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Abstract

We study Rational Expectations equilibria in dynamic models with dispersed information and signal ex-

traction from endogenous variables. An Information Equilibrium is established that delivers existence and

uniqueness conditions in a new class of RE equilibria where agents remain dispersedly informed even after

observing the entire history of equilibrium prices. A feature of the equilibria belonging to this class is a dy-

namic response to shocks that displays waves of optimism and pessimism of the market price with respect to

the true fundamental. This propagation effect is new to the RE literature and originates from confounding

dynamics that remain unraveled in equilibrium. We derive an analytical characterization of the equilibrium

that generalizes the celebrated Hansen-Sargent optimal prediction formula, and also allows us to study the

higher-order beliefs representation of the equilibria. We show that the higher-order belief dynamics, con-

trary to what is normally believed, can generate a positive effect on information diffusion: if informed agents

were not engaging in formulating expectations about expectations about expectations and so on, information

transmission through prices would be reduced.
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1 Introduction

In market economies, agents use diverse sources of information to set demand and supply strategies. While some

sources of information are exogenous to the specific market under consideration, other sources, such as prices

and interest rates, are endogenous in that the information is generated as a by-product of the functioning of

market forces. In this paper, we study dynamic rational expectations equilibria in competitive markets where

dispersedly-informed agents have access to both exogenous and endogenous sources of information.

When endogenous variables transmit information, the equilibrium fixed point problem typical of the rational

expectations paradigm involves a mapping from endogenous variables to the agents’ information set: given the

equilibrium obtained under the expectations specified for a given information set, the information revealed in

equilibrium should be consistent with the information used to solve for the equilibrium. In dynamic settings

with incomplete information, this fixed point condition is nontrivial and a crucial aspect of the equilibrium. We

develop an equilibrium concept, which we refer to as an “Information Equilibria” (IE), that explicitly accounts

for this fixed point condition, and yields existence and uniqueness conditions for rational expectations models

with incomplete information.

A remarkable feature of the equilibria belonging to this class of models is that the market price can display

continuously oscillating overpricing and underpricing compared to the market price that would emerge under

complete information. This property pertains to a rational expectations equilibrium and is not the result of

bounded rationality or ad-hoc learning. We show that this propagation stems from the dynamic signal extraction

undertaken by market participants. To the best of our knowledge, this result is new to the rational expectations

literature. We argue that this feature of the equilibrium makes models with incomplete information empirically

more relevant than their complete information counterpart.

In order to make the derivation of our results as transparent as possible, we focus our attention on a simple

forward-looking asset pricing framework. Such a framework is, nonetheless, flexible enough to encompass the key

dynamic equations of many standard macroeconomic settings. Our results are therefore generally applicable to

any dynamic model of higher economic complexity.1

Models of incomplete information are becoming increasingly prominent in several literatures such as asset

pricing, optimal policy communication, international finance, and business cycles.2 The role of incomplete in-

formation in many of these settings was acknowledged very early on; Keynes (1936) argued that higher-order

expectations played a fundamental role in asset markets, while Pigou (1929) advanced the idea that business

cycles may be the consequence of “waves of optimism and pessimism” that originate in markets where agents,

1For example, see Rondina and Walker (2011) for an application of our methods to a standard real business cycle model.
2The literature is too voluminous to cite every worthy paper. Recent examples include: Morris and Shin (2002), Woodford (2003),

Pearlman and Sargent (2005), Allen, Morris, and Shin (2006), Bacchetta and van Wincoop (2006), Hellwig (2006), Gregoir and Weill
(2007) Angeletos and Pavan (2007), Kasa, Walker, and Whiteman (2010), Lorenzoni (2009), Rondina (2009), Angeletos and La’O
(2009b), Hellwig and Venkateswaran (2009).
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by observing common signals, generate correlated forecast errors. The idea that incomplete information could

induce a propagation mechanism and contribute substantially to business cycle fluctuations was first formalized

in a rational expectations setting by Lucas (1975), Townsend (1983) and King (1982).

From this early literature it was immediately clear that solving for equilibria in dynamic models with incom-

plete information would be challenging. Sargent (1991) and Bacchetta and van Wincoop (2006) attribute the

lack of research following the early work of Lucas (1972), Lucas (1975), King (1982) and Townsend (1983) to the

technical challenges associated with solving for equilibrium, even though these models harbored much potential.

The primary difficulty is that rational agents form higher-order beliefs, which makes the typical recursive state

space formulation approach problematic because the state may be infinite dimensional.3 Our approach does not

require the specification of a state representation before knowing the solution but it uncovers the equilibrium

representation by solving a functional fixed point problem in the space of complex valued functions. Attacking

models with incomplete information using this artillery is not new. Important papers by Futia (1981) and Kasa

(2000) show the power of these methods when solving dynamic models with persistent heterogeneous beliefs.4

However, using a similar approach does not imply one arrives at the same conclusions or characterizations. This

paper pushes the literature in several fresh directions. First, we revisit and overturn non-existence pathologies first

attributed to Futia (1981). That is, we prove existence and uniqueness of all information equilibria. Second, we

examine a dispersed informational setup, where all agents are equally uninformed, and relate it to the well-known

hierarchical case. Third, we provide a novel characterization of the mechanism driving the confounding dynamics.

These are the same confounding dynamics that appear in Futia (1981) and Townsend (1983). Fourth, we derive

an analytical characterization of the equilibrium and relate it to the celebrated Hansen-Sargent formula. Finally,

we are the first, to our knowledge, to provide an explicit characterization of higher-order beliefs in a dynamic,

infinite horizon setup.

We develop our key existence, uniqueness and characterization results for models with dispersed information

in several steps. We do this for two reasons: first, each step has value on its own in terms of possible applications,

and second, decomposing the key result into steps allows us to obtain some crucial insights on the workings

of information interactions when information is dispersed. The key steps are as follows. First, we begin by

considering the situation where the history of market prices is the only piece of information available to agents

(Theorem 1). Next, we introduce an arbitrary fraction of agents that are perfectly informed about the current

and past state of the fundamentals (Theorem 2). Third, we show that the information equilibrium characterized

under the assumption of some agents being perfectly informed is equivalent to the aggregate representation of

the “dispersed information” case in which every agent receives a privately observed noisy signal about the state

of the market fundamentals, together with the equilibrium price (Theorem 3). The equivalence holds once the

3There have been other approaches to handle these technical issues. Most notably Nimark (2007) maintains the recursive structure
and approximates the equilibrium using the Kalman filter.

4Other contributions to this literature include Taub (1989), Walker (2007), Kasa, Walker, and Whiteman (2010) and Rondina
(2009). Bernhardt and Taub (2008) show how the approach can be used to solve models with no closed form solution.
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parameter measuring the proportion of agents perfectly informed in Theorem 2 is reinterpreted as the signal-

to-noise ratio of the privately observed signal of Theorem 3. This equivalence result stems from the optimal

signal extraction of dispersedly informed agents that consists of a mixing strategy in interpreting the information

available to them. With some probability agents will act as if their signal is exactly correct, mimicking thus the

behavior of the perfectly informed agents of Theorem 2. With the complementary probability they will act as if

their signal contains no information about the state and so they will take into account only the information from

the equilibrium price, thus mimicking the other fraction of agents of Theorem 2.

Equipped with the analytical characterization of the market equilibria under dispersed information, we are able

to characterize the higher-order belief (HOB) representation of such equilibria and study the role of higher order

thinking in shaping the market price dynamics. Recent papers have emphasized the role of HOB dynamics and

the subsequent breakdown in the law of iterated expectations with respect to the average expectations operator

in models with asymmetric information [e.g., Allen, Morris, and Shin (2006), Bacchetta and van Wincoop (2006),

Nimark (2008), Pearlman and Sargent (2005), Angeletos and La’O (2009a)]. Many resort to numerical analysis

or truncation of the state space in demonstrating the dynamic case, making it difficult to isolate the specific role

played by HOBs. With an analytical solution in hand, we are able to characterize these objects in closed form

and show precisely why HOBs exist, and why and when HOBs imply a failure of the law of iterated expectations.

In addition, it is possible to relate the formation of HOBs to the transmission of information in equilibrium by

showing that the formation of HOBs increases the information impounded into endogenous variables. This, in

turn, leads to a decrease in the variance of prediction errors. In other words, forming HOBs gives rise to a positive

effect on information diffusion. This conclusion goes against the existing conjecture that HOBs are responsible

for the slow reaction of endogenous variables to structural shocks. This idea stems from the observation that

agents forming HOBs forecast the forecast errors of uninformed agents, thereby injecting additional persistence

through the higher-order expectations. However, we find that this observation is incomplete as it does not take

into account the effect of higher order thinking upon informational transmission. Once the both effects are

considered, the latter one always dominates in our setting, and thus HOB formation always improves information

in equilibrium, which in turn actually reduces the persistence in equilibrium.

2 Information Equilibrium: Preliminaries

This section establishes notation and lays important groundwork for interpreting the equilibrium characterizations

that follow.

2.1 Equilibrium To fix notation and ideas, we define an information equilibrium within a generic linear

rational expectations framework. The forward-looking nature of the key equilibrium relationship is quite flexible

in that it allows for a broad range of interpretation, so that our results apply to any setting where current

3
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variables depend on the expectations of future variables. In order to keep things grounded in a specific economic

example we interpret our equations as arising from the perfectly competitive equilibrium of an asset market in

which investors take position on a risky asset to maximize the expected utility of next period wealth.5 The asset

market works as follows: investors submit their demand schedules—a mapping that associates the asset price to

net demand—to a Walrasian auctioneer. The auctioneer collects the demand schedules and then calls the price

that equates demand to supply. To allow for trading in equilibrium, the net supply of the asset in a given period

t, st, is assumed to be exogenous.6 The net demand in the asset market is provided by a continuum of potentially

diversely informed agents indexed by i. The market clearing price chosen by the Walrasian auctioneer is given by

pt = β

∫ 1

0

E
i
tpt+1φ(i)di + st (2.1)

where β ∈ (0, 1), Ei
t is the conditional expectation of agent i, φ(·) is the density of agents and the exogenous

process (st) is driven by a Gaussian shock

st = A(L)εt, εt
iid∼ N(0, σ2

ε) (2.2)

A(L) is assumed to be a square-summable polynomial in non-negative power of the lag operator L.

2.1.1 Information Information is assumed to originate from two sources–exogenous and endogenous. Exoge-

nous information, denoted by U i
t , is that which is not affected by market forces and is endowed by the modeler

to the agents. We will think of the exogenous information profile {U i
t , i ∈ [0, 1]} as a primitive of the model. En-

dogenous information is generated through market interactions. When agents are diversely informed, endogenous

variables may convey additional information not already contained in the exogenous information set. We separate

endogenous information into two components–Vt(p) and Mt(p). The notation Vt(p) denotes the smallest linear

closed subspace that is spanned by current and past pt, we refer to it as “time-series information” of pt. Mt(p),

on the other hand, results from the assumption that agents know the equilibrium process pt evolves according to

(2.1); we refer to it as “information from the model.”

To clarify what information is captured in Mt(p), it is useful to think about how the the knowledge of the

model (2.1) affects the Walrasian market structure described above. When rational investors formulate the

demand schedule to submit to the Walrasian auctioneer, they know that the auctioneer will pick a price that

clears the market, i.e. that satisfies (2.1). Investors can use this information to reduce their forecast errors. To

see this, suppose that all the investors have the same information and thus the individual demand schedule is

given by βEtpt+1 − pt, for some arbitrary information set. Given a candidate price pt chosen by the auctioneer,

5In Appendix B we present a simple asset demand model that delivers the equilibrium equation that we use throughout the paper.
6In what follows we will let the supply of the asset be measured by −st. Therefore, an increase (decrease) in st will correspond

to a decrease (increase) in the exogenous supply of the asset.
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investors know that at that price the market will clear, which means βEtpt+1 − pt + st = 0. If this is the case,

then investors will treat st as part of the information that they should use to derive Etpt+1 for any arbitrary pt.

As investors submit their demand schedules they do not know what is the true value of st but they can formulate

expectations that are consistent with the true value that will be revealed once the Walrasian auctioneer picks the

market clearing price. If investors ignored this information, they would incur consistently higher forecast errors,

which would violate rational expectations and imply their submitted demand schedules were not optimal. That

subjective beliefs must be model consistent is a standard definition of a rational expectations equilibrium.7 In

rational expectations models with complete information and representative agents, information from the model is

a trivial equilibrium condition. We show below that in models with incomplete information and heterogeneously

informed agents, information from the model plays a crucial role in determining equilibrium.

The time t information of trader i is then Ωi
t = U i

t ∨ Vt(p) ∨Mt(p), where the operator ∨ denotes the span

(i.e., the smallest closed subspace which contains the subspaces) of the U i
t , Vt(p) and Mt(p) spaces.

8 Uncertainty

is assumed to be driven entirely by the Gaussian stochastic process εt, which implies that optimal projection

formulas are equivalent to conditional expectations,

E
i
t(pt+1) = Π[pt+1|Ωi

t] = Π[pt+1|U i
t ∨ Vt(p) ∨Mt(p)]. (2.3)

where Π denotes linear projection. The normality assumption also rules out sunspots and implies the equilibrium

lies in a well-known Hilbert space, the space spanned by square-summable linear combinations of εt.

We now define an information equilibrium.

Definition IE. An Information Equilibrium (IE) is a stochastic process for {pt} and a stochastic process for the

information sets
{
Ωi

t, i ∈ [0, 1]
}

such that: (i) each agent i, given the price and the information set, optimally

forms expectations according to (2.3); (ii) pt satisfies the equilibrium condition (2.1).

An IE consists of two objects, a price and a distribution of information, and can be summarized by two statements:

(a) given a distribution of information sets, there exists a market clearing price determined by each agent i’s

optimal prediction conditional on the information sets; (b) given a price process, there exists a distribution of

information sets generated by the price process that provides the basis for optimal prediction. Both statements

(a) and (b) must be satisfied by the same price and the same distribution of information simultaneously in order

to satisfy the requirements of an IE.

7From a mere statistical point of view, the knowledge of the model is equivalent to the knowledge of the covariance generating
function between the process st and the equilibrium price pt. In other words, in equilibrium there is a true relationship between

prices and supply that is summarized by the variance-covariance generating matrix

(
gpp(z) gps(z)
gps(z) gss(z)

)

. Knowledge of the model

corresponds to knowing gps(z) and using it to obtain st from pt.
8If the exogenous and endogenous information are disjoint, then the linear span becomes a direct sum. We use similar notation

as Futia (1981) in that Vt(x) = Vt(y) means the space spanned by {xt−j}∞j=0 is equivalent, in mean square, to the space spanned by

{yt−j}∞j=0.
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2.2 Solution Procedure Our solution procedure is guess and verify in a functional space and involves two

steps: [i] guess a candidate solution and impose equilibrium conditions [ii] check the information revealed in

equilibrium to ensure the informational fixed point condition holds.

The guess for the equilibrium price in (2.1) is

pt = Q(L)(L− λ)εt (2.4)

where |λ| < 1, and the polynomial Q(L) is assumed to contain no zeros inside the unit circle.9 The parameter λ is

the critical parameter controlling the information revealed by equilibrium prices. It is determined endogenously

and in equilibrium will be a function of the exogenous specifications of the model. Under (2.4) the guess that

|λ| < 1 corresponds to the conjecture that the prices will not be able to perfectly reveal the state εt. Our

solution procedure would first turn the guess (2.4) into a prediction formula, which would then be substituted

into (2.1). At that point we would have a fixed point functional equation, with a “boundary” condition provided

by |λ| < 1. Under some parameter values a solution with |λ| < 1 will exist. However, through market interactions,

the information conveyed by prices may be larger than the conjectured information set of step [i] and so, under

other parameters values there will be no equilibrium of the form (2.4) and the equilibrium would always be fully

revealing. Before turning to the analysis of the conditions under which (2.4) is indeed an equilibrium, it is useful

to spell out more precisely the connection between the value of |λ| and the information conveyed by prices.

2.3 Confounding Dynamics and Signal Extraction In dynamic settings, the information set of agents

is continuously expanding as they collect new observations with each period t. A crucial question in such settings

is whether an expanding information set over time corresponds to an ever increasing precision of information

about the current and past structural innovations, {εt−j}∞j=0. The answer to this question depends upon the

characteristics of the dynamics of the observed variables. Using the terminology of Rozanov (1967), if the

structural innovations are fundamental for the observable variables, then agents would eventually learn the true

underlying dynamics. Intuitively, if a dynamic stochastic process is invertible in current and past observables,

then it is fundamental and the observed history would allow one to back out the exact history of the underlying

fundamental innovations. On the other hand, if the process is non-invertible, the observed history will contain

only imperfect information about the fundamentals. In this case we say that the observed variable displays

confounding dynamics. In linear dynamic settings, confounding dynamics can be formalized by non-fundamental

moving averages (MA) representations.

9A more general guess would not restrict the number of possible λ’s to just one but would rather set pt = Q(L)
∏n

i=1(L − λi)εt
where |λi| < 1 for all i. This would be especially relevant for an empirical analysis. For simplicity of exposition we restrict our
attention to the case n = 1 in the text and we report the more general result in the Appendix.
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As an example, consider the problem of extracting information about εt from

xt = −λεt + εt−1. (2.5)

If |λ| ≥ 1, the stochastic process xt is invertible in current and past xt, which means that there exists a linear

combination of current and past xt’s that allows the exact recovery of εt; formally

E
(
εt|xt

)
= −1/λ

(
xt + λ−1xt−1 + λ−2xt−2 + λ−3xt−3 + ...

)
= εt. (2.6)

Note that the infinite sum converges as λ−j goes to zero for j “big enough”.

When |λ| < 1 the process is no longer invertible in current and past xt. Equation (2.6) is no longer well

defined as the coefficients for the past realizations of xt grow without bound. Nevertheless, there is still a linear

combination of xt that minimizes the forecast error for εt; this is given by

E
(
εt|xt

)
= − λ

|λ|
(
xt + λxt−1 + λ2xt−2 + λ3xt−3 + ...

)
= ε̃t. (2.7)

Non-invertibility implies that ε̃t contains strictly less information than εt, in the sense that the mean squared

forecast error conditional on ε̃t is bigger than εt (which is identically zero). More specifically, the mean square

forecast error is

E

[

(εt − ε̃t)
2
]

=
(
1− λ2

)
σ2
ε > 0.

The mean squared forecast error approaches zero as the dynamics goes from non-invertible to invertible, i.e. as

|λ| → 1.

The imperfect information described by (2.5) when |λ| < 1 corresponds to an ignorance about the initial state

of the world at time t = 0 that never unravels because of the confounding dynamics of xt. To see this, imagine

that agents initially observe x1 = −λε1+ ε0 and thus cannot distinguish between ε1 and ε0. If they knew ε0 they

could easily back out ε1 from x1 and then, as information about xt accumulates, all the values of εt for t > 1.

However, if the realized value ε0 is kept from the agents, then the best they can do is to get as close as possible to

εt using (2.7). Whereas in standard signal extraction problems the informational friction is assumed in the form

of a superimposed signal-to-noise ratio, in (2.5) the noise is a result of the dynamic unfolding parameterized by

λ that keeps the ignorance about the initial state ε0 informationally relevant at any point in time.10

An additional important implication of confounding dynamics is that the optimal learning effort of the agents

10Whether λ is positive or negative does not matter for the informational content. In Appendix B we show that the signal extraction
problem under confounding dynamics is equivalent, in forecast mean square error terms, to a standard signal extraction problem when
λ2 = τ , where τ is the signal-to-noise ratio of a standard signal extraction problem. The interested reader is directed to Appendix B
for details.
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Figure 1: Impulse response of the optimal prediction formula for fundamentals εt in presence of confounding
dynamics (Equation (2.8)) to a one time innovation ε0 = 1. The dotted line is the process for fundamentals; the
solid line is the response under “weak” confounding dynamics (|λ| = 1/

√
2); the dashed line is the response under

“strong” confounding dynamics (|λ| = 1/
√
11).

creates a persistent effect of past innovations. To see this let λ < 0 and rewrite (2.7) as

ε̃t = −λεt
︸ ︷︷ ︸

+ (1− λ2)[εt−1 + λεt−2 + λ2εt−3 + · · · ]
︸ ︷︷ ︸

. (2.8)

= information + noise from confounding dynamics

This equation clarifies how λ controls the information that the history of xt contains about εt through two

channels: an informative signal with weight λ (the first term on the RHS), and a noise component with weight

(1−λ2). Notice that the noise term is a linear combination of past innovations, which is the source of the persistent

effect of past innovations. As the confounding dynamics become more pronounced, i.e. when λ decreases, there

are three effects. First, the weight on the informative signal decreases as xt contains less information about εt.

Second, the weight (1 − λ2) on the noise increases; however, this increase is in part offset by the third effect,

which is a reduction in the persistence of innovations dated t− 2 and earlier.

To visualize these effects, we report the impulse response function for the prediction equation (2.8) to a one

time, 1 unit increase in εt in Figure 1 for both a low and a high value of λ with λ < 0.11 First notice that for

the high λ case, the value of E (εt|xt) is very close to the true innovation value of 1 on impact, whereas for the

low λ case the underestimation is quite large. Second, in both cases the current innovation will persistently affect

the prediction function several periods beyond impact. This is in contrast to the full information case where the

11We chose the case of λ < 0 because the resulting exogenous process lends itself to a meaningful economic interpretation. In fact,
later we will use a process similar to (2.5) to model a canonical S-shaped diffusion process. The prediction formula with λ > 0 would
display the same response at impact but it would not exhibit the oscillatory pattern of Figure 1. Instead, the impulse response would
turn negative at period 2 and gradually approaching zero from below from then onward. The three effects described above will all
still be present, nonetheless.
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impulse response is zero after impact (fundamentals). However for the weak confounding dynamics, the effect

will be initially weaker and then it will only slowly decay. For strong confounding dynamics, the opposite is true:

the effect is initially stronger and the decay is subsequently faster.

3 Information Equilibria: Existence and Uniqueness

In this section we state the three main results of our paper. Our goal is to characterize the conditions for existence

and uniqueness of an information equilibrium with confounding dynamics under a dispersed information structure.

We proceed in gradual steps, each one being of independent interest in itself. At the outset, we establish the

benchmark solution of (2.1) under full information. We refer to this as the case of “fully informed buyers.”12

In so doing we show how analytic functional methods are employed in our solution procedure in the simplest

possible setting. Second, we assume that market participants observe only the current and past market prices.

We refer to this as the case of “uninformed buyers.” Third, we consider the case of a market with a fraction of

fully informed buyers and a fraction of uninformed buyers. We refer to this as the case of “hierarchically informed

buyers.” Finally, we consider the case of “dispersedly informed buyers” and we show that the equilibrium is

essentially equivalent to the hierarchical case once a key parameter is appropriately reinterpreted. In this section

we limit ourselves to studying existence and uniqueness properties of information equilibria and their general

characterization. A thorough analysis of the salient features of these equilibria is then undertaken in sections 4

and 5. In all of the following analysis agents are assumed to be rational and have common knowledge of rationality,

unless otherwise stated.

3.1 Fully Informed Buyers We begin by assuming that all agents are endowed with perfect knowledge of

the innovations history up to time t. Formally

U i
t = Vt(ε), ∀i ∈ [0, 1] . (3.1)

Here, and in the following analysis, we assume that agents always observe the endogenous information Vt(p) ∨

Mt(p). Under these informational assumptions all the agents will have the same information set in equilibrium,

which means that the equilibrium equation (2.1) can be written as the contemporaneous expectation of the

discounted sum of future st’s,

pt =

∞∑

j=0

βj
Et(st+j). (3.2)

In lieu of characterizing each term in the summation, we take advantage of the Riesz-Fischer Theorem and

12In the asset pricing context that we are considering each agent can take any long or short position on the asset, which means
that there is no distinction between buyers and sellers. Our insistence on buyers is therefore done only for expositional purposes.
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posit that the solution to (3.2) has the functional form pt = P (L)εt.
13 Using the Wiener-Kolmogorov optimal

prediction formula, expectations take the form E[pt+1|Vt(ε)] = L−1[P (L) − P0]εt. Substituting the expectation

into the equilibrium equation (2.1) yields a functional equation for P (z).14 As noted above, we solve for the

functional fixed point problem in the space of analytic functions. The z-transform of the pt process may be

written as

P (z) =
zA(z)− βP0

z − β
. (3.3)

Throughout the paper we always restrict our attention to stationary equilibria. Stationarity corresponds to the

requirement that P (z) has no unstable roots in the denominator. If |β| ≥ 1, then (3.3) is stationary and the free

parameter P0 can be set arbitrarily. Uniqueness, then, requires |β| < 1, in which case the free parameter P0 is

set to ensure that the unstable root |β| < 1 cancels. The unique equilibrium takes the form

pt =

(
LA(L)− βA(β)

L− β

)

εt (3.4)

which is the celebrated Hansen-Sargent formula [Hansen and Sargent (1991)]. Provided |β| < 1, equation (3.4) is

the unique Information Equilibrium solution to (2.1) when information is specified as (3.1). However, if one were

to specify a different exogenous information set, (3.4) may fail to satisfy our Information Equilibrium definition.

The relevant questions are then: Under what exogenous informational assumptions does (3.4) still represent an

IE? What is an IE when the exogenous information assumption does not support (3.4) as an equilibrium? We

now address these questions.

3.2 Uninformed Buyers In this section we assume that agents are endowed with no exogenous information

about the history of innovations. Formally

U i
t = {0}, ∀i ∈ [0, 1] . (3.5)

Agents still have access to the entire history of equilibrium prices and to the knowledge of the model, as before.

To characterize an information equilibrium under (3.5) we follow the procedure outlined in Section 2.2 and so

we specify the guess (2.4) with |λ| < 1. Next, we use our guess to specify the conditional expectation

E[pt+1|Vt(p) ∨Mt(p)] = L−1[Q(L)(1− λL)−Q0]ε̃t. (3.6)

where ε̃t is the innovation representation resulting from the signal extraction under confounding dynamics as

13Note that there is no need to include in our guess the possibility of a zero |λ| < 1 as it would be informationally irrelevant given
the full information provided to the agents.

14In our notation we distinguish between L and z to make clear that L is an operator, while z is a complex number.
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derived in Section 2.3. Substituting this function into (2.1) and solving the resulting fixed point in the space of

analytic functions yields the following Theorem.

Theorem 1. Under the exogenous information assumption (3.5), a unique Information Equilibrium for (2.1)

with |β| < 1 always exists and is determined as follows: let {|λ| < 1} be a real number satisfying

A(λ) = 0, (3.7)

then the information equilibrium price process is

pt = Q(L)(L− λ)εt =
1

L− β

{

LA(L)− βA(β)
Bλ(L)

Bλ(β)

}

εt (3.8)

where Bλ(L) =
L−λ
1−λL

.

If condition (3.7) does not hold for |λ| < 1, then the Information Equilibrium is given by (3.4).

Proof. See Appendix A.

Condition 3.7 stipulates that, in order for the equilibrium price to display confounding dynamics, the supply

process st must also possess confounding dynamics with respect to the structural innovations, εt. To see this

more clearly, note that the supply process can be written as st = (L− λ)Â(L)εt–where Â(L) has no zeros inside

the unit circle–to satisfy (3.7). This process is nearly identical to the confounding dynamics described in the

previous section, (2.7). The intuition behind this restriction comes from agents’ knowledge of the model, Mt(p).

Common knowledge imposes that all agents will rationally believe that all market participants will have the same

expectations about next period’s price in equilibrium. Whatever this expectation is, they know that it must

satisfy

pt − βEt(pt+1) = st. (3.9)

It follows that the entire history of st must be contained in the information set of all the agents in equilibrium, i.e.

Mt(p) = Vt(s). Therefore, for the confounding dynamics in the candidate price to be confirmed in equilibrium it

must be that st itself displays such dynamics.15

Since condition (3.7) lies at the core of Theorem 2 it is important to ask whether it holds in economically

relevant situations. Indeed, confounding dynamics can emerge in many interesting settings. For example, diffusion

processes, such as the adoption of a new technology, normally display confounding dynamics. The diffusion pattern

takes the typical “S” shape: an initial phase of low diffusion, a steep middle diffusion phase and final leveling-off

15The reasoning behind the result presented in Theorem 1 presupposes that all the agents at time t have access at the entire history
of their expectations. If this was not the case, which for example could happen if one were to consider an overlapping generation
structure of the market where a generation of agents is born in each period and dies the next period, then the new generation would
only be able to observe the current realization of st and so the information equilibrium might not coincide with the one characterized
by (3.8)

11
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phase [see Rogers (2003)]. Following Canova (2003), a diffusion process where an initial shock εt diffuses with

the canonical “S” shape can be formalized by

st = st−1 + αεt + 2αεt−1 + .75αεt−2, (3.10)

with 0 < α < 1. The diffusion process (3.10) displays confounding dynamics.16 Theorem 1 would then ensure

that an information equilibrium is given by (3.8) with λ = −2/3.

One additional concern about (3.7) is that it could hold only for a combination of parameter values with

measure zero, i.e. it could be a non-generic condition. This is clearly not the case. Our equilibrium is generic

because |λ| can be anywhere inside the unit circle, and A(λ) = 0 is the only restriction placed on A(·). This

suggests that interesting information equilibria can easily emerge from standard rational expectations models.

For example, from the diffusion process in (3.10) one can safely change the parameters along several dimensions

without affecting the existence of a |λ| satisfying (3.7). We provide additional examples of the non-generic

behavior of the information equilibrium below.

3.2.1 The Full Information Guess An important question to ask before we proceed further is, what

happens if, when (3.7) holds, one considers as a candidate equilibrium the full information equilibrium (3.4)?

Indeed, such a candidate function will solve the informational fixed point problem. Thus one could claim that

(3.4) is also an information equilibrium and that our equilibrium concept is not unique but suffers from multiple

equilibria. This conclusion is however incorrect. If the prediction function is specified as in the full information

case, this corresponds to endowing agents with the exact knowledge of the initial state of the world, ε0 according

to our example in Section 2.3. That is, the exogenous information structure cannot be U i
t = {0} for all t as

specified in Theorem 1, but must also include direct knowledge of the structural innovations for some s < t.

In the presence of confounding dynamics, knowledge of the initial state of the world unravels the entire history

of innovations. Therefore, the apparently innocuous step of specifying a full-information guess and deriving the

prediction function consistent with that guess is tantamount to changing the exogenous information available to

agents. Equation (3.4) therefore cannot possibly be an information equilibrium for the uninformed buyers case

when (3.5) and (3.7) hold.

3.2.2 Non-existence Pathologies Resolved. In Futia’s (1981) seminal work there is a non-existence result

that has led researchers to think that RE models with endogenous information are cursed with all sorts of non-

existence pathologies. Corollary 3.16 of Futia argues that a necessary and sufficient condition for the existence

16Notice that we have specified a process with a unit root in (3.10), while we have previously stated that we focus on stationary
equilibria. The unit root in the exogenous process can be easily dealt with by specifying an AR coefficient, solve for the equilibrium
and then take the limit for the coefficient going to 1. The level of the price process will not have a well defined second moment, but
the dynamics can be expressed in first differences. Alternatively, one could take the first difference of the market price using equation
(2.1), which would eliminate the unit root due to st but not the confounding dynamics, and solve directly for the first difference.

12
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of an IE for the uninformed buyers case is Vt(p) = Vt(s). Futia provides an example where st = (1 + θL) εt

with θ = 5/8 and β ≈ 1. This parameter setting implies that the pt spans a strictly smaller space than εt,

while st spans the space of εt (Vt(p) ⊂ Vt(s) = Vt(ε)). Futia argues that no rational expectations equilibrium

exists for this parameter setting. Theorem 1, on the contrary, under the same parameter values would conclude

that an information equilibrium exists and it is equal to the full information equilibrium (3.4). This apparent

contradiction emerges because Futia’s treatment of endogenous information ignored what we have termed the

information from the model. As we have argued above, observing the equilibrium process pt and knowing that

it is generated by (2.1) immediately implies the knowledge of Vt(s). Once this additional information is taken

into account, Futia’s necessary and sufficient conditions hold and where Futia thought an IE did not exist, an

IE does exist and is equal to the full information equilibrium.17 More generally, our results show that an IE

will always exist for (2.1) given |β| < 1, provided that one looks for it in the appropriate space. Representation

(3.4) is the unique equilibrium that resides in Vt(ε), while (3.8) is the unique equilibrium residing in Vt(ε̃), with

ε̃t = [(L−λ)/(1−λL)]εt. The exogenous informational assumption on
{
U i
t

}
delivers uniqueness, and hence there

are no issues with multiplicity.

3.3 Hierarchically Informed Buyers In this section we assume that there are two types of buyers: fully

informed and uninformed. The proportion of the fully informed buyers is denoted by µ ∈ [0, 1]. Formally

U i
t = Vt(ε) for i ∈ µ and U i

t = {0} for i ∈ 1− µ. (3.11)

Under this assumption, the market equilibrium equation (2.1) can be written as

pt = β
[
µEI

t

(
pt+1

)
+ (1− µ)EU

t

(
pt+1

)]
+ st. (3.12)

where I is notation for the fully informed, while U is notation for the uninformed. The following results provide

conditions for existence, uniqueness and the characterization of an information equilibrium.

Theorem 2. Under the exogenous information assumption (3.11), a unique Information Equilibrium for (3.12)

with |β| < 1 always exists and is determined as follows: If there exists a |λ| < 1 such that

A(λ)− µβA(β)(1 − λβ)

λ− (1− µ(1 − λ2))β
= 0 (3.13)

17To show that the case where (Vt(s) ⊂ Vt(p) is also possible, in Appendix B.3 we derive a fully revealing equilibrium in which pt
reveals εt, while st spans a strictly smaller space.
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then the IE of (3.12) is given by

pt = (L− λ)Q(L)εt =
1

L− β

{

LA(L)− βA(β)
h(L)

h(β)

}

εt (3.14)

with h(L) ≡ µλ− (1− µ)Bλ(L), Bλ(L) ≡ L−λ
1−λL

.

If restriction (3.13) does not hold for |λ| < 1, then the IE converges to (3.4).

Proof. See Appendix A.

Condition (3.13) is now at the heart of the existence result. It gives the condition that must hold for the

uninformed agents to remain uninformed in equilibrium. The uninformed buyers will recognize that in equilibrium

the following relationship must hold

pt − β(1− µ)EU

t (pt+1) = βµEI

t (pt+1) + st. (3.15)

The difference between this existence condition and that of Theorem 1 is that the uninformed buyers are not able

to back out the exact process for st given the history of prices and uninformed predictions. However, they are able

to uncover the sum of the supply process st and the predictions of the fully informed buyers EI . The question

is whether this sum displays confounding dynamics that can be inherited by the equilibrium price. Condition

(3.13) provides the answer to this question. Appendix A shows that (3.13) is equivalent to the right-hand side of

(3.15) evaluated at λ. If this term vanishes at |λ| < 1, then the sum of the informed agents’ expectation and the

supply process has a non-fundamental moving average representation and is not invertible with respect to the

information set of the uninformed agents. In other words, condition (3.13) implies the right-hand side of (3.15)

will display confounding dynamics. Consequently the uninformed agents will only be able to see the sum but not

the individual components of the sum. It is in this sense that models with disparately informed agents lead to

endogenous signal extraction. Uninformed agents want to disentangle the effects on the equilibrium price of the

informed agent’s expectations from the supply process. In Section 4 we will see that as the presence of informed

buyers is increased, the endogenous signal becomes more precise, making it is easier for the uninformed agents to

unravel the confounding dynamics.

3.4 Dispersedly Informed Buyers In this section we study information equilibria under a dispersed in-

formation setup. We assume that all agents are identical in terms of the imperfect quality of information they

possess. In particular, we assume each agent observes their own particular “window” of the world, as in Phelps

(1969). Information is dispersed in the sense that, although complete knowledge of the fundamentals is not given

to any one agent, by pooling the noisy signal of all agents, it is possible to recover the full information about the

14
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state of the economy.18 The main result of the section is that the existence and general characterization of an

information equilibrium under dispersed information are provided by the hierarchical case (Theorem 2) under a

reinterpretation of the parameter µ.

Consider a set of i.i.d. noisy signals specified as

εit = εt + vit with vit
iid∼ N

(
0, σ2

v

)
for i ∈ [0, 1] . (3.16)

We assume that agents are endowed with the exogenous information

U i
t = Vt (εi) for i ∈ [0, 1] . (3.17)

Notice that when the noise is driven to zero, σ2
v → 0, this setup is equivalent to the fully informed buyers case,

while an infinite noise, σ2
v → ∞, corresponds to the uninformed buyers case. The optimal prediction of an

individual agent i can be written as

Eit (pt+1) = E (pt+1|Vt(εi) ∨ Vt(p) ∨Mt(p)) (3.18)

The information equilibrium under dispersed information (3.17) is provided by the following result.

Theorem 3. Let τ ≡ σ2
ε/(σ

2
v + σ2

ε) be the signal-to-noise ratio associated with the signal (3.16). Under the

exogenous dispersed information assumption (3.17), a unique Information Equilibrium for (2.1) with |β| < 1

always exists and is equivalent to the equilibrium characterized in Theorem 2 where µ is now defined as µ ≡ τ .

Proof. See Appendix A.

The typical mechanism of optimal signal extraction is at work at the heart of the equivalence of Theorem 3. Each

agent i in the market has a signal about the fundamental ε. The optimal behavior in terms of forecast error

minimization is for the agent to act as if the signal was equal to the true state, in measure proportional to the

informativeness of the signal τ . At the same time, it is certainly possible that the signal is just noise and thus

it would be optimal to ignore it and act just upon the public signal pt, this in measure (1 − τ). Basically, in a

dispersed information setting each agent acts in mixed strategies: as an informed agent with probability τ and

as an uninformed agent with probability 1 − τ . Theorem 3 ensures that in the aggregate, the equilibrium price

inherits the mixing of the strategies at the individual level, which makes the aggregate behavior equivalent to the

equilibrium of section 3.3.

18The informational setup of this section is especially common in the recent stream of papers on dispersed information and the
business cycle (see, for example, Angeletos and La’O (2009b), Hellwig and Venkateswaran (2009), Lorenzoni (2009) and Maćkowiak
and Wiederholt (2007)).
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4 Information Equilibria: Characterization

4.1 Aggregate Characterization Equipped with the results of Theorems 1-3 we turn now to the study

of the properties of the price in an information equilibrium. We first notice that the price function in all the

Theorems takes the form of a modified Hansen-Sargent formula (3.4). The Hansen-Sargent formula essentially

represents an operator that “conditions down” from the full history of innovations (past, present and future) to

a linear combination of innovations by subtracting off what is not contained in the information set of the agents.

Corollary 1 formalizes the idea.

Corollary 1. Under the assumptions of Theorem 2, if |λ| < 1 satisfying (3.13) exists, the information equilibrium

price can be written as

pt =

(
LA(L)

L− β

)

εt −
(
βA(β)

L− β

)

εt − (1− µ)βAU (β)

(
1− λ2

1− λL

)

εt, (4.1)

where

AU (L) =
A(L)

L− λ− µβ(1 − λ2)
. (4.2)

Proof. Follows directly from Theorem 2.

The Corollary represents the information equilibrium price as being comprised of three components. The first

component of the RHS of (4.1) is the perfect foresight equilibrium,

pft =
∞∑

j=0

βjst+j =
LA(L)

L− β
εt (4.3)

This is the IE that would emerge if agents knew current, past and future values of εt.

The second component operates a first conditioning down that takes into account the fact that future values

of εt are not known at t. This conditioning down amounts to subtracting off a particular linear combination of

future values of εt, specifically

βA(β)

∞∑

j=1

βjεt+j (4.4)

The third component is the novel part of the representation. It represents the conditioning down related to the

uninformed buyers not being able to perfectly unravel the past realizations of εt from the equilibrium price—

the confounding dynamics. The interpretation of this term offers important insights into the working of an

information equilibrium. Let EI
t (st+1) = E[st+1|Vt(ε)] denote prediction formula of a fully informed buyer, and
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E
U
t (st+1) = E[st+1|Vt(p) ∨Mt(p)] the prediction formula of an uninformed buyer in the information equilibrium

of Corollary 1. Let us assume for the moment that µ = 0. In the equilibrium with only uninformed buyers, agents

are concerned with forecasting the discounted, infinite sum of market fundamentals, i.e., pt =
∑∞

j=0
βj

E
U
t (st+j).

Writing out the uninformed buyers expectations of future supply using the analytic form of the equilibrium price

yields

E
U

t (st+j) = E
I

t (st+j)−AU

j−1

(
1− λ2

1− λL

)

εt. (4.5)

The uninformed agents’ expectations of fundamentals at each future date are given by the expectation of fully

informed agents minus a term given by the linear combination of past εt’s that the agents do not observe. This

linear combination consists of the noise stemming from the confounding dynamics generated by |λ| < 1 (see

Section 2.3, Equation (2.8)) multiplied by a coefficient that corresponds to the weight on the (j − 1)th lag of

the polynomial AU (L) which represents the dynamics of the supply process st as perceived by the uninformed

buyers in equilibrium. Uninformed agents would formulate predictions that are equal to those formulated by fully

informed agents if it were not for the confounding dynamics. The information equilibrium price then contains

the accumulated noise for the expectations at all horizons, namely

∞∑

j=1

βjAU

j−1

(
1− λ2

1− λL

)

εt = βAU (β)

(
1− λ2

1− λL

)

εt. (4.6)

Notice that as |λ| gets closer to 1, the noise due to the confounding dynamics becomes smaller, disappearing in

the limit.

When fully informed buyers are introduced into the market, so that µ > 0, the noise due to confounding

dynamics is affected through two channels. First, there are fewer uninformed buyers and so only a fraction

1− µ of the cumulated noise (4.6) has to be subtracted off. Second, the presence of informed buyers changes the

perceived supply processAU (L) for the uninformed buyers as the equilibrium price now contains more information:

both the polynomial AU (L) and λ will reflect this change. As the proportion of informed buyers increases (µ → 1),

the information equilibrium approaches the full information counterpart and the third term in (4.1) vanishes.

4.2 Dispersed Characterization While Theorem 3 guarantees equivalence with the hierarchically informed

buyers setup at the aggregate level, there exists important differences between the two equilibria at the individual

agent level. First, the dispersed information equilibrium displays a well defined cross sectional distribution of

beliefs, as opposed to the degenerate distribution in the hierarchical case. Second, the cross sectional variation is

perpetual in the sense that the unconditional cross sectional variance is positive. In other words, agents’ beliefs

are in perpetual disagreement. These two results are stated in terms of expectations about future prices in the

following proposition.

17



Rondina & Walker: Information Equilibria in Dynamic Economies

Proposition 1. Let pt = (L−λ)Q(L)εt be the information equilibrium characterized by Theorem 3, with |λ| < 1.

The cross section of beliefs about future prices is given by

E
i
t(pt+j) = E

I

t (pt+j)− (1− τ)Qj−1

(
1− λ2

1− λL

)

εt − τQj−1

(
1− λ2

1− λL

)

vit for j = 1, 2, .... (4.7)

The implied unconditional cross-sectional variance in beliefs is given by

τ2
(
1− λ2

)
(Qj−1)

2σ2
v for j = 1, 2, .... (4.8)

Proof. See Appendix A.

If one considers the interpretation of the optimal signal extraction problem under dispersed information in

terms of mixed strategies, the beliefs in (4.7) have an intuitive interpretation. If information was complete, the

beliefs would coincide with the expectation E
I
t (pt+j). The difference of the beliefs of agent i with respect to

the full information has two components. One is common across agents, one is specific to each agent. The first

component is the result of agent i acting as uninformed with probability 1− τ . Similar to the uninformed of the

hierarchical case, agent i formulates her beliefs based on the common public information embedded into prices. As

a result, her beliefs will differ from the full information case according to the noise due to confounding dynamics.

The second component is the result of the agent acting as if they are fully informed. Because the private signal

contains noise, in acting as a fully informed buyer the agent will incur a mistake. The dynamic structure of this

mistake is similar to that of the noise incurred when acting as an uninformed agent. This is due to the fact that

when acting as an informed buyer, the agent will try to correct for the mistakes made by other agents that are

acting as uninformed. The acting informed agent will optimally believe that she can perfectly predict the mistake

of the uninformed. In so doing she will inject an idiosyncratic error into her beliefs. As for the unconditional

variance of the beliefs, Proposition 1 offers an analytical form that can be very useful in calibrating key parameters

of the market if data on cross-sectional beliefs on prices are available.

4.3 Information Equilibrium: An Example In this section we specify a specific supply process which

allows us to further analyze existence conditions and provide a sharper characterization of the resulting information

equilibrium. Let the supply process st be given by

st = ρst−1 + εt + θεt−1, |ρ| ≤ 1. (4.9)

In a majority of dynamic models, the typical assumption is to set θ = 0, and for st to follow a purely autoregressive

process. An important result derived below is that agents observing endogenous information only, {pt−j}∞j=0, will

always be able to recover εt when θ = 0. A straightforward and convenient implication of this property is that
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one can abstract from exogenous informational differences altogether. The downside, however, is that there exists

a set of interesting information equilibria that are disregarded. We assume an ARMA(1,1) specification because

it is only a slight deviation from the ubiquitous AR(1) assumption, yet makes clear how distinct the equilibrium

properties of an information equilibrium can be.

First let us assume that µ = 0, so to focus on the uninformed buyers case. According to Theorem 1 the type of

IE encountered hinges upon whether st spans the space of εt. The restriction A(λ) = 0 yields (1+θλ)/(1−ρλ) = 0,

which gives λ = −1/θ. Therefore, if |θ| < 1, then the st process spans εt. In this case, the information equilibrium

is obtained by plugging (4.9) into (3.4), which yields

pt − ρpt−1 =

(
1 + θβ

1− ρβ

)

εt + θεt−1. (4.10)

If |θ| > 1, then the specification of the exogenous information given to the agents is crucial. If we assume

U i
t = Vt(ε), ∀i, then the IE would be equal to (4.10). However, if we maintain the assumption that U i

t = 0, ∀i,

then since |λ| < 1, the IE is found by plugging (4.9) into (3.8), which returns

p̃t − ρp̃t−1 =

(
1 + θL

L+ θ

)[(
θ + β

1− ρβ

)

εt + εt−1

]

. (4.11)

How do the two equilibria differ? Both equilibria share the autoregressive root ρ; however, the information

equilibrium p̃t contains an additional autoregressive root at −1/θ. This is due to the presence of confounding

dynamics in equilibrium: the learning effort of the uninformed buyers results in an additional persistent effect of

past innovations. In addition, the process p̃t also has an MA(2) representation, compared to the MA(1) of pt.

Figure 2 plots the impulse response functions for pt and p̃t for two levels of confounding dynamics: λ = −1/θ =

−1/
√
11 in the left panel, and λ = −1/θ = −1/

√
2 in the right panel.19 The impulse responses are normalized

with respect to the impulse response at impact for the price under complete information pt. The additional

parameters values are set to: β = 0.985, σε = 1. We set ρ = 1 so that the process (4.9) can be interpreted as a

diffusion process where innovations spread gradually but have a permanent effect. In response to an innovation,

st will change permanently but such a change happens gradually over the course of two periods: at impact there

is a jump to 1, after one period there is an additional jump of 1 + θ and then the process levels off at the new

higher value. The source of confounding dynamics lies in the second jump being bigger than the first. This is

common in diffusion processes where after an initial weak diffusion phase the diffusion gradient increases and

becomes maximal before decreasing and leveling off once the diffusion is completed.

The full information price pt reacts immediately to the innovation taking into account the accumulated per-

manent effect of the shock on the future values of the fundamentals st. The scale of the reaction at impact is

19These numbers are chosen so that the equivalent signal-to-noise ratios in a standard signal extraction problem correspond to 10
and 1, respectively.
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Figure 2a: strong confounding dynamics
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Figure 2b: weak confounding dynamics

Figure 2: Impulse response of market price to one time innovation in εt. The dotted line represent the response
of st; the dashed line is the response of the full information price pt in Equation (4.10); the solid line is the
response of the information equilibrium price p̃t in Equation (4.11). The responses are normalized so that the
full information price has a unitary reaction at period 0; other parameters values are ρ = 1 and β = .9.

dictated by the discount factor β. After the initial jump the dynamics follow that of the fundamentals and so the

price levels off to the new permanent level. The market price with confounding dynamics p̃t displays substantially

different behavior. First, because the agents cannot really be sure that a positive innovation has been realized,

the price under-reacts at impact. The under-reaction is more pronounced for the strong confounding case (35%

of the full information reaction) than for the weak one (75% of the full information reaction). At period 1, while

the full information price reaches the new permanent plateau, the price with confounding dynamics overshoots

the plateau by roughly 25% in both the strong and weak confounding case. After that, in the strong confounding

case the price keeps fluctuating, but only slightly so, while the fluctuations are more persistent for the weak con-

founding case. The intuition for this is that the price is understood to be a bad signal in the strong confounding

case, and so it gets discounted much quicker, which results in the innovation being given less relevance in the

subsequent learning effort. In the weak confounding case, the price is a good signal of the innovation and so it

remains important in the signal extraction problem, but in so doing the price remains affected by the learning

effort for several periods in the future.

It bears reminding that there is no exogenously superimposed noise in the market generating the equilibrium

price p̃t. The dynamics of st are canonical diffusion dynamics, the market price is perfectly observed and agents are

fully rational. And yet the market dynamics display waves of optimism and pessimism. This example is suggestive

of the potential of the equilibria belonging to the class that we characterized in Theorems 1-3 for offering a rational

explanation of apparently irrational market behavior, for example, market turbulence in periods of technological

innovation.
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Figure 3: Existence space of Information Equilibrium with confounding dynamics as µ, ρ and θ are varied for the
supply process st = ρst−1 + εt + θεt−1.

Within the current example, it is useful to consider the possibility of adding fully informed buyers to the asset

market, i.e. letting µ > 0. Informed buyers will impound information into the equilibrium price, which could

potentially overcome the confounding dynamics and lead to a fully revealing equilibrium. The following result

applies Theorem 2 to our example and characterizes the existence of an information equilibrium with confounding

dynamics as the key parameters, β, ρ, θ and µ are varied. The proof is reported in Appendix A.

Result The model described by (3.12) and (4.9) with β, ρ ∈ (0, 1) and θ > 0 defines a space of existence for

information equilibria with confounding dynamics of the form (3.14) characterized as follows:

(R.1) If θ ≤ 1 an IE with confounding dynamics does not exist.

(R.2) If θ > 1, an IE with confounding dynamics exists if and only if µ < µ∗ with

µ∗ =
(θ − 1)(1− ρβ)

β(1 + ρ)(1 + θβ)

Figure 3 displays the existence conditions for an information equilibrium with confounding dynamics in (β, θ)

space. Four points are noteworthy. First, as is evident from the figure and condition (R.2), if θ ≤ 1 an IE with

confounding dynamics does not exist regardless of the other parameters in the model. Intuitively, if we interpret

once again st as a diffusion process, when θ ≤ 1 there is no initial slow diffusion phase; the strongest diffusion

takes place immediately and subsequently levels off.

Second, from condition (R.2), for a certain region of the parameter space (to the right of the dashed lines in

figure 3) an IE with confounding dynamics exists only if the proportion of fully informed buyers is sufficiently
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small. The dashed lines represent the IE that prevails as µ → 1, plotted for various values of the autoregressive

parameter ρ. To the left of the dashed line, confounding dynamics will always be preserved in equilibrium

regardless the value of µ; from condition (R.2) this happens when θ ≥ 1/(1−β(1+ρ)). From section 2.3 we know

that an increase in θ (a decrease in λ) corresponds to an increase in the noise associated with the confounding

dynamics. The informational disparity between the fully informed and uninformed may become so large that

no matter how many fully informed buyers participate in the market, the confounding dynamics will never be

unraveled. How the discount factor β alters the space of existence is similar to that of the serial correlation

parameter ρ, which is the third point to be made. As the serial correlation in the st process increases and β

increases, it is more difficult to preserve confounding dynamics (the dashed line shifts to the left as ρ increases

from 0 to 1). An increase in β and ρ leads to a longer lasting effect of current information. This results in a

higher |λ| and a decrease in the informational discrepancy between the fully informed and uninformed. Finally,

the figure demonstrates the generic nature of the information equilibrium. The space of existence that preserves

confounding dynamics is dense. Relatively small values of β and large values of θ always yield the IE given by

Theorem 2 independent of µ and ρ.

5 Higher Order Beliefs

In Section 3 we have characterized a class of rational expectations equilibria where agents remain differentially

informed in equilibrium. It is well known that one way to describe the behavior of rational agents in such settings

is in terms of engaging in higher-order thinking. Yet we have not discussed this strategic interaction among

the agents even though the equilibrium characterizations embed these dynamics. We have focused exclusively

on characterizing the following model: pt = β[µEI
t (pt+1) + (1 − µ)EU

t (pt+1)] + st, but the rational expectations

assumption implies that the solution to this model must be identical to the solutions of

pt = βĒt{βĒt+1pt+2 + st+1}+ st (5.1)

= β2µ2
E
I
t pt+2 + β2(1− µ)2EU

t pt+2 + st + β2µ(1 − µ)EI
t E

U
t+1pt+2

︸ ︷︷ ︸
+βµEI

t+1st+1 + β(1 − µ)EU
t {βµEI

t+1pt+2 + st+1}
︸ ︷︷ ︸

(5.2)

Informed Agents’ HOBs Uninformed Agents’ HOBs

where we have used recursive substitution and the shorthand notation for the average expectations operator,

Ēt = µEI
t (·)+ (1−µ)EU

t (·). These model specifications highlight the strategic interactions undertaken by agents.

The first two elements on the RHS of (5.2) follow from the law of iterated expectations, which must hold with

respect to the individual agents’ information sets. The last two components of (5.2) encode the model’s higher-

order beliefs.

The strategic interaction amongst agents and the higher-order belief (HOBs) dynamics are usually considered

mysterious objects since in many situations, especially in dynamic settings, it is hard to write the analytic form

of the HOBs of any arbitrary order. Having a closed-form solution in hand, we are in able to study HOBs
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analytically. We derive the expectations found in (5.2) and show how they lead to the breakdown in the law of

iterated expectations for the average expectations operator, as emphasized in (5.1). We also analyze the role of

HOBs in information diffusion.

5.1 Higher Order Beliefs Characterization The following representation of an information equilibrium

shows how agents extract information from other agents’ forecasts in forming their beliefs of market fundamentals.

Corollary 2. If |λ| < 1, the IE described in Theorem 2 has the following representation,

pt =
1

L− β

(

(1− µ){LHU(L)− βHU(β)κ(L)}εt + µ{LHI(L)− βHI(β)}
)

εt, (5.3)

where HU (L) = st − µβ(pt+1 − E
I
t (pt+1)), H

I(L) = st − (1− µ)β(pt+1 − E
U
t (pt+1)) and κ(L) = Bλ(L)Bλ(β)

−1.

Proof. See Appendix B.

Representation (5.3) shows that the equilibrium price can be written as a linear combination of beliefs about

“market fundamentals” belonging to the uninformed, HU (·), and the informed, HI(·). This representation makes

clear that agents’ beliefs about market fundamentals are tied to the beliefs of other agents. For both agents,

market fundamentals are a combination of the exogenous process, st, and the endogenous forecast errors of the

other agent type. Representation (5.3) also suggests that both informed and uninformed agents engage in higher-

order thinking along some dimension. The extent to which agents are successful in learning from other agents’

forecasts depends upon the information structure. The following proposition formalizes this concept, making

clear the role of HOBs in an IE and demonstrating why HOBs lead to the break down in the law of iterated

expectations for the average expectations operator.

Proposition 2. If the information equilibrium given by Theorem 2 holds for |λ| < 1, then

i. the informed agents form noiseless higher-order beliefs, while the uninformed form noisy higher-order beliefs;

ii. the average expectations operator does not satisfy the law of iterated expectations.

Proof. The proof of the proposition is perhaps more instructive than the proposition itself and hence selected

parts of the proof follow, while the proof in its entirety can be found in Appendix B.

The average expectation of the price at t+ 1 determines equilibrium according to (3.12). In turn, the agents

recognize that the price at t + 1 will be itself a function of the average expectations of the price at t + 2. So if

an agent could observe the average forecast of the price at t+ 2, her prediction performance of the price at t+ 1

would improve. Following this reasoning, the optimal expectation of both agent types must follow

E
I

t pt+1 = E
I

t [βĒt+1pt+2 + st+1], E
U

t pt+1 = E
U

t [βĒt+1pt+2 + st+1] (5.4)
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Following Theorem 2 the functional form of the equilibrium price is pt = (L − λ)Q(L)εt where |λ| < 1; the

appendix shows that the time t+1 average expectation of the price at t+2 can be written as the actual price at

t+ 2 minus the average market forecast error, namely

Ēt+1pt+2 = pt+2 + µQ0λεt+2 − (1− µ)Q0Bλ(L)εt+2 (5.5)

The average market forecast error on the RHS of (5.5) has two components: the first term represents the error

made by the informed agents, Q0λεt+2, appropriately weighted by the mass of informed agents in the market, µ;

the second term, Q0Bλ(L)εt+2, represents the forecast error of the uninformed agents, weighted by the mass of

uninformed agents in the market, 1− µ.

We know from the form of the lag polynomial Bλ(L) ≡ (L−λ)/(1−λL) that the forecast error of uninformed

agents contains a linear combination of current and past innovations (due to confounding dynamics), which makes

the uninformed agents’ error partially predictable for the informed agents. That is, the t+2 forecast error of the

uninformed is correlated with respect to the time t information set of the informed agents. Hence, the informed

agents will always achieve smaller forecast errors if they correct their expectation of the average price according

to the forecast errors of the uninformed. More explicitly, the informed agents’ time t expectation of the t + 1

market average expectation takes the form

E
I

t Ēt+1pt+2 = E
I

t pt+2 − (1 − µ)Q0

(
1− λ2

1− λL

)

λεt. (5.6)

In forming their expectations for the t+2 price conditional on time t+1 information, the uninformed agents incur

the error Q0

(
1−λ2

1−λL

)
εt+1. The weight attached to this error is 1−µ at t+1. However, informed agents can predict

this error at time t by conditioning down with respect to their information set (all current and past innovations

up to εt), which explains the multiplication by λεt. While we have characterized first-order beliefs only, the

autoregressive nature of the error incurred by the uniformed suggests that higher-order beliefs follow (5.6) closely

with λj replacing λ, where j is the higher-order beliefs horizon (see Appendix B for explicit calculations).

The intuition that serially correlated forecast errors is driving the formation of higher-order beliefs seems

to suggest that uninformed agents cannot engage in higher-order thinking. That is, uninformed agents possess

strictly smaller information sets and are therefore unable to learn anything from the informed agents’ forecast

errors. This is false. The uninformed agents do engage in higher-order thinking. The uninformed agents form

“noisy” HOBs because they are not able to disentangle the forecasts of the informed agents from the exogenous

st process. The existence condition, (3.13), stipulates that the uninformed agents cannot completely separate

out the effects of the informed agents’ expectations from the exogenous process, st. These confounding dynamics

ensure that the uninformed only observe the sum and not the individual components of the sum; being able

to disentangle these two processes would imply a convergence to the full information equilibrium of (3.4). The

24



Rondina & Walker: Information Equilibria in Dynamic Economies

uninformed agents therefore are solving an endogenous signal extraction problem as part of the formation of

HOBs. However, the optimal expectation of the uninformed does not ignore the information coming from the

informed agents’ expectation. Appendix B shows that taking expectations in (5.4) delivers

E
U

t pt+1 = βEU

t pt+2 + E
U

t st+1 +

(
µβQ0(1− λ2)

λ(1 − λL)

)

εt (5.7)

The last term encodes the HOBs and represents what the uninformed agents learn from the informed agents’

forecast error. Notice that (5.7) does not equal βEU
t pt+2 + E

U
t st+1, which would be true if the uninformed

agents’ expectation ignored information from the informed agents’ forecast error. We show below just how much

information the uninformed are learning by forming HOBs. We refer to the HOBs formed by the uninformed

agents as noisy HOBs to contrast the HOBs formed by informed agents, who observe the forecast errors of the

informed directly.

An immediate consequence of agents forming HOBs is that the law of iterated expectations fails to hold with

respect to the average expectations operator. This can easily be seen by substituting (5.5) into (5.1) and taking

expectations, which delivers

pt = β2
Ētpt+2 + βĒtst+1 + st − βµ(1 − µ)Q0

(
1− λ2

1− λL

)

λεt + βµ(1− µ)Q0

(
1− λ2

λ(1− λL)

)

εt (5.8)

The last two components of (5.8) are due to the informed and uniformed agents’ adjusting expectations due to

HOBs, without these terms the law of iterated expectations would hold. The degree to which the law of iterated

expectations fails is determined by the relevance of HOBs and is therefore related to the proportion of informed

agents, µ, and to the extent of the confounding dynamics, measured by λ.

5.2 Higher Order Beliefs and Information Diffusion We are now in a position to study how the

formation of HOBs affects the dissemination of information in equilibrium. Our aim is to compare the information

equilibrium of Theorem 2 to an equilibrium where HOBs at all horizons are forcefully removed – we call this a

“No-HOBs Equilibrium.” Holding the same exogenous information assumption across the equilibria, a lower

mean square forecast error will correspond to greater information diffusion. To conceptualize and then solve

for the ‘No-HOBs Equilibrium” we proceed as follows: First, using Proposition 2 we derive a representation for

the information equilibrium price that isolates the noiseless HOBs of the informed agents and noisy HOBs of the

uninformed. Next, we shut down these higher-order beliefs sequentially and solve for two No-HOBs equilibria–one

that removes the informed agent’s HOBs and one that removes both informed and uninformed agents’ HOBs.
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Iteratively applying Proposition 2 one can show that the equilibrium price is given by

pt =
∞∑

j=1

(µβ)jEI
t (st+j) + st

+

∞∑

j=1

βj(1− µ)jEU
t

(
βµEI

t+jpt+j+1 + st+j

)
+ E

I
t

∞∑

h=1

(µβ)hEU
t+h

∞∑

j=h

(1− µ)j−h+1βj−h+1
[
βµEI

t+j+1pt+j+2 + st+j+1

]
(5.9)

The last two terms in (5.9) capture the entire HOBs structure into the infinite future. When only fully informed

buyers are present (µ = 1), the expression coincides with the price under full information in (3.4). Likewise, when

only uninformed buyers are present (µ = 0), the expression coincides with the price under symmetric incomplete

information in (4.11).

The weights assigned to the expectations in the three terms clarify the higher-order reasoning. The uninformed

agents will form expectations of the sum of the st’s and the entire path of future expectations of the informed

agents, discounted at β(1 − µ). The informed agents will form the “standard” discounted expectation of future

st’s with weight µβ, but will also correct this forecast based upon the forecasts of the uninformed, which is the

last term in (5.9). This term shows that the informed agents will correct the entire path of the uninformed agents’

expectations, not just the time t forecast errors.

The formation of HOBs provides uninformed agents with two additional sources of information that they

would not have otherwise. The first source comes from forming noisy HOBs themselves (the penultimate term

of (5.9)) and the second source comes from the informed agents forming HOBs (the last term of (5.9)). Recall

that the informed agents’ HOBs correct for the serial correlation in the uninformed agents’ forecast error. In

equilibrium, this information gets impounded into the price and is partially revealed to the uninformed agents.

The obvious question is: How much information is revealed through the formation of HOBs?

Given that we have an analytical solution at hand, we can answer this question by forcing each agent type

to not engage in higher-order thinking. The following proposition solves for two boundedly rational equilibria to

isolate the two sources of information coming from the HOBs. The first equilibrium solves (5.9) but sets the last

term to zero, which isolates the role of HOBs formed by the informed buyers. The second equilibrium removes

both the last term and the penultimate term in (5.9), which takes all HOBs out of the model. By taking the

difference between the two equilibria, one can isolate the role of the HOBs formed by the uninformed buyers.

Proposition 3. No-Informed HOBs Equilibrium. Assume that the fully informed buyers do not form

higher order beliefs (i.e., solve (5.9) removing the last term). Under the exogenous information assumption

(3.11), i.e. U i
t = Vt(ε) for i ∈ µ and U i

t = {0} for i ∈ 1−µ, a unique boundedly-rational equilibrium always exists

and is determined as follows. If there exists a |λ̃| < 1 such that

A(λ̃)− µβA(β)

λ̃− (1− µ)β
= 0 (5.10)
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then the equilibrium price is given by

pt =
1

L− β

(

LA(L)− βA(β)
k(L)

k(β)

)

εt (5.11)

where k(L) = µλ̃

1−λ̃β
− (1−µ) L−λ̃

1−λ̃L
. If (5.12) does not hold for any |λ̃| < 1, the equilibrium is the full information

equilibrium (3.4).

No-HOBs Equilibrium. Assume that neither the informed nor uninformed buyers form higher-order beliefs

(i.e., solve (5.9) removing the last term and setting the penultimate term to
∑∞

j=1
βj(1 − µ)jEU

t st+j). Under

the exogenous information assumption (3.11), i.e. U i
t = Vt(ε) for i ∈ µ and U i

t = {0} for i ∈ 1 − µ, a unique

boundedly-rational equilibrium always exists and is determined as follows. If there exists a |λ∗| < 1 such that

A(λ∗)− µβA(β)

λ∗
= 0 (5.12)

and the equilibrium price given by

pt =
1

L− β

(

LA(L)− βA(β)κ(L)

)

εt (5.13)

where κ(L) = µ+ (1− µ) L−λ∗

1−λ∗L
.

Proof. See Appendix B.

Proposition 3 allows us to state the main result of this section.

Corollary 3. Assume A(L) = (1 + θL)/(1 − ρL) with θ, ρ ∈ (0, 1). If an IE exists with λ ∈ (−1, 1), then

higher-order beliefs always enhance information diffusion.

Proof. See appendix B.

The corollary essentially states that |λ∗| < |λ̃| < |λ|. Recall that as |λ| → 1, confounding dynamics diminish

and disappear altogether in the limiting case, as the discrepancy between the information set of the informed

and uninformed gets smaller. We measure information diffusion as the relative difference between the informed

and uninformed agents’ variance of forecast error. Given that for each variant of (5.9) the price process can be

written as pt = (L− λ)Q(L)εt, it is straightforward to show that for each economy described in Corollary 3 and

Theorem 2, the ratio of forecast errors is given by λ2,

E(pt+1 − E
I
t pt+1)

2

E(pt+1 − EU
t pt+1)2

=
E((L − λ)Q(L)εt+1 − L−1[(L − λ)Q(L) + λQ0]εt)

2

E((L − λ)Q(L)εt+1 − L−1[(L− λ)Q(L)−Q0Bλ(L)]εt)2
= λ2 (5.14)

When the informed higher-order thinking is removed |λ| declines to |λ̃| which means that informed higher

order thinking reduces the extent of the confounding dynamics and therefore has a positive effect on information
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Figure 4: Impulse response of market price to one time unitary innovation in εt. The dotted line is the price
under full information; the solid line is the price under confounding dynamics with all the HOBs present; the
dashed line is the price under confounding dynamics with all the HOBs removed (Proposition 3). The parameter
values are st = 0.8st−1 + εt +

√
11εt−1, β = 0.985 and µ = 0.06.

diffusion in equilibrium. Intuitively, engaging in guessing the expectation of the average expectation of the average

expectation and so on helps information diffusion because it forces informed agents to use their private information

to guess the forecast errors of other agents. In so doing, more information is encoded into equilibrium prices and

thus the variance of the forecast errors is reduced. When the uninformed higher order thinking is removed together

with the informed higher order thinking, |λ| decreases further to |λ∗| < |λ̃|. Even though uninformed agents form

noisy HOBs, doing so increases their information and reduces their forecast errors.

To quantify the effects of higher order thinking, consider a variant of the numerical example presented in

Section (4.3). Using the process for st specified in (4.9), let ρ = 0.8, θ =
√

(11) and µ = 0.06. The ratio of

the variance of the forecast errors, (5.14), is 0.84 when all HOBs are present. This value falls to 0.49 when only

uninformed agents form HOBs, (5.10), and 0.137 when neither informed nor uninformed form HOBs, (5.12). By

this measure, HOBs reduce the information discrepancy between the informed and uninformed agents by a factor

of seven. As a visual confirmation, figure 4 displays the impulse response of the full information equilibrium,

the information equilibrium of Theorem 2 and the No-HOBs equilibria of Proposition 3 to a one time shock to

the fundamentals ε0. The impulse responses are normalized with respect to the response at impact of the full

information price. The dynamics of the equilibrium with HOBs deviates only modestly from the full information;

this is due to the informational effect of a small portion of agents being fully informed. How much of the

informational effect is due to the higher order thinking of fully informed agents? The impulse response for

the No-HOBs equilibria reveals that higher order thinking is remarkably important for informational diffusion.
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Without any HOBs, the market price would under-react at impact by approximately 70% of the price with HOBs,

and it would over-react a period later of around 20%. Higher order thinking is therefore essential in keeping the

market price from undergoing excessive fluctuations due to slow informational diffusion.

5.3 Higher Order Beliefs and Dispersed Information When examining HOBs in the dispersed in-

formational setup, we can again use the mapping between the dispersed and the hierarchical setups discussed

in Theorem 3. An implication of Theorem 3 is that the aggregate HOBs take the same form as those in the

hierarchical case, but the interpretation is quite different. Agent i will use her exogenous signal to forecast the

forecasts of the market expectation and this forecast will be different from the direct forecast of agent i. We

summarize the description of the HOBs for the dispersed information case in the following proposition.

Proposition 4. If the information equilibrium given by Theorem 3 holds for |λ| < 1, then:

i. all agents form noisy higher-order beliefs;

ii. the average expectations operator does not satisfy the law of iterated expectations.

Proof. See Appendix A.

The intuition developed for the equivalence result of Theorem 3 is helpful in indicating what is happening in

the dispersed case. Take any arbitrary agent i. This agent is instructed by the optimality of signal extraction

to act as informed with probability τ . She will recognize that a portion 1 − τ of agents is contemporaneously

acting as uninformed. It follows that as an informed agent, agent i should forecast the forecast error of the agents

acting as uninformed and embed it into her expectations about the future. At the same time, she is acting as

uninformed as well, i.e. she is part of the portion of 1 − τ agents of whom she is forecasting the forecast errors.

However, the relevance of her forecast error is infinitesimal and so it is irrelevant for her reasoning as informed.

To formalize this intuition one can show that

Eitpt+1 = βEit(pt+2) + µEitst+1 − µβQ0 (1− µ)Eit

(
L− λ

1− λL
εt+2

)

+ (1− µ)Eit[Q0µβεt+2 + st+1] (5.15)

In forming their predictions at t+1 agents acting as uninformed will incur in the prediction error Q0

(
L−λ
1−λL

εt+2

)

.

At time t agent i will take this into account and use her own information to forecast the forecast error and adjust

her expectations of the average expectations accordingly, i.e. by weighting the forecast of the forecast errors by

(1−µ). Similarly the last term shows that agents acting as informed will incur prediction error µβQ0, and agent

i will take this into account in forming forecasts of future prices.

Proposition 4 together with equation (5.15) offer intuition that applies more generally to signal extraction

problems based on private and public noisy signals.20 The equilibrium price in Theorem 3 in presence of confound-

20For instance all the literature on global games that was sparked by Morris and Shin (1999).
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ing dynamics represents noisy public information. Such public information is common knowledge and, therefore,

it represents the information set that all the agents possess if they were to disregard their private information.

Take once again an arbitrary agent i. When agent i acts as fully informed, she engages in predicting the error of

the other agents acting as fully uninformed. How will agent i determine the information set of the agents acting as

uninformed? Common knowledge of rationality will suggest that “uninformed” acting agents just use the public

signal as they act as if their private signal was fully uninformative. This reasoning will suggest to agent i that

the forecast error to predict takes the form of the forecast error that would result by using only publicly available

information.

6 Concluding Comments

Models with incomplete information offer a rich set of results unobtainable in representative agent, rational

expectations economies and have implications for business cycle modeling, asset pricing and optimal policy, to

name a few applications. The results of this paper suggest that models with dynamic incomplete information show

great promise for many applications. This has been known (or at least believed) since Lucas (1972). However,

solving and characterizing equilibrium has proven to be a significant challenge, impeding the progress of these

models. In this paper, we derived existence and uniqueness conditions, along with a solution methodology that

yields analytic solutions to dynamic models with incomplete information. The analytics, in turn, permitted

insights into higher-order belief dynamics and the transmission of information in general. Given the generality

of the forward-looking equation at the heart of our model, we expect the results presented in this paper to be

relevant in the analysis of many dynamic economic applications under incomplete information.

30



Rondina & Walker: Information Equilibria in Dynamic Economies

References

Allen, F., S. Morris, and H. Shin (2006): “Beauty Contests and Iterated Expectations in Asset Markets,”

Review of Financial Studies, 19(3), 719–752.

Angeletos, G., and J. La’O (2009a): “Incomplete Information, Higher-Order Beliefs and Price Inertia,”

Journal of Monetary Economics, 56, S19–S37.

(2009b): “Noisy Business Cycles,” NBER Macroeconomics Annual, 24.

Angeletos, G., and A. Pavan (2007): “Efficient Use of Information and Social Value of Information,” Econo-

metrica, 75(4).

Bacchetta, P., and E. van Wincoop (2006): “Can Information Heterogeneity Explain the Exchange Rate

Puzzle?,” American Economic Review, 96(3), 552–576.

Bernhardt, D., and B. Taub (2008): “Cross-Asset Speculation in Stock Markets,” Journal of Finance, 63(5),

2385–2427.

Canova, F. (2003): Methods for Applied Macroeconomic Research. Princeton University Press, Princeton, New

Jersey, first edn.

Conway, J. (1991): The Theory of Subnormal Operators. American Mathematical Society.

Futia, C. A. (1981): “Rational Expectations in Stationary Linear Models,” Econometrica, 49(1), 171–192.

Gregoir, S., and P. Weill (2007): “Restricted perception equilibria and rational expectation equilibrium,”

Journal of Economic Dynamics and Control, 31(1), 81–109.

Hansen, L. P., and T. J. Sargent (1991): “Two Difficulties in Interpreting Vector Autoregressions,” in

Rational Expectations Econometrics, ed. by L. P. Hansen, and T. J. Sargent. Westview Press.

Hellwig, C. (2006): “Monetary Business Cycle Models: Imperfect Information,” New Palgrave Dictionary of

Economics.

Hellwig, C., and V. Venkateswaran (2009): “Setting the Right Prices for the Wrong Reasons,” Journal of

Monetary Economics, 56, S57–S77.

Kasa, K. (2000): “Forecasting the Forecasts of Others in the Frequency Domain,” Review of Economic Dynamics,

3, 726–756.

Kasa, K., T. B. Walker, and C. H. Whiteman (2010): “Heterogeneous Beliefs and Tests of Present Value

Models,” University of Iowa Working Paper.

31



Rondina & Walker: Information Equilibria in Dynamic Economies

Keynes, J. M. (1936): The General Theory of Employment, Interest and Money. Macmillan, London.

King, R. (1982): “Monetary Policy and the Information Content of Prices,” Journal of Political Economy, 90(2),

247–279.

Lorenzoni, G. (2009): “A Theory of Demand Shocks,” American Economic Review, 99(5), 2050–2084.

Lucas, Jr., R. E. (1972): “Expectations and the Neutrality of Money,” Journal of Economic Theory, 4, 103–124.

(1975): “An Equilibrium Model of the Business Cycle,” Journal of Political Economy, 83, 1113–1144.

(1978): “Asset Prices in an Exchange Economy,” Econometrica, 46(6), 1429–1445.
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A Proofs

A.1 Theorem 1 We report a statement of the theorem for the more general case of n possible λ’s in the initial guess. The

proof of theorem 1 in the main text is obtained by just setting n = 1 below.

Theorem 4. Under the exogenous information assumption U i
t = {0} ∀i, a unique Information Equilibrium with |β| < 1 always

exists and is determined as follows: let {|λi| < 1}ni=1 be a collection of real numbers such that

A(λi) = 0, (A.1)

then the information equilibrium price process is

pt = Q(L)
n∏

i=1

(L− λi)εt =
1

L− β

{

LA(L)− βA(β)

∏n
i=1 Bλi

(L)
∏n

i=1 Bλi
(β)

}

εt (A.2)

where

Bλi
(L) =

L− λi

1− λiL
.

If condition (3.7) does not hold for any |λi| < 1, then the IE is given by (3.4).

Proof. Substituting the conditional expectation (3.6) into the equilibrium equation 2.1 yields the z-transform in εt-space

Q(z)
n∏

i=1

(z − λi) = βz−1[Q(z)
n∏

i=1

(1− λiz)−Q0]
n∏

i=1

Bλi
(z) + A(z)

= βz−1[Q(z)
n∏

i=1

(z − λi)−Q0

n∏

i=1

Bλi
(z)] + A(z)

Working out the algebra yields

Q(z)(z − β)
n∏

i=1

(z − λi) = zA(z)−Q0

n∏

i=1

Bλi
(z) (A.3)
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For |β| < 1, stationarity requires the Q(·) process to be analytic inside the unit circle, which will not be the case unless the process

vanishes at the poles z = {λi, β} for every i. For simplicity, we assume λi 6= λj for any i 6= j, however this restriction can be relaxed

[see, Whiteman (1983)]. Evaluating at z = λi gives the restriction on the A(·) process, A(λi) = 0 for all i, which corresponds to (3.7).

By Proposition 10.4 of Conway (1991), this restriction guarantees that the knowledge of the model does not reveal any additional

information than the posited price sequence. Finally, evaluating at z = β gives

Q0 =
βA(β)

∏n
i=1 Bλi

(β)
(A.4)

Substituting this into (A.3) yields (A.2).

A.2 Theorem 2 Given the price process follows (2.4) for n = 1, the conditional expectations for the informed and uninformed are

given by

E
I
t (pt+1) = L−1[(L− λ)Q(L) + λQ0]εt

E
U
t (pt+1) = L−1[(L− λ)Q(L) −Q0Bλ(L)]εt

Substituting the expectations into the equilibrium gives the z-transform in εt space as

(z − λ)Q(z) = βµz−1[(z − λ)Q(z) + λQ0] + β(1− µ)z−1[(z − λ)Q(z)−Q0Bλ(z)] +A(z) (A.5)

and re-arranging yields the following functional equation

(z − λ)(z − β)Q(z) = zA(z) + βQ0[µλ− (1− µ)Bλ(z)]

The Q(·) process will not be analytic unless the process vanishes at the poles z = {λ, β}. Evaluating at z = λ gives the restriction on

A(·), A(λ) = −βµQ0. Rearranging terms

(z − β)Q(z) =
1

z − λ

{
zA(z) + βQ0[µλ− (1 − µ)Bλ(z)]

}

=
1

z − λ

{
zA(z) + βQ0h(z)

}
(A.6)

where h(z) ≡ [µλ − (1 − µ)Bλ(z)]. Evaluating at z = β gives Q0 = −A(β)
h(β)

to ensure stability. This implies that the restriction on

A(·) is

A(λ) =
βµA(β)

h(β)

which is (3.13). Substituting this into (A.6) delivers (3.14).

A.3 Theorem 3 The first step in the proof is to obtain a representation for the signal vector (εit, pt) that can be used to formulate

the expectation at the agent’s level. The representation in terms of the innovation εt and the noise vit is




εit

pt



 =




σε σv

(L− λ) p (L) 0








ε̂t

v̂it



 = Γ(L)




ε̂t

v̂it



. (A.7)

where we have re-scaled the mapping so that the innovations ε̂t and the noise v̂it have unit variance and we have implicitly defined

p(L) = Q(L)σε. Let the fundamental representation be denoted by
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εit

pt



 = Γ∗(L)




w1

it

w2
it



. (A.8)

The lag polynomial matrix Γ∗(L) is given by (see Rondina (2009))

Γ∗(L) = Γ(L)WλBλ(L)

where

Wλ =
1

√
σ2
ε + σ2

v




σε −σv

σv σε



 and Bλ(L) =




1 0

0 1−λL
L−λ



 .

The vector of fundamental innovations is then given by




w1

it

w2
it



 = Bλ(L
−1)WT

λ




ε̂t

v̂it



 .

The expectation term for agent i is provided by the second row of the Wiener-Kolmogorov prediction formula applied to the funda-

mental representation (A.8), which is

E(pt+1|εti, pt) = [Γ∗
21(L) − Γ∗

21(0)]L
−1w1

it + [Γ∗
22(L) − Γ∗

22(0)]L
−1w2

it. (A.9)

It is straightforward to show that

Γ∗
21 (L) = (L− λ) p (L) σε√

σ2
ε+σ2

v

, Γ∗
21 (0) = −λp0

σε√
σ2
ε+σ2

v

Γ∗
22 (L) = − (1− λL) p (L) σv√

σ2
ε+σ2

v

, Γ∗
22 (0) = −p0

σv√
σ2
ε+σ2

v

.

Solving for the equilibrium price requires averaging across all the agents. In taking those averages, the idiosyncratic components of

the innovation (the noise) will be zero and one would just have two terms that are function only of the aggregate innovation, namely

∫ 1

0
w1

itdi = w1
t = σε√

σ2
ε+σ2

v

ε̂t and

∫ 1

0
w2

itdi = w2
t = − σv√

σ2
ε+σ2

v

L− λ

1− λL
ε̂t.

The average market expectation is then

Ē(pt+1) = [(L− λ)p(L) + λp0]L
−1 σ2

ε

σ2
ε+σ2

v

ε̂t + [(1 − λL)p(L) − p0]L
−1 σ2

v

σ2
ε+σ2

v

L− λ

1− λL
ε̂t. (A.10)

Now, if we let

µ ≡ σ2

ε

σ2
ε+σ2

v

,

and we substitute the functional form of the average expectations into the equilibrium equation for pt we would get

(L− λ)p(L) = βµL−1[(L− λ)p(L) + λp0] + β(1− µ)L−1[(L− λ)p(L) − p0
L− λ

1− λL
] +A(L)σε

which is equivalent to (A.5) since p(L) = Q(L)σε. The rest of the proof follows the same lines of Theorem 2. For the sake of

completeness, we need to show that, for the dispersed information case, the information conveyed by the knowledge of the model is

consistent with the information used in the expectational equation for agent i presented above. Such knowledge can be represented

by the variable

mit ≡ pt − βE
(
pt+1|εti, pt

)
= β

(

E (pt+1)− E
(
pt+1|εti, pt

)
)

+ st.

we then need to show that the fundamental representation of the signal vector (εit, pt,mit) is the same as the one we derived above.

Essentially, we need to show that the mapping between this enlarged vector of signal and the vector of structural innovation is still of
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rank 1 at L = λ. Using the result in Corollary 3 to write down the explicit form of the difference between the individual expectations

and the average market expectations, the mapping of interest is








εit

pt

mit








=








σε σv

(L− λ) p (L) 0

A (L) σε
σεσv

σ2
ε+σ2

v

(
1−λ2

1−λz

)

βp0











ε̂t

v̂it



 . (A.11)

It is straightforward to show that 2 of the 3 minors of this matrix have rank 1 at L = λ. For the third minor the condition for rank

1 is
σεσv

σ2
ε + σ2

v

(
1− λ2

1− λL

)

σεβp0 − A (L)σεσv = 0 at L = λ.

Using the fact that p0 = Q0σε one can immediately see that this condition is equivalent to (3.13). Therefore, in a dispersed information

equilibrium, it is always true that the enlarged information matrix (A.11) carries the same information as the information matrix

(A.7). This completes the proof of Theorem 3.

A.4 Proposition 1 Once the analytic form for Γ∗
21 (L) and Γ∗

22 (L) are known one can compute E(pt+j |εti, pt) for any j = 1, 2, ....

We show the j = 1 case here. Substitute Γ∗
21 (L) and Γ∗

22 (L) into (A.9) and collecting the terms that constitute (A.10), one gets

E(pt+1|εti, pt) = Ē(pt+1) +
σε

σ2
ε + σ2

v

L−1[(L− λ)p(L) + λp0 − (L − λ)p(L) + p0
L− λ

1− λL
]σv v̂it

= Ē(pt+1) +
σε

σ2
ε + σ2

v

L−1[λp0 + p0
L− λ

1− λL
]σv v̂it

= Ē(pt+1) + µQ0
1− λ2

1− λL
vit, (A.12)

which completes the proof for the first statement of the theorem for j = 1. The variance of the term µQ0
1−λ2

1−λL
vit can be readily

computed since the innovations vit are independently distributed with variance σ2
v .

A.5 Result in Example The proof follows immediately from restriction (3.13) in Theorem (2). Condition (R.1) is derived

by taking the limit of (3.13) as µ → 0. Substituting the parameters of the example, condition (3.13) with µ = 0 is given by

(1 + θλ)/(1 − ρλ) = 0. Clearly, |λ| < 1 will not be a possibility when θ ∈ (0, 1), hence (R.1). Notice that, because θ > 0, then λ < 0

from (3.13). It follows that λ = −1 will be the critical value to dictate whether an equilibrium with confounding dynamics exists or

not. Taking (3.13) and setting λ = −1 one obtains the expression for µ∗. For any µ ≥ µ∗ one has λ < −1, while for µ < µ∗ one has

0 > λ > −1 which is (R.2).
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B Online Appendix (Not for Publication)

B.1 Asset Demand Derivation and Market Clearing The ubiquitous equilibrium equation (2.1) can be derived from many

micro-founded models. It falls from the Lucas (1978) asset pricing model where agents are risk neutral and the shares are traded

cum-dividend. Alternatively, Futia (1981) envisioned the equilibrium arising from land speculation. He assumed a fixed quantity

of land and two types of traders–speculative and nonspeculative. Nonspeculative demand is assumed to arise from noise traders;

that is, traders whose demand is independent of current and past prices. This demand never exceeds total supply, and therefore the

difference between total supply and the nonspeculative demand is the market fundamental, st.

The demand for the speculative trader can be derived from a myopic investor who may choose to hold wealth in either a riskless

asset which earns the return r or a risky asset. The wealth of agent i evolves according to

wi,t+1 = zi,t(pt+1) + (wi,t − zi,tpt)(1 + r)

where pt is the price of the risky asset at time t and zi,t is the number of units of the risky asset held at time t.

The speculative agents seeks to maximize, by choice of zit, the expected value of a constant absolute risk aversion (CARA) utility

function

−Ei
t exp(−γwi,t+1), (B.1)

where γ is the risk aversion parameter, and Ei
t denotes the time t conditional expectation of agent i. All random variables in the

model are assumed to be distributed normally, so that (B.1) can be calculated from the (conditional) moment generating function

for the normal random variable −γwi,t+1. That is,

−Ei
t exp(−γwi,t+1) = − exp{−γEi

t(wi,t+1) + (1/2)γ2vt(wi,t+1)}

where vt denotes conditional variance. Note that vt(wt+1) = z2i,tvt(pt+1). Stationarity implies the conditional variance term will

be a constant; thus write vt(wi,t+1) ≡ z2i,tδ. The agent’s demand function for the risky asset follows from the first-order necessary

conditions for maximization and is given by

zi,t =
1

γδ
[Ei

tpt+1 − αpt] (B.2)

where α ≡ 1 + r > 1.

Market clearing equates supply and demand, which yields

pt = α−1
∫ 1

0
Ei

tpt+1di− α−1γδst (B.3)

This relates to (2.1) by α−1 = β and one can think of st in (2.1) as being scaled by the risk aversion coefficient, γ, the opportunity

cost associated with investing in the risky asset α, and the conditional variance term, δ. Clearly, δ is an endogenous object, but we

abstract from this complication to make the analysis as transparent as possible.

B.2 Equivalence between Confounding Dynamics and Standard Signal Extraction It is helpful to establish a connection

between the information contained in ε̃t when |λ| < 1 and a signal extraction problem cast in a more familiar setting. Suppose that

agents observe an infinite history of the signal

zt = εt + ηt, (B.4)
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where ηt
iid∼ N

(
0, σ2

η

)
. The optimal prediction is well known and given by E(εt|zt) = τzt, where τ is the relative weight given to the

signal, τ = σ2
ε/(σ

2
ε + σ2

η). Let

xt = εt + θεt−1, (B.5)

Proposition 5. The information content of (B.5) is equivalent to (B.4), where equivalence is defined as equality of variance of the

forecast error conditioned on the infinite history of the observed signal, i.e.

E

[(
εt − E|θ|>1

(
εt|xt

))2
]

= E

[(
εt − E

(
εt|zt

))2
]

,

when

θ2 =
1

τ
(B.6)

and where τ = σ2
ε/(σ

2
ε + σ2

η).

Proof. We need to show that the representations (B.5) and (B.4) are equivalent in terms of unconditional forecast error variance

E

[(
εt − E

(
εt|xt

))2
]

= E

[(
εt − E

(
εt|zt

))2
]

(B.7)

when θ2 = 1 + σ2
η/σ

2
ε .

The optimal forecast E[εt|zt] is given by weighting zt according to the relative variance of ε, E(εt|zt) =
( σ2

ε

σ2
ε+σ2

η

)
zt and therefore,

E

[(
εt − E

(
εt|zt

))2
]

=
σ2
εσ

2
η

σ2
ε + σ2

η

(B.8)

Calculating the optimal expectation for εt conditional on xt requires more careful treatment. While there are many moving average

representations for xt that deliver the same observed autocorrelation structure (which is essentially all the information contained

in xt), there exists only one that minimizes the variance of the forecast error in the LHS of (B.7). We first need to take the

conditional expectation E[εt|xt]. This expectation is found by deriving the fundamental moving-average representation and using the

Wiener-Kolmogorov optimal prediction formula. The fundamental representation is derived through the use of Blaschke factors

xt = (1 + θL)

(
L+ θ

1 + θL

)(
1 + θL

L+ θ

)

εt = (L+ θ)ε̃t (B.9)

where ε̃t is defined as in (2.8). Given that (B.9) is an invertible representation then the Hilbert space spanned by current and past

xt is equivalent to the space spanned by current and past ε̃t. This implies

E(εt|ε̃t) = E(εt|xt) (B.10)

To show (B.10) notice that (B.9) can be written as

εt = C(L)ε̃t =

[
(θ−1 + L−1)

1− (−θL)−1

]

ε̃t (B.11)

Thus, while (B.9) does not have an invertible representation in current and past ε̃ it does have a valid expansion in current and future

ε̃. Notice that

εt = (θ−1 + L−1)
∞∑

j=0

(−θ)−j ε̃t+j = (θ−1 + L−1)[ε̃t + (−θ)−1ε̃t+1 + · · · ]

The optimal prediction formula yields

E(εt|ε̃t) =
[
C(L)

]

+
ε̃t = θ−1ε̃t =

[
1

θ2(1 + θ−1L)

]

xt (B.12)
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We must now calculate

E

[(
εt − E

(
εt|xt

))2
]

=E
(
ε2t

)
+ E

(
εt|xt

)2 − 2E
(
εtE

(
εt|xt

))
(B.13)

=σ2
ε +

1

θ2
E(ε̃2t ) −

2

θ
E(εt ε̃t) (B.14)

Notice that the squared modulo of the Blaschke factor is equal to 1,
(
1+θz
z+θ

)(
1+θz−1

z−1+θ

)
= 1, and therefore E(ε̃2) = σ2

ε .

To calculate E(εtε̃t) we use complex integration and the theory of the residue calculus,

E(εtε̃t) =
σ2
ε

2πi

∮
1 + θz

z + θ

dz

z
= σ2

ε

[

lim
z→0

1 + θz

z + θ

]

=
σ2
ε

θ
. (B.15)

Equations (B.14) and (B.15) give the desired result

E

[(
εt −E

(
εt|xt

))2
]

=

(

1− 1

θ2

)

σ2
ε

To substantiate the claim in the main text one needs just to recognize that by setting λ = 1/θ the result stated follows immediately.

B.3 Full Information Price and Theorem 1 In this section we show that the full information price (3.4) is not an Information

Equilibrium under the assumption of Theorem 1. We do this for the case of st = εt + θεt−1, with |θ| > 1, in order to keep notation

at a minimum. The exogenous information is specified as in Theorem 1, namely U i
t = {0} ∀i. Plugging the functional form for the

exogenous supply in (3.4) we have pt = (1 + θβ) εt + θεt−1 (C.1). We show that this price cannot possibly be consistent with our

definition of an Information Equilibrium. The argument is by contradiction. Suppose that (C.1) is indeed an Information Equilibrium

as defined in 2.1.1 under the assumption that U i
t = {0} ∀i. First, because expectations are symmetric across agents, information from

the model will always reveal the st process. The information set in equilibrium is therefore given by the bivariate process for (pt, st).

For the endogenous information to be consistent with the equilibrium equation we need to show that there exists a square-summable

linear combination of the observable variables that corresponds to the expectations of future price in equilibrium as implied by the

closed form solution of the model. The latter is E[pt+1|Mt(p) ∨ Vt(p)] = E
(
θεt|st, pt

)
= θεt, since no information about the future

εt+1 is available in the information set, other than the unconditional distribution. The linear combination of observable variables

that deliver the above expectation is E
(
θεt|st, pt

)
= θst − θ 1

β
(pt−1 − st−1). This relationship has to hold in equilibrium and when

substituted into the equilibrium equation results in pt = −θpt−1 + (1 + θβ) st + θst−1 (C.2). If pt defined by (C.1) above is to

be an Information Equilibrium, then it must satisfy the dynamic equation (C.2). Notice that this equation contains the explosive

autoregressive root |θ| > 1. Remember that 2.1.1 requires the price process to be stationary: how can (C.2) be reconciled with

(C.1)? This is possible if the explosive root happens to exactly cancel with the moving average root of st. In order for this to be

the case, U i
t = {0} ∀i must be violated, which results in the contradiction that we were looking for. To see why the exogenous

information assumption must be violated, suppose that the asset market takes place at time 0. The equilibrium price for the asset

market a period earlier, p−1, is not defined. What would then (p−1 − s−1) be? To ensure that the unstable root exactly cancels

with the moving average root it must be that (p−1 − s−1) = βε0 (C.3). Any other assumption will result in an explosive path

for the price process. However, because p−1 is not well defined, assuming (C.3) is essentially equivalent to exogenously providing

the agents with the knowledge of the initial state ε0, which violates the assumption that U i
t = {0} ∀i. Therefore, the equilibrium

(C.1) is not an information equilibrium under the assumptions of Theorem 1. Given the above argument one might think that

the same contradiction applies to the IE characterized in Theorem 1. This is not the case. One can in fact show that, under the

supply process assumed above, the dynamic equation of the IE price characterized by Theorem 1 in terms of observables is now

pt = −(1/θ)pt−1 + (θ + β)/(θ)st + (1/θ)st−1. Notice that the autoregressive root in this equation implies stationarity, and so there

is no need for it to cancel with the moving average root of st. The implication is that there is no need for a precise initial condition
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on p−1 to ensure stationarity, which means that U i
t = {0} ∀i does not need to be violated and the contradiction argument does not

go through.

B.4 Proofs of Propositions for Section 5

B.4.1 Corollary 2 If we redefine the fundamentals process for the informed as

fI
t = st − (1 − µ)β[pt+1 −EU

t pt+1] = A(L)εt − (1− µ)β[(L− λ)Q(L)L−1 − L−1[(L− λ)Q(L) −Q0Bλ(L)]

= A(L)εt − (1 − µ)βL−1Q0Bλ(L) (B.16)

and solve the model

pt = βEI
t pt+1 + fI

t (B.17)

using the z-transform methodology described in the paper, then by guessing that pt = π(L)εt, we have

π(z) = βz−1[π(z)− π0] + A(z)− z−1Bλ(z)(1 − µ)βQ0

(z − β)π(z) = zA(z)−Bλ(z)(1 − µ)βQ0 − βπ0 (B.18)

Evaluating the RHS at β, A(β) −Bλ(β)(1 − µ)Q0 = π0.

The equilibrium is

pt =
1

L− β

(

LMI(L) − βMI(β)

)

=
1

L− β

(

LA(L)− (1− µ)βQ0Bλ(L)− βA(β) + (1− µ)βQ0Bλ(β)

)

=
1

L− β

(

LA(L)− βA(β)− (1− µ)βQ0(Bλ(L) −Bλ(β))

)

(B.19)

Recall that Q0 = −A(β)/h(β), substituting this in to (B.19) and a bit of algebra delivers the equilibrium (3.14).

For the uninformed, we have a guess of pt = π̃(L)ε̃t, therefore the model is solved in ε̃ space

pt − βE[pt+1|pt, EI
t ] = fU

t

π(L) = βL−1[π(L)− π0] + (1− λL)

(
A(L) + L−1µβλQ0

L− λ

)

(B.20)

The equilibrium is

π(L) =
1

L− β

(
(1− λL)(LA(L) + µβλQ0)

L− λ
− (1− λβ)(βA(β) + µβλQ0)

β − λ

)

Bλ(L)εt (B.21)

Recall that Q0 = −A(β)/h(β), substituting this in to (B.21) and a bit of algebra delivers the equilibrium (3.14).

B.4.2 Proposition 2 Write the equilibrium price as pt = (L − λ)Q(L)εt where |λ| < 1 and Q(L) satisfies (3.14). For j = 1, the

time t+ 1 average expectation of the price at t+ 2 is given by

Et+1pt+2 = µEI
t+1pt+2 + (1− µ)EU

t+1pt+2

= L−1(L− λ)Q(L)εt+1 + L−1Q0[µλ− (1− µ)Bλ(L)]εt+1

= pt+2 + L−1Q0[µλ− (1 − µ)Bλ(L)]εt+1 (B.22)
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The informed agent’s time t expectation of the average expectation at t+ 1 is

E
I
t Et+1pt+2 = E

I
t pt+2 + µλQ0E

I
t εt+2 −Q0(1− µ)EI

t Bλ(L)εt+2. (B.23)

Clearly E
I
t εt+2 = 0, whereas the expectation in the last term of (B.23) is given by

E
I
t Bλ(L)εt+2 = L−2{Bλ(L)− Bλ(0) −Bλ(1)L}εt (B.24)

where the notation Bλ(j) stands for “the sum of the coefficients of Lj ”. If we write

Bλ(L) = (L − λ)(1 + λL+ λ2L2 + λ3L3 + · · · ).

it is straightforward to show that Bλ(0) = −λ and Bλ(1) = (1 − λ)(1 + λ) = (1− λ2), from which follows

Bλ(L)− Bλ(0) −Bλ(1)L =
L− λ

1− λL
+ λ− (1− λ2)L =

λ(1− λ2)L2

1− λL
.

Putting things together, the informed agent’s expectation of the average expectation is

E
I
tEt+1pt+2 = E

I
t pt+2 − (1 − µ)Q0λ

(
1− λ2

1− λL

)

εt (B.25)

For the uninformed, we need to evaluate the following expectation

E
U
t pt+1 = (1− µ)βEU

t pt+2 + E
U
t [µβEI

t+1pt+2 + st+1] (B.26)

Writing out the term in brackets gives

µβEI
t+1pt+2 + st+1 = µβL−1[(L− λ)Q(L) + λQ0]εt+1 +A(L)εt+1

= µβ(L − λ)Q(L)εt+2 +G(L)εt+2

= µβpt+2 +G(L)εt+2

where G(L)εt+2 = [µβλQ0 + LA(L)]εt+2. Note that the existence condition implies that G(L) must vanish at L = λ. Therefore,

we may rewrite G(L)εt+2 as (L − λ)Ĝ(L)εt+2, where Ĝ(L) has no zeros inside the unit circle. This implies that G0 = −Ĝ0λ,

Gi = Ĝi−1 − λĜi, for i = 1, ... and therefore Ĝ0 = −µβQ0, Ĝ1 = (Ĝ0 −G1)/λ = −(µβQ0 +A0)/λ

Evaluating (B.26) yields

E
U
t pt+1 = βEU

t pt+2 + E
U
t (L− λ)Ĝ(L)εt+2

= βEU
t pt+2 + L−2[(L− λ)Ĝ(L) − {Ĝ0 + (Ĝ1 − λĜ0)L}Bλ(L)]εt

= βEU
t pt+2 + st+1 +

A0

λ
Bλ(L)εt+1 +

(
µβQ0(1 − λ2)

λ(1 − λL)

)

εt (B.27)

Note that if µ = 0 or Q0 = 0, then the expectation becomes

E
U
t pt+1 = βEU

t pt+2 + st+1 − A0

λ
Bλ(L)εt+1

= βEU
t pt+2 + E

U
t st+1 (B.28)

(B.28) would hold if the uninformed agents ignored the information coming from the informed agent’s forecast errors. Therefore the

difference between (B.27) and (B.28) must be due to HOBs. This difference is given by the last term in (B.27).
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B.4.3 Proposition 3, No HOBs Equilibrium If we were to assume that informed agents acted irrationally and ignored information

coming from the model, then the informed would not form HOBs and their expectations would satisfy the law of iterated expectations,

EI
t (pt+1) = βEI

t (pt+2) + EI
t st+1 (B.29)

That is, the higher-order beliefs component (1− µ)(1 − λ2)

(

Q0λ
1−λL

)

εt (which was derived in the proof of Proposition 2) is removed

from the informed agents’ expectation.

Assuming |λ| < 1 and pt = (L− λ)Q(L)εt, then

EI
t (pt+1) = βL−2[(L− λ)Q(L) + λQ0 − LQ0 + LλQ1]εt + L−1[A(L)−A0]εt

and equilibrium in z-transforms can be written as

(z − λ)(z − β)(z + µβ)Q(z) = z(z + µβ)A(z) − zµβA0 + βG(z)Q0 + µβ2λzQ1 (B.30)

where G(z) = µβ(λ− z)− (1 − µ)zBλ(z). To remove the pole at z = −µβ, Q1 must satisfy

(µβ)2A0 + βG(−µβ)Q0 − µ2β3λQ1 = 0

substituting this into (B.30) gives

(z − λ)(z − β)Q(z) =

{

zA(z) +
β

1 + µλβ
Q0g(z)

}

where g(z) = µλ(1 + λβ)− (1− µ)Bλ(z). Removing the poles at λ and β implies the restrictions

A(λ) +
βQ0µ(1 + λβ)

1 + µλβ
= 0, Q0 =

−A(β)(1 + µλβ)

g(β)

This delivers the equilibrium conditions

pt =
1

L− β

(

LA(L)− βA(β)
g(L)

g(β)

)

εt (B.31)

and A(·) must satisfy

A(λ) =
βµA(β)(1 + λβ)

g(β)
(B.32)

The equilibrium conditions (B.31) and (B.32) is the boundedly rational equilibrium assuming first-order higher order beliefs are

removed. To remove the first- and second-order higher-order beliefs requires the informed agents’ expectation to be given by

EI
t pt+1 = β2EI

t (pt+3) +EI
t st+1 + βEI

t (st+2)

= β2L−3[(L− λ)Q(L) + λQ0 − (Q0 − λQ1)L− (Q1 − λQ2)L
2]εt

+ L−1[A(L)− A0]εt + βL−2[A(L)− A0 − A1L]εt (B.33)

This assumes the law of iterated expectations applies to time t+ 1 and t + 2 for the informed agents.

Substituting this expression into equilibrium yields

(z − λ)Q(z) = βµ{β2z−3[(z − λ)Q(z) + λQ0 − (Q0 − λQ1)z − (Q1 − λQ2)z
2]

+ z−1[A(z)−A0] + βz−2[A(z)− A0 − A1z]}

+ β(1− µ)z−1[(z − λ)Q(z)−Q0Bλ(z)] +A(z)

42



Rondina & Walker: Information Equilibria in Dynamic Economies

Some tedious algebra delivers

(z − λ)(z − β)(z2 + µβz + µβ2)Q(z) = µβ3[λQ0 − (Q0 − λQ1)z − (Q1 − λQ2)z
2]

+ µβz2[A(z)−A0] + µβ2z[A(z)−A0 −A1z]

− β(1 − µ)z2[Q0Bλ(z)] + z3A(z)

= (z2 + µβz + µβ2)zA(z) + βJ(z)Q0 + µβ3z(λ− z)Q1

+ µβ3λz2Q2 − z(µβ2 − µβz)A0 − µβ2z2A1

where J(z) = µβ2(λ − z)− z2(1− µ)Bλ(z).

Term hitting Q(z) does not factor but it is easy to show that both zeros are inside unit circle. Write the zeros as (z2+µβz+µβ2) =

(z − ξ1)(z − ξ2).

(z − λ)(z − β)(z − ξ1)(z − ξ2)Q(z) = (z − ξ1)(z − ξ2)zA(z) + βJ(z)Q0 + µβ3z(λ− z)Q1

+ µβ3λz2Q2 − z(µβ2 − µβz)A0 − µβ2z2A1

Using Q2 and Q1 to remove z = {ξ1, ξ2} gives two restrictions and two unknowns.

βJ(ξ1)Q0 + µβ3ξ1(λ− ξ1)Q1 + µβ3λξ21Q2 − ξ1(µβ
2 − µβξ1)A0 − µβ2ξ21A1 = 0

βJ(ξ2)Q0 + µβ3ξ2(λ− ξ2)Q1 + µβ3λξ22Q2 − ξ2(µβ
2 − µβξ2)A0 − µβ2ξ22A1 = 0

Substituting in these values, dividing by (z − ξ1)(z − ξ2) and tedious algebra delivers

(z − λ)(z − β)Q(z) = zA(z) +
β

κ
Q0j(z) (B.34)

where j(z) = µλ(1 + λβ + (λβ)2)− (1− µ)Bλ(z), and κ is a complicated constant of ξ1, ξ2, λ, β and µ. To remove the pole at z = λ,

A(·) must satisfyA(λ) + βQ0µ(1+λβ+(λβ)2)
κ

= 0. To remove the pole at z = β, Q0 must satisfy Q0 = −A(β)κ
j(β)

.

Substituting in Q0 delivers the result

pt =
1

L− β

(

LA(L)− βA(β)
j(L)

j(β)

)

εt (B.35)

where

j(L) = µλ(1 + λβ + (λβ)2)− (1− µ)Bλ(L) (B.36)

and A(·) must satisfy

A(λ) =
βµA(β)(1 + λβ + (λβ)2)

j(β)
(B.37)

By induction, we are converging to

pt =
1

L− β

(

LA(L)− βA(β)
k(L)

k(β)

)

εt (B.38)

where

k(L) = µλ(
n∑

j=0

(λβ)j )− (1 − µ)Bλ(L) (B.39)
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and A(·) must satisfy

A(λ) =
βµA(β)(

∑n
j=0(λβ)

j)

k(β)
(B.40)

Letting n → ∞ delivers the desired result.

Removing Both HOBs Corollary 2 shows that removing both the informed and uninformed HOBs will lead to an equilibrium in

which each agent only forecasts the sum of future st’s. The boundedly-rational equilibrium in this setup will therefore be a convex

combination of the fully informed equilibrium given by (3.4) and the fully uninformed equilibrium of Theorem 1.

B.4.4 Corollary 3 Given the ARMA(1,1) specification, the roots determining λ for the information equilibrium are given by the

following quadratic,

f(λ) = βµθ(1 − ρβ)λ2 + [βµ(1 + θβ)− θ(1− ρβ)]λ− (1 + βµθ) + ρβ(1 − µ) = 0 (B.41)

If we remove the higher-order beliefs of the informed, the

g(λ̄) = θ(1 − ρβ)λ̄ + 1 + βµθ − ρβ(1 − µ) = 0 (B.42)

which gives

λ̄ =
−(1 + µθβ) + ρβ(1− µ)

θ(1 − ρβ)
(B.43)

Removing both the informed and uniformed’s HOBs gives

h(λ∗) = θ(1− ρβ)λ∗2 + [1− ρβ + βρµ(1 + θβ)]λ∗ − µβ(1 + θβ) = 0 (B.44)

The proof consists of two parts:

We will first show that |λ| > |λ̄| for all λ ∈ (−1, 1).

From Result IE (figure 3), an IE with |λ| < 1 requires θ > 1. Notice also that θ > 0 implies the quadratic (B.41) is convex and

f(λ)
∣
∣
λ=0

= ρβ − 1 − βµ(θ + ρ) < 0. To prove the result we show that evaluating (B.41) at the root of (B.42) delivers a negative

value. Evaluating (B.41) at λ̄ yields

β2µ[1 − ρβ + µβ(ρ + θ)](ρ+ θ)(µ− 1)

θ(1− ρβ)
< 0 (B.45)

which proves |λ| > |λ̄|.

We now prove that |λ̄| > |λ∗|. Removing all HOBs could yield an equilibrium with two roots inside the unit circle. The product

of the two roots of (B.44) is −µβ(1 + θβ)/(θ(1 − ρβ)), which is always less than (B.43) in absolute value when

β{µ[1− θ(1− β)] + (1 − µ)ρ} < 1 (B.46)

which holds given the restrictions on the parameter values.

B.4.5 Proposition 4 The notation of the proof is that of Theorem 3 unless otherwise specified. We begin by noticing that

EitEt+1pt+2 = µEitE
I
t+1pt+2 + (1 − µ)EitE

U
t+1pt+2. (B.47)

From the hierarchical equilibrium case we know that EU
t+1pt+2 = EI

t+1pt+2 − Q0
1−λ2

1−λL
εt+1. We also notice that, because the

information set of an arbitrary agent i is strictly smaller than the information set of an informed agent of the hierarchical equilibrium
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and because the law of iterated expectations holds at the single agent level, we have EitEit+1E
I
t+1pt+2 = Eitpt+2. Because of the

second property we also have that EitE
U
t+1pt+2 = EitEit+1E

U
t+1pt+2. Therefore

EitEt+1pt+2 = µEitpt+2 + (1 − µ)Eitpt+2 − (1 − µ)Q0Eit
1− λ2

1− λL
εt+1. (B.48)

The crucial step in the proof is then to show that the expectation in the last term is non-zero. In order to do so we first notice that

L−λ
1−λL

εt+2 = 1−λ2

1−λL
εt+1 − λεt+2 and so

E

(
1− λ2

1− λL
εt+1|εti, pt

)

= E

(
L− λ

1− λL
εt+2|εti, pt

)

. (B.49)

Then, the crucial step in the proof is to show that

E

(
L− λ

1− λL
εt+2|εti, pt

)

= µλ

(
1− λ2

)

1− λL
εit. (B.50)

where µ ≡ σ2

ε

σ2
ε+σ2

v

. Remember that we defined

ε̃t = B(L)εt. (B.51)

To ease notation, let ε̃ = y, then we look for E
(
yt+2|εti, pt

)
= π1 (L) εit+π2 (L) pt. From Theorem 1 in Rondina (2009) we know that

[

π1 (L) π2 (L)
]

=

[

L−2gy,(ε,p) (L)
(

Γ∗(L−1)T
)−1

]

+

Γ∗(L)−1 (B.52)

where Γ∗(L) and
(
w1

it, w
2
it

)
are defined in (A.8) and gy,(ε,p) (L) is the variance-covariance generating function between the variable

to be predicted and the variables in the information set. In our case we have that

gy,(ε,p) (L) =
[

B (L)σ2
ε B (L)

(
L−1 − λ

)
p
(
L−1

)
σε

]

.

Plugging in the explicit forms and solving out the algebra

L−2gy,(ε,p) (L)
(

Γ∗(L−1)T
)−1

= 1√
σ2
ε+σ2

v

[

L−2 L−λ
1−λL

σ2
ε + L−2

(
L−1 − λ

)
p
(
L−1

) σ2

ε

σv
−L−2 σ2

ε+σ2

v

σv
σε

]

.

Applying the annihilator operator to the RHS we see that the second term of the vector goes to zero. For the first term, the assumption

that p(L) is analytic inside the unit circle ensures that L−2
(
L−1 − λ

)
p
(
L−1

)
does not contain any term in positive power of L. We

are then left with
[

L−2 L− λ

1− λL

]

+

=
λ
(
1− λ2

)

1− λL
, (B.53)

Summarizing we have shown that

[ π1(L) π2(L) ] = 1√
σ2
ε+σ2

v

[ λ(1−λ2)
1−λL

σ2
ε 0 ]Γ∗(L)−1.

Notice that

Γ∗(L)−1[
εit

pt
] =




w1

it

w2
it





so that

E
(
yt+2|εti, pt

)
=

[

π1 (L) π2 (L)
]



εit

pt



 = 1√
σ2
ε+σ2

v

λ
(
1− λ2

)

1− λL
σ2
εw

1
it.

From the proof of Theorem 3 we know that w1
it = 1√

σ2
ε+σ2

v

(εt + vit), which, once substituted in the above expression, completes
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the proof of statement (i). The proof can be generalized to expectations of order higher than 1. For statement (ii) the proof follows

exactly the proof of Proposition 2 since it concerns only aggregate variables, which we know from the proof of Theorem 3 follow the

same patter as those of the hierarchical case.
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