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Abstract

In this paper we extend the cheap talk model of Crawford and Sobel (1982) to

a multidimensional state space and policy space. We provide a characterization of

equilibria. We focus on the question of feasibility of information transmission, for large

degrees of conflict of interests between the sender and the receiver. We show that it

is possible to construct equilibria with information transmission even for unboundedly

large conflicts, but that any such equilibrium is based on knife-edge assumptions. We

prove that influential equilibria are non-generic when the conflict between the sender

and the receiver is large enough. Thus, adding more dimensions cannot improve upon

information revelation when interests are too divergent.

1 Introduction

The seminal work of Crawford and Sobel (1982), henceforth CS, has paved the way for a vast

literature applying cheap talk models to various contexts. Cheap talk is, for example, the

model for explaining lobbying behavior; lobbies and interest groups are considered to exert

political influence merely by convincing politicians, through casual communication, to take

the ‘right’ policies.1 The CS framework has led to an ‘Informational theory of legislative

committees’ which explains the structure of committees in the Congress and the different

rules that dictate how new bills can be amended.2 In financial economics, cheap talk models

explain the behavior of experts in financial markets and in particular the phenomenon of
∗LSE and Tel Aviv University. Current address: Department of Economics, London School of Economics,

Houghton St., WC2A 2AE. Email: g.levy1@lse.ac.uk.
†New York University.
1On this line of research, see the survey in Grossman and Helpman (2001).
2See Gilligan and Krehbiel (1987), (1989), and Austen-Smith (1990).
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herding.3 Others explain social behavior such as political correctness.4

There are several reasons why the work of Crawford and Sobel (1982) is so influential.

First, the model is easy to apply. The CS paper provides an algorithm to calculate in-

formative equilibria and in particular to calculate the most informative equilibrium. More

importantly, the CS framework allows to analyze the relation between the degree of conflict

and the level of information that is transmitted between two individuals.5 In particular, the

model formalizes the intuition that as the preferences of two individuals diverge, the less

they are able to communicate in a meaningful way. This feature of the CS model has been

used to explain the observed patterns of lobbying activity. One prediction of this literature,

which has also gained an empirical support, is that interest groups tend to lobby politicians

whose preferences are relatively close to that of the interest group.6

The work of CS, however, as most of the applications of cheap talk models, focuses

on a policy space and a state space of one dimension. In contrast, most political and

economic decisions are concerned with more complex policy and state spaces, consisting of

many relevant dimensions. One motivation behind analyzing a unidimensional space in the

above mentioned applications, is that it may be an approximation for a multidimensional

model. On the other hand, recent literature indicates that the predictions of models that

assume multidimensional spaces may sharply differ from those that assume a unidimensional

space. Although none of these papers extends the CS framework directly, this literature

suggests that communication may be feasible, irrespective of the levels of conflict between

the interested parties.7

In this paper we extend the basic cheap talk model, with one sender and one receiver, to

a multidimensional environment. By doing so, we aim to study and isolate the effect of the

dimensionality of the policy and state spaces in the cheap talk framework of CS. We find

that, contrary to what one would expect from the above discussion, the multidimensional

model does not yield results that are dramatically different from those of the unidimensional
3 In this literature, investment decisions are cheap talk messages about experts’ abilities, which allow

them to acquire good reputation. See for example Trueman (1994) and Levy (2003).
4Morris (2001).
5 It is important to note that the CS framework formalizes conflict in a particular way. This formulation

hinges on the assumption that individuals have single peaked preferences over the policy space. The degree

of conflict between two individuals is related to the distance between their respective ideal points in the

different states of the world. In this paper we use the same notion of conflict as in the CS model.
6For a survey of this literature, and additional results on lobbying and information, see Austen-Smith

(1995).
7Battaglini (2002) proves the existence of a fully revealing equilibrium when there are two or more senders

who know the state of the world. Chakraborty and Harbaugh (2003) provide conditions on utilities such

that informative equilibria exist for any level of conflict, in a simplified model (uniform distribution over the

states and an equal level of conflict on each dimension).
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model. In particular, we show that generically, when the level of conflict is high between

two individuals, no information can be exchanged.

To be more specific we analyze the following model. As in CS, there are two players,

a sender and a receiver. The receiver has to choose a policy in some policy space. The

appropriate choice of policy depends on the realization of a state of the world. The receiver

initially has a prior distribution on the state of the world. The sender on the other hand is

informed about the state. the game has a simple form; first, the sender transmits a message

about the state to the receiver. After observing the message, the receiver takes an action.

The utility of both the sender and the receiver depend on the action and on the state of the

world.8 The sender and receiver differ in their optimal choice of action given the state of

the world, i.e., there is a conflict of interests. In contrast to CS, we assume that the policy

and state spaces are multidimensional.9

We focus on two main questions. First, we investigate the relation between the level of

conflict and the ability of the players to communicate. In particular, we analyze whether the

conflict between the sender and the receiver still is an obstacle for meaningful information

transmission when the policy space is multidimensional. Second, we provide a general

characterization of Perfect Bayesian equilibria and explore whether these equilibria retain

the same attractive features as in the unidimensional model. These equilibria, as in the

analysis of CS, are in partition form. That is, the state space is divided to convex sets of

sender types, where in each set, all types of senders send the same message and thereby

induce the same action. The actions reflect the (correct) expectations of the receiver over

the set of senders who send the same message.

We then analyze whether information transmission is feasible, for large degrees of conflict

of interests between the sender and the receiver. When the policy and state spaces consist

of only one dimension, as CS have shown, there is no information transmission when the

interests of the sender and the receiver are sufficiently divergent. When the conflict is too

large, the sender would always prefer the receiver to take the most extreme action on this

one dimension. Thus, no matter what is the real state of the world, he would always send

the same message - the one which induces the receiver to take the most extreme action with

the highest probability. This means that this message, or any other, cannot be informative

about the type of the sender.

In the multidimensional world, however, there is some intuition which points otherwise.
8We focus on the case in which the utilities are functions of the Euclidean distances of the state from the

actual action on each dimension. This is the common assumption in the literature; our results hold more

generally, see section 6.
9We assume, as is common in the literature, that the state and policy space are the same. Our results

can be generalized to the case in which the action space is a subset of the state space (and possibly of lower

dimensionality).
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Some ‘bundling’ of the dimensions may occur in equilibrium, even when the conflict is very

large. For example, suppose that the sender prefers a higher action than the receiver on

each dimension. An equilibrium may involve a message such as ‘x is low but y is high’.

This message can gain credibility (i.e., it would indeed be sent by low x and high y types)

because it is unfavorable for these senders on the x dimension. It is nonetheless worthwhile

for them to transmit it, since they get their way on the y dimension and, given their type,

it is better for them than sending the other equilibrium message that translates as ‘y is low

and x is high’.

To be phrased more precisely, this intuition relies on the idea that when there are many

dimensions, we can always span the space by a dimension (vector) of the conflict, and a

dimension on which the sender and the receiver agree on, i.e., the interests of the sender

and the receiver are aligned on this latter dimension. The sender should be willing to

transmit any information on this dimension, disregarding the magnitude of the conflict. It

may even be possible for him to transmit all the information on this dimension, implying

an equilibrium with infinitely many credible messages.10

The following graph in the two-dimensional policy space is helpful for understanding the

intuition for the possible existence of an equilibrium with infinitely many messages. Let us

focus on Euclidean preferences, i.e., when a player puts the same weight on each dimension.

Thus, the utility of a player decreases in the Euclidean distance of the action from his ideal

policy. The receiver’s ideal policy is the state of the world whereas the sender’s ideal policy

is removed from it by the vector b, for any state of the world. The graph depicts the vector

of conflict, b. The orthogonal line to the vector b is the dimension on which the sender

and the receiver ‘agree on’, the line BB. That is, if a sender could choose an action on the

line BB, he would choose the action which is closest to the true state of the world. In this

sense, the interests of the sender and the receiver are aligned on BB since the receiver also

prefers the action which is closest to the state of the world (his ideal policy).

To see why the sender chooses the ‘most truthful’ action, take for example all senders

who know that the state of the world is on some line AA, which is parallel to the vector

b, and orthogonal to BB. These senders would prefer action a among the points on BB.

Their ideal policy, that is the state of the world removed by the vector b, is also on the line

AA or on its continuation, and the point a is closest to them on the line BB. The action
10The intuition relies on works by Austen-Smith (1993a) and more recently, Battaglini (2002) and

Chakraborty and Harbaugh (2003). These papers are the exception in the literature, since they analyze

a multidimensional policy space. We discuss the related literature at the end of this section. The intuition

about multidimensional analysis is also indicated in Spector (2000). His model is very different from the

rest of the literature as he analyzes a repeated game with continuum of agents, divergent priors and discrete

policy space.
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a is also the closest to the true state of the world among all actions in BB. This holds for

any magnitude of the vector b, and in particular for very large conflicts in which the vector

b could be imagined as stretching to infinity. Similarly, all senders on the line A0A0 would

rather choose a0 (ignore a00 for the time being):

B

B
A

A

a

b

A’

A’

a’

a’’

Figure 1: All senders on AA prefer a on the line BB whereas all senders on A0A0 choose a0

on BB.

Obviously, one can construct infinitely many lines parallel to AA, or A0A0, or more gen-

erally, lines which have the slope of the vector of conflict b. All the senders who know that

the state of the world is on one such particular line, would prefer one particular action on

the line BB and these ‘favorable’ actions would span the line BB. Thus, it seems that in

equilibrium, the sender may be willing to transmit all information on the line BB, i.e., that

infinitely many credible messages can be transmitted in equilibrium.

A closer look at this suggested reporting strategy reveals a problem however in sustaining

it in equilibrium. If the receiver observes a message advocating a, she understands that the

real state of the world is somewhere on the AA line. She then updates her beliefs about

the state of the world. These beliefs are surly on the line AA since these are expectations

over this set of states. Her beliefs, however, do not necessarily coincide with the point a.

Suppose that the receiver’s expectations over the set of states in AA coincide with some

point a00 on the line AA and a0 on the line A0A0.

But then such an equilibrium cannot exist; when the conflict is very large, as we show in

the paper, the vector of the conflict becomes the most important dimension for the sender.

5



This dimension looms large and any two actions whose coordinates differ in the dimension of

the conflict, b, cannot be equilibrium actions. For large conflicts, as in the unidimensional

world, the sender would always choose to induce the most extreme action on the dimension

of the conflict. In the above case, senders both on AA and on A0A0 would prefer to induce

a00.11

In other words, there is indeed a dimension on which the sender and the receiver ‘agree on’;

but the sender would transmit information on this dimension only under the condition that

this information would not affect the action of the receiver on the dimension of the conflict.

These two dimensions, however, depend on the direction of the conflict (the vector b) and

the weights that the sender assigns to each of the dimensions in his utility (which are equal

in the above example). Generically then, these two dimensions will not be independently

distributed. Information about the dimension on which the sender and the receiver agree

on, would imply how the state of the world is likely to be distributed on the dimension of

the conflict. Thus, the receiver would change her choice on the dimension of the conflict

upon observing information on other dimensions and as a result, the sender cannot transmit

infinitely many messages in equilibrium.12

An equilibrium with infinitely many messages may not exist, but this may be too ambi-

tious a requirement for very large conflicts. It may be that an equilibrium with few messages

may hold, such as the ‘bundling’ equilibrium described above, with the sender just stating

whether ‘x is low and y is high’ or the other way around. In the paper we show however

that the existence of such equilibria, even with small or finite number of massages, is non

generic.

The main result in this paper is that when the conflict between the sender and the receiver

is large enough, informative equilibria generically do not exist. Although one can construct

such equilibria for unboundedly large conflicts (we provide such examples in section 5), the

point of the paper is to prove that any such equilibrium is based on knife-edge assumptions.

In particular, we show that following a perturbation of either the underling distribution

of the states, or the weights agents place on different dimensions, or the direction of the

underling conflict between the sender and the receiver, these equilibria would cease to exist.

Our method of proof is the following. First, we characterize the conditions for the ex-

istence of informative equilibria in the limit case in which the conflict between the sender

and the receiver grows to infinity. The conditions are that (i) the actions that are chosen by

the receiver in equilibrium must be on a particular line which is parallel to the dimension

of ‘agreement’; (ii) on the line of actions, any two actions must be equidistant from an
11The coordinate of a0 on the vector b is at the origin and that of a00 is to the north-east of the origin.
12This indicates that commitment on behalf of the receiver would have facilitated information transmission.

We discuss the issue of commitment in section 6.
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indifferent type which is in between them; (iii) the line of indifferent types between any two

action has the slope of the vector of conflict; (iv) all actions are expectations over the set

of types which support these actions.

We then reformulate the model by spanning the state space using the two dimensions,

that of the ‘conflict’ and that of an ‘agreement’. Using the reformulation, we decompose the

equilibrium conditions into two problems, such that the set of common solutions to these

two problems is the set of all informative equilibria in the limit. We show that the two

problems are independent, so that a common solution to the two problems is non generic.

This proves that the existence of informative equilibrium in the limit is non generic.

Finally, we prove that the inexistence of an informative equilibrium in the limit implies

that there is large enough levels of conflict for which informative equilibria cannot exist.

This part of the proof is complicated by a particular feature of the equilibria in the multi-

dimensional policy space. Whereas in the unidimensional policy space the existence of an

equilibrium with n informative messages implies the existence of an equilibrium with n− k
informative messages for some integer k ∈ (0, n), this is not true in the multidimensional
policy space. Thus, to prove that no informative equilibrium exists it is not enough to show

that an equilibrium with two different actions fails to exist (whereas this would be sufficient

in the unidimensional model). We therefore have to show that informative equilibria do

not exist for all sequences of equilibria when the level of conflict grows to infinity, those in

which the number of induced actions is bounded by some finite number and those in which

the number of induced actions converges to infinity. This is the final step of the proof.

Our paper also illustrates that the model is not easily applied, even for low levels of

conflict. When the conflict is small, informative equilibria exist and can be characterized

by partitions of the space, as in the unidimensional policy space. However, as indicated

above, there is not necessarily a monotonous relation between the number of actions and the

level of the conflict, as opposed to the unidimensional model. Moreover, although equilibria

are characterized by partitions of the space, as in the unidimensional model, the elements of

the partition are of different shapes, and the partition depends on the shape of the original

state space. Thus, as opposed to the equilibria in the unidimensional model, it is very

difficult - if not impossible - to find a general algorithm that can characterize informative

equilibria when these exist, and moreover it is difficult to characterize the most informative

equilibrium.

The papers most related to ours are the works of Battaglini (2002) and of Chakraborty

and Harbaugh (2003). Battaglini (2002) also analyzes a model with a multidimensional state

and policy spaces. In his model, there are two senders who both know the state of the world.

He shows that in this case all information can be revealed in equilibrium, disregarding the

magnitude of the conflict of interests. In the fully revealing equilibrium, the state space is
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spanned by two vectors; each of these vectors is the dimension on which the receiver has no

conflict with one of the senders. Each sender then truthfully tells the receiver the coordinate

of the state of the world on this dimension. This information revelation is feasible in a model

with two senders, because one sender’s message on a particular dimension indeed does not

change the action of the receiver on other dimensions, and in particular on the dimension

of the conflict. This is because the receiver ‘already’ knows the exact information on the

dimension of the conflict, extracted from the report of the other sender. This result hinges

on the assumption that both senders know exactly the same information.

Our work stresses that such a result cannot in general hold when there is only one

sender. In particular, it is not only that full information transmission is not feasible, but

that equilibria with any information transmission are not robust. We therefore disentangle

the effect of increasing the dimensionality of the state space, and increasing the number of

senders, in a CS framework.

The other relevant paper, by Chakraborty and Harbaugh (2003), studies the conditions

on utility functions which allow the existence of the two actions ‘bundling’ equilibrium

described above, for all degrees of conflict. Our analysis shows that for a subset of the utility

functions they identify, that is, the ones that we analyze in this paper, this equilibrium is

non generic.

Other related papers are concerned with extending additional features of the work of

CS. Krishna and Morgan (2001) analyze the case of two senders and one dimension of

conflict. They show that more information can be revealed when a receiver communicates

with two senders instead of one, as long as the senders’ interests are biased in opposite

directions. Farrell and Gibbons (1989) show that the existence of two receivers may facilitate

information transmission.13 Aumann and Hart (2003) and Krishna and Morgan (2002)

analyze models in which the receiver is also allowed to communicate, even though she is

not informed. Her messages allow the players to conduct joint lotteries. These increase the

degree of information transmitted, but still cannot induce informative equilibria when the

interests are too divergent.

The rest of the paper is organized as follows. In the next section we present the model.

In section 3 we characterize the equilibria of the model. Section 4 analyzes equilibria when

there is a high degree of conflict between the sender and the receiver. In this section

we present Theorem 1, our main result, about informative equilibria being non-generic.

Section 5 puts forward examples that illustrate the implications of Theorem 1. In addition,

we show in this section why the model is difficult to apply, with examples illustrating the

characteristics of informative equilibria when the level of conflict is low. Section 6 concludes

by discussing some extensions, notably to the case of an informed receiver and many senders.
13For an application of this idea to international relations see Levy and Razin (2004).
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2 The model

An individual (the receiver) has to choose a policy in a multi-dimensional policy space,

<d. Denote the policy choice or action taken by the receiver by a. The appropriate choice
of policy depends on the realization of a state of the world θ, in a compact and convex

subset of <d denoted by Θ.14 The receiver initially holds an atomless and continuous prior
distribution on the states in Θ denoted by F with a strictly positive density function f on

Θ. We assume, without loss of generality, that Θ includes the origin and that the origin is

the expectation of F on Θ.

A sender is fully informed about θ. Before the receiver takes his action a, he observes

a message about θ, transmitted by the sender. The sender chooses a message m in a set

of messages M = Θ. Upon observing the message, the receiver chooses her action a at the

expectation of θ, E(θ), according to her posterior.15

The sender’s preferences over the actions of the receiver are represented by the vector

b = (b1, b2, ..., bd) and by a strictly decreasing utility function, U(a|θ) = v(∆α(a,b|θ)),
defined over

∆α(a,b|θ) =
dX
i=1

αi(ai − (bi + θi))
2.

Note that the vector α (without loss of generality we assume that all its elements are

strictly positive and sum up to one) denotes the relative importance of the different dimen-

sions in the preferences of the sender.16

To summarize, the game has two stages. In stage 1 the sender observes θ and then sends

a message m ∈ Θ. In stage 2, the receiver updates her beliefs about θ and takes an action
a at the expectations of θ. We analyze (weak) Perfect Bayesian equilibria of this game.

In what follows we focus our analysis on the case of d = 2. All our results carry over to

the case in which d > 2.

3 Characterization of equilibria

A strategy of player type θ is a probability distribution, mθ, over the set of messages M.

For any message m ∈M, let a(m) denote the action chosen by the receiver.
An equilibrium is a pair of a strategy function m : Θ→ ∆(M) (denoted by mθ) for the

sender and a belief function for the receiver, f(θ|m), satisfying:

(1) ∀θ and any m0,m00 ∈M such that mθ(m
0),mθ(m

00) > 0,
14We discuss how to modify the assumption that Θ is compact in section 6.
15The assumption that the receiver chooses policy at the expectation is taken for simplicity. Moreover, it

is consistent with the receiver maximizing a utility function that is quadratic in the distance of policy from

the origin.
16We discuss the generalization of the preferences of the sender in section 6.

9



U(a(m0)|θ) = U(a(m00)|θ) = max
m∈M

U(a(m)|θ)

(2)

a(m) = E[θ|m] =
Z
Θ
θ · f(θ|m)dθ.

(3) f(θ|m) is updated using Bayes rule whenever possible.
It is clear that an equilibrium exists; for example, one possible equilibrium is a ‘babbling’

equilibrium, when the sender sends the same message irrespective of θ. Proposition 1 below

characterizes the equilibria of the model.

Proposition 1 Any equilibrium is almost surely equivalent in outcomes to an equilibrium

in which the type space is partitioned into convex sets. All types of senders in the same set

induce the same action, and each type induces it with probability one.

Proposition 1 shows an analogy with the unidimensional model of Crawford and Sobel

(1982). As in CS, any equilibrium in the multidimensional model is almost surely equivalent

in terms of outcomes to an equilibrium in partition form. In any such equilibrium, the set of

types is partitioned into convex sets and all agents in each element of the partition induce,

with probability one, the same action.

Unlike the CS unidimensional model, the partition form of equilibria is not very useful for

deriving other applicable results. Once the multidimensional state space is considered, there

is no consistency in the shapes of the elements of typical equilibrium partitions, and the state

space and its shape play an important role in determining the set of equilibria. Moreover,

in contrast to the unidimensional model, if an equilibrium with k induced actions exists,

it does not imply that an equilibrium with less than k induced actions also exists. These

observations indicate that generally it is difficult to use algorithms to find equilibria in the

multidimensional model, and that it is very difficult to characterize the most informative

equilibrium. We illustrate these observations later on in section 5. We now turn to the

characterization of equilibria with high levels of conflicts.

4 Equilibria with high levels of conflicts

In this section we analyze the set of equilibria when the conflict between the sender and the

receiver is large. We focus on influential equilibria:

Definition 1 An equilibrium is influential if there exist at least two messages m,m0

such that a(m) 6= a(m0).

We derive our main result in three steps. First, we characterize the conditions for the

existence of equilibria when the level of conflict between the sender and the receiver is
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large. In section 4.1 we take these limit conditions and reformulate them into two problems,

denoted by problem A and problem B. We characterize the solutions to these two problems.

Finally, section 4.2 presents the main result which shows that the solution to both problems

is non-generic. We prove that the implication of this is that influential equilibria do not

exist for large enough levels of conflict.

We now characterize the conditions for the existence of influential equilibria when the

conflict is large. Recall that b1 represents the conflict on the x−dimension, and b2 repre-
sents the conflict on the y−dimension. Also, α1 represents the relative importance of the
x−dimension in the sender’s preferences, and α2 = 1−α1 represents the relative importance
of the y−dimension.
In what follows we increase the distance between the ideal point of the sender and the

origin in the direction of the vector b =(b1, b2), a ray with slope b2
b1
. Denote by b the norm

of b, i.e., b = ||b||.
The two parameters that play a crucial role in what follows are β∗ = −α1

α2
b1
b2
and δ∗ =

−α1
α2

1
β∗ =

b2
b1
. The first, β∗, is the slope of what we intuitively term the dimension of

‘agreement’ and the latter, δ∗, can be thought of as the slope of the dimension of ‘conflict’.

Assume without loss of generality that |β∗| ∈ (0,∞).
Our first step is an important building block of what will follow:

Proposition 2 For any ε > 0, there exists b̄ such that for all b > b̄ and any two distinct

actions (a01, a02) and (a001, a002) induced in equilibrium, (i) |a
00
2−a02
a001−a01 − β∗| ≤ ε; (ii) The set of

sender types who are indifferent between these two actions is a line with slope δ such that

|δ − δ∗| ≤ ε.

To see the intuition for part (i), note that when the conflict becomes very large, it implies

that the distance between typical actions that the receiver may take and the sender’s ideal

point, increases. The indifference curves of the sender that go through these typical actions

can be approximated by a line, with a slope approaching β∗. If several actions are induced

in equilibrium, some sender types must be indifferent among them, hence the actions must

lie on a line with this particular slope, β∗. Any action which is not on this line, must be

strictly inferior or strictly superior relative to all the other induced actions for all types

of senders. In other words, one dimension of the policy space becomes more and more

important and induced actions cannot differ on this important dimension.

As for part (ii), suppose that in equilibrium there are two induced actions, a0 and a00.

Some sender types must advocate a0 and some must send messages to induce a00, where

the types who are indifferent compose the line which is the boundary between these two

sets of types. However, the senders’ ideal policies are actually removed from the state or

action space by the vector b whose slope is δ∗. When the norm of this vector converges to
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infinity, and the distance between the typical actions and the sender’s ideal point increases,

the state space becomes ‘small’ relative to the magnitude of the vector of the conflict. Any

other line, with a slope different from δ∗, would not constitute a separating hyperplane for

the far removed senders’ types; all senders’ types would be on one side of the line or the

other, so that all would support the same action, be it a0 or a00. Thus, if some types prefer

a0 and some prefer a00, the slope of the line of the indifferent types must identify with the

slope of the conflict.

Proof of Proposition 2: (i) For any b, if there are two distinct actions, a0 = (a01, a02)

and a00 = (a001, a002), induced in equilibrium, there must be some sender type θ
0 that is

indifferent between inducing either of these actions. For this type we have,

v(∆α(a
0,b|θ0)) = v(∆α(a

00,b|θ0))⇔ (1)
2X
i=1

αi(a
0
i − (bi + θ0i))

2=
2X
i=1

αi(a
00
i − (bi + θ0i))

2 ⇔

α1(a
02
1 − a0021 )− 2α1(b1 + θ01)(a

0
1 − a001) =α2(a

002
2 − a022 )− 2α2(b2 + θ02)(a

00
2 − a02) (2)

First suppose that a01 = a001. This implies that the left-hand-side of (2) is 0 and therefore to

satisfy the equation, it has to be that:

α2(a
00
2 − a02)((a002 + a02)− 2(b2 + θ02)) = 0

But since the actions are distant from one another, a002 6= a02. Thus, for all

b2 >
(a002 + a02)

2
− θ02,

where (a002+a
0
2)

2 − θ02 is bounded, equation (2) is violated. Consider then the case of a01 6= a001
and let us re-arrange (2):

(a002 − a02)
(a01 − a001)

(1− α2(a
00
2 + a

0
2)

2α2(b2 + θ02)
)− α1(b1 + θ01)

α2(b2 + θ02)
= − α1(a

0
1 + a

00
1)

2α2(b2 + θ02)
⇔ (3)

(a002 − a02)
(a01 − a001)

=
2α1(b1 + θ01)− α1(a

0
1 + a

00
1)

2α2(b2 + θ02)− α2(a002 + a02)
(4)

Note that any induced action must be in (the compact set) Θ. Moreover, it must be that

both b1 and b2 are growing to infinity as b converges to infinity. This implies that the

right hand side of (4) is converging to α1b1
α2b2

when b converges to infinity. Moreover this

convergence is uniform (with respect to induced actions) by the compactness of Θ.17 Thus,

− (a002−a02)(a01−a001 ) =
(a002−a02)
(a001−a01) → −

α1b1
α2b2

= β∗.
17To see this one can define for any b, a triple (a0(b),a0(b), θ(b)) ∈ Θ3 which is a maximizer of

| 2α1(b1+θ01)−α1(a01+a001 )
2α2(b2+θ

0
2)−α2(a002+a02)

− β∗| on Θ3. By compactness such a maximizer exists. Furthermore, by compact-

ness of Θ, limb→∞ | 2α1(b1+θ
0
1(b))−α1(a01(b)+a001 (b))

2α2(b2+θ
0
2(b))−α2(a002 (b)+a02(b))

−β∗| = 0. This last equality implies that the convergence is
uniform.
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(ii) For any two actions, (a01, a02) and (a001, a002) induced in equilibrium, look at a typical

type, θ0, who is indifferent between the two actions. This type should satisfy (1) and

therefore by rearranging we get,

θ02 = θ01
α1(a

0
1 − a001)

α2(a002 − a02)
− α1
2α2

(a021 − a0021 )
(a002 − a02)

+
2α1
2α2

b1
(a01 − a001)
(a002 − a02)

+
(a002 + a02)

2
− b2, (5)

which shows that the set of indifferent sender types is a line with slope α1(a01−a001 )
α2(a002−a02) . By (i),

(a01−a001 )
(a002−a02) → −

1
β∗ and so we have that the slope of the set of indifferent sender types converges

to −α1
α2

1
β∗ = δ∗.¤

Proposition 2 puts very stringent conditions on the existence of equilibria; first, all induced

actions will tend to be distributed on a particular line of slope β∗. But note that if all actions

converge to be on the same line with a slope β∗, the expectations over all these actions must

be on this line as well. These expectations must also coincide with the prior; as a result, this

line must go through the prior expectations, which are normalized to be at the origin, (0, 0).

Thus, an implication of Proposition 2 is that all actions converge to the line θ2 = β∗θ1.

The second part states that the types who support each action will be in a subset of Θ

with boundaries which tend to be lines with slope δ∗. In addition, it is easy to derive from

part (i) that the sender type which is the mid-point between any two actions, (a
00
1+a

0
1

2 ,
a002+a

0
2

2 ),

is also indifferent between the two actions, i.e., it is on the line of indifferent types. Trivially,

(
a001+a

0
1

2 ,
a002+a

0
2

2 ) is equidistant from each action and also converges to the same line of the

actions, that with a slope β∗. Thus, an implication of Proposition 2 is that on the line

of actions, the actions are equidistant from the type who is indifferent between them. In

other words, the actions are equidistant - on the β∗ direction - from their respective line of

indifferent types.

Remark 1 It is helpful to think of the preferences of the sender, when the conflict is very

large, as lexicographic preferences. The relevant dimensions become the lines of slopes β∗

and δ∗. First, the sender prefers the action which is on a line with a slope β∗ that is closest

to him, as if his indifference curves are linear with a slope β∗. If both actions are on the

same line with a slope β∗, the sender prefers the action that is on the closest line with a

slope δ∗.18

To pursue our analysis further, Corollary 1 summarizes Proposition 2 and its implications

discussed above. In the next section we show that this tight structure summarized below

implies that generically influential equilibria will not exist when the conflicts’ levels are

high.
18More precisely, the distance is measured on the β∗ dimension, so that the preferred action is the one on

the δ∗ line which is closest on the β∗ direction.
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Corollary 1 For any ε > 0, there exists b̄ such that for all b > b̄ and any two distinct

actions a0 = (a01, a02) and a00 = (a001, a002) induced in equilibrium, (i) |a002 − β∗a001| ≤ ε and

|a02 − β∗a01| ≤ ε; (ii) The set of sender types who are indifferent between these two actions

is a line with slope δ such that |δ− δ∗| ≤ ε; (iii) The type (a
00
1+a

0
1

2 ,
a002+a

0
2

2 ) who is equidistant

from the two actions is indifferent between the two actions.

4.1 Equilibria with high levels of conflicts: a reformulation

Corollary 1 established the conditions for the existence of equilibria for very large conflicts.

We now use these results to reformulate the problem, which would enable us to prove that

generically, influential equilibria do not exist when the conflict is very large.

To make things simpler, we build a new coordinate system with respect to the slopes

β∗ and δ∗. We take the smallest parallelgam with slopes β∗ and δ∗ that contains Θ. We

denote one of the points of intersection between the δ∗ and the β∗ lines of the parallelgam,

say the south-west point, as (0,0) and let the two lines crossing at (0,0) span the space.

Similarly one can denote the three other intersections by (x̄, 0) and (0, ȳ) and (x̄, ȳ), with

the convention that the new x − axis is the dimension of slope β∗ and the y − axis that
of slope δ∗. For any θ ∈ Θ, let (x, y) be the same point expressed in the new coordinate
system and let the set Θ be mapped into the set Θ∗.

Denote the marginal distribution on the y − axis as fδ∗(y) defined on (0, ȳ) and the
marginal distribution on the x − axis as fβ∗(x) defined on (0, x̄). Finally, we term the

reaction curve, γ(x), as the expectations over y for values of y for which (x, y) ∈ Θ∗, i.e.,

γ(x) = E[y|(x, y) ∈ Θ∗].

Figure 2 illustrates the new coordinate system, and depicts an example of γ(x). The

dashed lines in Θ∗ are lines with slope δ∗ and γ(x) is the expectations over each of these

lines, i.e., the expectations over y for a particular value of x :
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(0,0) 

(
−

x ,0) 

(
−

x ,
−

y ) 

(0,
−

y ) 
 

Slope δ* 

Slope β* 

γ(x) 

Θ

Figure 2: The new coordinate system.

In this new coordinate system, we propose to consider the following two problems. The

first, problem A, is the following. Think of partitioning Θ∗ into ‘strips’ with boundaries that

are lines with a slope δ∗, such that the expectations taken on any two neighboring strips

are equidistant (with respect to direction β∗) from the line that separates them. Figure 3a

illustrates a solution to such a problem. It is a vector x = (0, x2, x3, x̄), that induces the

expectations (a1, a2, a3), which are equidistant from x2 and from x3 respectively:

0 

−

x

x2 

 x3 

•a2 

•a1 
•a3 

Figure 3a
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This problem can be formalized as follows:

Problem A

A vector (x1, ..xk) ∈ (0, x̄)k, such that xi ≤ xi+1 for all i ∈ (1, ..., k− 1), and k ≥ 3, is a
solution to problem A if x1 = 0, xk = x̄ and for all i ∈ (2, ..., k − 1),

|
Z xi

xi−1
xfβ

∗
(x)dx− xi| = |

Z xi+1

xi

xfβ
∗
(x)dx− xi|.

We proceed to consider the second problem, problem B. For any two points, x, x0 ∈ [0, x̄],
let

µyx,x0 = E(y|x00 ∈ [x, x0] and (x00, y) ∈ Θ∗)

and let

µy = µy0,x̄

that is, µy is the prior expectations over the newly defined y−dimension. Problem B

demands partitioning Θ∗ into strips, with boundaries that are lines with a slope δ∗, but in a

way so that the expectations taken within each strip are all on the same line of slope β∗, that

is, they all have the same value of y, µy. Figure 3b illustrates a solution to such a problem:

the vector x0 = (0, x02, x03, x̄) induces the expectations (a01, a02, a03) which are on a line with

slope β∗ that goes through the prior, µy. In the figure we also illustrate the reaction curve

γ(x), which is helpful in this problem; since γ(x) is the expected value of y given a particular

value of x, the expectations of the y−value over some strip (xi, xi+1) for i ∈ {1, 2, 3} are
essentially the expectations over γ(x) in this strip, where in these expectations each value

of γ(x) is weighted by the marginal distribution over x.

0 

−

x

x'2 

 x'3 

•a'2

•a'1

•a'3

γ(x)

Figure 3b.
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Formally,

Problem B

A vector (x1, ..xk) ∈ (0, x̄)k, such that xi ≤ xi+1 for all i ∈ (1, ..., k− 1), and k ≥ 3, is a
solution to problem B if x1 = 0, xk = x̄ and for all i ∈ (2, ..., k − 1),Z xi

xi−1

γ(x)fβ
∗
(x)R xi

xi−1 f
β∗(x)dx

dx = µy.

Problems A and B decompose therefore the conditions for the existence of equilibria.

Problem A relates to the requirement that any two actions converge to be equidistant -

in the β∗ dimension - from the line of the indifferent types. Problem B relates to the

requirement that all actions have actually to converge to the line with a slope β∗ that

goes through the prior. Both problems take into account that the lines of indifferent types

converges to be with a slope δ∗. And, both problems take into account that each action is

the expectations of the receiver over the set of sender types who prefer this action to the

other possible actions. Therefore, there is a close relation between the solutions of problems

A and B and the existence of equilibria.

In our main result, below, we show that the existence of a solution to both problems,

A and B, is non-generic. This, as we will show, also implies that influential equilibria are

non-generic for large conflicts. Even before we state and prove this formally, one can observe

the following: a solution to problem A depends only on the marginal distribution over x,

fβ
∗
(x), whereas the solution to problem B depends on fβ

∗
(x) as well as on γ(x).19 This

implies that the set of solutions is independent. For example, if we alter the reaction curve

γ(x), without changing fβ
∗
(x), the marginal distribution over x, then the set of solutions

for problem B may change whereas the set of solutions for problem A remains fixed.

Our next step is to characterize the solutions of problems A and B.

Definition 2 The reaction curve γ(x) satisfies the l−crossing property, if there are l
(finite) solutions to γ(x) = µy.

For example, in Figure 3b, the reaction curve satisfies the three-crossing property. Note

that the l−crossing property, is a property of the relation between the distribution function
F (.) and the slopes δ∗ and β∗. That is, it is not a property of a distribution function alone,

but a joint property of the prior distribution and the other primitives of the model, the

conflict on each dimension and the weight that the sender places on each of the dimensions.

19The solution to problem B depends therefore on the marginal on the y − axis only through the expec-
tations on that dimension.
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Proposition 3

(i) Problem A: the set of solutions to problem A is isomorphic to the set of equilibrium

outcomes of the model with Θ = [0, x̄], a density function fβ
∗
(x) over Θ and b=0 (see

Crawford and Sobel, 1982). In particular, there exists a countable number of solutions.

(ii) Problem B: (a) if γ(x) = const then any vector (x1, ..xk) is a solution to problem B.

(b) If the reaction curve γ(x) satisfies the l−crossing property, then there are at most a finite
number of solutions to problem B. (c) If the reaction curve γ(x) satisfies the one-crossing

property, then there does not exist a solution to problem B.

Proof of Proposition 3:

(i) This follows from the analysis of Crawford and Sobel (1982).

(ii) (a)When γ(x) = c for all x, then for all i, and xi, xi−1, µyxi,xi−1 = c. Therefore any

vector is a solution for B. In other words, if x and y are independently distributed then every

vector x is a solution for B.20 Recall however that x and y are not the original dimensions

of the problem but correspond to the β∗ and δ∗ dimensions.

(ii) (b) We now construct an algorithm to compute the set of solutions for problem B.

We will show both that the algorithm provides a finite number of solutions, and that it

characterizes all the solutions to problem B.

Step 1: The algorithm

1. Start from x1 = 0 and find the first x ∈ (0, x̄] such that µy0,x = µy. If x = x̄ the

algorithm stops with no solution. If x < x̄, denote x2 = x. Suppose we have defined in this

way xm, m ≥ 2. Continue this process starting from xm. If there exists an x ∈ (xm, x̄) such
that µyxm,x = µ

y we define xm+1 = x and proceed to the next step in the algorithm starting

with xm+1. If x = x̄, we define xm+1 = x̄ and the algorithm stops. Let k be the subscript

of the last point defined in the algorithm.

By the l− crossing property, the algorithm stops at a finite time. To see this, note

that there cannot be two points xi and xi+1 chosen by the algorithm that are between

two neighboring solutions of the equation γ(x) = µy (i.e., two ‘crossings’). If there were

such two points than either γ(x) > µy or γ(x) < µy in the strip defined by (xi, xi+1), in

contradiction to the construction of the algorithm. Thus, since there is a finite number of

crossings, there must be finite number of solutions in the algorithm.

2. The set of solutions to problem B proposed by the algorithm is any (ordered) vector

(x01, ..., x0m), 3 ≤ m ≤ k, such that x01 = 0, x0m = x̄ and x0i ∈ {x2, ..., xk−1} for all i =
2, ....m− 1.
Step 2: The solutions proposed by the algorithm are the only solutions for problem B.
20 In particular, this would imply that when x and y are independently distributed, then there exist

equilibria with any number of messages.
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First note that since in any solution x of problem B µyxi,xi+1 = µ
y, then also µy0,xi = µ

y for

all xi which are part of a solution x. Second, suppose that we find a solution (x01, ..., x0k) but

it is not characterized by the algorithm above. In particular, suppose that x0i is not part of

any solution above. It is therefore in between some xm and xm+1 which were characterized

by the algorithm. In this case, µy0,xm = µ
y and µy

0,x0i
= µy, which implies that µy

xm,x0i
= µy.

This is however in contradiction to the definition of xm+1, since xm+1 is the smallest value

of x > xm so that µyxm,x = µy. So (x01, ..., x0k) must be part of a solution found by the

algorithm.

(ii) (c) If there is a single crossing of γ(x) with µy this implies that the above algorithm

will stop with no solution at the first step. The reason is that for all x < x̄, either µy0,,x < µ
y

or µy0,x > µy. To see this, let x0 be the unique solution for γ(x) = µy. For any x ≤ x0,

µy0,x 6= µy, and for any x ≥ x0, µyx,x̄ 6= µy, but in any solution x for the algorithm, µyx,x̄ = µy
and µy0,x̄ = µ

y have to be satisfied. Thus, there is no solution. This concludes the proof.¥

The implication of Proposition 3 is that the existence of a solution which solves both

problems A and B simultaneously, seems highly unlikely. Part (c) of the Proposition already

provides sufficient conditions for the non-existence of a solution to problem B, namely, the

one-crossing property (in section 5 we show examples in which the one-crossing property is

satisfied). For all other parameters, as we show below, a common solution to problem A

and B is non-generic. We are now ready to state and prove our main result.

4.2 Equilibria with high levels of conflicts: the main result

Let Solution(A) and Solution(B) be the sets of solutions of problems A and B respectively.

Theorem 1 (i) If Solution(A)∩Solution(B) = φ then there exists a b̄ such that for all

b > b̄ there exists no influential equilibrium; (ii) Suppose that Solution(A)∩Solution(B) 6= ∅.
Then there exists a set of perturbations of the distribution function F (θ∗) on Θ∗ such that

Solution(A)∩Solution(B)= ∅.
The first part of the Theorem relates problems A and B to the existence of an equilibrium

for high levels of conflict. That is, it states that if there is no common solution to problem

A and B, then for high levels of conflict, indeed there is no influential equilibrium. The

second part of Theorem 1 establishes that a solution to both problem A and problem B is

non-generic. In the remaining of this section, we explain the intuition for the proof in two

steps, starting with the second part.

A common solution to problems A and B is non-generic

To show that a common solution to problems A and B is non-generic, we construct

perturbations to the distribution function which change the set of solutions of problem B

while maintaining fixed the set of solutions for problem A. None of the new solutions of
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problem B would coincide with any of the solutions of problem A, so that a common solution

would not exist following a perturbation.

First recall that a solution to problem B satisfies that for all i, and xi, xi−1, µyxi,xi+1 = µy,

and moreover, by the algorithm that we have constructed, it also satisfies that for all i,

µy0,xi+1 = µ
y.We now focus on perturbations to γ(x), while fixing the marginal density over

x, fβ
∗
(x). This type of perturbation will not alter the set of solutions of problem A.

Let us take for example any (small) local perturbation which alters γ(x) in some strip

xi, xi+1, which therefore changes the prior in that strip, µ
y
xi,xi+1 , and as a result changes

also µy. Such a perturbation is described in the following figure, Figure 4:

 

γ(x)

•a3 

•a2 

•a1 −

x

 x3 

x2 

0 

Figure 4: An example of a perturbation.

In the original solution, all the actions a1, a2 and a3 are on a line with slope β∗ that goes

through µy. There is a small and local perturbation of the reaction curve γ(x) represented

by the dashed line, in the strip between 0 and x2 which changes µ
y
0,x1

‘downward’ to µ̂y0,x1 .

This perturbation moves µy ‘downward’, and the dashed line with slope β∗ goes through

the new prior, denoted by µ̂y. Note that µy must change less than the local change in µy0,x2 .

It is now easy to see that the solution (0, x2, x3, x̄) is not a solution to problem B any

more: µ̂y0,x2 6= µ̂y, µyx2,x3 6= µ̂y and µyx3,x̄ 6= µ̂y since the expectations on these two latter

strips have not changed. Moreover, neither of the components of this solution can be part

of a different solution, since also µy0,x2 6= µ̂y and µ
y
0,x3

6= µ̂y. This implies that any former
solution to problem B is not a solution following the perturbation.

To complete the intuition for part (ii), note the following. Generically, whenever there is

a slight change in the prior µy, any new solution to problem B is only slightly different from

one of the original solutions. But then, following a perturbation, Solution(A)∩Solution(B)
is empty; any previous solution to B corresponded to a solution of A, but since the set of
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solutions of A is not a continuum, none of the new solutions to B is a solution to A.

The inexistence of influential equilibria for large conflict

The final step of our analysis, is to establish the continuity of the problem. This is

complicated because in the multidimensional policy space, if an equilibrium with k messages

does not exist, it does not imply that an equilibrium with more than k messages does not

exist (we illustrate this in section 5). Therefore, one cannot prove our result by focusing on

equilibria with only two different actions (as opposed to the unidimensional model).

We must therefore show that the statement is true for all cases of sequences of equilibria

when b converges to infinity, those in which the number of induced actions is bounded

by some finite number and those in which the number of induced actions converges to

infinity. We prove all these cases in the appendix; here we provide the intuition as to why

an equilibrium with two different actions cannot exist. That is, we demonstrate now that

when Solution(A)∩Solution(B) = φ, there is no sequence of equilibria in which the number

of induced actions converges to two.

Assume, by way of contradiction, that such a sequence of equilibria exists, where along

the sequence the two actions converge to some a and a0. By Proposition 2, a and a0 must

lie on a line of slope β∗ and the line of types who are indifferent between the two induced

actions converges to a line of slope δ∗. Therefore, the sets of senders who support the two

induced actions are converging to the part of Θ which is above and below the line of slope

δ∗. Moreover, this line of indifferent types converges to go through the midpoint between

the two limit actions a and a0. Finally, any induced action is the expectation of the state

of the world conditional on the state being in the relevant set of senders who induce this

action.

But the above steps imply that along the sequence of equilibria, the two actions must

be converging to one another, so that in the limit a = a0. The reason is that in the limit,

the two induced actions cannot simultaneously be bounded away from each other, lie on

some line of slope β∗, and on this line, be equidistant from the indifferent midpoint. If this

would be the case, then Solution(A)∩Solution(B) 6= φ, a contradiction. Therefore, if such

a sequence of equilibria exists, the two induced actions must converge to one another.

Finally, we arrive at a contradiction. It cannot be that in equilibrium, the two induced

actions are arbitrarily close to each other. This would imply that each action is arbitrarily

close to the line of types who are indifferent between the two actions. This line has slope δ∗,

divides Θ to two convex subsets, is the border of each of these support sets, and must run

between the two actions. But the measure of at least one of two support sets that cover Θ

must be strictly positive. Since the density f(.) is strictly positive on Θ, the expectations

over this particular support set cannot converge to its borders, a contradiction.
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5 Examples and Implications

In this section we discuss examples pertaining to high and to low level of conflicts. We first

explore some implications of Theorem 1, which illustrate why influential equilibria do not

exist in the multidimensional state space for high levels of conflict. We then shift our focus

to low levels on conflict.

5.1 High levels of conflict

Let us consider first the state space of a square, Θ = [0, 1]2, and a prior uniform distribution.

It is easy to see the following. First, when b1 = b2 and α1 = α2, then δ∗ = 1 and β∗ = −1.
This implies that γ(x) = const, i.e., it is the diagonal with a slope −1 (recall that γ(x) is
the curve of expectations over lines with slope δ∗, such as the dotted lines shown in figure

5a).

γ(x) 

µy 

β* 

 δ* 

γ(x) 
β' * 

 δ* 

µ' y 

Figure 5a (left) in which every vector is a solution to problem B and figure 5b (right)

which shows that generically in the square, problem B has no solution.

Second, when b1 = b2 and α1 6= α2, the one-crossing property is satisfied. This is

exemplified in figure 5b, because in this case β∗ 6= −1. This implies that there does not exist
a solution to problem B. Finally, for all other parameter values, the l− crossing property is
satisfied (in particular, it is easy to show that the three-crossing property is satisfied for all

other parameters).

The implications of the above are as follows. Consider the case of the parameters b1 =

b2 ≥ 0 and α1 = α2 =
1
2 . Indeed, for any b1 = b2, there exists an influential equilibrium

with infinitely many messages; all senders with the type θ2 = θ1 + λ for λ ∈ [−1, 1] send
the same message λ and the receiver takes an action (1−λ2 ,

1+λ
2 ). This equilibrium can be

approximated by the limit of a sequence of a common solutions for problems A and B, when

we increase the size of the vector x, i.e., when we let k converge to infinity.

However, when the conflict is very large this equilibrium is non-generic, that is, it is not

robust to small changes in the parameters of the model. For example, any local change in
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the uniform distribution that would slightly change γ(x), will knock down this equilibrium,

as Theorem 1 implies.

But moreover, if for example we replace the assumption of α1 = α2 by any other values

for these parameters, there is no influential equilibrium at all. In this case, as in figure

5b, β∗ 6= −1 and therefore γ(x) satisfies the one-crossing property. From Proposition 3 we

know that there is no solution to problem B in this case, which by Theorem 1 implies that

no informative messages can be sustained in equilibrium.

We find this example important, first, because it demonstrates that other changes to the

parameters of the model, not only to the distribution function as presented in Theorem

1, can upset influential equilibria. This is a consequence of the fact that the l− crossing
property that we have defined, is a property satisfied jointly by all parameters of the model

and not by the distribution function alone.

Second, it may seem attractive in applications to use the symmetric case of b1 = b2

and α1 = α2. We emphasize here that this case may be misleading since results regarding

information revelation are completely different for all other parameters.

The one-crossing property, which implies inexistence of influential equilibria for large

conflicts, is also satisfied in other cases; consider for example the state space bounded by a

circle, i.e., Θ = {θ1, θ2|θ21 + θ22 ≤ r2}, where the prior distribution is uniform. In this case,
the reaction curve γ(x), which is the expectations over lines with slope δ∗ (as the dotted

lines in figure 6), is always orthogonal to δ∗ (this follows from the symmetry of the state

space and the uniform distribution).

 

γ(x)

µy

δ*

β*

Figure 6: In the circle there are generically no solutions to probelm B.

Thus, γ(x) is a line that goes through the prior with a slope − 1
δ∗ . The prior µ

y is the

β∗−projection on the δ∗−dimension, as described in the figure. Thus, it is clear that

whenever β∗ 6= − 1
δ∗ , γ(x) crosses µ

y, or the line with slope β∗ that goes through the prior,
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only once. Since the one-crossing property is generically satisfied (whenever β∗ 6= − 1
δ∗ or

in other words whenever α1 6= α2), there is no solution to problem B. Thus, in this state

space, generically there is no influential equilibria for high degrees of conflict.

5.2 Low levels of conflict

When the levels of conflicts are low, influential equilibria can be supported. The exam-

ples presented in this section illustrate first that a multidimensional set up may actually

improve upon information transmission relative to a unidimensional set up. However, we

then illustrate the difficulties in characterizing influential equilibria in the multidimensional

model.

Bundling and the possibility of improving information transmission Let us con-

sider an equilibrium with two induced actions, for the state space Θ = [0, 1] × [0, 1] and a
uniform prior distribution over the state space. In the equilibrium, the square is divided

to two groups of senders, each of them sending a different message. The actions are the

expectations over the set of states represented by each group of senders, whereas given the

actions, each sender indeed prefers to send the message that he is supposed to send.

Such an equilibrium exists when the level of the conflict is low. We have computed a

particular equilibrium for (b1, b2) = (.4, .3), (α1,α2) = (.5, .5). In this equilibrium, all types

(θ1, θ2) below the line

θ2 = λθ1 + γ

for {γ = −.2705,λ = 1.0325} , send the same message and induce the action a = (.754, .254),
whereas all types (θ1, θ2) above this line send a different message and induce the action

a0 = (.4, .596). Moreover, this equilibrium, depicted in Figure 7, is robust to small changes

in the parameters b and α, or in the prior distribution:

 

•a 

•a' 

θ2=λθ1+γ

Figure 7: An equilibrium in the square, with two actions.
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This example illustrates what we term the ‘bundling’ effect. The conflict has b1 ≥ 1
4 and

b2 ≥ 1
4 , which, as shown in Crawford and Sobel (1982), implies that a cheap talk game

on each dimension separately results in babbling only and no credible information can

be transmitted. However, information transmission is feasible once the two dimensions are

bundled. In particular, the sender who always wants a higher action than the receiver would

take, trades-off unfavorable information on one dimension (admitting it has a low value)

with favorable information on the other dimension (that it has a relatively high value).

Thus, bundling the two dimensions together in one communication game can improve upon

information transmission.

The difficulty in characterizing equilibria for low levels of conflict Once the

analysis becomes multidimensional, many useful features of the unidimensional analysis are

lost. In the above ‘bundling’ example, the elements of the partitions differ; the two subsets

do not have the same shape. This inconsistency of the shapes makes it harder to characterize

equilibria. In addition, the shape of the state space Θ determines the characteristics of

equilibria. To illustrate that, let us consider a state space bounded by a circle, and assume

that the prior distribution over the states is uniform. We will show that generically, for all

(b1, b2), there is no equilibrium with two induced actions.

Assume, to the contrary, that an equilibrium with two actions exists, for the actions

a = (a1, a2) and a0 = (a01, a02). The types of senders θ = (θ1, θ2) who are indifferent between

the two actions form a straight line, defined by the following equation (this is equation (5)

in the previous section):

θ2 = θ1
α1(a1 − a01)
α2(a02 − a2)

− α1
2α2

(a21 − a021 )
(a02 − a2)

+
α1
α2
b1
(a1 − a01)
(a02 − a2)

+
(a02 + a2)

2
− b2

This line separates the two subsets of senders, each sending a different message and

eliciting a different action, a or a0. However, given the straight separating line, the symmetry

of the square and the uniform distribution, the expectations over each such subset of senders

must be on a line which is orthogonal to the line of the indifferent types (as in Figure 6).

This implies that the following has to hold:

α1(a1 − a01)
α2(a02 − a2)

= − 1
a02−a2
a01−a1

where the left-hand-side is the slope of the line of indifferent types as defined in the previous

equation, and the right-hand-side is the slope orthogonal to that between the two induced

actions. As seen from this condition, this equation can hold iff α1 = α2.

Thus, equilibria with two induced actions generically do not exist in the circle when the

prior distribution is uniform. However, we showed above that if the state space is a square,

equilibria with two induced actions hold and are generic. Equilibria are therefore sensitive
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to the shape of the state space, which implies a difficult transition from the unidimensional

model to the multidimensional model.

Finally, it is easy to see that if an equilibrium with k induced actions does not exist, it

does not imply that an equilibrium with more than k induced actions doesn’t exist. This

marks an important difference with the analysis of the unidimensional model. To see why

this is the case, note that we have shown that it is impossible to support an equilibrium

with two different induced actions when the state space’s boundary is a circle and the prior

distribution is uniform. This is true for any vector of conflict. In particular, it is also true

for b1 = b2 = 0. However, note that in this case, i.e., when there is no conflict, there exists

an equilibrium with full information transmission, in which the sender reveals the true state

and the receiver takes this as her action.

This feature is in particularly problematic for applications. First, it complicates the

ability to prove the existence or inexistence of influential equilibria. In the unidimensional

policy space, one can prove that influential equilibria do not exist simply by proving that

an equilibrium with two different induced actions does not exist. This is not a feasible

method of proof in the multidimensional policy space (see also the proof of Theorem 1

in the appendix). Second, it complicates the ability to characterize the most informative

equilibrium (again, in the unidimensional policy space the most informative equilibrium is

the one with most induced actions. This is not necessarily true in the multidimensional

policy space).

6 Discussion

Our main result proves that influential equilibria are non-generic for large conflicts. We

have shown that in the limit, for any equilibrium there is a set of perturbations that upsets

its existence. We have focused on perturbations to the distribution function over the state

space, but one can easily construct many other perturbations, such as to the state space

itself, or to the other primitives of the model - the parameters describing the direction of the

conflict or the relative weights of the different dimensions in the sender’s utility function. In

addition, we have established the continuity of the problem, so that if influential equilibria

do not exist in the limit, there exist large enough degrees of the conflict so that influential

equilibria cannot be sustained for these parameters as well. In what follows, we discuss

some extensions of our results.

Informed receiver In our model the sender has a perfect private signal about the state

of the world, whereas the receiver only knows its prior distribution function. Let us change

this now and assume that the receiver also has a private signal about the state of the world,

although, in order to keep things interesting, his signal is not perfect.

The main difference from our basic model now is that the sender, when transmitting his
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message, perceives the receiver’s action as a lottery. This is because he does not know the

exact signal of the receiver. In an influential equilibrium, different messages will induce lot-

teries with different support, whereas any two types of senders who send the same message,

would face a lottery with the same support but with a different probability distribution

over these lotteries (since they view differently the probability distribution over the signals

of the receiver).

We conjecture that our results would hold for this environment as well. In particular, it is

easy to extend the result in Proposition 2; if there are two different messages in equilibrium,

then all types of senders who are indifferent between the two messages, must perceive the

expectations over the lotteries induced by these two messages as converging to be on a line

with a slope β∗.21

Many senders Another natural way to extend our paper is to increase the number of

senders. In particular, it would be interesting to consider the case of the senders being

imperfectly informed, i.e., each of them has a conditionally independent signal about the

state of the world.22

Note that the case of many senders bears strategic resemblance to the case of an informed

receiver described above. In particular, when one sender considers which messages to trans-

mit, he perceives the receiver as informed and the receiver’s action as a lottery, since other

senders may have provided the receiver with some private information. We believe that we

can therefore extend our results to this case as well.23

The inability of the receiver to commit In cheap talk models, the receiver cannot

commit to implement a particular subset of policies.24 This is reasonable in political econ-

omy models. A politician (the receiver) may not be able to commit to implement particular

policies which accord with the interests of some lobby who provides him with information.
21We have extended Proposition 2 in this way for the case of a linear v.
22 If all the senders are equally informed, then as Battaglini (2002) has shown, for any level of conflict

there exists an equilibrium with full information revelation. The equilibrium has the particular feature that

from the point of view of each sender, any of his messages will induce an action on the same line with a

slope β∗.
23Several papers have analyzed models with many senders who have imperfect signals. Austen-Smith,

(1990) and (1993b), analyzes the case of imperfectly informed senders and compares the information proper-

ties of the equilibria with either joint or sequential messages. Wolinsky (2002) shows how allowing communi-

cation among the experts may increase information revelation. These papers focus on a unidimensional state

space. In Austen-Smith (1993a) the multidimensional state space is analyzed, to study experts’ incentives to

acquire information. Recently, Battaglini (2003) shows that it is possible to extract information from many

senders who have imperfect signals, in a multidimensional environment, for some particular distribution

functions. Whether this holds for other assumptions awaits future research.
24For a paper that takes the opposite assumption and analyzes communication as a mechanism design

problem see Glazer and Rubinstein (2004).
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The repeated game mechanisms may be relatively weak in such an environment of limited

future interaction due to term limits and high turnover of politicians holding office. More-

over, the political decision making process leaves narrow possibilities for monitoring and

enforcing commitment. If the politician is just one member of a many-members committee,

it may be hard for the lobby to infer from the committee’s decision whether the politician

has acted in the right or wrong way.

In situations in which some commitment is feasible, our model points to how commit-

ment ability should be designed. That is, when the conflict between the interested parties

becomes too large, then the receiver can enhance information transmission by committing

to a particular subset of policies, all on the same line with a slope β∗. This result contrasts

with the unidimensional model, where for large conflicts, commitment is not beneficial for

the receiver.25

Compactness of the state space In the model an important assumption is the com-

pactness of the state space, Θ. This assumption is crucial in the proof of Proposition 2 and

therefore for the results stated in Theorem 1. In particular, when the state space is R2,

influential equilibria may exist for any degree of conflict.

Theorem 1 may be generalized to cover this case also. Assume that the state space is

R2 but that the distribution F has finite expectations. We conjecture that as the degree

of conflict increases, the probability that more than one action is induced in equilibrium

converges to zero. In contrast to the case of a compact state space, in this environment our

result about influential equilibria would be therefore in terms of probabilistic limits.

Generalizing the utility function The focus of this paper has been to show why the

CS approach to model strategic information transmission, may be limited in a multidimen-

sional state space. In this respect, the assumptions on the utility functions were chosen to

correspond to those in the literature. This gives the model its best chance to yield applica-

ble results. Although the results could be extended to more general utility specifications,

our analysis proves that this approach may be futile.

The analysis in the paper highlights an interesting point about the CS modelling approach

and modeling information transmission in general. It is easy to find specifications of utilities

under which even in the one dimensional model it would be difficult to find influential

equilibria. The assumptions underling the analysis in CS guarantee that this is not the

case. One possible direction of future research, in the multidimensional state space, is to

find other specifications of utilities, under which, influential equilibria may arise.
25For a paper modeling commitment in the unidimensional model, see Dessein (2002).
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Appendix

Definitions and notation For any a0,a00 ∈ <d, let d(a0,a00) = ||a0−a00||. For any a ∈ Rd
and any set A ⊂ Rd, define the distance between a and A,

d(a, A) = inf
a0∈A

d(a,a0).

Let a,a0 ∈ <d be two actions. We define the set of agents that weakly and strictly prefer a
to a0, by, R(a,a0) = {θ ∈ Θ|U(a|θ) > U(a0|θ)} and P (a,a0) = {θ ∈ Θ|U(a|θ) > U(a0|θ)}.
For any induced action a, we define the support set of a as the set of types that induce

a with a strictly positive density, i.e., for any a ∈ A,

S(a) = {θ ∈ Θ|∃m ∈M such that a(m) = a and mθ(m) > 0}

For any equilibrium with a set of induced actions A, and any induced action a, define the

potential support set of a, S̄(a), by S̄(a) =
T
a0 6=a,a0∈AR(a,a

0). Types that are not in S̄(a)

do not induce a. Define the definite support set for a by S(a) =
T
a0 6=a,a0∈A P (a,a

0). Types

that are in S(a) will choose to induce a with probability one.

By Proposition 2, the set of indifferent types between a and a0 is a line. Let la,a0 denote

the line of indifferent types between two induced actions, a and a0.We say that two induced

actions are neighbors if there exists a type, θ, satisfying θ ∈ la,a0∩Bdry(S(a))∩Bdry(S(a0)).
Finally, let A be a measurable set, the measure of A is M(A) =

R
A dF.

Proofs of results Proof of Proposition 1:

Lemma 1 In any equilibrium and any induced action a ∈ A,

S(a) ⊆ S(a) ⊆ S̄(a).

Proof: Obviously if θ ∈ S(a), θ ∈ S(a) as a is an induced action and it gives type θ
maximal utility. If θ /∈ S̄(a) there must exist a0 ∈ A such that U(a0|θ) > U(a|θ) and
therefore by the equilibrium conditions, θ /∈ S(a).¤
Lemma 2 In any equilibrium and any induced action a ∈ A, M(S̄(a)/S(a)) = 0.
Proof: For any a0 ∈ A, we have thatM(R(a,a0)/P (a,a0)) = 0 as it is the set of types who

are indifferent between the two actions. As preferences are Euclidean, this set is a line whose

measure is zero inΘ. Therefore,M(S̄(a)/S(a)) =M(
T
ã6=a,ã∈AR(a, ã)/

T
ã6=a,ã∈A P (a, ã)) =

M(
T
ã6=a,ã∈A(R(a, ã)/P (a, ã)) ≤M(R(a,a0)/P (a,a0)) = 0.¤

Finally, Lemma 3 characterizes the sets S̄(a) and S(a),

Lemma 3 (i) S̄(a) is a convex, closed set. (ii) S(a) is a convex set.
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Proof: (i) Since Θ is convex, for any ã ∈ A, R(a, ã) is convex as it is the intersection
of Θ and a convex hyperplane. Therefore S̄(a) =

T
ã6=a,ã∈AR(a, ã) is convex. Moreover as

R(a, ã) is a closed set for any ã ∈ Y, S̄(a) is closed.
(iii) Since Θ is convex, for any ã ∈ A, P (a, ã) is convex as it is the intersection of Θ and

a convex hyperplane. Therefore S̄(a) =
T
ã6=a,ã∈AR(a, ã) is convex.¤

Lemmata 1,2 and 3 imply Proposition 1 as equilibria may differ from one another in out-

comes only by having zero measure sets of types inducing different actions in equilibrium.¥

Proof of Theorem 1:

Proof of Part (i): we are considering a sequence of influential equilibria pertaining to

{bn}∞n=0 with a corresponding set of induced actions An.We prove the following preliminary
results:

LEMMA 4 For any convex set C with strictly positive measure, η > 0, the distance of

the expectation over C to the boundary of C is bounded from below by a strictly positive

number.

Proof: Specifically, we show that d(E(C), Bdry(C)) >
λ( η

2
)

2 > 0, where λ(.) is an increas-

ing, strictly positive function. Fix η > 0. Look at all possible convex subsets of Θ with

measure η. For any such set C, define the width of C to be the smallest distance between

any two parallel lines that are tangent to C. Note that the width of C is bounded below by

some λ(η) > 0, where λ(η) is increasing. This is evident by the compactness of Θ and the

fact that f(.) is atomless.

Fix a set C as above and find the closest point, p, on the border of C to E(C). Let δC

be the slope of the tangent to C at that point. Now divide C into two equal measured

subsets by a line of slope δC . Denote the subset that includes p by U and the other by D.

E[C] = 1
2E[U ] +

1
2E[D]. Note that U and D are convex sets. The distance of p from D

must be at least λ(η2 ). This implies that E[C] must be distanced from p by at least
λ( η

2
)

2 .¤

LEMMA 5 For any sequence of two neighboring actions, {an,a0n}, either limn→∞M(S(an)) =
limn→∞M(S(a0n)) = 0 or limn→∞M(S(an)) > 0 and limn→∞M(S(a0n)) > 0.

Proof: First let us focus on a convergent sequence of an and a0n (although we abuse

notation by keeping the index as n). Suppose that along the sequence, limn→∞M(S(an)) =

0 but limn→∞M(S(a0n)) > 0. By Lemma 4, this implies that limn→∞ ||an − a0n|| > 0.

Moreover, lan,a
0
n is part of the boundary of S(an) and S(a0n). By proposition 2 the boundaries

all converge in slope to δ∗ and therefore S(an) is converging to be a subset of lan,a
0
n . But

this implies that limn→∞ an ∈ lan,a0n and limn→∞ d(a0n, lan,a0n) > 0 which is a contradiction
as lan,a

0
n converges to pass through the midpoint between an and a0n.¤

The finite case:
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Suppose that for all n, the number of actions induced in equilibrium is bounded by some

finite k̄, i.e., 2 ≤ |An| ≤ k̄ above some n̄. We can then find a convergent subsequence of
actions Ank in which the actions converge to some set A such that |A| ≥ 2.
We show that all the actions along the sequence are bounded away from one another.

Lemma 6 There exists K such that for all k > K, the lines of indifferent types between

any two neighboring actions do not intersect in Θ.

Proof: We first show that no two induced actions, along the sequence, converge to one

another. Suppose by way of contradiction that there exist two such actions, i.e., there exists

a subsequence of equilibria and two induced actions a0nk ,a
00
nk
∈ Ank such that ||a0nk−a00nk ||→

0.

Note that for any two neighboring induced actions, a and ã, a /∈ IntS(ã). This can
be seen as follows. a ∈ S(a) and therefore a ∈ R(a, ã). Therefore, a /∈ P (ã,a) and thus
a /∈ Int(S(ã)). By Lemma 4 this implies that if M(S(a)) is bounded below by some η > 0,
then the two neighboring actions, a and ã, are bounded away from each other. Then

M(S(a0nk)),M(S(a
00
nk
)) → 0. By Lemma 5 this implies that M(S(ank)) → 0 for any ank ∈

Ank . To see this note that there are a bounded number of induced actions in equilibrium, and

that all induced actions are connected under the “neighboring” relation. This contradicts

the supposition that there exist two actions which converge.

We know that any line la,a
0
converges to pass through the midpoint on the line between

a and a0. Let us focus on any three induced actions a, a0 and a00 such that a and a0 are

neighbors and so are a0 and a00. By Proposition 2 and the above, the distance between the

midpoint between a and a0and that between a0 and a00 must be bounded below by some

strictly positive number. By the compactness of Θ and by Proposition 2, the lines must

converge to be parallel and thus, for high enough k, never cross within Θ.26

Note also that any θ ∈ Θ that is strictly between two lines la,a0 and la0,a00 has the same
ordering of preferences over Ank and in particular has the same optimal actions. Moreover,

as any such point is not on any indifference line, it must be that there is a unique induced

action that maximizes the type’s preference.¤

Using the reformulated coordinate system, let x = (0, x2, ..., x|A|−1, x̄) represent the col-

lection of corresponding limit-indifference lines between the elements of A, i.e., each xi

represents the line {y|(xi, y) ∈ Θ∗}. Let us order the elements of A respectively with the
ordering of the x0s.

Lemma 7 x ∈ Solution(A) ∩ Solution(B).
26 In particular, one can find a k0 above which the lines do not intersect. Moreover this k0 depends only

on the bound k̄.
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Proof:

We will show that: (i) the distance of the β∗-axis projections of ai and ai+1 to xi+1 are

equal for i = 1, ..., |A|− 1, (ii) ai = E[θ|x,y|xi, xi+1], and that (iii) all the ai lie on a line of
slope β∗.

Note that (iii) follows from proposition 2. By Proposition 2 the line of indifference

between two actions converges to a slope of δ∗ and thus converges to the relevant xi. By

(iii) we know that any two actions are on a line of slope β∗ and thus the midpoint between

the two actions is on the indifferent curve between the two actions. Therefore, both actions’

projections on the β∗ dimension are equidistant from xi. This proves (i). We now prove

part (ii). Suppose that k > K (as in Lemma 6). On the sequence of equilibria represented

by {Ank}∞k=1 and for an induced action ank → ai, define the set S∗(ank) to be the largest

convex set that is bordered by two lines of slope δ∗ and the contours of Θ∗ that is a subset

of S(ank). Note that by Lemma 6, this is well defined. We now define a new sequence of

actions. For any k > K,

a∗nk = E(θ|θ ∈ S∗(ank)).
We first show that limk→∞ ||a∗nk − ank || = 0. First, note that M(S(ank)/S

∗(ank)) → 0

as S∗(ank) ⊂ S(ank), M(S(ank) > 0 and by Proposition 2 the slopes of the boundaries of
S(ank) converge to δ∗ and so S∗(ank) is converging to S(ank). Finally note that S

∗(ank)

converges to the strip of Θ∗ bounded by lines of slope δ∗ passing through the points xi and

xi+1 on the reformulated x− axis.¤
This completes the proof of the finite case since we reach a contradiction.

Proof for the infinite case:

We now prove the theorem for the case of infinite actions. That is, suppose that along

the sequence of equilibria {An}∞n=1 the number of induced actions is converging to infinity.
LEMMA 8 When the number of induced actions converges to infinity along the sequence

of equilibria, then for any induced action, an, M(S(an))→ 0.

Proof: Suppose that along the sequence there exists an induced action an such that

M(S(an)) 9 0. This implies, by Lemma 5, that for all its neighboring actions, ãn, also

M(S(ãn))9 0 and so on. As a result for all actions induced in equilibrium the measure of

the support set is bounded away from 0, a contradiction because then only a finite number

of actions can be induced.¤

Now note that by Proposition 2, for high conflicts, all actions induced in equilibria must

be close to some line with slope β∗. Let lβ
∗
be the line of slope β∗ passing through µy on

the reformulated y − axis.
Let D = {θ ∈ Θ∗|δ∗θ1 + γ0 ≥ θ2 ≥ δ∗θ1 + γ00} for some γ0, γ00 such that |γ0 − γ00| > 0

and d(θ0, Co(Graph(γ(x)) ∩D)) > λ for some λ > 0 for all θ0 ∈ D ∩ lβ∗ . To find such a D
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we need to know that there is an interval in which there is no infinite crossing between the

line and the reaction curve γ(x) which must follow from the fact that the intersection of

the solution for A and B is empty. This follows from the continuity of γ(x).

Let ADn = {an ∈ An∩D}. Note that ADn is not empty since that would be a contradiction
to Lemma 8. Recall that these actions must be close to lβ

∗
. Since M(S(an)) → 0 for any

induced an, also S(an) ⊂ D almost surely for all an ∈ ADn and there are no a0n /∈ D such

that S(a0n) ⊂ D. Denote the expectations over D by E(D). We now take the expectation

over actions in ADn . Each action is close to l
β∗ and is weighted by the measure of its support

group. But the difference between this expectations to E(D) must converge to 0, i.e.,

d(E(D), lβ
∗
)→ 0.

On the other hand, E(D) must converge to lie within the convex hull of Graph(γ(x))∩D.
This follows from the fact that Graph(γ(x))∩D is the set of expectations over all lines with

slope δ∗ that go through D. But then d(E(D), Co(Graph(γ(x))∩D))→ 0. Taken together

with d(E(D), lβ
∗
)→ 0, this is in contradiction to the choice of D. Therefore, an equilibrium

with infinitely many induced actions cannot be sustained.

This complete the proof of part (i) of Theorem 1.¤

Proof of Part (ii):

We define a local perturbation to γ(x) as a perturbation in a strip [x0, x00] such that for

any x ∈Solution(B) there exists an i such that [x0, x00] ⊂ [xi−1, xi]. Due to the fact that any
solution to B is finite, this definition is not restrictive.

LEMMA 9 Suppose that x ∈Solution(A)∩Solution(B). Following any perturbation of F (.)
which maintains the same fβ

∗
(x) but is a local perturbation to γ(x), then x /∈Solution(A)∩Solution(B).

Proof: Denote by µ̂yxi−1,xi the values after the perturbation and by µ
y
xi−1,xi the val-

ues before the perturbation. With a local change in γ(x), then it must be that for any

x ∈Solution(A)∩Solution(B), then µ̂yxi−1,xi 6= µy for some unique i (since the local pertur-
bation is inside this strip). Thus, for any x0 which was part of a solution x to the original

problem, it is now the case that µ̂y0,x0 6= µ̂yx0,x̄ because by the algorithm of constructing solu-
tions to problem B it is either the case that xi ≤ x0, in which case µ̂yx0,x̄ = µy but µ̂y0,x0 6= µy
or that xi ≥ x0 in which case µ̂y0,x0 = µy but µ̂yx0,x̄ 6= µy. Thus, by the proof of Proposition
3, x0 cannot be a part of a new solution.¤

Denote by γ0(x) the perturbed reaction curve. Let ε = max d(γ0(x), γ(x)) and term

the set of perturbations described above as ε−perturbations. Let B denote the original

problem and B’ denote the problem after an ε−perturbation. Similarly, let x denote an
original solution and let x0 denote a solution after an ε−perturbation.
LEMMA 10 Following any ε−perturbation of F (.) then generically for any x0 ∈Solution(B’),
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there exists an x∈Solution(B) such that limε→0|xi − x0i| = 0 for all i,xi ∈ x and x0i ∈ x0.
Proof: Consider the original solution x ∈Solution(B). Generically, for any xj which is

part of this vector, then dγ(x)
dx |x=xj > 0 or dγ(x)

dx |x=xj < 0. Given a local perturbation in

some strip [xi−1, xi], the new prior is µ̂y. Without loss of generality, assume that µ̂y > µy.

Consider now the algorithm of finding a solution to problem B, as outlined in the proof of

Proposition 3. In the new problem B’, the first value of x0, defined as x02, has to satisfy

µ̂y
0,x02

= µ̂y. But when ε→ 0, then µ̂y → µy and hence µ̂y
0,x02
→ µy0,x2 for x2 which the smallest

value of x which satisfies µy0,x2 = µ
y at the original problem. If then dγ(x)

dx |x=x2 > (<)0 there
is a value x02 > (<)x2, such that limε→0|x2 − x02| = 0, which satisfies that µ̂y0,x02 = µ̂

y. The

same follows for all solutions of the algorithm.¤

We can now complete the proof of this part. Note that the set of solutions for A does

not change with an ε−perturbation. Following any such ε−perturbation, when ε is small

enough, then each original solution for B changes infinitesimally. However, the set of solu-

tions for A is not a continuum. Then, no new solution for B can coincide with an original

solution for A. This complete part (ii) and the proof of Theorem 1.¥
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