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Abstract

This paper analyzes the properties of runo¤electoral systems when voters are strategic. A

model of three-candidate runo¤ elections is presented, and two new features are included: the

risk of upset victory in the second round is endogenous, and many types of runo¤ systems

are considered. Three main results emerge. First, runo¤ elections produce equilibria in

which only two candidates receive a positive fraction of the votes. Second, a sincere voting

equilibrium does not always exist. Finally, runo¤ systems with a threshold below 50%

produce an Ortega e¤ect that may lead to the systematic victory of the Condorcet loser.
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1 Introduction

In a runo¤ election, the candidate with the greatest number of votes wins outright in the

�rst round if she obtains more than a prede�ned fraction of the votes (called the threshold

for �rst-round victory). If no candidate wins in the �rst round, then a second round is

held between the two candidates with the most �rst-round votes. The winner of that

round wins the election.

The runo¤ electoral system is the single most used electoral system for presidential

elections: 61 out of 91 countries that directly elect a president have a runo¤ provision

(Blais et al. 1997) �France being a notorious example. Moreover, its popularity has

continued to rise over the past decades: about 70% of the presidential elections held

in the 90s were runo¤ elections, compared to only 30% in the 60s (Golder 2005). The

widespread use of the runo¤ system is also striking in the U.S.: runo¤ primaries are a

trademark in southern states, and most large American cities have a runo¤ provision

(Bullock III and Johnson 1992, Engstrom and Engstrom 2008).1

The perceived rationale for the worldwide use of runo¤ systems is twofold: �rst, runo¤

elections are expected to be more conducive to preference and information revelation

than plurality elections and, second, they are claimed to prevent the victory of minority

candidates.2 Yet, despite the relative ubiquity of runo¤ systems, our understanding of

their properties and of voters�behavior is limited and mostly informal. The few formal

models of runo¤ elections leave important features aside (Cox 1997 and Martinelli 2002).

In this paper, I propose a new model of three-candidate runo¤ elections which challenges

the conventional wisdom in several important ways.

My model includes two new features. First, voters perceived that all candidates par-

ticipating in the second round have a positive (and endogenous) probability of winning.

This contrasts with previous models, which assumed no risk of upset victory in the second

round. I obtain this feature by relaxing the constraint that the voters participating in the

1Actually, the U.S. presidential electoral system is a runo¤ system: if no candidate receives a majority of the

electoral votes, the House of Representatives chooses the President among the top three contenders.
2The latter rationale can be found in the literature in a slightly di¤erent form. In particular, it is often argued

that runo¤ electoral systems should be used because they guarantee that the elected president has a mandate of

a large part of the population. This is intented to legitimate her position once elected.
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two rounds are necessarily the same (for empirical evidence that the two electorates do

di¤er, see Wright 1989, Bullock III and Johnson 1992, Morton and Rietz 2006). Second,

my model allows for the analysis of many di¤erent types of runo¤ systems: any threshold

for �rst round victory between 0% and 100%, as well as more sophisticated rules (mov-

ing thresholds and victory margin requirements). In practice, thresholds below 50% are

far from exceptional. For instance, the threshold is 40% in Costa Rica, North Carolina

State and New York City. Some countries use sophisticated thresholds: in Argentina, for

example, a candidate wins outright if she gains 45% of the votes or if she gains 40% of

the votes as well as 10% more than the runner-up.3

Three main results emerge. First, runo¤ elections produce multiple Duverger�s Law

equilibria � that is, equilibria in which only two candidates receive votes in the �rst

round. In those, some voters abandon their most preferred candidate and vote to ensure

the outright victory of a strong candidate. They do so to avoid the risk of an upset

victory by a less-preferred candidate in the second round. In at least one Duverger�s Law

equilibrium, the Condorcet winner4 does not receive any votes.

The second main result is that the sincere voting equilibrium �that is, the equilibrium

in which all voters vote for their most preferred candidate in the �rst round �does not

always exist. The reason is the same as the one explaining the existence of Duverger�s

Law equilibria. Together, these two �rst results prove that the Duverger�s Law equilibria

may be the only (pure strategy) equilibria in runo¤ elections.

The third main result is that runo¤ elections with a threshold below 50% may produce

an equilibrium that allows the outright victory of the Condorcet loser in the �rst round.5

This happens precisely because a sincere voting equilibrium exists for some distributions

of voter preferences. The Condorcet loser could instead be beaten if a su¢ ciently large

coalition of voters deviated and coordinated their votes on one of the trailing candidates.

This excessive vote dispersion happens because, conditional on being pivotal, voters over-

estimate the likelihood that a second round will be held. They thus vote for their preferred

3Thresholds above 50% are more rare: the only case I am aware of is the 1996 presidential election in Sierra

Leone, for which the threshold was de�ned at 55%.
4The Condorcet winner is a candidate that would win a one to one contest against any other candidate.
5The Condorcet loser is a candidate that would lose a one to one contest against any other candidate.
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candidate to qualify her for the second round. I call this the Ortega e¤ect, after Daniel

Ortega, the winner of the 2006 Presidential election in Nicaragua. By contrast, the Or-

tega e¤ect does not exist in plurality elections since there is no second round. Actually, in

plurality elections, there is no (expectationally stable) equilibrium in which the Condorcet

loser is the only likely winner (Fey 1997 and section 4.2.4 in this paper).

Together, these results form a twofold contradiction of the conventional wisdom re-

garding runo¤ systems. First, it is commonly believed that runo¤ elections are more

conducive to preferences and information revelation than plurality (Duverger 1954, Riker

1982, Cox 1997, Piketty 2000, Martinelli 2002). As stated by Duverger in his well-known

Law and Hypothesis, respectively: �the simple-majority single-ballot system [the plural-

ity electoral system] favors the two-party systems�whereas the �simple majority with a

second ballot [the runo¤ electoral system] favors multipartyism�. His intuition is that the

voters�incentives to abandon their most preferred candidate and rally behind a serious

candidate are more powerful in plurality than in runo¤ elections. Indeed, there should

only be two serious candidates in plurality elections (those who have a serious chance to

tie for victory), whereas there should be three serious candidates for the second round.

The existence of Duverger�s Law equilibria in runo¤ elections contradicts this belief and,

therefore, Duverger�s Hypothesis.6 ;7

Second, the choice of a threshold level has traditionally been based on a perceived

trade-o¤ between costs of organization and the risk of a minority candidate victory.8

6A spatial model of electoral competition with sincere voters and strategic candidates may produce Duverger�s

Law like equilibria in which only two candidates enter the race (Osborne and Slivinsky 1996, Callander 2005).

Callander (2005) also shows that the introduction of a runo¤ system in a race with multiple candidates is unlikely

to trigger a switch toward a two-candidate race. My results are complementary: �rst, I show that strategic

candidates are not necessary for Duverger�s Law equilibria to arise. Second, I show that strategic voters might

trigger a switch toward a Duverger�s Law outcome: with strategic voters, even if there are three candidates in

the running, it is possible that only two of them receive votes. My results thus suggest that strategic voters are

crucial to explain switches of multiparty systems into two-party systems.
7Morton and Rietz (2006) mention the existence of Duverger�s Law equilibria in runo¤ elections with 50%-

threshold when voters are strategic. Yet, they do not identify the conditions of existence of the Duverger�s Law

equilibria, nor do they prove that the Duverger�s Law equilibria may be the only pure strategy equilibria.
8Many governments have indeed adopted runo¤ provisions in response to such a victory (see e.g. Bullock III

and Johnson 1992 and O�Neil 2007).
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This trade-o¤ arises mechanically when voters are not strategic: higher thresholds reduce

the risk of a minority candidate winning but increase the expected costs of organization

since the likelihood of an outright victory in the �rst round is lower. For lower values

of the threshold, the converse holds. On the basis of this perceived trade-o¤, it has

been argued that lower-than-50% thresholds are desirable: they represent a compromise

between plurality and runo¤ with a threshold at 50%. Indeed, they allow for better

revelation of preferences but prevent �useless�second rounds in which the candidate who

ranks �rst in the �rst round eventually wins the election in the second round (Shugart

and Taagepera 1994, O�Neil 2007).9 This perceived trade-o¤does not exist when strategic

voters are taken into account. Indeed, the Ortega e¤ect that I identify for runo¤ elections

with a threshold below 50% implies that intermediate values of the threshold may actually

increase the risk of a minority candidate victory with respect to plurality elections.

My model of three-candidate runo¤ elections allows voters to have any possible pref-

erence ordering over candidates (i.e. there are up to twelve types of voters).10 However,

for the sake of expositional clarity, I present the main results using a stylized version of

the model in which there are three types of voters and a divided majority facing a uni�ed

minority. All majority voters prefer either candidate A or candidate B to a third candi-

date, C, but they are divided as to whether A or B is preferable. The minority is instead

uni�ed behind candidate C.11 I then extend the main results to the general model with

more types of voters.

These theoretical �ndings are empirically relevant. First, my result that runo¤ elec-

tions produce multiple equilibria featuring di¤erent number of candidates receiving a

positive fraction of the votes sheds new light on the mixed empirical evidence vis-à-

vis Duverger�s Law and Hypothesis. There is evidence supporting Duverger�s argument

9This happens regularly. For instance, Bullock III and Johnson (1992) report empirical evidence on U.S. data

according to which the election winner corresponds to the �rst-round winner approximately 70% of the times.
10 Including voters who are indi¤erent between their second and least preferred candidates is an easy way to

capture the behavior of partisan voters.
11This particular class of situations � that is, the problem of the �divided majority� �merits study in and

of itself, as it captures the essence of coordination problems in multicandidate elections. This issue is often

considered in the literature on electoral systems. It is, for instance, at the heart of Borda (1781)�s demonstration

that plurality may fail to aggregate preferences. See also Myerson and Weber (1993), Piketty (2000), Myerson

(2002), Martinelli (2002), Dewan and Myatt (2007), and Myatt (2007).
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(Wright and Riker 1989, Golder 2006, Clark and Golder 2006, Goncalves et al. 2008, Fuji-

wara 2011), but the numerous counterexamples have remained puzzling (e.g. Shugart and

Taagepera 1994).12 Moreover, there is systematic evidence against Duverger�s argument:

Cox (1997) �nds no statistically signi�cant e¤ect of the runo¤ system on the e¤ective

number of presidential candidates in 16 democracies in the 80s. Similarly, Engstrom and

Engstrom (2008) �nd that the mean e¤ective number of candidates for gubernatorial and

senatorial U.S. primary elections (between 1980 and 2002) with runo¤provision is notably

below three and not signi�cantly di¤erent from the mean e¤ective number of candidates

with plurality rule. My result that Duverger�s Law equilibria exist in runo¤ elections

helps to make sense of these outcomes.13

Second, the puzzling result of the 2006 presidential election in Nicaragua (see Lean

2006) may be reinterpreted in light of the Ortega e¤ect. In this election, right-wing voters

formed a majority of the electorate but were divided between two candidates: Eduardo

Montealegre (Alianza Liberal Nicaraguense) and José Rizo (Partido Liberal Constitu-

cionalista). There was only a minority of left-wing voters, but they staunchly supported

the sole serious contender: Daniel Ortega (Frente Sandinista de Liberacion Nacional). In

other words, Ortega was the Condorcet loser of this election. Nicaragua�s presidential

electoral system is a runo¤where a candidate wins outright if she obtains more than 40%

of the votes or more than 35% of the vote and a victory margin over the nearest competi-

tor of 5%. Before the election, polls indicated that, due to a division among right-wing

voters, Ortega would win outright. Despite this information, right-wing voters persisted

in dividing their votes and Ortega won the presidential race with 38% (Montealegre and

Rizo obtained 28:3% and 27:1%, respectively). According to traditional models, this re-

sult was due to a non-rational reaction of right-wing voters who should not have divided

their votes. My results instead demonstrate that not only it was individually rational for

right-wing voters to behave in this way, but also that this equilibrium is expectationally

stable. That is, it would take deviation by a large group of voters to trigger an equilibrium

12Shugart and Taagepera (1994) �nd many instances in which the e¤ective number of candidates in presidential

runo¤ elections is less than three (e.g. Chile 1989, Portugal 1976-1986 and Costa Rica 1953-1986).
13The presence of sincere/partisan voters may also help to explain this empirical puzzle. Yet, this would require

the following, arguably unlikely, pattern of distribution of preferences: even in races with many candidates, two

of them must monopolize the �rst rank in the preference ordering of most voters.
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switch towards coordination.

The rest of the paper is organized as follows: Section 2 lays out the setup. Section 3

details how voters decide for whom to vote. Section 4 analyzes equilibrium behavior in

runo¤ elections. Section 5 discusses the assumption about how the two groups of voters

di¤er. Section 6 extends the analysis to runo¤elections with victory margin requirements.

Section 7 concludes. Proofs are relegated to the appendix.

2 Setup

This section describes a new model of runo¤ elections with a Poisson distribution of

voters.14. There are three candidates, fA;B;Cg ; and twelve types of voters

t 2 T = ftAB; t0AB; t00AB; tAC ; t0AC ; tBA; t00BA; tBC ; t0BC ; tCA; t00CA; tCBg :

I denote the utility of a type-t voter by the function U (W jt) ; where W is the candidate

winning the election. Thus, voters do not directly derive a bene�t from the ballot they cast:

they are instrumental. The twelve types of voters allow for the representation of every

possible preference ordering over the three candidates (except for global indi¤erence). I

explicitly de�ne the preference ordering of three types of voters:

U (AjtAB) > U (BjtAB) > U (CjtAB) ;

U (Ajt0AB) = U (Bjt0AB) > U (Cjt0AB) ; and (1)

U (Ajt00AB) > U (Bjt00AB) = U (Cjt00AB) :

There is no confusion about the preferences of the other types.

A runo¤ election works as follows. In the �rst round (� = 1), each voter either casts

a ballot in favor of one of the candidates or abstains. The action set of the voters is

denoted by 	1 = fA;B;C;?g. If the candidate who ranks �rst obtains more than a
pre-de�ned fraction, �; of the votes (called the threshold for �rst-round victory), she wins

outright and there is no second round.15 A second round is held if no candidate passes the
14The results do not depend on the assumption of a Poisson distribution of voters. In particular, results hold

if the size of the population is known and �xed. Proof available upon request.
15 In Section 6, I show that the results hold when �rst-round victory requires a victory margin over the second-

ranked candidate.
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threshold for �rst-round victory. In the second round (� = 2), each voter either casts a

ballot in favor of one of the participating candidates or abstains. In this round, however,

not all candidates participate: only the two candidates who received the most votes in

the �rst round (called the top-two candidates) are included. The action set of the voters

is denoted by 	2 = fP;Q;?g, where P and Q refer to the candidates who ranked �rst

and second in the �rst round, respectively. The candidate who obtains the most votes in

this round wins the election. To lighten notation, I assume without loss of generality that

ties are resolved by alphabetical order: A wins over both B and C, B wins over C.16

In a three-candidate setup, a runo¤ electoral system with a threshold below 1
3
is

equivalent to the plurality electoral system (a.k.a. �rst-past-the-post). Since at least one

candidate receives 1
3
or more of the votes, a second round is never held: the �rst round

always determines a winner. Therefore, I only consider runo¤ electoral systems with a

threshold � � 1
3
.17

I conduct the analysis under the assumption that the size of the electorate, l, is dis-

tributed according to a Poisson distribution of mean n: l � P (n) (see Appendix A1 for a

summary of important properties of Poisson games). Each voter is assigned a type t by

i.i.d. draws. The probability that a randomly drawn voter is assigned type t is r (t) ; withP
t2T r (t) = 1: These probabilities are common knowledge.

In runo¤ elections, voters participating in the �rst round may di¤er from those par-

ticipating in the second round (Wright 1989, Bullock III and Johnson 1992, Morton and

Rietz 2006). First-round voters may not return to the ballot in the second round for a

variety of reasons (e.g. business or private appointment, sickness or accident).18 Some

individuals may participate only in the second round. Therefore, even after observing

the �rst round results, the distribution of preferences in the electorate remains uncer-

tain. This feature of runo¤ elections must be included in the model. Indeed, as I will

show, voter behavior is dramatically a¤ected by the precision of information regarding

the distribution of preferences in the electorate, as conveyed by the �rst-round outcome.

16Results hold if I assume that ties are resolved by the toss of a fair coin.
17For details about voters behavior in multicandidate plurality elections, see Myerson and Weber (1993) and

Fey (1997).
18Endogenous abstention is outside the scope of this paper.
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Ideally, the model should include three groups of voters: those participating (i) only in

the �rst round, (ii) only in the second round, and (iii) in both rounds. However, excluding

voters of group (iii) greatly simpli�es the analysis. Therefore, in my model none of the

�rst-round voters participate in the second round, and vice versa. I assume that there

is a (complete) new draw of voters between the two rounds. The expected size of the

electorate, n�; and the probabilities of the di¤erent types; r� (t) ; remain the same in both

rounds (that is, there is no Bayesian updating). In section 5, I discuss this assumption

and show that it is not necessary for the main results to hold. It is su¢ cient that some

uncertainty regarding the distribution of preferences in the electorate remains after the

�rst round. The particular structure of this uncertainty is irrelevant.19

Strategies for �rst round voters as well as for second round voters must be de�ned. In

the �rst round, a type t�s strategy is a mapping �1 : T ! � fA;B;C;?g that speci�es
a probability distribution over the set of actions in round � = 1. In the second round, a

type t�s strategy is a mapping �2 : T �ffA;Bg ; fA;Cg ; fB;Cgg ! � fA;B;C;?g such
that suppf�2(t; fP;Qg)g = fP;Q;?g ; which speci�es a probability distribution over the
set of actions in round � = 2 (it depends on which candidates are participating in the

second round). For the sake of readability, I henceforth omit fP;Qg from the notation

�2(t; fP;Qg): Given the strategy ��, a fraction

� � (�
�) =

X
t
r (t) �� ( jt) (2)

of the electorate is expected to play action  in round �. I call � � (�
�) the expected share

of voters who choose action  in round � given the strategy ��.

The number of players who choose action  in round � is denoted by x� ; where

 2 	�: This number is random (voters do not observe it before going to the polls) and

its distribution depends on the strategy, through � � (�
�). The expected number of votes

in favor of  in round � is therefore:

E
�
x� j��

�
= � � (�

�) � n:

For the sake of readability, I henceforth omit �� from the notation.
19Note that having a di¤erent electorate in each round is not necessary for the results to hold. It is indeed

su¢ cient that voters discount the future a bit or perceive a cost to organizing a second round, or any other force

that makes them prefer that a candidate wins in the �rst rather than in the second round.
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Given the intrinsic properties of population uncertainty, the equilibrium mapping � (t)

is identical for all voters of a same type t (see Myerson 1998, p377, for more detail).20

Therefore, for this voting game, I analyze the limiting properties of sequences of symmetric

(weak) perfect Bayesian equilibria when the expected population size n becomes in�nitely

large.21

3 Pivot Probabilities and Payo¤s in Runo¤ Elections

Since voters are instrumental, their behavior depends on the probability that a ballot

a¤ects the �nal outcome of the elections, i.e. its probability of being pivotal. In runo¤

elections, a ballot may be pivotal in both rounds. This section identi�es all the pivotal

events. Their probabilities are derived in Appendix A1 (which summarizes the properties

of Poisson games and applies them to runo¤ elections). Then, I compute voters�expected

payo¤s of the di¤erent actions in the two rounds. Both subsections start with the analysis

of the second round.

3.1 Pivot Probabilities

3.1.1 Second Round

In a second round opposing P to Q; a ballot can change the outcome of the election in two

ways: from a victory of P to a victory of Q; and vice versa. Suppose that P 2 fA;B;Cg
ranks before Q 2 fA;B;Cg=P . A ballot is pivotal between P and Q in the second round
if an additional ballot in favor of P allows her to win instead of Q: This event, denoted

piv2PQ; happens when P trails behind Q by exactly one vote: an additional ballot in favor

of P leads to a tie between P and Q and thus to the victory of the former (since ties are

broken alphabetically). Similarly, a ballot is pivotal between Q and P in the second round

if an additional ballot in favor of Q allows her to win instead of P: This event, denoted

piv2QP ; happens when P and Q obtain exactly the same number of votes: an additional

20 Indeed, types can always be rede�ned such that di¤erent types of voters have the same preferences.
21This does not mean that the identi�ed properties of runo¤ elections only hold for in�nitely large electorates.

It means that there is always an n su¢ ciently large (but potentially small) such that runo¤ electoral systems

feature the identi�ed properties.
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ballot in favor of Q breaks the tie with P and ensures the victory of Q.

3.1.2 First Round

The �rst round in�uences the �nal result either directly (if one candidate wins outright)

or indirectly (through the identity of the candidates participating in the second round).

Due to the alphabetical order tie-breaking rule, the precise conditions for the pivotal

events actually depend on the alphabetical order of the candidates. Yet, I de�ne the

di¤erent pivotal events for any candidates i; j; k 2 fA;B;Cg and i 6= j 6= k; abstracting

from the candidates�alphabetical order. These conditions are thus necessarily loose.22

A ballot can a¤ect the outcome of the election directly in two ways. First, a ballot is

threshold pivotal i=ij; denoted piv1i=ij; if candidate i lacks one vote (or less) to pass the

threshold for �rst-round victory and the other candidates are all below that threshold.

Thus, with one additional vote, i wins outright. Without an additional vote in favor of

i; a second round opposing i to j is held. Symmetrically, the threshold pivotability ij=i,

denoted piv1ij=i, refers to an event in which any ballot against candidate i, i.e. in favor of

either j or k, prevents an outright victory of i in the �rst round and ensures that a second

round opposing i to j is held.

Second, a ballot is above-threshold pivotal i=j, denoted piv1i=j, if candidates i and j

have (almost) the same number of votes and are both above the threshold. An additional

vote in favor of candidate i allows her to win outright in the �rst round, but, without

any other ballot in favor of i; candidate j wins outright. Since two candidates cannot

simultaneously obtain more than 50% of the votes, the above threshold pivotability is

possible if and only if the threshold is below 50%.

A ballot may also a¤ect the �nal outcome if it changes the identity of the two candi-

dates participating in the second round. This happens when a ballot changes the identity

of the candidate who ranks third in the �rst round. A ballot is second-rank pivotal ki=kj

when candidate k ranks �rst and candidates i and j tie for second place. An additional

22 In the third column of Table 1, depending on the candidates alphabetical order: (i) the conditions might

feature weak inequality signs instead of strict ones or conversely, and (ii) the minus 1 might not be there. As

explained in Appendix A1, such small approximations in the de�nition of the pivotal events do not matter for

the computation of magnitudes.
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vote in favor of candidate i allows her, instead of j, to participate in the second round

with k:

Table 1 below summarizes the di¤erent �rst-round pivotal events that in�uence the

�rst-round voting behavior.23

Table 1: �rst-round pivotal events.

Event Notation Condition

Threshold pivotal i=ij piv1i=ij x1i + 1� � > �
�
x1i + x1j + x1k

�
� x1i � x1j � x1k

Threshold pivotal ij=i piv1ij=i
�
�
x1i + x1j + x1k + 1

�
� x1i > �

�
x1i + x1j + x1k

�
> x1j

x1i � x1j � x1k

Above-threshold pivotal i=j piv1i=j x1i = x1j � 1 � �
�
x1i + x1j + x1k

�
� x1k

Second-rank pivotal ki=kj piv1ki=kj
x1i = x1j � 1

�
�
x1i + x1j + x1k

�
� x1k > x1j

3.2 Payo¤s

The value of each ballot, and thus voters�behavior, depends on its probability of being

pivotal. In the �rst round, it also depends on voters�expectations about the outcome of

the second round.

3.2.1 Second Round

Let G2 ( jt) denote the expected gain of playing action  2 	2 in the second round.

This gain depends on the voter�s preference, summarized by U (�jt), and on the strategy
functions of second-round voters, �2: The strategies of other voters determine the expected

number of votes received by each candidate in the second round, and thereby the pivot

probabilities in that round. For a type t, the expected gain of voting for candidate P in

the second round is:

G2 (P jt) = Pr
�
piv2PQ

�
[U (P jt)� U(Qjt)]: (3)

This reads as follows: a ballot in favor of candidate P can be pivotal in favor of P

against candidate Q: If this happens, then P is elected instead of Q and voter t�s payo¤

is U (P jt)� U(Qjt): By de�nition, G2 (?jt) = 0 8t:
23 I consider three-way ties as a speci�c case of two-way ties.
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3.2.2 First Round

LetG1 ( jt) denote the expected gain of playing action  2 	1 in the �rst round. This gain
depends on the voter�s preference, summarized by U (�jt), and on the strategy functions
of all voters: �1 and �2: First-round strategies determine the expected number of votes

received by each candidate in the �rst round, and thus the pivot probabilities in that

round. Second-round strategies allow �rst-round voters to compute their expected utility

for the di¤erent possible second rounds (A vs. B, A vs. C; and B vs. C). For a type t

voter, the expected utility of a second round opposing i to j is given by

U (i; jjt) = Pr (ij fi; jg)U(ijt) + Pr (jj fi; jg)U(jjt);

where Pr(ij fi; jg) is the probability that candidate i wins the second round if opposed to
candidate j and Pr (jj fi; jg) = 1� Pr (ij fi; jg).
For a type t, the expected gain of playing action i in the �rst round is:

G1 (ijt) = Pr
�
piv1ki=kj

�
[U (k; ijt)� U(k; jjt)] + Pr

�
piv1ji=jk

�
[U (j; ijt)� U(j; kjt)] +

Pr
�
piv1i=j

�
[U (ijt)� U(jjt)] + Pr

�
piv1i=k

�
[U (ijt)� U(kjt)] +

Pr
�
piv1i=ij

�
[U (ijt)� U(i; jjt)] + Pr

�
piv1i=ik

�
[U (ijt)� U(i; kjt)] + (4)

Pr
�
piv1ji=j

�
[U (j; ijt)� U(jjt)] + Pr

�
piv1jk=j

�
[U (j; kjt)� U(jjt)] +

Pr
�
piv1ki=k

�
[U (k; ijt)� U(kjt)] + Pr

�
piv1kj=k

�
[U (k; jjt)� U(kjt)];

where i; j; k 2 fA;B;Cg and i 6= j 6= k. The �rst line in (4) reads as follows: if a ballot in

favor of i is second-rank pivotal ki=kj; then the second round opposes k to i instead of k to

j; if a ballot in favor of i is second-rank pivotal ji=jk; then the second round opposes j to

i instead of j to k. The second line refers to the gains when the ballot is above-threshold

pivotal and the three last lines refer to the gains when the ballot is threshold pivotal.24

4 Voting Behavior: Equilibrium Analysis

Equilibrium multiplicity is inherent to multicandidate elections (see Bouton and Castan-

heira 2009 and 2012 for a discussion). Runo¤ elections are not an exception. In this

24By de�nition, G1 (?jt) = 0 8t:
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section, I focus on pure strategy equilibria in runo¤ elections. I identify three equilibrium

properties of runo¤ electoral systems when voters are strategic. First, I show that runo¤

electoral systems generally produce equilibria in which only two candidates receive votes.

These Duverger�s Law equilibria are shown to exist for any �rst-round victory thresh-

old � 2
�
1
3
; 1
�
: I demonstrate that the existence of these Duverger�s Law equilibria may

prevent the election of the Condorcet winner. Second, I show that the sincere voting

equilibrium does not always exist. Together, these two results prove that the Duverger�s

Law equilibria may be the only pure strategy equilibria in runo¤ elections. Third, I show

that when the threshold for �rst-round victory is below 50%; the Condorcet loser may be

the only likely winner in equilibrium. Indeed, she may win the election outright in the

�rst round because all majority voters vote for the candidate they prefer instead of coor-

dinating their votes behind one candidate. Lastly, I show that all the equilibria identi�ed

are (expectationally) stable.

For the sake of simplicity, I perform the equilibrium analysis under the simplifying

assumption that the electorate is composed of only three types of voters: tAB; tBA; and

t00CA: Except for the �rst part of Theorem 2, all results extend to the general setup with

more types of voters (see subsection 4.3).

Types t00CA are called the minority voters: in expected terms, they represent a minority

of the electorate, i.e. r (t00CA) < 1=2. They strictly prefer candidate C to the other

candidates, about whom they are indi¤erent:

U (Cjt00CA) = 1 > U (Ajt00CA) = U (Bjt00CA) = 0: (5)

These voters always vote for C:

Together, types tAB and tBA are called the majority voters: in expected terms, they

represent a majority of the electorate, i.e. r(tAB) + r(tBA) > 1=2: Types tAB and tBA all

identify candidate C as being the worst option but have di¤ering opinions about A and

B. Types tAB prefer A to B whereas types tBA prefer B to A:25

U (AjtAB) = 1 > U (BjtAB) = 0 > U (CjtAB) = �1

25 In a previous version of the paper, I considered a di¤erent source of divisions among voters: voters were

divided because of information instead of preferences. I proved that the main results hold under that assumption.
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and

U (BjtBA) = 1 > U (AjtBA) = 0 > U (CjtBA) = �1:

To be sure that the results do not hinge on any form of symmetry, I assume that, in

expected terms, types tAB represent a larger (or equal) fraction of the electorate than

types tBA: r(tAB) � r(tBA): Note that the particular values of U (Ajt) ; U (Bjt) ; and
U (Cjt) are not necessary for my results.
I start with the analysis of the second-round voting behavior.

4.1 Second Round

Being a two-candidate election, the analysis of voters�behavior in the second round is

straightforward. From (3), it immediately follows that:

Proposition 1 In the second round, voters always vote for the candidate they prefer.

Thus, the expected results of the second round depends on the identity of the candidates

participating in that round:

(i) when fP;Qg = fA;Cg or fC;Ag: � 2A = r (tAB) + r (tBA) > � 2C = r(t00CA);

(ii) when fP;Qg = fB;Cg or fB;Cg: � 2B = r (tAB) + r (tBA) > � 2C = r(t00CA);

(iii) when fP;Qg = fA;Bg or fA;Bg: � 2A = r (tAB)+�
2(Ajt00CA)r(t00CA) and � 2B = r(tBA)+

�2(Bjt00CA)r(t00CA):

When C participates in the second round, majority voters coordinate their votes on

the participating majority candidate. This ensures that the majority candidate, either

A or B, defeats C with a probability that tends to 1 as n becomes large. When A

and B are opposed, the result depends on the fractions of types tAB and tBA; r (tAB)

and r (tBA) ; as well as on type t00CA strategies, �
2(Ajt00CA) and �2(Bjt00CA). For the sake

of simplicity, I assume that types t00CA abstain if C does not participate in the second

round, i.e. �2(?jt00CA) = 1 if fP;Qg = fA;Bg. Therefore, when opposed to B, except if
r (tAB) = r(tBA); A wins with a probability that tends to 1 when n becomes large. I will

make clear that this assumption is not central to my results.

14



4.2 First Round

4.2.1 Duverger�s Law Equilibria

The game theoretic version of Duverger�s Law states that, in plurality elections, only two

candidates should obtain a positive fraction of the votes when voters are strategic. The

game theoretic version of Duverger�s Hypothesis states that, in the �rst round of a runo¤

election, at least three candidates obtain a positive fraction of the votes.

De�nition 1 A Duverger�s Law equilibrium is a voting equilibrium in which only two

candidates obtain a positive fraction of the votes. A Duverger�s Hypothesis equilibrium is

a voting equilibrium in which all three candidates obtain a positive fraction of the votes.

In a three-candidate setup, regardless of the distribution of preferences among majority

voters, plurality elections always produce at least two Duverger�s Law equilibria (Myerson

and Weber 1993, Fey 1997, Piketty 2000, and Bouton and Castanheira 2009): either

all majority voters vote for candidate A or all majority voters vote for candidate B:

The existence of multiple Duverger�s Law equilibria highlights that voters may fail to

coordinate on the �correct�candidate. For instance, even if majority voters all prefer A

over B; i.e. r (tBA) = 0, there is an equilibrium in which they all vote for B: In other

words, a Condorcet winner may not receive any vote.

According to Duverger�s Hypothesis, runo¤ elections should not feature such an unde-

sirable property: in the �rst round of a three-candidate runo¤election, all three candidates

should obtain a positive fraction of the votes. Moreover, in many cases, the Condorcet

winner is the only likely winner (Cox 1997, Piketty 2000 and Martinelli 2002). Nonethe-

less, the following Theorem shows that this feature does not hold when voters participating

in each round are not always the same:

Theorem 1 (Duverger�s Law equilibria) In the �rst round, there exist two Duverger�s

Law equilibria in which all majority voters play  = A (resp. B). For a threshold for

�rst-round victory � 2
�
1
3
; 1
2

�
; these equilibria exist for any r(t00CA) 2

�
0; 1

2

�
: For � = 1

2
;

these equilibria exist for any r(t00CA) 2
�
0:067; 1

2

�
. For � 2

�
1
2
; 1
�
; these equilibria exist for

any r(t00CA) 2
�
z; 1

2

�
where z < 0:067:
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The reason for the existence of Duverger�s Law equilibria in runo¤ elections is the

following. Consider the �rst-round strategy pro�le �1 (BjtBA) = 1 and �1 (BjtAB) = 1�!
with ! ! 0, for which alternative A�s expected vote share is vanishingly small. What is

the best response of a tAB voter? If he votes for B and is pivotal in electing B in the �rst

round, he saves himself either from a victory of C in the �rst round when � 2
�
1
3
; 1
2

�
; (i.e.

if above-threshold pivotal B=C), or from the risk of an upset victory of C in the second

round when � 2
�
1
2
; 1
�
; (i.e. if threshold pivotal B=BC). In comparison, voting for A is

valuable for a tAB voter if a second round is held and his ballot is pivotal in bringing A to

that round, (i.e. if second-rank pivotal BA=BC). Comparing the probabilities of each of

these events shows that, when the expected fraction of type t00CA is not too small, the risk

of a C victory (in either round) is too high in comparison with the likelihood of having

A participating in the second round.

The speci�cities of the (su¢ cient) conditions on the size of the minority depend on the

Poisson distribution of voters. Nevertheless, the trade-o¤ is self-explanatory. A majority

voter has an incentive to abandon a trailing candidate (A in the above example) if the

risk of C�s victory is too high compared to the �rst-round chances of bringing the trailing

majority candidate to the second round. Typically, the larger C�s vote share, the higher

the risk of C�s victory, and the lower the probability that one vote may bring the trailing

majority candidate to the second round. This makes clear that the risk of an upset victory

is crucial for the Duverger�s Law equilibria to exist when � 2
�
1
2
; 1
�
. (See Section 5 for

more details.)

4.2.2 Sincere Voting Equilibrium

Theorem 1 does not show that Duverger�s Law equilibria are the only equilibria in runo¤

elections. Actually, Theorem 2 (below) identi�es su¢ cient conditions for the existence

of a Duverger�s Hypothesis equilibrium in which all voters are sincere, i.e. �1(AjtAB) =
�1(BjtBA) = �1(Cjt00CA) = 1. However, this theorem also identi�es su¢ cient conditions

under which the force underlying Duverger�s Law equilibria prevents the existence of the

sincere voting equilibrium.26

26 I focus on the existence of one type of sincere voting equilibrium: driven by the pivotal event piv1CA=CB : Other

may exist. For instance, if the following magnitudes are larger than others: (i) mag
�
piv1A=C

�
= mag

�
piv1B=C

�
(as
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Theorem 2 (Sincere voting) In the �rst round, there are "1; "2 > 0 such that:

(i) the sincere voting equilibrium exists if r(tAB) � r(tBA) � "1 and r (tBA) � r (tAB) <

r (t00CA) � �;

(ii) the sincere voting equilibrium does not exist if both r (tBA) < "2 and the conditions

for the existence of Duverger�s Law equilibria are satis�ed.

The intuition for the existence of the sincere voting equilibrium is as follows: con-

ditional on being pivotal, majority voters choose which majority candidate participates

in the second round with C. The event piv1CA=CB is most likely when A and B are, in

expectations, relatively close to tying for second place and C is expected not to pass the

threshold. Since the probability of defeating C in the second round is the same for both

majority candidates, majority voters vote for their most preferred candidate: tAB-voters

vote A and tBA-voters vote B: As mentioned above, this part of Theorem 2 need not

extend to a setup with more types of voters (see subsection 4.3 for details).

Conversely, Theorem 2 also identi�es when the sincere voting equilibrium cannot exist.

The intuition is that some majority voters vote for their second-best candidate to avoid

the risk of an upset victory in either the �rst or the second round (i.e. they are either

above-threshold pivotal against C or threshold pivotal in favor of a majority candidate).

This happens when one majority candidate has (much) more supporters than the other.

In such a case, conditional on being pivotal, the election essentially boils down to a contest

between one of the majority candidates and C: Some majority voters then abandon their

most preferred candidate in order to ensure an outright victory of the other majority

candidate in the �rst round.

Theorem 2 can be illustrated through numerical examples. First, one can illustrate

that sincere voting is an equilibrium when majority candidates have su¢ ciently balanced

support. Suppose that � = 0:5; r (tAB) = 0:3, r (tBA) = 0:26, and r(t00CA) = 0:44: As

shown in Table 2, for these parameter values, majority voters assess that, conditional on

being pivotal, they choose which majority candidate will oppose C in the second round.

in plurality), or (ii) mag
�
piv1A=AC

�
= mag

�
piv1B=BC

�
; or (iii) mag

�
piv1AB=AC

�
+mag(Pr(BjfA;Bg). Similarly,

I focus on one reason for non-existence, i.e. when the force underlying the existence of Duverger�s Law equilibria

prevents voters to vote sincerely. See Bouton and Gratton (2012) for more details about the existence and

non-existence of the sincere voting equilibrium in runo¤ elections.
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Indeed, mag(piv1CA=CB) is the largest magnitude.
27 Hence, both types tAB and tBA vote

for their most preferred candidate in order to force her participation in the second round.

Table 2: sincere voting, magnitudes

Threshold mag.� Second-rank mag.��

mag(piv1A=AC)=� 0:0835 mag(piv1BA=BC) = �0:0251
mag(piv1B=BC) = �0:1227 mag(piv1CA=CB) = �0:0014

mag(piv1AB=AC) = �0:0251

� Threshold pivotal (piv1i=ij) if x
1
i+1� � > �

�
x1i + x1j + x1k

�
� x1i� x1j� x1k

�� Second-rank pivotal (piv1ki=kj) if x
1
i= x1j�1 & �(x1i + x1j + x1k)� x1k> x1j

The next example illustrates that sincere voting is not an equilibrium when the ma-

jority is su¢ ciently unbalanced. Suppose that � = 0:5; r (tAB) = 0:38, r (tBA) = 0:18,

and r(t00CA) = 0:44: Taking into account the magnitude of the risk of an upset victory

of C in the second round, i.e. mag(Pr(CjfA;Cg) = mag(Pr(CjfB;Cg) � �0:0072,
I have from Table 3 that the sincere voting is not an equilibrium strategy. Indeed,

mag(piv1A=AC) +mag(Pr(CjfA;Cg) is larger than all other magnitudes. This means that
majority voters realize that, conditional on being pivotal, casting an A-ballot would en-

sure an outright victory of A in the �rst round, whereas casting a B- or C-ballot would

lead to an upset victory of C in the second round. Majority voters thus all prefer to vote

for A.

27The comparison between mag(piv1CA=CB) and the threshold magnitudes should actually take into account

the risk of an upset victory of C in the second round, i.e. mag(Pr(CjfA;Cg) and mag(Pr(CjfB;Cg). Since

these magnitudes are smaller than 0; this actually reinforces the dominance of mag(piv1CA=CB) over the threshold

magnitudes.
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Table 3: no sincere voting, magnitudes

Threshold mag.� Second-rank mag.��

mag(piv1A=AC) = �0:0292 mag(piv1BA=BC) = �0:0668
mag(piv1B=BC) = �0:2316 mag(piv1CA=CB) = �0:0369

mag(piv1AB=AC) = �0:0572

� Threshold pivotal (piv1i=ij) if x
1
i+1� � > �

�
x1i + x1j + x1k

�
� x1i� x1j� x1k

�� Second-rank pivotal (piv1ki=kj) if x
1
i= x1j�1 & �(x1i + x1j + x1k)� x1k> x1j

Theorem 2 is in stark contrast with previous results in the literature. Indeed, Cox

(1997) argues that the sincere voting equilibrium does not exist in three-candidate runo¤

elections because of �push-over tactics�: some supporters of the strongest candidate in the

�rst round vote for an unpopular candidate in order to ensure the victory of their preferred

candidate in the second round.28 Theorem 2 shows that (i) the sincere voting equilibrium

may exist and supporters of the strongest candidate do not �push over�because of the

possibility of an outright victory in the �rst round, and (ii) �push-over� is not the only

reason that may prevent the existence of the sincere voting equilibrium: there is also the

desire to avoid the risk of an upset victory in the second round.

Together, Theorems 1 and 2 prove that the Duverger�s Law equilibria may be the only

pure strategy equilibria in runo¤ elections. This strongly quali�es Duverger�s Hypothesis

and extends Duverger�s Law to runo¤ elections.29

4.2.3 The Ortega E¤ect

In this subsection, I prove that C; the Condorcet loser, may be the only likely winner

in equilibrium when the threshold � 2
�
1
3
; 1
2

�
. If C participates in the second round,

majority voters coordinate behind the participating majority candidate (Proposition 1).

28Cox (1997) does not argue against the existence of a Duverger�s Hypothesis equilibrium, quite on the contrary.
29Using numerical examples (available upon request), I can show that the relation between the threshold for

�rst-round victory and the existence of the sincere voting equilibrium is �non-monotonic�. That is, the existence

of the sincere voting equilibrium for a threshold �1 does not guarantee that it exists for a higher threshold �2: This

is so because an outright victory of a majority candidate might be more likely for a higher value of the threshold.
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Thus, r(t00CA) < 1=2 implies that C cannot win the second round with a probability that

tends to 1 as n becomes large. I thus focus on the possibility of an outright victory of C

in the �rst round. In that round, C is the only likely winner if her expected vote share is

above both the threshold and the expected vote shares of candidates A and B:

� 1C > �; and (6)

� 1C > maxf� 1A; � 1Bg: (7)

From r (t00CA) < 1=2; I have that �
1
C > maxf� 1A; � 1Bg is possible if and only if majority

voters divide their votes, i.e. �1(AjtAB) > 0 and �1(BjtBA) > 0: In equilibrium,

G1(AjtAB)�G1(BjtAB) � 0; and (8)

G1(AjtBA)�G1(BjtBA) � 0;

must then be satis�ed. From (4) and Property 2, a su¢ cient condition for (8) to be

strictly satis�ed is:30

mag
�
piv1CA=CB

�
> max

�
mag(piv1BA=BC);mag

�
piv1AB=AC

�
;mag(piv1A=C); (9)

mag(piv1B=C);mag(piv
1
A=AC);mag(mag

1
B=BC)

	
:

In such a situation:

G1(AjtA)�G1(BjtA)
Pr(piv1CA=CB)

!
n!1

U(C;AjtAB)� U(C;BjtAB) = Pr (Aj fA;Cg) > 0;

G1(AjtB)�G1(BjtB)
Pr(piv1CA=CB)

!
n!1

U(C;AjtBA)� U(C;BjtBA) = �Pr (Aj fA;Cg) < 0:

To prove that C may be elected in equilibrium, it is therefore su¢ cient to prove that

(9) can be true when (6) and (7) are satis�ed. Theorem 3 then follows:

Theorem 3 (Ortega e¤ect) For a threshold for �rst-round victory � < 0:5, there are

"1; "2 > 0 such that, if jr(tAB) � r(tBA)j � "1 and � < r(t00CA) < � + "2; there exists an

equilibrium with the following two properties:

(i) �1(AjtAB) = �1(BjtBA) = �1(Cjt00CA) = 1; and
(ii) � 1C > � > max[� 1A; �

1
B]:

30From Proposition 1, Pr (Aj fA;Cg) > 1
2
8n and Pr (Aj fA;Cg) !

n!1
1.
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Why would majority voters divide their votes when C is expected to win? Consider

the �rst-round choice of a majority voter who prefers B to A: If he expects C to pass the

threshold (which is below 50%) and then to win outright, his main objective is to prevent

C�s victory. There are two ways to achieve this goal: (i) vote for the strongest majority

candidate, say A, to defeat C directly, or (ii) increase the threshold for �rst-round victory,

which is achieved by voting for any of the two majority candidates (remember that the

threshold is a percentage of the total number of votes). If a second round is then held,

C is almost certainly defeated since all majority voters support the remaining majority

candidate. The second option has the advantage that it does not require the majority

voter to abandon B, his most preferred candidate, to �ght C. Actually, it allows him

to hit two birds with one stone: preventing C outright victory and qualifying B for the

second round.

The tBA-voter chooses option (i) and abandons B, his most preferred candidate, if the

above-threshold pivotability A=C is su¢ ciently likely. He chooses option (ii) and votes

for B if the threshold pivotability CA=C and the second-rank pivotability CB=CA are

relatively more likely. Thus, even if C is expected to win, it may be individually rational

for majority voters to vote for the candidate they prefer. This is what I call the Ortega

e¤ect, which may allow the Condorcet Loser to be the only likely winner of a runo¤

election with a threshold below 50%. Roughly speaking, the Ortega e¤ect arises when C

is unlikely to be defeated by a majority candidate in the �rst round, and the electorate is

more or less evenly split among the two majority candidates.

Theorem 3 can be illustrated through a numerical example. Suppose that � = 0:4;

r (tAB) = 0:30, r (tBA) = 0:29, and r(t00CA) = 0:41: With these parameter values, as

for the Nicaraguan case discussed in the introduction, the Condorcet Loser, C, would

asymptotically be ensured of a �rst-round victory if all voters vote for their most preferred

candidate. First-round vote shares would be: � 1C = 0:41 > � > � 1A = 0:30 > � 1B = 0:29:

For these parameter values, �1(AjtAB) = �1(BjtBA) = �1(Cjt00CA) = 1 is an equilibrium

strategy pro�le since, as illustrated in Table 2, condition (9) is satis�ed: majority voters

assess that, if they are pivotal, it is (i) to ensure that a second round is held (i.e. piv1CA=C)

and (ii) to choose whom of A and B will participate in the second round with C (i.e.

21



piv1CA=CB). Majority voters know that, conditional on being pivotal, a second round will

be held. Therefore, types tAB vote for A to ensure her participation in the second round,

and types tBA vote for B to ensure her participation in the second round. Although

majority voters correctly anticipate an outright victory of C in the �rst round, they

divide their votes between the two majority candidates.

Table 4: equilibrium magnitudes

Threshold mag.� Above-Threshold mag.�� Second-rank mag.���

mag(piv1A=AC) = �0:0223 mag(piv1A=C) = �0:0304 mag(piv1BA=BC) = �0:0125
mag(piv1B=BC) = �0:0273 mag(piv1B=C) = �0:0370 mag(piv1CA=CB) = �0:0003
mag(piv1CA=C) = �0:0002 mag(piv1A=B) = �0:0953 mag(piv1AB=AC) = �0:0125
mag(piv1CB=C) = �0:0003

� Threshold pivotal (piv1i=ij) if x
1
i+1� � > �

�
x1i + x1j + x1k

�
� x1i� x1j� x1k

�� Above-threshold pivotal (piv1i=j) if x
1
i= x1j�1 � �(x1i+x

1
j+x

1
k)� x1k

��� Second-rank pivotal (piv1ki=kj) if x
1
i= x1j�1 & �(x1i + x1j + x1k) � x

1

k
> x1j

The existence of the Ortega e¤ect does not rely on any remaining uncertainty about

the distribution of preferences in the electorate after the �rst round. On the contrary, it

is reinforced if the risk of an upset victory by C is null. Preventing an outright victory

of C in the �rst round by forcing a second round becomes more appealing if the majority

candidate participating in the second round is sure to defeat C:

The Ortega e¤ect does not exist in plurality elections. Indeed, when C is expected

to win, the majority voters�only way to defeat her is to vote for the strongest majority

candidate: a ballot cannot be threshold pivotal CA=C since, by de�nition, there is no

possibility of a second round in a plurality election.

Yet it has been argued that the Condorcet Loser can be the only likely winner in

an equilibrium of a plurality election (Myerson and Weber 1993). This happens if and

only if both majority candidates are expected to get exactly the same vote shares.31

31This does not require the fraction of supporters of the two majority candidate to be equal. If r (tAB) 6=

r (tBA) ; the voters of the (expected) larger group mix between A and B such that the two candidates get the

same vote shares in expectation.
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Majority voters then divide their votes because they do not know which candidate to

coordinate on (this could also happen in a runo¤ election). However, Fey (1997) criticizes

this equilibrium and shows that it is not expectationally stable (see next section for more

details).32

In contrast, I prove in the next subsection that the equilibria identi�ed in Theorems 1,

2, and 3, are all expectationally stable. This suggests that, ceteris paribus, the Condorcet

Loser is more likely to win in a runo¤election with a threshold � < 50% than in a plurality

election.

4.2.4 Stability

Fey (1997) analyzes the stability of equilibria in plurality elections using a concept, devel-

oped by Palfrey and Rosenthal (1991), based on the dynamics of beliefs: Expectationally

Stable Equilibrium.33 They de�ne this stability concept for three-candidate plurality elec-

tions in which the preferences for the second best candidate are drawn uniformly on [0; 1].

I adapt their de�nition to the setup considered here:

De�nition 2 An equilibrium �� is expectationally stable if for any t 2 ftAB; tBAg, there
exists an " > 0 such that

1� �1 (Bjt) = �1 (Ajt) 2 [�1;� (Ajt)� "; �1;� (Ajt) + "] \ [0; 1];

=)

G1 (Ajt) > G1 (Bjt) if �1 (Ajt) < �1;� (Ajt) ; and

G1 (Ajt) < G1 (Bjt) if �1 (Ajt) > �1;� (Ajt) :

If an equilibrium �� is expectationally stable, the following tâtonnement process con-

verges to ��: Let �1;0(AjtAB) (and �1;0(BjtAB) = 1 � �1;0(AjtAB)) be an arbitrary ini-
tial strategy in [�1;� (Ajt) � "; �1;� (Ajt) + "] \ [0; 1]: Every tAB voter starts out playing
�1;0(AjtAB) while tBA and t00CA use ��: Next, a public opinion poll is taken to measure

32Fey (1997) does not consider the case r (tAB) = r (tBA) ; in which sincere voting is an equilibrium. Perhaps

surprisingly, this equilibrium can be proved to be expectationally stable.
33The traditional re�nement concepts (e.g. trembling-hand perfection and properness) do not have much bite

in the context of voting games (see e.g. De Sinopoli 2000).
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voting intentions, and the results are publicly announced. Given the strategy in use, the

expected vote shares are:

� 1;0(A) = r (tAB)�
1;0(AjtAB) + r (tBA)�

1;� (AjtBA) ;

� 1;0(B) = r (tAB)
�
1� �1;0(AjtAB)

�
+ r (tBA)�

1;� (BjtBA) ; and

� 1;0(C) = � 1;�(C) = r (t00CA) :

Based on this expectation of the results, tAB voters can ��-adapt� their strategy, i.e.

choose a new strategy �1;1(AjtAB) 2 [�1;0(AjtAB) � �; �1;0(AjtAB) + �]; where � > 0 but

arbitrarily small.34 The voters then update their expectation of the results (i.e. they

compute � 1;1): One iterates to identify a sequence �1;k(AjtAB), k = 1; 2; ::: If this sequence
converges to �1;� (AjtAB) ; the equilibrium is expectationally stable.

As mentioned above, in plurality elections, the Duverger�s Hypothesis equilibrium

in which the Condorcet Loser is the only likely winner is not expectationally stable

(Fey 1997). Given that a plurality election can be modelled as a runo¤ election with

a threshold � = 0; this result is easy to reproduce in the setup of this paper.35 A nec-

essary condition for such a Duverger�s Hypothesis equilibrium to exist as n ! 1 is

mag(piv1A=C) = mag(piv1B=C); otherwise all majority voters want to vote for the same

candidate, either A or B. From Lemma 3, this requires that both majority candidates

are equally likely to defeat C; i.e. � 1;�(C) > � 1;�(A) = � 1;�(B): Such an equilibrium

is not expectationally stable: for any strategy such that � 1(A) 6= � 1(B), I have that

mag(piv1A=C) 6= mag(piv1B=C) and thus all majority voters want to vote for the majority

candidate with the largest expected vote share.36

34The concept of �-adaptation of strategy is important for the intuition of the expectational stability of mixed

strategy equilibria but is useless for pure strategy equilibria. If voters fully adapt their strategy, one iteration is

su¢ cient for voters to play the equilibrium strategy in the latter case. By contrast, for mixed strategy equilibria,

we would never observe convergence. If the preferences for the second best candidate were drawn uniformly on

[0; 1]; as in Fey (1997), I would not need the concept of �-adaptation of strategy.
35For � = 0, a second round is never held and thus the above-threshold pivotal events are the only possible

ones.
36As mentioned above, this proof does not hold for the knife-edge case r (tAB) = r (tBA) : In that knife-edge

case, sincere voting is an expectationally stable equilibrium. This is so because, in contrast with any Duverger�s

hypothesis equilibrium in mixed strategy, the sincere voting equilibrium does not require G1 (Ajt) = G1 (Bjt) for

the more abundant type t.
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It remains to show that the equilibria in Theorems 1, 2, and 3, are expectationally

stable. The proof relies on the continuity of the magnitudes in the expected vote shares.

For all the equilibria under consideration, one magnitude, saymag�, is strictly larger than

all the others. By the continuity of the magnitudes, there exist an " > 0 such that for

1 � �1 (Bjt) = �1 (Ajt) 2 [�1;� (Ajt) � "; �1;� (Ajt) + "] \ [0; 1]; mag� remains the largest
magnitude. These equilibria are thus all expectationally stable.

In particular, the sincere voting equilibrium (Ortega or not) exists if the magnitude of

piv1CA=CB is larger than all other magnitudes. By the continuity of the magnitudes, I have

that 9" > 0 such that, for �1 (AjtAB) � 1�"; the magnitude of piv1CA=CB is still the largest.
Hence, G1 (AjtAB) > G1 (BjtAB) : Since a similar result can be proven for type tBA, the
sincere voting equilibrium is expectationally stable. For the Duverger�s Law equilibria,

the same logic applies for the comparison of either mag(piv1A=AC) + mag (Pr(CjfA;Cg)
or mag(piv1B=BC) + mag (Pr(CjfB;Cg) and the other magnitudes. Therefore, even the
Duverger�s Law equilibrium in which the Condorcet winner does not receive any votes is

expectationally stable.37

These two previous paragraphs make clear that the equilibria in Theorems 1, 2, and

3 are all strictly perfect, i.e. a very stringent test of robustness due to Okada (1981).38

Indeed, by the continuity of the magnitudes in the expected vote shares, for any of these

equilibria, the strategy �� is a best response to any element of a sequence of slightly

trembled strategy pro�les �k converging to the equilibrium ��:

At �rst sight, the stability and robustness of the Duverger�s Law equilibrium in which

the Condorcet winner receives no votes might be puzzling. Indeed, why would a majority

of the voters not vote for their most preferred candidate? Arguably, this is a reasonable

behavior when there is an incumbent majority candidate and she is not the Condorcet

winner. In such a situation, each majority voter might expect the incumbent to receive the

votes of most other majority voters. They therefore rightly believe that the incumbent is

more likely than the other majority candidate (i.e. the Condorcet winner) to be in a close

race with the minority candidate. Voting for the incumbent is then individually rational.

37The expectational stability of Duverger�s law equilibria also proves that these equilibria are robust to the

presence of partisans voters in the electorate (i.e. voters that always vote for their most preferred candidate).
38See e.g. Ghosh and Tripathi 2012 for application of this re�nement concept to voting games.
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Coordination devices such as polls and parties may help majority voters to overcome such

a coordination failure. Nonetheless, the existence of (expectationally stable) Duverger�s

Law equilibria in runo¤ elections shows that the runo¤ system alone does not guarantee

that such a coordination failure will never arise. Plurality elections feature the exact same

weakness.

4.3 General setup

In this section, I show that, except for the �rst part of Theorem 2, the main results of

the equilibrium analysis hold in the general setup with more than three types of voters.

The most striking feature of Theorem 1 is that there generally exists a Duverger�s Law

equilibrium in which the Condorcet winner does not receive any votes. One might wonder

if such an eviction of the Condorcet winner from the electoral race relies on the relatively

simple structure of preferences assumed in the previous section. The following Lemma

shows that this is not the case (and implicitly extends Theorem 1 to the general setup):

Lemma 1 When r (t) > 0 8t 2 Tnft00AB; t00BAg; there exists a Duverger�s Law equilibrium
in which the Condorcet winner does not receive any vote as long as the fraction of support-

ers of the least popular candidate, �, is su¢ ciently large. For a threshold for �rst-round

victory � 2
�
1
3
; 1
2

�
; this equilibrium exists for any � 2

�
0; 1

2

�
: For � = 1

2
; this equilibrium

exists for any � 2
�
0:067; 1

2

�
. For � 2

�
1
2
; 1
�
; this equilibrium exist for any � 2

�
z; 1

2

�
where z < 0:067:

Only the second part of Theorem 2, that the sincere voting equilibrium does not always

exist, extends to a setup with more types of voters. Indeed, Bouton and Gratton (2012)

explore the properties of the sincere voting equilibrium and of Duverger�s Hypothesis

equilibria in the �rst round of a runo¤ elections and show that the former does not exist

when preferences in the electorate are su¢ ciently diverse, i.e. most (or all) types in T are

represented. They also show that Duverger�s Hypothesis equilibria may exist when one

allows for mixed strategies. From Lemma 1, it follows that the second part of Theorem 2

holds when there are more than three types of voters.

Theorem 3 extends to the general model straightforwardly. First, knowing thatmag(piv1C=CA)

is (among) the largest magnitude helps to understand why it holds when types t00CA are
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replaced by types tCA and tCB. These voters want to vote for C to ensure her victory in

the �rst round. They do not want to vote for A or B since this could prevent C�s outright

victory. Second, the behavior of types tAC and tBC might seem problematic since they

would not necessarily vote sincerely. For instance, when the expected outcome of the �rst

round is 0 � � 1A � � 1B < � and � 1A < � < � 1C < � + �; tBC-voters may vote for C in order

to ensure her outright victory in the �rst round and therefore avoid the risk of a victory

of A in the second round.39 Such insincere behavior does not preclude the Ortega e¤ect.

Indeed, there is a constellation of r (t) values such that (i) C is the Condorcet loser and

(ii) the conditions

0 � � 1A � � 1B < �, and

� 1A � � < � 1C < � + �

are satis�ed when � 1C = r (tCA) + r (t00CA) + r (tCB) + r (tBC) + r (t0BC) ; �
1
A = r (tAB) +

r (t0AB) + r (tAC) + r (t0AC) ; and �
1
B = r (tBA) + r (t00BA) :

5 On the Groups of First- and Second-Round Voters

In this section, I discuss the assumption of a complete new draw of the population of voters

between the two rounds. I show that my results do not rely on this particular feature of

the model. A high enough risk of upset victory in the second round is su¢ cient for my

results to hold. This risk exists when, conditional on being pivotal, the distribution of

preferences in the electorate remains uncertain. I show that such an uncertainty appears

as soon as the set of �rst-round and second-round voters are not exactly the same. Since

this risk of upset victory plays a role for Theorem 1 and the second part of Theorem 2,

but not for the �rst part of the latter nor for Theorem 3, the following discussion focuses

on the two former results.

Note that having a di¤erent electorate in each round is not necessary for the results

to hold. Another su¢ cient condition is that voters discount the future a bit or perceive

39For � and � su¢ ciently small, the ranking of magnitude is such that mag
�
piv1C=CA

�
> mag

�
piv1C=CB

�
�

mag(piv1CA=CB) > other magnitudes. Therefore, types tCA; t00CA; tCB ; and t
0
BC vote for C; types tAB ; t0AB ; tAC ;

and t0AC vote for A and types tBA and t
00
BA vote for B:
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a cost to organizing a second round, or any other force that makes them prefer that a

candidate wins in the �rst rather than in the second round.

5.1 When All Voters Participate in the Two Rounds

When the set of �rst-round voters is exactly the same as the set of second-round voters,

the �nal outcome of the election is perfectly known, conditional on being pivotal in the

�rst round. For instance, conditional on being threshold pivotal A=AC, the risk of an

upset victory of C in the second round is null. Indeed, a ballot is threshold pivotal A=AC

if

x1A + 1� � > �
�
x1A + x1B + x1C

�
� x1A � x1C � x1B:

Therefore, voters know that, even if x1B = 0; candidate A will have enough votes to defeat

C in the second round since x2A � x1A + 1 > x1C .

Hence, if the set of voters is exactly the same in both rounds, Duverger�s Law equilibria

do not exist in runo¤elections with a threshold � 2 [1
2
; 1). For majority voters, an outright

victory of a majority candidate in the �rst round, say A, is payo¤ equivalent to a second

round opposing A to C: Indeed, from Pr(Aj fA;Cg ; piv1A=AC) = 1; I have that

Pr(Aj fA;Cg ; piv1A=AC)U (Ajt)+Pr(Cj fA;Cg ; piv1A=AC)U (Cjt) = U (Ajt) ; 8t 2 ftAB; tBAg:

The best response of a tBA voter, anticipating that all other majority voters are voting

for A; is now to vote for B: He has nothing to gain by voting for A; whereas casting a

B-ballot may allow B to participate to the second round with A (and then potentially

win). Therefore, neither Theorem 1 nor the second part of Theorem 2 hold when the

voters participating in the two rounds are exactly the same.

5.2 When Some Voters Participate in the Two Rounds

In practice, the group of �rst-round voters usually di¤ers from the group of second-

round voters. There are two basic reasons for this: (i) some �rst-round voters do not

participate in the second round, and (ii) some voters only participate in the second round.

The assumption that there are no voters participating in both rounds is not entirely

satisfying. Yet, a model allowing for (i) voters participating only in the �rst round,
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(ii) voters participating only in the second round, and (iii) voters participating in both

rounds, is relatively intractable. I therefore focus on a case in which there are voters

participating in both rounds and voters participating only in the second round. Note that

my results hold for the case in which there are voters participating in both rounds and

voters participating only in the �rst round.40

As explained in the previous section, conditional on being pivotal, voters obtain infor-

mation about the distribution of preferences in the electorate: they learn the distribution

of preferences in the group of �rst-round voters. Importantly, in this model, there should

not be any Bayesian updating of the expected distribution of preferences of the new

second-round voters, r2(t); when confronted with such an information. Yet, one might

wonder whether the results are robust to such an updating of beliefs.41 Since the case

without Bayesian updating can be derived easily from the case with Bayesian updating,

I only present the details of the latter. The main di¤erence is that Bayesian updating

might reinforce some of my results.

Applying Bayes�rule, I have that:

r2(t) =
1

x1A + x1B + x1C

�
x1A
r1 (t)�1(Ajt)

� 1A
+ x1B

r1 (t)�1(Bjt)
� 1B

+ x1C
r1 (t)�1(Cjt)

� 1C

�
: (10)

Considering the Duverger�s Law equilibrium in which all majority voters vote for A;

I am interested in the probability of an upset victory of C conditional on a ballot being

threshold pivotal A=AC in the �rst round. This conditional probability is

Pr(Cj fA;Cg ; piv1A=AC) = Pr
�
x1C + x2C > x1A + x1B + x2Aj fA;Cg ; piv1A=AC

�
;

where x2A and x
2
C are distributed according to Poisson distribution of mean n

2 (r2(tAB) + r2(tBA))

and n2r2(t00CA) respectively. Since x
1
B = 0 when �

1 (AjtAB) = 1 = �1 (AjtBA) ; this reduces
to

Pr(Cj fA;Cg ; pivA=AC) = Pr
�
x1C

�
1� 2�
1� �

�
> x2A � x2C

�
: (11)

I am now in a position to prove that �1 (AjtAB) = 1 = �1 (AjtBA) (and �1 (Cjt00CA) = 1)

40The proof is available upon request.
41Small modi�cations to the model may justify Bayesian updating. For instance, if there are potential di¤er-

ences in the participation of the di¤erent types of voters (and if there is uncertainty about these di¤erences) then

voters will update their beliefs about the distribution of preferences in the voters showing up to the poll booth.
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is an equilibrium in runo¤ elections with a threshold � 2 [1
2
; 1):42 I divide the proof into

two parts: (i) � = 1=2 and (ii) � > 1=2:

For � = 1=2, I have from (11) that

Pr(Cj fA;Cg ; piv1A=AC) = Pr
�
x2C > x2A

�
:

Since all (other) majority voters vote A and all minority voters vote C; I have from Lemma

2 that

mag
�
Pr(Cj fA;Cg ; piv1A=AC)

�
� �

�p
1� r2(tC)�

p
r2(tC)

�2
:

Knowing from (10) that r2(tAB) = 1
2

r1(tAB)

1�r1(t00CA)
; r2(tBA) =

1
2

r1(tBA)

1�r1(t00CA)
; and r2(t00CA) =

1
2
;

this becomes

mag
�
Pr(Cj fA;Cg ; piv1A=AC)

�
= 0:

From the proof of Theorem 1; this directly implies that, for runo¤ elections with a

threshold � = 1=2; Duverger�s Law equilibria exist for any r1(tC) 2 (0; 1=2) : This also
shows that the updating of beliefs about the expected distribution of preferences in the

group of second-round voters may weaken the conditions for the existence of Duverger�s

Law equilibria.

For � > 1=2; the consequences of learning and beliefs updating are ambiguous. On

the one hand, since x1C(
1�2�
1�� ) < 0, an upset victory of C in the second round requires a

larger number of new t00CA-voters than with � = 1=2; i.e. x2C > x2A � x1C(
1�2�
1�� ). This

reduces the risk of an upset victory. On the other hand, if the threshold for �rst-

round victory is lower than the expected size of the majority, then, conditional on being

pivotal; voters realize that the majority is smaller than expected: if 1� r1(t00CA) > �; then

1=2 > r2(t00CA) > r1(t00CA). This increases the risk of upset victory. The conditions under

which Duverger�s Law equilibria exist may thus be more demanding. Nonetheless, as long

as mag
�
Pr(Cj fA;Cg ; piv1A=AC)

�
is su¢ ciently large, the Duverger�s Law equilibria will

exist.

Since the second part of Theorem 2 is closely related to the existence of Duverger�s

Law equilibria, I can prove in a similar fashion that it holds when the assumption of a

complete new draw of voters is relaxed.
42For � 2 ( 1

3
; 1
2
); the probability of an upset victory of C in the second round does not in�uence the behavior

of majority voters: they are in�uenced by an above-threshold pivotability against C:
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6 Victory Margin Requirements

In this section, I analyze runo¤ electoral systems that impose an extra condition for �rst-

round victory: a victory margin requirement. In these electoral systems, a candidate wins

outright in the �rst round if she receives more than a fraction � of the votes and if she

has a �-points lead over the nearest competitor. I prove that my results hold.

Imposing a victory margin requirement has two consequences for pivot probabilities.

First, there is an additional condition for a ballot to be threshold pivotal and above-

threshold pivotal. For instance, without a victory margin requirement, a ballot is threshold

pivotal i=ij if candidate i lacks (about) one vote to pass the threshold for �rst-round

victory � and if the ranking is i then j then k, i.e. if x1i +1� � > �
�
x1i + x1j + x1k

�
� x1i �

x1j � x1k: Now, in addition to these conditions, candidate i must have a lead over the other

candidates larger than a fraction � of the votes, i.e. x1i � x1j > �
�
x1i + x1j + x1k

�
: Since

the magnitude of a threshold pivot probability and an above threshold pivot probability

can only be a¤ected negatively by this new constraint, it is clear that

mag(piv1;V Mi=ij ) � mag(piv1i=ij); 8i; j 2 fA;B;Cg ; i 6= j; (12)

mag(piv1;V Mi=j ) � mag(piv1i=j); 8i; j 2 fA;B;Cg ; i 6= j;

where the superscript VM refers to a runo¤ election with a victory margin requirement.

For instance, mag(piv1;V Mi=ij ) denotes the threshold-pivot probability i=ij when a victory

margin is required.

The second consequence is that there is a new pivotal event in the �rst round. In runo¤

electoral systems with victory margin requirements, a ballot can allow a candidate to win

outright in the �rst round if she has enough votes to pass the threshold but lacks one vote

to have the �-points lead over her nearest competitor, i.e. if x1i � x1j = �
�
x1i + x1j + x1k

�
and x1i > �

�
x1i + x1j + x1k

�
� x1j � x1k: In such a situation, I say that a ballot is margin

pivotal i� j; denoted piv1;V Mi�j . When margin pivotal i� j; not casting a ballot in favor of
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candidate i leads to a second round opposing i to j: From Property 1 (in Appendix A1),

mag(piv1;V Mi�j ) = mag(piv1;V Mj�i ) = 0 if

8>>><>>>:
� 1i � � 1j = �

� 1i � �

� 1j � � 1k

(13)

mag(piv1;V Mi�j ) = mag(piv1;V Mj�i ) < 0 otherwise.

The trade-o¤ underlying the existence of Duverger�s Law equilibria (and the non-

existence of the sincere voting equilibrium) is the same as before: majority voters vote

for the strong majority candidate in order to avoid the risk of an upset victory of C

in the second round. The di¤erence is that majority voters may now have to ensure

that the stronger majority candidate obtains a large enough margin of victory. This new

requirement can in�uence majority voter incentives in two ways. On the one hand, this

requirement may strengthen the incentives of majority voters to coordinate. Indeed, it

may be more likely that the strong majority candidate falls short of one vote to pass the

margin of victory than she falls short of one vote to rank above C (i.e. mag(piv1;V MB�C ) >

mag(piv1B=BC). On the other hand, if the victory margin requirement is so demanding

that it is almost impossible to satisfy, i.e. � is too high, then the new requirement weakens

the incentives of majority voters to coordinate. Majority voters prefer not to coordinate

if it is unlikely that the strong majority candidate will win outright.43 The extension of

the second part of Theorem 2 to runo¤ elections with victory margin requirements follows

directly from this argument.

The reason explaining the Ortega e¤ect is also the same as without a victory margin

requirement: majority voters divide their votes in the �rst round because they realize

that, if C does not win outright in the �rst round, this is because a second round is held

(and not because one majority candidate defeats her directly). Nonetheless, by de�nition

the victory margin requirement imposes an additional constraint for an outright victory

of C in the �rst round: � 1C �max f� 1A; � 1Bg > �: This new constraint restricts the set of

parameters for which the Ortega e¤ect exist: r(t00CA)� r(tAB) > � has to be satis�ed.44

43Details on the conditions under which Duverger�s law equilibria exist in runo¤ elections with victory margin

requirements are available upon request.
44Proof available upon request.
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7 Conclusion

This paper analyzed the voting equilibria in three-candidate runo¤ elections. I proposed

a new model of three-candidate runo¤ elections which included two new features. First,

voters participating in the two rounds are not necessarily the same. This implies a positive

and endogenous risk of upset victory in the second round. Second, the model allowed for

many di¤erent types of runo¤ systems: any threshold for �rst round victory between 0%

and 100% as well as more sophisticated rules, e.g. moving thresholds and victory margin

requirements. I demonstrated three main results: (i) runo¤ elections produce multiple

Duverger�s Law equilibria in which only two candidates obtain a positive fraction of the

votes, (ii) the sincere voting equilibrium does not always exist, and (iii) the Ortega e¤ect

may lead to the systematic victory of the Condorcet loser in runo¤ elections with a

threshold below 50%. In contrast, the Ortega e¤ect does not arise in plurality elections.

Though relatively general, the analysis is stylized on two dimensions. First, voters of

a same type have the same preference intensities. Relaxing this assumption would not

change the main results. In Duverger�s Law equilibria, as long as the risk of upset victory

is large enough, some voters are willing to abandon their most preferred candidate in order

to avoid the victory of their least preferred candidate. For a su¢ ciently large electorate,

this is true no matter the intensity of their preferences.45 In the equilibrium sustaining

the Ortega e¤ect, all majority voters vote for the candidate they prefer. Preferring a can-

didate more intensely cannot a¤ect such strategies nor the outcome they imply. Second,

there are �only�three candidates. With respect to voters�behavior and the number of

serious candidates in equilibrium, i.e. candidates receiving a positive fraction of votes,

this assumption should be innocuous. Indeed, voters�strategic incentives imply that there

are at most three serious candidates in runo¤ elections: the candidate expected to rank

fourth would be abandoned by her supporters given that she could not qualify for the

second round.46 My model can thus be seen as a �reduced form�of a model with more

candidates. Nonetheless, by doing so I exclude the possibility of analyzing how the three

45 In a setup with heterogenous preferences, Bouton and Gratton (2012) prove the existence of Duverger�s law

equilibria in runo¤ elections with a threshold at 50%.
46This is not totally accurate: four candidates may receive a positive fraction of votes if three of them tie for

the second rank (see Cox 1997).
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serious candidate are selected out of a larger set of candidates. This selection certainly

su¤ers from coordination problems that might lead to ine¢ cient outcomes. This is an

interesting avenue for future research.
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Appendices
Appendix A1 provides a reminder of some fundamental properties of Poisson games (Myerson 2000

and 2002). Appendix A2 demonstrates the claims made in Section 4 .

Appendix A1: Large Poisson Games in Runo¤ Elections

In a Poisson game, population size follows a Poisson distribution of mean n. Since types are attributed

by i.i.d. draws, the number of voters of each type also follows a Poisson distribution of mean n r (t), and,

as shown by Myerson (2000), the number of  -votes in round � follows a Poisson distribution of mean

n �� :

Pr
�
x� 

�
= exp

�
��� n

�
(�� n)

x
�
 

x� !
: (14)

The action pro�le of a group of players is the vector that lists, for each action  ; the number of players

in the group who are choosing action c: I denote by x� an action pro�le in round �: The set of possible

action pro�les for the players in round � is Z (	�) ; i.e. Z (	�) is the set of vectors x� =
n
x� 

o
 2	�

. From

(14) ; the probability that the action pro�le is x� is:

Pr (x�) =
Y
 2	�

0B@exp
�
��� n

��
�� n

�x� 
x� !

1CA : (15)

An event E� in round � is a set of action pro�les that satisfy given constraints, i.e. it is a subset of

Z (	�) : As shown by Myerson (2000, Theorem 1), it follows from (15) that:
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Property 1 For a large population of size n; the probability of an event E� is such that

mag (E�) � lim
n!1

log [Pr (E�)]

n
= max
x�2E

X
 

x� 
n

 
1� log(

x� 
n�� 

)

!
� 1:

That is, the probability that event E� occurs is exponentially decreasing in n: mag (E�) 2 [�1; 0] is called

the magnitude of event E�. Its absolute value represents the �speed� at which the probability decreases

towards 0: the more negative is the magnitude, the faster the probability goes to 0.

Myerson (2000, Corollary 1) shows that:

Property 2 Compare two events with di¤erent magnitudes: mag (E�) < mag (E�0). Then, the probabil-

ity ratio of the former over the latter event goes to zero as n increases:

mag (E�) < mag (E�0) =) Pr (E�)

Pr (E�0)
�!
n!1

0:

Together, Properties 1 and 2 have been called the magnitude theorem by Myerson (2000). The

intuition is that the probabilities of di¤erent events do not converge towards zero at the same speed.

Hence, unless two events have the same magnitude, their likelihood ratio converges either to zero or to

in�nity when the electorate grows large.47 Proofs in this paper rely extensively on these two properties.

Using Property 1 (and Theorem 2, Myerson 200048), I can prove the two following Lemma.

Lemma 2 The magnitudes of the second-round pivot probabilities PQ and QP are:

mag(piv2PQ) = mag(piv2QP ) = �
�q

�2P �
q
�2Q

�2
:

Proof. As detailed in Property 1, the magnitude of the event that candidates P and Q have exactly the

same number of vote is:

lim
n!1

log[Pr(x2P=x
2
Q)]

n = max
x2

X
 

x2 
n

 
1� log

x2 
n�2 

!
� 1 (16)

s:t: x2P = x2Q

If we denote x�P = x�Q = x; we �nd that this is maximized in x� = n
q
�2P �

2
Q: Substituting for x

� in (16)

thus yields:

lim
n!1

log[Pr(x2P=x
2
Q)]

n = �
�q

�2P �
q
�2Q

�2
:

The event that candidates P and Q have exactly the same number of vote is the pivotability QP , i.e.

piv2QP : The event that candidate P trails behind candidate Q by exactly one vote is the pivotability PQ;

47These properties are quite general and not speci�c to the Poisson distribution. This is the reason why most

of the results extend directly to the multinomial distribution.
48Theorem 2 in Myerson 2000 shows that two events that di¤er only by a small number of votes, as do piv2PQ

and piv2QP ; have the same magnitude.
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i.e. piv2PQ: (Notice the di¤erence between piv
2
PQ and piv

2
QP which follows from the alphabetical order tie

breaking rule.)

From Myerson (2000, Theorem 2), we have that mag(piv2PQ) and mag(piv
2
QP ) are equal:

lim
n!1

log[Pr(x2P=x
2
Q�1)]

n = lim
n!1

log[Pr(x2P=x
2
Q)]

n :

Lemma 2 reformulates a known result for two-candidate elections (as is the second round): the larger

the di¤erence in the expected vote shares of the two candidates, the smaller the magnitude of the pivot

probability. The intuition is straightforward: for a ballot to be pivotal, candidates have to receive (almost)

the same number of votes. This is more likely to happen if the second round is expected to be close.

Lemma 3 The magnitudes of the �rst-round pivot probabilities are:

(a) Threshold pivot probability i=ij and ij=i:

mag(piv1i=ij) = mag(piv1ij=i) =

8>>>>>><>>>>>>:

�
�1j+�

1
k

1��

�1�� �
�1i
�

��
� 1 if �

1�� �
�1j

�1j+�
1
k
� 1

2�p
�1i �

1
j

�

�2� �
�1k
1�2�

�1�2�
� 1 if �1j

�1j+�
1
k
> �

1�� �
1
2�

2
p
�1j�

1
k

1��

�1�� �
�1i
�

��
� 1 if �

1�� �
1
2 >

�1j
�1j+�

1
k

(17)

(b) Above-threshold pivot probability i=j and j=i (for � < 1=2):

mag(piv1i=j) = mag(piv1j=i) =

8>><>>:
�
�p

�1i �
q
�1j

�2
if
q
�1i �

1
j � �1k

�
1�2��p

�1i �
1
j

�

�2� �
�1k
1�2�

�1�2�
� 1 if �1k

�
1�2� >

q
�1i �

1
j

(18)

(c) Second-rank pivot probability ki=kj and kj=ki:

mag(piv1ki=kj) = mag(piv1kj=ki) =

8>>>>><>>>>>:
�
�p

�1i �
q
�1j

�2
if 2 �

1��

q
�1i �

1
j > �1k >

q
�1i �

1
j�

2
p
�1i �

1
j

1��

�1�� �
�1k
�

��
� 1 if �1k � 2

�
1��

q
�1i �

1
j >

q
�1i �

1
j

3
�
�1i �

1
j�
1
k

� 1
3 � 1 if 2 �

1��

q
�1i �

1
j >

q
�1i �

1
j � �1k

(19)

Proof. There are three types of magnitudes to compute. I only present the details for the magnitude

of the threshold pivot probabilities i=ij and ij=i: The other cases are derived in a similar fashion (and

available upon request).

A ballot is threshold pivotal i=ij when x1i + 1 � � > �
�
x1i + x

1
j + x

1
k

�
� x1i � x1j � x1k: From Myerson

(2000, Theorem 2), I know that I can focus on the case �
�
x1i + x

1
j + x

1
k

�
= x1i � x1j � x1k without loss of
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generality. Applying Property 1; I have:

mag(piv1i=ij) = max
x

X
 

x1 
n

 
1� log(

x1 
n�1 )

)

!
� 1 (20)

s:t:

8<: x1i = �
�
x1i + x

1
j + x

1
k

�
x1i � x1j � x1k

(21)

If I denote x1j + x1k = x1i=ij ; x
1
j = �i=ijx

1
i=ij ; and x

1
k =

�
1� �i=ij

�
x1i=ij ; and if I abstract from the second

constraint in (21) (or if it is not binding); I �nd that this is maximized in

x1�i=ij =

�
(1� �)�1i

�

��  �1j
�i=ij

!�i=ij �
�1k

1� �i=ij

�1��i=ij
;

��i=ij =
�1j

�1k + �
1
j

:

Substituting for x1�i=ij and �
�
i=ij in (20) yields what I call the unconstrained magnitude (denoted by the

superscript �):

mag(piv1;�i=ij) =

 
�1j + �

1
k

1� �

!1�� �
�1i
�

��
� 1: (22)

The magnitude of the threshold pivot probability i=ij is unconstrained if

�

1� � �
�1j

�1j + �
1
k

� 1

2
: (23)

From (22) and (23), I have that

mag(piv1i=ij) = mag(piv1�i=ij) if
�

1� � �
�1j

�1j + �
1
k

� 1

2
:

I still have to compute mag(piv1i=ij) when (23) is not satis�ed. From � 2
�
1
3 ; 1
�
; I have that �

1�� �
1
2

and then there are two other possible cases: (i)
�1j

�1j+�
1
k
> �

1�� �
1
2 , and (ii)

�
1�� �

1
2 >

�1j
�1j+�

1
k
.

In case (i), the constraint x1i � x1j is binding: I thus bind the constraint, i.e. set �i=ij =
�

(1��) ; and

maximize the same problem as in (20). This yields:

mag(piv1i=ij) =

0@
q
�1i �

1
j

�

1A2� �
�1k

1� 2�

�1�2�
� 1 if

�1j
�1j + �

1
k

>
�

1� � �
1

2
:

In case (ii), the constraint x1j � x1k is binding. I thus bind the constraint, i.e. set �i=ij = 1=2; and

maximize the same problem as in (20). This yields:

mag(piv1i=ij) =

0@2
q
�1j�

1
k

1� �

1A1�� �
�1i
�

��
� 1 if �

1� � �
1

2
>

�1j
�1j + �

1
k

:

I have then proven that mag(piv1i=ij) is as de�ned in (17) : From Myerson (2000, Theorem 2), I have

that mag(piv1ij=i) = mag(piv1i=ij):
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Lemma 3 shows that the magnitude of a pivotal event piv is larger when the expected outcome of

the �rst round, �1; is close to the conditions necessary for event piv to occur. For instance, the pivotal

event piv1i=ij is more likely to occur when � = �1i > �1j > �1k than when � > �1k > �1j > �1i : Indeed, the

occurrence of the pivotal event in the latter case requires a �larger deviation with respect to the expected

outcome�.

Appendix A2: Proofs for Section 4

Proof of Theorem 1. The proof is in three parts. I identify su¢ cient conditions for Duverger�s

Law equilibria to exist when (i) � 2
�
1
3 ;

1
2

�
; (ii) � = 1

2 ; and (iii) � 2
�
1
2 ; 1
�
: Since the proofs of

existence of the two Duverger�s Law equilibria, i.e. �1(AjtAB) = �1(AjtBA) = �1 (Cjt00CA) = 1 and

�1(BjtAB) = �1(BjtBA) = �1 (Cjt00CA) = 1, are similar, I only produce the proof for the case in which all

majority voters vote for A.

A su¢ cient condition for the Duverger�s Law equilibrium �1(AjtAB) = �1(AjtBA) = �1 (Cjt00CA) = 1

to exist is that 8t 2 ftAB ; tBAg

G1 (Ajt) =G1 (Bjt) !
n!1

1 and (24)

G1 (Ajt) =G1 (Cjt) !
n!1

1: (25)

(i) Duverger�s Law equilibria when � 2
�
1
3 ;

1
2

�
:

From (4) and Property 2, I have that a su¢ cient condition for (24) and (25) to be satis�ed is

mag(piv1A=C) > mag(piv1i=j) 8fi; jg 6= fA;Cg and fC;Ag;

mag(piv1A=C) > mag(piv1ki=kj) 8i; j; k

mag(piv1A=C) > mag(piv1i=ij) 8i; j:

For �1(AjtAB) = �1(AjtBA) = �1 (Cjt00CA) = 1; I have that �1A = 1 � r(t00CA) and �
1
B = 0. From

Lemma 3, this implies that:

mag
�
piv1A=C

�
= mag

�
piv1C=A

�
= �

�q
�1A �

q
�1C

�2
= �

�q
1� r(t00CA)�

q
r(t00CA)

�2
is the only magnitude that can be larger than �1. Therefore, I have that (24) and (25) are both satis�ed.

This is true for any 0 < r(t00CA) < 1=2.

(ii) Duverger�s Law equilibria when � = 1
2 :

For �1(AjtAB) = �1(AjtBA) = �1 (Cjt00CA) = 1; I have �1A = 1� r(t00CA) and �1B = 0. From Lemma 3,

this implies that:

mag(piv1A=AC) = mag(piv1AC=A) =

�
�1B + �

1
C

1� �

�1�� �
�1A
�

��
� 1 = 2

q
r(t00CA)

q
1� r(t00CA)� 1

= �
�q

1� r(t00CA)�
q
r(t00CA)

�2
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is the only magnitude that can be larger than �1:49 Recall that a ballot cannot be above-threshold pivotal

when � � 1
2 .

Nonetheless, (24) and (25) are not necessarily satis�ed when mag(piv1A=AC) is the largest magnitude.

Indeed, when threshold pivotal A=AC; the expected payo¤ of a type t voter is

[U (Ajt)� U(A;Cjt)] = Pr (CjfA;Cg) !
n!1

0:

If the second round opposes A to C, and A wins that round, then being �rst-round pivotal has no value.

This is why being �rst-round pivotal is only valuable with probability Pr (Cj fA;Cg).

Since the magnitude of all pivot probabilities other than piv1A=AC are equal to�1, a su¢ cient condition

for (24) and (25) to be satis�ed is

mag(piv1A=AC � Pr (Cj fA;Cg)) > �1:

Since the distribution of A and C votes are identical in the �rst and second round, I have that:

Pr (Cj fA;Cg) � Pr
�
piv1A=AC

�
and then that

mag(piv1A=AC � Pr (Cj fA;Cg)) � 2mag(piv1A=AC):

Therefore, no voter deviates from �1(AjtAB) = �1(AjtBA) = �1 (Cjt00CA) = 1 if:

2mag(piv1A=AC) > �1:

From mag(piv1A=AC) = �
�p
1� r(t00CA)�

p
r(t00CA)

�2
; this condition boils down to:q

1� r(t00CA)�
q
r(t00CA) <

p
1=2;

or: r(t00CA) > 0:06699.

(iii) Duverger�s Law equilibria when � 2
�
1
2 ; 1
�
:

For �1(AjtAB) = �1(AjtBA) = �1 (Cjt00CA) = 1, I have �1A = 1� r(t00CA) and �
1
B = 0. From Lemma 3

this implies that:

mag
�
piv1A=AC

�
= mag

�
piv1AC=A

�
=

�
�1B + �

1
C

1� �

�1�� �
�1A
�

��
� 1

=

�
r(t00CA)

1� �

�1�� �
1� r(t00CA)

�

��
� 1 (26)

is the only magnitude that can be larger than �1.50 Recall that a ballot cannot be above the threshold

pivotal when � � 1
2 .

49Note that mag
�
piv1C=CA

�
= mag

�
piv1CA=C

�
> �1 but this has no in�uence on the choice of whether voting

for A or B for tAB and tBA voters.
50Again, mag

�
piv1C=CA

�
= mag

�
piv1CA=C

�
> �1 but this has no in�uence.
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As in point (ii), since the magnitude of all pivot probabilities other than piv1A=AC are equal to minus

one, a su¢ cient condition for �1(AjtAB) = �1(AjtBA) = �1 (Cjt00CA) = 1 to be an equilibrium is that

mag (Pr (Cj fA;Cg)) +mag
�
piv1A=AC

�
> �1:

From (26) and knowing that mag (Pr (Cj fA;Cg)) � 2
p
(1� r(t00CA)) r(t00CA)�1, this condition is satis�ed

when:

2
q
(1� r(t00CA)) r(t00CA) +

�
r(t00CA)

1� �

�1�� �
1� r(t00CA)

�

��
� 1: (27)

Knowing that

@

��
1�r(t00CA)
1��

�1�� �
r(t00CA)
�

���
@�

=

�
r(t00CA)

1� �

�1�� �
1� r(t00CA)

�

��
log

�
1� �
�

r(t00CA)

1� r(t00CA)

�
I have that

@

��
1�r(t00CA)
1��

�1�� �
r(t00CA)
�

���
@�

> 0 if � < 1� r(t00CA);

= 0 if � = 1� r(t00CA);

< 0 if � > 1� r(t00CA);

and then that

min
�

�
r(t00CA)

1� �

�1�� �
1� r(t00CA)

�

��
> min

8>><>>:2
q
(1� r(t00CA)) r(t00CA)| {z }

for �=1=2

; 1� r(t00CA)| {z }
for �=1

9>>=>>; :

There are then two cases to consider: (i) 2
p
(1� r(t00CA)) r(t00CA) < 1�r(t00CA) and (ii) 2

p
(1� r(t00CA)) r(t00CA) �

1 � r(t00CA). In case (i) I have that min
�
2
p
(1� r(t00CA)) r(t00CA); 1� r(t00CA)

	
= 2

p
(1� r(t00CA)) r(t00CA)

and then that �
1� r(t00CA)
1� �

�1�� �
r(t00CA)

�

��
> 2
q
(1� r(t00CA)) r(t00CA): (28)

Knowing that if r(t00CA) > 0:06699, then 2
p
(1� r(t00CA)) r(t00CA) > 1

2 , I have from (28) that 9z < 0:06699

such that if r(t00CA) > z then (27) is satis�ed. In case (ii) I have thatmin
�
2
p
(1� r(t00CA)) r(t00CA); 1� r(t00CA)

	
=

1� r(t00CA). Since (1� r(t00CA)) > 1
2 ; both

�
1�r(t00CA)
1��

�1�� �
r(t00CA)
�

��
and 2

p
(1� r(t00CA)) r(t00CA) are larger

than 1
2 : Therefore, (27) is always strictly satis�ed.

Proof of Theorem 2. The proof is in two parts: (i) I show that the sincere voting equilibrium may

exist, and (ii) that it does not always exist. The second part relies extensively on the proof of Theorem

1 and the continuity of magnitudes in the expected vote shares.

(i) Existence of the sincere voting equilibrium:

For �1(AjtAB) = �1(BjtBA) = �1(Cjt00CA) = 1; I have from Lemma 3 that mag(piv1CA=CB) = 0

when r (tAB) = r (tBA) < r (t00CA) � �: From Property 1; I know that the magnitude of any event E1 is
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bounded by �1 and 0: mag(E1) 2 [�1; 0] 8E1. Together with Pr (Aj fA;Cg) = Pr(BjfB;Cg) !
n!1

1;

(4) and Property 2, mag(piv1CA=CB) = 0 thus implies that there is an n su¢ ciently large such that

G1 (AjtAB)�G1 (BjtAB) > 0 > G1 (AjtBA)�G1 (BjtBA) : Since t00CA-voters always vote for C in the �rst

round, we have that �1(AjtAB) = �1(BjtBA) = �1(Cjt00CA) = 1 is an equilibrium. From the continuity

of the magnitudes in the expected vote shares, I have that the sincere voting equilibrium is not non-

generic, i.e. 9"1; "3 > 0 such that 8r (tAB) 2 (r (tBA) � "1; r (tBA) + "1) and r (t00CA) 2 (� � "3; � + "3) ;

mag(piv1CA=CB) is the largest magnitudes.

(ii) Non-existence of the sincere voting equilibrium:

I have to consider three cases: � 2
�
1
3 ;

1
2

�
; � = 1

2 ; and � 2 (
1
2 ; 1): I only present the details of the case

� = 1
2 : The other cases can be proven in a similar fashion.

First, observe that if (24) and (25) in the proof of Theorem 1 are satis�ed when �1(AjtAB) =

�1(BjtBA) = �1(Cjt00CA) = 1, then the sincere voting equilibrium is not an equilibrium since types tBA

prefer to vote for A:

Second, from the proof of Theorem 1, we know that for �1A = 1 � r(t00CA) and �
1
B = 0, the only

magnitude larger than �1 is:51

mag
�
piv1A=AC

�
= mag

�
piv1AC=A

�
= �

�q
�1A �

q
�1C

�2
= �

�q
1� r(t00CA)�

q
r(t00CA)

�2
:

Remind that a ballot cannot be above-threshold pivotal when � � 1
2 .

Third, when voters are sincere (i.e. �1(AjtAB) = �1(BjtBA) = �1(Cjt00CA) = 1), this pro�le of � arises

if r (tBA) = 0 and r (t00CA) 2 (0; 1=2). Therefore, by the continuity of the magnitudes in the expected

vote shares, we know that there is "2 > 0 such that if r (tBA) = "2 and r (tAB) = 1� r (t00CA)� "2; then

mag
�
piv1A=AC

�
is still the largest magnitude (and arbitrarily close to �

�p
1� r(t00CA)�

p
r(t00CA)

�2
).

We can thus apply the same steps as in the proof of Theorem 1 to show that a su¢ cient condition for

(24) and (25) to be satis�ed is q
1� r(t00CA)�

q
r(t00CA) <

p
1=2;

or: r(t00CA) > 0:06699.

This proves that the sincere voting does not exist if both r (tBA) < "2 and the conditions for the

existence of Duverger�s Law equilibria are satis�ed.

Proof of Theorem 3. First, I show that mag(piv1CA=CB) = 0 when �1A = �1B < �1C = �, where

� 2
�
1
3 ;

1
2

�
: Second, I show that �1(AjtAB) = �1(BjtBA) = �1(Cjt00CA) = 1 are equilibrium strategies

when r(tAB) = r(tBA); r(t
00
CA) = � and r(tAB)+r(tBA)

2 < �. Third, I show that there always exist "1; "2 > 0

such that, if r(tAB) � r(tBA) < "1 and � < �C < � + "2 then �1(AjtAB) = �1(BjtBA) = �1(Cjt00CA) = 1

is an equilibrium.

51Again, mag
�
piv1C=CA

�
= mag

�
piv1CA=C

�
> �1 but this has no in�uence.
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From �1C = � > �1A = �1B , I have that �
1
C � 2

�
1��
p
�1A�

1
B �

p
�1A�

1
B : From this and Lemma 3, I have:

mag(piv1CA=CB) =

 
2
p
�1A�

1
B

1� �

!1�� �
�1C
�

��
� 1

=

�
1� �1C
1� �

�1�� �
�1C
�

��
� 1 = 0:

For �1(AjtAB) = �1(BjtBA) = �1(Cjt00CA) = 1; I have �1A = r(tAB); �
1
B = r(tBA) and �1C = r(t00CA):

Thus, mag(piv1CA=CB) = 0 if

r(tAB) = r(tBA);

r(t00CA) = �; and (29)
r(tAB) + r(tBA)

2
< �:

From Property 1; I know that the magnitude of any event E1 is bounded by �1 and 0: mag(E1) 2

[�1; 0] 8E1. Therefore, mag(piv1CA=CB) is the largest magnitude when conditions in (29) are satis�ed

except if there are other magnitudes that equal 0. From Lemma 3, it can be checked easily (but tediously)

that this is the case for two other magnitudes: mag(piv1CnCA) = 0 and mag(piv
1
CnCB) = 0: Nonetheless,

from (4) I have that neither Pr
�
piv1CnCA

�
nor Pr

�
piv1CnCB

�
in�uence types-tAB and -tBA choice between

A and B: Therefore, sincere voting is an equilibrium when conditions in (29) are satis�ed. Types-t00CA

always prefer to vote for C:

Since all magnitudes are continuous in �1A; �
1
B and �1C , there always exist "1; "2 > 0 such that, if

r(tAB)�r(tBA) < "1 and � < �C < �+"2 then �1(AjtAB) = �1(BjtBA) = �1(Cjt00CA) = 1 are equilibrium

strategies for which C wins outright in the �rst round with a probability that tends to 1 as n!1.

Proof of Lemma 1. I only show the proof for � = 0:5: The other cases follow directly from the detailed

case and the proof of Theorem 1.

Assume, without loss of generality, that B is the Condorcet winner, i.e.

B vs. A : r (tBC) + r (tBA) + r (tCB) + r (t
0
BC) >

r (tAB) + r (tAC) + r (tCA) + r (t
0
AC) ; (30)

B vs. C : r (tBC) + r (tBA) + r (tAB) + r (t
0
AB) >

r (tCB) + r (tAC) + r (tCA) + r (t
0
AC) + r (t

00
CA) ;

and that C is the least popular candidate among A and C:

r (tAB) + r (tAC) + r (tBA) + r (t
0
AB) > (31)

r (tBC) + r (tCA) + r (tCB) + r (t
0
BC) :
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Suppose that all voters who (weakly) prefer A to C; i.e. tAB ; tAC ; tBA; t
0
AB ; t

0
AC ; vote A, and all

voters who (strictly) prefer C to A; i.e. tBC ; tCA; tCB ; t0BC ; t
00
CA; vote C:

52 Then, since �1C 2
�
0; 12
�
, I have

from Lemma 3 that

mag
�
piv1A=AC

�
= 2
q
�1A�

1
C � 1 = mag

�
piv1C=CA

�
are the only magnitudes that can be larger than �1.

From (4) ; a su¢ cient condition for this strategy pro�le to be an equilibrium is that

mag(piv1A=AC � Pr (Cj fA;Cg)) > �1; and (32)

mag(piv1C=CA � Pr (Aj fA;Cg)) > �1; (33)

are simultaneously satis�ed. Condition (32) ensures that all voters who prefer A to C vote for A and

condition (33) ensures that all voters who prefer C to A vote for C: Since �1A = �2A = r (tAB) + r (tAC) +

r (tBA) + r (t
0
AB) + r (t

0
AC) and �

1
C = �2C = r (tBC) + r (tCA) + r (tCB) + r (t

0
BC) ; I know from the proof

of Theorem 1 that a su¢ cient condition for (32) and (33)to be satis�ed is:q
1� (r (tBC) + r (tCA) + r (tCB) + r (t0BC) + r (t00CA))�

q
r (tBC) + r (tCA) + r (tCB) + r (t0BC) + r (t

00
CA)<

p
1=2:

This boils down to: r (tBC) + r (tCA) + r (tCB) + r (t0BC) + r (t
00
CA) > 0:06699:

Finally, r (tBC) + r (tCA) + r (tCB) + r (t0BC) + r (t00CA) > 0:06699 is compatible with (30) and (31) :

Thus, there may exist a Duverger�s Law equilibrium in which the Condorcet winner does not receive any

votes.

52Note that the same result could be proven for any strategy of types t0AC not including B:
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