1

∂ pB2

∂mB
∂qA

)
Note that this simplifies to the the first-order condition from the homogenous carrier case if

prices are not strategic complements (if there is no positive effect from ∂mB
∂qA

). Therefore, in the
limit case of η = 0, equilibrium prices are higher when prices are strategic complements. Finally,
profits for Firm A in this case are

π
EE∗
A =


(

1+ ∂mA
∂qA

)
−
(

∂ sA1
∂ pA1

(
1+ ∂mA

∂qA

)
+ ∂ sA1

∂ pB2

∂mB
∂qA

)
sA1

(
pEE∗

A1 , pEE∗
B2
)2

Exclusivity is optimal iff

π
EE∗
A > π

C∗
A

(
1+ ∂mA

∂qA

)
−
(

∂ sA1
∂ pA1

(
1+ ∂mA

∂qA

)
+ ∂ sA1

∂ pB2

∂mB
∂qA

)
sA1

(
pEE∗)2 −

(
− ∂ sA

∂ pA

)−1
NsAn

(
pC∗)2

> 0(8)
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We know that 
(

1+ ∂mA
∂qA

)
−
(

∂ sA1
∂ pA1

(
1+ ∂mA

∂qA

)
+ ∂ sA1

∂ pB2

∂mB
∂qA

)
>

(
− ∂ sA

∂ pA

)−1

holds for all finite η , and that they are equal in the limit as η → ∞ (there is no strategic com-
plementarity of prices “across markets”, or ∂mB

∂qA
= 0 in that limit). Also, for any given price vector

p, we have that sA1 (p) = NsAn (p) when η = 0, but NsAn (p)− sA1 (p) increases as η increases.
That is, the amount of foregone sales from exclusivity increases as consumers are less willing to
substitute between downstream goods. We also know that equation 4 holds at η = 0. Combining
these, we have that equation 4 holds at η = 0, but that the LHS is decreasing as η increases, and
that equation 4 does not hold in the limit as η → ∞. Under the continuity assumption, we can
apply the intermediate value theorem to get that there exists an η∗ at which point equation 4 holds
with equality. Therefore, for all values of η < η∗, exclusivity is the profit maximizing strategy.

To address Proposition 2, we start with a model of what a carrier’s willingness to pay is. For
carrier n∈ {1,2}, the alternative to having handset A exclusively is that carrier n′ will have handset
A exclusively (I will assume there is a handset B available to both carriers). The equilibrium
outcome will be the one that maximizes the joint profits of the exclusive carrier and Firm A.

I first make a simplifying assumption: each carrier chooses only a network access price; hand-
set prices are fixed across carriers at ph. This simplifies the analysis, and I do not believe this to be
a controversial assumption, as in November 2011 when the iPhone is available on three carriers,
the device is priced identically across carriers but monthly access fees differ. The two carriers will
have identical marginal costs c, and choose their monthly access prices pn, which creates a final
good price for handset h on carrier n of pn + ph. Carriers choose their monthly access price in the
standard profit maximization framework. From now on, p1 and p2 represent equilibrium monthly
access prices less marginal cost.

Each carrier’s willingness to pay is determined by the difference in profits from having ex-
clusivity versus its rival having exclusivity. I denote carrier 1 having exclusivity of handset A by
χ = 1, and carrier 2 having exclusivity with χ = 2. For carrier 1, the willingness to pay to Firm A
is therefore

p1 (χ = 1) · (sA1 (χ = 1)+ sB1 (χ = 1))− (p1 (χ = 2)+ pA) · (sB1 (χ = 2))

Similarly, for carrier 2, it is

p2 (χ = 2) · (sA2 (χ = 2)+ sB2 (χ = 2))− (p2 (χ = 1)+ pA) · (sB2 (χ = 1))
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Re-arranging, we have each carrier’s willingness to pay having two components: a change in
profits from B, and the sales potential of A.

[p1 (χ = 1) · sB1 (χ = 1)− p1 (χ = 2) · sB1 (χ = 2)]+(p1 (χ = 1)+ pA) · sA1 (χ = 1)

[p2 (χ = 2) · sB2 (χ = 2)− p2 (χ = 1) · sB2 (χ = 1)]+(p2 (χ = 2)+ pA) · sA2 (χ = 2)

We are assuming that carrier 1 faces more elastic demand from its network. Therefore, at
β = 0, we know that the first term for carrier 1 is larger than for carrier 2, and the difference is
increasing in β . Further, we know that the second component is larger for carrier 2, since he has a
higher quality network, and that this difference is growing in β . Therefore, to establish Proposition
2, we need to show that the 2nd component grows faster in β . This follows form the inclusion of
pA, which is fixed for all β . The price pA is perfectly inelastic, whereas the equilibrium network
prices cannot be, and so there reaches a point at which the limited market achievable by carrier 1
dominates the gains carrier 1 can earn in monthly fees.

E Alternative Logit Approach

The model described in Section 4 is similar to the Pure Characteristics model described by Berry
& Pakes (2007), which omits i.i.d. Logit draws for each possible good and opts instead for only
random coefficients to rationalize tastes. A Logit approach in this setting would consist of adding
an i.i.d. Logit errors to each discounted flow utility Uimnht and directly estimating a likelihood for
each survey respondent. For example, if we observe a survey respondent that owns an iPhone on
AT&T which was purchased 5 months ago, then we know that in the survey month, this consumer’s
state was a 4-month old iPhone on AT&T with 20 months remaining on contract and an early
termination fee of, say, $155. We also know that in the survey month, this respondent chose to stay
with their iPhone instead of switching to another device or network. We could model the Logit
probability of this choice, and maximize the sum of the log likelihoods of these probabilities for
all observations. Such an approach has two major challenges in implementation:

First, such a setup would not easily allow for unobserved tastes (such as random coefficients)
beyond the Logit draw. The reason for this is that unobserved taste vectors would have to be
drawn from the conditional distribution based on your state. Put simply, our survey respondent’s
unobserved tastes are not random this month if they chose to purchase an iPhone 5 months ago.
Properly drawing from the conditional distribution would be intractable, and imposing that the
distribution of random coefficients is state-independent would be unrealistic.
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Second, we do not directly observe switching in the dataset. If I observe a survey respondent
who purchased an iPhone this month, I do not know what their state was when they arrived in this
decision period: they may have been on contract or not, and they may have had a smartphone or
not. One approach to measure the likelihood of this observation would be to look at the empirical
distribution of states from the previous month for the given market and determine the likelihood
of observing an individual purchase an iPhone this month, given the distribution of states in the
previous month. This is feasible, although computationally costly, and relies heavily on the quality
of the survey sample from that particular market.

Finally, direct estimation of each survey respondent would involve maximizing a likelihood
over approximately 600,000 observations, a non-trivial task. Including random coefficients would
increase the computational burden linearly in the number of simulation draws per individual. Even
if we were to ignore state-dependence and match aggregate market-level shares for each market
and each month, the sample noise is problematic, particularly in smaller markets, and leads to
cases of zero shares for some handset-network bundles, whose likelihood is undefined.

Taken together, this is evidence that this dataset does not lend itself to direct estimation and
that serial correlation of tastes is an important aspect of this market to capture. For these reasons,
I proceed with the model described in Section 4.

F Bias-Corrected Objective Function and Inference

The bias-corrected objective function arises form the fact that, as has been noted before, the objec-
tive function

Qnaive
LNS (θ) =

1
L

L

∑
l=1

{(
ψ

0
l −ψ

NS
l (θ)

)2
}

where moments are indexed by l = 1..L results in a biased estimate when minimized. This is
because minimizing the above has as its first order condition

H (θ)≡
L

∑
l=1

{(
ψ

0
l −ψ

NS
l (θ)

)
∂ψNS

l (θ)

∂θ

}
= 0

which, at the true value θ 0, has a non-zero expectation due to correlation between the simulated
moment and its derivative; specifically,

H
(
θ

0)=−E
[
Var

(
ψ

NS (
θ

0))]
The bias-corrected objective function obtains a consistent estimate of this above covariance

and subtracts it from the naive objective function, resulting in a consistent estimator.
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Confidence intervals are obtained using suggestions from Laffont, Ossard & Vuong (1995).
Proposition 3 of the former paper establishes a method of estimating confidence intervals that
correct for simulation bias (see pp. 964 for estimating equations). I use this suggestion in the con-
struction of the confidence intervals for the point estimates of the parameters. For the confidence
intervals of the counterfactuals, I bootstrap 200 draws from the estimated parameter distribution
and report the 5th and 95th percentiles of the estimates.58

G Robustness

One attractive feature of this setting is that carriers are not permitted to charge different prices
in different markets. With 90 markets of data, I therefore have prices set at a national level but
market-level variation in terms of the product quality (dropped calls). Since price is fixed across
markets, I do not need to be concerned about price being correlated with market-level variation
in products. However, since carriers are not able to vary prices across markets, it is likely that
they may vary other factors in response to differences in their product quality in a given market.
It is for this reason that I explicitly include a carrier’s share of advertising spend in the demand
for a “flagship” handset. Another concern may be a carrier’s retail presence: I regressed the share
of a carrier’s customers in a market who reported that they purchased their device from one of the
carrier’s own retail stores (as opposed to a national chain or online) on the carrier’s network quality
and found no relationship in the data. This leads me to conclude that carriers are not significantly
altering their retail presence in response to their network quality.

58For counterfactuals that involve re-computing the price equilibrium, I cannot confirm that the bootstrap method is
valid, as I cannot prove that iterating best responses leads to a unique price equilibrium in this model.
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