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Abstract

We propose a simple but flexible parametric method for estimating multiple conditional
quantiles. By construction, the estimated quantiles will satisfy the monotonicity require-
ment which must hold for any distribution, so, in contrast to many benchmark methods,
they are not susceptible to the well-known quantile crossing problem. Rather than directly
modeling the level of each individual quantile, we begin with a single quantile (usually
the median), and then add or subtract sums of nonnegative functions (quantile spacings)
to obtain the other quantiles. Our approach is thus a natural extension of the location-
scale paradigm that also permits higher order moments (e.g., skewness and kurtosis) to
vary. We propose two estimation methods and characterize the limiting behavior of each,
establishing consistency, asymptotic normality, and the validity of bootstrap inference.
The latter method, under an additional “linear index" assumption, respects monotonicity
but preserves the computational tractability of standard linear quantile regression. We
propose a simple interpolation method which generates a mapping from a finite number
of quantiles to a probability density function. Simulation exercises demonstrate that the
estimators perform well in finite samples. Finally, three applications demonstrate the
utility of the method in time-series (forecasting), cross-sectional, and panel settings.
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1 Introduction

While the vast majority of applied research is focused on estimating conditional expectations,
as larger, high quality datasets continue to emerge, there is growing interest and potential for
moving beyond means and variances towards studying conditional distributions.1 One way to
proceed is to develop a statistical model for a finite number of conditional quantiles, and, within
that paradigm, the most common approach is to estimate a model in which the conditional
quantile at each probability index is a linear function of observables.2 This assumption is often
motivated on the grounds of parsimony and computational efficiency.

Unfortunately, linear models often result in fitted quantile functions which do not satisfy the
natural monotonicity requirement of a true quantile function, a phenomenon often referred
to as the quantile crossing problem. For example, the fitted model might suggest that the
conditional median is lower than the conditional tenth percentile, a clear logical inconsis-
tency. Crossings can limit the utility of the multiple-quantile approach, since the distribution-
approximation qualities discussed above break down at values of X for which these crossings
occur. Comparisons across different quantiles, holding X fixed, convey little meaning in these
regions of the support. Crossings are perhaps the most extreme manifestation of the potential
misspecification of the constant marginal effect assumption implied by the additive separabil-
ity of a linear model. Bondell et al. (2010) observe that “this problem is well-known, but no
simple and general solution currently exists."3

We propose a simple but flexible parametric framework for joint estimation of multiple con-
ditional quantiles. These quantiles will satisfy the monotonicity requirement by construction.
The approach is quite intuitive, and it relates to a suggestion in Granger (2010). Rather than
directly modeling the level of each individual quantile, we begin with a single quantile (usually
the median), and then add or subtract sums of nonnegative functions (quantile spacings) to
it to calculate other quantiles. Each nonnegative function parameterizes the distance between
two adjacent quantiles. Our model is in many ways a natural extension of the location-scale
paradigm that also permits higher order moments (e.g., skewness and kurtosis) to vary.4 When

1Economists are fascinated by the evolution of the distributions of wealth and income over time, both
unconditionally and conditional on observables. Researchers across many fields study sources of idiosyncratic
risk faced by workers, entrepreneurs, investors, and firms, and how total income, wealth, and employment
are reallocated in the cross section. Incorporating non-Gaussian shocks into both theoretical and forecasting
models can lead to different implications, more robust decision-making and more reliable risk measurement.
Policy interventions may have highly heterogeneous effects on distributions of potential outcomes. In all of
these cases (and many others), distributions can be informative about underlying mechanisms and frictions.

2More precisely, the assumption is linearity in parameters; one could include nonlinear functions of X.
3We will discuss other proposed solutions to the crossing problem below.
4Our approach is analogous to methods for approximating intervals, where one models the midpoint and

the range of the interval, rather than try to model the upper and lower bounds directly.
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the model is correctly specified, the model parameters may be consistently estimated by min-
imizing a sum of “check" functions, a result which is closely related to White et al. (2015),
hereafter WKM.5 In addition to showing consistency and asymptotic normality, we establish
the consistency of a weighted bootstrap inference procedure.

At first glance, an apparent drawback of enforcing monotonicity is that, since each spacing
function is nonnegative, our model for conditional quantiles is nonlinear, which can complicate
estimation in practice. Given some additional structure, this need not be the case. One
can estimate the parameters of a “linear index"6 model by recursively running a sequence
of standard linear quantile regressions–which may be written as convex, linear programs–on
transformations of the data, starting with the median and working outwards towards more
extremal quantiles. In this case, the key computational advantages of standard linear quantile
regression model are preserved. As above, we establish the consistency, asymptotic normality,
and bootstrap validity, making implementation and inference straightforward.7

We argue for a natural alternative to the linear model discussed above, in which each spacing
is an exponentially affine function of X, which is a special case of the computationally-friendly
linear index model discussed in the prior paragraph. Its parameters are easy-to-interpret
semi-elasticities and it allows one to test a wide variety of relatively complicated hypotheses
about distributions via simple Wald tests. This functional form mirrors a common practice
in the literature in financial econometrics on volatility forecasting which, beginning with the
exponential GARCH model proposed by Nelson (1991), models the log of conditional volatility
as an affine function of observed variables (e.g. squared daily returns).8

The spacing approach and recursive estimation procedure also integrate nicely with other re-
lated econometric tools. Difference-in-difference methods, when combined with our quantile
spacing model, naturally extend to estimate treatment effects on different conditional quan-

5Angrist et al. (2006) address interpretation of the estimates in linear quantile models under misspecification
and how that the resulting estimated quantile functions are the best approximation (in some sense) to the true
conditional quantile function. Analogously, under misspecification, our method yields consistent estimates of
a pseudo-true parameter value which has a similar interpretation.

6Each spacing is a known, positive, strictly increasing transformation of a linear combination of X’s.
7Our results on estimation and inference actually allow for a more general framework, although, computa-

tionally, it is much easier to work with models in which the spacings are known nonnegative functions of linear
combinations of X so the only unknown parameters are these linear combinations.

8One of Nelson’s original motivations for the EGARCH specification was to flexibly allow for the presence
of a negative correlation between returns and future volatility, which can only be done in restricted ways
in standard GARCH specifications while still guaranteeing positivity of the conditional variance. The use
of the exponential GARCH specifications tends to be most common in situations where additional observable
regressors are included in the variance equation. Examples include seasonal indicators (Andersen and Bollerslev
(1997)), macroeconomic variables (Engle et al. (2013)), or multiple sources of high-frequency realized volatility
measures (Hansen and Huang (2016)). It is also common to assume that log volatility follows an AR(1) in
stochastic volatility models; see, e.g., Alizadeh et al. (2002). While our framework does not nest GARCH
models, our results cover quantile versions of MIDAS specifications, such as those in Ghysels et al. (2016).
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tiles.9 Regression-discontinuity designs (RDD) can also easily be adapted to our quantile
framework. This suggests a potential path for applying these methods to study causal ef-
fects of policy changes on conditional distributions of outcomes while controlling for observed
characteristics. Our work can also extend existing quantile methods, such as instrumental vari-
ables quantile regression by Chernozhukov and Hansen (2005) and high-dimensional quantile
regression by Belloni et al. (2011a), to account for multiple quantiles simultaneously.

In some applications, an estimate of a few individual quantiles is the object of interest. Robust
measures of conditional skewness and kurtosis depend only on 3 and 4 estimated quantiles,
respectively. In other cases, one may be interested in characterizing the entire conditional
quantile function or its inverse–the conditional distribution function. We propose an interpo-
lation method which generates a mapping from a finite number of quantiles to a probability
density function. This flexible, parametric mapping allows us to perform simulation exercises
and to move between quantiles and moments. Since the conditional quantiles are monotone
by construction, this object is always well-defined.10 We provide a method for constructing
confidence intervals on functionals of the parameters, interpolated density and X, such average
marginal effects and counterfactual decompositions similar to Machado and Mata (2005).

Next, we study the performance of the methodology in several simulation exercises. We find
that the recursive estimation procedure yields consistent estimates in finite samples and our
bootstrap inference procedures correctly control size. Estimates obtained by estimating a finite
number of quantiles and interpolating, under certain distance metrics, yield more accurate
estimates of the conditional quantile function relative to those generated following the method
in Chernozhukov et al. (2010).

Finally, we conclude by demonstrating the utility of the method via three empirical examples,
which apply the method in time series, cross-sectional, and panel applications. Our method
provides a simple but powerful way to characterize how distributions evolve over time and/or
conditional on characteristics. In all three cases, the spacing decomposition makes parameters
quite interpretable; it naturally decomposes changes in cross-sectional distributions into factors
which shift the entire distribution (between effects) from those which generate cross-sectional
heterogeneity for agents with similar observables (within effects).

The first application involves using generating forecasts of conditional quantiles of the daily
9The identifying assumptions associated with our linear index, exponential spacing approach have a similar

flavor to the fully nonparametric “changes in changes" estimator of Athey and Imbens (2006).
10Under some regularity conditions, one could likely use such an interpolation method to construct a quasi-

likelihood for the data. In this case, a QMLE estimator would choose the parameters of the model so to
minimize the Kullback-Leibler divergence between the parametric model and the data. We do not formally
explore this approach here, but we note that such an estimator would be a relatively standard case of QMLE.
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distribution of S&P 500 returns. Some variables primarily shift the location of the distribution,
others can affect just the left and/or the right tail. We compare forecasts of a linear model with
those generated via the spacing method–a natural alternative benchmark which uses the same
conditioning information, has the same computational complexity, and estimates the same
number of parameters. Estimated quantiles generated using the spacing approach generate a
higher in-sample fit and significantly outperform the linear model out of sample. Whereas the
linear model has fitted quantiles that cross approximately 3% of the time, our spacing method
does not suffer from this drawback.

Second, we present a very simple application of the method for conducting causal inference on
the effect of a policy change on several conditional quantiles using a regression discontinuity
approach. We revisit the question considered in Lalive (2008), who studies the effect of exten-
sions of unemployment benefits on unemployment durations. The policy change differentially
affected workers above the age of 50 relative to younger workers, so we are able to compare
distributions of unemployment durations as a function of age for workers immediately above
and below the cutoff. Interestingly, using our spacing approach, we find that the effects of the
policy change are almost exclusively concentrated in the right tail of the distribution. This
suggests that the average effect on durations which is attributed to a behavioral response to
the policy is concentrated among a small fraction of workers ex-post.

In a panel context, our preferred specification provides a natural way for studying the evolution
of a cross sectional distribution over time. To demonstrate this, we highlight several interesting
results from recent work by Schmidt et al. (2016), hereafter STW, who use our econometric
method to study a run on money market mutual funds that developed during September 2008
after the failure of Lehman Brothers. STW find that the model for multiple quantiles reveals
a number of very interesting insights about the forces which combine to generate runs. We
highlight several insights which emerge via using our spacing method to study these data.

Related Literature: Beginning with Koenker and Bassett (1978), well-understood methods
exist for estimating a single conditional quantile, for both linear and nonlinear models. These
models are semi-parametric in nature, rely on few distributional assumptions, have some
desirable robustness properties, and are valid under relatively weak conditions. We refer the
reader to the monograph by Koenker (2005), which provides a thorough treatment of quantile
regression methods and notable applications.

A number of previous studies consider potential remedies to the quantile crossing problem,
including Mammen (1991), Dette and Volgushev (2008), Chernozhukov et al. (2009), Cher-
nozhukov et al. (2010) and Qu and Yoon (2015). Most assume that a linear model is correctly
specified (making crossings a finite sample problem only), and proposes statistical solutions
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to eliminate crossings in finite sample estimates.11 While many elegant solutions have been
proposed to the finite-sample problem, the observed non-monotonicities sometimes call into
question the validity of the functional form (usually, linearity) assumed and can result in pa-
rameters which are difficult to interpret for high-dimensionalX. Two alternatives are to change
the functional form or use fully nonparametric methods.12 Parameters can sometimes be diffi-
cult to interpret and/or estimation/inference can be challenging. In contrast, monotonicity is
easily satisfied by the spacing approach, which is similar in spirit to the location-scale model of
He (1997). These spacings have useful interpretations and are often direct objects of interest.

Conditional quantiles have been the object of interest in many studies in economics and finance.
Important examples include the studies on wage structure and dynamics, such as Buchinsky
(1994), Gosling et al. (2000), Abadie et al. (2002) and Machado and Mata (2005). One of the
most widely used quantile models in finance is the value at risk (VaR) model and has been
applied to measure the market risk (e.g. Engle and Manganelli (2004) and firm cash flow risk
(e.g. Adrian and Brunnermeier (2011)).

A number of recent papers in macro and finance have estimated at multiple quantiles as a
parsimonious approach to study conditional distributions evolving over time. Applications
to stock returns include Kim and White (2003), White Jr et al. (2008), Cenesizoglu and
Timmermann (2008), White et al. (2015) and Ghysels et al. (2016). Covas et al. (2014)
investigate bank-level capital shortfalls conditional on macroeconomic variables. Guvenen
et al. (2014) examine conditional quantiles of the distribution of idiosyncratic income risk
over the business cycle. Kelly and Jiang (2014), Herskovic et al. (2015), Kehrig (2015), and
Salgado et al. (2015) study the relation between aggregate risk factors and changes in the
shape of distributions of firm stock returns, profitability, and productivity measures. Decker
et al. (2016) study the asymmetry in the firm growth rate distribution.

The organization of the remainder of the paper is as follows. In Section 2, we present our model
for conditional quantiles along with some examples and potential applications illustrating the
model. In Section 3, we propose two distinct procedures for estimation and inference and
establish the theoretical properties for both. In Section 4, we discuss via several examples how
our method can be combined with commonly used econometric models. We study the finite

11For example, Chernozhukov et al. (2010) address the problem by monotonically rearranging the estimated
quantile curve, and provides limit theory for the rearranged curve. Belloni et al. (2011b) extend this result to
allow for a large number of regressors, in combination with model selection techniques, in order to get a sieve
approximation of the conditional quantile function.

12Gouriéroux and Jasiak (2008) propose an alternative model, exploiting the fact that a mixture of quantile
functions is itself a quantile function. Using this property, it is straightforward to guarantee monotonicity
of a conditional quantile function which is a mixture of time-invariant quantile functions with weights which
depend on the conditioning variables. Like us, Qu and Yoon (2015) propose to approximate a distribution by
interpolating between a finite number of quantiles, which are estimated using local linear methods.
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sample properties of our procedure through Monte Carlo simulations in Section 5. Section 6
provides three empirical applications. Technical details are contained in Appendix A.

2 A Flexible Model for Conditional Quantiles

In this section, we outline the basic motivation and structure of our spacing approach and
highlight a number of useful features and potential applications of a natural alternative to the
linear model which preserves monotonicity.

2.1 Motivation and basic setup

Before introducing any notation, it may be useful to clarify the objects of interest. Our goal
is to estimate a finite number (p) of quantiles of a scalar-valued real random variable yi,
where these quantiles will be allowed to vary as a function of a finite dimensional vector of
conditioning variables, xi.

Remark 2.1. Throughout, we will restrict our attention to the case where the support of yi is
R. It is straightforward to modify this setup for situations in which yi has a bounded support.
One need only to specify a link function from the real line to the interval of interest. We will
abstract away from these cases for ease of exposition.

We specify a simple but flexible parametric functional form which guarantees that the con-
ditional quantiles will satisfy the basic monotonicity restrictions. Much of the motivation for
our method was succinctly described by Granger (2010) (emphasis added):

A single quantile series can appear to be very much like any other economic series
and standard methods of analysis can be used, such as building AR(l) models.
However, if one moves to the series coming from a pair of quantiles Q1 and Q2,
the situation changes, as there will necessarily be an inequality to hold, such as
Q2 > Q1, and this is difficult to maintain in a standard linear model. This problem
is even worse with a group of quantiles, all of which fall into a ranking with many
inequalities, and this is not possible to achieve with the standard VAR model, for
example.

An easier way to proceed is to start with the median, say, and then adding the
‘spacing’ S to then obtain the ‘next’ quantile Q. Note that S > 0. One can proceed
to any quantile above the median by starting with the median and then adding
several spacings, all of which are positive. Compared to ordered series, such as
quantiles, it is much easier to model positive processes, such as spacings, plus the
median.
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Following Granger (2010)’s suggestion, we will model the level of a single quantile, where a
natural choice is the conditional median. All other quantiles are defined by adding/subtracting
a series of nonnegative spacing functions to that quantile.

Let 0 < α1 < · · · < αp < 1. For j = 1, . . . , p, the αthj quantile of yi conditional on xi satisfies

qj(xi) ≡ inf{y ∈ R | P (yi ≤ y | xi) ≥ αj}. (1)

We parametrize

qj (xi; θ) =


qL,j(xi; θj , θj+1, · · · , θj∗) if j < j∗

q∗ (xi; θj∗) if j = j∗

qU,j(xi; θj∗ , · · · , θj) if j > j∗

(2)

where

qL,j(xi; θj , θj+1, · · · , θj∗) = fj∗ (xi; θj∗)−
j∗−1∑
k=j

gk (fk(xi; θk)) (3)

qU,j(xi; θj∗ , · · · , θj) = fj∗ (xi; θj∗) +

j∑
k=j∗+1

gk (fk(xi; θk)) . (4)

We stack the parameter θ = (θ′1, · · · , θ′p)′. Here, gk(·)’s are invertible nonnegative functions
and fk(·; θk)’s are transformation functions. gk(·) is known and fk(·; θk) is known up to the
parameter θk.

Under mild regularity conditions, a decomposition as in (2) is essentially without loss of
generality. We can always choose to think about multiple quantiles in terms of a single
“level" quantile and spacings between adjacent quantiles. The key advantage of this way of
breaking up the distribution is that the nonnegativity restriction on the spacings is sufficient
to guarantee that the fitted quantiles are properly ordered; a necessary condition implied by
any correctly-specified model.

Another advantage of this framework is that it has a recursive structure. As we will demon-
strate below, in many cases one can estimate quantiles sequentially rather than jointly, be-
ginning with the j∗th quantile and working outwards toward each tail. The presence of the
transformation functions gk(·) make our model nonlinear. As such, having the ability to do
sequential estimation has immense practical advantages, especially under the additional linear
index assumption described in the next section.
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2.2 A useful special case: the linear index model

Thus far, we have placed little structure on the function fk(xi; θk). A natural special case is
when fk(·) is linear in parameters:

fk(xi; θk) = f̃k(xi)
′θk. (5)

Note that equation (5) does require the model to be linear in xi, so we can include nonlinear
basis functions of xi within the model.13

In addition to being simple and parsimonious, the linear index structure greatly facilitates
estimation. Given this restriction, one can also view the model (2) as an iteratively trans-
formed linear quantile model. The main idea is to notice that, once we transform the resid-
uals layer by layer, we actually obtain linear quantile models. Suppose that we know the
value of (θj∗ , θj∗+1, · · · , θj) for some j > j∗. This means that P (yi ≤ qU,j(xi; θj∗ , · · · , θj) |
xi) = αj and P (yi ≤ qU,j(xi; θj∗ , · · · , θj) + gj+1(fj+1(xi; θj+1)) | xi) = αj+1. Thus,
P (yi − qU,j(xi; θj∗ , · · · , θj) ≤ gj+1(fj+1(xi; θj+1)) | {yi − qU,j(xi; θj∗ , · · · , θj) > 0} and xi) =

(αj+1 − αj)/(1− αj). Since gj+1(·) is invertible, we have

P
(
g−1
j+1(yi − qU,j(xi; θj∗ , · · · , θj)) ≤ fj+1(xi; θj+1) | xi and {yi − qU,j(xi; θj∗ , · · · , θj) > 0}

)
=
αj+1 − αj

1− αj
. (6)

Thus, if we are given (θj∗ , · · · , θj), then we can use it to construct the transformed residual
g−1
j+1(yi−qU,j(xi; θj∗ , · · · , θj)) and the next layer of the model becomes a simple quantile model
of the positive transformed residuals on fj+1(xi; θj+1), where the only unknown parameter is
θj+1. An analogous argument applies to the lower quantiles. As a result, our model can
be viewed a collection of simple models for transformed residuals. When fj(·; θj) is a linear
function of θj , each layer becomes a linear quantile regression, which may be estimated by
solving a convex, linear program. In this special case, due to the transformation, our model
ensures monotonicity while specifying linear models on the “untransformed” residuals does not.
In Section 3, we will exploit the linearity and develop a simple estimation procedure under
which the nonlinear nature of the transformation does not complicate the computation.

13One can also potentially include a low-dimensional parameter vector in f̃k(·), and still benefit from many of
the computational gains associated with the linear index specification. In the recursive estimation procedure
described below, the optimization over θ is globally convex, so we can effectively “concentrate out" these
parameters before searching for this lower dimensional parameter vector.
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2.3 Interpreting parameters

Next we discuss the role of the link function which maps fk(·) onto the positive real line, and its
effect on the associated parameters. Just as a linear specification is a natural choice for fk(·),
we argue that the exponential function is a natural choice for gk(·). When the two are coupled
together, the interpretation of parameters is quite straightforward. Suppose that f̃k(xi) =

(1, x′i), then the slope coefficient on xi for spacing j+ 1 equals ∂(qj+1(xi)−qj(xi))
∂xi

1
(qj+1(xi)−qj(xi)) ,

i.e., the semi-elasticity of the distance between these two quantiles, or the percentage change
in the difference between the αthj+1 and αthj quantiles in response to a 1 unit change in x. Since
the components of x are multiplicatively separable, the semi-elasticity interpretation is the
same independent of other parameters.

Let’s briefly contrast this interpretation in the linear index, exponential spacing model with
the standard one from a linear quantile regression model. For concreteness, suppose that a
binary indicator for whether an individual receives an experimental intervention d, an element
of x, is assumed to enter the conditional quantile function linearly, as is common to assume in
practice. Thus, we are assuming that the effect of the intervention on the difference between
two quantiles is constant, equal to ∂

∂z (qk(x) − qj(x)) = (βk,z − βj,z). If d is binary and there
are no controls, a linear model is fully saturated and essentially without loss of generality.

However, things change as soon as we add controls to the regression. Suppose that, restricting
attention to the control group, I identify a variable w (again assume it is binary) such that
the Std(y|w = 1, d = 0) = 2 · Std(y|w = 0, d = 0). Perhaps the outcome y is earnings and w
is an indicator for working in finance, an industry in which people tend to have more volatile
earnings. Thus, if we ran a univariate quantile regression of y on w, we would generally
expect that ∂

∂w (qk(x) − qj(x)) > 0. Suppose that we were to run a linear quantile regression
estimation of y on w and d and find that (β̂k,z − β̂j,z) and (β̂k,w − β̂j,w) are both positive.
Additive separability implies that the effect of the intervention on the difference between
quantiles is smaller in proportional terms (i.e., relative to Std(y|w) in the control group) for
people working in finance relative to people working in other industries. This may or may not
be reasonable depending on the nature of the intervention, but it does suggest that assuming
a constant marginal effect may not always be natural in a multivariate setting.

While crossings are perhaps the most extreme manifestation of potential misspecification of
a linear model, the difficulty of interpreting constant marginal effects points to a deeper con-
ceptual challenge. To be clear, there many ways to address this issue maintaining linearity
in parameters. One could estimate a different model for the effect of the treatment on each
subgroup, or, equivalently, one could interact d with w (estimate a nonlinear model that is
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Figure 1: Conditional quantiles of linear index-exponential spacing model
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This figure plots the (0.05, 0.25, 0.5, 0.75, 0.95)-quantiles of Yi|Xi for linear index
model with exponential spacings for various choices of slope coefficients. Constant
terms were chosen to match the quantiles of a standard normal distribution when
Xi = 0. The median is fixed at zero throughout.

linear in parameters). Both approaches are quite feasible when the dimension of x is low,
but the curse of dimensionality can quickly kick in when the dimension of x is high. When
some functional form restrictions for dimension reduction are required, the marginal effects on
spacings from a multiplicatively separable model could be more reasonable in many cases.

Figure 1 plots the conditional quantile functions associated with the linear index-exponential
spacing model for a variety of parameter values. We set α = (0.05, 0.25, 0.5, 0.75, 0.95)′ and
choose the constant terms to match the quantiles of a standard normal random variable when
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xi = 0. The horizontal axis shows the value of the conditioning variable X and the vertical axis
plots the values of the α1 through αp quantiles of Y |X. By varying slope coefficients inside
the exponential function, the spacing approach can easily generate rich variation in variance,
skewness, and kurtosis with 5 quantiles. We do not label the curves, since the bottom line
always corresponds with the α1 quantile, the next line up corresponds with α2, etc. Graphs
of this form are likely to provide a powerful data visualization tool, particularly in situations
where dim(X) � 2, since they allow us to look at “slices" of Y |X which cannot necessarily
be observed using scatter plots alone. Graphically, the gj(·) functions provide the vertical
distance between adjacent level curves in the graph.

Regardless of the specific functional form of gk(·), since the link function is always positive and
strictly increasing, positive coefficients in the linear index specification have an unambiguous
interpretation; they indicate that a particular segment of the distribution becomes more spread
out as x increases. If we model five quantiles which are symmetric about the median, the four
slope coefficients on the spacings characterize the effect of a one unit change in x on the
width of the “left tail", “left shoulder", “right shoulder", and “right tail" of the distribution,
respectively.

2.4 Interpolating between quantiles

Next, we discuss our method to construct a mapping from p quantiles to a conditional quantile
function. Given that we have guaranteed that the conditional quantiles satisfy the necessary
monotonicity constraints, this essentially reduces to an interpolation exercise. In this section,
we propose two alternative approaches for interpolating between adjacent quantiles.

Our first approach exploits the monotonicity of well-defined quantile functions. We use this
approach in simulation exercises below:

Algorithm 2.1. Let Ψ(·) be a baseline quantile function, say the inverse function of the c.d.f
of N(0, 1). We require Q(α, xi; θ), the interpolated quantile function, to have the form

Q(α, xi; θ) =

a1(xi; θ) + b1(xi; θ)Ψ(α) ∀α ∈ (0, α1]
⋃

[αp, 1)

aj(xi; θ) + bj(xi; θ)Ψ(α) ∀α ∈ (αj−1, αj ] for j ∈ {2, · · · , p}

For example, let Z ∼ N(0, 1). Then the above interpolation simply means that on (αj−1, αj ],
the quantile function Q(·, xi; θ) coincides with the quantile function of aj + bjZ. Now we
determine {(aj , bj)}pj=1 by requiring that ∀j ∈ {1, · · · , p}, qj(xi; θ) = Q(αj , xi; θ). It is also
straightforward to recover the distribution and density functions.
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Since we are building the quantile function from a well-defined baseline quantile function, the
interpolated quantile function is automatically an increasing function. One can also use differ-
ent baseline quantile functions for different j. This method is computationally straightforward
because it can be easily shown that ∀1 ≤ j ≤ p, aj(xi; θ) = qj(xi; θ)− bj(xi; θ)Ψ(αj) and

bj(xi; θ) =

[qp(xi; θ)− q1(xi; θ)] / [Ψ(αp)−Ψ(α1)] if j = 1

[qj(xi; θ)− qj−1(xi; θ)] / [Ψ(αj)−Ψ(αj−1)] if 2 ≤ j ≤ p

Hence, Q(α, xi; θ) is a linear combination of qj(xi; θ)’s, where the linear combination only de-
pends on α. If qj(xi; θ)’s are continuously differentiable in θ, so is the interpolated Q(α, xi; θ).
Hence, one can expect that the mapping θ 7→ Q(·, ·; θ) is Hadamard differentiable in some
appropriate space and, by the functional delta method, any valid bootstrap procedure for
inference of θ translates an inference procedure for the conditional quantile function.

The left panel of Figure 2 shows the interpolated quantile functions that are obtained for
the same specifications as in Figure 1 by using Algorithm 2.1. Different lines correspond
with various values of X. For the majority of the specifications considered, the method
yields relatively smooth, continuous, strictly increasing CDFs. While this method guarantees
monotonicity of the interpolated quantile functions and differentiability with respect to the
parameters, the fitted density functions are not guaranteed to be continuous in y. Close
inspection of Panels C1 and D1 reveals that the conditional quantile functions have kinks,
which implies that the interpolated densities are discontinuous in y. Our alternative approach,
which we describe momentarily, imposes more smoothness restrictions.

When Ψ(·) is taken to be the quantile function of N(0, 1), the conditional mean of yi is given
by a closed-end formula and thus it is easy to compare the estimated conditional mean with
estimates obtained from other methods. Let F (y, xi; θ) be the cumulative distribution function
corresponding to the quantile function Q(α, xi; θ) defined above with Ψ = Φ−1, where Φ(·) is
the c.d.f of N(0, 1). Then, we can obtain, by straight-forward computations, that

ˆ ∞
−∞

ydF (y, xi; θ) =

p+1∑
j=1

D [aj(xi; θ), bj(xi; θ), qj−1(xi; θ), qj(xi; θ)] , (7)

where q0(xi; θ) = −∞, qp+1(xi; θ) =∞, ap+1(xi; θ) = a1(xi; θ), bp+1(xi; θ) = b1(xi; θ) and

D [a, b, qL, qU ] =
b√
2π

[
exp

(
−(qL − a)2

2b2

)
− exp

(
−(qU − a)2

2b2

)]
+a

[
Φ

(
a− qL
b

)
− Φ

(
a− qU
b

)]
.

A logarithm transformation is commonly used when the quantity of interest can only take
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Figure 2: Interpolated quantile functions of linear index-exponential spacing model
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This figure plots the (0.05, 0.25, 0.5, 0.75, 0.95)-quantiles of Yi|Xi for linear index
model with exponential spacings for various choices of slope coefficients. Different
lines correspond with different Xi ∈ {−2,−1, 0, 1, 2}. Left and right panels use
Algorithms 2.1 and 2.2, respectively, to interpolate between quantiles. Constant
terms were chosen to match the quantiles of a standard normal distribution when
Xi = 0. The median is fixed at zero throughout.
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nonnegative values. In these situations, the response variable y is the log of the quantity of
interest and thus we would typically the conditional mean of exp(y). When Ψ = Φ−1, we
also have a closed-end solution for the conditional mean of exp(yi) whose conditional quantile
function is Q(·, xi; θ):

ˆ ∞
−∞

eydF (y, xi; θ) =

p+1∑
j=1

B [aj(xi; θ), bj(xi; θ), qj−1(xi; θ), qj(xi; θ)] , (8)

where

B [a, b, qL, qU ] = exp

(
a+

1

2
b2
)[

Φ

(
−qL + a+ b2

b

)
− Φ

(
−qU + a+ b2

b

)]
.

Our second algorithm generates smooth, continuous densities and is computationally straight-
forward. However, via this method, it is not straight-forward to impose monotonicity of the
interpolated quantile function. We use a parametric, location-scale model to match the tails
and interpolate between interior quantiles using a quadratic spline.

Algorithm 2.2. The quadratic spline method proceeds as follows:

1. Choose the parameters of a distribution which is known up to location and scale to match
α1 and α2. Proceed analogously for upper quantiles, choosing different parameters for
αp−1 and αp.

2. Interpolate the density between remaining interior interval qj(xi; θ) − qj(xi; θ) using a
quadratic spline. The spline parameters are identified by the following conditions:

(a) The integral of the polynomial between the αj and αj+1 quantiles equals αj+1 − αj

(b) The spline is continuous and differentiable in its interior

(c) The density is continuous at its endpoints: i.e., the polynomial connects smoothly
with the parametric density in both tails.

Solving for the parameters of the density, distribution, and quantile functions is fast and
straightforward using Algorithm 2.2. One can solve for the relevant parameters by inverting
a linear system of equations. Due to the non-crossing property, this system will always have
a well-behaved solution. The only downside, however, one cannot guarantee that the interpo-
lated density is nonnegative. However, in our experiments thus far, we have encountered this
issue extremely infrequently. The right panel of Figure 2 shows the interpolated quantile func-
tions obtained via this approach. While there are subtle differences between the two methods,
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results are generally pretty similar. In the simulation results below, we work with Algorithm
2.1.

Remark 2.2. An alternative to the method proposed in Algorithm 2.2 is to use a spline to
characterize the log of the density, rather than the density itself. This has the advantage
of guaranteeing nonnegativity of the density, but solving for the spline coefficients requires
solving a nonlinear system of equations.

3 Estimation and inference

In this section, we assume that we observe an i.i.d sample of {(yi, xi)}ni=1. Our method
can also be used for time series data but establishing the theoretical properties in the time
series setup requires additional complications in technicality. We will use the check function
ρτ (u) = u(τ − 1{u < 0}) and the function ψτ (u) = τ − 1{u < 0}.

3.1 A general method

For quantile regressions, we use

θ̂gen = arg min
θ

n∑
i=1

p∑
j=1

ραj (yi − qj(xi; θ)) . (9)

Similar estimators are considered by White et al. (2015), but here we do not assume that
the model is correctly specified. As a result, the population counterpart of θ̂general should be
intepreted as the pseudo-true parameter defined by

θ0 = arg min
θ

p∑
j=1

Eραj (yi − qj(xi; θ)) .

One can show consistency and asymptotic normality of θ̂general by applying the usual theory
on M-estimators based on empirical processes.

Assumption 1. The following conditions hold:
(i) The parameter space Θ is a compact subset of a Euclidean space.
(ii) θ0 lies in the interior of Θ and ∀ε > 0, inf‖θ−θ0‖>ε,θ∈ΘH(θ) > H(θ0), where H(θ) =∑p

j=1Eραj (yi − qj(xi; θ)).
(iii) H(·) is twice continuously differentiable and ∇2

θH(θ0) is nonsingular.
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(iv) In a neighborhood of zero, yi − qj(xi; θ0) has bounded p.d.f for 1 ≤ j ≤ p.
(v) For some δ > 0, E supθ ‖∇θqj(xi; θ)‖2+δ <∞ for 1 ≤ j ≤ p.

Remark 3.1. Assumption 1 is mild and similar to commonly imposed conditions in the lit-
erature. Assumption 1(i) imposes compactness, which is commonly for M-estimators with
non-convex objection functions. Assumption 1(ii) ensures that the model parameter is well
identified and rules out non-standard asymptotics that arises due to the parameter lying on
the boundary of the parameter space. Assumption 1(iii) is needed to ensure that the estimator
is
√
n-consistent. Conditions on the p.d.f similar to Assumption 1(iv) are also very common in

the literature of quantile regressions. It rules out point probability mass at zero. Conditions
A1 and A2 in Section 4.2 of Koenker (2005) are similar to Assumption 1(i)-(iv). We also im-
pose moment conditions on the derivative of the objective function in Assumption 1(v). This
condition, when the parameter space is compact, is typically guaranteed by certain moment
conditions of xi or compact support of xi.

Theorem 1. Under Assumption 1, we have

√
n(θ̂general − θ0)→d N(0, V∗)

and V∗ =
[
∇2
θH(θ0)

]−1
V ar [vi(θ0)vi(θ0)′]

[
∇2
θH(θ0)

]−1, where vi(θ) =

−
∑p

j=1∇θqj(xi; θ)ψαj (yi − qj(xi; θ)).

Remark 3.2. Since the objective function in (9) is nonsmooth and possibly nonconvex, we
recommend computing θ̂general using the MCMC method proposed by Chernozhukov and
Hong (2003). Another advantage of this method is that, by Theorem 4 of Chernozhukov and
Hong (2003), the MCMC method automatically yields a consistent estimator for ∇2

θH(θ0).
We can estimate V ar [vi(θ0)vi(θ0)′] by the sample covariance of vi(θ̂general).

3.2 An iterative method

In this section, we develop computationally fast procedures for estimation and inference of
the parameters in (2) and establish their asymptotic validity. The strategy is to exploit (6),
which is a simple quantile regression model after we transform the residuals. We first define
the pseudo-true parameter values.

Definition 1. Let θ∗ = (θ1,∗, · · · , θp,∗) be defined recursively as follows.

1. Define
θj∗,∗ = arg min

θj∗∈Θj∗
Eραj∗ (yi −m(xi; θj∗)) .
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2. For j ∈ {j∗, · · · , p− 1}, define

θj+1,∗ = arg min
θj+1∈Θj+1

E
[
1{εj,i>0}ρτUj+1

(
g−1
j+1(εj,i)− fj+1(xi; θj+1)

)]
,

where εj,i = yi − qU,j(xi; θj∗,∗, · · · , θj,∗) and τUj+1 = (αj+1 − αj)/(1− αj).

3. For j ∈ {2, · · · , j∗}, define

θj−1,∗ = arg min
θj−1∈Θj−1

E
[
1{εj,i<0}ρτLj−1

(
g−1
j−1 (−εj,i)− fj−1(xi; θj−1)

)]
,

where εj,i = yi − qL,j(xi; θj,∗, · · · , θj∗,∗) and τLj−1 = (αj − αj−1)/αj .

In practice, we will use the following algorithm instead in order to avoid potential problem
with g−1

j (·) near zero. We choose a sequence an ↓ 0 for the truncation, instead of zero.

Algorithm 3.1. Implement the following steps:

1. Estimate the central quantile:

θ̂j∗ = arg min
θj∗

n−1
n∑
i=1

ραj∗ (yi − q∗(xi; θj∗)).

2. Estimate the upper quantiles sequentially: for each j ∈ {j∗, · · · , p− 1}, compute

ε̂Uj,i = yi − qU,j(xi; θ̂j∗ , · · · , θ̂j)

θ̂j+1 = arg min
θj+1

n−1
n∑
i=1

1{ε̂Uj,i>an}ρτUj+1

(
g−1
j+1(ε̂Uj,i)− fj+1(xi; θj+1)

)
.

3. Estimate the lower quantiles sequentially: for each j ∈ {2, · · · , j∗}, compute

ε̂Lj,i = yi − qL,j(xi; θ̂j , · · · , θ̂j∗)

θ̂j−1 = arg min
θj−1

n−1
n∑
i=1

1{ε̂Lj,i<−an}ρτLj−1

(
g−1
j−1

(
−ε̂Lj,i

)
− fj−1(xi; θj−1)

)
.

Notice that in each step, we only estimate one component of θ instead of the entire vector θ.
As a result, although the optimization in general has non-convex and non-smooth objective
functions, the computational burden is typically manageable since we only optimize on a small
number of parameters, usually one or two. In the case of linear fj(·; θj) in θj , each step reduces
to the linear quantile regression, which admits very fast algorithms. We also introduce the
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following weighted bootstrap procedure discussed in Ma and Kosorok (2005) and Chapter 21
of Kosorok (2007).

Algorithm 3.2. Implement the following steps:

1. We generate i.i.d random variable ξi with Eξi = 1.

2. Estimate the central quantile:

θ̂∗j∗ = arg min
θj∗

n−1
n∑
i=1

ξiραj∗ (yi − q∗(xi; θj∗)).

3. Estimate the upper quantiles sequentially: for each j ∈ {j∗, · · · , p− 1}, compute

ε̂U,∗j,i = yi − qU,j(xi; θ̂∗j∗ , · · · , θ̂∗j )

τUj+1 = (αj+1 − αj)/(1− αj)

θ̂j+1 = arg min
θj+1

n−1
n∑
i=1

ξi1{ε̂U,∗j,i >an}ρτUj+1

(
g−1
j+1(ε̂U,∗j,i )− fj+1(xi; θj+1)

)
.

4. Estimate the lower quantiles sequentially: for each j ∈ {2, · · · , j∗}, compute

ε̂L,∗j,i = yi − qL,j(xi; θ̂∗j , · · · , θ̂∗j∗)

τLj−1 = (αj − αj−1)/αj

θ̂∗j−1 = arg min
θj−1

n−1
n∑
i=1

ξi1{ε̂L,∗j,i <−an}ρτLj−1

(
g−1
j−1

(
−ε̂L,∗j,i

)
− fj−1(xi; θj−1)

)
.

Remark 3.3. This procedure is easy to implement in that the optimization problem can be
recast as linear programs similar to the usual linear quantile regression. Another reason
for using the weighted bootstrap instead of the nonparametric bootstrap is theoretical. As
pointed out in Ma and Kosorok (2005) and Kosorok (2007), the validity of nonparametric
bootstrap probably holds but is much more difficult to establish. On the other hand, the
validity of the weighted bootstrap almost automatically follows by the argument used to derive
the asymptotic normality.

Remark 3.4. In the Monte Carlo simulations and empirical applications, we draw the weights
from the exponential distribution with parameter one. The reader is referred to Barbe and
Bertail (2012) for rigorous discussions regarding how to choose the weights.

We denote θ̂ = (θ̂′1, · · · , θ̂′p)′, θ∗ = (θ′1,∗, · · · , θ′p,∗)′ and θ̂∗ = (θ̂∗
′

1 , · · · , θ̂∗
′
p )′. The asymp-

totic properties are derived under Assumption 2 in Appendix A. In addition to Assumption
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1, Assumption 2 imposes more restrictions because the iterative estimator contains g−1
j (·),

which tends to infinity around zero. Roughly speaking, for each value of θ, we view εj,t

viewed as a function of (yi, xi) and θ and impose moment conditions on g−1
j+1(|εj,i|) and

εj,i − gj(fj+1(xi; θj+1)). To simplify the proof, we also impose compact support for the vari-
ables. One can easily verify that, under compact support and parameter space, Assumption 2
is satisfied by gj(x) = exp(x).

Theorem 2. Let Assumption 2 in Appendix A hold. Suppose that an = O(n−c) for some
c ∈ (0,∞) and supx≥an |dg

−1(x)/dx| = O(na) for some a < 1. Then n1/2(θ̂−θ∗)→d N(0,M∗)

for some matrix M∗. Moreover, if, in addition, Eξi = 1, then the distribution of n1/2(θ̂∗ − θ̂)
conditional on the data converges to N(0,M∗) in probability.

Remark 3.5. The expression for M∗ is extremely complicated and a plug-in estimation ap-
proach is not practical. However, one can simply use the bootstrap procedure to estimate
M∗.

Remark 3.6. Notice that one can also use the methods introduced in Chernozhukov and Hong
(2003) for estimation and inference for the model specified in (2). However, their methods
require a version of the information equality, which holds under correct specification. Under
misspecification, their methods require estimates for the variance of the derivative of the
objective function. On the other hand, our bootstrap procedure does not require such external
inputs and thus may be easier to implement in practice.

Our bootstrap inference also makes it convenient to conduct inference on certain functions
of the model parameter. For example, if one might be interested in building a confidence
interval for the quantile function evaluated at certain values of xi, then this can be rephrased
as inference on a function of θ. Let FX(·) be the cumulative distribution function of xi and
F̂X(·) the empirical distribution function. Let F be a space of distribution functions. Suppose
that φ(·, ·) is a mapping from Θ×F to a Euclidean space. We establish the following result.

Corollary 1. Suppose that φ is Hadamard-differentiable with derivative φ′. Then under the
conditions of Theorem 2,

√
n
(
φ(θ̂, F̂X)− φ(θ∗, FX)

)
→d φ′(W ),

where W is a zero-mean Gaussian process. Moreover, the distribution of
√
n
(
f(θ̂∗, F̂ ∗X)− f(θ̂, F̂X)

)
conditional on the data converges to φ′(W ) in probability,

where F̂ ∗X(x) = n−1
∑n

i=1 ξi1{xi ≤ x} and ξi is defined in Algorithm 3.2.

Corollary 1 applies the functional Delta method for the inference problem for φ(θ, F ). This
result is quite powerful, as it states that we can conduct inference on functions of θ and the
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empirical distribution of xi. If we want to interpolate between quantiles so as to approximate
a density for a given xi, the theorem tells us how to perform valid inference on the density or
distribution forecast. It also allows us to include smooth functions of the empirical distribution
of xi, such as the average quantile treatment effect: E [∂qj(xi; θ)/∂x

′
i], which is a function of

θ and the distribution of xi. We could also, for example, calculate similar effects where we
re-weight the data using a subset of xi (e.g., the distribution of individuals who take up a
training program).

4 Potential applications and extensions

Before talking about estimation and inference, we wish to provide a number of examples in
order to highlight the flexibility of our specification. Sections 4.1 and 4.2 discuss assumptions
under which cross-sectional identification techniques, differences-in-differences and regression
discontinuity methods, respectively, have natural extensions to the case of multiple quan-
tiles. Section 4.3 briefly discusses the extension of instrumental variables quantile regression
methods to the case of the spacing approach. Section 4.4 suggests some simple ways to test
for symmetry, location/scale restrictions, Granger causality, and nonlinear dependence within
our framework. Section 4.5 discusses how to impose some restrictions across spacings while
maintaining the computational advantages of the recursive method. Section 4.6 describes an
extension to allow for high-dimensional parameters. Finally, Section 4.7 suggests how our
method can provide interesting new ways to model (and test for) nonlinear dependence, with
some examples motivated by the empirical finance literature.

4.1 Differences-in-differences / event studies

In this section and the one that follows it, suppose that we want to evaluate the effect of
a binary treatment, Dit, on an outcome Yit. Groups are indexed by i and time periods are
indexed by t. We observe the outcome for a large number of individuals in each group and for
each time period, and we wish to characterize the effect of the treatment on the distribution of
Yit. It is common to estimate the effect of the treatment by running the following regression,

Et[Yit|Ai, Zit, Dit] = α0 + ρ0Dit + λ0t +A′iγ0 + Z ′itβ0, (10)

where A′iγ0 is a group-specific, constant unobservable and λ0t is a time-specific unobservable
mean shifter, often a group-specific dummy variable. The parameter ρ0 = Et[Yit|Ai, Zit, Dit =
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1]−Et[Yit|Ai, Zit, Dit = 0] ≡ Et[Y 1
it−Y 0

it |Ai, Zit] is identified via the parallel trends assumption:

Et[Y
0
i,t|Ai, Zit]−Et−1[Y 0

i,t−1|Ai, Zi,t−1] = λ0t−λ0,t−1 = Et[Y
0
j,t|Aj , Zjt]−Et−1[Y 0

j,t−1|Aj , Zj,t−1].

(11)
One could make an analogous assumption about the conditional median by simply replacing
conditional expectations of Yit with the alternative condition that

P
[
Yit − α0 + ρ0Dit + λ0t +A′iγ0 + z′itβ0 ≤ 0 | Ai, Zit, Dit

]
= 1

2 . (12)

Ex-ante, it is not obvious why restriction (12) on the conditional median would be more or
less reasonable than our earlier assumption in (10) on the conditional mean. The restriction
in (12) imposes that the counterfactual location shift in Y 0

it for the treated group equals the
observed location shift in the control group, which is analogous to (11).

In principle, one could estimate a linear specification like (12) for other quantiles as well, but
such a linear-in-parameters specification is only valid under a very strong additive separability
assumption. As emphasized in Athey and Imbens (2006), one cannot allow for changes in
the scale of the distribution of the non-treated group between periods, and requires assuming
that “the underlying distribution of unobservables must be identical in all subpopulations,
eliminating an important potential source of intrinsic heterogeneity." As an alternative, Athey
and Imbens (2006) argue for a more flexible “changes-in-changes" estimator which relies on
weaker assumptions and may be estimated by nonparametric methods.

The basic idea of the Athey and Imbens (2006) approach is to construct an estimate for the
counterfactual distribution of Y 0

it for treated individuals by shifting and rescaling the observed
distribution of pre-treatment outcomes in a manner consistent with the observed change in
the control group. A simple parameterization of our linear index, exponential spacing model
has a very similar flavor, except that we put more parametric structure on the procedure. In
particular, we impose a parallel trends assumption on the log of the distance between adjacent
quantiles, which amounts to calculating a counterfactual by rescaling different segments of the
conditional quantile function. This structure may be advantageous in situations with many
right hand side variables. Suppose we parameterize the model so that the j∗th quantile satisfies
a restriction like (12) and the spacings satisfy

qj+1(xi,t; θ)− qj(xi,t; θ) = exp(αj + ρjDit + λjt +A′iγj + z′itβj), (13)

where xit is a vector of time dummies, group dummies, and a treatment indicator.

Let’s discuss each of these ingredients in turn. The factor αj +A′iγj soaks up sources of time-
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invariant, group-specific heterogeneity in the distance between quantiles. z′itβj allows other
observable, time-varying characteristics to scale up or down the distances between quantiles.
We need to assume that this scaling factor is invariant to the treatment, which is analogous to
the interpretation on the controls in the standard OLS specifications. The factor λjt captures
common sources of time series variation in this distance. Here, the parallel trends assumption
kicks in. Under the null hypothesis that ρj = 0, we are assuming that the distance between
quantiles of the counterfactual distribution of Y 0

it scales up or down by λjt%. Any remaining
changes in qj+1(xi,t; θ)− qj(xi,t; θ) are attributed to the treatment, and the coefficient ρj has
the semi-elasticity interpretation discussed above.

Often, we have data for many periods, and we may be interested in tracing out the impact of a
treatment (or any sequence of past shocks more generally) on a variable of interest, a different
form of a differences-in-differences estimator which is sometimes called an event study. For
example, in the literature on job displacement, it is common to compare the earnings of
individuals involved in mass layoff events with a control group of otherwise similar workers
who were not displaced. Given a similar parallel trends assumption to the one made above,
one can compare the distributions of the outcome (e.g., earnings) between the groups prior to
and after treatment by including leads and lags of Dit in the regressions as well. Inspection
of coefficients on the leads can help to assess the validity of the parallel trends assumption.

4.2 Regression discontinuity

Our spacing approach integrates nicely with standard regression-discontinuity methods. Sup-
pose that I know that a person is treated if and only if some continuous variable zi ≥ z̄. If the
density of zi is continuous in the neighborhood of z̄, then I can trace out the causal impact of
the treatment by comparing the conditional quantiles of Yi for individuals with zi immediately
above and below the cutoff. The difference between the two conditional quantile functions is
a local estimate of the treatment on the distributions of potential outcomes. These differences
are estimable using quantile regression methods.

Since regression discontinuity methods are inherently local, there isn’t a clear reason to prefer
our spacing method to a linear one in the absence of covariates. However, once covariates are
involved, one needs to take a stand on how the distributions change these observable variables.
In this case, many of the same practical issues from the previous section become relevant.
When the covariates have a nontrivial effect on the spread of the outcome distribution, the
additive separability assumption implicit in the standard linear quantile model is perhaps a
bit less natural than the multiplicative separability of our exponential spacing approach.
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In addition to being potentially useful for producing estimates of treatment effects, our ap-
proach is also easily applicable to testing the validity of the identifying assumption, namely
that all relevant factors other than the treatment are continuous in the neighborhood of the
cutoff.

4.3 IV Quantile regression without crossing

We can adapt the model in (2) to IV quantile models. Let qj (xi; θ) be parametrized as in
(2). If xi is endogeneous and instrument variables zi are available, we can identify θ using the
following moment condition:

P (yi − qj(xi; θ) < 0 | zi) = αj . (14)

IV quantile models for one single quantile have been considered in the literature, such as
Chernozhukov and Hansen (2005). In order to model multiple quantiles simultaneously, one
still needs to impose the monotonicity just as in the case without endogeneity. Since the
structure of qj (xi; θ) in (2) automatically guarantees this basic requirement, the same specifi-
cation can be applied to IV quantile models using the moment condition in 14. Moreover, the
layer-by-layer interpretation in (6) is still valid.

Thus, one can apply the iterative estimation principle to IV quantile models. To see how,
suppose that I want to calculate the parameters of the (j + 1)th quantile, with j ≥ j∗. Then,
simple rearrangement of (14) yields an alternative testable restriction:

P
[(
g−1
j+1(εUj,i)− fj+1(xi; θj+1)

)
| zi, εUj,i ≡ yi − qU,j(xi; θ̂j∗ , · · · , θ̂j) > 0

]
= τUj+1 =

αj+1 − αj
1− αj

,

where an analogous condition holds for quantiles to the left of the j∗th one. If we make the
linear index assumption, then one can iteratively apply the “inverse quantile regression" proce-
dure proposed in Chernozhukov and Hansen (2005) to the transformed residuals. Estimating
the linear index spacing model with the iterative method does not add any additional compu-
tational complexity relative to the linear in parameters model. As estimation is typically much
harder in IV quantile models even for linear specifications, the iterative estimation scheme is
extremely useful in this context.
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4.4 Specification Testing

In the previous section, we demonstrated how we could generate a wide variety of conditional
distributions through the use of simple parametric restrictions. If the quantile spacings are
defined as in the linear index-exponential spacing model it is extremely straightforward to
test necessary conditions for a variety of restrictions on the data generating process. For
concreteness, let’s remain in the setting from the previous setting, where fj(Xt) = (1, Xt). We
discuss how to perform these tests using a series of numbered remarks.

Remark 4.1 (Testing for Linear Dependence). Perhaps a theory suggests that Yt and Xt are
related to one another only through a location shift. In other words, Yt|Xt does not exhibit
nonlinear dependence. To test this assumption, one can estimate an unrestricted model, then
test whether the slope coefficients on Xt in the spacings j = 1, . . . , p, are significantly different
from zero using a Wald statistic.

Remark 4.2 (Testing for Location/Scale). Suppose that one wants to test whether Yt and Xt

are related to one another only through location and scale shifts. To test this assumption, one
can estimate an unrestricted model, then test the restrictions that β1j = β1k for j 6= k using
a Wald test.

Remark 4.3 (Testing for Symmetry). To test whether Yt|Xt has a symmetric distribution,
choose p to be odd, let j∗ = (p+1)/2, and αj = 1−αp−j+1 for j = 1, . . . , j∗−1. Then, estimate
an unrestricted model, then test the restrictions that β1j = β1,p−j+1 and β0j = β0,p−j+1 for
j = 1, . . . , j∗ − 1 using a Wald test.

Remark 4.4 (Testing for Granger Causality). To test whether Xt does not Granger cause Yt,
we simply need to include lagged values (or functions of lagged values) of Xt and Yt in Wt,
then test whether the slope coefficients on the lagged values of Xt are equal to zero.

4.5 Imposing cross-equation restrictions on spacings during estimation

In some cases, the researcher may have a prior reason to believe that a particular variable
or subset of variables has a symmetric effect on the conditional quantiles of Yi (i.e., it has
the same proportional effect on both tails). Whereas the previous section discussed how to
test these parametric restrictions, here we briefly discuss how in order to incorporate them in
estimation, which can potentially yield efficiency gains. As in the previous section, we restrict
attention to the linear index-exponential spacing model, in which identical slope coefficients
yield these proportional increases in scale.

In this case, a slight modification of the recursive estimation procedure is applicable when the
quantiles of interest are symmetrically located about the origin, so αj∗ −αj∗−k = αj∗+k −αj∗
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for all positive integer k and αj∗ = 1/2. For simplicity, let’s assume that there are three
quantiles. Partition the vector Xi = (W ′i , Z

′
i)
′, where we want to impose the restriction that

βz1 = βz3 = γ for all elements of Zi. In this case, one can estimate γ imposing this restriction
via running the following second-stage quantile regression:

log |Yi −X ′iβ̂2| = β′w11{Yi −X ′iβ̂2 < 0}Wi + β′w31{Yi −X ′iβ̂2 > 0}Wi + γ′Zi + uit, (15)

where the identifying assumption is P [uit < 0 = 2(α1−1/2)].14 Again, one can work iteratively
out towards the tails, imposing these equality restrictions, in a similar fashion as described in
Algorithm 3.1.

When more than 3 quantiles are of interest, it is also easy to restrict the equality of certain
slope coefficients across central and more extreme spacings. For example, suppose that α =

{0.05, 0.25, 0.5, 0.75, 0.95}, with j∗ = 3. Efficiency considerations might motivate a restriction
that the slope coefficient on Zi is the same in both spacings to the left of the median (γ =

βz1 = βz2). Given the recursive structure of our setup, one can obtain a consistent estimate
of γ̂ from the estimation of β̂z2, and impose this restriction when estimating β1 by running
the quantile regression model,

log |Yi −X ′iβ̂3 − exp(X ′iβ̂2)| − β̂′z2Zi = β′w1Wi + uit, P [uit < 0 = α2−α1
α2

], (16)

on the negative residuals. While these cases are technically not covered by our existing asymp-
totic results in Theorem 2, the extension is extremely straightforward.

4.6 High-dimensional quantile regression

Belloni et al. (2011a) studied the estimation problem for single quantile linear models with
sparse high-dimensional parameters. If we set fj(·)’s in the model (2) to be linear in θj ∈ Rdj ,
then our model can be used to simulaneously model several quantiles with high-dimensional
parameters in the sense that dj � n. One might expect the quantile crossing problem to be
more common simply due to the large number of covariates. For example, dj = O(exp(nα)) for
some α ∈ (0, 1). Our model not only automatically guarantees the monotonicity of quantiles
but also provides a feasible approach for estimation. To our best knowledge, there is no general
theory regarding the estimation of nonlinear quantile models and the computational burden
for minimizing a regularized version of (9) is formidable: an optimization problem of a non-
smooth and non-convex function over a high-dimensional space. However, our specification in

14This procedure is quite similar to He (1997), who proposes an iterative quantile regression procedure for
estimating location scale models.
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(2) still admits the layer-by-layer interpretation in (6) and thus the estimation can proceed via
an iterative scheme in which each iteration involves only the linear high-dimensional quantile
regression studied by Belloni et al. (2011a). The computational burden is minimal since
the optimization reduces to linear programs. We believe that the asymptotic theory can be
developed by adapting the arguments in Belloni et al. (2011a). Since this is outside the scope
of the current paper, we leave this possibility to future research.

4.7 Interacting the approach with copula methods

Copulas provide a very flexible way of allowing for nonlinear dependence between random
variables. However, they have two main shortcomings: 1) one must be able to specify the
marginal distributions of both variables, and 2) extensions to higher dimensions are challeng-
ing. Moreover, obtaining the distribution of Yt|Xt often involves numerical integration.

In our framework, one obtains a wide variety of ways to model the dependence between Yt

and a vector of conditioning variables Xt. This is quite useful in situations where we care
more about the distribution of Yt|Xt, rather than the joint distribution of the two. A simple
example from finance would be a setting in which Yt is the excess return on an individual
stock and Xt is a vector of returns for a set of priced risk factors. Often, we would prefer to
leave the distribution of the factors unspecified. This framework makes it easy to do so. In
addition, “factor loadings" would be directly comparable across firms.

Our approach can also be complementary with copula models, as one obtains a variety of new
ways to specify the marginal distributions which are inputs to a copula. In the example above,
our model could provide the marginal distributions of two individual assets conditional on the
factor returns Xt and/or their own lags. We could then combine these marginals with a copula
in order to characterize their joint distribution.

5 Monte Carlo simulations

5.1 Inference of model parameter

We specify p = 3 quantile functions with (α1, α2, α3) = (0.25, 0.5, 0.75) with j∗ = 2. We
generate xi ∈ R3 from N(0, I3). For j ∈ {1, 2, 3}, we generate θαj ∈ R3 from N(0, I3).
The response variable is generated by yi = Q(xi, ui; θ), where ui is drawn from the uniform
distribution on the interval (0, 1). The quantile function Q(x, u, θ) is defined using Algorithm
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Table 1: Coverage probabilites

95% confidence interval 90% confidence interval
Weighted bootstrap i.i.d bootstrap Weighted bootstrap i.i.d bootstrap

n = 100 α1 α2 α3 α1 α2 α3 α1 α2 α3 α1 α2 α3

θαj ,1 0.972 0.938 0.985 0.973 0.939 0.981 0.934 0.898 0.958 0.936 0.898 0.953
θαj,2 0.980 0.967 0.996 0.983 0.967 0.995 0.956 0.925 0.984 0.956 0.930 0.983
θαj ,3 0.982 0.969 0.995 0.985 0.970 0.995 0.957 0.936 0.982 0.962 0.936 0.976

n = 500

θαj ,1 0.949 0.948 0.961 0.951 0.949 0.960 0.906 0.903 0.917 0.906 0.903 0.913
θαj,2

0.957 0.963 0.976 0.958 0.965 0.976 0.917 0.924 0.941 0.919 0.922 0.942
θαj ,3 0.963 0.964 0.976 0.964 0.963 0.977 0.922 0.922 0.943 0.923 0.923 0.945

n = 2000

θαj ,1 0.943 0.950 0.941 0.942 0.949 0.943 0.894 0.905 0.888 0.895 0.903 0.889
θαj,2

0.949 0.961 0.961 0.950 0.961 0.960 0.898 0.914 0.915 0.899 0.914 0.917
θαj ,3 0.950 0.961 0.963 0.950 0.957 0.964 0.900 0.920 0.921 0.901 0.919 0.919

The jth component of θαk
is denoted by θαk,j . We construct confidence intervals for each component

of the parameter θ = (θα1 , θα2 , θα3) ∈ R9.

2.1:

Q(x, u; θ) =


qj(x;θ)[Φ(α)−Φ(αj−1)]−qj−1(x;θ)[Φ(α)−Φ(αj)]

Φ(αj)−Φ(αj−1) u ∈ (αj−1, αj ]

q5(x;θ)[Φ(α)−Φ(α1)]−q1(x;θ)[Φ(α)−Φ(α5)]
Φ(α5)−Φ(α1) u ∈ (0, α1]

⋃
(αp, 1),

where Φ(·) is the quantile function of N(0, 1) and
q1(x; θ) = q2(x; θ)− exp(x′θα1)

q2(x; θ) = x′θα2

q3(x; θ) = q2(x; θ) + exp(x′θα3)

The coverage probabilities of confidence intervals for each of the 9 entries of θ = (θα1 , θα2 , θα3)

are calculated using 5000 repetitions. The result is reported in Table 1.

As shown in Table 1, even in small samples, our weighted bootstrap delivers valid confidence
intervals for the parameters. Interestingly, although it is hard to prove the validity of the i.i.d
bootstrap (nonparametric bootstrap) for θ, we still find, in simulations, that our weighted
bootstrap delivers results that are close to those from the i.i.d bootstrap.15

We also consider the following difference-in-difference DGP. In time period t in state s, the
response variable for individual i is modeled by yi,s,t = Q(s, t, di,t, ui,s,t; θ), where di,t is the

15Notice that, since i.i.d bootstrap is valid for θα2 , which is the regression coefficient of a simple quantile
model, the two bootstrap schemes are comparable for inference on θα2 .
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treatment, 1 ≤ t ≤ T , 1 ≤ s ≤ S and ui,s,t is a random variable from U(0, 1) independent of
(t, s, di,t). The quantile function is defined using Algorithm 2.1:

Q(s, t, d, u; θ) =


qj(s,t,d;θ)[Φ(α)−Φ(αj−1)]−qj−1(s,t,d;θ)[Φ(α)−Φ(αj)]

Φ(αj)−Φ(αj−1) u ∈ (αj−1, αj ]

q5(s,t,d;θ)[Φ(α)−Φ(α1)]−q1(s,t,d;θ)[Φ(α)−Φ(α5)]
Φ(α5)−Φ(α1) u ∈ (0, α1]

⋃
(αp, 1),

(17)

where Φ(·) is the quantile function of N(0, 1), (α1, · · · , α5) = (0.1, 0.25, 0.5, 0.75, 0.9), θ =

{β1, · · · , β5}
⋃
{αj,s | 1 ≤ j ≤ 5, 1 ≤ s ≤ S}

⋃
{λj,t | 1 ≤ j ≤ 5, 1 ≤ t ≤ T} and

q1(s, t, d; θ) = q2(s, t, d; θ)− exp(dβ1 + a1,s + λ1,t)

q2(s, t, d; θ) = q3(s, t, d; θ)− exp(dβ2 + a2,s + λ2,t)

q3(s, t, d; θ) = dβ3 + a3,s + λ3,t

q4(s, t, d; θ) = q3(s, t, d; θ) + exp(dβ4 + a4,s + λ4,t)

q5(s, t, d; θ) = q4(s, t, d; θ) + exp(dβ5 + a5,s + λ5,t).

(18)

Notice that, under the above specification, for 1 ≤ j ≤ 5, we have P (yi,s,t ≤ qj(s, t, di,t) |
s, t, di,t) = qj(s, t, di,t; θ).

The parameters used in simulations are chosen as follows. We set β1 = · · · = β5 = 0 and
other components of θ are randomly generated from N(0, 1). We use S = 50 and T = 4. The
treatment is binary di,t ∈ {0, 1}. For each (s, t), we generate 100 individuals, 50 of which are
treated (di,t = 1). In each random sample, there are 20000 observations and the dimension of
θ is 270 (after deleting certain indicators to avoid a singular regressor matrix). In each random
sample, 200 bootstrap samples are generated to construct confidence intervals for the treat-
ment effect (β1, · · · , β5)′. The performance of the procedure is evaluated in terms of coverage
probability using 400 random samples. We consider the weighted bootstrap procedure whose
theoretical properties are established in Section 3, as well as the nonparametric bootstrap.
The results are reported in Table 2.

As we can see from Table 2, our method provides decent coverage for the treatment effects.
Deviations from the nominal coverage probability 95% are due to the "small" sample. Al-
though the sample size is large n = 20000, the number of parameters in θ is close to 300.
Therefore, we should not expect our procedure to have the same performance in this case as
in a case where samples with 20000 observations are used to estimate 5 parameters.
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Table 2: Coverage probability of treatment effect of 95%-confidence intervals

β1 β2 β3 β4 β5

Weighted bootstrap 0.975 0.950 0.958 0.970 0.975
Nonparametric bootstrap 0.970 0.948 0.953 0.975 0.980

Table 3: Approximating quantile functions

DGP1 DGP2
E‖QSZ −Q∗‖ E‖QCFG −Q∗‖ E‖QSZ −Q∗‖ E‖QCFG −Q∗‖

‖ · ‖L1 0.341 0.334 0.194 0.197
‖ · ‖L2 0.417 0.429 0.209 0.218
‖ · ‖L∞ 1.039 1.667 0.363 0.567

5.2 Approximating the quantile function

We also compare our methods with the rearrangement method proposed by Chernozhukov
et al. (2010).

We build the conditional quantile functions denoted by QSZ(·, xi) from misspecified p quantiles
using the method discussed in Section 2, where the baseline quantile function is taken to be
the quantile function of N(0, 1). We use the quantiles α = (0.1, 0.3, 0.5, 0.7, 0.9), i.e. p = 5.

We perform linear quantile regressions for individual quantiles and construct the quantile
function using the rearrangement method. The resulting quantile function is denoted by
QCFG(·, xi). We compare the distance between the constructed quantile functions and the
true quantile function denoted by Q∗(·, xi), in terms of L1, L2 and L∞-norms.

We consider two DGP’s for the simulated data. DGP1: yi = (|x′iβ| + 2)Ui, where xi =

(1, N(0, 1))′ ∈ R2, Ui ∼ U(0, 1) independent of xi and β = (−1, 1)′. DGP2: yi = |x′iβ| + εi,
where xi and β are as before and εi ∼ N(0, 4) is independent of xi. Following Chernozhukov
et al. (2009) and Chernozhukov et al. (2010), we compute E‖Q̂(·, xi)−Q∗(·, xi)‖L1 , E‖Q̂(·, xi)−
Q∗(·, xi)‖L2 and E‖Q̂(·, xi)−Q∗(·, xi)‖L∞ , where Q̂(·, xi) is either QSZ(·, xi) or QCFG(·, xi).
The sample size is 500 and expectations of the norms are computed using 2000 random samples.

As can be seen from Table 3, our method outperforms the rearrangement in terms of L∞-norm
unde both DGP’s. This is mainly due to the fact that our method provides a better approx-
imation for the quantile function on the tails. Intuitively, for the tails, the rearrangement
method builds the quantile function based on linear quantile regressions with very small or
very large quantile. Such quantiles are typically estimated based on only a few observations
of data and hence might be very inaccurate.
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6 Empirical applications

6.1 Forecasting the distribution of stock returns

In this application, the goal is to forecast p conditional quantiles of yt, the log excess daily
stock return. Let these quantiles be {αj}pj=1. We investigate the performance of two compet-
ing specifications: (1) our model in (2) with linear specification of fj ’s and (2) p linear quantile
models. Let q̂(1)

j,t,m and q̂(2)
j,t,m denote these models’ forecasts the conditional αj-quantile of yt

with parameters estimated using the full sample. Since the objective function in quantile re-
gressions provide a natural loss function, we conduct a quasi-likelihood ratio test by comparing
the loss functions evaluated at the conditional quantile forecasts. For quantile αj , we consider
QLRT,j =

∑T
t=1[ραj (yt − q̂

(1)
j,t,m) − ραj (yt − q̂

(2)
j,t,m)]; for the overall specification, we consider

QLRT =
∑p

j=1QLRT,j . The critical value is computed using a bootstrap procedure; see the
Appendix for details. In this exercise, we set α1 = 0.01, α2 = 0.10, α3 = 0.25, α4 = 0.5,
α5 = 0.75, α6 = 0.9 and α7 = 0.99 with j∗ = 4. The explanatory variables include T-bill
rate, term spread (10yr yield minus 3month yield), corporate spread (BAA yield minus AAA
yield), and log of VXO. The studied is implemented using daily data from January 2, 1986 to
December 30, 2010, which corresponds to 6300 time periods.

We report the results in Table 4. As we can see, our model outperforms the linear quantile
specification. The difference is statistically significant at 5% level for quantiles α1, α5, α6, α7 as
well as for the overall goodness of fit. We note that on the extreme right tail, our specification
has a gain in pseudo-R2 over 5%. The results in Table 4 also highlight the difference in
predictability of different parts of the conditional distribution of the stock returns. In terms
of the pseudo-R2, the right tail appears easier to predict than the left tail and the median is
almost unpredictable.

We also compare the out-of-sample forecasting performance. We repeat the same exercise,
except that parameters are now estimated using a rolling window of m observations. Inference
on the forecasting performance is based on we follow the methodology in Diebold and Mariano
(1995) and Giacomini and White (2006). We report the results in Table 5. Our method
outperforms the competing method in most of the quantiles, especially on the left tail of the
distribution. This is confirmed by the pseudo-R2. This superior forecasting performance can
translate into better estimate for VaR (value-at-risk). Interestingly, our result is not due to
the crossing forecasts generated by the competing model since the crossing occurs in less than
2% of the sample for the competing model. Hence, in addition to enforcing the monotonicity
requirement, our model potentially better captures the nonlinear structure in the data.
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Table 4: Goodness of fit for conditional quantile specification: predicting stock returns

Quantile Pseudo-R2 of q̂(1)
j,t Pseudo-R2 of q̂(2)

j,t Difference P-values
α1 = 0.01 0.264 0.242 0.022 0.042
α2 = 0.10 0.110 0.102 0.008 0.068
α3 = 0.25 0.031 0.029 0.002 0.202
α4 = 0.50 0.000 0.000 0.000 NA
α5 = 0.75 0.043 0.035 0.008 0.020
α6 = 0.90 0.136 0.115 0.021 0.004
α7 = 0.99 0.412 0.350 0.063 0.008
Overall 0.069 0.060 0.009 0.002

We estimate the parameters needed in the two models using the full sample and produce the
difference in loss functions: ραj (yt − q̂(1)j,t,m)− ραj (yt − q̂(2)j,t,m) for j ∈ {1, · · · , 7}. Since two methods
have identical forecasts for α4, we only compare the forecasts for the other quantiles. In the first two
columns, the pseudo-R2 for quantile αj is computed as
1−

(∑n
t=1 ραj (yt − q̂(l)j,t)

)
/
(∑n

t=1 ραj (yt − ȳαj )
)
and the pseudo-R2 for the overall performance is

computed as 1−
(∑7

j=1

∑n
t=1 ραj

(yt − q̂(l)j,t)
)
/
(∑7

j=1

∑n
t=1 ραj

(yt − ȳαj
)
)
for l ∈ {1, 2}, where ȳαj

is

the sample αj-quantile of yt and q̂
(1)
j,t and q̂(2)j,t are computed using parameters estimated based on the

full sample. We also test the hypothesis that, when evaluated at the population parameter value, the
pseudo-R2 of our method is at least as high as that of the linear model. This hypothesis is tested for
each quantile and the overall performance. The p-values for the tests are reported in the last column.

We also report the point estimates together with the t-statistics in Table 6. Notice that the
median behaves drastically different from other quantiles. In Table 6, none of the coefficients
is statistically significant for the conditional median while the extreme quantiles are affected
by variables such as log(VXO).

Lastly, we plot the estimated time series of the conditional quantiles in Figure 3. We observe
that the tails of the conditional distribution vary wildly but the median of the distribution
is stable. This highlights the advantage of studying the entire distribution rather than only
the mean or median. For example, if the goal is to investigate whether certain information
affects the distribution of asset returns, then focusing only on the median or the mean might
be misleading.

6.2 Regression Discontinuity Example: Effects of Unemployment Insur-
ance Benefit Extensions

To illustrate a potential application of our technique, we reanalyze the effect of a dramatic
change in Austrian unemployment benefit rules that was initially considered by Lalive (2008).
During June 1988, the maximum duration of unemployment benefits was extended from 30
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Table 5: Comparison of conditional quantile forecasts

j \ m 500 1000 2000 Pseudo-R2 of q̂(1)
j,t Pseudo-R2 of q̂(2)

j,t

1 -2.60 -3.31 -4.00 0.273 0.191
2 -3.54 -1.67 -3.34 0.106 0.098
3 -2.57 -2.43 -3.41 0.032 0.029
4 NA NA NA 0.000 0.000
5 1.77 0.72 -0.79 0.039 0.034
6 -0.78 -1.71 -1.34 0.127 0.107
7 -2.75 -1.56 -2.04 0.383 0.312

Using a rolling window of m observations, we compute the parameters needed in the
two models and produce the difference in loss functions: ραj (yt − q̂

(1)
j,t,m) − ραj (yt −

q̂
(2)
j,t,m) for j ∈ {1, · · · , 7}. Since two methods have identical forecasts for α4, we only
compare the forecasts for the other quantiles. We compare the out-of-sample forecast-
ing performance by testing H0 : E

(
ραj (yt − q̂

(1)
j,t,m)− ραj (yt − q̂

(2)
j,t,m)

)
= 0. In the

first three columns of the table, the t-statistics computed as in Diebold and Mari-
ano (1995) are reported. In the last two columns, we report the in-sample pseudo-
R2’s, which are computed as 1 −

(∑n
t=1 ραj (yt − q̂

(1)
j,t )
)
/
(∑n

t=1 ραj (yt − ȳαj )
)

and 1 −(∑n
t=1 ραj (yt − q̂

(2)
j,t )
)
/
(∑n

t=1 ραj (yt − ȳαj )
)
respectively for our method and the competing

method, where ȳαj is the sample αj-quantile of yt and q̂
(1)
j,t and q̂(2)

j,t are computed using pa-
rameters estimated based on the full sample.

Table 6: Estimate of θ

α1 α2 α3 α4 α5 α6 α7

constant -7.47 -7.85 -8.69 0.00 -8.62 -7.79 -8.33
-12.63 -26.40 -33.41 -0.81 -34.06 -22.30 -18.52

T-bill 0.01 -0.05 -0.04 0.00 -0.03 -0.06 0.05
0.21 -2.19 -2.18 -0.04 -1.54 -2.26 1.23

Term spread 0.02 -0.06 -0.09 0.00 -0.03 -0.05 0.05
0.34 -1.95 -3.75 -1.08 -1.20 -1.18 0.89

Default spread 0.48 0.07 -0.25 0.00 0.10 0.20 0.03
2.58 0.56 -2.42 -0.30 0.83 1.26 0.17

log(VXO) 0.95 1.03 1.32 0.00 1.18 0.96 1.14
4.96 11.63 16.96 1.39 15.52 8.87 9.40

We use the iterative method and bootstrap procedure discussed in Section 3. For each ex-
planatory variable, the first line corresponds to the estimates (in black bold fonts) and the
second line reports the t-statistics (in blue) using 2000 bootstrap samples.
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Figure 3: Estimated conditional quantiles α = {0.01, 0.1, 0.25, 0.5, 0.75, 0.90, 0.99}.
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weeks to 209 weeks for individuals that were over 50 and lived in certain regions of Austria.16

Because of the program’s design, a worker laid off just after turning 50 was allowed to collect
unemployment benefits for 3.5 years longer than an identical worker who was laid off a month
earlier. Likewise, two identical workers on different sides of a geographical border could be
eligible for different benefits even if the distance between their two residences was very small.
Using administrative records from the Austrian social security database and unemployment
registrar, Lalive (2008) employed a sharp regression-discontinuity design (RDD) to estimate
the effect of the program on the average duration of unemployment spells.

Figure 4(a) reproduces a figure from Lalive (2008) that illustrates a striking discontinuity in
the average duration of unemployment that occurs at the eligibility cutoff. The points in the
figure correspond to the average duration of unemployment for men grouped by quarter of
age, while the solid line corresponds to the fit of a cubic polynomial regression. Lalive (2008)
estimates uses the magnitude of the discontinuity to estimate that the program increased the

16Individuals also needed to have worked at least 15 of the past 25 years to be eligible. See Lalive (2008) for
further discussion of the program.
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Figure 4: Effects of 1989 Austrian benefit extensions on unemployment durations
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average duration of job search by approximately 14.8 weeks. Figure 4(b) displays conditional
quantiles of the duration distribution from the same data used to construct Figure 4(a). The
cubic conditional quantile curves were fit using the method outlined in Section 4.2. There is
virtually no discernible difference between the 5th, 25th, 50th, and 75th quantiles at the age
cutoff. Figure 2 plots the cdf and pdf conditional on ages just below and just above the age
cutoff. These figures were constructed using the interpolation procedure outlined in Section
2. The distribution of unemployment duration for those eligible for the increased benefits has
a thicker right tail than the distribution for those who were ineligible.

All these observations indicate that the shift in the mean in Figure 4(a) can be attributed to
an increase in the right tail of the distribution rather than a uniform increase across the dis-
tribution. The average treatment effect could therefore mask significant heterogeneity in the
responses to the program. For example, even though the average duration of unemployment
increased by approximately 15 weeks, it is possible that the policy only affected the behavior
of 5 percent of unemployed workers. Theories built to explain the relationship between un-
employment benefits and unemployment duration must be able to account for the substantial
heterogeneity in responses that we observe. The heterogeneity in responses also has important
implications for the distributional impact of the policy. Without studying the conditional
quantiles, it would have been easy to overlook these significant insights.

We also revisit some of the empirical studies in Lalive (2008) using the quantile models
proposed in this paper. To be specific, we implement the following exercises. We start
by estimating the proposed model with α1 = 0.05, α2 = 0.25, α3 = 0.5, α4 = 0.75

and α5 = 0.95 with j∗ = 3. Following Lalive (2008), we set the covariates to be xi =

(1, Di, Agei − 50, Di(Agei − 50))′, where Di is an indicator function of whether or not the
individual is treated. We are interested in how the treatment changes the distribution of the
unemployment duration. This will be referred to as the treatment effect. To study the effect
of treatment at different quantiles, we consider a representative individual at 50 years old
and define xtr = (1, 1, 0, 0)′ and xun = (1, 0, 0, 0)′, which denote the covariates for a treated
and untreated representative individual, respectively. We compute the quantiles qj(xtr) and
qj(xun) as well as their difference. In addition to studying the quantiles, we also estimate the
distribution of the unemployment duration conditional on xtr and xun by interpolating the
five quantiles using the first method introduced in Section 2. Since this interpolation method
allows us to easy compute the conditional mean (using (7) and (8)), we can compare our
results with those in Lalive (2008) who study the treatment effect on the conditional mean. In
Table 7, we report the results for men under the two identification strategies in Lalive (2008):
age threshold and border threshold.
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Table 7: Treatment effect of extended benefit duration on unemployment duration

Panel A: age threshold
α1 α2 α3 α4 α5 E(yi | xtr) E(yi | xun) E(yi | xtr)− E(yi | xun)

Coeff for Di 0.09 0.04 0.38 0.03 1.93 31.53 11.09 20.44
(0.12) (0.09) (0.54) (0.09) (0.15) (2.70) (0.49) (2.75)

qj(xtr) 0.43 2.38 7.78 14.52 192.37
(0.07) (0.14) (0.39) (0.59) (19.63)

qj(xun) 0.42 2.21 7.39 13.96 39.80
(0.07) (0.16) (0.36) (0.46) (2.94)

qj(xtr)-qj(xun) 0.00 0.17 0.38 0.56 152.57
(0.10) (0.22) (0.54) (0.78) (19.91)

Panel B: border threshold
α1 α2 α3 α4 α5 E(yi | xtr) E(yi | xun) E(yi | xtr)− E(yi | xun)

Coeff for Di -0.04 0.19 0.96 0.11 1.26 28.83 13.35 15.48
(0.12) (0.09) (0.59) (0.10) (0.19) (3.12) (0.76) (3.17)

qj(xtr) 0.48 1.99 8.08 15.58 170.12
(0.08) (0.17) (0.46) (0.78) (22.64)

qj(xun) 0.52 2.10 7.12 13.85 57.79
(0.06) (0.15) (0.38) (0.43) (5.20)

qj(xtr)-qj(xun) -0.04 -0.10 0.96 1.73 112.32
(0.10) (0.23) (0.59) (0.87) (23.07)

The dependent variable yi is the unemployment duration for individual i mea-
sured in weeks. We report the point estimates as well as the standard error in
brackets. The standard errors are computed using the weighted bootstrap proce-
dure discussed in Section 3. Notice that qj(·) is the conditional αj-quantile for
unemployment duration.

In Table 7, we can see the heterogeneous effect of the treatment across different parts of
the distribution of unemployment duration. With the age threshold as the identification, the
treatment only affects the 95-percentile by more than 157 weeks. However, since only 5% of the
men respond to the treatment, the overall treatment effect on the conditional mean is merely
about 20 weeks, which is similar to 14.8 in column (2) of Table 2 in Lalive (2008). Using the
border threshold to obtain identification, we have similar findings and the treatment effect on
the conditional mean is 15.48 weeks, close to 13.62 in column (2) of Table 2 in Lalive (2008).
Since the unemployment duration is a nonnegative variable, we also model its log values. We
conduct the same exercise with log unemployment duration and report the results in Table 8.
The results are qualitatively similar to those reported in 7.

In this empirical example, our model reveals information on the entire conditional distribution
of unemployment duration and is consistent with previous studies that only consider the
conditional mean. As shown in Tables 7 and 8, heterogeneity of the treatment effect on
different parts of the distribution of unemployment duration make it hard to understand the
whole picture based only on information on the mean.
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Table 8: Treatment effect of extended benefit duration on log unemployment duration

Panel A: age threshold
α1 α2 α3 α4 α5 E(eyi | xtr) E(eyi | xun) E(eyi | xtr)− E(eyi | xun)

Coeff for Di -0.13 -0.02 0.05 -0.02 0.90 42.92 12.62 30.29
(0.14) (0.07) (0.07) (0.09) (0.08) (4.82) (0.71) (4.90)

eqj(xtr) 0.56 2.39 7.78 14.52 193.00
(0.07) (0.15) (0.36) (0.53) (20.62)

eqj(xun) 0.42 2.22 7.39 13.97 39.85
(0.07) (0.17) (0.35) (0.49) (3.35)

eqj(xtr) − eqj(xun) 0.13 0.17 0.39 0.55 153.15
(0.11) (0.23) (0.50) (0.73) (20.99)

Panel B: border threshold
α1 α2 α3 α4 α5 E(eyi | xtr) E(eyi | xun) E(eyi | xtr)− E(eyi | xun)

Coeff for Di -0.03 0.14 0.12 -0.01 0.51 38.33 15.56 22.77
(0.13) (0.08) (0.08) (0.10) (0.08) (5.02) (1.10) (5.15)

eqj(xtr) 0.55 2.01 8.08 15.58 169.61
(0.07) (0.17) (0.46) (0.81) (22.10)

eqj(xun) 0.56 2.12 7.13 13.88 58.20
(0.05) (0.14) (0.35) (0.45) (5.66)

eqj(xtr) − eqj(xun) -0.01 -0.11 0.95 1.70 111.41
(0.09) (0.23) (0.58) (0.91) (22.94)

The dependent variable yi is the unemployment duration for individual i measured
in weeks. We report the point estimates as well as the standard error in brack-
ets. The standard errors are computed using the weighted bootstrap procedure
discussed in Section 3. Notice that qj(·) is the conditional αj-quantile for the
logarithm of unemployment duration.

6.3 Panel Application: STW study of runs on money market mutual funds

Another setting in which the study of distributions is potentially of interest is in considering
the determinants of changes in bank deposits. Lots of factors combine to generate these flows.
Day-to-day transactions will cause investors to deposit and withdraw funds, leading to random,
idiosyncratic variation in flows. Broad movements of investors in and out of stock/bond
investments and into cash could lead to changes in deposits which are common across banks
but relatively small in magnitude. In addition to these routine sources of variation, banks
may occasionally be subject to runs, in which a large proportion of investors suddenly seek
the return of their deposits as quickly as possible.

Imagine that we observe flows for a panel of 10 banks with identical observable characteristics.
During the sample period, a solvency crisis develops, and we learn that aggregate deposits
drop by 5%. Given this fact, a scenario where all banks see 5% withdrawals is quite different
from a scenario where 9 banks have no change in deposits and a single bank sees 50% deposits
withdrawn within a single day. One theory might predict the former outcome to be most likely,
while a different theory would suggest the latter. Since the conditional expectation of the flow
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distribution remains the same in both cases, an OLS regression would be unable to distinguish
between the two. In this case, we gain useful insights from knowing how the cross-sectional
distribution changes in response to the aggregate shock.

STW study the determinants of flows to and from money market mutual funds (MMMFs) after
the failure of Lehman Brothers, a period of unprecedented stress during the financial crisis.17

Their primary interest is in using the data in order to test the predictions of models featuring
strategic complementarities: models in which an individual agent’s expected payoff is positively
correlated with the average actions of other agents. Many bank run models (Diamond and
Dybvig, 1983) feature complementarities, since my expected payoff from running on a bank
increases when I know that other investors will run as well.

Despite the fact that many of these funds hold relatively similar portfolios, they often mar-
ket to very different types of investors. Some cater almost exclusively to large institutional
investors, whereas other tend to market more heavily to smaller retail investors. They focus
on the behavior of institutional investors in prime MMMFs–funds that invest primarily in
short-term, corporate debt securities–the category which experienced the largest outflows in
aggregate. STW argue that complementarities are likely to be stronger in funds that have a
high concentration of large, well-informed investors, and perform a number of tests to exploit
predetermined variation in this fraction of investors in order to test several cross sectional
predictions of models with complementarities. They find strong evidence consistent with com-
plementarities acting as a potential amplification mechanism during the crisis.

As part of their analysis, STW use our quantile regression method to characterize the evolution
of the cross-sectional distribution of investor redemptions (flows to/from different funds) as
the crisis unfolded. Consistent with the simple example above, they estimate a dynamic model
of the conditional distribution of flows given measures of investor characteristics, measures of
portfolio risk, and prior investors’ redemptions. Their dependent variable, Yit, is the daily flow,
formally defined as the logarithm of the proportional change in daily assets under management.
They use the recursive estimator described in section 3.2 to estimate the following version of
the linear index-exponential spacing model for the 50th, 10th, and 90th quantiles, respectively:

Yi,t = α0,t +X ′i,tβ0 + ε0i,t P [ε0i,t < 0|Xi,t] = 0.5

Yi,t = α0,t +X ′i,tβ0 − exp[α1,t +X ′i,tβ1] + ε1i,t P [ε1i,t < 0|Xi,t] = 0.1 (19)

Yi,t = α0,t +X ′i,tβ0 + exp[α2,t +X ′i,tβ2] + ε2i,t P [ε2i,t < 0|Xi,t] = 0.9.

Thus, time-varying fund characteristics interact with calendar time variables (time dummies),
17Money market funds are mutual funds that are have many bank-like features. See STW for a description

of the MMMF industry, and the similarities and differences between MMMF shares and bank accounts.
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which jointly combine to shift and scale the distribution of flows across funds and over time.

Looking at the first row of (19), the model for the median is a linear panel median regression
with time fixed-effects. This is STW’s model for “common shocks" that hit all funds. α0,t is
a common aggregate shock, which shifts the median flow for all funds. Now let’s turn to the
tails. An equivalent way to write (19) is

Yi,t = X ′i,tβ0 + α0,t −Di,t exp[X ′i,tβ1 + α1,t]ηi,t + (1−Di,t) exp[X ′i,tβ2 + α2,t]ηi,t, (20)

where ηi,t is a nonnegative random variable with P [ηi,t < 1|Xi,t] = 0.8 and Di,t is a Bernoulli
random variable which equals 1 with probability 0.5. Very little needs to be assumed about
the idiosyncratic shock, ηi,t, except that it satisfies the above conditional quantile restriction,
though STW argue that the data suggest that ηi,t is well-approximated by a scaled exponential
random variable. One way to think about this setup is that on each date we flip a coin to
determine whether a fund gets hit with a “good shock" (Dit = 0) or a “bad shock" (Dit = 1).
The standard deviation of the good shock is proportional to exp[α1,t+X

′
i,tβ1] and the standard

deviation of the bad shock is proportional to exp[α2,t+X ′i,tβ2]. exp[α1,t] is an aggregate shock
which scales up the standard deviation of the bad shock for all funds, while exp[α2,t] scales
up the standard deviation for the good shock. As such, aggregate factors can independently
affect the shape of the distribution for all funds, “lucky" funds, and “unlucky" funds, adding
quite a bit of flexibility to the model.

One can see the impact of estimated values of these aggregate shocks in Panel A of Figure
5, which plots the fitted value of the 10th, 50th, and 90th quantiles of daily flows from (19),
fixing Xi,t = 0. We normalize Xi,t so that the plotted lines correspond with the fitted flows for
a fund with a lagged flow equal to the cross sectional average flow and an average level of the
other fund characteristics. Our estimates suggest that the peak crisis period was characterized
by pronounced negative skewness. Over the course of the crisis, the median flow becomes more
negative and the left tail expands considerably relative to the right tail.

Next, Table 9 presents the estimated coefficients on fund characteristics from this analysis.
STW partition the sample into two subperiods and allow the coefficients on fund characteristics
to change over each. The first is the “early crisis" period, 9/10-9/16, during which above
average outflows began but prior to the announcement that the Reserve Primary Fund had
“broken the buck".18 While further discussion of these coefficient estimates may be found in

18In exchange for many regulatory requirements, MMMFs are allowed to round their share prices to the
nearest half-cent. In practice, this means that the share prices of essentially all MMMFs were held fixed at $1.00
essentially always prior to September 17, 2008. At the end of the trading day on September 16th, the Reserve
Primary Fund, which had owned Lehman Brothers commercial paper and suffered heavy outflows, suspended
redemptions and notified investors that the share prices would be marked downwards. This procedure is
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Panel A: Common changes in distribution

Figure 5: Level curves of conditional quantiles from dynamic model

This table, which is derived from the STW estimates presented in Table 9, plots the
level curves of the fitted 10th, 50th, and 90th quantiles of daily percentage changes
in assets under management on 9/17/2008–the day with the peak outflows during
week following the Lehman failure–as a function of the fraction of sophisticated
investors. All other variables are held fixed at their sample means, including lagged
flows. See STW for full descriptions of each of the variables. Bootstrapped 95%
confidence intervals are given by dashed lines.

the main text and online appendix of STW, we wish to highlight several insights which emerge
from the estimation, many of which feature less prominently when one restricts analysis only
to estimates of conditional means.

As discussed above, STW argue that, all else constant, complementarities are likely to be
stronger in funds with a higher fraction of assets under management owned by sophisticated
investors (defined as institutional shareclasses with annual expense ratios under 0.35%).19

Panels A and B provide the slope coefficients on this measure for the median and left tail,
respectively. For each of the three days of the peak crisis period, a 1 standard deviation

referred to in the MMMF industry as “breaking the buck." New regulations, which will take effect at the end
of 2016, are eliminating this structure.

19While we refer the reader to STW for much more discussion of this point, the basic idea is that lower
expense ratios (management fees) are offered to the largest accounts within a fund. Larger investors are likely
to have a larger incentive to acquire information about portfolio risk. STW propose a stylized global games
model in which increasing the fraction of well-informed agents increases the probability of a run.
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Table 9: STW Panel Quantile Regression Coefficients

Panel A Panel B Panel C
Common (Median) Exposure Left Tail Exposure Right Tail Exposure

Variable Early Crisis Peak Crisis Early Crisis Peak Crisis Early Crisis Peak Crisis
% Sophisticatedi,t−1 -0.0015 ** -0.0041 ** 0.3004 *** 0.3364 ** 0.1207 0.0322

[0.024] [0.028] [0.008] [0.033] [0.326] [0.320]
Average gross yieldi,t−1 -0.0007 -0.0055 *** 0.0820 * 0.0801 0.0144 0.1333

[0.180] [0.000] [0.081] [0.174] [0.433] [0.158]
Log flow std. dev.i,t−1 -0.0007 -0.0047 ** 0.5830 *** 0.4671 *** 0.4845 *** 0.4789 ***

[0.199] [0.030] [0.000] [0.004] [0.000] [0.002]
Log total fund assetsi,t−1 -0.0024 *** -0.0095 *** 0.0180 0.1584 0.0070 0.2488 **

[0.000] [0.000] [0.216] [0.188] [0.335] [0.037]
yi,t−1 − ȳt−1 > 0 0.1109 0.3274 **

[0.107] [0.016]
yi,t−1 − ȳt−1 < 0 0.2627 *** 0.4527 ***

[0.004] [0.002]
|yi,t−1 − ȳt−1| 0.0556 * -0.0139 0.0949 ** 0.0763 *

[0.089] [0.493] [0.043] [0.063]
N 615 367 615 367 615 367
Pseudo-R2 (50,10,90) 0.053 0.186 0.284 0.326 0.155 0.052

This table, which reproduces table C1 in STW, presents the coefficients from es-
timating equation (19) via quantile regression using the recursive method. The
dependent variable (yi,t) is the daily log difference in fund-level assets under man-
agement for prime institutional funds, in percentage points (i.e., × 100). Panel
A, on the left, reports β0, which controls the conditional median and shifts all
quantiles symmetrically. Panel B, in the middle, reports β1, which governs the
width of the left tail (the distance between the median and the 10th percentile).
Panel C, on the right, reports β2, which controls the width of the right tail (the
distance between the 90th percentile and the median). All three sets of coefficients
are allowed to vary over two different periods in 2008: 9/10-9/16 Early Crisis and
9/17-9/19 Peak Crisis, respectively. More detailed variable descriptions may be
found in Table A1 of STW. In addition to the coefficients in the table, models in-
clude time dummies to capture the common shocks, α0,t, α1,t, and α2,t. Numbers
in brackets are one-sided bootstrapped p-values clustered at the fund level. With
the exception of lagged flows, all variables are divided by their (cross-sectional)
standard deviations.

increase in the percentage of sophisticated investors was associated with at 41 bp reduction
in the median. The effects are also negative and significant, though somewhat smaller in
magnitude (15 bp/day), for the early crisis period.

Turning to tails, STW also estimate large, positive and highly significant slope coefficients
on %Sophisticated in the left tail, whereas the coefficients on the right tail are smaller and
insignificant. The coefficient for the peak crisis period implies that a 1 standard deviation
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increase in %Sophisticated is associated with a 34% increase in the distance between the 50th
and 10th percentiles. To put this magnitude in context, Figure 5, Panel B, graphically depicts
the fitted 10th, 50th, and 90th quantiles for flows on September 17, 2008, the day with the
largest aggregate outflows, varying %Sophisticated from 0 to 100%, while fixing all covariates
at their sample means. From this picture, one can observe that the marginal effect on the
10th percentile is considerably larger (about 7x) relative to the marginal effect at the median.
The 90th percentile is approximately flat. The reason is simple. Recall from Panel A of
Figure 5 that increase in the distance between the 50th and 10th percentiles was already quite
substantial during this period; the large coefficient on the left tail implies that this increase
was considerably larger for funds with a high %Sophisticated.20 STW find similar nonlinear
dependence for the pre-crisis volatility of log flows, whereas the nonlinear effects of fund size
and gross yield (a measure of portfolio riskiness) are more muted.

One other thing to note is that the estimated dynamic model also allows for interesting,
nonlinear autoregressive dynamics. STW include functions of lagged flows in the median and
both tails. In both the early crisis and peak crisis periods, there is evidence that lagged
outflows are more persistent than lagged inflows, whereas there was generally no (or even
negative) persistence in the period prior to the crisis. In the tails, there is some evidence of
ARCH(1)-type effects, since |yi,t−1− ȳt−1|, when significant, has a positive effect on both tails.
Moreover, these lagged flows are not independent of characteristics, so the non-zero coefficients
on these lagged variables further amplify the initial estimated effects of characteristics.

To compactly summarize some of these effects, STW simulate from this dynamic model in
order to characterize the effects of changing various fund characteristics on the distribution of
cumulative outflows during the course of the week following the failure of Lehman Brothers.
Due to the non-crossing property of the conditional quantile estimates, these simulations
are always well-defined. Results are summarized in Table 10 below. Moreover, Corollary
1 provides a methodology for conducting inference on the distributions of cumulative flows,
which is a complicated, nonlinear function of the estimated parameters. Consistent with the
point estimates discussed above, STW find strong evidence that the share of sophisticated
investors and the standard deviation of pre crisis flows–measures of the type of investors in
each fund rather than the riskiness of the underlying investments–have highly nonlinear effects
on the distribution of cumulative outflows during the Lehman episode. As is the case in Figure
5, both of these variables have substantially larger effects on the left tail of this cumulative
distribution relative to the median.

20Note that the researcher could choose to report the marginal effects at the sample mean directly, using the
inference procedure described in Corollary 1
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Table 10: Marginal effects of fund characteristics on cumulative flow quantiles

Cumulative Flow Quantile
Variable Value 1% 5% 10% 50% 90%

f(x̄) -52.02 -41.30 -35.81 -17.24 0.62

% Sophisticated f(x̄+ σx) -62.30 -50.29 -44.18 -21.96 -0.47
f(x̄− σx) -42.22 -32.87 -28.19 -12.93 2.59
Difference -20.08 *** -17.42 *** -15.99 *** -9.03 *** -3.06
p-value [0.003] [0.002] [0.001] [0.001] [0.170]

p-value vs. median [0.020] [0.019] [0.018] - [0.046]
Average gross yield f(x̄+ σx) -55.04 -44.07 -38.51 -19.18 0.03

f(x̄− σx) -48.92 -38.42 -33.04 -15.17 1.54
Difference -6.12 * -5.65 ** -5.47 ** -4.02 ** -1.50
p-value [0.052] [0.038] [0.030] [0.012] [0.221]

p-value vs. median [0.181] [0.173] [0.167] - [0.144]
Log flow std. dev. f(x̄+ σx) -63.18 -50.45 -43.72 -19.36 10.86

f(x̄− σx) -42.28 -33.14 -28.64 -14.42 -2.18
Difference -20.90 *** -17.31 *** -15.08 *** -4.94 ** 13.04 **
p-value [0.000] [0.000] [0.000] [0.013] [0.014]

p-value vs. median [0.000] [0.000] [0.000] - [0.000]
Log fund total assets f(x̄+ σx) -56.93 -45.97 -40.31 -20.57 -0.32

f(x̄− σx) -46.90 -36.32 -31.08 -13.49 2.74
Difference -10.02 ** -9.64 ** -9.23 ** -7.08 *** -3.06
p-value [0.042] [0.019] [0.011] [0.001] [0.163]

p-value vs. median [0.257] [0.235] [0.221] - [0.090]

This table, which reproduces Table 7 from STW, shows the impact of explanatory
variables on cumulative flow distributions (as a percentage of initial assets) for
prime institutional share classes (aggregated to the fund level) for the Septem-
ber 15-19 period. These estimates are obtained by simulating from an estimated
dynamic quantile panel regression model for daily flows that is further described
in an appendix. Columns report the 1st, 5th, 10th, 50th, and 90th quantiles of
the cumulative flow distributions, respectively. STW begin by fixing each of the
explanatory variables at its average, assuming that the initial value of lagged flows
equals the prime institutional category average. Then, STW report the impact on
the simulated flow distribution of adding and subtracting one standard deviation
to each explanatory variable, as well as p-values for a test of whether the differ-
ence in the simulated quantiles is statistically significant, obtained by using the
bootstrapped distribution of parameter estimates from our model, as well as the
p-value of whether the marginal effect is significantly different at a given quantile,
relative to the marginal effect at the median (using the bootstrapped distribution).
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7 Conclusion

This paper proposes a simple but flexible parametric method for estimating multiple con-
ditional quantiles. By construction, the estimated quantiles will satisfy the monotonicity
requirement which must hold for any distribution by construction, so, in contrast to many
benchmark methods, they are not susceptible to the well-known quantile crossing problem.
Rather than directly modeling the level of each individual quantile, we begin with a single
quantile (usually the median), and then add or subtract sums of nonnegative functions (quan-
tile spacings) to obtain the other quantiles. Our approach is thus a natural extension of the
location-scale paradigm that permits higher order moments (e.g., skewness and kurtosis) to
vary. Two estimation methods are discussed in detail, and we characterize the limiting be-
havior of each, establishing consistency, asymptotic normality, and the validity of bootstrap
inference. The latter method, under an additional “linear index" assumption, respects mono-
tonicity but preserves the computational tractability of standard linear quantile regression.
We propose a simple interpolation method which generates a mapping from a finite number
of quantiles to a probability density function. Simulation exercises demonstrate that the es-
timators perform well in finite samples. Finally, three applications demonstrate the utility of
the method in time-series (forecasting), cross-sectional, and panel settings.

A Proofs

Let Pn = n−1
∑n

i=1 δZi be the empirical measure and P ∗n = n−1
∑n

i=1 ξiδZi the weighted
bootstrap probability measure, where δZi is the Dirac measure of Zi and Zi denotes the
ith observation in the sample. We also define the empirical processes Gn = n1/2(Pn − P )

and G∗n = n1/2(P ∗n − P ). Notice that for any function f , G∗nf = Gnξf . We follow van der
Vaart and Wellner (1996) and Kosorok (2007) and adopt the notations for empirical processes.
For a class of functions F , ‖Gn‖F = supf∈F |Gnf | and similarly ‖G∗n‖F = supf∈F |G∗nf | =

supf∈F |Gnξf |. For a random variable X, ‖X‖P,r denotes (EP |X|r)1/r with r > 0.

A.1 Proof of Theorem 1

We start by verifying the following property of the check function.

Lemma A.1. Let τ ∈ (0, 1), a, b ∈ R and ψτ (a) = τ − 1{a<0}. Then|ρτ (a + b) − ρτ (a) −
bψτ (a)| ≤ 2|b|1{|a|≤|b|} and |ρτ (a+ b)− ρτ (a)| ≤ 3|b|.
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Proof. By the definition of ρτ (·), we have

ρτ (a+ b)− ρτ (a)− bψτ (a) = (a+ b)
(
1{a<0} − 1{a+b<0}

)
.

When 1{a+b<0} 6= 1{a<0}, we have two possibilities: (1) a + b < 0 and a ≥ 0; (2) a + b ≥ 0

and a < 0. In case (1), 0 ≤ a < −b; in case (2), −b ≤ a < 0. Thus, in both cases, |a| ≤ |b|. It
means that |1{a+b<0} − 1{a<0}| ≤ 1{|a|≤|b|} and thus,

|ρτ (a+ b)− ρτ (a)− bψτ (a)| ≤ |a+ b|
∣∣1{a+b<0} − 1{a<0}

∣∣
≤ (|a|+ |b|)1{|a|≤|b|}
≤ 2 |b|1{|a|≤|b|}.

The first part follows. The second part holds by |21{|a|≤|b|}|+ |ψτ (a)| ≤ 3.

Proof of Theorem 1. By Example 3.2.22 of van der Vaart and Wellner (1996) or Theorem 2.13
of Kosorok (2007), it suffices to check the following conditions.

(a) ‖θ̂general − θ0‖ = oP (1).

(b) For some function Ḣ(·) with ‖Ḣ‖P,2 <∞, we have that |hi(θ1)−hi(θ2)| ≤ Ḣ(zi)‖θ1−θ2‖
for θ1, θ2 ∈ Θ.

(c) E|(hi(θ)− hi(θ0)− vi(θ0)(θ − θ0)|2 = o(‖θ − θ0‖2) and ‖vi(θ0)‖P,2 <∞.

Notice that claim (a) follows by Assumption 1 and Corollary 3.2.3 of van der Vaart and Wellner
(1996). By Lemma A.1,

|hi(θ1)− hi(θ2)| ≤ 3

p∑
j=1

|qj(xi; θ1)− qj(xi; θ2)| ≤

3

p∑
j=1

sup
θ
‖∇θqj(xi; θ)‖

 ‖θ1 − θ2‖.

Since E supθ ‖∇θqj(xi; θ)‖2 <∞ for each j, claim (b) follows. By Lemma A.1, we have

∣∣∣∣∣∣hi(θ)− hi(θ0)−
p∑
j=1

(qj(xi; θ0)− qj(xi; θ))ψαj (yi − qj(xi; θ0))

∣∣∣∣∣∣
≤ 2

p∑
j=1

|qj(xi; θ0)− qj(xi; θ)|1 {|yi − qj(xi; θ0)| ≤ |qj(xi; θ0)− qj(xi; θ)|}

Let ki,j(θ) = qj(xi; θ) − qj(xi; θ0). Since |ki,j(θ)| ≤ supθ ‖∇θqj(xi; θ)‖‖θ − θ0‖,
‖ supθ ‖∇θqj(xi; θ)‖‖P,2+δ < ∞ and yi − qj(xi; θ0) has bounded p.d.f around zero, Holder’s
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inequality implies that E|ki,j(θ)1{|yi − qj(xi; θ0)| ≤ ki,j(θ)} = o(‖θ − θ0‖2), meaning that

E

∣∣∣∣∣∣hi(θ)− hi(θ0)−
p∑
j=1

(qj(xi; θ0)− qj(xi; θ))ψαj (yi − qj(xi; θ0))

∣∣∣∣∣∣
2

= o(‖θ − θ0‖2). (21)

Also by the boundedness of ψα(·), we have∥∥∥∥∥∥
p∑
j=1

(qj(xi; θ0)− qj(xi; θ))ψαj (yi − qj(xi; θ0))− vi(θ0)(θ − θ0)

∥∥∥∥∥∥
P,2

≤
p∑
j=1

‖qj(xi; θ)− qj(xi; θ0)−∇θqj(xi; θ0)(θ − θ0)‖P,2 = o(‖θ − θ0‖). (22)

By (21) and (22), E|(hi(θ)−hi(θ0)−vi(θ0)(θ−θ0)|2 = o(‖θ−θ0‖2). Notice that ‖vi(θ0)‖P,2 ≤∑p
j=1 ‖∇θqj(xi; θ0)‖P,2 <∞. Claim (c) follows. The proof is complete.

A.2 Proof of Theorem 2 and Corollary 1

We impose the following regularity condition for Theorem 2 and Corollary 1.

Assumption 2. For j ∈ {j∗, · · · , p − 1}, define β = (θj∗ , · · · , θj) and γ = θj+1, along
with their pseudo-true values β∗ = (θj∗,∗, · · · , θj,∗) and γ∗ = θj+1,∗. Let Γ = Θj+1

and B = Θj∗ × · · · × Θj. Define εi(β) = yi − qU,j(xi; θj∗ , · · · , θj) and mi(γ, β) =

ρτ

(
g−1
j (εi(β))− wi(γ)

)
1{εi(β)>0}, wi(γ) = fj+1(xi; γ) and τ = (αj+1−αj)/(1−αj). Suppose

that the following hold:
(i) Γ×B is a compact set.
(ii) There exists a constant C1 > 0 such that ∀(γ, β) ∈ Γ×B, εi(β), ‖wi(γ)‖, ‖∇γwi(γ)‖ and
‖∇βεi(β)‖ lie in [−C1, C1] with probability one and the p.d.f ’s of εi(β) and of εi(β)−g(wi(γ))

are bounded by C1.
(iii) There exists some constant λ > 2 such that sup(γ,β)∈Γ×B ‖ρτ (g−1(εi(β))−wi(γ))1{εi(β) >

0}‖P,λ <∞.
(iv) M(γ, β) is twice continuously differentiable in (γ, β) over Γ×B and V∗ = ∇γγM(γ∗, β∗)

is nonsingular, where M(γ, β) = Emi(γ, β).
(v)
´ 1
−1 |g

−1
j (|x|)|qdx <∞ for some q > 1.

We impose analogous conditions for j ∈ {1, · · · , j∗ − 1}.
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In the rest of the paper, we maintain the following notations:

mi(γ, β) = ρτ
(
g−1(εi(β))− wi(γ)

)
1{εi(β) > 0}

ṁi(γ, β) = ∇γwi(γ)ψτ (εi(β)− g(wi(γ)))1{εi(β) > 0}

Ri(γ, β) = mi(γ, β)−mi(γ∗, β)− (γ − γ∗)′ṁi(γ∗, β)

m(n),i(γ, β) = ρτ
(
g−1(εi(β))− wi(γ)

)
1{εi(β) > an}

ṁ(n),i(γ, β) = ∇γwi(γ)ψτ (εi(β)− g(wi(γ)))1{εi(β) > an} (23)

R(n),i(γ, β) = m(n),i(γ, β)−m(n),i(γ∗, β)− (γ − γ∗)′ṁ(n),i(γ∗, β)

M(γ, β) = Emi(γ, β)

Mn(γ, β) = Em(n),i(γ, β)

M̂n(γ, β) = n−1
n∑
i=1

m(n),i(γ, β)

M̂∗n(γ, β) = n−1
n∑
i=1

ξim(n),i(γ, β),

Empirical processes of functions mi, ṁi, Ri, m(n),i, ṁ(n),i and R(n),i will be denoted with-
out the subscript i. For example, GnR(γ, β) = n−1/2

∑n
i=1[Ri(γ, β) − ERi(γ, β)] and

GnξR(n)(γ, β) = n−1/2
∑n

i=1[ξiR(n),i(γ, β) − ER(n),i(γ, β)], etc. We first establish auxilary
results and then prove Theorem 2 and Corollary 1 at the end of this section.

Condition 1. There exists constants A1, A2, A3, A4 ∈ (0,∞) and λ ∈ (1,∞] such that the
following hold:

(1) ∀(γ, β) ∈ Γ×B, εi(β), ‖∇βεi(β)‖, ‖wi(γ)‖ and ‖∇γwi(γ)‖ lie in [−A1, A1] with proba-
bility one and the p.d.f of εi(β) is bounded by A1.

(2) ∀(γ, β) ∈ Γ×B, the p.d.f of εi(β)− g(wi(γ)) is bounded by A2.

(3) ∀(γ, β) ∈ Γ×B, ‖γ‖ ≤ A3 and ‖β‖ ≤ A3.

(4) sup(γ,β)∈Γ×B ‖ρτ (g−1(εi(β))− wi(γ))1{εi(β) > 0}‖P,2λ ≤ A4.

Lemma A.2. There exists λ > 1 such that ∀c > 0,
´ c
−c |g

−1(|x|)|λdx < ∞. If Condition 1
holds, then sup(γ,β)∈Γ×B |Mn(γ, β)−M(γ, β)| = o(1).

Proof. Notice that Mn(γ, β) − M(γ, β) = ‖δn,t(γ, β)‖P,1, where δn,t(γ, β) =

ρτ
(
g−1(|εi(β)|)− wi(γ)

)
1{0 < εi(β) ≤ an}. By Holder’s inequality and the fact that
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ρτ (x) ≤ |x|,

‖δn,t(γ, β)‖P,1 ≤ ‖g−1(|εi(β)|)− wi(γ)‖P,λ‖1{0 < εi(β) ≤ an}‖P,π
≤

(
‖g−1(|εi(β)|)‖P,λ + ‖wi(γ)‖P,λ

)
‖1{0 < εi(β) ≤ an}‖P,π

≤ (Can)1/π
(
‖g−1(|εi(β)|)‖P,λ + ‖wi(γ)‖P,λ

)
, (24)

where the last line follows by the bounded p.d.f of εi(β) and C > 0 is a constant that up-
per bounds the p.d.f of εi(β). Under Condition 1, ‖g−1(|εi(β)|)‖λP,λ = E|g−1(|εi(β)|)|λ ≤´ A1

−A1
|g−1(|x|)|λA1dx < M for some constant M that does not depend on β. Since wi has

bounded support and Γ is compact, ‖wi(γ)‖P,λ is bounded by a finite constant. By (24) and
an → 0, supγ,β ‖δn,t(γ, β)‖P,1 → 0. The result follows.

Lemma A.3. Let Condition 1 hold. Suppose that an = o(n−1/2), β̃−β∗ = OP (n−1/2) and wi
has bounded support and the smallest eigenvalue of ∇γγM(γ∗, β∗) is positive. Then, for any
dn = oP (1),

n
[
Mn(γ∗ + dn, β̃)−Mn(γ∗, β̃)

]
= o(n‖dn‖2)+oP (n1/2‖dn‖)+nd′n

(
Dγβ(γ∗, β∗)(β̃ − β∗)

)
+nd′nΩ(γ∗, β∗)dn/2,

where Ω(γ, β) = ∇γγM(γ, β).

Proof. Let dn = oP (1) and δn,t(γ, β) = m(n),i(γ, β) − mi(γ, β). Notice that δn,t(γ, β) =

ρτ
(
g−1(εi(β))− wi(γ)

)
1{0 < εi(β) ≤ an} and for large n,

δn,t(γ1, β)− δn,t(γ2, β) =
[
ρτ
(
g−1(εi(β))− wi(γ1)

)
− ρτ

(
g−1(εi(β))− wi(γ2)

)]
1{0 < εi(β) ≤ an}

= (wi(γ2)− wi(γ1))ψτ (εi(β)− g(wi(γ2)))1{0 < εi(β) ≤ an}

+ [1{g(wi(γ1)) ≤ εi(β) ≤ g(wi(γ2))}+ 1{g(wi(γ2)) ≤ εi(β) ≤ g(wi(γ1))}]1{0 < εi(β) ≤ an}

= (wi(γ2)− wi(γ1))ψτ (εi(β)− g(wi(γ2)))1{0 < εi(β) ≤ an}, (25)

where the last line follows by noticing that g(wi(γ)) is bounded below by a positive constant
and an = o(1). Since wi and ‖∇γwi(γ)‖ have bounded support and εi(β) has bounded p.d.f,
it follows that, for large n,

sup
‖γ1−γ2‖≤η,β∈B

|n [Mn(γ1, β)−M(γ1, β)]− n [Mn(γ2, β)−M(γ2, β)]|

≤ sup
‖γ1−γ2‖≤η,β∈B

E|δn,t(γ1, β)− δn,t(γ2, β)| ≤ C0anη, (26)
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where C0 > 0 is a constant. Hence,

n
[
Mn(γ∗ + dn, β̃)−Mn(γ∗, β̃)

]
= n

[
Mn(γ∗ + dn, β̃)−M(γ∗ + dn, β̃)

]
− n

[
Mn(γ∗, β̃)−M(γ∗, β̃)

]
+ n

[
M(γ∗ + dn, β̃)−M(γ∗, β̃)

]
= oP (n1/2‖dn‖) + n

[
M(γ∗ + dn, β̃)−M(γ∗, β̃)

]
, (27)

where the last line follows by (26) and n1/2an = o(1). Let Dγ(γ, β) = ∇γM(γ, β) and
Dγβ(γ, β) = ∇γβM(γ, β). By Taylor’s theorem,

n
[
M(γ∗ + dn, β̃)−M(γ∗, β̃)

]
= nd′nDγ(γ∗, β̃) +

n

2
d′nΩ(γ̃n, β̃)dn

= nd′n

(
Dγ(γ∗, β∗) +Dγβ(γ∗, β̇n)(β̃ − β∗)

)
+
n

2
d′nΩ(γ̃n, β̃)dn (28)

(i)
= oP (n1/2‖dn‖) + nd′n

(
Dγβ(γ∗, β∗)(β̃ − β∗)

)
+
n

2
d′nΩ(γ̃n, β∗)dn,(29)

where γ̃n = γ∗+αndn for some αn ∈ [0, 1] and β̇n = β∗+ bn(β̃−β∗) for some bn ∈ [0, 1]. Here,
(i) follows by Dγ(γ∗, β∗) = 0, Dγβ(γ∗, β̇n) = Dγβ(γ∗, β∗) + oP (1) and β̃ − β∗ = OP (n−1/2).
Hence, the desired result follows by (27), (29) and Ω(γ̃n, β∗) = Ω(γ∗, β∗) + oP (1).

Lemma A.4. Let Q̂n(θ) and Qn(θ) be two stochastic processes on Θn. Let θ̂ and θn

satisfy Q̂n(θ̂) ≤ infθ∈Θn Q̂n(θ) − oP (n−1) and Qn(θn) ≤ infθ∈Θn Qn(θ) − oP (n−1). Sup-
pose that there exist Zn = OP (1) and Vn = OP (1) such that for any dn = oP (1),
n
[
Q̂n(θn + dn)− Q̂n(θn)

]
= oP (n‖dn‖2) + oP (n1/2‖dn‖) + oP (1) + n1/2d′nZn + nd′nVndn/2.

Suppose that there exists a constant c > 0 such that P (λmin(Vn) > c)→ 1. If ‖θ̂−θn‖ = oP (1),
then θ̂ − θn = −n−1/2V −1

n Zn + oP (n−1/2).

Proof. Let hn = θ̂−θn. Since P (λmin(Vn) > c)→ 1, nh′nVnhn ≥ (oP (1)+c/2)‖hn‖2 with prob-
ability approaching one. Hence, n1/2h′nZn+nh′nVnhn/2 ≥ (oP (1)+c/4)‖hn‖2 +n1/2OP (‖hn‖)
with probability approaching one. Notice that oP (n‖hn‖2)+oP (n1/2‖hn‖)+oP (1)+n1/2h′nZn+

nh′nVnhn/2 = n
[
Q̂n(θn + hn)− Q̂n(θn)

]
≤ oP (1). It follows that, with probability approach-

ing one, oP (1) ≥ (oP (1) + c/4)‖hn‖2 + n1/2OP (‖hn‖). Completing the square, we have
(c/4 + oP (1))

(
n1/2‖hn‖+OP (1)

)2 ≤ OP (1). Hence, hn = OP (n−1/2).

Let h̃n = −n−1/2V −1
n Zn. By assumption, h̃n = OP (n−1/2) and hence,

n
[
Q̂n(θn + h̃n)− Q̂n(θn)

]
= −Z ′nV −1

n Zn/2 + oP (1). Since hn = OP (n−1/2),

n
[
Q̂n(θn + hn)− Q̂n(θn)

]
= oP (1) + n1/2h′nZn + nh′nVnhn/2. Notice that

n
[
Q̂n(θn + h̃n)− Q̂n(θn)

]
+ oP (1) ≥ n

[
Q̂n(θn + hn)− Q̂n(θn)

]
. It follows that

oP (1) ≥ 2n1/2h′nZn + nh′nVnhn + Z ′nV
−1
n Zn. Since 2n1/2h′nZn + nh′nVnhn + Z ′nV

−1
n Zn =
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(
n1/2Vnhn + Zn

)′
V −1
n

(
n1/2Vnhn + Zn

)
, we have n1/2Vnhn + Zn = oP (1). The desired result

follows.

Lemma A.5. If F is uniformly bounded by a constant K and G is uniformly bounded by one,
then N[] (2Kε,F · G, Lr(Q)) ≤ N[] (Kε,F , Lr(Q))N[] (ε,G, Lr(Q)).

Proof. Notice that N[] (2Kε,F · G, Lr(Q)) = N[] (2ε, (F/K) · G, Lr(Q)) and F/K is uniformly
bounded by one. The result follows by Lemma 9.25 of Kosorok (2007).

Lemma A.6. For δ1, δ2 > 0, let Γ1 = {γ | ‖γ − γ∗‖ ≤ δ1}, B2 = {β | ‖β − β∗‖ ≤ δ2},
Fn = {fn,t(γ, β) | (γ, β) ∈ Γ1 × B2} and Kn = {1{hn,t(β) > 0} | β ∈ B2}. Suppose that the
following hold:
(i) There exists a constant C1 > 0 such that ∀(γ1, β1), (γ2, β2) ∈ Γ1×B2, we have |fn,t(γ1, β1)−
fn,t(γ2, β2)| ≤ C1‖γ1 − γ2‖ + snC1‖β1 − β2‖ and |hn,t(β1) − hn,t(β2)| ≤ C1‖β1 − β2‖, where
the sequence sn is positive.
(ii) fn,t(γ, β) ≥ 0 ∀(γ, β) ∈ Γ1 ×B2.
(iii) There exist constants C2 > 0 such that the p.d.f of hn,t(β) is bounded by C2.
(iv) There exist constants C3 ∈ (0,∞) and λ ∈ (1,∞] with sup(γ,β)∈Γ1×B2

‖fn,t(γ, β)‖P,2λ ≤
C3.

Then there exists constants M0,M1,M2, π > 0 depending only on dim γ, dimβ and the con-
stants above, such that λ−1 + π−1 = 1 and ∀z > 0,

N[] (z,Fn · Kn, L2(P )) ≤ M0

[(
δ1z
−1
)M1 ∨ 1

] [(
snδ2z

−1
)M2 ∨ 1

] [(
δ2z
−2π
)M2 ∨ 1

]
.

Proof. Fix an arbitrary z > 0. Define x1 = z/(6C1), x2 = z/(6C1sn) and x3 =

z2π(C1C2)−1(3C3)−2π. Let {γj | j = 1, · · · , nγ,x1}, {βj | j = 1, · · · , nβ,x2} and {β̄j | j =

1, · · · , nβ,x3} be an x1-net in Γ1, an x2-net in B2 and an x3-net in B2, respectively. Then
the brackets {[fn,t,L,j1,j2 ∨ 0, fn,t,U,j1,j2 ] | j1 = 1, · · · , nγ,x1 j2 = 1, · · · , nβ,x2} cover Fn, where
fn,t,U,j1,j2 = fn,t(γj1 , βj2)+x1C1 +x2C1 and fn,t,L,j1,j2 = fn,t(γj1 , βj2)−x1C1−x2C1. Also the
brackets {[kn,t,L,j , kn,t,U,j ] | j = 1, · · · , nβ,x3} cover Kn, where kn,t,U,j = 1{hn,t(β̄j)+x3C1 > 0}
and kn,t,L,j = 1{hn,t(β̄j) − x3C1 > 0}. Notice that ‖kn,t,U,j − kn,t,L,j‖P,2π ≤ ‖1{|ht(β̄j)| ≤
C1x3}‖P,2λ ≤ (C2C1x3)1/(2π), where the last inequality follows by the bounded p.d.f of hn,t(β).

Then the brackets {[(fn,t,L,j1,j2 ∨ 0)kn,t,L,j3 , fn,t,U,j1,j2kn,t,U,j3 ]}j1,j2,j3 cover Fn · Kn. Moreover,

‖fn,t,U,j1,j2kn,t,U,j3 − (fn,t,L,j1,j2 ∨ 0)kn,t,L,j3‖P,2
≤ ‖fn,t,U,j1,j2 − (fn,t,L,j1,j2 ∨ 0)‖P,2 + ‖(fn,t,L,j1,j2 ∨ 0)(kn,t,U,j3 − kn,t,L,j3)‖P,2
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(i)

≤ ‖ft,L,j1 − (fn,t,L,j1,j2 ∨ 0)‖P,2 + ‖fn,t,L,j1,j2 ∨ 0‖P,2λ‖kn,t,U,j3 − kn,t,L,j3‖P,2π
(ii)

≤ ‖ft,L,j1 − fn,t,L,j1,j2‖P,2 + ‖fn,t(γj1 , βj2)‖P,2λ‖kn,t,U,j3 − kn,t,L,j3‖P,2π
(iii)

≤ 2x1C1 + 2snx2C1 + C3(C1C2x3)1/(2π)
(iv)

≤ z,

where (i) follows by Holder’s inequality and (ii) follows by |ft,L,j1−(fn,t,L,j1,j2∨0)| ≤ |ft,L,j1−
fn,t,L,j1,j2 | and |fn,t,L,j1,j2 ∨ 0| ≤ |fn,t(γj1 , βj2)|, (iii) follows by ‖fn,t(γj1 , βj2)‖P,2λ ≤ C3 and
‖kn,t,U,j − kn,t,L,j‖P,2π ≤ (C2C1x3)1/(2π) and (iv) follows by the definitions of x1, x2 and x3.
Hence, N[] (z,Fn · Kn, L2(P )) ≤ nγ,x1nβ,x2nβ,x3 . Notice that nγ,x1 ≤ K1(δ1x

−1
1 )K2 ∨ 1 and

nβ,x2 ≤ K3(δ2x
−1
2 )K4 ∨ 1. The desired result follows by plugging in the definitions of x1, x2

and x3.

Lemma A.7. Suppose that ∀θ1, θ2 ∈ Θ, |ft(θ1)− ft(θ2)| ≤ C1‖θ1 − θ2‖. Let C2, C3 ∈ (0,∞)

be constants such that ∀θ ∈ Θ, the p.d.f of ft(θ) is bounded by C2 and the diameter of Θ is
bounded by C3. Then N[](x,F , L2(P )) ≤M1(C2x

−2)M2∨1, where F = {1{ft(θ) > 0} | θ ∈ Θ}
andM1,M2 > 0 are constants depending only on C1, C2 and dim θ. The same conclusion holds
if F is replaced by F ′ = {1{ft(θ) ≥ 0} | θ ∈ Θ}.

Proof. Let {θj}nzj=1 be a z-net in Θ. Then the brackets {[1{ft,L,j > 0},1{ft,U,j > 0}]}j1,j2
cover F , where ft,L,j = ft(θj) − C1z and ft,U,j = ft(θj) + C1z. Notice that ‖1{ft,L,j >
0} − 1{ft,U,j > 0}‖P,2 = ‖1{|ft(θj)| ≤ C1z}‖P,2 ≤

√
C1C2z. Hence, N[](

√
C1C2z,F , L2(P )) ≤

nz ≤ K1(C3z
−1)K2 ∨ 1 for some constants K1,K2 > 0 depending only on dim θ. The result

follows by a change of variable. The same argument applies to F ′.

Lemma A.8. Let Condition 1 hold. Let Fn(δ) = {R(n),i(γ∗ + h1, β∗ + h2) | ‖h1 + h2‖ ≤ δ}.
Then there exist constants M1,M2,M3,M4,M5,M6 > 0 depending only on dimβ, dim γ and
the constants in Condition 1 such that ∀z > 0,

N[] (z,Fn(δ), L2(P )) ≤
[
M1

(
δz−1

)M2 ∨ 1
] [
M3

(
δz−2

)M4 ∨ 1
] [
M5

(
δz−2

)M6 ∨ 1
]
.

Proof. Simple computations yield R(n),i(γ, β) = Ri(γ, β)1{εi(β) > an} and

Ri(γ, β) =
∣∣g−1(εi(β))− wi(γ)

∣∣ [1{g(wi(γ)) ≤ εi(β) < g(wi(γ))}+ 1{g(wi(γ)) ≤ εi(β) < g(wi(γ))}] .
(30)

Notice that for large n, R(n),i(·, ·) = Ri(·, ·). Hence, in the rest of the proof, we prove the
result for Ri(γ, β) and F(δ) = {Ri(γ∗ + h1, β∗ + h2) | ‖h1 + h2‖ ≤ δ}.

Notice that in the expression for Ri in (30), we can replace g−1(·) with its truncated version,
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g−1
c (·), where g−1

c (x) = g−1((x∨C1)∧C2)) and [C1, C2] is a finite length interval that contains
the support of wi(γ) for each γ ∈ Γ. Observe that there exists C0 > 0 depending only on C1

and C2 such that ∀x1, x2 ∈ R, |g−1
c (x1)− g−1

c (x2)| ≤ C0|x1 − x2|.

Let F1(δ) = {ft(γ∗+h1, β∗+h2) | ‖h1 +h2‖ ≤ δ}, F2(δ) = {1{ft(γ∗+h1, β∗+h2) ≤ 0} | ‖h1 +

h2‖ ≤ δ} and F3(δ) = {1{ft(γ∗, β∗+h2) > 0} | ‖h1 +h2‖ ≤ δ}, where ft(γ, β) = g−1
c (εi(β))−

wi(γ). Notice that |ft(γ∗+h1,1, β∗+h2,1)−ft(γ∗+h1,2, β∗+h2,2)| ≤ C3(‖h1,1−h1,2‖+‖h2,1−
h2,2‖), where C3 is a constant depending only on C0 and the constants in Condition 1. By
Theorem 2.7.11 of van der Vaart and Wellner (1996), N[](2C3z,F1(δ), L2(P )) ≤ K1(δz−1)K2 ∨
1, where K1,K2 > 0 are constants depending only on dim γ and dimβ. By Lemma A.7,
N[](z,F2(δ), L2(P )) ≤ K3(δz−2)K4∨1 and N[](z,F3(δ), L2(P )) ≤ K5(δz−2)K6∨1 for constants
K3,K4,K5,K6 depending only on dimβ, dim γ and the constants in Condition 1. Since F1 is
uniformly bounded and F ⊂ F1 · F2 +F1 · F3, the result follows by Lemma A.5, Lemma 9.25
in Kosorok (2007) and a change of variables.

Lemma A.9. Let Condition 1 hold. Suppose that supx≥an |dg
−1(x)/dx| = O(na) for some

a < 1. Then ∀K ∈ (0,∞), sup(γ,β)∈Γ×Bn
∣∣n−1/2Gnm(n)(γ, β))

∣∣ = oP (1), where Bn = {β |
‖β − β∗‖ ≤ n−1/2K}.

Proof. Notice that in the definition of m(n),i, g−1(·) can be equivalently replaced by g−1
n (·)

with g−1
n (x) = g−1(x ∨ an). One can easily verify that for (γ1, β1), (γ2, β2) ∈ Γ×Bn, we have

∣∣ρτ (g−1
n (εi(β1))− wi(γ1))− ρτ (g−1

n (εi(β2))− wi(γ2))
∣∣ ≤ C‖γ1 − γ2‖+ snC‖β1 − β2‖,

where sn = supx≥an |dg
−1(x)/dx| and C > 0 is a constant such that ‖∇γwi(γ)‖ ≤ C, ‖wi‖ ≤ C

and ‖∇βεi(β)‖ ≤ C a.s. We can apply Lemma A.6 with Fn = {ρτ (g−1
n (εi(β))−wi(γ)) | (γ, β) ∈

Γ1 × Bn} and Kn = {1{εi(β)− an > 0} | β ∈ Bn}, where Γ1 = {γ | ‖γ − γ∗‖ ≤ δ1} and δ1 is
equal to the diameter of Γ. We can choose Fn,t = m(n),i(γn,∗, βn,∗) + δ1C1 +n−1/2snKC to be
an envelope function of Dn = {m(n),i(γ, β) | (γ, β) ∈ Γ1 ×Bn}. By Theorem 2.14.2 of van der
Vaart and Wellner (1996),

n−1/2E‖Gn‖Dn . n−1/2‖Fn,t‖P,2
ˆ 1

0

√
1 + logN[] (z‖Fn,t‖P,2,Dn, L2(P ))dz

(i)

≤ n−1/2‖Fn,t‖P,2
ˆ 1

0

√
1 + log

{
M0

[
(δ1z−1)M1 ∨ 1

] [(
snn−1/2Kz−1

)M2 ∨ 1
] [(

n−1/2Kz−2π
)M2 ∨ 1

]}
dx

(ii)

≤ n−1/2‖Fn,t‖P,2
ˆ 1

0

√
1 + log

{
M0

[
(δ1z−1)M1 ∨ 1

]}
dz︸ ︷︷ ︸

T1
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+ n−1/2‖Fn,t‖P,2
ˆ 1

0

√
log
[(
snn−1/2Kz−1

)M2 ∨ 1
]
dz︸ ︷︷ ︸

T2

+ n−1/2‖Fn,t‖P,2
ˆ 1

0

√
log
[(
n−1/2Kz−2π

)M2 ∨ 1
]
dz︸ ︷︷ ︸

T3

, (31)

where (i) follows by Lemma A.6 and (ii) follows by the elementary inequality
√
a+ b ≤

√
a+
√
b

for a, b ≥ 0 (used twice).

Notice that n−1/2‖Fn,t‖P,2 = O(n−1/2) + O(n−1sn) = O(n−min{1−a,1/2}). Since
´ 1

0

√
1 + log

{
M0

[
(δ1z−1)M1 ∨ 1

]}
dz <∞, T1 = o(1). Similarly, T3 = o(1). Notice that

T2 = n−1/2‖Fn,t‖P,2
ˆ 1

0

√
0 ∨

[
M2 log

(
n−1/2snK

)
−M2 log z

]
dz

(i)

≤ n−1/2‖Fn,t‖P,2
√

0 ∨
[
M2 log

(
n−1/2snK

)]
+ n−1/2‖Fn,t‖P,2

ˆ 1

0

√
−M2 log zdz

(ii)
= O(n−min{1−a,1/2})

√
0 ∨

[
M2 log

(
O(na−1/2)

)]
+O(n−min{1−a,1/2}) = o(1),

where (i) follows by the elementary inequalities 0∨(a+b) ≤ (0∨a)+b for b ≥ 0 and a ∈ R and
√
a+ b ≤

√
a +
√
b for a, b ≥ 0, and (ii) follows by

´ 1
0

√
−M2 log zdz < ∞ and sn = O(na).

Hence, all the above along with (31) imply that n−1/2E‖Gn‖Dn = o(1). The desired result
follows by Markov’s inequality.

Lemma A.10. Under the conditions and notations of Lemma A.9, ∀K ∈ (0,∞),
sup(γ,β)∈Γ×Bn

∣∣n−1/2G∗nm(n)(γ, β))
∣∣ = oP (1).

Proof. The proof is almost the same as that of Lemma A.9 with Gn replaced by G∗n. The only
difference in the proof is that in deriving (31) in the proof of Lemma A.9, we now use Lemma
21.9 of Kosorok (2007), instead of Theorem 2.14.2 of van der Vaart and Wellner (1996).

Lemma A.11. Let Condition 1 hold. Then E sup(h1,h2)∈B(δ)

∣∣GnR(n)(γ∗ + h1, β∗ + h2)
∣∣ ≤

Mδ6/5 for small enough δ > 0, where M > 0 is a constant depending only on the constants in
Condition 1.

Proof. By simple computations, it can be easily show that an envelope function for Fn(δ) =

{R(n),i(γ∗ + h1, β∗ + h2) | ‖h1‖ + ‖h2‖ ≤ δ} is Ft = C0δ1{|εi(β∗) − g(wi(γ∗))| ≤ C1δ}
for some constants C0, C1 > 0 depend only on the constants in Condition 1. Notice that
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‖Ft‖P,2 ≤ C2δ
3/2 with C2 = C0

√
A1C1. By Theorem 2.14.2 of van der Vaart and Wellner

(1996), we have

E

(
sup

(h1,h2)∈B(δ)

∣∣GnR(n)(γ∗ + h1, β∗ + h2)
∣∣) . ‖Ft‖P,2

ˆ 1

0

√
1 + logN[] (z‖Ft‖P,2,Fn(δ), L2(P ))dz

(i)

≤ ‖Ft‖P,2
ˆ 1

0

√
1 + log

[
M1

(
δ‖Ft‖−1

P,2z
−1
)M2

∨ 1

]
dz︸ ︷︷ ︸

T1

+ ‖Ft‖P,2
ˆ 1

0

√
log

[
M3

(
δ‖Ft‖−2

P,2z
−2
)M4

∨ 1

]
dz︸ ︷︷ ︸

T2

+ ‖Ft‖P,2
ˆ 1

0

√
log

[
M5

(
δ‖Ft‖−2

P,2z
−2
)M6

∨ 1

]
dz︸ ︷︷ ︸

T3

,

(32)

where M1,M2,M3,M4,M5,M6 > 0 depending only on dimβ, dim γ and the constants in
Condition 1. Here, (i) follows by Lemma A.8 and the elementary inequalities

√
a+ b ≤

√
a+
√
b

for a, b ≥ 0 (applied twice).

Notice that log

[
M1

(
δ‖Ft‖−1

P,2z
−1
)M2

∨ 1

]
≤ logM1+M2(0∨log δ)−M2 log z−M2 log ‖Ft‖P,2.

Since for small δ > 0
´ 1

0

√
1 + logM1 +M2(0 ∨ log δ)−M2 log zdz is bounded by a constant

that does not depend on δ, it follows that T1 ≤ M7‖Ft‖P,2 + ‖Ft‖P,2
√
−M2 log ‖Ft‖P,2 for

some M7 > 0 depending only on M1 and M2. Notice that ‖Ft‖P,2
√
−M2 log ‖Ft‖P,2 ≤

‖Ft‖4/5P,2

√
−M2‖Ft‖2/5P,2 log ‖Ft‖P,2. Since x 7→ x2/5 log x is bounded on the interval (0, c) ∀c > 0,

there exists a constantM8 > 0 depending only onM2 andM7 such that T1 ≤M8‖Ft‖4/5P,2 . Since

‖Ft‖P,2 ≤ C2δ
3/2, T1 ≤ M8C

4/5
2 δ6/5. Similar arguments yield T2 ≤ M9δ

6/5 and T3 ≤ M10δ
6/5

for constants M9,M10 > 0 depending only on M3,M4,M5,M6. The result follows.

Lemma A.12. Suppose that there exists a constant K > 0 such that ∀δ > 0 small enough,
E sup(h1,h2)∈B(δ)

∣∣GnR(n)(γ∗ + h1, β∗ + h2)
∣∣ ≤ Kδ1+a, where B(δ) = {(h1, h2) | ‖h1‖+ ‖h2‖ ≤

δ}. Then for any hn,1 = oP (1) and hn,2 = oP (1), we have

GnR(n)(γ∗ + hn,1, β∗ + hn,2) = oP (‖hn,1‖) + oP (‖hn,2‖).

Proof. We use the so-called “peeling device” discussed in Section 5.3 of van de Geer (2000).
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Fix an arbitrary small ε > 0. Let δ > 0 be a small enough number to be chosen later. Define
Bj(δ) = {(h1, h2) | 2−jδ ≤ ‖h1‖+ ‖h2‖ < 21−jδ}. Notice that B(δ) =

⋃∞
j=1Bj(δ). Then

P

(
sup

(h1,h2)∈B(δ)

∣∣∣∣GnR(n)(γ∗ + h1, β∗ + h2)

‖h1‖+ ‖h2‖

∣∣∣∣ > ε

)
(i)

≤
∞∑
j=1

P

(
sup

(h1,h2)∈Bj(δ)

∣∣∣∣GnR(n)(γn + h1, β∗ + h2)

‖h1‖+ ‖h2‖

∣∣∣∣ > ε

)
(ii)

≤
∞∑
j=1

P

(
sup

(h1,h2)∈Bj(δ)

∣∣GnR(n)(γ∗ + h1, β∗ + h2)
∣∣ > 2−jδε

)
(iii)

≤
∞∑
j=1

E sup(h1,h2)∈Bj(δ)
∣∣GnR(n)(γ∗ + h1, β∗ + h2)

∣∣
2−jδε

≤
∞∑
j=1

K(21−jδ)1+a

ε2−jδ
=

ε−1K21+a
∞∑
j=1

2−ja

 δa,

where (i) follows by the sub-additivity of probability measures, (ii) follows by the definition
of Hj(δ) and (iii) holds by Markov’s inequality.

Since ε−1K21+a
∑∞

j=1 2−ja <∞, we can choose small enough δ such that

lim sup
n→∞

P

(
sup

(h1,h2)∈B(δ)

∣∣∣∣GnR(n)(γ∗ + h1, β∗ + h2)

‖h1‖+ ‖h2‖

∣∣∣∣ > ε

)
≤ ε.

Since hn,1 = oP (1) and hn,2 = oP (1), P ((hn,1, hn,2) ∈ H(δ)) → 1 and hence
lim supP

(
|GnR(n)(γ∗ + hn,1, β∗ + hn,2)| > (‖hn,1‖+ ‖hn,2‖)ε

)
≤ ε. Since ε > 0 is arbitrary,

the desired result follows.

Lemma A.13. Let Condition 1 hold. Then for any hn,1 = oP (1) and hn,2 = oP (1), we have
GnR(n)(γ∗ + hn,1, β∗ + hn,2) = oP (‖hn,1‖) + oP (‖hn,2‖) and G∗nR(n)(γ∗ + hn,1, β∗ + hn,2) =

oP (‖hn,1‖) + oP (‖hn,2‖).

Proof. The first claim follows by Lemmas A.11 and A.12. For the second claim, it suffices to
notice that the conclusions in Lemmas A.11 and A.12 hold with Gn replaced by G∗n. To see
this, notice that all the arguments in the proof of these two lemmas still hold, except that in
deriving (32) in the proof of Lemma A.11, we now use Lemma 21.9 of Kosorok (2007), instead
of Theorem 2.14.2 of van der Vaart and Wellner (1996).

Lemma A.14. Let Condition 1 hold. If an = O(n−c) for c ∈ (0,∞), then ∀K0 ∈ (0,∞),

sup
‖h‖≤K0

∥∥∥Gn

(
ṁ(n)(γ∗, β∗ + n−1/2h)− ṁ(γ∗, β∗)

)∥∥∥ = oP (1).
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Proof. Let Bn = {β | ‖β−β∗‖ ≤ n−1/2K0} and Fn = {ṁ(n),i(γ∗, β)−ṁ(n),i(γ∗, β∗) | β ∈ Bn}.
Let K > 0 be large enough such that supβ∈Bn ‖β‖ ≤ K. Notice that . Let Fn,1 = {1{εi(β) >

an} | β ∈ Bn} and Fn,2 = {1{εi(β) < g(wi(γ))} | β ∈ Bn}. Fix x > 0.

Notice that ṁ(n),i(γ, β) = ∇γwi(γ)1{εi(β) > an}τ − ∇γwi(γ)1{εi(β) > an}1{εi(β) <

g(wi(γ))}. Let kn,t,1(β) = εi(β) − an and Kn,1 = {1{kn,t,1(β) > 0} | β ∈ Bn}. By
Lemma A.7, N[](x,Fn,1, L2(P )) ≤ N[](x,Kn,1, L2(P )) ≤ M1(n−1/2K0x

−1)M2 ∨ 1, where
M1,M2 > 0 are constants depending only on A1 and dimβ. Let kt,2(β) = g(wi(γ∗)) − εi(β)

and Kn,2 = {1{kt,2(β) > 0} | β ∈ Bn}. The same reasoning yields N[](x,Fn,2, L2(P )) ≤
N[](x,Kn,2, L2(P )) ≤ M1(n−1/2K0x

−1)M2 ∨ 1. By the bounded support of ‖wi‖ and Lemma
A.5, N[](4τA1x, (wi · τ) · Fn,1, L2(P )) ≤ N[](2x,Fn,1, L2(P )) ≤ N[](x,Fn,1, L2(P )) and

N[](4A1x,∇γwi(γ∗)·Fn,1·Fn,2, L2(P )) ≤ N[](2x,Fn,1·Fn,2, L2(P )) ≤ N[](x,Fn,1, L2(P ))N[](x,Fn,2, L2(P )).

Hence,

N[](8τA1x,Fn, L2(P )) = N[](8τA1x,Fn + ṁ(n),i(γ∗, β∗), L2(P ))

(i)

≤ N[](4τA1x, (∇γwi(γ∗) · τ) · Fn,1, L2(P ))N[](4A1x,∇γwi(γ∗) · Fn,1 · Fn,2, L2(P ))

≤M3
1

(
n−1/2K0x

−1
)3M2

∨ 1,

where (i) follows by Lemma 9.25 of Kosorok (2007) and the observation that Fn +

ṁ(n),i(γ∗, β∗) ⊂ ∇γwi(γ∗) · τ · Fn,1 − ∇γwi(γ∗) · Fn,1 · Fn,2. A change of variable yields
that ∀x > 0, N[](x,Fn, L2(P )) ≤ M3(n−1/2K0x

−1)M4 ∨ 1, where M3 = (8τA1)3M2M3
1 and

M4 = 3M2.

By simple computations, one can verify that Fn,t = A11{|εi(β∗)−g(wi(γ∗))| ≤ n−1/2K0A1}+

A11{|εi(β∗) − an| ≤ n−1/2K0A1} is an envelope function for Fn. Notice that ‖Fn,t‖P,2 ≤
A1

√
A2A1K0n−1/2 + A1

√
A1(n−1/2K0A1 + an) = o(1). By Theorem 2.14.2 of van der Vaart

and Wellner (1996),

E‖Gn‖Fn . ‖Fn,t‖P,2
ˆ 1

0

√
1 + logN[](x‖Fn,t‖P,2,Fn, L2(P ))dx

(i)

≤ ‖Fn,t‖P,2
ˆ 1

0

√
1 + 0 ∨ log

[
M3

(
n−1/2K0x−1‖Fn,t‖−1

P,2

)M4
]
dx

≤ ‖Fn,t‖P,2
ˆ 1

0

√
(D −M4 log x) + 0 ∨

(
−M4 log n1/2‖Fn,t‖P,2

)
dx
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(ii)

≤ ‖Fn,t‖P,2
ˆ 1

0

√
(D −M4 log x)dx︸ ︷︷ ︸
T1

+ ‖Fn,t‖P,2
√

0 ∨
(
−M4 log n1/2‖Fn,t‖P,2

)︸ ︷︷ ︸
T2

,(33)

where D = 1 + logM3 − 0 ∨ (M4 logK0). Here, (i) follows by N[](x,Fn, L2(P )) ≤
M3(n−1/2K0x

−1)M4 ∨ 1 and (ii) follows by the elementary inequality
√
a+ b ≤

√
a +
√
b

for a, b ≥ 0.

Since
´ 1

0

√
(D −M4 log x)dx < ∞, T1 = O(‖Fn,t‖P,2) = o(1). Since an = O(n−c), we have

‖Fn,t‖P,2 = O(n−min{1/4,c/2}) and | log n1/2‖Fn,t‖P,2| = |1/2−min{1/4, c/2}| log n, implying
T2 = o(1). Hence, E‖Gn‖Fn = o(1) and, by Markov’s inequality,

sup
‖h‖≤K0

∥∥∥Gn

(
ṁ(n)(γ∗, β∗ + n−1/2h)− ṁ(n)(γ∗, β∗)

)∥∥∥ = ‖Gn‖Fn = oP (1). (34)

LetXn,t := ṁ(n),i(γ∗, β∗)−ṁi(γ∗, β∗). Notice thatXn,t = −∇γwi(γ∗)ψτ (εi(β∗)−wi(γ∗))1{0 <
εi(β∗) ≤ an} and E‖Xn,t‖3 = o(1). By Lyapunov’s CLT, GnXn,t = oP (1). This, combined
with (34), implies the desired result.

Lemma A.15. Under the conditions of Lemma A.14, ∀K0 ∈ (0,∞),
sup‖h‖≤K0

∥∥G∗n (ṁ(n)(γ∗, β∗ + n−1/2h)− ṁ(γ∗, β∗)
)∥∥ = oP (1).

Proof. The proof is almost the same as in Lemma A.14 with Gn replaced by G∗n. The only
difference in proof is that in deriving (33) in the proof of Lemma A.14, we now use Lemma
21.9 of Kosorok (2007), instead of Theorem 2.14.2 of van der Vaart and Wellner (1996).

Theorem 3. Let Condition 1 hold. Suppose that the following also hold:
(i) M̂n(γ̂, β̂) ≤ infγ∈Γ M̂n(γ, β̂) + oP (n−1) and β̂ = β∗ +OP (n−1/2).
(ii) M(γ, β) is twice continuously differentiable in (γ, β) over Γ×B.
(iii) V∗ = ∇γγM(γ∗, β∗) is nonsingular.
(iv) an = O(n−c) for some c ∈ (0,∞), supx≥an |dg

−1(x)/dx| = O(na) for some a < 1 and´ 1
−1 |g

−1(|x|)|pdx <∞ for some p > 1.

Then

γ̂ − γ∗ = −n−1/2V −1
∗

(
Gnṁ(γ∗, β∗) + n1/2Dγβ(γ∗, β∗)(β̂ − β∗)

)
+ oP (n−1/2),

where Dγβ(γ, β) = ∇γβM(γ, β).

Proof. Let Dn,γγ(γ, β) = ∇γγMn(γ, β), Dn,γβ(γ, β) = ∇βDn,γ(γ, β), Dn,γ(γ, β) =

∇γMn(γ, β) and Dγβ(γ, β) = ∇γβM(γ, β). Define Zn := Gnṁ(n)(γn,∗, β̂) + n1/2Dn,γ(γn,∗, β̂).
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Notice that for any random sequence hn = oP (1), we have

n
[
M̂n(γ∗ + hn, β̂)− M̂n(γ∗, β̂)

]
= n1/2Gn

(
m(n)(γ∗ + hn, β̂)−m(n)(γ∗, β̂)

)
+ n

[
Mn(γ∗ + hn, β̂)−Mn(γ∗, β̂)

]
= n1/2Gn

(
m(n)(γ∗ + hn, β̂)−m(n)(γ∗, β̂)− h′nṁ(n)(γ∗, β̂)

)
+ n1/2h′nGnṁ(n)(γ∗, β̂)

+n
[
Mn(γ∗ + hn, β̂)−Mn(γ∗, β̂)

]
(i)
= oP (n1/2‖hn‖) + oP (1) + n1/2h′nGnṁ(n)(γ∗, β̂) + n

[
Mn(γ∗ + hn, β̂)−Mn(γ∗, β̂)

]
(ii)
= oP (n1/2‖hn‖) + oP (1) + n1/2h′nGnṁi(γ∗, β∗) + n

[
Mn(γ∗ + hn, β̂)−Mn(γ∗, β̂)

]
(iii)
= oP (n1/2‖hn‖) + oP (1) + n1/2h′nGnṁi(γ∗, β∗) + o(n‖hn‖2) + nh′n

(
Dγβ(γ∗, β∗)(β̂ − β∗)

)
+
n

2
h′nV∗hn

= oP (n1/2‖hn‖) + oP (1) + o(n‖hn‖2) + n1/2h′nZn +
n

2
h′nV∗hn, (35)

where Zn = Gnṁ(γ∗, β∗) + n1/2Dγβ(γ∗, β∗)(β̂ − β∗). Here, (i) follows by Lemma A.13, which
implies GnR(n)(γn,∗ + hn, β̂) = oP (‖hn‖) + oP (‖β̂ − βn,∗‖). (ii) follows by Lemma A.14 and
(iii) follows by Lemma A.3.

Let Sn(γ) = M̂n(γ, β̂) and Q(γ) = M(γ, β∗). By the triangular inequality, supγ∈Γ |Sn(γ) −
Qn(γ)| ≤ supγ∈Γ |M̂n(γ, β̂) −Mn(γ, β̂)| + supγ∈Γ |Mn(γ, β̂) −M(γ, β̂)| + supγ∈Γ |M(γ, β̂) −
M(γ, β∗)|. By Lemma A.9, supγ∈Γ |M̂n(γ, β̂) − Mn(γ, β̂)| = oP (1). By Lemma A.2,
supγ∈Γ |Mn(γ, β̂) −M(γ, β̂)| = oP (1). By the uniform continuity (implied by the differen-
tiability) of M(·, ·) and β̂ − β = OP (n−1/2), we have supγ∈Γ |M(γ, β̂) −M(γ, β∗)| = oP (1).
Hence, supγ∈Γ |Sn(γ)−Qn(γ)| = oP (1) and, by the nonsingularity of V∗, ∀η > 0, M(γ∗, β∗) <

inf‖γ−γ∗‖>εM(γ, β∗). It follows, by Corollary 3.2.3 of van der Vaart and Wellner (1996), that
γ̂ = γ∗ + oP (1). Then the result follows by (35) and Lemma A.4.

Theorem 4. Let the conditions of Theorem 3 hold. If infγ∈Γ M̂
∗
n(γ, β̂∗) ≥ M̂∗n(γ̂∗, β̂∗) +

oP (n−1) and β̂∗ = β∗ +OP ∗(n
−1/2), then

γ̂∗ − γ∗ = −n−1/2V −1
∗

(
G∗nṁ(γ∗, β∗) + n1/2Dγβ(γ∗, β∗)(β̂

∗ − β∗)
)

+ oP (n−1/2).

Proof. The proof is essentially the same as that of Theorem 3 with Gn replaced by G∗n. For
any random sequence hn = oP (1), we can show

n
[
M̂∗n(γ∗ + hn, β̂

∗)− M̂∗n(γ∗, β̂
∗)
]

= oP (n1/2‖hn‖)+oP (1)+o(n‖hn‖2)+n1/2h′nZ
∗
n+

n

2
h′nV∗hn,

(36)
Z∗n = G∗nṁ(γ∗, β∗) + n1/2Dγβ(γ∗, β∗)(β̂

∗ − β∗). The arguments for the above display are the
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same as those for (35) in the proof of Theorem 3, except that Gn is replaced by G∗n and that
we invoke Lemma A.15, instead of Lemma A.14.

We show that γ̂∗ = γ∗+oP (1) using the same argument as in Theorem 3, except that M̂n(γ, β̂)

is replaced by M̂∗n(γ, β̂∗) and that we invoke Lemma A.10, instead of Lemma A.9. Then the
desired result follows by (36) and Lemma A.4.

Proof of Theorem 2. The proof proceeds by induction. We start from j = j∗ and then move
to the tails. Under the notations of Assumption 2, we apply Theorems 3 and 4. It follows that

γ̂ − γ∗ = −n−1/2V −1
∗

(
Gnṁ(γ∗, β∗) + n1/2Dγβ(γ∗, β∗)(β̂ − β∗)

)
+ oP (n−1/2) (37)

and

γ̂∗ − γ∗ = −n−1/2V −1
∗

(
G∗nṁ(γ∗, β∗) + n1/2Dγβ(γ∗, β∗)(β̂

∗ − β∗)
)

+ oP (n−1/2). (38)

The asymptotic normality follows by (37). The bootstrap validity follows by Theorem 21.7 of
Kosorok (2007), together with (37) and (38).

Proof of Corollary 1. The result follows by Theorem 2, together with Theorems 3.9.4 and
3.9.11 of van der Vaart and Wellner (1996).
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