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Abstract

Some empirical results are more likely to be published than others. Such

selective publication leads to biased estimators and distorted inference. This pa-

per proposes two approaches for identifying the conditional probability of publi-

cation as a function of a study’s results, the first based on systematic replication

studies and the second based on meta-studies. For known conditional publi-

cation probabilities, we propose median-unbiased estimators and associated

confidence sets that correct for selective publication. We apply our methods to

recent large-scale replication studies in experimental economics and psychology,

and to meta-studies of the effects of minimum wages and de-worming programs.
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1 Introduction

Despite following the same protocols, replications of published experiments frequently

find effects of smaller magnitude or opposite sign than those in the initial studies (cf.
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Open Science Collaboration, 2015; Camerer et al., 2016). One leading explanation for

replication failure is publication bias (cf. Ioannidis, 2005, 2008; McCrary et al., 2016;

Christensen and Miguel, 2016). Journal editors and referees may be more likely to

publish results that are statistically significant, results that confirm some prior belief

or, conversely, results that are surprising. Researchers in turn face strong incentives

to select which findings to write up and submit to journals based on the likelihood

of ultimate publication. Together, these forms of selectivity lead to severe bias in

published estimates and confidence sets.

This paper provides, to the best of our knowledge, the first nonparametric identifi-

cation results for the conditional publication probability as a function of the empirical

results of a study. Once the conditional publication probability is known, we derive

bias-corrected estimators and confidence sets. Finally, we apply the proposed meth-

ods to several empirical literatures.

Identification of publication bias Section 3 considers two approaches to iden-

tification. The first uses data from systematic replications of a collection of original

studies, each of which applies the same experimental protocol to a new sample from

the same population as the corresponding original study. Absent selectivity, the

joint distribution of initial and replication estimates is symmetric. Asymmetries in

this joint distribution nonparametrically identify conditional publication probabili-

ties, assuming the latter only depend on the initial estimate. The second approach

uses data from meta-studies. Absent selectivity, the distribution of estimates for high

variance studies is a noisier version of the distribution for low variance studies. Devi-

ations from this prediction identify conditional publication probabilities if we assume

independence between the variance and true effect size across studies.

Correcting for publication bias Section 4 discusses the consequences of selec-

tive publication for statistical inference. For known selectivity, we propose median

unbiased estimators and valid confidence sets for scalar parameters. These results

allow valid inference on the parameters of each study, rather than merely on average

effects across a given literature. The supplement extends these results and derives

optimal quantile-unbiased estimators for scalar parameters of interest in the presence

of nuisance parameters, as well as results on Bayesian inference.
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Applications Section 5 applies the theory developed in this paper to four empir-

ical literatures. We first use data from the experimental economics and psychology

replication studies of Camerer et al. (2016) and Open Science Collaboration (2015),

respectively. Estimates based on our replication approach suggest that results sig-

nificant at the 5% level are 10 to 50 times more likely to be published than are

insignificant results, providing strong evidence of selectivity. Estimation based on

our meta-study approach, which uses only the originally published results, yields

similar conclusions.

We then consider two settings where no replication estimates are available. The

first is the literature on the impact of minimum wages on employment. Estimates

based on data from the meta-study by Wolfson and Belman (2015) suggest that results

finding a negative and significant effect of minimum wages on employment are four

times more likely to be included in this meta-study than results finding a positive and

significant effect. Second, we consider the literature on the impact of mass deworming

on child body weight. Estimates based on data from the meta-study by Croke et al.

(2016) find that results appear more likely to be included in this meta-study when

they do not find a significant impact of deworming, though we cannot reject the null

hypothesis of no selectivity.

Literature There is a large literature on publication bias; good reviews are provided

by Rothstein et al. (2006) and Christensen and Miguel (2016). We will discuss some

of the approaches from this literature in the context of our framework below. One

popular method, used in e.g. Card and Krueger (1995) and Egger et al. (1997),

regresses z-statistics on the inverse of the standard error and takes a non-zero intercept

as evidence of publication bias. Our approach using meta-studies builds on related

intuitions. Another approach in the literature considers the distribution of p-values or

z-statistics across studies, and takes bunching, discontinuities, or non-monotonicity

in this distribution as indication of selectivity or estimate inflation (cf. De Long and

Lang, 1992; Brodeur et al., 2016). Other approaches include the “trim and fill”

method (Duval and Tweedie, 2000) and parametric selection models (Iyengar and

Greenhouse, 1988; Hedges, 1992). Some precedent for our proposed corrections to

inference can be found in McCrary et al. (2016), while the parametric models in our

applications are related to those of Hedges (1992). Other recent work on publication

bias includes Chen and Zimmermann (2017) and Furukawa (2017).
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Road map Section 2 introduces the setting we consider, as well as a running ex-

ample. Section 3 presents our main identification results, and discusses approaches

from the literature. Section 4 discusses bias-corrected estimators and confidence sets,

assuming conditional publication probabilities are known. Section 5 presents results

for our empirical applications. All proofs are given in the supplement, which also

contains details of our applications, additional empirical and theoretical results, and

a stylized model of optimal publication decisions.

Notation Throughout the paper, upper case letters denote random variables and

lower case letters denote realizations. The latent parameter governing the distribution

of observables for a given study is Θ. We condition on Θ whenever frequentist objects

are considered, while unconditional expectations, probabilities, and densities integrate

over the population distribution of Θ across studies. Estimates are denoted by X,

while estimates normalized by their standard deviation are denoted by Z. Latent

studies (published or unpublished) are indexed by i and marked by a superscript

∗, while published studies are indexed by j. Subscripts i and j will sometimes be

omitted when clear from context.

2 Setting

Throughout this paper we consider variants of the following data generating process.

Within an empirical literature of interest, there is a population of latent studies i.

The true effect Θ∗i in study i is drawn from distribution µ. Thus, different latent

studies may estimate different true parameters. The case where all latent studies

estimate the same parameter is nested by taking the distribution µ to be degenerate.

Conditional on the true effect, the result X∗i in latent study i is drawn from a

known continuous distribution with density fX∗|Θ∗ . We take both X∗i and Θ∗i to be

scalar unless otherwise noted. Studies are published if Di = 1, which occurs with

probability p(X∗i ), and we observe the truncated sample of published studies (that is,

we observe X∗i if and only if Di = 1). Publication decisions reflect both researcher

and journal decisions; we do not attempt to disentangle the two. Let Ij denote the

index i corresponding to the jth published study. We obtain the following model:

Definition 1 (Truncated sampling process)

Consider the following data generating process for latent (unobserved) variables.
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(Θ∗i , X
∗
i , Di) are jointly i.i.d. across i, with

Θ∗i ∼ µ

X∗i |Θ∗i ∼ fX∗|Θ∗(x|Θ∗i )

Di|X∗i ,Θ∗i ∼ Ber(p(X∗i ))

Let I0 = 0, Ij = min{i : Di = 1, i > Ij−1} and Θj = Θ∗Ij . We observe i.i.d. draws

Xj = X∗Ij .

Section 3 considers extensions of this model that allow us to identify and estimate

p(·). Section 4 assumes p(·) is known, which allows us to perform inference on Θj

when Xj is observed. Of central importance throughout is the likelihood of observing

Xj given Θj:

Lemma 1 (Truncated likelihood)

The truncated sampling process of Definition 1 implies the following likelihood:

fX|Θ (x|θ) = fX∗|Θ∗,D(x|θ, 1) =
p (x)

E [p (X∗i ) |Θ∗i = θ]
fX∗|Θ∗ (x|θ) . (1)

For fixed θ, selective publication reweights the distribution of published results by

p(·). As we consider different values of θ for fixed x, by contrast, the likelihood is scaled

by the publication probability for a latent study with true effect θ, E [p (X∗i ) |Θ∗i = θ] .

Study-level covariates The model of Definition 1, and in particular independence

between publication decisions and Θ∗ given X∗, may only hold conditional on some

set of observable study characteristics. For example, journals may treat studies on

particular topics, or using particular research designs, differently. Likewise, the dis-

tribution of true effects may differ across these categories. In such cases, we can

condition our analysis on these variables and apply our approach separately to pa-

pers with different topics, research designs, and so on. For simplicity of notation,

however, we suppress such additional conditioning.

5



2.1 An illustrative example

To illustrate our setting we consider a simple example to which we will return through-

out the paper. A journal receives a stream of studies i = 1, 2, . . . reporting experimen-

tal estimates Z∗i ∼ N(Θ∗i , 1) of treatment effects Θ∗i , where each experiment examines

a different treatment. We denote the estimates by Z∗ rather than X∗ here to empha-

size that they can be interpreted as z-statistics. Denote the distribution of treatment

effects across latent studies by µ. Normality is in many cases a plausible asymptotic

approximation; Var(Z∗|Θ∗) = 1 is a scale normalization. The journal publishes stud-

ies with Z∗i in the interval [−1.96, 1.96] with probability p(Z∗i ) = .1, while results

outside this interval are published with probability p(Z∗i ) = 1. These values corre-

spond to our estimates based on the economics lab experiments data of Camerer et al.

(2016) discussed in Section 5.1 below. This publication policy reflects a preference

for “significant results,” where a two-sided z-test rejects the null hypothesis Θ∗ = 0

at the 5% level. This journal is ten times more likely to publish significant results

than insignificant ones. This selectivity results in publication bias: published results,

whose distribution is given by Lemma 1 above, tend to over-estimate the magnitude

of the treatment effect. Published confidence intervals under-cover the true param-

eter value for small values of Θ and over-cover for somewhat larger values. This is

demonstrated by Figure 1, which plots the median bias, med(Θ̂j|Θj = θ)− θ, of the

usual estimator Θ̂j = Zj, as well as the coverage of the conventional 95% confidence

interval [Zj − 1.96, Zj + 1.96].

2.2 Alternative data generating processes

To clarify the implications of our model, we contrast it with two alternative data

generating processes.

Observability The setup of Definition 1 assumes that we only observe the draws

X∗ for which D = 1. Alternative assumptions about observability might be ap-

propriate, however, if additional information is available. First, we might know of

the existence of unpublished studies, for example from experimental preregistrations,

without observing their results X∗. In this case, called censoring, we observe i.i.d.
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Figure 1: The left panel plots the median bias of the conventional estimator Θ̂j = Zj ,
while the right panel plots the true coverage of the conventional 95% confidence interval,
both for p(z) = .1 + .9 · 1(|Z| > 1.96).

draws of (Y,D), where Y = D ·X∗. The corresponding censored likelihood is

fY,D|Θ∗(x, d|θ∗) = d · p(x) · fX∗|Θ∗ (x|θ) + (1− d) · (1− E[Di|Θ∗i = θ∗]).

Second, we might additionally observe the results X∗ from unpublished working pa-

pers as in Franco et al. (2014). The likelihood in this case is

fX∗,D|Θ∗(x, d|θ) = p(x)d(1− p(x))1−d · fX∗|Θ∗(x|θ).

Even under these alternative observability assumptions, the truncated likelihood (1)

arises as a limited information (conditional) likelihood, so identification and inference

results based on this likelihood remain valid. Specifically, this likelihood conditions on

publication decisions in the model with censoring, and on both publication decisions

and unpublished results in the model with X∗ observed. Thus, while additional

information about the existence or content of unpublished studies might be used to

gain additional insight, the results developed below continue to apply.

Manipulation of results Our analysis assumes that the distribution of the results

X∗ in latent studies given the true effects Θ∗, fX∗|Θ∗ , is known. This implicitly re-

stricts the scope for researchers to inflate the results of latent studies, cf. Brodeur

et al. (2016). There are, however, many forms of manipulation or “p-hacking” (Simon-
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sohn et al., 2014) which are accommodated by our model. In particular, if researchers

conduct many independent analyses (where the results of each analysis follow known

fX∗|Θ∗) but write up and submit only significant analyses, this is a special case of our

model. More broadly, essentially any form of manipulation can be represented in a

more general model where p depends on both X∗ and Θ∗. This extension is discussed

in Section 3.1.3 below.

3 Identifying selection

This section proposes two approaches for identifying p(·). The first uses systematic

replication studies. By a “replication” we mean what Clemens (2015) terms a “repro-

duction,” obtained by applying the same experimental protocol or analysis to a new

sample from the same population as the original study. For each published X in a

given set of studies, such replications provide an independent estimate Xr governed

by the same parameter Θ as the original study. Under the assumption that selectivity

operates only on X and not on Xr, we prove nonparametric identification of p(·) up

to scale. Under the additional assumption of normally distributed estimates we also

establish identification of the latent distribution µ of true effects Θ∗.

The second approach considers meta-studies where there is variation across pub-

lished studies in the standard deviation σ of normally distributed estimates X of Θ,

where normality can again be understood as arising from the usual asymptotic ap-

proximations. Under the assumption that the standard deviation σ∗ is independent of

Θ∗ in the population of latent studies, and that publication probabilities are a func-

tion of the z-statistic Z∗ = X∗/σ alone, we again show nonparametric identification

of p(·) up to scale, as well as of µ.

Identification based on systematic replication studies is considered in Section 3.1.

Identification based on meta-studies is considered in Section 3.2. In both sections,

we return to our treatment effect example to illustrate results and develop intuition.

Approaches in the literature, including meta-regressions and bunching of p-values,

are discussed in the context of our assumptions in Section 3.3.
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3.1 Systematic replication studies

We first consider the case of systematic replication studies, where both X∗ and X∗r

are drawn independently from the same distribution fX∗|Θ∗ , conditional on Θ∗. In this

setting the joint density fX∗,X∗r , integrating out Θ∗, is symmetric in its arguments.

Deviations from symmetry of fX,Xr identify p(·) up to scale. We then extend this

result in several ways, allowing different sample sizes for the original and replication

studies as well as selection on Θ.

3.1.1 The symmetric baseline case

We extend the model in Definition 1 above to incorporate a conditionally independent

replication draw X∗r which is observed whenever X∗ is. The key implications of our

model are symmetry of the joint distribution of (X∗, X∗r), and that selectivity of

publication operates only on X∗ and not on X∗r. The latter assumption is plausible

for systematic replication studies such as Open Science Collaboration (2015) and

Camerer et al. (2016), but may fail in non-systematic replication settings, for instance

if replication studies are published only when they “debunk” prior published results.

Definition 2 (Replication data generating process)

Consider the following data generating process for latent (unobserved) variables.

(Θ∗i , X
∗
i , Di, X

∗r
i , ) are jointly i.i.d. across i, with

Θ∗i ∼ µ

X∗i |Θ∗i ∼ fX∗|Θ∗(x|Θ∗i )

Di|X∗i ,Θ∗i ∼ Ber(p(X∗i ))

X∗ri |Di, X
∗
i ,Θ

∗
i ∼ fX∗|Θ∗(x|Θ∗i ).

Let I0 = 0, Ij = min{i : Di = 1, i > Ij−1} and Θj = ΘIj . We observe i.i.d. draws of

(Xj, X
r
j ) = (X∗Ij , X

∗r
Ij

).

The next result extends Lemma 1 to derive the joint density of (X,Xr).

Lemma 2 (Replication Density)

Consider the setup of Definition 2. In this setup, the conditional density of (X,Xr)
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given Θ is

fX,Xr|Θ(x, xr|θ) = fX∗,X∗r|Θ∗,D(x, xr|θ, 1)

=
p(x)

E[p(X∗i )|Θ∗i = θ]
fX∗|Θ∗ (x|θ) fX∗|Θ∗ (xr|θ) .

The marginal density of (X,Xr) is

fX,Xr(x, xr) =
p(x)

E[p(X∗i )]

∫
fX∗|Θ∗ (x|θ∗i ) fX∗|Θ∗ (xr|θ∗i ) dµ(θ∗i ).

This lemma immediately implies that any asymmetries in the joint distribution of

X,Xr must arise from the publication probability p(·). In particular,

fX,Xr(b, a)

fX,Xr(a, b)
=
p(b)

p(a)
,

whenever the denominators on either side are non-zero. Using this fact, we prove that

p(·) is nonparametrically identified up to scale.

Theorem 1 (Nonparametric identification using replication experiments)

Consider the setup for replication experiments of Definition 2, and assume that the

support of fX∗,X∗r is of the form A×A for some measurable set A. In this setup p(·)
is nonparametrically identified on A up to scale.

Testable restrictions The density derived in Lemma 2 shows that the model of

Definition 2 implies testable restrictions. Specifically, define h(a, b) = log(fX,Xr(b, a))−
log(fX,Xr(a, b)). By Lemma 2, h(a, b) = log(p(b))− log(p(a)), and therefore

h(a, b) + h(b, c) + h(c, a) = 0

for any three values a, b, c. One could construct a nonparametric test of the model

based on these restrictions and an estimate of fX,Xr . In the applications below we

opt for an alternative approach. We test restrictions on an identified model which

nests the setup of Definition 2, detailed in Section 3.1.3 below.

Illustrative example (continued) To illustrate our identification approach using

replication studies, we return to the illustrative numerical example introduced in
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Figure 2: This figure illustrates the effect of selective publication in the replication ex-
periments setting using simulated data, where selection is on statistical significance, as
described in the text. The left panel shows the joint distribution of a random sample of
latent estimates and replications; the right panel shows the subset which are published.
Results where the original estimates are significantly different from zero at the 5% level are
plotted in blue, while insignificant results are plotted in grey.

Section 2.1. In this setting, suppose that the true effect Θ∗ is distributed N(1, 1)

across latent studies. As before, assume that Z∗ is N(Θ∗, 1) distributed conditional

on Θ∗, that p(Z∗) = 1 when |Z∗| > 1.96, and that p(Z∗) = .1 otherwise. Hence,

results that are significantly different from zero at the 5% level based on a two-sided

z-test are ten times as likely to be published as insignificant results.

This setting is illustrated in Figure 2. The left panel of this figure shows 100

random draws (Z∗, Z∗r); draws where |Z∗| ≤ 1.96 are marked in grey, while draws

where |Z∗| > 1.96 are marked in blue. The right panel shows the subset of draws

(Z,Zr) which are published. These are the same draws as (Z∗, Z∗r), except that 90%

of the draws for which Z∗ is statistically insignificant are deleted.

Our identification argument in this case proceeds by considering deviations from

symmetry around the diagonal Z = Zr. Let us compare what happens in the regions

marked A and B. In A, Z is statistically significant but Zr is not; in B it is the

other way around. By symmetry of the data generating process, the latent (Z∗, Z∗r)

fall in either area with equal probability. The fact that the observed (Z,Zr) lie in

region A substantially more often than in region B thus provides evidence of selective

publication, and the exact deviation of the distribution of (Z,Zr) from symmetry

identifies p(·) up to scale.
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3.1.2 Generalizations and practical complications

In practice we need to modify the assumptions above to fit our applications, where

the sample size for the replication often differs from that in the initial study, and

the sign of the initial estimate X is normalized to be positive. We thus extend our

identification results to accommodate these issues.

Differing variances To account for the impact of differing sample sizes on the dis-

tribution of X∗r relative to X∗, we need to be more specific about the form of these

distributions. We assume that both X∗ and X∗r are normally distributed unbiased

estimates of the same latent parameter Θ∗, and that their variances are known. The

assumption of approximate normality with known variance is already implicit in the

inference procedures used in most applications. Since we require normality of only

the final estimate from each study, rather than the underlying data, this assumption

can be justified using standard asymptotic results even in settings with non-normal

data, heteroskedasticity, clustering, or other features commonly encountered in prac-

tice. Normalizing the variance of the initial estimate to one yields the following

setup, where we again denote the estimate by Z rather than X to emphasize the

normalization of the variance.

Θ∗i ∼ µ

Z∗i |Θ∗i ∼ N(Θ∗i , 1)

Di|Z∗i ,Θ∗i ∼ Ber(p(Z∗i ))

σ∗i |Z∗i , Di,Θ
∗
i ∼ fσ|Z∗

Z∗ri |σ∗i , Z∗i , Di,Θ
∗
i ∼ N(Θ∗i , σ

∗2
i ) (2)

We use σ to denote both the standard deviation as a random variable and the realized

standard deviation. We again assume that results are published whenever Di = 1, so

that

fZ,Zr,σ(z, zr, σ) = fZ∗,Z∗r,σ∗|D(z, zr, σ|1).

Allowing the replication variance σ∗i to differ from one takes us out of the symmetric

framework of Definition 2. Display 2 also allows the possibility that the distribution

of σ∗i might depend on Z∗i . Dependence of σ∗i on Z∗i is present, for example, if power

calculations are used to determine replication sample sizes, as in both Open Science
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Collaboration (2015) and Camerer et al. (2016). In that case, σ∗i is positively related

to Z∗i , but conditionally unrelated to Θ∗i .

The following corollary states that identification carries over to this setting. The

proof relies on the fact that we can recover the symmetric setting by (de)convolution

of Zr with normal noise, given Z and σ, which then allows us to apply Theorem 1.

The assumption of normality further allows recovery of µ, the distribution of Θ∗.

Corollary 1

Consider the setup for replication experiments in display (2). Suppose we observe

i.i.d. draws of (Z,Zr). In this setup p(·) is nonparametrically identified on R up to

scale, and µ is identified as well.

Normalized sign A further complication is that the sign of the estimates Z in our

replication datasets is normalized to be positive, with the sign of Zr adjusted accord-

ingly. The following corollary shows that under this sign normalization identification

of p(·) still holds, so long as p(·) is symmetric.

Corollary 2

Consider the setup for replication experiments of display (2). Assume additionally

that p(·) is symmetric, p(z) = p(−z), and that fσ|Z∗(σ|z) = fσ|Z∗(σ| − z) for all z.

Suppose that we observe i.i.d. draws of

(W,W r) = sign(Z) · (Z,Zr).

In this setup p(·) is non-parametrically identified on R up to scale, and the distribution

of |Θ∗| is identified as well.

3.1.3 Selection depending on Θ∗ given X∗

Selection of an empirical result X for publication might depend not only on X but

also on other empirical findings reported in the same manuscript, or on unreported

results obtained by the researcher. If that is the case, our assumption that publication

decisions are independent of true effects conditional on reported results, D ⊥ Θ∗|X∗,
may fail. Allowing for a more general selection probability p(X∗,Θ∗), we can still

identify fX|Θ, which is the key object for bias-corrected inference as discussed in
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Section 4. Consider the following setup.

Θ∗i ∼ fΘ∗

Z∗i |Θ∗i ∼ N(Θ∗i , 1)

Di|Z∗i ,Θ∗i ∼ Ber(p(Z∗i ,Θ
∗
i ))

σ∗i |Di, Z
∗
i ,Θ

∗
i ∼ fσ|Z∗

Z∗ri |σ∗i , Di, Z
∗
i ,Θ

∗
i ∼ N(Θ∗i , σ

2
i ) (3)

Assume again that results are published wheneverDi = 1. The assumptionDi|Z∗i ,Θ∗i ∼
Ber(p(Z∗i ,Θ

∗
i )) is the key generalization relative to the setup considered before. This

allows publication decisions to depend on both the reported estimate and the true ef-

fect, and allows a wide range of models for the publication process. In particular, this

accommodates models where publication decisions depend on a variety of additional

variables, including alternative specifications and robustness checks not reported in

the replication dataset. Publication probabilities conditional on Z∗ and Θ∗ then im-

plicitly average over these variables, resulting in additional dependence on Θ∗. For a

simple example of this form, see Section D of the supplement.

Theorem 2

Consider the setup for replication experiments of display (3). In this setup fZ|Θ is

nonparametrically identified.

The proof of Theorem 2 implies that the joint density fZ,Zr,σ,Θ is identified. Under

the assumptions of display (3) the joint density of (Z,Zr, σ,Θ) is

fZ,Zr,σ,Θ(z, zr, σ, θ) =
p(z, θ)

E[p(Z∗,Θ∗)]
ϕ(z − θ) 1

σ
ϕ
(
zr−θ
σ

)
fσ|Z∗(σ|z)dµ

dν
(θ),

where we use ν to denote a dominating measure on the support of Θ. Without further

restrictions p(z, θ) is not identified; we can always divide p(z, θ) by some function g(θ)

and multiply dµ
dν

(θ) by the same function to get an observationally equivalent model.

Theorem 2 implies, however, that p(z, θ) is identified up to a normalization given θ,

since
fZ|Θ(z, θ)

fZ∗|Θ∗(z, θ)
=

p(z, θ)

E[p(Z∗,Θ∗)|Θ∗ = θ]
.

We can for instance impose supz p(z, θ) = 1 for all θ to get an identified model. In our
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applications we consider a parametric version of this model and test p(z, θ) = p(z) as

a specification check on our baseline model.

3.2 Meta-studies

We next consider identification using meta-studies. Suppose that studies report nor-

mally distributed estimates X∗ with mean Θ∗ and standard deviation σ∗, and that

selectivity of publication is based on the z-statistic Z∗ = X∗/σ∗. The key identify-

ing assumption is that Θ∗ is statistically independent of σ∗ across studies, so studies

with larger sample sizes do not have systematically different estimands. Under this

assumption, the distribution of X∗ conditional on a larger value σ∗ = σ1 is equal

to the convolution of normal noise of variance σ2
1 − σ2

2 with the distribution of X∗

conditional on a smaller value σ∗ = σ2. Deviations from this equality for the observed

distribution fX|σ identify p(·) up to scale.

Definition 3 (Meta-study data generating process)

Consider the following data generating process for latent (unobserved) variables.

(σ∗i ,Θ
∗
i , X

∗
i , Di) are jointly i.i.d. across i, such that

σ∗i ∼ µσ

Θ∗i |σ∗i ∼ µΘ

X∗i |Θ∗i , σ∗i ∼ N(Θ∗i , σ
∗2
i )

Di|X∗i ,Θ∗i , σ∗i ∼ Ber(p(X∗i /σ
∗
i ))

Let I0 = 0, Ij = min{i : Di = 1, i > Ij−1} and Θj = ΘIj . We observe i.i.d. draws of

(Xj, σj) = (X∗Ij , σ
∗
Ij

).

Define Z∗i =
X∗i
σ∗i

and Zj =
Xj
σj

.

A key object for identification of p(·) in this setting is the conditional density fZ|σ.

Lemma 3 (Meta-study density)

Consider the setup of definition 3. The conditional density of Z given σ is

fZ|σ(z|σ) =
p(z)

E[p(Z∗)|σ]

∫
ϕ(z − θ/σ)dµ(θ).
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We build on Lemma 3 to prove our main identification result for the meta-studies

setting. Lemma 3 implies that, for σ2 > σ1,

fZ|σ(z|σ2)

fZ|σ(z|σ1)
=
E[p(Z∗)|σ = σ1]

E[p(Z∗)|σ = σ2]
·
∫
ϕ(z − θ/σ2)dµ(θ)∫
ϕ(z − θ/σ1)dµ(θ)

,

where the first term on the right hand side does not depend on z. Since fZ|σ(z|σ2)/fZ|σ(z|σ1)

is identified, this suggests we might be able to invert this equality to recover µ, which

would then immediately allow us to identify p(·). The proof of Theorem 3 builds on

this idea, considering ∂σ log(fZ|σ(z|σ)).

Theorem 3 (Nonparametric identification using meta-studies)

Consider the setup for experiments with independent variation in σ, described by

Definition 3. Suppose that the support of σ contains an open interval. Then p(·) is

identified up to scale, and µ is identified as well.

Illustrative example (continued) As before, assume that Θ∗ is N(1, 1) dis-

tributed. Suppose further that σ∗ is independent of Θ∗ across latent studies, and

that X∗ is N(Θ∗, σ∗) distributed conditional on Θ∗, σ∗. Let p(X∗/σ∗) = 1 when

|X∗/σ∗| > 1.96, p(X∗/σ∗) = .1 otherwise. Thus, results which differ significantly

from zero at the 5% level are again ten times as likely to be published as insignificant

results. This setting is illustrated in Figure 3. The left panel of this figure shows 100

random draws (X∗, σ∗); draws where |X∗/σ∗| ≤ 1.96 are marked in grey, while draws

where |X∗/σ∗| > 1.96 are marked in blue. The right panel shows the subset of draws

(X, σ) which are published, where 90% of statistically insignificant draws are deleted.

Compare what happens for two different values of the standard deviation σ,

marked by A and B in Figure 3. By the independence of σ∗ and Θ∗, the distri-

bution of X∗ for larger values of σ∗ is a noised up version of the distribution for

smaller values of σ∗. To the extent that the same does not hold for the distribution

of published X given σ, this must be due to selectivity in the publication process. In

this example, statistically insignificant observations are “missing” for larger values σ.

Since publication is more likely when |X∗/σ∗| > 1.96, the estimated values X tend

to be larger on average for larger values of σ, and the details of how the conditional

distribution of X given σ varies with σ will again allow us to identify p(·) up to scale.
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Figure 3: This figure illustrates the effect of selective publication in the meta-studies
setting using simulated data, where selection is on statistical significance, as described in
the text. The left panel shows a random sample of latent estimates; the right panel shows
the subset of estimates which are published. Results which are significantly different from
zero at the 5% level are plotted in blue, while insignificant results are plotted in grey.

Normalized sign In some of our applications the sign of the reported estimates X

is again normalized to be positive. The following corollary shows that p(·) remains

identified under this sign normalization provided it is symmetric in its argument.

Corollary 3

Consider the setup of Definition 3. Assume additionally that p(·) is symmetric, i.e.,

p(x/σ) = p(−x/σ). Suppose that we observe i.i.d. draws of (|X|, σ). In this setup

p(·) is nonparametrically identified on R up to scale, and the distribution of |Θ∗| is

identified as well.

3.3 Relation to approaches in the literature

Various approaches to detect selectivity and publication bias have been proposed in

the literature. We briefly analyze some of the these approaches in our framework.

First, we discuss to what extent we should expect the results of significance tests

to “replicate” in a sense considered in the literature, and show that the probability

of such replication may be low even in the absence of publication bias. Second, we

discuss meta-regressions, and show that while they provide a valid test of the null of

no selectivity under our meta-study assumptions, they are difficult to interpret under

the alternative. Third, we consider approaches based on the distribution of p-values
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or z-statistics, and analyze the extent to which bunching or discontinuities of this

distribution provide evidence for selectivity or inflation of estimates.

Should results “replicate?” The findings of recent systematic replication studies

such as Open Science Collaboration (2015) and Camerer et al. (2016) are sometimes

interpreted as indicating an inability to “replicate the results” of published research.

In this setting, a “result” is understood to “replicate” if both the original study and

its replication find a statistically significant effect in the same direction. The share of

results which replicate in this sense is prominently discussed in Camerer et al. (2016).

Our framework suggests, however, that the probability of replication in this sense

might be low even without selective publication or other sources of bias.

Consider the setup for replication experiments in display (2) with constant pub-

lication probability p(·), so that publication is not selective and fZ,Zr = fZ∗,Zr∗ . For

illustration, assume further that σ∗ ≡ 1. The probability that a result replicates in

the sense described above is

P (Z∗r · sign{Z∗} > 1.96||Z∗| > 1.96)

=
P (Z∗r < −1.96, Z∗ < −1.96) + P (Z∗r > 1.96, Z∗ > 1.96)

P (Z∗ < −1.96) + P (Z∗ > 1.96)

=

∫
[Φ(−1.96− θ)2 + Φ(−1.96 + θ)2] dµ(θ)∫
[Φ(−1.96− θ) + Φ(−1.96 + θ)] dµ(θ)

.

If the true effect is zero in all studies then this probability is 0.025. If the true effect in

all studies is instead large, so that |Θ∗| > M with probability one for some large M ,

then the probability of replication is approximately one. Thus, the probability that

results replicate in this sense gives little indication of whether selective publication or

some other source of bias for published research is present unless we either restrict the

distribution of true effects or observe replication frequencies less than 0.025. Strengths

and weaknesses of alternative measures of replication are discussed in Simonsohn

(2015), Gilbert et al. (2016), and Patil and Peng (2016).

Meta-regressions A popular test for publication bias in meta-studies (cf. Card and

Krueger, 1995; Egger et al., 1997) uses regressions of either of the following forms:

E∗[X|1, σ] = γ0 + γ1 · σ, E∗
[
Z|1, 1

σ

]
= β0 + β1 · 1

σ
,
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where we use E∗ to denote best linear predictors. The following lemma is immediate.

Lemma 4

Under the assumptions of Definition 3, if p(·) is constant then

E∗[X|1, σ] = E[Θ∗], E∗
[
Z|1, 1

σ

]
= E[Θ∗] · 1

σ

As this lemma confirms, meta-regressions can be used to construct tests for the

null of no publication bias. In particular, absent publication bias β0 = 0 and γ1 = 0,

so tests for these null hypotheses allow us to test the hypothesis of no publication bias,

though there are some forms of selectivity against which such tests have no power.

As also noted in the previous literature, absent publication bias the coefficients β1

and γ0 recover the average of Θ∗ in the population of latent studies. While these

coefficients are sometimes interpreted as selection-corrected estimates of the mean

effect across studies (cf. Doucouliagos and Stanley, 2009; Christensen and Miguel,

2016), this interpretation is potentially misleading in the presence of publication bias.

In particular, the conditional expectation E[X|1, σ] is nonlinear in both σ and 1/σ,

which implies that β0, γ1 are generally biased as estimates of E[Θ∗].1 To illustrate

the resulting complications, we discuss a simple example with one-sided significance

testing in Section B of the supplement.

The distribution of p-values and z-statistics Another approach in the litera-

ture considers the distribution of p-values, or the corresponding z-statistics, across

published studies. For example, Simonsohn et al. (2014) analyze whether the distri-

bution of p-values in a given literature is right- or left-skewed. Brodeur et al. (2016)

compiled 50,000 test results from all papers published in the American Economic

Review, the Quarterly Journal of Economics, and the Journal of Political Economy

between 2005 and 2011, and analyze their distribution to draw conclusions about

distortions in the research process.

Under our model, absent selectivity of the publication process the distribution fZ

is equal to fZ∗ . If we additionally assume that Z∗|Θ∗ ∼ N(Θ∗, 1) and Θ∗ ∼ µ, this

1Stanley (2008) and Doucouliagos and Stanley (2009) note this bias but suggest that one can
still use H0 : γ1 = 0 to test the hypothesis of zero true effect if there is no heterogeneity in the true
effect Θ∗ across latent studies.
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implies that

fZ(z) = fZ∗(z) = (π ∗ ϕ)(z) =

∫
ϕ(z − θ)dµ(θ).

This model has testable implications, and requires that the deconvolution of fZ with

a standard normal density ϕ yield a probability measure µ. This implies that the

density fZ∗ is infinitely differentiable. If selectivity is present, by contrast, then

fZ(z) =
p(z)

E[p(Z∗)]
· fZ∗(z),

and any discontinuity of fZ(z) (for instance at critical values such as z = 1.96) iden-

tifies a corresponding discontinuity of p(z) and indicates the presence of selectivity:

limz↓z0 fZ(z)

limz↑z0 fZ(z)
=

limz↓z0 p(z)

limz↑z0 p(z)
.

If we impose that p(·) is a step function, for example, then this argument allows us

to identify p(·) up to scale.

The density fZ∗ also precludes excessive bunching, since for all k ≥ 0 and all z,

∂kz fZ∗(z) ≤ supz ∂
k
zϕ(z) and ∂kz fZ∗(z) ≥ infz ∂

k
zϕ(z) so that in particular fZ∗(z) ≤

ϕ(0) and f ′′Z∗(z) ≥ ϕ′′(0) = −ϕ(0) for all z. Spikes in the distribution of Z thus

likewise indicate the presence of selectivity or inflation.

Unlike our model, which focuses on selection, Brodeur et al. (2016) are inter-

ested in potential inflation of test results by researchers, and in particular in non-

monotonicities of fZ which cannot be explained by monotone publication probabilities

p(z) alone. They construct tests for such non-monotonicities based on parametrically

estimated distributions fZ∗ .

4 Corrected inference

This section derives median unbiased estimators and valid confidence sets for scalar

parameters θ assuming p(·) is known. The supplement extends these results to derive

optimal estimators for scalar components of vector-valued θ, and analyzes Bayesian

inference under selective publication. While our identification results in the last

section relied on an empirical Bayes perspective, which assumed that Θ∗i was drawn

from some distribution µ, this section considers standard frequentist results which
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hold conditional on Θ.

Selective publication reweights the distribution of X by p(·). To obtain valid esti-

mators and confidence sets, we need to correct for this reweighting. To define these

corrections denote the cdf for published results X given true effect Θ by FX|Θ. For

fX|Θ, the density of published results derived in Lemma 1,

FX|Θ(x|θ) =

∫ x

−∞
fX|Θ(x̃|θ)dx̃ =

1

E[p(X∗)|Θ∗ = θ]

∫ x

−∞
p(x̃)fX∗|Θ∗(x̃|θ)dx̃.

For many distributions fX∗|Θ∗ , and in particular in the leading normal case (see

Lemma 5 below) this cdf is strictly decreasing in θ. Using this fact we can adapt

an approach previously applied by, among others, D. Andrews (1993) and Stock and

Watson (1998) and invert the cdf as a function of θ to construct a quantile-unbiased

estimator. In particular, if we define θ̂α (x) as the solution to

FX|Θ

(
x|θ̂α (x)

)
= α ∈ (0, 1), (4)

then θ̂α (X) is an α-quantile unbiased estimator for θ.

Theorem 4

If for all x, FX|Θ(x|θ) is continuous and strictly decreasing in θ, tends to one as

θ → −∞, and tends to zero as θ →∞, then θ̂α(x) as defined in (4) exists, is unique,

and is continuous and strictly increasing for all x. If, further, FX|Θ(x|θ) is continuous

in x for all θ then θ̂α(X) is α-quantile unbiased for θ under the truncated sampling

setup of Definition 1,

P
(
θ̂α (X) ≤ θ|Θ = θ

)
= α for all θ.

If fX∗|Θ∗ (x|θ) is normal, as in our applications, then the assumptions of Theorem

4 hold whenever p(x) is strictly positive for all x and almost everywhere continuous.

Lemma 5

If the distribution of latent draws X∗ conditional on (Θ∗, σ∗) is N(Θ∗, σ∗2),

fX∗|Θ∗,σ∗ (x|θ, σ) =
1

σ
ϕ

(
x− θ
σ

)
,

p(x) > 0 for all x, and p(·) is almost everywhere continuous, then the assumptions of

21



Theorem 4 are satisfied.

These results allow straightforward frequentist inference that corrects for selective

publication. In particular, using Theorem 4 we can consider the median-unbiased

estimator θ̂ 1
2

(X) for θ, as well as the equal-tailed level 1− α confidence interval

[
θ̂α

2
(X) , θ̂1−α

2
(X)

]
.

This estimator and confidence set fully correct the bias and coverage distortions in-

duced by selective publication. Other selection-corrected confidence intervals are also

possible in this setting. For example, provided the density fX∗|Θ∗(x|θ) belongs to

an exponential family one can form confidence intervals by inverting uniformly most

powerful unbiased tests as in Fithian et al. (2014). Likewise, one can consider alter-

native estimators, such as the weighted average risk-minimizing unbiased estimators

considered in Mueller and Wang (2015), or the MLE based on the truncated likelihood

fX|Θ.

Illustrative example (continued) To illustrate these results, we return to the

treatment effect example discussed above. Figure 4 plots the median unbiased esti-

mator, as well as upper and lower 95% confidence bounds as a function of X for the

same publication probability p(·) considered above. We see that the median unbiased

estimator lies below the usual estimator θ̂ = X for small positive X but that the

difference is eventually decreasing in X. The truncation-corrected confidence interval

shown in Figure 4 has exactly correct coverage, is smaller than the usual interval for

small X, wider for moderate values X, and essentially the same for X ≥ 5.

Figure 4 provides useful guidance for readers of published papers interested in

the magnitude of true effects. Suppose that the illustrative example is a reasonable

approximation of how selection works in practice, as our empirical findings below

suggest is the case for experimental economics. Then the following “rule of thumb”

adjustments correspond roughly to median-unbiased estimates. (i) If reported effects

are close to zero, or very far from zero (z-statistics bigger than 4), then these estimates

can be taken at face value. (ii) In intermediate ranges, magnitudes should be adjusted

downwards. A reported z-statistic of 1 should be taken to indicate an effect (relative

to the standard error) of about 0.4. A reported z-statistic of 2 should be taken to

indicate an effect of about 0.7, and a reported z-statistic of 3 should be taken to
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Figure 4: This figure plots frequentist 95% confidence bounds and the median unbiased es-
timator for the normal model where results that are significant at the 5% level are published
with probability one, while insignificant results are published with probability 10%. The
usual (uncorrected) estimator and confidence bounds are plotted in grey for comparison.

indicate an effect of about 2.75. Likewise, two-sided tests reject zero when z-statistics

are larger than about 2.7 in absolute value.

We do not recommend adjusting publication standards to reflect these corrections.

If publication probabilities in this example were based on more stringent critical val-

ues, for instance, then the corrections discussed above would need to be adjusted.

Instead, the purpose of these corrections is to allow readers of published research to

draw valid inferences, taking the publication rule as given. The publication rule itself

can then be chosen on other grounds, for example to maximize social welfare or pro-

vide incentives to researchers. We briefly discuss the question of optimal publication

rules in the conclusion, as well as in Section J supplement.

In this example, our approach is closely related to the correction for selective pub-

lication proposed by McCrary et al. (2016). There, the authors propose conservative
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tests derived under an extreme form of publication bias in which insignificant results

are never published. If we consider testing the null hypothesis that θ is equal to

zero, and calculate our equal-tailed confidence interval under the publication proba-

bility p(·) implied by the model of McCrary et al. (2016), then our confidence interval

contains zero if and only if the test of McCrary et al. (2016) fails to reject.

5 Applications

This section uses the results developed above to estimate the degree of selectivity in

several empirical literatures. Our results imply nonparametric identification of both

p(·) and µ. The sample sizes in our applications are limited, however, so for estima-

tion we specify parsimonious parametric models for both the conditional publication

probability p(·) and the distribution µ of true effects across latent studies, which we

then fit by maximum likelihood.

We consider step function models for p(·), with jumps at conventional critical

values, and possibly at zero. We assume the latent effects Θ∗ are normally distributed.

In our first two applications, the sign of the original estimates is normalized to be

positive. We denote these normalized estimates by W = |Z|, and in these settings we

impose that p(·) is symmetric, and that the mean of Θ∗ is zero.2 Details and further

motivation for these specifications, as well as a specification for the model of Section

3.1.3, are discussed in Section C of the supplement.

5.1 Economics laboratory experiments

Our first application uses data from a recent large-scale replication of experimental

economics papers by Camerer et al. (2016). The authors replicated all 18 between-

subject laboratory experiment papers published in the American Economic Review

and Quarterly Journal of Economics between 2011 and 2014.3 Further details on the

2Identification of the mean of Θ∗ would be irregular in this setting, in the sense that the Fisher
information for this parameter can be zero, yielding nonstandard asymptotic behavior for the maxi-
mum likelihood estimator. If we instead estimate this parameter, the MLE is zero in all specifications.

3In their supplementary materials, Camerer et al. (2016) state that “To be part of the study
a published paper needed to report at least one significant between subject treatment effect that
was referred to as statistically significant in the paper.” However, we have reviewed the issues of
American Economic Review and Quarterly Journal of Economics from the relevant period, and
confirmed that no studies were excluded due to this restriction.
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selection and replication of results can be found in Camerer et al. (2016), while details

of our handling of the data are discussed in the supplement.

A strength of this dataset for our purposes, beyond the availability of replication

estimates, is the fact that it replicates results from all papers in a particular subfield

published in two leading economics journals over a fixed period of time. This miti-

gates concerns about the selection of which studies to replicate. Moreover, since the

authors replicate 18 such studies, it seems reasonable to think that they would have

published their results regardless of what they found, consistent with our assumption

that selection operates only on the initial studies and not on the replications.

A caveat to the interpretation of our results is that Camerer et al. (2016) select

the most important statistically significant finding from each paper, as emphasized

by the original authors, for replication. This selection changes the interpretation of

p(·), which has to be interpreted as the probability that a result was published and

selected for replication.

Histogram Before we discuss our formal estimation results, consider the distribu-

tion of originally published estimates W = |Z|, shown by the histogram in the left

panel of Figure 5. This histogram suggests of a large jump in the density fW (·) at

the cutoff 1.96, and thus of a corresponding jump of the publication probability p(·)
at the same cutoff; cf. the discussion in Section 3.3. Such a jump is confirmed by

both our replication and meta-study approaches.

Results from replication specifications The middle panel of Figure 5 plots the

joint distribution of W, W r in the replication data of Camerer et al. (2016), using the

same conventions as in Figure 2. To estimate the degree of selection in these data we

consider the model

Θ∗ ∼ N(0, τ 2), p(Z) ∝

βp |Z| < 1.96

1 |Z| ≥ 1.96.

This assumes that the true effect Θ∗ is mean-zero normal across latent studies, while

allowing a discontinuity in the publication probability at |Z| = 1.96, the critical

value for a 5% two-sided z-test. Fitting this model by maximum likelihood yields the

estimates reported in the left panel of Table 1. Recall that βp in this model can be

interpreted as the publication probability for a result that is insignificant at the 5%
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Figure 5: The left panel shows a binned density plot for the normalized z-statistics W =
|X|/σ using data from Camerer et al. (2016). The grey line marks W = 1.96. The middle
panel plots the z-statistics W from the initial study against the estimate W r from the
replication study. The grey lines mark W and W r = 1.96, as well as W = W r. The right
panel plots the initial estimate |X| = W ·σ against its standard error σ. The grey line marks
|X|/σ = 1.96.

Replication

τ βp
2.354 0.100

(0.750) (0.091)

Meta-study

τ̃ βp
0.299 0.045

(0.073) (0.045)

Table 1: Selection estimates from lab experiments in economics, with robust standard
errors in parentheses. The left panel reports estimates from replication specifications, while
the right panel reports results from meta-study specifications. Publication probability βp is
measured relative to the omitted category of studies significant at 5% level, so an estimate
of 0.1 implies that results which are insignificant at the 5% level are 10% as likely to be
published as significant results. The parameters τ and τ̃ are not comparable.

level based on a two-sided z-test, relative to a result that is significant at the 5% level.

These estimates therefore imply that significant results are ten times more likely to

be published than insignificant results. This is the ratio we have assumed for our

running example throughout this paper. Moreover, we strongly reject the hypothesis

of no selectivity, H0 : βp = 1.

A score test of the null hypothesis p(z, θ) = p(z), based on a model discussed in

Section C.1 of the supplement, yields a p-value of 0.71. We thus find no evidence that

the assumption D|Z∗,Θ∗ = p(Z∗) imposed in our baseline model is violated.

Results from meta-study specifications While the the Camerer et al. (2016)

data include replication estimates, we can also apply our meta-study approach using
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just the initial estimates and standard errors. Since this approach relies on additional

independence assumptions, comparing these results to those based on replication

studies provides a useful check of the reliability of our meta-analysis estimates.

We begin by plotting the data used by our meta-analysis estimates in the right

panel of Figure 5. We consider the model

Θ∗ ∼ N(0, τ̃ 2), p(X/σ) ∝

βp |X/σ| < 1.96

1 |X/σ| ≥ 1.96,

noting that Θ∗ is now the mean of X∗, rather than Z∗, and thus that the interpre-

tation of τ̃ differs from that of τ in our replication specifications. Fitting this model

by maximum likelihood yields the estimates reported in the right panel of Table 1.

Comparing these estimates to those in the left panel, note that we estimate a similar

degree of selectivity in the two specifications. Indeed, we cannot reject the hypothesis

that βp is the same in the two specifications at standard significance levels. Hence,

we find that in the Camerer et al. (2016) data we obtain similar results from our

replication and meta-study specifications.

Bias correction To interpret our estimates, we calculate our median-unbiased es-

timator and confidence sets based on our replication estimate βp = .1. Figure 6 plots

the median unbiased estimator, as well as the original and adjusted confidence sets,

for the 18 studies included in Camerer et al. (2016). Considering the first panel,

which plots the median unbiased estimator along with the original and replication

estimates, we see that the adjusted estimates track the replication estimates fairly

well but are smaller than the original estimates in many cases. The second panel plots

the original estimate and conventional 95% confidence set in blue, and the adjusted

estimate and 95% confidence set in black. As we see from this figure, ten of the

adjusted confidence sets include zero, compared to just two of the original confidence

sets. Hence, adjusting for the estimated degree of selection substantially changes the

number of significant results in this setting.4

4Note that these adjusted confidence sets are based on the point estimate β̂p and do not account
for uncertainty in this estimate. To obtain valid confidence sets accounting for this uncertainty, one
could consider Bonferroni-corrected versions of these adjusted confidence sets. However, such correc-
tions would only widen the adjusted confidence sets, and so increase the discrepancy in significance
between the adjusted and unadjusted results.
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Figure 6: The top panel plots the estimates W and W r from the original and replication
studies in Camerer et al. (2016), along with the median unbiased estimate θ̂ 1

2
based on the

estimated selection model and the original estimate. The bottom panel plots the original
estimate and 95% confidence interval, as well as the median unbiased estimate and adjusted

95% confidence interval
[
θ̂0.025 (W ) , θ̂0.975 (W )

]
based on the estimated selection model.
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5.2 Psychology laboratory experiments

Our second application is to data from Open Science Collaboration (2015), who con-

ducted a large-scale replication of experiments in psychology. The authors considered

studies published in three leading psychology journals, Psychological Science, Jour-

nal of Personality and Social Psychology, and Journal of Experimental Psychology:

Learning, Memory, and Cognition, in 2008. They assigned papers to replication teams

on a rolling basis, with the set of available papers determined by publication date.

Ultimately, 158 articles were made available for replication, 111 were assigned, and

100 of those replications were completed in time for inclusion in Open Science Col-

laboration (2015). Replication teams were instructed to replicate the final result in

each article as a default, though deviations from this default were made based on

feasibility and the recommendation of the authors of the original study. Ultimately,

84 of the 100 completed replications consider the final result of the original paper.

As with the economics replications above, the systematic selection of results for

replication in Open Science Collaboration (2015) is an advantage from our perspec-

tive. A complication in this setting is that not all of the test statistics used in the

original and replication studies are well-approximated by z-statistics (for example,

some of the studies use χ2 test statistics with two or more degrees of freedom). To

address this, we limit attention to the subset of studies which use z-statistics or close

analogs thereof, leaving us with a sample of 73 studies. Specifically, we limit attention

to studies using z- and t-statistics, or χ2 and F-statistics with one degree of freedom

(for the numerator, in the case of F-statistics), which can be viewed as the squares of

z- and t-statistics, respectively. To explore sensitivity of our results to denominator

degrees of freedom, in the supplement we limit attention to the 52 observations with

denominator degrees of freedom of at least 30 in the original study and find quite

similar results.

Histogram Consider now the distribution of originally published estimates W ,

shown by the histogram in the left panel of Figure 7. This histogram is sugges-

tive of a large jump in the density fW (·) at the cutoff 1.96, as well as possibly a jump

at the cutoff 1.64, and thus of corresponding jumps of the publication probability p(·)
at the same cutoffs. Such jumps will again be confirmed by the estimates from both

our replication and meta-study approaches.
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Figure 7: The left panel shows a binned density plot for the normalized z-statistics W =
|X|/σ using data from Open Science Collaboration (2015). The grey line marks W = 1.96.
The middle panel plots the z-statistics W from the initial study against the estimate W r

from the replication study. The grey lines mark |W | and |W r| = 1.96, as well as W = W r.
The right panel plots the initial estimate |X| = W ·σ against its standard error σ. The grey
line marks |X|/σ = 1.96.

Replication

τ βp,1 βp,2
1.252 0.021 0.294

(0.195) (0.012) (0.128)

Meta-study

τ̃ βp,1 βp,2
0.252 0.025 0.375

(0.041) (0.015) (0.166)

Table 2: Selection estimates from lab experiments in psychology, with robust standard
errors in parentheses. The left panel reports estimates from replication specifications, while
the right panel reports results from meta-study specifications. Publication probabilities
βp are measured relative to the omitted category of studies significant at 5% level. The
parameters τ and τ̃ are not comparable.

Results from replication specifications The middle panel of Figure 7 plots the

joint distribution of W, W r in the replication data of Open Science Collaboration

(2015). We fit the model

Θ∗ ∼ N(0, τ 2), p(Z) ∝


βp,1 |Z| < 1.64

βp,2 1.64 ≤ |Z| < 1.96

1 |Z| ≥ 1.96.

This model again assumes that the true effect Θ∗ is mean-zero normal across latent

studies. Given the larger sample size, we consider a slightly more flexible model than

before and allow discontinuities in the publication probability at the critical values

for both 5% and 10% two-sided z-tests.
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Fitting this model by maximum likelihood yields the estimates reported in the left

panel of Table 2. These estimates imply that results that are significantly different

from zero at the 5% level are almost fifty times more likely to be published than

results that are insignificant at the 10% level, and over three times more likely to be

published than results that are significant at the 10% level but insignificant at the

5% level. We strongly reject the hypothesis of no selectivity.

A score test of the null hypothesis p(z, θ) = p(z) yields a p-value of 0.3. Thus, we

again find no evidence that the assumption D|Z∗,Θ∗ = p(Z∗) imposed in our baseline

model is violated.

Results from meta-study specifications As before, we re-estimate our model

using our meta-study specifications, and plot the joint distribution of estimates and

standard errors in the right panel of Figure 7. Fitting the model yields the estimates

reported in the right panel of Table 2. As in the last section, we find that the meta-

study and replication estimates are quite similar.

Bias corrections To interpret our results, we plot our median-unbiased estimates

based on the Open Science Collaboration (2015) data in Figure 8. We see that our

adjusted estimates track the replication estimates fairly well for studies with small

original z-statistics, though the fit is worse for studies with larger original z-statistics.

Our adjustments again dramatically change the number of significant results, with

62 of the 73 original 95% confidence sets excluding zero, and only 21 of the adjusted

confidence sets (not displayed) doing the same.

Caveats The fact that not all available studies were selected for replication by

Open Science Collaboration (2015) raises the possibility of selection of which studies

to replicate, though the fact that 100 of the 158 available studies were replicated

limits the potential severity of selection here. Likewise, the widely followed default

of replicating the final result within each study helps address concerns about the

selection of which result to replicate within each paper.

A further complication in this setting arises from the critique of Gilbert et al.

(2016), who argue that the protocols in some of the Open Science Collaboration (2015)

replications differed substantially from the initial studies. To explore robustness with

respect to this critique, in the supplement we report results from further restricting
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Figure 8: This figure plots the estimates W and W r from the original and replication
studies in Open Science Collaboration (2015), along with the median unbiased estimate θ̂ 1

2

based on the estimated selection model and the original estimate.

the sample to the subset of replications which used protocols approved by the original

authors, and find roughly similar estimates, though the estimated degree of selection

is smaller.

5.3 Effect of minimum wage on employment

Our third application uses data from Wolfson and Belman (2015), who conduct a

meta-analysis of studies on the elasticity of employment with respect to the minimum

wage. In particular, Wolfson and Belman (2015) consider analyses of the effect of

minimum wages on employment that use US data and were published or circulated

as working papers after the year 2000. They collect estimates from all studies fitting

their criteria that report both estimated elasticities of employment with respect to

the minimum wage and standard errors, resulting in a sample of a thousand estimates

drawn from 37 studies, and we use these estimates as the basis of our analysis. For

further discussion of these data, see Wolfson and Belman (2015).

Since the Wolfson and Belman (2015) sample includes both published and un-
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Figure 9: The left panel shows a binned density plot for the z-statistics X/σ in the Wolfson
and Belman (2015) data. The solid grey lines mark |X|/σ = 1.96, while the dash-dotted
grey line marks X/σ = 0. The right panel plots the estimate X against its standard error
σ. The grey lines mark |X|/σ = 1.96.

published papers, we evaluate our estimators based on both the full sample and the

sub-sample of published estimates. We find qualitatively similar answers for the two

samples, so we report results based on the full sample here and discuss results based

on the subsample of published estimates in the supplement. We define X so that

X > 0 indicates a negative effect of the minimum wage on employment.

Histogram Consider first the distribution of of the normalized estimates Z, shown

by the histogram in the left panel of Figure 9. This histogram is somewhat suggestive

of jumps in the density fZ(·) around the cutoffs −1.96, 0, and 1.96, and thus of

corresponding jumps of the publication probability p(·) at the same cutoffs; these

jumps seem less pronounced than in our previous applications, however.

Results from meta-study specifications For this application we do not have

any replication estimates, and so move directly to our meta-study specifications. The

right panel of Figure 9 plots the joint distribution of X, the estimated elasticity of

employment with respect to decreases in the minimum wage, and the standard error

σ in the Wolfson and Belman (2015) data.

As a first check, we run meta-regressions as discussed in section 3.3, clustering

standard errors at the study-level. A regression of X on σ yields a slope of 0.406 with
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a standard error of 0.369. A regression of Z on 1/σ yields an intercept of 0.343 with

a standard error of 0.281. Both of these estimates are indicative of selection favoring

results finding a negative effect of minimum wages on employment, but neither allows

us to reject the null of no selection at conventional significance levels.

We next consider the model

Θ∗ ∼ N(θ̄, τ̃ 2), p(X/σ) ∝



βp,1 X/σ < −1.96

βp,2 −1.96 ≤ X/σ < 0

βp,3 0 ≤ X/σ < 1.96

1 X/σ ≥ 1.96.

Unlike in our previous applications, we allow the probability of publication to depend

on the sign of the z-statistic X/σ rather than just on its absolute value. This is

important, since it seems plausible that the publication prospects for a study could

differ depending on whether it found a positive or negative effect of the minimum wage

on employment. Our estimates based on these data are reported in Table 3, where we

find that publication probabilities are monotonically increasing in Z. In particular,

recalling that positive estimates X indicate a negative effect of the minimum wage on

employment, our estimates suggest that studies that find a negative and significant

effect of the minimum wage on employment at the 5% level are over four times more

likely to published than studies that find a positive and significant effect, over twice

as likely to be published as studies that find a positive but insignificant effect, and

over 35% more likely to be published than estimates that which find a negative but

insignificant effect.

θ̄ τ̃ βp,1 βp,2 βp,3
-0.024 0.122 0.225 0.424 0.738
(0.053) (0.038) (0.118) (0.207) (0.291)

Table 3: Meta-study estimates from minimum wage data, with standard errors clustered
by study in parentheses. Publication probabilities βp measured relative to omitted category
of estimates positive and significant at 5% level.

These results are consistent with the meta-analysis results of Wolfson and Belman

(2015), who found evidence of some publication bias towards a negative employment

effect, as well as the results of Card and Krueger (1995), who focused on an earlier,
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non-overlapping set of studies.

Since the studies in this application estimate related parameters, it is also interest-

ing to consider the estimate θ̄ for the mean effect in the population of latent estimates.

The point estimate suggests that the average latent study finds a small positive effect

of the minimum wage on employment, though the estimated θ̄ is quite small relative

to both its standard error and the estimated standard deviation τ across specifica-

tions. This contrasts with the “naive” average effect θ̄ that we would estimate by

ignoring selectivity, θ̄ = 0.038 with a standard error of .025, suggesting a negative

average estimate of the effect of minimum wages on employment.

Caveats A complication arises in this application, relative to those considered so

far, due to the presence of multiple estimates per study. Moreover, it is difficult to

argue that a given estimate in each of these studies constitutes the “main” estimate,

so restricting attention to a single estimate per study seems arbitrary. This raises

issues for both inference and identification.

For inference, it is implausible that estimate standard-error pairs Xj, σj are inde-

pendent within study. To address this, we cluster our standard errors by study.

For identification, the problem is somewhat more subtle. Our model assumes

that the latent parameters Θ∗i and σ∗i are statistically independent across estimates

i, and that Di is independent of (Θ∗i , σ
∗
i ) conditional on X∗i . It is straightforward

to relax the assumption of independence across i, provided the marginal distribution

of (Θ∗i , σ
∗
i , X

∗
i , Di) is such that Di remains independent of (Θ∗i , σ

∗
i ) conditional on

X∗i . This conditional independence assumption is justified if we believe that both

researchers and referees consider the merits of each estimate on a case-by-case basis,

and so decide whether or not to publish each estimate separately. Alternatively, it can

also be justified if the estimands Θ∗i within each study are statistically independent

(relative to the population of estimands in the literature under consideration). As

discussed in Section 3.1.3, however, if these assumptions fail our model is misspecified.

5.4 Deworming meta-study

Our final application is to data from the recent meta-study Croke et al. (2016) on

the effect of mass drug administration for deworming on child body weight. They

collect results from randomized controlled trials which report child body weight as an

outcome, and focus on intent-to-treat estimates from the longest follow-up reported
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in each study. They include all studies identified by the previous review of Taylor-

Robinson et al. (2015), as well as additional trials identified by Welch et al. (2017).

They then extract estimates as described in Croke et al. (2016) and obtain a final

sample of 22 estimates drawn from 20 studies, which we take as the basis for our

analysis. For further discussion of sample construction, see Taylor-Robinson et al.

(2015), Croke et al. (2016), and Welch et al. (2017). To account for the presence of

multiple estimates in some studies, we again cluster by study.

Histogram Consider first the distribution of the normalized estimates Z, shown by

the histogram in the left panel of Figure 10. Given the small sample size of 22 esti-

mates, this histogram should not be interpreted too strongly. That said, the density

of Z appears to jump up at 0, which suggests selection toward positive estimates.
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Figure 10: The left panel shows a binned density plot for the z-statistics X/σ in the Croke
et al. (2016) data. The solid grey lines mark |X|/σ = 1.96, while the dash-dotted grey line
marks X/σ = 0. The right panel plots the estimate X against its standard error σ. The
grey lines mark |X|/σ = 1.96.

Results from meta-study specifications The right panel of Figure 10 plots the

joint distribution of X, the estimated intent to treat effect of mass deworming on

child weight, along with the standard error σ in the Croke et al. (2016) data.

As a first check, we again run meta-regressions as discussed in Section 3.3, clus-

tering standard errors by study. A regression of X on σ yields a slope of −0.296 with

a standard error of 0.917. A regression of Z on 1/σ yields an intercept of 0.481 with
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a standard error of 0.889. Neither of these estimates allows rejection of the null of no

selection at conventional significance levels.

We next consider the model

Θ∗ ∼ N(θ̄, τ̃ 2), p(X/σ) ∝

βp |X/σ| < −1.96

1 |X/σ| ≥ 1.96,

where we constrain the function p(·) to be symmetric to limit the number of free pa-

rameters, which is important since we have only 22 observations. Fitting this model

yields the estimates reported in Table 4. The point estimates here suggest that sta-

tistically significant results are less likely to be included in the meta-study of Croke

et al. (2016) than are insignificant results.

θ̄ τ̃ βp
0.190 0.343 2.514

(0.120) (0.128) (1.872)

Table 4: Meta-study estimates from deworming data, with robust standard errors in
parentheses. Publication probabilities βp measured relative to omitted category of studies
significant at 5% level.

However, the standard errors are quite large, and the difference in publication

(inclusion) probabilities between significant and insignificant results is itself not sig-

nificant at conventional levels, so there is no basis for drawing a firm conclusion here.

Likewise, the estimated θ̄ suggests a positive average effect in the population, but is

not significantly different from zero at conventional levels.

In the supplement we report results based on alternative specifications which allow

the function p(·) to be asymmetric. These specifications suggest selection against

negative estimates.

Our findings here are potentially relevant in the context of the controversial debate

surrounding mass deworming; see for instance Clemens and Sandefur (2015). The

point estimates for our baseline specification suggest that insignificant results have

a higher likelihood of being included in Croke et al. (2016) relative to significant

ones. In light of the large standard errors and limited robustness to changing the

specification of p(·), however, these findings should not be interpreted too strongly.
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6 Conclusion

This paper contributes to the literature in three ways. First, we provide nonpara-

metric identification results for selectivity (in particular, the conditional publication

probability) as a function of the empirical findings of a study. Second, we provide

methods to calculate bias-corrected estimators and confidence sets when the form of

selectivity is known. Third, we apply the proposed methods to several literatures,

documenting the varying scale and kind of selectivity.

Implications for applied researchers What can applied researchers and readers

of empirical research take away from this paper? First, when conducting a meta-

analysis of the findings of some literature, researchers may wish to apply our methods

to assess the degree of selectivity in this literature, and to apply appropriate correc-

tions to individual estimates, tests, and confidence sets. We will provide code on our

webpages which implements the proposed methods for a flexible family of selection

models.5

Second, when reading empirical research, readers may wish to apply some “rule

of thumb” corrections to the published point estimates and confidence sets. Based on

our finding that publication probabilities increase by a factor of 10 for experimental

papers when exceeding the 5% significance threshold, the following corrections would

be appropriate (cf. Figure 4 in Section 4): If reported effects are close to zero, or very

far from zero (z-statistic bigger than 4), then these estimates can be taken at face

value. In intermediate ranges, magnitudes should be adjusted downwards, so that for

instance a reported z-statistic of 2 should be taken to indicate an effect (relative to

the standard error) of about 0.7.

It should be emphasized that we do not advocate using more stringent critical

values in the publication process, in a possible effort to obtain correct size control. If

more stringent values were to be systematically applied, this would simply entail an

“arms race” of selectivity, rendering the more stringent critical values invalid again.

Optimal publication rules One might take the findings in this paper, and the

debate surrounding publication bias more generally, to indicate that the publication

process should be non-selective with respect to findings. This might for instance be

5In progress.
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achieved by instituting some form of result-blind review. The hope would be that

non-selectivity of the publication process might restore the validity (unbiasedness,

size control) of standard inferential methods.

Note, however, that optimal publication rules may depend on results. Consider

for instance a setting where policy decisions are made based on published findings,

policy makers have a limited capacity to read publications, and journal editors maxi-

mize the same social welfare function as policy makers. In a stylized model of such a

setting, detailed in Section J of the supplement, we show that expected social welfare

is maximized by publishing the results which allow policy makers to update the most

relative to their prior beliefs. The corresponding publication rule favors the publica-

tion of surprising findings, thus violating non-selectivity. A more general theory of

optimal publication is of considerable interest for future research.
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Supplement to the paper

Identification of and correction for publication bias

Isaiah Andrews Maximilian Kasy

March 24, 2017

This appendix contains proofs and supplementary results for the paper “Iden-

tification of and correction for publication bias.” Section A collects proofs for the

results stated in the main text. Section B considers the behavior of meta-regression

coefficients, discussed in Section 3.3 of the main text, in a simple example. Section

C discusses the likelihoods used in our empirical applications. Section D states a

simple model for selection on both Z∗ and a latent variable V ∗. Section E provides

details on the empirical applications discussed in the main text, while Section F re-

ports additional results. Section G provides corrected inference plots, analogous to

Figure 4 of the main text, based on our psychology, minimum wage, and deworming

applications. Section H generalizes the inference results discussed in the main text to

multivariate normal settings, while Section I discusses the effect of selective publica-

tion on Bayesian inference. Finally, Section J discusses optimal selection in a stylized

model.
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A Proofs

Proof of Lemma 1: By construction, and Bayes rule

fX|Θ (x|θ) = fX∗|Θ,D(x|θ, 1)

=
P (Di = 1|X∗i = x,Θ∗i = θ)

P (Di = 1|Θ∗i = θ)
· fX∗|Θ∗(x|θ)

=
p (x)

E [p (X∗i ) |Θ∗i = θ]
· fX∗|Θ∗ (x|θ) .

�

Proof of Lemma 2: The conditional density follows by the same argument used

to derive the truncated likelihood in Lemma 1. As for the marginal density, by

construction,

fX,Xr (x, xr) = fX∗,X∗r|Di(x, x
r|d = 1)

=
P (Di = 1|X∗i = x,X∗ri = xr)

P (Di = 1)
· fX∗,X∗r(x, xr)

=
p (x)

E [p (X∗i )]
fX∗,X∗r(x, x

r),

and, since X∗i ⊥ X∗r|Θ∗i ,

fX∗,X∗r(x, x
r) =

∫
fX∗|Θ∗ (x|θ∗i ) fX∗|Θ∗ (xr|θ∗i ) dµ(Θ∗i ).

�
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Proof of Theorem 1: The marginal likelihood fX,Xr derived in Lemma 2 satisfies

fX,Xr(a, b) · p(b) = fX,Xr(b, a) · p(a)

for all a, b.

Let (a, b) ∈ A × A be any point such that fX,Xr(a, b) > 0, so that in particular

p(a) > 0. By the assumptions on the support of fX∗,X∗r and the data generating

process this implies that fX,Xr(a, c) > 0 for all c ∈ A.

This in turn implies that

p(c) = p(a) · fX,X
r(c, a)

fX,Xr(a, c)

for all c ∈ A, where p(a) is the only unknown on the right hand side. We thus find

that p(x) is identified up to scale. �

Proof of Corollary 1: In the case where σ ≡ 1, this is a special case of Theorem

1, and the claim immediately follows. (Note that (Z∗, Z∗r) has full support R2.) We

will show that we can reduce the case where σ 6≡ 1 to this special case. Let Z̃ be such

that

Z̃i|Z∗i , Di,Θ
∗
i ∼ N(Θ∗i , 1).

If fZ̃|Z is identified, we are done. Note that

fZ̃|Z = fΘ|Z ∗ ϕ,

and

fZr|Z,σ = fΘ|Z,σ ∗ ϕσ.

Based on the last equation, fΘ|Z,σ is identified using deconvolution (this is a standard

result; see for instance Wasserman 2006, Chapter 10.1). We then get

fΘ|Z =

∫
fΘ|Z,σfσ|Zdσ,

and identification of p(·) follows.

To show identification of µ, note that knowledge of p(·) up to scale allows us to
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recover the density fZ∗ via

fZ∗(z) =
E[p(Z∗)]

p(z)
fZ(z).

Deconvolution then identifies µ, since fZ∗ = µ ∗ ϕ. �

Proof of Corollary 2: Let S∗i = ±1 with probability 0.5, independently of

(Z∗i , Z
∗r
i , σ

∗
i ,Θ

∗
i ), and Sj = S∗Ij . Define

(V, V r) = S · (W,W r).

We show that (V, V r) satisfies the assumptions of Corollary 1, from which the claim

then follows.

Define S̃∗ = S∗ · sign(Z∗), so that (V, V r) = S̃ · (Z,Zr), and define Θ̃∗ = S̃∗ · Θ∗.
Since S̃ is independent of (Z,Zr, σ,Θ), we get

Θ̃∗ ∼ µ̃ = 1
2
(µΘ∗ + µ−Θ∗)

and

fV,V r,σ(v, vr, σ) = p(v) · fσ|Z∗(σ|v) ·
∫
ϕ(v − θ) · 1

σ
ϕ
(
vr−θ
σ

)
dµ̃(θ)∫

p(v′) · ϕ(v′ − θ)dv′dµ̃(θ)
.

This has the exact same form as the density of (Z,Zr, σ) under the symmetric measure

µ̃. The claim follows, since identification of µ̃ implies identification of the distribution

of |Θ∗|. �

Proof of Theorem 2: Under the setup considered, using the implied conditional

independence assumptions we get

fZr|Z,σ(zr, z, σ) =

∫
fZ∗r|σ,Z∗,D,Θ∗(z

r|σ, z, 1, θ)fΘ∗|σ,Z∗,D(θ|σ, z, 1)dθ

=

∫
ϕσ(zr − θ)fΘ∗|Z∗,D(θ|z, 1)dθ

= (fΘ|Z ∗ ϕσ)(zr|z).
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By deconvolution, this immediately implies that we can identify fΘ|Z . Since fZ is

directly identified, Bayes’ rule yields the desired result via

fZ|Θ(z|θ) =
fΘ|Z(θ|z) · fZ(z)∫
fΘ|Z(θ|z′) · fZ(z′)dz′

.

�

Proof of Theorem 3: Assume w.l.o.g. that σ = 1 lies in the interior of the

support of σ, and let

h(z) = fZ∗|σ∗(z|1).

If h(·) is identified, then so are p(·) and µ. We will show that h(·) is identified.

Once h(z) is identified, we get p(z) as before, since the truncated conditional density

of Z is given by

fZ|σ(z|σ) =
p (z)

E [p (Z∗) |σ]
fZ∗|σ∗(z|σ), (5)

and thus

p(z) = const. ·
fZ|σ(z|1)

h(z)
.

We can further identify µ by deconvolution given h, since h = µ ∗ ϕ.

A second order ODE for h(·). Let π = 1/σ be the precision of an estimate.

Differentiating the log of expression (5) for the truncated density at π = 1 yields

g(z) = ∂π log fZ|σ(z|1) = C1 + ∂π log fZ∗|σ∗(z|1) (6)

for a constant C1. Note how, as we differentiate log fZ|σ(z|1) with respect to π at a

given value z, the term p(z) drops out of the resulting equation. The function g is

identified under our assumptions.

Recall now that the definition of the standard normal density implies ϕ′(z) =

−zϕ(z). The density fX∗|σ∗ is given by µ∗ϕσ, and thus fZ∗|σ∗(z|1/π) =
∫
ϕ (z − θπ) dµ(θ),
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which implies

∂zfZ∗|σ∗(z|1) = −
∫

(z − θ)ϕ (z − θ) dµ(θ)

∂2
zfZ∗|σ∗(z|1) = −fZ∗|σ∗(z|1) +

∫
(z − θ)2 ϕ (z − θ) dµ(θ)

∂πfZ∗|σ∗(z|1) =

∫
θ (z − θ)ϕ (z − θ) dµ(θ)

= −
[
fZ∗|σ∗(z|1) + z · ∂zfZ∗|σ∗(z|1) + ∂2

zfZ∗|σ∗(z|1)
]
,

from which we conclude

h′′(z) = (C1 − 1− g(z)) · h(z)− z · h′(z). (7)

Equation (7) is a second order linear homogeneous ordinary differential equation.

Two free parameters Given the initial conditions h(0) = h0 and h′(0) = h′0, and

given C1, the solution to this equation exists and is unique, because all coefficients

are continuous in z; cf. Murphy (2011). Furthermore, the general solution to this

differential equation can be written in the form h(z, C1, h0, h
′
0) = h0 · h1(z, C1) +

h′0 · h2(z, C1), where the functions h1(·) and h2(·) are determined by equation (7);

cf. Murphy (2011), chapter B. This leaves three free parameters to be determined,

C1, h0 and h′0. The constraint
∫
h(z)dz = 1 pins down h0 or h′0 given the other two

parameters, so that there remain two free parameters.

A fourth order ODE for h(·). We next turn to the second derivative k(·) defined

by

k(z) = ∂2
π log fZ|σ(z|1) = C2 + ∂2

π log fZ∗|σ∗(z|1),

which is identified under our assumptions, just like g(·). Calculations similar to those

for the first derivative with respect to π yield the fourth order differential equation

h(4)(z) =
(
k(z)− C2 + (g(z)− C1)2 − 2

)
h(z)−4zh′(z)−(z2+5)h′′(z)−2zh(3)(z). (8)

To complete this proof, we now (i) derive the fourth order differential equation

(8) and (ii) show that it allows us to pin down the remaining free parameters. We

provide further discussion immediately following the proof.
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Derivation of the fourth order ODE for h(·) Differentiating log fZ∗|σ∗ twice

yields

∂2
π log fZ∗|σ∗(z|1) =

∂2
πfZ∗|σ∗(z|1)

h(z)
− (g(z)− C1)2 ,

so that

∂2
πfZ∗|σ∗(z|1) = h(z) ·

(
k(z)− C2 + (g(z)− C1)2) .

From fZ∗|σ∗(z|1/π) =
∫
ϕ (z − θπ) dµ(θ) we note that

∂2
πfZ∗|σ∗(z|1) =

∫ (
−θ2 + θ2 (z − θ)2)ϕ (z − θ) dµ(θ).

We furthermore have

h(3) = −3h′(z)−
∫

(z − θ)3 ϕ (z − θ) dµ(θ)

h(4) = −3h′′(z)− 3

∫
(z − θ)2 ϕ (z − θ) dµ(θ) +

∫
(z − θ)4 ϕ (z − θ) dµ(θ)

= −6h′′(z)− 3h(z) +

∫
(z − θ)4 ϕ (z − θ) dµ(θ).

Comparing coefficients on θ between ∂2
πfZ∗|σ∗ and the derivatives of h(·), we get the

fourth order differential equation (8).

The fourth order ODE pins down the remaining free parameters Our proof
is complete once we have shown that there is at most one set of values C1, C2, h0

and h′0 such that the resulting h satisfies the two differential equations (7) and (8).
Differentiating equation (7) three times yields

h′′(z) = (−1 + C1 − g(z))h(z) −zh′(z)
h(3)(z) = −g′(z)h(z) +(−2 + C1 − g(z))h′(z) −zh′′(z)
h(4)(z) = −g′′(z)h(z) −2g′(z)h′(z) +(−3 + C1 − g(z))h′′(z) −zh(3)(z)
h(5)(z) = −g(3)(z)h(z) −3g′′(z)h′(z) −3g′(z)h′′(z)

+(−4 + C1 − g(z))h(3)(z) −zh(4)(z),
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and differentiating equation (8) yields

h(4)(z) =
(
−2− C2 + (−C1 + g(z))2 + k(z)

)
h(z) −4zh′(z)

−
(
5 + z2

)
h′′(z) −2zh(3)(z),

h(5)(z) = (2(−C1 + g(z))g′(z) + k′(z))h(z) +
(
−6− C2 + (C1 − g(z))2 + k(z)

)
h′(z)

−6zh′′(z) +
(
−7− z2

)
h(3)(z) −2zh(4)(z).

We can iteratively eliminate the derivatives of h(·) from these equations by substitu-
tion. After doing so, we divide by h(z), which is possible since h(z) > 0 for all z by
construction. This yields the following equation involving the constants C1 and C2,
but not involving the function h(·) or any of its derivatives:

C2
1 + C2

2 + g(z)2 + k(z)2 − z2g′(z)2 + 4k(z)g′′(z) + 3g′′(z)2

− 2C2 (g(z) + k(z) + 2g′′(z)) + 2g(z)
(
k(z) + 2

(
g′(z)2 + g′′(z)

))
+ C1

(
2C2 − 2

(
g(z) + k(z) + 2

(
g′(z)2 + g′′(z)

)))
− 2g′(z)g(3)(z) = 2g′(z)k′(z)

This equation again has to hold for all z. Differentiating twice with respect to z

yields new equations where the constants C1 and C2 enter only linearly, and we can

explicitly solve for them.6

Substituting the solutions C1 and C2 back into one of the first order differential

equations we obtained by substitution and elimination of higher order derivatives

above, we obtain a solution for h′0 given h0. Given h0, h′0 and the constants C1 and

C2, equation (7) yields a unique solution h(z) for all z. Rescaling any solution h(·)
by a constant again yields a solution by linearity of the differential equations. h0 is

finally pinned down by the constraint
∫
h(z)dz = 1. �

Remarks:

• The proof of Theorem 3 shows that our model is overidentified. If we consider

higher order derivatives of equations (7) and (8), or alternatively evaluate them

at different values z, we obtain infinitely many restrictions on a finite number

of free parameters.

• The proof of identification is considerably simplified if we restrict the model to a

normal distribution for Θ∗, Θ∗ ∼ N(µ̄, τ 2), which implies Z∗|σ∗ = 1 ∼ N(µ̄, τ 2+

6The resulting expressions are unwieldy and so are omitted here, but are available on request.
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1), and thus h(z) = const.·exp
(
− 1

2(τ2+1)
(z − µ̄)2

)
. Denoting e(z) = ∂z log h(z),

we can rewrite equation (7) as

e′(z) = C1 − g(z)− 1− ze(z)− e2(z),

while the normality assumption yields e(z) = −(z − µ̄)/(τ 2 + 1) and e′(z) =

− 1
(τ2+1)

. Plugging in yields

− 1
(τ2+1)

= C1 − g(z)− 1 + z z−µ̄
(τ2+1)

−
(

z−µ̄
(τ2+1)

)2

.

Evaluating this equation at different values z pins down τ 2 and µ̄.

• The proof of Theorem 3 could be equivalently stated in terms of linear operators

rather than differential equations. In particular, the ordinary differential equa-

tions (7) and (8) are equivalent to the following two linear operator equations,

indexed by z and linear in µ, ∫
[θ (z − θ)− (g(z)− C1)]ϕ (z − θ) dµ(θ) = 0∫ [(

−θ2 + θ2 (z − θ)2)− (k(z)− C2 + (g(z)− C1)2)]ϕ (z − θ) dµ(θ) = 0

Identification is then equivalent to the “completeness condition” that there is

at most one probability measure µ in the orthocomplement of the span of the

functions of θ

[θ (z − θ)− (g(z)− C1)]ϕ (z − θ) and[(
−θ2 + θ2 (z − θ)2)− (k(z)− C2 + (g(z)− C1)2)]ϕ (z − θ).

Proof of Corollary 3: The proof proceeds like the proof of Corollary 2. Let

S∗i = ±1 with probability 0.5, independently of (X∗i , σ
∗
i ,Θ

∗
i ), and Sj = S∗Ij . Define

V = S · |X|. We show that (V, σ) satisfies the assumptions of Theorem 3, from which

the claim then follows.

Define S̃∗ = S∗ · sign(X∗), so that V = S̃ ·X, and define Θ̃∗ = S̃∗ ·Θ∗. Since S̃ is
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independent of (Z, σ,Θ), we get Θ̃∗ ∼ µ̃ = 1
2
(µΘ∗ + µ−Θ∗) and

fV/σ|σ(z|σ) =
p(z) ·

∫
ϕ(z − θ/σ)dµ̃(θ)∫

p(z′)ϕ(z′ − θ/σ)dz′dµ̃(θ)
.

This has the exact same form as the density of Z given σ under the symmetric

measure µ̃. The claim follows, where we again use the fact that identification of µ̃

implies identification of the distribution of |Θ∗|. �

Proof of Theorem 4 For the first claim, note that since FX|Θ(x|θ) tends to zero

as θ → −∞ and tends to one as θ → ∞, for any x and any α ∈ (0, 1) there exist

θl(x) and θu(x) such that

FX|Θ(x|θu(x)) < α < FX|Θ(x|θl(x)),

where since FX|Θ(x|θ) is decreasing in θ we know that θl(x) < θu(x). Thus, since

FX|Θ(x|θ) is continuous in θ, the intermediate value theorem implies that there exists

θ̂α(x) ∈ (θl(x), θu(x)) such that FX|Θ

(
x|θ̂α (x)

)
= α. Since FX|Θ(x|θ) is strictly

decreasing we know this θ̂α(x) is unique, while its strict monotonicity and continuity

likewise follow from strict monotonicity and continuity of FX|Θ in both arguments.

For the second claim, note that since FX|Θ(x|θ) is strictly decreasing in θ, we

have θ̂α(x) ≤ θ if and only if FX|Θ(x|θ) ≤ α. Continuity of FX|Θ(x|θ) in x, however,

means that X is continuously distributed conditional on Θ = θ for all θ, and thus

that FX|Θ(X|θ) is uniformly distributed conditional on Θ = θ. Thus,

P
(
FX|Θ(x|θ) ≤ α|Θ = θ

)
= α,

so

P
(
θ̂α (X) ≤ θ|Θ = θ

)
= α for all θ,

as we aimed to show. �

Proof of Lemma 5 Under the stated assumptions, Lemma 1 implies that X is

continuously distributed under all θ ∈ R, with density given by (1). To prove the

strict monotonicity of FX|Θ(x|θ) in θ, we adapt the proof of Lemma A.1 in Lee et al.

(2016).
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In particular, note that for x1 > x0 and θ1 > θ0,

fX|Θ(x1|θ1)

fX|Θ(x0|θ1)
>
fX|Θ(x1|θ0)

fX|Θ(x0|θ0)
,

as can be verified from multiplying out these expressions. This means, however, that

fX|Θ(x1|θ1)fX|Θ(x0|θ0) > fX|Θ(x1|θ0)fX|Θ(x0|θ1).

Integrating both sides with respect to x0 from −∞ to x < x1, and with respect to x1

from x to ∞, we obtain that

(1− FX|Θ(x|θ1))FX|Θ(x|θ0) > (1− FX|Θ(x|θ0))FX|Θ(x|θ1),

and thus that FX|Θ(x|θ0) > FX|Θ(x|θ1). Since this argument applies for all x and all

θ0, θ1, we have shown that FX|Θ(x|θ) is strictly decreasing in θ for all x.

To prove that FX|Θ(x|θ) → 0 as θ → ∞, note that by our assumption that

p(x) is almost everywhere continuous, for any x0 there exists a point x1 > x0, and

an open neighborhood (x1 − ε, x1 + ε) of x1 such that p(·) is continuous on the

closure of this neighborhood, and x0 < x1 − 2ε. Note, however, that for θ > x1 + ε,

fX|Θ(x|θ) for x ≤ x0 is bounded above by ϕ((x − θ)/σ)/(σ · E[p(X)|Θ∗ = θ]). On

the other hand, the infimum of fX|Θ(x|θ) over (x1 − ε, x1 + ε) is bounded below by

pl · ϕ((x1 − ε− θ)/σ)/(σ · E[p(X)|Θ∗ = θ]) for

pl = inf
x∈[x1−ε,x1+ε]

p(x) > 0.

Integrating and taking the ratio, we see that

P (x ≤ x0|Θ = θ)

P (x ∈ (x1 − ε, x1 + ε)|Θ = θ)
≤ Φ((x0 − θ)/σ)

2εpl · ϕ((x1 − ε− θ)/σ)/σ
.

This expression can in turn be bounded above by

Φ((x0 − θ)/σ)

2εpl · ϕ((x0 − θ)/σ)/σ
,

which is proportional to Mill’s ratio and tends to zero and θ →∞ (see, for example,

Baricz (2008)). This immediately implies that FX|Θ(x0|θ)→ 0, as we aimed to show.
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The claim that FX|Θ(x|θ)→ 1 as θ →∞ can be proved analogously. �

B Interpretation of meta-regression coefficients

In Section 3.3 of the main text we discussed meta-regressions. We noted that under

our assumptions meta-regressions deliver a valid test of the null of no selectivity. We

also noted, however, that in the presence of selectivity the function E[Z|1/σ = π] is

in general non-linear, and the slope of the best linear predictor cannot be interpreted

as a selection-corrected estimate of E[Θ∗].

To see this, consider the following simple example. Suppose that Θ∗ ≡ θ̄ > 0, so

there is no parameter heterogeneity across latent studies, and that p(Z) = 1(Z > zc),

so there is strict selection on significant, positive effects. Let ε ∼ N(0, 1), and let m

be the inverse Mill’s ratio, m(x) = ϕ(x)
1−Φ(x)

. Then

E[Z|1/σ = π] = E[πθ̄ + ε|πθ̄ + ε > zc] = πθ̄ +m
(
zc − πθ̄

)
.

This is a nonlinear function of π, and the slope and intercept of the best linear

predictor approximating this function both depend on the distribution of π (that is,

of σ). If σ takes on only small values, and thus π only takes on large values, the Mill’s

ratio term is negligible, and E∗[Z|1/σ = π] ≈ πθ̄. If σ takes on only large values, a

first order approximation around π = 0 yields

E∗[Z|1/σ = π] ≈ m(zc) + θ̄(1−m′(zc)) · π.

This shows in particular that the slope, which in this example equals θ̄(1 −m′(zc)),
is in general different from the average effect θ̄, so that meta-regressions cannot be

expected to deliver bias-corrected estimates of E[Θ∗].

54



C Likelihood and parametric specifications

C.1 Systematic replications

Under the replication setup of display (2), the marginal density of Z,Zr, σ is

fZ,Zr,σ(z, zr, σ) =
p(z)

∫
ϕ(z − θ) · 1

σ
ϕ
(
zr−θ
σ

)
dµ(θ)∫∫

p(z′) · ϕ(z′ − θ)dz′dµ(θ)
fσ∗|Z∗(σ|z). (9)

Denoting the total number of observations by J , the joint likelihood of the observed

sample ((z1, z
r
1, σ1), ..., (zJ , z

r
J , σJ)) is L(p, µ) =

∏J
j=1 fZ,Zr,σ(zj, z

r
j , σj). To fit a given

model, we maximize this likelihood with respect to p(·) and µ. Since fσ∗|Z∗ enters

multiplicatively, it plays no role in maximum likelihood estimation of p(·) and µ.

Hence, we drop this term from the likelihood used in estimation.

To model p(·), similar to Hedges (1992) we consider step functions

p(z) ∝
K∑
k=1

βp,k · 1 (ζk−1 ≤ z < ζk) ,

where −∞ = ζ0 < ζ1 < . . . < ζK = ∞ are fixed cutoffs. Since p(·) is only identified

up to scale, we normalize βp,K = 1 and estimate βp,1, ..., βp,K−1. Thus βp,k can be

interpreted as the publication probability for a latent study with Z∗ between ζk−1

and ζk, relative to a latent study with Z∗ ≥ ζK−1. Finally, to model µ we assume that

Θ∗ is normally distributed with mean θ̄ and variance τ 2, and hence that

(Z∗, Z∗r, σ∗) ∼ N

((
θ̄

θ̄

)
,

(
τ 2 + 1 τ 2

τ 2 τ 2 + σ∗2

))
· fσ∗|Z∗

Under these assumptions the likelihood is available in closed form, simplifying esti-

mation.

Sign normalization As noted in the discussion preceding Corollary 2, the sign of

the initial estimate is normalized to be positive in both of our replication datasets.7 In

these applications, we thus follow the approach of Corollary 2 and assume that p(·) is

7Each study in these datasets considers a different treatment, so the relative signs of effects across
studies are arbitrary. Hence, setting the sign of the initial estimate in each study to be positive has
the desirable effect of ensuring invariance to the sign normalization chosen by the authors of each
study.
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symmetric around zero. We conduct estimation based on the normalized z-statistics

(W,W r) = sign(Z) · (Z,Zr) using the marginal likelihood

fW,W r,σ(w,wr, σ) = fZ,Zr,σ(w,wr, σ) + fZ,Zr,σ(−w,−wr, σ).

In this setting, Corollary 2 implies that β1, ...βk−1 and τ are identified, while θ̄ is

identified up to sign. Identification of θ̄ is irregular at θ̄ = 0, however, in the sense that

the Fisher information for this parameter is zero, yielding nonstandard asymptotic

behavior for the maximum likelihood estimator. Since a modal true effect of zero

seems reasonable for the experimental economics and psychology settings we consider,

we fix θ̄ = 0 in these specifications. If we instead estimate this parameter, the MLE

is exactly zero in all our sign-normalized applications.

Specification test As noted in Section 3.1.3, replication data allows us to identify

models where conditional publication probabilities may depend on both Z∗ and Θ∗.

We use these models to check our baseline specifications. Note that in principle any

model that nests the null of no dependence of p(·) on Θ∗ given Z∗ can be used to

construct a valid test of this null. The specific model we consider determines where

power is directed. In Section D we introduce a model where publication decisions

depend both on Z∗ and on whether a 5% z-test based on an unobserved independent

normal estimate rejects Θ∗ = 0. This yields a conditional publication probability of

the form

p (z, θ) =
K∑
k=1

(βp,k + γp,k ·Ψ(θ)) · 1 {ζk−1 ≤ z < ζk} , (10)

for

Ψ(θ) =
Φ(1.96− θ)− Φ(−1.96− θ)− Φ(1.96) + Φ(−1.96)

Φ(1.96) + Φ(−1.96)
,

where Φ is the standard normal distribution function. This model implies that the

publication probability is βp,k when Z∗ is in bracket k and Θ∗ is zero, while the

publication probability is approximately βp,k + γp,k when Z∗ is in bracket k and |Θ∗|
is large. Setting γp = 0 recovers our baseline model, so testing H0 : γp = 0 allows us

to test our baseline specifications.
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C.2 Meta-studies

In the meta-study context, the marginal likelihood of (X, σ) is

fX,σ(x, σ) =
p(x

σ
) ·
∫
ϕ
(
x−θ
σ

)
dµ(θ)∫

p(x
′

σ
) · ϕ

(
x′−θ
σ

)
dx′dµ(θ)

f ∗σ(σ). (11)

Again denoting the total number of observations by J, this yields joint likelihood

L(p, µ) =
∏J

j=1 fX,σ(xj, σj), which we again use to estimate p(·) and µ. As before, fσ

enters multiplicatively and need not be specified. Also as before, we consider step

function specifications for p(·) and assume that Θ∗ is N(θ̄, τ 2) distributed, so

(X∗, σ∗) ∼ N(θ̄, τ 2 + σ2) · fσ(σ∗).

Under these assumptions, the marginal likelihood (11) is again available in closed

form.

Sign normalization In contexts where the sign of the initial estimate has been

normalized to be positive, we follow the analog of the approach described above,

restricting p(·) to be symmetric and conducting estimation based on |X| = W ·σ and

σ. Identification of θ̄ is again irregular at zero, and we fix it at θ̄ = 0.

Note that meta-regressions, as discussed in section 3.3, do not yield a valid test

of the null of no selectivity when using sign-normalized data. Regressions of |X| on

σ can have a non-zero slope even when p(·) is constant, and regressions of |Z| on 1/σ

can have a non-zero intercept. For this reason, we do not discuss meta-regression

results in sign-normalized applications.

D Latent selection model

The baseline model we consider assumes that E[D = 1|X∗,Θ∗] = p(X∗), so that

there is no dependence of publication probabilities on the latent parameter given X∗.

In the context of systematic replication studies with normally distributed estimates,

however, we showed that a more general class of models which allows for dependence

of p(·) on Θ∗ is identified. In Section C.1 we introduced a parametric specification for

such a more general model, which we then estimate to provide a specification check

for our baseline model.
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The parametric specification introduced in Section C.1 can be derived as follows.

Assume that publication decisions are based on(
Z∗

V ∗

)
|Θ∗ ∼ N

((
Θ∗

Θ∗

)
,

(
1 0

0 1

))
,

where V ∗ is a second, independent estimate of the true effect Θ∗, with the same

variance as Z∗. Assume further that

Di|Z∗i , V ∗i ,Θ∗i ∼ Ber (p (Z∗i , V
∗
i )) ,

so publication decisions are based on Z∗i and V ∗i . Since V ∗i is unobserved, integrating

over its distribution gives publication probabilities of the form p(Z∗,Θ∗).

We want our specification for p (z, v) to nest our baseline specifications,

p (z) =
K∑
k=1

βp,k1 {ζk−1 ≤ z < ζk} .

To ensure this, we consider the generalized specification

p (z, v) =

∑K
k=1 β̃

1
p,k1 {ζk−1 ≤ z < ζk, |v| ≥ ζV }

+
∑K

k=1 β̃
0
p,k1 {ζk−1 ≤ z < ζk, |v| < ζV } ,

which allows publication probabilities to depend on whether two-sided z-tests based

on the latent variable v reject Θ∗ = 0. Integrating over the distribution of V ∗ yields

the following specification for p (z, θ):

p (z, θ) =

∑K
k=1 β̃

1
p,k1 {ζk−1 ≤ z < ζk}

(
1− Ψ̃ (ζV , θ)

)
+
∑K

k=1 β̃
0
p,k1 {ζk−1 ≤ z < ζk} Ψ̃ (ζV , θ) ,

where

Ψ̃ (ζV , θ) = Pr {|V | < ζV |Θ∗ = θ} = Φ (ζV − θ)− Φ (−ζV − θ) .

As noted in the main text, p (z, θ) is only nonparametrically identified up to a

normalization for each value θ. Analogous to our baseline specifications, here we

impose the normalization β̃1
p,K = β̃0

p,K = 1. To obtain the specification discussed in
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Section C.1, we then define

βp,k = β̃1
p,k + Ψ̃(ζV , 0) · (β̃0

p,k − β̃1
p,k),

γp,k =
(
β̃1
p,k − β̃0

p,k

)
· Ψ̃ (ζV , 0) ,

and

Ψ(ζV , θ) =
Ψ̃ (ζV , θ)− Ψ̃ (ζV , 0)

−Ψ̃ (ζV , 0)
,

which yields the specification

p (z, θ) =
K∑
k=1

(βp,k + γp,k ·Ψ(ζV , θ)) · 1 {ζk−1 ≤ z < ζk} .

Note that our normalization now implies that βp,K = 1 and γp,K = 0. For our speci-

fication tests we set ζV = 1.96, corresponding to a 5% test based on V ∗.

E Details on data and variable construction

In this section, we give additional details on our applications in Section 5 of the main

text and discuss how we cast the data of Camerer et al. (2016) and Open Science

Collaboration (2015) into our framework.

E.1 Details for economics laboratory experiments

To apply our approach, we need z-statistics and standard errors for both the original

and replication studies. For the application to data from Camerer et al. (2016), we

first collect p-values and standardized effect sizes from table S1 in the supplement.

Some of the p-values are censored below at .001, so for these studies we also collect the

original estimates and standard errors from the replication reports posted online by

Camerer et al.8 and recompute the censored p-values. We then construct z-statistics

by inverting the p-value transformation, where z = Φ−1(1−p/2). To obtain effect size

estimates, we apply the Fisher transformation to standardized effect sizes reported

by Camerer et al. Dividing these estimates by the z-statistics finally recovers the

8Available at https://experimentaleconreplications.com/replicationreports.html, ac-
cessed September 3, 2016.
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standard error.

We can infer the sign of the z-statistics from the sign of the standardized effect.

Since signs are arbitrary and not comparable across studies, however, we normalize

all signs to be positive.

E.2 Details for psychology laboratory experiments

To apply our approach to the data from Open Science Collaboration (2015), we again

need z-statistics and standard errors for both the original and replication studies. We

draw the inputs for all of these calculations from the RPPdataConverted spreadsheet

posted online by the Open Science Collaboration.9 Since Open Science Collaboration

(2015) report p-values for both the original and replication studies, we invert the p-

value transform to obtain z statistics. We use the p-values reported in their columns

T.pval.USE.O and T.pval.USE.R for the original and replication studies, respectively.

Since some of the p-values in this application are based on one-sided tests, we account

for this in the inversion step. To compute effect size estimates, we again apply the

Fisher transformation to the standardized effect sizes (columns T.r.O and T.r.R of

RPPdataConverted for the original and replication studies, respectively), and then

divide these estimates by the z-statistics to construct standard errors.

F Additional empirical results

F.1 Additional results for psychology laboratory experiments

Here we report results based on two alternative specifications for the psychology

replication data from Open Science Collaboration (2015). First, we limit attention

to studies with a large number of denominator degrees of freedom. Second, we limit

attention to studies where the replication protocols were approved by the original

authors.

Denominator degrees of freedom As noted in the main text, our baseline anal-

ysis of the Open Science Collaboration (2015) data focuses on studies that use z- or

t-statistics (or the squares of these statistics). Our analysis then treats these statis-

tics as approximately normal. A potential problem here is that t-distributions with a

9Available at https://osf.io/ytpuq/files/, accessed January 19, 2017.
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small number of degrees of freedom behave differently from normal distributions, and

in particular have heavier tails. While the smallest degrees of freedom in the Open

Science Collaboration (2015) data is seven, this concern may still lead us to worry

about the validity of our approach in this setting. To address this concern, in Table

5 we report parameter estimates using the replication and meta-study specifications

discussed in Section 5.2, where

p(Z) ∝


βp,1 |Z| < 1.64

βp,2 1.64 ≤ |Z| < 1.96

1 |Z| ≥ 1.96,

except that we now limit attention to the 52 observations with denominator degrees

of freedom at least 30 in the original and study.10 As these results make clear, our

results are broadly similar for this restricted sample and for the full data.

Replication

τ βp,1 βp,2
1.181 0.019 0.217

(0.257) (0.014) (0.125)

Meta-study

τ̃ βp,1 βp,2
-0.221 0.030 0.327
(0.046) (0.021) (0.190)

Table 5: Selection estimates from lab experiments in psychology, restricted to observations
with denominator degrees of freedom at least 30, with standard errors in parentheses. The
left panel reports estimates from replication specifications, while the right panel reports
results from meta-study specifications. Publication probability βp is measured relative to
omitted category of studies significant at 5% level.

Approved replications As discussed in the main text, Gilbert et al. (2016) argue

that some of the replications in Open Science Collaboration (2015) deviated substan-

tially from the protocol of the original studies, which might lead to a violation of

our assumption that the replication and original results are generated by the same

underlying parameter Θ. Before conducting their replications, however, Open Science

Collaboration (2015) asked the authors of each original study to review the proposed

10We screen only on the degrees of freedom in the original study since sample sizes, and thus
degrees of freedom, in the replication studies depend on the results in the initial study. Hence,
screening on replication degrees of freedom has the potential to introduce additional selection on
the results of the original study. That said, screening on degrees of freedom for both the original
and replication studies yields a sample of 49 studies and extremely similar results to those reported
here.
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replication protocol, and recorded whether the original authors endorsed the replica-

tion protocol. We can thus partly address this critique by limiting attention to the

subset of studies where the replication was endorsed by the authors of the original

study. Re-estimating the specifications of Section 5.2 on the 51 endorsed replications,

we obtain the estimates reported in Table 6. These estimates suggest a somewhat

smaller degree of selection than our baseline estimates, consistent with a higher rate

of replication for approved replications, but are broadly similar to our other estimates.

Replication

τ βp,1 βp,2
1.385 0.038 0.512

(0.272) (0.024) (0.239)

Meta-study

τ̃ βp,1 βp,2
0.272 0.042 0.621

(0.055) (0.027) (0.300)

Table 6: Selection estimates from lab experiments in psychology, approved replications,
with standard errors in parentheses. The left panel reports estimates from replication spec-
ifications, while the right panel reports results from meta-study specifications. Publication
probability βp is measured relative to omitted category of studies significant at the 5% level.

F.2 Additional results for minimum wage meta-study

As noted in the main text, the data from Wolfson and Belman (2015) include estimates

from both published and working papers. While our analysis in the main text uses

the full data, Table 7 reports estimates of the model

Θ∗ ∼ N(θ̄, τ̃ 2), p(X/σ) ∝



βp,1 X/σ < −1.96

βp,2 −1.96 ≤ X/σ < 0

βp,3 0 ≤ X/σ < 1.96

1 X/σ ≥ 1.96

based on the subset of published papers, consisting of 705 estimates drawn from 31

studies. As in the main text we cluster our standard errors at the study level. The

resulting estimates are broadly similar to those obtained on the full sample.

F.3 Additional results for deworming meta-study

In the main text, we report estimates for the deworming data of Croke et al. (2016)

based on a specification that restricts p(·) to be symmetric around zero. To comple-
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θ̄ τ̃ βp,1 βp,2 βp,3
-0.019 0.145 0.345 0.453 0.651
(0.045) (0.034) (0.171) (0.230) (0.250)

Table 7: Meta-study selection estimates from minimum wage data, published studies, with
standard errors in parentheses. Publication probability βp is measured relative to omitted
category of studies estimating a positive effect significant at the 5% level.

ment those results, here we consider the more flexible specification

Θ∗ ∼ N(θ̄, τ 2), p(X/σ) ∝



βp,1 X/σ < −1.96

βp,2 −1.96 ≤ X/σ < 0

βp,3 0 ≤ X/σ < 1.96

1 X/σ ≥ 1.96.

Results based on this specification are reported in Table 8. These estimates differ sub-

stantially from those reported in the main text, and suggest strong selectivity against

negative estimates, particularly negative and significant estimates. However, as can

be seen from Figure 10 in the main text there is only a single negative and statisti-

cally significant estimate in the sample, so the reliability of conventional asymptotic

approximations here is highly suspect.

θ̄ τ̃ βp,1 βp,2 βp,3
-0.714 0.521 0.008 0.151 1.299
(0.626) (0.206) (0.025) (0.207) (1.113)

Table 8: Meta-study selection estimates from deworming wage data, flexible specification,
with standard errors in parentheses. Publication probability βp is measured relative to
omitted category of studies estimating a positive effect significant at the 5% level.

To reduce the number of free parameters, we estimate a version of the model which

does not allow discontinuities in p(·) based on statistical significance, but only based

on the sign of the estimate,

Θ∗ ∼ N(θ̄, τ 2), p(X/σ) ∝

βp X/σ < 0

1 X/σ ≥ 0.
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Fitting this model to the data yields the estimates reported in Table 9. These es-

timates suggest strong selectivity on the sign of the estimated effect, where positive

effects are estimated to be ten times more likely to be published than negative effects.

While this is consistent with the distribution of observations in Figure 10, our choice

of this specification was driven by our results in Table 8. Given that this is a form

of specification search, it suggests that conventional asymptotic approximations may

be unreliable here, and thus that these results should be treated with caution.

θ̄ τ̃ βp
-0.217 0.365 0.094
(0.156) (0.103) (0.099)

Table 9: Meta-study selection estimates from deworming wage data, restricted asymmetric
specification, with standard errors in parentheses. Publication probability βp is measured
relative to omitted category of studies estimating a positive effect significant at the 5% level.

G Bias corrections based on applications

In this section, we plot our median unbiased estimators and corrected confidence

sets, analogous to Figure 4 of the paper, based on the selection estimates from our

applications. The estimates based on the Camerer et al. (2016) data match those used

to generate Figure 4, so we do not plot this again. Corrections based on replication

estimates from the Open Science Collaboration (2015) data are plotted in Figure 11.

Corrections based on estimates from the Croke et al. (2016) data are plotted in figure

12. Finally, corrections based on estimates using data from Wolfson and Belman

(2015) are reported in Figure 13.

H Inference when selection depends on multiple

variables

In this section, we extend the frequentist inference results developed in the main text

to cases where publication decisions are based not just on a scalar, but instead on a

normally distributed vector of estimates. Let X∗i represent the estimates from study
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Figure 11: This figure plots frequentist
95% confidence bounds and the median
unbiased estimator for the selection es-
timates based on replication data from
Open Science Collaboration (2015). The
usual (uncorrected) estimator and confi-
dence bounds are plotted in grey for com-
parison.
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Figure 12: This figure plots frequentist
95% confidence bounds and the median
unbiased estimator for the selection es-
timates based on replication data from
Croke et al. (2016). The usual (uncor-
rected) estimator and confidence bounds
are plotted in grey for comparison.
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Figure 13: The
figure to the left plots
frequentist 95% confi-
dence bounds and the
median unbiased esti-
mator for the selection
estimates based on
replication data from
Wolfson and Belman
(2015). The usual (un-
corrected) estimator
and confidence bounds
are plotted in grey for
comparison.
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i, and assume that

X∗i |Θ∗i ∼ N (Θ∗i ,Σ)

for Σ known. Assume that Σ is constant across latent studies i; the generalization to

the case where latent study i has variance Σ∗i is immediate. Since X∗i is a vector, Σ

is a matrix. We thus get the following density for X∗ given Θ∗:

Assumption 1

The distribution fX∗|Θ∗ (x|θ) is multivariate normal with mean θ and variance Σ:

fX∗|Θ∗ (x|θ) = (2π)−
k
2 |Σ|−

1
2 exp

(
−1

2
(x− θ)′Σ−1 (x− θ)

)
.

We consider inference on Γ = v′Θ for a known non-zero vector v, treating the

other elements of Θ, denoted Ω, as nuisance parameters. To conduct inference on

the ith element of Θ we can simply take v to be the ith standard basis vector. To

illustrate our results, we consider the example of difference in differences estimation,

with selection on both statistical significance and a test for parallel trends.

H.1 Illustrative example: difference in differences

Suppose we observe data from two states, s ∈ {1, 2} over three time periods t ∈
{1, 2, 3}. Denote the average outcome for residents of state s at time t by Yst, and

note that under regularity conditions, Yst will be approximately normally distributed

Yst ∼ N
(
µst, σ

2
st

)
.

For simplicity we assume that Yst is independent of Ys′t′ if s 6= s′ or t 6= t′.

Suppose we are interested in estimating the effect of a particular state-level policy,

and let Dst be a dummy for the presence of the policy in state s at time t. The

difference in differences model (with no control variables) assumes that

µst = αs + βt +Dstγ.

If we are interested in the effect of a policy enacted in state 1 in period 3 and nowhere

else in the sample, for example, we would take

Dst = {s = 1, t = 3} .
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A key identifying assumption in the difference-in-differences model is that the only

source of variation in µst at the state-by-time level is the policy change of interest.

In particular, while we allow state fixed effects αs and time fixed effects βt, we rule

out state-time-specific effects other than those acting through Dst. This is known as

the parallel trends assumption.

With only two periods of data this assumption is untestable, since we have four

free parameters (α1, α2, β2, γ) and only four means (µ11, µ12, µ21, µ22). With data from

an additional time period, however, we have five free parameters and six means and

so can instead consider the model

µst = αs + βt + D̃stλ+Dstγ

where

D̃st = {s = 1, t = 2}

and the parallel trends assumption implies that λ = 0. Thus, given data from two

states in three time periods the parallel trends assumption is testable.

Formal and informal tests of parallel trends are common in applications of differ-

ence in differences strategies. To describe a formal test in our setting, note that the

natural estimator (G,L) for (γ, λ) has a simple form,

(G,L) = ((X13 −X12)− (X23 −X22) , (X12 −X11)− (X22 −X21)) .

To test the parallel trends assumption in this setting we again want to test that λ,

the mean of L, is equal to zero.

Consider a population of latent studies with the structure just described, and

let us further simplify the model by setting σst = 1 for all t. For latent estimates

X∗ = (G∗, L∗) and latent true effects Θ∗ = (Γ∗,Λ∗),(
G∗

L∗

)∣∣∣∣∣
(

Γ∗

Λ∗

)
∼ N

((
Γ∗

Λ∗

)
,

(
4 2

2 4

))

where the covariance matrix is known.

As in our illustrative example in the main text, assume studies that reject γ = 0

at the 5% level are ten times more likely to be published than studies that do not.

In addition, assume studies that reject λ = 0 at the 5% level are ten times less likely
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Figure 14: This figure plots the median
bias of (G) /σG in the difference in differ-
ences example.

Figure 15: This figure plots the cover-
age of conventional 95% confidence sets
in the difference in differences example.

to be published than studies that do not. This leads to publication probability

p (X) ∝ 1

{
|G∗|
σG

> 1.96,
|L∗|
σL
≤ 1.96

}
1 + 1

{
|G∗|
σG

> 1.96,
|L∗|
σL
≥ 1.96

}
0.1

+1

{
|G∗|
σG
≤ 1.96,

|L∗|
σL
≤ 1.96

}
0.1 + 1

{
|G∗|
σG
≤ 1.96,

|L∗|
σL

> 1.96

}
0.01.

This publication rule favors studies that find significant difference in difference esti-

mates, and disfavors studies that reject the parallel trends assumption.

To illustrate the effect of selective publication in this setting, Figure 14 plots

the median bias of G as an estimator for γ (scaled by the standard deviation σG

of G∗). Selective publication results in large bias for the conventional estimator

G, which depends on both the parameter of interest γ and the nuisance parameter

λ. Analogously, Figure 15 plots the coverage of the usual two-sided confidence set

G∗ ± 1.96σG, and shows that selective publication results in substantial coverage

distortions.

H.2 Sufficient statistic for nuisance parameter

To conduct inference on γ, treating ω as a nuisance parameter, it will be helpful

to derive a sufficient statistic for ω. Note that for M (v) a (dim (X)− 1) × dim (X)

68



matrix such that M (v)
(
I − Σvv′

v′Σv

)
has full row-rank,

(G (x) ,W (x)) =

(
v′x,M (v)

(
I − Σvv′

v′Σv

)
x

)
is a one-to one transformation of x. Thus (G,W ) = (G (X) ,W (X)) are jointly

sufficient for θ, and rather than basing inference on X we can equally well base

inference on (G,W ). Note moreover that for G∗ = G (X∗) and W ∗ = W (X∗) ,

X∗ ∼ N (θ,Σ) implies that(
G∗

W ∗

)
∼ N

((
γ

ω

)
,

(
σ2
G 0

0 ΣW

))
(12)

for ω = M (v)
(
I − Σvv′

v′Σv

)
θ, σ2

G = v′Σv, and ΣW = M (v)
(
I − Σvv′

v′Σv

)
Σ
(
I − vv′Σ

v′Σv

)
M (v)′.

Thus the conditional distribution of G∗ given W ∗ depends only on γ,

G∗|W ∗ ∼ N (γ, σ∗G) ,

and by conditioning on W ∗ we can eliminate dependence on the nuisance parameter

ω. This property continues to hold for the conditional distribution of published G

given W , as the following lemma shows.

Lemma 6

Under Assumption 1, the conditional density G|W,Γ is given by

fG|W,Γ (g|w, γ) =
p (g, w)

E [p (G∗,W ∗) |W ∗ = w,Γ∗ = γ]

1

σG
φ

(
g − γ
σG

)
(13)

for φ the standard normal density, where we use the fact that (g, w) is a one-to-one

transformation of x to write p (g, w) = p (x (g, w)) .

Proof of Lemma 6 Note that we can draw from the conditional distribution

G|W = w,Γ = γ by drawing from the conditional distribution G∗|W ∗ = w,Γ∗ = γ

and discarding the draw G∗ with probability 1 − p (G∗, w). The result then follows

by the same argument as Lemma 1. �

Thus, we see that the conditional density of G given W depends only on the

parameter of interest γ and not on the nuisance parameter ω. Hence, by conditioning

on W we can eliminate the nuisance parameter and conduct inference on γ alone.
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H.3 Optimal quantile-unbiased estimates

To conduct frequentist inference, we generalize the median-unbiased estimator and

equal-tailed confidence set proposed in Section 4 to the present setting. Using a

result from Pfanzagl (1994) we show that the resulting quantile-unbiased estimators

are optimal in a strong sense.

Formally, define γ̂α (X) by

FG(X)|W (X),Γ (G|W, γ̂α (X)) = α.

This estimator is simply the value γ such that the observed G lies at the α quantile

of the corresponding conditional distribution given W . The following theorem, based

on the results of Pfanzagl (1994), shows that this estimator is both quantile-unbiased

and, in a strong sense, optimal in the class of quantile-unbiased estimators.

Theorem 5

Let Assumption 1 hold, and assume further that the conditional distribution of G given

W is absolutely continuous for all γ and almost every W , and that the parameter space

for ω given γ contains an open set for all γ. Then

1. The estimator γ̂α (X) is level-α quantile unbiased:

Pr {γ̂α (X) ≤ γ|Θ = (γ, ω)} = α for all γ, ω,

2. This estimator is uniformly most concentrated in the class of level-α quantile-

unbiased estimators, in the sense that for any other level-α quantile unbiased

estimator γ̃ (X) and any loss function L (d, γ) that attains its minimum at d = γ

and is increasing as d moves away from γ,

E [L (γ̂α (X) , γ) |Θ = (γ, ω)] ≤ E [L (γ̃ (X) , γ) |Θ = (γ, ω)] for all γ, ω.

Proof of Theorem 5 Since the multivariate normal distribution belongs to the

exponential family, we can write

fG∗,W ∗|Θ∗ (g, w|θ) = h̃ (g, w) r̃ (γ (θ) , ω (θ)) exp
(
γ (θ) g + ω (θ)′w

)
.
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By the same argument as in the proof of Lemma 1, this implies that

fG,W |Θ (g, w|θ) = h (g, w) r (γ (θ) , ω (θ)) exp (γ (θ) g) exp
(
ω (θ)′w

)
(14)

for h (g, w) = p (g, w) h̃ (g, w) and

r (γ, ω) =
r̃ (γ, ω)

E [p (X∗i ) |Θ∗i = θ (γ, ω)]
.

The density (14) has the same structure as (5.5.14) of Pfanzagl (1994), and satisfies

properties (5.5.1)-(5.5.3) of Pfanzagl (1994) as well. Part 1 of the theorem then follows

immediately Theorem 5.5.9 of Pfanzagl (1994).

Part 2 of the theorem follows by using Theorem 5.5.9 of Pfanzagl (1994) along

with (14) to verify the conditions of Theorem 5.5.15 of Pfanzagl (1994). �

Using this result we see that γ̂ 1
2

(X) is the optimal median-unbiased estimator for

the parameter of interest γ. A natural level-α confidence interval to accompany this

estimator is then the equal-tailed confidence interval

CS =
[
γ̂1−α

2
(X) , γ̂α

2
(X)

]
.

Difference in differences example (continued) To illustrate our corrections in

a multivariate setting, Figure 16 plots the difference between our median-unbiased

estimator γ̂ 1
2
(X) and the conventional estimator γ̂ = G in the difference-in-differences

example. As this plot makes clear, γ̂ 1
2
(X) depends on both G and L. Thus, while

we are interested only in the difference-in-differences parameter γ, the result for the

pretest of parallel trends also plays a role in our estimate. Figure 17 plots the rejection

region for a 5% test of H0 : γ = 0 based on our equal-tailed confidence interval for γ.

As this plot shows, the results of this test likewise depend on both G and L.

I Bayesian inference

In the main text we discuss the effect of selective publication on frequentist inference

on θ under known p(·). The effect of selective publication on Bayesian inference is

more subtle, and depends on the prior. Here we briefly discuss Bayesian inference on

θ under known p(·) for two natural classes of priors. These priors can be thought of

71



Figure 16: This figure plots the differ-
ence between the median-unbiased esti-
amtor γ̂ 1

2
(X) and the conventional esti-

mator G in the difference-in-differences
example.

Figure 17: This figure plots the
(shaded) rejection region for a 5% test
of H0 : γ = 0 based on equal-tailed confi-
dence sets for γ in the differences in dif-
ferences example.

as two extreme points of the set of relevant priors.

Definition 4 (Two classes of priors)

Consider the following two classes of prior distributions πµ for µ:

1. Unrelated Parameters: πµ is a point mass at some µ, so that µ is known and

the prior distribution of Θ∗i is i.i.d. across i.

2. Common Parameters: πµ assigns positive probability only to point-measures µ,

so that Θ∗i is constant across i (equal to Θ∗0) with probability 1.

The unrelated parameters prior corresponds to the case where each latent study

considers a different parameter. Thus, under priors in this class, learning the true

parameter value Θ∗i in latent study i conveys no information about the true parameter

value Θ∗i′ in latent study i′, and Θ∗i is iid across i. The common parameters prior, by

contrast, assumes that all latent studies attempt to estimate the same parameter Θ∗0.

Thus, priors in this class imply that Θ∗i is perfectly dependent across i.

For both the unrelated and common parameters classes, the marginal prior πΘ∗

for Θ∗ is unrestricted. For any πΘ∗ there is a unique prior in each class consistent

with this marginal distribution.

If we observe a single draw X∗, our posterior for Θ∗ depends only on the marginal

prior πΘ∗ , and so is the same whether we consider the unrelated or common param-
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eters priors. By contrast, when we observe a single draw X from the distribution

of published papers, which class of priors we use turns out to be important. The

following result is closely related to the findings of Yekutieli (2012).

Lemma 7 (Two posterior distributions)

Based on single observation of X, we obtain the following posteriors:

1. Under unrelated parameters priors:

fΘ|X(θ|x) = fX∗|Θ∗(x|θ) · πΘ∗(θ)/πX∗(x)

2. Under common parameters priors:

fΘ|X(θ|x) =
p (x)

E [p (X∗i ) |Θ∗i = θ]
fX∗|Θ∗(x|θ) · πΘ∗(θ)/πX∗(x)

∝ fX|Θ(x|θ) · πΘ∗(θ)

Proof of Lemma 7:

1. Unrelated parameters: By construction Di ⊥ Θi|X∗i , and thus

fΘ|X(θ|x) = fΘ∗i |X∗i ,Di(θ|x, d = 1)

= fΘ∗i |X∗i (θ|x)

= fX∗|Θ∗(x|θ) · πΘ∗(θ)/fX∗(x).

2. Common parameters: This follows immediately from the truncated likelihood

derived in Lemma 1 of the main text.

�

Under the unrelated parameters prior, our posterior fΘ|X(θ|x) after observing

X = x is the same as our posterior had we observed X∗ = x. The form of p(·)
has no effect on our posterior distribution, and inference proceeds exactly as in the

case without selection. Under the common parameters prior, by contrast, our pos-

terior fΘ|X(θ|x) corresponds to updating our marginal prior πΘ∗ using the truncated

likelihood fX|Θ(x|θ) derived in Lemma 1.

The fact that selection has no effect on our posterior under the common parameters

prior may be surprising, but reflects the fact that under this prior, selection changes
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the marginal prior πΘ for true effects in published studies. In particular, under this

prior we have

πΘ(θ) =
E [p (X∗i ) |Θ∗i = θ]

E [p (X∗i )]
πΘ∗(θ),

which reflects the fact that the distribution of true effects for published studies differs

from that for latent studies under this prior. When we update this prior based on

observation of X, however, the adjustment by E [p (X∗i ) |Θ∗i = θ] in the prior cancels

that in the likelihood, and selection has no net effect on the posterior. Under the

common parameters prior, by contrast, πΘ∗ = πΘ, so the adjustment term in the

prior due to selective inference continues to play a role in the posterior. For related

discussion, see Yekutieli (2012).

J Optimal selection for publication in a simple model

In the main text we discuss how to account for selective publication in inference and

how to identify selectivity. It is natural to ask, however, whether selective publication

is a good idea in the first place or just a misguided application of statistics leading

to either publication bias or needlessly complicated inference. The answer to this

question depends on the journal’s objective function. One possibility is as follows.

Suppose that published estimates are inputs into policy decisions, for instance in de-

velopment economics, education, public finance, or medicine. If there are constraints

on how many studies are published and read, then selectivity of the sort we observe

might be justified.

We discuss a stylized version of this idea in a development economics context,

though our model might also be considered a stylized description of medical publishing

and doctors’ prescriptions of treatments for patients. Suppose that each i corresponds

to a different policy intervention. Suppose the distribution µ of true treatment effects

Θ∗i is known to journal editors and readers, and that the expected effect E[Θ∗i ] of

a randomly chosen treatment on the likelihood of escaping poverty is non-positive.

Suppose further that the journal is read by policy makers who aim to minimize

poverty. Assume finally that each treatment is relevant for a population of equal

size, normalized to 1. A policy maker wishes to implement a given treatment j if the

expected impact on the outcome considered is positive, conditional on the observed
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estimate Xj = x. Thus, their optimal treatment assignment rule is

t(x) = 1(E[Θj|Xj = x] > 0), (15)

which results in the expected outcome

v(x) = max(0, E[Θj|Xj = x]) (16)

where E[Θj|Xj] is the policymakers’ posterior expectation of Θj after observing Xj.
11

Suppose the journal also aims to minimize poverty, but faces a marginal (opportunity)

cost of c, in units comparable to treatment outcomes, when publishing a given study.

Policymakers update their behavior only for published studies with E[Θj|Xj] > 0.

This updated behavior results in an expected poverty reduction of E[Θj|Xj] relative

to the status quo. It follows that the optimal publication rule for the journal is

p(X∗i ) = 1(E[Θ∗i |X∗i ] > c). (17)

If the conditional expectation is monotonic in X∗i , this rule is equivalent to

p(X∗i ) = 1(X∗i > xc),

so that results should get published if they are positive and “significant” relative to

the critical value xc, defined via E[Θ∗i |X∗i = xc] = c.

This result rationalizes selectivity in the publication process: the optimal rule

derived here corresponds to one-sided testing. A more realistic version of this story

allows for variation across i in the variance of X∗i , the cost of implementing treatment,

the size of the populations to be treated, etc. All of these would affect the critical

value xc, which thus should vary across i and need not be equal to conventional critical

values of hypothesis tests. What remains true, however, is that publication decisions

that are optimal according to the above model are selective in a way which leads to

publication bias, and correct inference needs to account for this selectivity.

11Perhaps surprisingly, truncation is irrelevant for this posterior expectation. This stems from the
fact that we assume policy makers have unrelated parameters priors as in Definition 4 above.
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