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Abstract

I analyze a market with asymmetric information, interdependent val-
ues, multiple trading opportunities and trade frictions. The frictions can
be reduced at a cost, e.g. by increasing attention, search or computing
power. Raising the difference between the values of buyers and sellers can
delay trade, despite the greater gains from trade. Rejecting an initial offer
is a stronger signal when the offer is more attractive, so a larger difference
in values raises the signalling motive, which may overwhelm the increased
incentive to accept the better offer. As a result, a subsidy on trade may
have the unintended consequence of freezing the market.

Keywords: Lemons market, signalling, asymmetric information, dy-
namic pricing, rational inattention.

JEL classification: D82, D83, C72.

Markets with asymmetric information (mortgages, health insurance, used
cars) may feature inefficiently few transactions. One solution used in practice is
to subsidize trade, e.g. by government guarantees, purchases of troubled assets,
or a lower interest rate. By increasing the gap between buyer and seller values,
such interventions may reduce the lemons problem of Akerlof (1970) enough to
restore the efficient level of trade. This insight holds for some one shot markets,
but may fail in a dynamic environment with trading frictions, as the current
work will show. With multiple opportunities for exchange, a larger difference
between buyer and seller values may delay trade, reducing its volume initially.
The reason is that greater gains from trade raise the benefit of signalling high
quality by initial rejection of offers. The signalling motive may outweigh the
increased incentive to trade earlier when there is a larger surplus to share. More
initial rejection lowers welfare.

In more detail, there is a privately informed buyer facing a perfectly com-
petitive market of sellers (the situation with an informed seller and competitive
buyers is similar and omitted). The buyer is one of two types and knows which,
but the sellers only have a common prior belief about the type. Selling to the
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high-value type buyer is more costly for the sellers, but gains from trade are
positive for any seller matched with any buyer type.

First the buyer privately invests in reducing noise in her later action. Second,
each seller makes a price offer. Third, the buyer decides whether to accept or
reject the best price among the sellers. The buyer can accept at most one offer.
Noise means that a buyer intending to accept sometimes rejects and vice versa
(the interpretation is discussed later). If the buyer accepts, the game ends.
Fourth, after rejection, the sellers make another offer. Fifth, the buyer again
decides to accept or reject. Noise in this last stage, or noise in seller actions
does not affect the qualitative results, so these choices are assumed noiseless for
simplicity.

Choosing the noise level can be interpreted as rational inattention—the
buyer decides how frequently to check advertisements, email or post and how
carefully to examine the offers received before clicking ‘accept’ or ‘reject’. The
more costly attention is directed to these activities, the lower the chance of miss-
ing a trading opportunity or misreading an incoming offer as acceptable when it
is in fact unacceptable. The task of paying attention can be delegated to more
or less competent workers. For example, on 8 Dec 2005 a trader at Mizuho
Securities sold 610,000 shares of J-Com Co. at 1 yen apiece when intending to
sell 1 share at 610,000 yen. Mizuho lost 225 million USD. A Deutsche Bank
forex dealer mistakenly transferred 6 billion USD to a hedge fund in June 2015.
The recipient returned the money the next day.

Investment in reducing noise can take the form of avoiding or fixing technical
problems with phone or email which can result in missed offers. Or checking
computer code to prevent erroneous trading, e.g. Knight Capital Group went
bankrupt on 1 Aug 2012 after losing 450 million USD due to mistaken comput-
erized asset trades. The second interpretation is costly search effort in search
and matching situations, which increases the probability of having the opportu-
nity to trade. High frequency trading in financial markets requires investment
in rapidly identifying and responding to trading opportunities. Presumably
greater investment leads to a higher chance of making the correct decision. The
probability is never 1 or 0, regardless of the importance of the decision, e.g. a
broker in Japan entered mistaken stock orders worth 617 billion USD on 1 Oct
2014 (the orders were later cancelled).

The solution concept is perfect Bayesian equilibrium (PBE). Because gains
from trade are positive for any seller-buyer match, in a one shot interaction
all types would trade, which is efficient. With multiperiod trading, reservation
values are endogenous and some types may delay trade. Delay is inefficient due
to discounting. For a nonempty open set of parameters, there is a unique PBE
in which raising the value of the high-value buyer type lowers the probability of
initial acceptance for both types. This means the buyer switches from attempt-
ing to accept to trying to reject, or lowers the investment in reducing noise when
attempting to accept, or increases this investment when trying to reject. Coun-
terintuitively, a higher expected trading surplus delays trade. Raising the value
of the low-value buyer increases the probability of acceptance for both types.
Raising the values of both types proportionately may still reduce acceptance of

2



the sellers’ initial offer.
The reason greater gains from trade may lower welfare is that rejecting an

initial offer is a stronger signal when the benefit of accepting that offer is higher.
The improvement in the belief of the uninformed sellers after an initial rejection
may outweigh the loss of surplus. A better belief leads to a higher offer later,
justifying rejecting an offer at the start. More signalling lowers welfare, as is
usual in costly signalling.

The gains from trade do not have to rise uniformly across time periods for
the result to hold. A higher surplus from exchange in the initial period has
the same effect as a greater surplus every period. More gains from trade in the
last period reduce the signalling motive. This is somewhat surprising, because
signalling is like investment—a cost paid at the start and a benefit reaped later.
Despite this, there is less signalling with higher later surplus in the current
work, because the greater later gains from trade motivate the low-value type to
imitate the high-value more. The increased similarity between the actions of the
types leads to belief responding less to signals, lowering the signalling motive
for all.

The results are similar when the game is modified so the sellers also have
a type—high or low cost, which is publicly realized after the buyer chooses
the hidden effort of noise reduction. In this game, for a nonempty open set of
parameters, there is a unique equilibrium in which the low-value buyer accepts
the initial high price (that the sellers offer when their cost is high) and rejects
the initial low price (offered in case of low seller cost). The high-value buyer
accepts both prices.

Literature

This paper builds on the literature on markets with adverse selection that
started from Akerlof (1970), adding to it rational inattention proposed in Sims
(2003). Dynamic adverse selection (in two periods) is studied in Fuchs et al.
(2016), who focus on the comparison between public and private offers without
trading frictions. They find private offers to be welfare-enhancing. Hörner and
Vieille (2009) derive a similar result with an infinite horizon and a different mo-
nopolist making an offer each period. With public offers, trade may stop forever
after a rejection. The current paper imposes frictions that can be reduced at
a cost and considers a different question, namely the comparative statics when
the gap between the values of the buyer and sellers increases.

The work closest to the current one is Fuchs and Skrzypacz (2015). They
show that government interventions in a dynamic lemons market without fric-
tions may increase or decrease welfare. Fuchs and Skrzypacz exhibit a condition
ensuring that an initial subsidy of trade followed by a tax that shuts the market
is optimal. The present paper, using different assumptions, derives the opposite
result: an initial subsidy with a later tax may freeze the market. Contrary to
Fuchs and Skrzypacz (2015), there are frictions and no static adverse selection
(all types would trade in a one shot situation). The market freeze is entirely
due to dynamic incentives, which may change in either direction when the gap
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between buyer and seller values increases.
Intervention in a static market with adverse selection has been studied in

Philippon and Skreta (2012); Tirole (2012), where a round of government fi-
nancing of privately informed firms is followed by one shot competitive trade.
Government intervention affects this later trade and the expectation of this
effect influences the firms’ response to the intervention. Both Philippon and
Skreta (2012) and Tirole (2012) show that intervention cannot increase welfare
in their static frictionless context. The current paper shows it is possible to
structure subsidies and taxes to raise welfare in a dynamic environment with
frictions. The focus is on the dynamics, which drive the novel results.

Adverse selection is combined with maturity mismatch in Bolton et al.
(2011); Heider et al. (2009). The current paper does not model maturity mis-
match directly, but this could be one reason for the gains from trade and asym-
metric information between the buyer and sellers.

Dynamic competitive markets with adverse selection are studied in Janssen
and Roy (2002) who show that equilibrium prices increase over time and eventu-
ally all types trade. Unlike Janssen and Roy (2002), the current paper focusses
on the comparative statics of interventions, not on the price path. An increas-
ing price is also found in Camargo and Lester (2014); Chiu and Koeppl (2016)
in a search context. Camargo and Lester argue that sunset provisions can im-
prove welfare, because the expectation of a future subsidy can delay trade. The
present work qualifies this finding—a current or future subsidy targeted to the
high-value type may have the opposite effect to targeting the low-value buyer.
Chiu and Koeppl present an argument for an increase in total surplus from de-
laying asset purchasing programs. The current paper shows present and future
subsidies have opposite effects for any parameter configuration, but the welfare
impact of a future subsidy may be positive or negative.

1 Model and preliminaries

The players are a buyer and a competitive market of sellers. The buyer has
a type θ ∈ {H,L}. The buyer knows the type, but the market only has a
common prior belief µ0 = Pr(H) ∈ (0, 1). Type θ buyer values the good at vθ,
with vH > vL. Selling to type θ costs the market cθ, normalized to cH = 1,
cL = 0. Gains from trade are assumed large enough for all types to trade in a
one shot interaction: vL > cH .

The timing of actions is as follows.

1. Buyer type θ chooses the probability ρθ ∈
[
1
2 , 1
]

of correctly responding
to the initial offer.

2. The market makes a price offer P1 ∈ [0, 1] without observing ρθ.

3. The buyer observes P1 and chooses accept or reject, denoted 1, 0 respec-
tively.
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4. With probability ρθ, the choice is implemented. With probability 1− ρθ,
action 1 is switched to 0 and vice versa. Realization of 1 ends the game.

5. If action 0 realized, then the market makes a second price offer P2 ∈ [0, 1],
observing P1, but not ρθ or the action the buyer tried to choose.

6. The buyer observes P2 and chooses 1 or 0, which is implemented noise-
lessly.

Restricting prices to [0, 1] = [cL, cH ] is w.l.o.g. as shown below. Making the final
choice of the buyer noisy either exogenously or endogenously (controlled by ρθ
or by a second investment ρθ2 made initially or after 0) does not change the
qualitative results. Similarly, a noisy offer by the market has little effect. For
simplicity, the market’s offer and the buyer’s final action are assumed noiseless.
The first accept-reject choice of the buyer is subject to controlled noise, which
does affect the results. The benchmarks of noiseless actions and exogenous
noise are discussed in Section 4. Noise ensures all information sets are on the
equilibrium path and all beliefs are determined by Bayes’ rule. Controlled noise
is realistic (its interpretation is discussed in the Introduction) and removes bang-
bang equilibria, which have trivial and extreme comparative statics.

The buyer’s strategy is a function s : {H,L} →
[
1
2 , 1
]
× [0, 1]{1,0}× [0, 1]{1,0}.

Type θ’s component of the strategy is denoted s(θ) = (ρθ, s1(θ), s2(θ)). Here,
st(θ) ∈ {1, 0} for t = 1, 2 is the buyer’s attempted choice, which for s1(θ) need
not realize. The realized choice is denoted σt(θ) ∈ [0, 1], which incorporates
both possible intentional mixing and the noise. The strategy that the market
expects the buyer to use in equilibrium is denoted s∗.

If the market expects type θ’s realized acceptance decision for the first offer to
be 1 with probability σ∗1(θ), then the probability of H conditional on acceptance
is

Pr(G|1) :=
σ∗1(H)µ0

σ∗1(H)µ0 + σ∗1(L)(1− µ0)
. (1)

The price is then P1 = Pr(G|1)cH +(1−Pr(G|1))cL = Pr(G|1). The probability

of H conditional on rejection is Pr(G|0) :=
(1−σ∗

1 (H))µ0

(1−σ∗
1 (H))µ0+(1−σ∗

1 (L))(1−µ0)
. The

second offered price is derived similarly to the first. If the market expects type
θ to accept the second offer with probability σ∗2(θ), then

P2 = Pr(G|01) :=
σ∗2(H) Pr(G|0)

σ∗2(H) Pr(G|0) + σ∗2(L)(1− Pr(G|0))
. (2)

The market’s price offers P1, P2 are determined by a zero profit condition (the
market breaks even, given the types that the market expects to accept). The
zero profit price can only be in [cL, cH ] = [0, 1], so restricting price offers to
[0, 1] is w.l.o.g.

The buyer pays a cost κ̂(ρ) for choosing ρ, with κ̂ ∈ C2([ 12 , 1)), κ̂′′(ρ) > 0
for ρ < 1, κ̂′

(
1
2

)
= 0 and limρ→1− κ̂

′(ρ) > vH . Accepting P1 yields vθ − P1 to
type θ. There is discounting between offers: accepting P2 provides the buyer
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δ(vθ − P2), with δ ∈ (0, 1). Rejecting P2 gives zero. The accept-reject decisions
choose max {vθ − P1, δ(vθ − P2)} and max {δ(vθ − P2), 0}. The total expected
payoff when choosing ρ, assuming later choices are optimal is

ρmax {vθ − P1, max {δ(vθ − P2), 0}} (3)

+ (1− ρ) min {vθ − P1, max {δ(vθ − P2), 0}} − κ̂(ρ).

The equilibrium concept is perfect Bayesian equilibrium, hereafter simply
called equilibrium.

Definition 1. A buyer strategy s∗ and market price offers P1, P2 are an equi-
librium if

(a) δ(vθ − P2) >
<

0⇒ s∗2(θ) = σ∗2(θ) = 1
0
,

(b) vθ − P1 >
<

max {δ(vθ − P2), 0} ⇒ s∗1(θ) = 1
0
,

(c) ρ∗θ maximizes (3),

(d) σ∗1(θ) = ρ∗θs
∗
1(θ) + (1− ρ∗θ)(1− s∗1(θ)),

(e) P1 is given by (1) and P2 by (2).

The assumption vL > 1 implies Pt < vL for t = 1, 2, so the buyer’s final
choice is s∗2(θ) = 1 in any equilibrium. The final price is then P2 = Pr(G|0).
The buyer’s response to the first offer always satisfies σ∗1(θ) ∈ {1− ρ∗θ, ρ∗θ},
because otherwise the initial cost κ̂(ρ∗) could be reduced, keeping the noise
the same. Thus the buyer’s action sequence (ρθ, s1(θ), s2(θ)) can w.l.o.g. be
reduced to just choosing σ1(θ) ∈ [0, 1] at cost κ(σ1(θ)) := κ̂

(∣∣σ1(θ)− 1
2

∣∣+ 1
2

)
.

The subscript 1 is dropped for simplicity in what follows. The new κ : [0, 1]→ R
satisfies κ ∈ C2((0, 1)), κ′′ > 0, κ(σ) = κ(1 − σ) and σ ∈

[
0, 12
)
⇒ κ′(σ) < 0.

A choice σθ <
1
2 is interpreted as intending to reject P1 and choosing the noise

accordingly.

2 Results

After reducing buyer type θ’s maximization problem to choosing σ(θ), each
type’s payoff function is continuous, strictly concave in own action, the strategy
set is compact and convex and the market’s best response continuous in buyer
strategy, so an equilibrium exists by standard arguments. The first order con-
dition (FOC) for type θ is vθ−P1− δ(vθ−P2)−κ′(σ(θ)) = 0. The assumptions
on κ and µ0 ensure an interior solution. Substituting the prices (1), (2) into the
FOC and rearranging yields

(1− δ)vθ −
σ(H)µ0

σ(H)µ0 + σ(L)(1− µ0)
(4)

+ δ
(1− σ(H))µ0

(1− σ(H))µ0 + (1− σ(L))(1− µ0)
= κ′(σ(θ)).
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Figure 1: Solutions to first order conditions. Blue: H, orange: L. Parameters

vH = 1.5, vL = 1.1, δ = µ0 = 1
2 , κ(σ) = − 1

5

√
1
4 − (σ − 1

2 )2.

Solving the system of FOCs, one for each type, is not possible in general. When
a closed form exists, it is complicated. A special case is δ = 1 when the unique
equilibrium is σ∗(θ) = 1

2 for θ = 1, 2, regardless of the other parameters.
The solutions to the FOCs of the types are characterized in the following

lemma and illustrated in Fig. 1. The dependence of Pt on σ(θ) is written
explicitly as Pt(σ(L), σ(H)) when needed.

Lemma 1. There exists a continuous strictly increasing function hH : [0, 1]→
[0, 1] s.t. for all σ(L),

(1− δ)vH − P1(σ(L), hH(σ(L))) + δP2(σ(L), hH(σ(L))) = κ′(hH(σ(L))). (5)

There exist S ⊆ [0, 1] and a continuous onto function hL : S → [0, 1] s.t. S is a
union of nonempty closed intervals and for all σ(L) ∈ S,

(1− δ)vL − P1(σ(L), hL(σ(L))) + δP2(σ(L), hL(σ(L))) = κ′(σ(L)). (6)

Further, hL(minS) = 1, hL(maxS) = 0.

Proof. Fixing σ∗(H), the L FOC (4) maps σ∗(L) into σ(L) continuously. A
continuous function from [0, 1] to [0, 1] has a fixed point, so setting σ(L) = σ∗(L)
in the FOC, for every σ∗(H) there exists σ∗(L) satisfying the FOC. This shows
hL satisfying (6) is defined on S 6= ∅, S ⊆ [0, 1].

Fixing σ∗(L), the H FOC maps σ∗(H) into σ(H) continuously. So for each
σ∗(L), there exists a fixed point σ(H) = σ∗(H) of the FOC. This shows hH :
[0, 1]→ [0, 1] satisfying (5) is defined for all σ(L) ∈ [0, 1].

The left hand side (LHS) of (4) strictly decreases in σ(H) and strictly in-
creases in σ(L), which is easy to show by taking derivatives. The right hand
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side (RHS) of (4) for type H is constant in σ(L) and vice versa. The RHS is
strictly increasing in σ(θ) for type θ, due to κ′′ > 0. For each θ and σ(L), the
LHS of (4) is strictly decreasing in σ(H) and the RHS weakly increasing, so
there is at most one σ(H) that solves (4).

Both sides of (4) depend continuously on σ(L), so both hH and hL are
continuous on their respective domain. Given θ and σ̂(L), if σ(H) ∈ (0, 1)
solves (4), then by the continuity of the LHS and the RHS, there exists ε > 0
s.t. for σ(L) ∈ [σ̂(L) − ε, σ̂(L) + ε], the solution to (4) satisfies σ(H) ∈ [0, 1].
The union of maximal intervals on which hL takes values in [0, 1] is denoted S.

The rest of the proof is in the spirit of the monotone comparative statics of
Milgrom and Roberts (1994); Milgrom and Shannon (1994). If σ(H) solves (4)
for H and a given σ(L), then increasing σ(L) leaves the RHS constant, but
strictly raises the LHS. To restore equality of LHS and RHS, σ(H) must rise
(LHS falls, RHS increases in σ(H)). Therefore hH is strictly increasing.

Due to κ′(0) < −vH , we have for σ(L) = 0 and any σ(H),

(1− δ)vB −
σ(H)µ0

σ(H)µ0
+ δ

(1− σ(H))µ0

(1− σ(H))µ0 + 1− µ0
> κ′(0),

so at σ(L) = minS, the LHS crosses the RHS from above. If σ(H) < 1 when
σ(L) = minS, then the LHS could be reduced by raising σ(H). Then the LHS
would equal the RHS at a lower σ(L), which contradicts σ(L) = minS.

Due to κ′(1) > vH , we have for σ(L) = 1 and any σ(H),

(1− δ)vB −
σ(H)µ0

σ(H)µ0 + 1− µ0
+ δ

(1− σ(H))µ0

(1− σ(H))µ0
< κ′(1).

so at σ(L) = maxS, the LHS crosses the RHS from below. If σ(H) > 0 when
σ(L) = maxS, then the LHS could be increased by reducing σ(H). Then
the LHS would equal the RHS at a higher σ(L), which contradicts σ(L) =
maxS.

Although derivatives were used in the proof of Lemma 1, the underlying
reasoning is that of monotone comparative statics (Milgrom and Roberts, 1994;
Milgrom and Shannon, 1994) and extends to more general environments, pro-
vided the appropriate monotonicity is preserved. In preparation for describing
the comparative statics of equilibria, the next Lemma discusses the comparative
statics of the solutions to the FOCs.

Lemma 2. Increasing vθ raises hθ(σ(L)) for all σ(L), but does not affect
h−θ(σ(L)) for −θ 6= θ.

Proof. Fix σ(L). Increasing vθ raises the LHS of (4) for θ, but does not affect
the FOC of −θ. To restore equality for θ, either the RHS must rise or the LHS
decrease. For H, both effects are achieved by a rise in σ(H) = hH(σ(L)). For
L, the RHS is fixed, because σ(L) is. To decrease the LHS, σ(H) = hL(σ(L))
must increase.
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Figure 2: Solutions to first order conditions. Blue: H, orange: L. Parameters
vH = 2.1, vL = 1.1, δ = µ0 = 1

2 , κ(σ) = 1
100σ(1−σ) .

There may be multiple equilibria, as illustrated in Fig. 2. Generically, there
is an odd number of equilibria (this is a standard result, see e.g. Mas-Colell et al.
(1995) p. 598) and stable and unstable equilibria alternate. The minimal and
maximal equilibrium (together called extremal equilibria) are generically stable.
The comparative statics results will focus on the minimal and maximal equi-
librium, following Milgrom and Roberts (1994). In any unstable equilibrium,
the comparative statics are the opposite to those in the stable equilibria sur-
rounding it. If there are multiple equilibria, they all lie on a strictly increasing
function, as shown in Lemma 3. In other words, if one equilibrium has a higher
σ(L) than another, then it also has a higher σ(H). Lemma 3 also shows that
σ(H) > σ(L) in any equilibrium.

Lemma 3. All equilibria lie on the strictly increasing continuous bijection f :
[0, 1]→ [0, 1], f : σ(L) 7→ σ(H) that solves

(1− δ)vG − κ′(f(σ(L))) = (1− δ)vB − κ′(σ(L)). (7)

Further, f(σ) > σ ∀σ ∈ (0, 1). If κ(σ) = κ(1 − σ) ∀σ ∈ [0, 1], then f(σ) =
1− f(1− σ).

Proof. Set the FOCs of the types equal and cancel P1 − δP2 to obtain (7) with
σ(H) instead of f(σ(L)). Due to κ′′ > 0, the function κ′ is strictly increasing.
Thus

f(σ(L)) := (κ′)−1 ((1− δ)(vH − vL) + κ′(σ(L))) (8)

is strictly increasing, which implies one-to-one. Because κ′(σ(L)) is defined for
all σ(L) ∈ [0, 1], f is also. The same reasoning applies to f−1 to show it is
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defined for all σ(H) ∈ [0, 1], so f is onto. Both sides of (7) are continuous, so f
is continuous.

Due to the strictly increasing κ′, (κ′)−1 and vH−vL > 0, equation (8) implies
f(σ(L)) > σ(L).

If κ(σ) = κ(1− σ), then κ′(σ) = −κ′(1− σ). Substituting 1− σ(L) into (7)
yields (1 − δ)vG − κ′(f(1 − σ(L))) = (1 − δ)vB − κ′(1 − σ(L)). Using κ′(σ) =
−κ′(1− σ) and (7), this becomes (1− δ)vG + κ′(1− f(1− σ(L))) = (1− δ)vB +
κ′(σ(L)) = (1 − δ)vG + κ′(f(σ(L))). This holds for all σ(L) and the functions
(1−δ)vθ+κ′(·), θ = B,G are strictly increasing, so 1−f(1−σ(L)) = f(σ(L)).

The relationship f(σ) = 1 − f(1 − σ) means symmetry of the graph of f
around the line through (0, 1) and (1, 0). This does not imply the symmetry
of the equilibrium set, because equilibria are generically located asymmetrically
on the graph of f .

The main result of the paper is Prop. 4 that describes the comparative
statics of σ(θ) when vG or vL changes. Raising one or both vθ increases the
gap between buyer and seller values. It will be shown that this rise in the trade
surplus sometimes results in a delay in trade. The idea of the proof can be seen
in Fig. 2, noting that based on Lemma 2, hH shifts up when vH increases and
hL shifts up when vL increases. As a result, σ(L) and σ(H) can move in any
direction, depending on the relative magnitudes of the changes in vB , vG. For the
parameters in Fig. 2, raising vH reduces σ(L) and increases σ(H) in extremal
equilibria. Raising vL increases both σ(L), σ(H). In the middle equilibrium,
the opposite comparative statics hold. In the unique equilibrium in Fig. 1,
increasing vH reduces both σ(L) and σ(H), but raising vL increases σ(L) and
σ(H).

Proposition 4. In extremal equilibria, if vH increases, then σ∗(L) decreases
and there are both an open set of parameters in which σ∗(H) decreases and an
open set of parameters in which σ∗(H) increases. If vL increases, then in the
extremal equilibria, both σ∗(L), σ∗(H) increase.

Proof. Equilibria are intersections of hH and hL in (σ(L), σ(H))-space. By
Lemma 1, hH and hL are continuous, hH strictly increasing, hL(minS) = 1 and
hL(maxS) = 0. Due to hH strictly increasing, hH(σ(L)) < 1 for all σ(L) < 1
and hH(σ(L)) > 0 for all σ(L) > 0. Therefore at extremal equilibria, hL crosses
hH from above. By Lemma 2, raising vH increases hH and leaves hL constant,
so by Milgrom and Roberts (1994) Lemma 1, the extremal intersections of hH
and hL move left (this is also obvious geometrically, see Figs 1, 2). Thus σ∗(L)
decreases. By Lemma 2, raising vL increases hL and leaves hH constant, so by
Milgrom and Roberts (1994) Lemma 1, the extremal intersections of hH and hL
move right, so σ∗(L) increases. Due to hH constant, equilibria move along hH ,
which is strictly increasing, so if σ∗(L) increases, then σ∗(H) increases.

Examples showing σ∗(H) may increase or decrease in extremal equilibria
when vH increases are in Figs 1, 2. The hθ are continuous in the parameters
by Lemma 1. By continuity, there exists ε > 0 s.t. for parameters in an open
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ε-ball around the values in Fig. 1, σ∗(H) increases in extremal equilibria and in
an open ε-ball around the values in Fig. 2, σ∗(H) decreases.

The reason why σ∗(L), σ∗(H) move together when hL is raised with hH
constant is that the intersections of hL, hH move along the strictly increasing
hH . The same reasoning cannot be applied when hH is raised with hL constant,
because hL need not be monotone. If hL is increasing when hH crosses it
from below, then σ∗(H) falls when hH is raised, otherwise σ∗(H) increases. A
closed form for hL can be found by solving the L type FOC (4) for σ(H). The
parameter region where hL is increasing is easy to compute numerically, but
difficult to characterize analytically.

Combining shifts in vH and vL combines their effects on the equilibrium
strategy. Interventions cannot usually target only one type, because types are
unobservable. The effect of an intervention on the values of the types is likely
unequal. It depends on the specific environment and intervention whether the
good or bad type’s value increases more. The consequences of interventions may
be in the desired direction or the opposite and are difficult to predict based on
observable data.

Between any two distinct equilibria with the comparative statics in Prop. 4,
there is generically an equilibrium with the exact opposite comparative statics
for σ(L). This is a special case of the well known result that stable and unsta-
ble fixed points alternate and have opposite comparative statics. The geometric
intuition (see Fig. 2) is that generically hL crosses hH from below at any equilib-
rium adjacent to another in which hL crosses hH from above. If hL crosses hH
from below, then the converse reasoning to that in the proof of Prop. 4 holds.

3 Extensions

3.1 Values vary over time

If the value of the buyer can differ between the times of receiving offers, then
the reasoning at the end of Section 1 still holds. Denote the value at the time
of the first offer of the sellers by vθ1 and at the time of the last offer vθ2. The
FOC changes from (4) to

vθ1 − δvθ2 −
σ(H)µ0

σ(H)µ0 + σ(L)(1− µ0)
(9)

+ δ
(1− σ(H))µ0

(1− σ(H))µ0 + (1− σ(L))(1− µ0)
= κ′(σ(θ)).

The best response characterization in Lemma 1 is unchanged, as is the equilib-
rium ordering in Lemma 3. The comparative statics of hθ in Lemma 2 hold for
vθ1, but are the opposite for vθ2. This is because the effect of vθ1 in (9) is the
same as that of vθ in (4), but vθ2 has the reverse effect.

The comparative statics of equilibria are derived from those of best responses
as in Prop. 4, so the influence of vθ1 on σ∗(L), σ∗(H) is the same as that of vθ
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earlier, but vθ2 has the opposite effect. Subsidizing trade early may delay trade,
but the expectation of later subsidies may increase the probability of trading at
the first opportunity. This is the opposite of the result of Fuchs and Skrzypacz
(2015) that to encourage trade, there should be an early subsidy and a later
tax.

3.2 Uncertain seller cost

Instead of costs 0, 1 for serving buyer type B,G, the sellers have cost types
η = 1, 2 with 0 ≤ cηB < cηG < vL and c1θ < c2θ. The cost types can be interpreted
as levels of market supply. The common prior probability of cηθ is pη. When the
buyer chooses the precision of the noise ρθ ∈

[
1
2 , 1
]
, the cost type η is unknown.

Otherwise the game would reduce to the baseline in Section 2 for each η. The
cost type becomes public before the market makes the first price offer. The
results are unchanged if the buyer does not learn η directly, because the offer of
the market reveals η.

The definition of equilibrium is modified. Conditional on each cost type, the
market makes a price offer that results in zero profit, given the type mix the
market expects to accept this offer. Conditional on each cost type and price
offer, the buyer chooses accept or reject.

The final offer of the market is still accepted by both types for all η, due
to c2G < vL. Unlike in Section 1, the buyer need not choose the minimal or
maximal acceptance probability in response to every first offer. However, an
interior probability being optimal implies indifference, which can be replaced
by the minimal or maximal probability when the incentives for choosing the
noise are considered. Denote the realized probability of buyer type θ accepting
price P η1 by ση1 (θ) and the market’s expectation of this by ση∗1 (θ). The FOC for

the noise choice is
∑2
η=1 p

η|(1− δ)vθ − P η1 + δP η2 | = κ̂′(ρθ), with

P η1 :=
cηHσ

η∗
1 (H)µ0 + cηLσ

η∗
1 (L)(1− µ0)

ση∗1 (H)µ0 + ση∗1 (L)(1− µ0)
, (10)

P η2 :=
cηH(1− ση∗1 (H))µ0 + cηL(1− ση∗1 (L))(1− µ0)

(1− ση∗1 (H))µ0 + (1− ση∗1 (L))(1− µ0)
.

Type θ tries to accept P η1 if (1− δ)vθ−P η1 + δP η2 > 0 and tries to reject it if
the reverse inequality holds. Due to vH > vL, if L tries to accept, then H also:
ση∗1 (H) ≥ ση∗1 (L).

There exist parameter values and equilibria in which H accepts both prices,
but the L type buyer accepts the high price and rejects the low. Example
parameters at which this occurs are vH = 2, vL = 1, µ0 = δ = c2L = 1

2 , c1L = 0,
c2H = 61

64 and c1H = 239
256 , with κ̂ and p1 chosen so that ρL = 3

4 , ρH = 5
8 satisfy

the FOC.
It is unusual for a buyer to accept a high and reject a low price. The reason

here is that rejecting a low price signals to the sellers that the buyer has a low
value. This leads to a lower price next period. Rejecting a high price would not
be as strong a signal and the price would not fall enough after that to justify
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the delay. Also, the high-value type is more tempted to imitate the low-value
by rejecting a high price, because the gain from accepting (that is lost upon
rejection) is not as large.

In light of the findings in Section 2, the existence of an equilibrium where one
type accepts the high and rejects the low price is not surprising. In some sense,
this is merely pasting together the equilibria in Prop. 4 before and after the value
change. However, mathematically the model in this section is substantially more
complicated, because it does not reduce to a one-dimensional problem for each
type and the FOC contains absolute values, so the best responses are kinked.

4 Benchmarks

4.1 Noiseless or exogenously noisy

The action that the buyer chooses is implemented exactly and there is no choice
of noise. Type θ accepts the first offer P1 only if vθ − P1 ≥ δvθ − δP2 and
rejects it only if the reverse inequality holds. If L accepts, then H also, because
vH > vL.

If the market expects both types to accept the first offer, then P1 = µ0 and
P2 is off-path and undefined. If the market expects both types to reject the first
offer, then P2 = µ0 and P1 is undefined. Impose the refinement that a deviation
to accepting the undefined price comes from the type for whom this deviation
is more profitable. This sets P2 = 0 when the market expects both types to
accept and P1 = 1 when it expects both to reject. These prices are obtained as
limits when H accepts and L mixes with probability of acceptance approaching
1, or when L rejects and H mixes with acceptance probability going to 0. These
limits respect the order of best responses that if L accepts, then H also.

The equilibrium where both types accept exists iff (1 − δ)vB ≥ µ0. Both
rejecting is an equilibrium iff (1−δ)vG ≤ 1−δµ0, which may hold simultaneously
with the preceding condition. The equilibrium where H accepts and L rejects
the first offer exists iff vG−1 ≥ δvG and vB−1 ≤ δvB , equivalently (1− δ)vL ≤
1 ≤ (1 − δ)vH . This cannot exist simultaneously with the equilibrium where
both types reject. Mixed equilibria may also exist, but the focus is on pure.

The comparative statics are intuitive: raising the gains from trade leads
to earlier trading. Increasing vL may create the equilibrium where both types
accept and destroy the equilibrium where H accepts and L rejects. Increasing
vH may create the equilibrium where H accepts and L rejects and destroy the
equilibrium where both reject.

Suppose there is exogenous noise such that the buyer’s acceptance or rejec-
tion is implemented with probability ρ > 1

2 and switched with probability 1−ρ.
Then type θ tries to accept the first offer P1 only if ρ(vθ − P1) + (1− ρ)(δvθ −
δP2) ≥ (1− ρ)(vθ − P1) + ρ(δvθ − δP2), which reduces to the condition for the
noiseless case.

If the market expects both types to accept or both to reject the first offer,
then P1 = P2 = µ0. With δ < 1, it is not possible that both types reject.
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The equilibrium where both accept always exists. If the market expects H to

accept and L to reject, then P1 = ρµ0

ρµ0+(1−ρ)(1−µ0)
> P2 = (1−ρ)µ0

(1−ρ)µ0+ρ(1−µ0)
. This

equilibrium exists iff (1 − δ)vL ≤ P1 − δP2 ≤ (1 − δ)vH . Mixed equilibria may
also exist.

Increasing both vθ does not affect the all-accept equilibrium, but may create
or destroy the equilibrium where H accepts and L rejects the initial offer.

4.2 Noiseless with a continuum of types

Buyer types θ ∈ [0, 1] are distributed according to the atomless prior cdf FThe
values of the buyer types are given by a strictly increasing function v : [0, 1]→
(1,∞). The prior expected type is θ̄ :=

∫ 1

0
θdF (θ).

Due to v(0) > 1, all types accept the last offer of the market conditional
on reaching that point in the game. Let σ∗(θ) denote the probability that the
market assigns to buyer type θ accepting the first offer. Then

P1 :=

∫ 1

0
θσ∗(θ)dF (θ)∫ 1

0
σ∗(θ)dF (θ)

, P2 :=

∫ 1

0
θ(1− σ∗(θ))dF (θ)∫ 1

0
(1− σ∗(θ))dF (θ)

. (11)

If the market expects no type to accept the first offer, then P1 is off-path and
undefined and if the market expects all types to accept, then P2 is undefined.

A best response of buyer type θ to the first offer of the sellers is σ(θ) = 1
if v(θ) − P1 ≥ δv(θ) − δP2. If the reverse inequality holds, σ(θ) = 0 is a BR.
Clearly, θ1 < θ2 implies σ(θ1) ≤ σ(θ2). At most one type (denoted θ∗) is
indifferent between the first and the second offer, so at most one type mixes for
any expectation of the market. The prices (11) can thus be redefined in terms
of θ∗ as

P1(θ∗) :=

∫ 1

θ∗
θdF (θ)∫ 1

θ∗
dF (θ)

, P2(θ∗) :=

∫ θ∗
0
θdF (θ)∫ θ∗

0
dF (θ)

. (12)

Both prices increase in θ∗ and if both prices are defined, then P1 > θ̄ > P2.
Impose the refinement requiring the undefined prices to be the limits of on-path
prices when θ∗ approaches zero or one. Specifically, if all types accept the first
offer, then θ∗ = 0 and P2 = 0. If all reject, then θ∗ = 1 and P1 = 1.

Each equilibrium is characterized by its θ∗, which is a point where the differ-
entiable function g(θ) := (1− δ)v(θ)− P1(θ) + δP2(θ) crosses zero. Using (12),
g(0) = (1−δ)v(0)− θ̄ and g(1) = (1−δ)v(1)−1+δθ̄. The equilibrium where all
accept the first offer exists if (1− δ)v(0) ≥ θ̄. The equilibrium where all reject
exists for (1 − δ)v(1) ≤ 1 + δθ̄. Interior equilibria where θ∗ ∈ (0, 1) may also
exist.

Increasing v(θ) for some θ may destroy the all-reject equilibrium, because if
g(1) ≤ 0, then raising g by increasing v may lead to g(1) > 0. Similarly, raising
v may create the all-accept equilibrium by making g(0) ≥ 0.

The comparative statics of an interior equilibrium θ∗ depend on whether
g crosses zero from above or below at θ∗. Increasing v(θ) for some θ raises
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g(θ) for that θ. Thus at equilibria where g crosses 0 from above, θ∗ weakly
increases in v(·) (fewer types accept the first offer) and if g crosses zero from
below, then θ∗ decreases. If the minimal equilibrium is not all-accept, then in it
increasing v increases trade (θ∗ falls), because g(0) < 0 and continuity of g imply
g′(min θ∗) ≥ 0. Similarly, if the maximal equilibrium is not all-reject, then in
it increasing v increases trade. Overall, the minimal and maximal equilibrium
(whether corner or interior) have the intuitive comparative static that higher
gains from trade lead to earlier trade.

5 Conclusion

Markets with adverse selection and multiple opportunities to trade feature an
incentive to signal by delay. This signalling may manifest as seemingly coun-
terintuitive behaviour. Subsidizing trade early and taxing it later may delay
trade. Similarly, raising the gains from trade in all periods may delay trade.
These findings run counter to the previous literature, which uses different as-
sumptions on the possible actions and the valuations of the trading parties. The
importance of considering controllable noise (rational inattention) is illustrated
by the absence of the effect in noiseless or exogenously noisy environments.

Generalizations to more than two periods and types are left for future re-
search, as is the addition of moral hazard (investing in increasing one’s value).
An important modification of the model to study is the case where the unin-
formed party of the transaction is a monopolist. This would connect the current
work to the large literature on the Coase conjecture. Another avenue of exten-
sion is to endogenize the values of the buyers and sellers by embedding the
model in a search and matching framework. There has been recent interest in
search markets with adverse selection and the geometric solution method in this
paper may prove tractable in that setting.
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