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Abstract

I present a method of interpreting voter preferences in settings where policy remains in effect until

replaced by new legislation. In such settings voters consider not only the utility they receive from a

given policy today, but also the utility they will receive from policies likely to replace that policy in the

future. Long-term preferences are characterized for situations where policy is ongoing and voters are

farsighted.
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“[W]e’re unprepared for the consequences of winning. Winning in court too soon could mean

losing in the court of public opinion, in Congress and under the United States Constitution.”

—Matt Coles, Director of the ACLU Lesbian and Gay Rights Project, quoted in The New York

Times on November 12, 2004. [9]

1 Introduction

Following the 2004 elections in which eleven states passed constitutional amendments banning gay mar-

riage, gay rights groups began a concerted public effort to change their political strategy. The groups de-

cided to temporarily retreat from what they had previously claimed to be their most important goal: winning

the right for same-sex marriages. The reason for this move was simple. The groups realized that a chal-

lenge to such amendments in federal court was a risky proposition, regardless of whether the challenge was

successful or not. An unfavorable court decision would establish a legal precedent that could be invoked in

future cases. A favorable court decision could easily accelerate public and legislative support for a federal

constitutional amendment banning same-sex marriage outright.

Political choice in the short term often involves long-termconsiderations because, as the above story

demonstrates, decisions made today can greatly affect the types of decisions that are feasible tomorrow.

Given the importance that individuals place on long-term outcomes, an essential step in understanding

strategic voting behavior is understanding the future consequences of policy choice. These consequences

are particularly relevant when policies remain in effect for an indefinite period of time, or are continuing.

A continuing program, as opposed to a once-and-for-all program, is a policy that continues in effect until

it is changed by new legislation.1 When such a policy is enacted we can think of it as producing a path-

1The terms “continuing program” and “once-and-for-all program” are used in Baron [1].

1



dependent stream of future legislation, with the status quoat any given time being the extant legislation at

that time. Because of the long-term nature of these programsthey are often of particular interest to legis-

lators, activists and voters. Such programs include entitlements, social policy, and redistributive programs,

with specific examples being minimum wage laws, social security benefits, the regulation of public health

concerns such as air quality and automobile safety, and eligibility requirements for social welfare programs.

Decisions over continuing programs frequently affect the future choices that are available to a group;

for example, it can be politically difficult to reinstate a tax once it has been repealed, to lower levels of

entitlement spending, or to revoke a law concerning public safety. When legislators evaluate such policies

they do so with an eye toward what the policy is likely to produce over time. There is therefore no reason

to expect that legislative bargaining over a continuing program will be similar to legislative bargaining

over a once-and-for-all program. While the behavior of a legislator may depend largely on his immediate

preferences, it may also depend on how he sees today’s choiceas affecting future decisions. This tension

between short and long-term interests is my primary focus.

In this paper I develop a model of bargaining over continuingprograms in which individuals rank poli-

cies not only on the basis of the utility they yield today, butalso with respect to the types of alternatives

they will likely lead to in the future. The model differs frommuch of the bargaining literature in that the

bargaining process does not end once a policy has been agreedupon, as in Baron and Ferejohn [2]. Instead,

the chosen policy becomes the reversion point of the next round of bargaining, and remains in effect until it

is replaced by a new alternative.2 The model is used to both characterize voting behavior when individuals

are farsighted and to characterize the types of policies that will emerge when programs are continuing.

2Baron [1], Kalandrakis [7], Riboni [13], and Bernheim et al.[5] also examine repeated bargaining games with endogenous

reversion points. These papers will be discussed in Section2.1.
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The theory developed here captures several important features of politics that may not be captured

in a one-shot model of bargaining. First, farsighted votersare not indifferent between different policies

that provide them with the same level of utility. This is because the space of alternatives that defeat each

policy, and that each policy defeats, are substantively different. This model demonstrates that in dynamic

environments, the space of alternatives that can and cannotdefeat a policy may have as much impact on

individual decisionmaking as the substance of the policy itself. And second, farsighted voters will take the

preferences of others into account when voting, not becauseof a behavioral assumption such as altruism or

inequality aversion, but because the preferences of otherswill matter when passing future legislation. This

implies that changing the preferences of a single voter willchange the strategic behavior of every other voter

in a predictable way. While both of these features hold true in any dynamic game, the goal of this paper

is to not only characterize individual behavior on an equilibrium path, but also to characterize farsighted

individual preferences in general. Most importantly,this model calculates a general induced utility function

for each player that captures his evaluation of every policyin terms of what it is likely to produce over time.

The paper begins with several general existence results. I then apply the model to a number of stan-

dard legislative settings, including a one-dimensional spatial model, a divide-the-dollar game, and a two-

dimensional spatial model in which players have either circular or elliptical preferences. I find that the theory

is capable of making sharp predictions in each of these legislative settings, with the predicted outcomes fre-

quently corresponding to policies that divide benefits fairly between like-minded individuals. Thus, while

the model is intended specifically to analyze individual vote choice, it could also be interpreted as a model

of endogenous party, or coalition, formation. The coalitions that tend to emerge consist of those individuals

whose preferences are most similar, either in terms of spatial distance or intensity of preference. Further-

more, farsighted individuals tend to favor policies that yield equitable distributions of payoffs, and frequently
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vote for certain normatively “fair” alternatives over their own ideal points. Relatedly, farsighted voters may

shy away from implementing an inefficient Condorcet winner in favor of implementing a more efficient cy-

cle of alternatives over time; thus farsighted voters may willingly concede utility in the short term for more

beneficial policy outcomes later on.

The paper proceeds as follows: Section 2 describes the notation used and presents the model. Section 2.1

describes the path of play in more detail and discusses related literature. Section 2.2 presents the notion of

a dynamically stable voting equilibrium, the equilibrium concept used in the analysis of the model. Section

3 presents several results about equilibrium existence that constitute the main theoretical contribution of

the paper. When the policy space is finite I show that there always exists an equilibrium. When the policy

space is infinite then there exists an equilibrium under certain conditions, and when the number of players

is large the equilibrium is unique. Section 3.1 provides twoanalytic examples of the model in the setting of

a finite policy space, and shows that Condorcet winners may not arise as policy outcomes when voters are

farsighted. Section 4 discusses the specific applications of the model in greater detail and presents numerical

results concerning these applications in continuous policy spaces. Section 5 concludes.

2 The Model

There is a collection ofvotersN = {1, 2, ..., n} and a compact setX ⊂ R
m of alternatives, or policies.

X can be either finite or infinite. For each voteri ∈ N , preferences are represented by a real-valuedutility

function, ui : X → R. When the set of policies is infinite I also assume that these utility functions are

differentiable, and that their derivatives are uniformly bounded by some constantU .

A subsetC ⊆ N is called acoalition of voters. Coalitions that are large enough to enact a policyare

calleddecisive, or winning. The collection of winning coalitions isW . All of the voting rules that I consider
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areq-rules, so that for some fixed integerq > n
2 , W = {C ⊆ N : |C| ≥ q}.

2.1 Path of Play

The legislative process is modeled as a sequence of sessionsin which votes on policy occur. In each round

the status quo is determined by the bargaining outcome of theprevious round. A policy to be pitted against

the status quo arises exogenously in each round. This policyis drawn from a probability densityQ. A vote

then occurs between this policy and the status quo. Every voter receives a payoff from the winning policy

and this policy then becomes the status quo of the next round of bargaining. This process is pictured in the

figure below.

[FIGURE 1 HERE]

The probabilistic and exogenous nature of the proposal process distinguishes this model from Baron

[1], Kalandrakis [7], Riboni [13], and Berhneim et al. [5], and warrants a short discussion. Both Baron

and Kalandrakis analyze infinitely repeated bargaining games with endogenous reversion points. In these

papers a player is selected at random to make a proposal in each round. The proposal is pitted against the

status quo, with the winner becoming the status quo in the next round of bargaining. Baron looks at the case

of a unidimensional policy space, and finds that outcomes converge to the ideal point of the median voter.

Kalandrakis examines a three-player divide-the-dollar game and finds that a Markov perfect equilibrium

of the game is characterized by a situation where the proposer in every round proposes the entire dollar

for himself, and this allocation is approved by a majority ofplayers. Riboni considers a similar model in

which policy changes are proposed by a strategic agenda setter (who is not a member of the voting body),

and then voted upon by a committee. Bernheim et al. also consider a similar model in which legislators

are recognized sequentially to make proposals and a finite number of proposals are made. Under weak
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conditions they find a result similar in spirit to Kalandrakis’s, in which the final proposer receives the entire

dollar in a divide-the-dollar setting.3

The focus of these papers differs from my paper in an important respect. While these papers are con-

cerned primarily with predicting equilibrium policy outcomes and voter behavior on the path of play, the

goal of this paper is to model voter preferences overall alternatives when voters evaluate policies in terms of

what they are likely to produce over time. By separating voting strategies from the proposal process, results

about farsighted preferences and behavior are easier to interpret. For example, in Penn [11] I endogenize

the proposal process in this model by allowing players to make proposals themselves. The results I find are

similar to those found by Kalandrakis and Bernheim et al. Thus, Kalandrakis’s result that a legislative dic-

tator emerges with certainty in every round is likely an effect of the particular endogenous proposal process

assumed.4

The assumption of an exogenous and probabilistic process bywhich future proposals are generated

reflects the notion that legislators are not certain of the policy proposals that will be brought to the floor in the

future, but are aware of the current political climate and have priors over the distribution of future proposals.

While “endogenous” is frequently interpreted as being morerealistic than “exogenous” in any game theoretic

model, the assumption of an exogenous agenda here makes the model easier to interpret, easier to apply to

different situations, and, I argue, more realistic. This isbecause an agenda in this setting will depend on a

3Also worth noting are recent papers by Battaglini and Coate [3, 4] that examine the dynamics of taxation and public spending.

In these papers, policy-making periods are linked by endogenous levels of public goods and public debt, respectively.
4Kalandrakis has different work [8] that specifically examines the importance of proposal rights in determining political power.

He obtains the interesting result thatanydistribution of power can be obtained by simply manipulating proposal rights in a particular

bargaining environment. The same is not true when manipulating other institutional features of the bargaining game such as voting

rights.
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number of complex factors (recognition rules, special interest and constituency pressures, the ordering of

the legislative calendar, party control, etc.) that are beyond the scope of this model. For example, in game-

theoretic models it is generally assumed that legislators are randomly recognized to propose alternatives to

the floor via a particular recognition rule. This assumptionyields a very specific kind of strategic agenda-

setting process that is separate from the goal of this paper,which is simply to model voter preferences in an

environment where policies are replaced by new policies over time.

Roberts [14] and Compte and Jehiel [6] study similar bargaining problems with randomly generated

offers. Roberts considers a setting where policymaking is continuing and every alternative is equally likely

to be brought to the floor. Compte and Jehiel assume the bargaining process ends when a certain number of

players accept the random offer. They examine the effect of patience, the number of players and the majority

requirement, and find that as the majority requirement increases more efficient outcomes are generated,

but that it also takes longer to reach agreement. They motivate their random proposal process with the

argument that it is rare for any individual or group to have full control over an agenda-setting process, and

that even if a person did have full control over proposals, itwould be difficult for him to perfectly target

a collection of specific payoffs for the other players. They also find that simplifying the proposal process

in such a way enables them to better analyze many empirical regularities that have not been supported by

previous bargaining problems; for example, the fact that agreement is frequently more difficult to obtain

when unanimous consent is required.

2.2 Dynamically stable voting equilibria

This section presents the model of farsighted voter preferences. Utility functionui(x) represents Playeri’s

one-shot payoff from policyx whenx is enacted today. However, if Playeri is farsighted then he not only
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cares about his payoff from havingx enacted today, but also his future payoffs from the policiesthat will

ultimately replacex.

Let Playeri’s value functionbe denotedvi, wherevi : X → R. This function represents the discounted

sum of utility Playeri can expect to receive from having policyx enacted today, given that a stream of

policies will be enacted afterx. Let v = {vi}i∈N be the collection of all voter value functions, withVn

being the space of all value functions (so thatv ∈ Vn). In equilibrium each voter will assign a “true” long-

term value to every policy. This means that players will votebased on their equilibrium value functions and

by voting this way they ultimately generate those same functions.

In equilibrium, value functions capture a consistency between beliefs and behavior; when a player be-

haves according to such a function, the value he assigns to a policy equals the true future expected value of

that policy. When this holds forall players, then the vote strategies of players generate valuefunctions that

generate those same vote strategies. Thus, beliefs and behavior are entirely consistent with each other. The

following equilibrium concept captures this idea.

Definition: A dynamically stable voting equilibriumis a collection of value functions,v∗ = {v∗i }i∈N , such

that for alli ∈ N andx ∈ X,

v∗i (x) = ui(x) + δ
∑

y∈X

[v∗i (y)p(v∗(x), v∗(y)) + v∗i (x)(p(v∗(y), v∗(x)))]Q(y).

The case of an infiniteX is defined analogously.5

The functionui(x) equals the utility playeri receives from alternativex in one period. The probability

that policyy will defeat status quox is denotedp(v(x), v(y)). This function is simply assumed to be the

5As the value function depends on the distribution from whichproposals are drawn, orQ, v∗

i (x) could also be writtenv∗

i (x|Q).
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probability that a winning coalition votes fory overx, given that every voter knows that policy selection

will continue into the future. Thus voting decisions are made based on voters’ value functions and not their

utility functions (i.e. voters are farsighted). The specific functional form ofp(v(x), v(y)) can be found in

Appendix A; it is simply the probability of victory ofy overx.

Q is the probability mass from which alternativesy to be pitted against the status quo are drawn. As

discussed in Section 2.1,Q represents the fixed beliefs that voters have over the types of alternatives that will

be brought to the floor in the future. These beliefs could be uniform over all alternatives (uninformative),

or could be generated by fixed external pressures from political parties, special interests, constituencies, or

simply the current political climate. WhileQ is assumed to be independent of the current status quox, a

similar model could be constructed whereQ is conditioned onx. This construction would not dramatically

change the analytic results of the model, but is omitted for ease of exposition.6 When the setX is infiniteQ

is instead a density. In this case,Q is assumed to have full support, and to be differentiable iny.

δ ∈ [0, 1) is a discount factor that represents players’ time preferences. Whenδ is high, voters place

greater relative weight on the future. For notational simplicity δ is assumed to be common for all players,

but this assumption does not affect any of the analytic results.

One feature of this model that differentiates it from an endogenous proposal model is that the probability

of victory of y overx, or p(v(x), v(y)), is averaged over all decisive coalitions. Alternatively,when pro-

posals are endogenous the proposer does two things: he chooses an alternative to propose, and he identifies

a particular decisive coalition to target his proposal to. Therefore, when proposals are endogenous policy

outcomes will typically change at every round of voting unless the status quo is the proposer’s ideal point.

However, in this model, because winning coalitions are no longer uniquely determined but instead are aver-

6It would require a stronger assumption than Assumption 1 in order to prove existence whenX is infinite (Proposition 2).
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aged over, a consequence is that universalistic, or close touniversalistic, majorities can arise given particular

policy pairings. Thus, policy will remain at more desirablestatus quos for longer, and undesirable policies

will be replaced quickly.

To summarize this section, the above model characterizes long-term individual preferences in a setting

where policies are repeatedly being challenged and replaced by new alternatives. In a given round a tran-

sition from status quox to new policyy is dependent upon two factors. First, policyy must be chosen to

be pitted against status quox from densityQ. Second, voters must choose policyy over status quox, and

the probability thaty defeatsx when infinitely more rounds remain is denotedp(v(x), v(y)). The function

vi(x) representsi’s discounted expected sum of utility whenx is enacted today, given that infinitely more

rounds of policy selection will occur. This equalsui(x), or i’s utility from x today, plus the discounted

expected value of whatx will ultimately lead to in the future.

3 Analytic results and examples

In the sections that follow, I will provide examples of dynamically stable voting equilibria in specific set-

tings. The goal of this section is to provide more general results about the sorts of environments in which

we can and cannot expect dynamically stable voting equilibria to exist and to be unique. Recall that an equi-

librium in this setting is a collection of value functions such that, when individuals vote according to these

functions, individual valuations of policies equal the true future expected values of those policies. There-

fore, we are looking for fixed points in a mapping from one value function into another, or a fixed point in

cardinal utilities. Mathematically, this is different than a more standard game theoretic setup in which we

look for fixed points in action profiles. Perhaps more clearly, the difference stems from the fact that while

value functions (or cardinal utilities) will yield action profiles, action profiles do not provide us with enough
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information to give us back cardinal utilities. Therefore,stronger conditions are required in order to obtain

equilibrium existence in this setup than in a standard game theoretic setup.7

Propositions 1, 2, and 3 all focus on the problem of equilibrium existence. Although the voting behavior

of players is purposefully left unspecified in this model, individual behavior is implicit in the definition of

the functionp(v(x), v(y)), the probability of victory ofy overx. Whilep is defined formally in Appendix A,

let the probability that individuali (with value functionvi) votes fory overx be denotedpi(vi(x), vi(y)).

These three propositions all require that this probabilitybe a continuous function for all individuals, or that

individuals vote probabilistically. However, the three results require different (and nested) sets of conditions

on these functionspi. Proposition 1 proves that when the alternative spaceX is finite and individual vote

functions are continuous, an equilibrium exists. Proposition 3 proves that if individual vote functions are

differentiable and the derivatives are uniformly bounded by any constant, then a unique equilibrium will

exist when the number of players is large enough (regardlessof whetherX is finite or not). Proposition

2 proves existence whenX is infinite for any number of players, but requires that the derivative of p be

bounded by a particular constant. All proofs can be found in Appendix B.

Proposition 1 If X is finite, then there exists a dynamically stable voting equilibrium whenp is continuous.

Proposition 2 If X is infinite, then there exists a dynamically stable voting equilibrium when the derivative

of p is bounded by a particular constant.

Proposition 3 Whenn is large then there always exists a unique dynamically stable equilibrium when the

derivatives ofpi are uniformly bounded, regardless of whetherX is finite or infinite.

7In particular, the difficulties with equilibrium existencehere are mathematically similar to difficulties in obtaining existence in

games with continuous action spaces.
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To understand why additional requirements on transition probabilitiesp are needed to prove existence

whenX is infinite, note that the set of all functions over a finite alternative space is a vector space, while the

set of all functions over an infinite and compact subset ofR
m is a function space. Compactness of the space

of value functions is generally needed in order to find a fixed point, and while any closed and bounded subset

of a finite-dimensional vector space is compact, closed and bounded sets of functions are rarely compact.

Proposition 2 is proved by showing that the set of value functions is equicontinuous, and thus compact,

when a certain restriction (Assumption 1, found in AppendixA) on the derivative of transition probabilityp

holds.

Proposition 3 proves existence differently, by showing that when the total number of players is suffi-

ciently large we can construct an iterative definition of a dynamically stable voting equilibrium that is a

contraction mapping. This definition (Equation 2 in Appendix B) is also used to perform the numerical

estimations that follow in Section 4, and is discussed in greater detail in that section. Furthermore, this

definition can be easily utilized to calculate farsighted evaluations of policy when only a finite number of

rounds of policymaking will occur. The extension of this model to the setting of a finite number of rounds

is discussed in Appendix B.

Last, it is useful to note that under different specifications of the functionspi a dynamically stable

voting equilibrium is equivalent to other commonly used equilibrium concepts. For example, if we define

the functionspi to be deterministic, so thatpi(vi(x), vi(y)) = 1 if vi(y) ≥ vi(x) and zero otherwise, then

at a dynamically stable voting equilibrium,v∗, the collection of functionspi constitute a Markov-perfect

equilibrium. In this case, thev∗ vector represents the expected utility functions of the players, and strategies

as specified by the functionspi are consistent with the maximization of these expected utility functions. The

proof of this is straightforward, and is relegated to Appendix B.
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Proposition 4 When voting is deterministic then at a dynamically stable voting equilibrium,v∗, the collec-

tion of functionspi constitute a Markov-perfect equilibrium.

3.1 A One-Dimensional Example: The Federal Marriage Amendment and Gay Rights

When the policy space is finite and small it is not difficult to solve for equilibria analytically. In this section

and the next I will present simple analytic examples of dynamically stable voting equilibria. This first

example depicts a one-dimensional spatial model, the second depicts a setting in which there is a majority

preference cycle over a subset of the alternative space. In both examples I assume that discount factorδ = .9

and that voting is deterministic, with

pi(vit(x), vit(y)) =































1 if vit(y) > vit(x)

0 if vit(y) < vit(x)

1
2 otherwise.

To motivate this example, consider the story presented in the introduction about the political strategies

of gay rights groups after the 2004 elections. Suppose that there are three political actors in the model: a gay

rights activist (R), a defense-of-marriage activist (D), and a neutral voter (N). Also, suppose that there are

three possible political outcomes: a court-mandated overturn of state constitutional amendments banning

gay marriage (“court mandate,” for short), legalization ofcivil unions and benefits for same-sex partners

(“civil unions”), and a federal constitutional amendment banning gay marriage (“marriage amendment”).

Last, assume that the “marriage amendment” outcome is currently being strongly forwarded by special

interests, and is three times more likely to arise as a policyproposal than the other two policy alternatives.

Thus,Q(Marriage amendment) = 3
5 , andQ(Civil unions) = Q(Court mandate) = 1

5 .

The following figure depicts the hypothetical spatial location of the ideal points of the three players and
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the locations of the three policies.

Gay rights activist (R) Neutral voter (N) Defense-of-marriage activist (D)

v v v

Court mandate Civil unions Marriage amendment

The above figure generates the following two tables, which show the utility functions of the three players and

the sum of expected utility each policy yields in the long term, at a dynamically stable voting equilibrium.

One-shot Utility Farsighted (Equilibrium) Valuations

i ui

( Court
mandate

)

ui

( Civil
unions

)

ui

(Marriage
amend.

)

i vi

( Court
mandate

)

vi

( Civil
unions

)

vi

(Marriage
amend.

)

R 1 3
4

1
4 R 4.512 4.565 3.478

N 1
2

3
4

3
4 N 7.195 7.5 7.5

D 0 1
4

3
4 D 5.488 5.435 6.522

The following table summarizes the above information by depicting individuals’ rankings over the alterna-

tives when individuals are both myopic and farsighted. If Playeri strictly prefers policyx to policy y, it is

writtenx ≻ y. If Playeri is indifferent between the two, it is writtenx ∼ y.
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Individuals’ Rankings of Alternatives

i One-shot rankings Farsighted rankings

Gay rights
activist (R)

Court
mandate≻

Civil
unions≻

Marriage
amendment

Civil
unions≻

Court
mandate≻

Marriage
amendment

Neutral
voter (N)

Civil
unions∼

Marriage
amendment≻

Court
mandate

Civil
unions∼

Marriage
amendment≻

Court
mandate

Defense-of-marriage
activist (D)

Marriage
amendment≻

Civil
unions≻

Court
mandate

Marriage
amendment≻

Court
mandate≻

Civil
unions

As is consistent with a traditional spatial model, the neutral voter is always indifferent between legalized

civil unions and a constitutional marriage amendment, and strictly prefers both of these policies to a court

mandate legalizing gay marriage. However, the gay rights activist, with ideal point “court mandate,” will

strictly prefer to implement “civil unions” rather than hisown ideal point when he is farsighted. This is

because when “marriage amendment” is more politically salient than the other two policies (i.e. is brought

to the voters’ attention more often by densityQ) the policy that makes the gay rights activist best off over

time is not his ideal point, but the policy closest to his ideal point that can defeat a constitutional marriage

amendment. Thus, it is in the activist’s best interest to concede some utility in the current round in order to

prevent his least favorite policy from being quickly implemented. Finally, the defense-of-marriage activist

strictly prefers “court mandate” to “civil unions” when he is farsighted, even though “civil unions” is closer

to his ideal point. Loosely speaking, this is because at “court mandate” there is a 60 percent chance of

transitioning to “marriage amendment,” the defense-of-marriage activist’s favorite policy, while at “civil

unions” this chance drops to 30 percent.

The purpose of this example is to demonstrate several key features of this model. First, all three players
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care both about the policy chosen today and about the types ofpolicies that will replace it in the future.

Second, farsightedness requires taking into account institutional particularities at any given time. In this

example this is reflected in the exogenousQ term, which captures the fact that there is currently considerable

pressure from interest groups to enact gay marriage bans at the federal level. And third, farsightedness also

requires taking into account the preferences of other political actors. In the absence of a defense-of-marriage

activist, the gay rights activist would have pursued a different political strategy. While this example is

obviously highly stylized, it provides a clear picture of how this model works, and demonstrates that the

predictions that this model yields are often quite intuitive.

A final point to note is that the “farsighted preferences” conceived of in this model are only farsighted

with respect to the current political climate, orQ term. In this sense, the model predicts short-term behavior

when individuals care about policy in the long run. In this example a strategic gay rights activist will not

challenge state-level bans of gay marriage in the federal courtsgiven the current political climate.Clearly

the political climate will change over time, and these changes will necessarily change the predictions of the

model.

3.2 A Condorcet Winner-Turned-Loser

In this next example there are three voters and four alternatives, X = {c, x, y, z}, with one alternative,c,

being a Condorcet winner. The other three alternatives forma majority preference cycle, withx ≻ y, y ≻ z,

andz ≻ x. The Condorcet winner gives each voter a one-shot payoff of 2, while the expected value of an

alternative in the majority preference cycle is 3. Thus, while every player is better off cycling through the

alternativesx, y, z than remaining at Condorcet winnerc, c always gives two players strictly greater utility

in the short term than they would receive at any other policy.The following tables present players’ utility
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functions and their farsighted valuations whenQ is uniform over all alternatives (i.e. when every alternative

is equally likely to be brought to the floor for a vote).

One-shot Utility Farsighted (Equilibrium) Valuations

i ui(c) ui(x) ui(y) ui(z) i vi(c) vi(x) vi(y) vi(z)

1 2 8 1 0 1 28.7097 39.0463 30.109 20.8447

2 2 1 0 8 2 28.7097 30.109 20.8447 39.0463

3 2 0 8 1 3 28.7097 20.8447 39.0463 30.109

The following table depicts individuals’ rankings over thealternatives when individuals are both shortsighted

and farsighted. As in the previous example, a preference reversal occurs. This reversal changes Condorcet

winnerc into a Condorcetloser in farsighted valuations, or a policy that is majority-defeated by every other

policy.8

Individuals’ Rankings of Alternatives

i One-shot rankings Farsighted rankings

1 x ≻ c ≻ y ≻ z x ≻ y ≻ c ≻ z

2 z ≻ c ≻ x ≻ y z ≻ x ≻ c ≻ y

3 y ≻ c ≻ z ≻ x y ≻ z ≻ c ≻ x

The logic behind why the preference reversal occurs takes two steps to reveal. First note that in the short run

Player 1 prefersc to y, but in the long run this preference is reversed. However,c andy both lead to similar

payoffs in the subsequent round for Player 1: since every alternative beatsc when voters are farsighted, the

8Roberts [14] provides an interesting refinement of Condorcet winners to intertemporal settings that captures those policies that

can also defeat cycles of alternatives. This example works precisely because the Condorcet winner here does not satisfyRoberts’s

stronger criterion of being a “generalized Condorcet winner.”
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expected payoff to Player 1 in a round following the implementation ofc is 1
4(2 + 8 + 1 + 0) = 11

4 . Player

1’s expected payoff aftery is implemented is the same:y is only defeated byx, and so Player 1’s expected

payoff in the round following implementation ofy is 1
4 (8) + 3

4 (1) = 11
4 . However,c andy lead to different

expected payoffs for Player 1 two rounds out. Whiley andc both lead to an expected payoff of11
4 in a

subsequent round,y leads to an expected payoff of57
16 two rounds out, whilec leads to an expected payoff of

47
16 two rounds out.9 Thus, while equilibrium evaluations in this framework capture expected payoffs for an

infinite stream of future policies, the intuition behind whypreference reversals occur can be seen in settings

with a finite (and even small) number of periods.

This example demonstrates that, when voters are farsighted, outcomes will not necessarily coincide with

many commonly known solution concepts including the uncovered set, minimal covering set, tournament

equilibrium set, Banks set, and von Neumann-Morgenstern stable set, as all of these sets reduce to the core,

if one exists. In the spatial settings considered in the following section, outcomes do appear to coincide with

elements of the von Neumann-Morgenstern stable set. However, this observation cannot be extended to a

general preference environment. The relevant issue is thatcardinality of preferences matters in this setting,

whereas tournament solution concepts only require ordinalpreferences. This same issue distinguishes this

model from sophisticated voting (the standard definition ofwhich is presented in [15]), which is defined

solely with respect to ordinal preferences. Sophisticatedvoting will always yield a Condorcet winner as the

unique voting outcome, if a Condorcet winner exists. Here a Condorcet winner exists, but it is chosen with

9To see the logic of this, lety be implemented today, att = 0. Tomorrow att = 1 y will lead to eitherx (with probability 1
4
)

or y (with probability 3
4
), for an expected payoff to Player 1 of11

4
. At t = 2 there is a1

4
chance we will have been atx at t = 1,

which will lead tox with probability 3
4

andz with probability 1
4
, for an expected payoff of24

4
. Similarly, there is a3

4
chance we

will have been aty in the previous round, for an expected payoff att = 2 of 11
4

. Thus the expected payoff att = 2 wheny was

implemented att = 0 is 1
4
( 24

4
) + 3

4
( 11

4
) = 57

16
.
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probability zero as an equilibrium policy outcome.

More generally, this example of a Condorcet winner-turned-loser provides a good basis of comparison

between this model and the standard sophisticated voting setup that is frequently used to analyze forward-

looking behavior in legislative settings. Sophisticated voting describes strategic voting behavior over a

finite, predetermined sequence of alternatives. As in this model, sophisticated voters may seemingly exhibit

“preference reversals,” in that they may vote in favor of alternatives that give them lower utility in order

to beneficially affect the future path of play. However, under sophisticated voting, voters do not actually

concede anything; individuals may vote against policies that they like, but only because they know that what

they like cannot win. In this model, farsighted voters may take short term losses in order to dobetter in

expectation than they could have in a one-shot game.10

4 Numerical examples in two-dimensional spaces

What follows is a look at several numerical estimations of this model in settings where the policy space

is two-dimensional. The first setting is that of a three-player constant sum game and the second setting is

that of a three-player spatial model where players have convex preferences. The graphs that follow depict

both the equilibrium value functions of one of the players and the equilibrium distribution over observed

10This model also considers a different agenda framework thanthe amendment agendas considered under sophisticated voting.

Not only is the proposal process in this model probabilistic, but agendas move “forward” in that the status quo is replaced at

every round of voting. The standard sophisticated voting setup considers agendas as fixed orderings of alternatives, with policies

sequentially eliminated through a planned series of pairwise votes. These agendas are commonly voted on “backward,” with a fixed

status quo considered last.
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outcomes.11 In all of the estimations it is assumed that voting is via majority rule and that players vote

deterministically, as in the previous section. It is also assumed that every player has the same discount

factor, δ = 0.9, and thatQ is uniform over the policy space.Q was chosen to be uniform simply as a

baseline.

4.1 Three players divide a dollar

[FIGURE 2 HERE]

Figure 2 is a graph of Player 1’s value function. The setting is a three-player divide-the-dollar game; the

policy space equals the set of all divisions of the dollar between three people and a player’s utility from a

particular policy equals the amount of money he is allocatedby that policy. The policy space is pictured,

and Player 1’s ideal point (the policyx = (1, 0, 0)) is at the top of the simplex. The bottom of the simplex

denotes those policies that give Player 1 no portion of the dollar. The darkest areas correspond to the

policies that yield the highest values for Player 1, and the lightest areas denote the policies that yield the

lowest values.
11The estimations were run by discretizing the policy space into approximately nine hundred policies (for Example 1) or two

hundred and sixty policies (Example 2) and then iterating the mapping defined in Equation 2 of Appendix B until it converged

numerically to a dynamically stable voting equilibrium. The iterations were performed by lettingv0 = {ui}i∈N and defining

vt+1 = g(vt) for t ≥ 0. Convergence was obtained in every example for a sup norm of .002. Once the equilibrium value function

was found, the equilibrium distribution over outcomes was found by first drawing two policies from densityQ, pitting them against

each other (assuming that voters vote according to their equilibrium value functions), pitting the winner against a newpolicy drawn

from Q, pitting thiswinner against a new policy drawn fromQ, and so on. This process was repeated 200,000 times. The frequency

with which each policy arose as an outcome generated the ultimate distribution over observed outcomes.
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It is apparent that the policies that Player 1 values most arenot near Player 1’s ideal point, but rather

those that divide the dollar about equally between himself and one other player, or(1
2 , 1

2 , 0) and(1
2 , 0, 1

2).

The intuition for this is simple. Suppose that the status quopolicy in a given round is Player 1’s ideal point,

(1, 0, 0). Then whichever policy is chosen to be pitted against the status quo in the next round will win with

near certainty, because every policy weakly defeats Player1’s ideal point. Conversely, the point(1
2 , 1

2 , 0),

as an example, is more stable and less likely to be defeated bya new policy. This is why Player 1’sleast

favorite policy is at(0, 1
2 , 1

2). Not only does Player 1 get a payoff of zero from this policy, but it is also a

relatively stable outcome, unlikely to be replaced quickly.

[FIGURE 3 HERE]

Figure 3 depicts the density over observed policy outcomes.The darkest areas correspond to the most

frequently observed policies. In this example only a small subset of the total policy space is ever observed

with positive probability. The observed policies appear toconstitute a majority-rule core with respect to

players’ equilibrium value functions. Figure 2 demonstrates this—since the setting is symmetric, it is clear

that each of Player 1’s most-preferred policies is also the most-preferred policy of another player. This

example demonstrates that the assumption of farsightedness gives us sharp predictions in this divide-the-

dollar game. It predicts outcomes corresponding to the set of policies that divide the dollar evenly between

all members of a minimal winning coalition. In this example,the likelihood of a policy defeating a status

quo such as(1
2 , 1

2 , 0) is approximately 1%.

In social choice theory this set of predicted policies is referred to as thevon Neumann-Morgenstern

stable set(or simplystable set), and is defined by the nice property that no element in the setstrictly defeats

any other element in the set and that any policy outside the set is strictly defeated by an element of the set.12

12These two conditions are termedinternal andexternal stability, respectively.
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It is worthwhile to note that the numerical estimations generated by this model whenQ is uniform closely

coincide with certain elements of the von Neumann-Morgenstern stable set, and so a short discussion of

stable sets is warranted.13 The theory of stable sets was originally termed “the theory of solutions,” and was

first introduced in von Neumann and Morgenstern’s seminal work Theory of Games and Economic Behavior

[17]. Von Neumann and Morgenstern provide an interesting and subtle interpretation of stable sets that is

discussed in van Deemen [16]. According to these authors, stable sets characterize those outcomes that can

be considered “acceptable standards of behavior” within a society. By “acceptable standard” it is meant

that these standards are internally consistent; all acceptable standards are equally legitimate. Furthermore,

all deviant behavior is correctible because every alternative outside the stable set is strictly defeated by an

element within the set. Von Neumann and Morgenstern summarize with the following discussion (with the

stable set denotedS):

“Thus our solutionsS correspond to such ‘standards of behavior’ as have an inner stability:

once they are generally accepted they overrule everything else and no part of them can be

overruled within the limits of the accepted standards.” (Quoted in [16], page 106.)

It is also interesting to compare this example with a standard one-shot bargaining model in which players

have equal recognition probabilities. In the one-shot model proposals are made optimally with regard to

future optimal behavior by players in the case that a proposal is rejected. The only equilibrium in the one-

shot model (withδ = 1) is for the proposer to give himself23 of the dollar and to give one other player the

remainder. Ex ante, outcomes in the one-shot model and this model are the same in expectation, although

the paths by which the outcomes are reached are quite different.

13In general, stable sets are not unique. However, in the spatial models considered here there is always a uniquefinite stable set.
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4.2 An asymmetric two-dimensional spatial model

This last series of pictures depicts a two-dimensional spatial model, where the ideal points of the three

players are no longer symmetric but are located at(0, 1
2), (0, 0), and(1, 0). The policy space is bounded by

the lines connecting the ideal points of the three players.14 First, preferences are assumed to be circular so

that players are indifferent between all policies equidistant from their ideal points. This implies that each

issue dimension matters equally to each player. Then we willconsider the case where two of the three

players care more about one issue dimension than the other.

Figure 4 depicts the spatial location of the ideal points of the three players and their indifference curves

when preferences are circular. Figure 5 depicts the equilibrium value function of Player 1, whose ideal point

is located at(0, 1
2). Again, the darker areas correspond to the policies that Player 1 values most highly.

Figure 6 depicts the frequency with which each policy is observed as an outcome, with the most frequent

outcomes being darker in color than the less frequent ones.

[FIGURE 4 HERE]

[FIGURE 5 HERE]

[FIGURE 6 HERE]

In Figure 5 we can see that Player 1’s highest-valued alternative is close to the point(0, .25). Although

not pictured, the equilibrium “highest-valued” policies of Players 2 and 3 are(.03, .03) and(.94, 0), respec-

tively. Farsightedness induces Players 1 and 3 to prefer policies that may spark the formation of a coalition

14When preferences are circular, this policy space corresponds to the Pareto set. When preferences are elliptical, as in the next

example, the policy space subsumes the Pareto set.
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between themselves and Player 2, the most moderate player. Figure 6 shows that the most observed out-

come is approximately(0, .22), close to the alternative in the stable set corresponding toa coalition between

Players 1 and 2, the two players whose ideal points are closest to each other. In this example the stable set

consists of the points{(0, .19), (.28, .36), (.19, 0)}, approximately.

[FIGURE 7 HERE]

In the last example the preferences of Players 2 and 3 are now elliptical rather than circular, and are defined

by the equation

ui(x1, x2) = −
√

(ri1 − x1)2 + 100(ri2 − x2)2,

whereri = (ri1, ri2) is the ideal point of playeri. Thus, Players 2 and 3 value the second (ory) dimension of

the policy space ten times more highly than the first. The preferences of Player 1 have remained unchanged.

Figure 7 shows the ideal points of the three players and theirindifference curves. The dotted curve represents

the contract curve of Players 1 and 3, and is the upper bound ofthe Pareto set.

[FIGURE 8 HERE]

[FIGURE 9 HERE]

Interestingly, even though Player 1’s utility function is the same as in the previous example, his equi-

librium value function is quite different than both his utility function and his value function in the previous

example, when the preferences of the other two players were circular. Figure 8 shows that Player 1’s most-

preferred alternatives now lie close to the origin, the ideal point of Player 2. The reason for this is similar

to the intuition behind the example given in Section 3.1. Because the indifference curves of Players 2 and
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3 both favor policies that lie close to thex-axis, Player 1 knows that implementing a policy that appeals to

him along they-dimension is a lost cause. This is because the point(0, 1
2), Player 1’s ideal point, is the

alternative inX that isfarthestfrom thex-axis. Thus, he is willing to concede a great deal of utility along

the second dimension of the policy space in order to collude with Player 2 along the first dimension.

The stable set in this example approximately equals{(.14, .03), (0, .01), (.09, 0)}. Figure 9 shows that

there exists a single alternative,(.09, .02), that arises with near certainty. This alternative is closeto the

alternative in the stable set corresponding to a coalition between Players 2 and 3. As in the previous example,

this prediction corresponds to the most efficient element ofthe stable set; it is the element of the stable set

that maximizes the sum of the players’ utilities.

An interesting link can be drawn between this model and cooperative solution concepts like the stable set.

Cooperative game theory examines the types of allocations that coalitions can procure for themselves, while

remaining agnostic as to how these allocations arise, and how they are enforced. In the numerical estimations

presented here, outcomes emerge that are in keeping with those predicted by cooperative solution concepts.

These outcomes emerge and persist because they are essentially core alternatives with respect to the players’

equilibrium farsighted valuations. Thus, the numerical results can be interpreted as providing one behavioral

rationalization of cooperative game theory.

5 Conclusion

The formation of stable coalitions is central to political life, and yet can be difficult to understand from a

theoretical perspective. This paper presents one argumentfor why stability can arise and persist in the real

world. In the theory presented here, individuals consider the trade off between the immediate value of a

policy and the long-run stability of the coalition implementing that policy. Ultimately, this consideration
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leads to the recognition that policies that fairly divide benefits between members of a winning coalition

leave individual players best off in the long run. The cooperation that emerges in this model does not rely

on any threat of punishment other than the fact that current policies can be replaced by new alternatives.

The theory can also be interpreted as providing an explanation for why certain coalitions are more

likely to form than others. Both the analytic and numerical examples demonstrate that farsighted voters

will frequently vote for policies that do not necessarily give them the highest one-shot payoff. The favorite

policies of a farsighted voter will depend on a combination of his own preferences, the preferences of other

voters, the voting power of other voters, and the likelihoodwith which certain policies will be brought to

the floor. Thus, the model provides a nuanced characterization of voter preferences that encompasses many

different elements of the institutional environment. It also provides a characterization of voting behavior

that is estimable because the model yields distributional predictions.

While the model presented in this paper is purely formal, thetheory is applicable to a variety of real-

world legislative situations, as it utilizes only weak assumptions about the number of voters, their pref-

erences, their respective voting weights, the majority requirement, and the policy space. However, the

predictive power of the model will depend largely on the functional form of the proposal processQ. This

process can be thought of as representing the likelihood with which particular policies will be considered

by the group in the future. Estimating these likelihoods in real-world situations may provide insight into

the prospective voting behavior of legislators, with the implication being that the perceived distribution of

future policy considerations may be an omitted variable in some empirical models of legislative voting.
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Appendix A: Assumptions on individual vote choice

Throughout, I assume that for allx, y ∈ X, p(v(x), v(y)), or the probability of transitioning from status quo

x to policy y, given thatx andy are put to a vote, can be written as the probability of victoryof y overx:

p(v(x), v(y)) =
∑

C∈W

∏

i∈C

pi(vi(x), vi(y))
∏

i6∈C

(1 − pi(vi(x), vi(y))) (1)

wherepi(vi(x), vi(y)) ∈ [0, 1] represents Player i’s probability of voting fory overx given value function

v. It is assumed thatpi is independent ofpj for all i, j ∈ N , thatpi(vi(x), vi(y)) + pi(vi(y), vi(x)) = 1,

and thatpi is increasing invi(y) − vi(x).

The following assumption is necessary for the proof of Proposition 2.

Assumption 1 Multiplicative separability and boundedness of the derivative ofp

Let ρ(v(r), v(s)) represent the following metric:

ρ(v(r), v(s)) = max
i∈N

|vi(r) − vi(s)|.

Assume that for allx, y ∈ X and allv ∈ Vn,

|
∂

∂x
p(v(x), v(y))| ≤ max

i∈N
|v′i(x) ∗ B|,

whereB ∈ R is a constant and

|B| ∗ max
r,s∈X

ρ(v(r), v(s)) <
1 − δ

δ
.

First, note that this condition is merely a sufficient, and not necessary, condition for the existence of a fixed

point whenX is infinite. It may be the case that existence can be obtained in far less restrictive environments.

And second, while this assumption may seem strange, many commonly used vote functions satisfy it. In the
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case where voting is according to the logistic formpi(vi(x), vi(y)) = eλvi(y)

eλvi(x)+eλvi(y) this assumption will

impose a restriction onλ for a fixedn and onn for a fixedλ. Note that this logistic function converges to

the deterministic case asλ is driven to infinity.

This last assumption is necessary for the proof of Proposition 3. It is less restrictive than Assumption 1.

Assumption 2 Differentiability of individual vote choice

In the formal analysis it is assumed that for alli, pi(vi(x), vi(y)) is differentiable in both of its arguments,

and that these derivatives are uniformly bounded by some constant. While the assumption is made solely

to simplify the analysis, the reader should note that it is always possible to approximate a discontinuous

function with such a continuous, differentiable one. Furthermore, this assumption is not necessary in order to

demonstrate that an equilibrium exists in specific settings. In the estimations and analytic results presented,

equilibria are shown to exist even when individuals vote deterministically.

Appendix B: Analytic results

For the first three propositions we will define a functiong that maps value functions into value functions, or

g : Vn → Vn with g = {gi}i∈N andgi : Vn → V. Specifically,

gi(v(x)) = ui(x) + δ

∫

y∈X

vi(y)p(v(x), v(y)) + vi(x)(1 − p(v(x), v(y)))dQ(y), (2)

with the case of a finiteX defined similarly. It is useful to note that this functiong can also be used

to consider farsighted voting when there are only a finite number of periods of policymaking. Letv0 =
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{ui}i∈N and iteratively definevt+1 = g(vt), t ≥ 0. Thenvit(x) captures Playeri’s valuation of policyx

given thatt rounds of policymaking will occur afterx is implemented.

Proposition 1 If X is finite, then there exists a dynamically stable voting equilibrium.

Proof: Sinceδ < 1 and ui is real-valued for alli ∈ N , the upper bound any individual’s value func-

tion could take is 1
1−δ

max
x∈X

ui(x), and the lower bound is zero. Thus, for everyv ∈
∏

i∈N R
X , v ∈

∏

i∈N [0, 1
1−δ

max
x∈X

ui(x)]X , and so the set of value functions is bounded. Furthermore, the set of value func-

tions is convex, since the convex combination of two boundedfunctions takingX to R is itself bounded.

Last, the set of value functions is closed, trivially. It follows that the set of value functions takingX into the

real numbersR is a nonempty, closed, bounded and convex subset of a finite-dimensional vector space,R
X .

The mappingg :
∏

i∈N R
X →

∏

i∈N R
X (see Equation 2) is single-valued by definition, and is con-

tinuous by the continuity of everypi(vi(x), vi(y)). By Brouwer’s Fixed Point Theorem, there exists a

v ∈
∏

i∈N R
X such thatg(v) = v. Thus, there exists a dynamically stable voting equilibrium. �

When policy spaceX is infinite Assumption 1 is needed in order to guarantee existence, along with a

definition and a lemma.

Definition: A set of real-valued functionsV∗ ⊂ V is equicontinuousif for all ǫ > 0, there exists aδ > 0

such that

ρ(s, t) < δ andvi ∈ V∗ ⇒ |vi(s) − vi(t)| < ǫ.

To prove Proposition 2, we are concerned in particular with aset Bn
M ⊂ Vn of vectors of differen-
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tiable functions takingX to R whose derivatives are uniformly bounded by the constantM . This set is

equicontinuous; letM be a bound for the derivatives of the functions inBM , and recall that forv ∈ Vn,

ρ(v(s), v(t)) = max
i∈N

|vi(s) − vi(t)|. For aθ ∈ X andJ equal to the dimensionality of the policy space,

let |∇vi(θ)| = max
j∈J

| ∂vi

∂θj
|. Then, by an extension of the Mean Value Theorem,ρ(s, t) < δ implies that

ρ(v(s), v(t)) = max
i

|▽vi(θ)|ρ(s, t) ≤ Mδ, for someθ on the line segment betweens andt. Thus, given

ǫ > 0, the choiceδ = ǫ/(M + 1) demonstrates thatBM , and thusBn
M , is equicontinuous.

Lemma 1 If Assumption 1 holds, then the functiong maps a closed, bounded, and equicontinuous subset

of Vn into itself.

Proof: Defineg as in Equation 2. Boundedness is attained becauseδ < 1. LetBn
M be the set of vectors of

differentiable functions whose derivatives are uniformlybounded by the constantM . The setBn
M is closed.

I will show that there exists anM ∈ R+ such that for anyv ∈ Vn, if v ∈ Bn
M , theng(v) ∈ Bn

M . By Equation

2 we know that for alli,

g(vi(x)) = ui(x) + δ

∫

y∈X

vi(y)p(vi(x), vi(y)) + vi(x)(1 − p(vi(x), vi(y)))dQ(y)

and thus,

∂

∂x
g(vi(x)) = u′

i(x) + δv′i(x)(1 −

∫

y∈X

p(v(x), v(y))dQ(y))

+ δ

∫

y∈X

(vi(y) − vi(x))
∂

∂x
p(v(x), v(y))dQ(y).

Using Assumption 1 we get

∂

∂x
g(vi(x)) ≤ u′

i(x)

+ δ max
j∈N

|v′j(x)|
(

1 −

∫

y∈X

p(v(x), v(y))dQ(y) + |B|

∫

y∈X

(vi(y) − vi(x))dQ(y)
)

< max
j∈N

u′
j(x) + γ max

j∈N
|v′j(x)|.
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for someγ ∈ [0, 1).

Let U = max
j∈N

u′
j(x). U is assumed to be bounded. Now letM = U

1−γ
. Then if v ∈ Bn

M we get

∂

∂x
g(vi(x)) < U + γM

= U + γ
U

1 − γ

=
U

1 − γ

= M.

Thus, for alli ∈ N andx ∈ X, g(vi(x)) ∈ BM , and sog(v(x)) ∈ Bn
M . It follows thatg maps a closed,

bounded and equicontinuous subset ofVn into itself. �

Proposition 2 If X is infinite, then there exists a dynamically stable voting equilibrium when Assumption

1 holds.

Proof: The Heine-Borel Theorem in a function space tells us that a subsetV∗ ⊂ V is compact if and only if

it is closed, bounded, and equicontinuous.15 Lemma 1 proves that the set of value functions can be restricted

to the compact setBn
M . Since the functiong : Bn

M → Bn
M is continuous, we need only convexity of the set

of value functions to prove that there exists an equilibriumvalue function.

Take the convex combination of any two value functions,v,w ∈ Bn
M , so that for anyγ ∈ [0, 1], γv(x)+

(1 − γ)w(x) = z(x). Clearly z is continuous, sincev and w are continuous. Furthermore,z′(x) =

γv′(x) + (1 − γ)w′(x) ≤ M . Thus,z is differentiable, and the derivative ofz is bounded by the constant

M . It follows thatz ∈ Bn
M , and thatBn

M is convex. By Brouwer’s Fixed Point Theorem, there exists av

such thatg(v) = v. �

15This theorem is a direct consequence of the Arzela-Ascoli Theorem. See [12, p. 217].
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Proposition 3 If Assumption 2 holds, then whenn is large then there always exists auniqueequilibrium,

regardless of whetherX is finite or infinite.

Proof: The proof is specifically for the case whereX is infinite; the finite case can be proved similarly. For

w, z ∈ Vn, let ρ(wi, zi) = max
x∈X

|wi(x) − zi(x)|, and letρ(w, z) = max
i∈N

ρ(wi, zi). We must show that for

anyw, z ∈ Vn, ρ(g(w), g(z)) < ρ(w, z), or thatg is a contraction mapping.

As in Equation 2, letgi : Vn → V. Thus,g = (g1, ..., gn). First consider the gradient vector∇gi. For all

x ∈ X,

gi(v(x)) = ui(x) + δ

∫

y∈X

vi(y)p(v(x), v(y)) + vi(x)(1 − p(v(x), v(y)))dQ(y).

Thus, the components of∇gi(v(x)) can be defined using the partial derivatives

∂gi(v(x))

∂vi(x)
= δ[1 −

∫

y∈X

p(v(x), v(y))dQ] + δ

∫

y∈X

(vi(y) − vi(x))
∂p(v(x), v(y))

∂vi(x)
dQ (3)

and for allj ∈ N \ {i},

∂gi(v(x))

∂vj(x)
= δ

∫

y∈X

(vi(y) − vi(x))
∂p(v(x), v(y))

∂vj(x)
dQ. (4)
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Using Equation 1 we get that for alli ∈ N ,

∂p(v(x), v(y))

∂vi(x)
=

∂pi(vi(x), vi(y))

∂vi(x)
Zi({pj(vj(x), vj(y))}j∈N\{i}) (5)

where, lettingCM
i equal the set of minimal winning coalitions thati is in,

Zi({pj(vj(x), vj(y))}j∈N\{i}) =
∑

C∈CM

i

∏

j∈C\{i}

pj(vj(x), vj(y))
∏

j 6∈C

(1 − pj(vj(x), vj(y))).

Zi({pj(vj(x), vj(y))}j∈N\{i}) represents the probability that Playeri’s vote is pivotal given that all other

playersj vote according to the functionspj(vj(x), vj(y)). McKelvey and Patty ([10], Lemma 1) prove that

when people vote probabilistically (i.e when for allj ∈ N , and allx, y ∈ X, pj(vj(x), vj(y)) ∈ (0, 1)), all

pivot probabilitiesZi(·) → 0 asn gets large.

Combining Equations 4 and 5, we get for allj ∈ N \ {i}

∂gi(v(x))

∂vj(x)
= δ

∫

y∈X

(vi(y) − vi(x))
∂pj(vj(x), vj(y))

∂vj(x)
Zj({pk(vk(x), vk(y))}k∈N\{j})dQ.

By Assumption 2 we know that for allj ∈ N andx, y ∈ X, ∂pj(vj(x),vj (y))
∂vj(x) is bounded by some constant.

We also know that the difference|vj(y)−vj(x)| is bounded by a constant, sinceδ < 1 and utility is bounded.

SinceZj(·) → 0 asn → ∞, it follows that for anyǫ > 0 there exists anM ∈ N such that for alln > M ,

∂gi(v(x))

∂vj(x)
< ǫ.

Using Equation 3, by the same logic it follows that for anyǫ > 0 there exists anM ∈ N such that for all

n > M ,

∂gi(v(x))

∂vi(x)
< δ[1 −

∫

y∈X

p(v(x), v(y)dQ] + ǫ.
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Define|∇g(v)| such that

|∇g(v)| = max
{i,j}∈N

(

max
x∈X

∣

∣

∣

∣

∂gi(v(x))

∂vj(x)

∣

∣

∣

∣

)

.

Sinceδ[1 −
∫

y∈X
p(v(x), v(y))dQ] ∈ (0, 1) for all δ < 1, it follows that forn sufficiently large (i.e.,ǫ

sufficiently small),|∇g(v)| < 1.

By the Mean Value Theorem we know that

ρ(g(w), g(z)) ≤ ρ(w, z)|∇g(v)|

for somev on the line segment betweenw andz. Since, for anyv ∈ Vn, |∇g(v)| < 1 for n sufficiently

large, it follows that

ρ(g(w), g(z)) < ρ(w, z).

Thus, there exists anM ∈ N such that for alln > M , the functiong is a contraction mapping.�

Proposition 4 If pi(vi(x), vi(y)) = 1 if vi(y) ≥ vi(x) and zero otherwise, then at a dynamically stable

voting equilibrium,v∗, the collection of functionspi constitute a Markov-perfect equilibrium.

Proof: Let S = X × X denote the state space, where(x, y) ∈ S can be interpreted as a status quo policyx

and a new alternative,y, to be pitted against the status quo. Letσi(x, y) ∈ [0, 1] denote Playeri’s strategy,

or likelihood he votes fory over x. Let p({σi(x, y)}n
i=1) be the probability thaty defeatsx, given that

players vote according to strategiesσi. Since we are considering a simple and anonymous game, we know

thatp(1, {σj(x, y)}j 6=i) ≥ p(0, {σj(x, y)}j 6=i). Thus, if Playeri votes fory overx, then the likelihood that

y defeatsx is weakly greater than it would have been had Playeri voted forx overy.

At a dynamically stable voting equilibrium,v∗, and for all (x, y) ∈ S, defineσi(x, y) such that
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σi(x, y) = 0 if v∗i (x) > v∗i (y), and σi(x, y) = 1 otherwise. LetUi(σi, σ−i) denote Playeri’s pay-

off from playing strategyσi, given that the other players are playing strategiesσ−i. Assume, without

loss of generality, thatv∗i (x) > v∗i (y). Then if σi(x, y) = 1 if v∗i (y) ≥ v∗i (x) and zero otherwise,

Ui(0, σ−i) = v∗i (x)
[

1−p(0, {σj(x, y)}j 6=i)
]

+v∗i (y)p(0, {σj(x, y)}j 6=i) > v∗i (x)
[

1−p(1, {σj(x, y)}j 6=i)
]

+

v∗i (y)p(1, {σj(x, y)}j 6=i) = Ui(1, σ−i). Thus, the proposed strategiesσi constitute a Nash equilibrium.

Moreover, the profileσi is a Markov strategy profile of the original game, and is perfect because each player

optimizes in each state. It follows that at a dynamically stable voting equilibrium,v∗, the collection of

functionspi constitute a Markov-perfect equilibrium.�
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[14] Kevin Roberts. Condorcet cycles? A model of intertemporal voting. Social Choice and Welfare,

29:383–404, 2007.

[15] Kenneth Shepsle and Barry Weingast. Uncovered sets andsophisticated voting outcomes with impli-

cations for agenda institutions.American Journal of Political Science, 28(1):49–74, 1984.

36



[16] AD M.A. Van Deemen.Coalition Formation and Social Choice. Kluwer Academic Publishers, 1997.

[17] John von Neumann and Oskar Morgenstern.Theory of Games and Economic Behavior. Princeton

University Press, Princeton, NJ, 2nd edition, 1947.

37



Status quo

x

Policy y drawn

from density Q

Vote between 

x and y

Policy z drawn

from density Q

Vote between

x and z

Vote between 

y and z

Status quo

x

Status quo

y

Policy z drawn

from density Q

.

.

.

.

.

.

x wins y wins

Figure 1: Path of play
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Figure 2: Player 1’s value function.
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Figure 3: Density over outcomes.
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Figure 4: Two-dimensional spatial model with circular preferences.
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Figure 5: Player 1’s value function with circular preferences.
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Figure 6: Density over outcomes with circular preferences.
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Figure 7: Two-dimensional spatial model where Players 2 and3 have elliptical preferences.
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Figure 8: Player 1’s value function when Players 2 and 3 have elliptical preferences.
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Figure 9: Density over outcomes when Players 2 and 3 have elliptical preferences.
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