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Abstract

We explore the implications of voter ignorance on policy selection and policy outcomes

in a simple model of party competition. For a simple benchmark case, we show that voter

ignorance has no effect on the election outcome if the electorate is large. We then examine

a model where voters are uncertain about the distribution of voter preferences and about

the policy choice of one of the candidates. We characterize the limit equilibria of that

model and show that voter ignorance leads to more partisan outcomes. In particular, we

show that the Downsian prediction of median preferred outcomes is not robust even if

candidates have weak policy preferences and mostly care about winning the election.
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1. Introduction

Surveys routinely find that the American electorate is poorly informed about the policy

positions of candidates. (See, for example, Berelson, Lazarsfeld and McPhee (1954)). In a

1990/1991 survey only 57% of voters could correctly identify relative ideological positions

of the Republican and Democratic parties on a left/right spectrum and only 45% of voters

could correctly identify the parties’ relative position on federal spending (Delli-Carpini and

Keeter (1993), Table 2). The same surveys show that voters are equally ill informed about

the electorate itself. For example, the same 1990/1991 survey shows that only 47% of voters

correctly identify the party that holds the majority of seats in the Senate (Delli-Carpini

and Keeter (1993), Table 2).

In this paper, we explore the implications of voter ignorance on policy selection and

policy outcomes in a simple model of party competition. We begin our analysis with a

benchmark model in which voters are uncertain about the candidate’s policy choice. For

that model we show that incomplete information about the policy choice does not alter

the Downsian prediction: when the electorate is large, the election will fully aggregate

information and the median preferred outcome will be chosen with probability close to

one.

We then examine a model in which voters are uncertain about the distribution of

voter preferences and about the policy choice of candidates. In that model, the election

does not aggregate information and, as a result, non-median outcomes emerge. Moreover,

a weaker policy preference of candidates may imply more partisan outcomes. Hence, even

when candidates are office seekers with a weak preference for partisan policies, the election

outcome is not close to the median preferred outcome.

The standard model of party competition (Downs (1957)) considers two candidates

who seek to maximize the probability of getting elected. Both candidates choose policies

prior to the election. Voters observe the policy choice and vote for the candidate who

offers the more attractive policy. The model predicts that the median preferred policy will

be implemented. Candidate competition is similar to Bertrand competition in oligopoly

models. If one candidate chooses a policy that is median preferred to his opponent’s policy
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then he will win the election. As a result, the Downsian prediction of median preferred

outcomes holds even when the candidates have policy preferences.

We consider a very simple and stylized version of a candidate competition model. We

assumes that there are two candidates, one candidate (the committed candidate) has a fixed

and known policy position (r) while the other candidate (the opportunistic candidate) must

choose between a partisan policy (denoted l) and a moderate policy (denoted m). The

opportunistic candidate is motivated both by winning the election and by the resulting

policy outcome. In particular, we assume that the opportunistic candidate prefers the

partisan to the moderate policy. The median voter prefers m to r and r to l. Therefore,

the committed candidate’s policy is “between” the partisan and the moderate policies of

the opportunistic candidate.

In contrast to the standard Downsian model, we assume that voters are imperfectly

informed of the opportunistic candidate’s policy choice. In particular, we assume that

each voter is independently informed of the policy choice with a probability between zero

and one. In this simple setting, voter ignorance does not alter the prediction of the

candidate competition model: In a large electorate the median preferred moderate policy

is implemented with probability close to one (Proposition 1). Hence, despite the fact that

only a fraction of voters is informed of opportunistic candidate’s policy choice the outcome

is as if all voters are perfectly informed. This result echoes the information aggregation

results in Feddersen and Pesendorfer (1996, 1997).

Our main model adds uncertainty about the distribution of voter preferences to the

model above. Hence, we assumes that voters are confronted with two sources of uncer-

tainty: they do not observe the distribution of voter preferences and may be uncertain

about the policy choice of a candidate. The parameters are chosen so that for every real-

ization of the distribution of voter preferences the moderate policy m is median preferred

with probability close to one in a large electorate.

In contrast to voters, the (opportunistic) candidate learns the distribution of prefer-

ences prior to selecting a policy. Hence, the candidate is better informed than voters about

the distribution of preference types. To motivate this assumption, note that candidates of-

ten take (secret) opinion polls prior to selecting a policy. These opinion polls may provide

good information about the distribution of preferences.
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In this model, the election does not aggregate information. The reason is that in-

formed voters cannot be pivotal for every realization of the distribution of voter prefer-

ences. Therefore, there will be realizations of the distribution of preferences for which

the policy choice of the opportunistic candidate has little impact on who gets elected. In

those cases, either the partisan policy of the opportunistic candidate or the policy of the

committed candidate will be implemented.

Our main result characterizes the limit equilibria when the number of voters goes to

infinity. This characterization enables us to derive the following results:

(1) A weaker partisan preference of the opportunistic candidate implies a higher probabil-

ity that the opportunistic candidate is elected but does not imply a lower probability

that the partisan policy (l) is chosen. We give conditions under which a weaker par-

tisan preference implies a higher probability that the partisan policy is implemented.

(2) We refer to the opportunistic candidate as an “office seeker” if he has a small partisan

preference and mostly cares about getting elected. An office seeker wins the election

with probability close to one. Hence, an office seeker wins the election with the same

probability as in the full information case where all voters learn the policy choice.

However, the policy outcome differs from the full information case: when all voters

learn the policy choice the median preferred moderate policy m is implemented with

probability one; when voters are imperfectly informed of the policy choice the partisan

policy l is implemented with significant probability.

(3) If the probability that a voter is informed goes to zero then the probability that

the median preferred policy is implemented goes to zero while the probability that

the opportunistic candidate is elected stays bounded away from zero. Hence, the

opportunistic candidate is elected with positive probability even though the median

voter prefers r to l and the opportunistic candidate implements l with probability

close to 1 if elected.

To understand the driving force behind these results, note that uninformed voters

must form expectations about the opportunistic candidate’s policy choice. Since a vote

only matters when it is pivotal, the relevant expectations are about the policy choice

conditional on that event. In other words, a voter must determine what policy will be
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chosen if the election will be close. Only in that case does a vote make a difference for the

election outcome.

Therefore, the key for the opportunistic candidate’s success in our model is his willing-

ness to choose a moderate policy when he expects the election to be close. An office seeker

is reluctant to choose the partisan policy and risk losing the election whenever he expects

the election to be close. Therefore, conditional on a vote being pivotal an office seeker is

expected to choose the partisan policy with a small probability. By contrast, a candidate

with a strong preference for the partisan policy is expected to choose the partisan policy

even when he risks losing the election with significant probability. As a result, the office

seeker receives a much larger share of the uninformed vote than a candidate with a strong

partisan preference.

The willingness of a candidates to choose a median preferred policy when the election

is close does not imply that this candidate will have a high ex ante probability of choosing

the median preferred policy. In fact, the probability that the opportunistic candidate

implements the partisan policy is maximal if the candidate is an office seeker. Because

the office seeker receives a large share of the uninformed vote he can afford to choose

the partisan policy and win the election in situations where the candidate with a strong

partisan preference would lose the elections. Conditioning on being pivotal creates a wedge

between voting behavior and (unconditional) policy choices. Candidates with a weak policy

preference benefit from this effect.

1.1 Related Literature

Several authors have examined the robustness of the Downsian prediction by introduc-

ing uncertainty about the electorate and policy preferences of candidates. For example,

Calvert (1985) analyzes the case where there the two candidates are symmetrically in-

formed of the distribution of voter preferences. Bernhard, Duggan and Squintani (2003)

and Chan (2001) analyze the case of asymmetric information. When candidates have

policy preferences and are uncertain about the distribution of voter preferences then the

policy outcomes may differ from the predicted median’s preferred policy. However, if can-

didates have weak policy preferences and mostly care about winning the election then the
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Downsian prediction is robust. The implemented policy will be close to the candidates’

estimate of the median preference.

There is a long tradition of models examining the information aggregation properties of

elections. The classic result in this area is the Condorcet Jury theorem. See, for example,

Young (1988). Traditional jury models assume that voters do not behave strategically.

Austen Smith and Banks (1995) and Feddersen and Pesendorfer (1996) analyze models

closely related to the jury model under the assumption that voters act strategically. The

information aggregation literature assumes that voters are uncertain about a state variable

that affects their ranking of candidates. In our context, this corresponds to a situation

where the opportunistic candidate’s policy is chosen by some exogenous random draw. The

difference here is that the candidate’s policy choice is a strategic choice. For the benchmark

model without aggregate uncertainty we show that the information aggregation result can

be extended to this case.

2. Ignorant Voters

Two candidates, a and b stand for election. Candidate a is committed to a fixed policy

(denoted r) while candidate b must choose between a moderate policy (denoted m) and a

partisan policy (denoted l). We denote with P = {l,m, r} the set of policies.
The payoff of candidate b is 1 if he is elected and chooses the partisan policy l, µ ∈ (0, 1)

if he is elected and chooses the moderate policy m and 0 if he is not elected.

There are 2n + 1 voters. Voters are expected utility maximizers whose preference

depends on the candidate b’s policy choice. We assume that all voters prefer m to r and r

to l. Hence, all voter’s prefer the moderate policy of b to the policy of a and the policy of

a to the partisan policy of b. We normalize the voters’ von Neumann-Morgenstern utility

function so that the utility of policy l is zero, the utility of policy m is 1, and the utility of

policy r is λ ∈ T = [0, 1] which is the type of the voter. Therefore, if the candidate chooses

m with probability λ (and l with probability 1 − λ), then the voter type λ is indifferent

between a and the lottery over policies offered by b. Types of voters are drawn according

to the probability distribution F on [0, 1]. We assume that F admits a continuous density

f with f > 0.
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Candidate b does not observe the preference type of individual voters. Voters observe

their own type but not the type of other voters. Candidate b chooses a policy p ∈ {l,m}.
Each voter is independently informed of the policy choices with probability δ ∈ (0, 1]. If
the candidate chooses a mixed action then informed voters observe the realization of the

mixed action. Every voter must vote for one of the candidates. The candidate who receives

n+ 1 or more votes wins the election.

A strategy for an uninformed voter specifies for every preference type the probability

that the voter votes for candidate b. Hence, a strategy for an uninformed voter is a

measurable function σv : T → [0, 1] where σv(λ) denotes the probability with which an

uninformed swing voter of type λ votes for b. A strategy for b specifies a probability of

choosing the moderate policy, denoted σb ∈ [0, 1].
We analyze symmetric Nash equilibria in weakly undominated strategies. Hence, we

assume that in equilibrium all uninformed voters use the same strategy σv. The assumption

that voters choose a weakly undominated strategy implies that informed voters always

choose their preferred candidate. Note that all informed voters with type λ ∈ (0, 1)

strictly prefer b if b chooses m and strictly prefer a if b chooses l. Since F is continuous

the types λ = 0 and λ = 1 occur with probability 0. Therefore, with probability one there

is a unique weakly undominated strategy for an informed voter: vote for a if b chooses l

and for b if b chooses m.

Below, “equilibrium” refers to a symmetric Nash equilibrium in weakly undominated

strategies. Suppressing the strategy of informed voters, an equilibrium can be charac-

terized by a pair σ = (σb, σv). Every strategy pair induces a probability distribution

over outcomes, denoted ρ ∈ ∆({l,m, r}) where ρp denotes the probability that policy p is
implemented.

For a fixed F, µ, δ satisfying the assumptions above, let En denote the the election
game with 2n+ 1 voters and parameters F, µ, δ. Let σn denote a strategy profile for the

election En and let ρn denote the corresponding outcome.
Note that when δ = 1 and hence all voters are informed of b’s policy choice then,

in equilibrium, b chooses m with probability 1. Proposition 1 characterizes equilibrium

outcomes for large electorates. It states that the moderate policy m is implemented with
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probability close to one in a large electorate. Hence, the fact that voters are imperfectly

informed of b’s policy choice has no impact on the election outcome if n is large.

Proposition 1: Let σn be an equilibrium for the election En and let ρn denote the
corresponding outcome. If δ > 0 then ρmn → 1 as n→∞.

Proof: It is straightforward to show that a symmetric equilibrium in weakly undominated

strategies exists. Here we show that every sequence of equilibria (σn) implies that the

corresponding sequence of probability distributions over outcomes satisfies ρmn → 1.

First note that σbn > 0 for all n since for σbn = 0 b receives no vote. In that case,

a deviation to m strictly increases b’s payoff because all informed voters choose b if he

chooses m. Next, note that if σbn = 1 then b receives no vote and m is implemented

with probability 1. Hence, it remains to consider the case where (along some subsequence)

σbn ∈ (0, 1) for all n. If σbn ∈ (0, 1) then for every strategy σv there is a strictly positive

probability that the vote of an uninformed voter is pivotal.

Let θn denote the probability that b chooses m conditional on a vote being pivotal in

the election with n voters. In equilibrium, all uninformed voters with types λ < θn must

vote for 1 while all voters with type λ > θn must vote for 2.

Since b chooses both policies with strictly positive probability he must be indifferent

between them. Let

πln :=F (θn)(1− δ)

πmn :=F (θn)(1− δ) + δ

denote the probability that a randomly selected voter votes for 1 conditional on the policy

choice of candidate 1. For 0 < x < 1, let Bn(x) denote the probability of at least n + 1

successes from 2n+1 draws when the probability of success is x. Indifference by b implies

µBn(π
l
n) = Bn(π

m
n )

We note that this implies that πln → 1/2 since πln ≥ 1/2 + � implies Bn(π
l
n)/Bn(π

m
n )→ 1

and πln ≤ 1/2 − � implies Bn(π
l
n)/Bn(π

m
n ) → 0. Since πln → 1/2 there is λ∗ ∈ [0, 1] such

that

θn → λ∗ = F−1
µ

1

2(1− δ)

¶
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It follows that

σbn
1− σbn

µ
πmn (1− πmn )

πln(1− πln)

¶n
→ λ∗

1− λ∗

Note that µ
πmn (1− πmn )

πln(1− πln)

¶n
→ 0

since πln → 1/2 and hence we conclude that σbn → 1. Since πmn = πln + δ and πln → 1/2 it

follows that b is elected with probability close to one if he chooses m which completes the

proof.

Proposition 1 is related to earlier information aggregation results in Feddersen and

Pesendorfer (1997). There it is shown that if we fix the strategy of b, then as n → ∞
the probability that b is elected if he chooses l goes to zero and the probability that b is

elected if he chooses m goes to one. This result does not imply Proposition 1 because the

strategy here is endogenous. Moreover, the conclusion in Proposition 1 is slightly different

than the conclusion one would draw from a setting where b’s strategy was fixed.

Consider the case where δ < 1/2. In that case, b must mix in equilibrium when n

is large. To see this, note that if equilibrium prescribes that b chooses l with probability

one then he receives no votes. In that case he would do better by choosing m and thereby

receiving the vote of informed voters. If equilibrium prescribes that b chooses m with

probability 1 then all uninformed voters must vote for b. In that case, b wins the election

with probability close to one even if he chooses l. It follows that b must be indifferent

between choosing m and choosing l.

If b is indifferent between choosing l and m then his expected equilibrium vote share

if he chooses l (denoted πln) must converge to 1/2. To see this, first note that if π
l
n is

bounded above 1/2 for large n then b wins the election with probability close to one when

he chooses l. This implies that he cannot be indifferent between the two policy choices.

When πln stays bounded below 1/2 then b wins the election with probability close zero

when he chooses l and n is large. In that case, b strictly prefers m to l.

Since πln converges to 1/2 it follows that conditional on a vote being pivotal a positive

fraction of uninformed voters must prefer b to a. Hence, conditional on a vote being pivotal

the probability that b chooses m must stay bounded away from zero. Note that if b chooses
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l then (for large n) it is much more likely that a vote is pivotal than when b choosesm. This

follows because roughly 1/2 of the electorate votes for b if he chooses l while more than

1/2 of the electorate vote for b if he chooses m. To maintain the incentives for uninformed

voters it must therefore be the case that b chooses l with vanishing probability as n goes

to infinity.

Hence, b will choose l with strictly positive probability for all n. Moreover, conditional

on choosing l the probability that b wins stays bounded away from zero. However, the

probability that b chooses l must converge to zero as n→∞ in accordance with Proposition

1.

3. Uncertainty about the Electorate

The model in the previous section assumes that the distribution of preferences is

known to all players. In this section, we modify the model to allow for uncertainty about

the distribution of preferences. The probability distribution over voter preferences depends

on a state s ∈ S = [0, 1].

To simplify the analysis, we introduce partisan voters who prefer one of the candidates

irrespective of the policy choice. Each voter is independently assigned a preference type.

The probability distribution over types depends on the state and is as follows. With

probability (1 − s)/2 the voter is a partisan who always prefers b; with probability s/2

the voter is a partisan who always prefers a; and with probability 1/2 the voter is a swing

voter. The preference types of swing voters are drawn independently according to the

distribution F on T = [0, 1]. We assume that F admits a continuous density f with f > 0.

As in the previous section, all swing voters receive a utility of 1 if m is implemented and

a utility of 0 if l is implemented. The utility of type λ when policy r is implemented is λ.

Note that the probability that a voter is a swing voter is independent of the state s.

The timing of events is as follows. Nature draws a state s ∈ S according to the

distribution G. We assume that G admits a continuous density g with g > 0. Then,

nature independently assigns each voter a preference type according to the probability

distribution defined above. Candidates observe the state s but not the preference types of

individual voters. Upon observing the state, b chooses a policy p ∈ {l,m}. Voters observe
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their own type but not the type of other voters or the state s. Each voter is independently

informed of the policy choice of b with probability δ ∈ (0, 1]. Note that we assume that
informed voters observe the realization of the policy choice in case b chooses a mixed action.

Voters must vote for one of the candidates. The candidate who receives n + 1 or more

votes wins the election.

A strategy for the uninformed swing voter specifies for every preference type the

probability that the voter votes for b. Hence, a strategy for an uninformed swing voter is

a function σv : T → [0, 1] where σv(λ) denotes the probability with which an uninformed

swing voter of type λ chooses the b. A strategy for b specifies a probability distribution

over policies for each realization of the state s. Hence, a strategy for b is a measurable

function σb : S → [0, 1] where σb(s) denotes the probability of choosing the moderate

policy (policy m.)

We analyze symmetric Nash equilibria in weakly undominated strategies. Therefore,

equilibrium strategies of uninformed voters are described by a single strategy σv. As before,

informed swing voters (with probability 1) vote for b if b chooses m and for a otherwise.

Similarly, partisan voters always choose their preferred candidate. Below, “equilibrium”

refers to a symmetric Nash equilibrium in weakly undominated strategies. We suppress

the behavior of partisan and informed voters and describe equilibria by a pair σ = (σb, σv).

The median voter’s type depends on the state s and on the distribution of preference

types. The law of large numbers guarantees that as the number of voters goes to infinity,

the median voter converges (in probability) to a preference type that depends only on the

state s. We refer to this limit median as the s−median. (Note that this is true for all states
except for the states s = 0, s = 1 in which the probability that any voter is a partisan for

one of the candidates is exactly 1/2. Since any individual state has probability 0 we may

ignore those two states.) If s ∈ (0, 1) then the s−median is the swing voter with type λ
that satisfies

1− s

2
+
1

2
F (λ) =

1

2

which simplifies to

λ = F−1 (s)
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For a fixed F,G, u, µ, δ satisfying the assumptions above, let En denote the the election
game with 2n + 1 voters and parameters F,G, u, µ, β, δ. Let σn denote a strategy profile

for the election En.
As a simple benchmark, consider the cases where all voters are informed of the can-

didate’s policy choice δ = 1. For s ∈ (0, 1) candidate b expects the s−median to be a
swing voter. When n is large, it is therefore optimal to choose the moderate policy m.

As a result, for all s ∈ (0, 1) the probability that b wins the election and implements m
converges to one.

Proposition 2: Let σn be an equilibrium profile for the election En with δ = 1. Then,

σbn(s) → 1 for s > 0 as n → ∞. For s ∈ (0, 1) the probability that b wins the election
converges to one.

Proposition 2 illustrates how candidate competition can lead to a median preferred

outcome in every state. For 0 < s < 1 the s−median is a swing voter and the policy m

is implemented with probability close to one when n is large. For s = 0 candidate b may

choose the partisan policy (if µ ≤ 1/2) for large n. For s = 1 candidate a will win the

election with probability 1/2.

Next, we consider the case where voters are asymmetrically informed about the policy

choice of b. We assume that

0 < δ < 1 (3.1)

Our first result establishes that equilibrium strategies of voters and b can be described

as cutoff strategies. The strategy σv is a cutoff strategy if there is a λ ∈ [0, 1] such that
types λ0 < λ vote for b and types λ0 > λ vote for a. The strategy σb is a cutoff strategy

if there is s ∈ [0, 1] such that b chooses l at states s0 < s and m at s0 > s. We call an

equilibrium in which voters and candidate b use a cutoff strategy a cutoff equilibrium. A

cutoff equilibrium consists of a pair (λ, s) where λ is the of voters’ cutoff and s is the

cutoff of b. Since the probability of any single s or any single λ0 is zero, (λ, s) is a sufficient

description of the strategy profile. Proposition 3 establishes the existence of an equilibrium.

It also shows that every equilibrium is a cutoff strategy equilibrium.
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Proposition 3: An equilibrium exists. Every equilibrium is a cutoff equilibrium.

Proof: see Appendix.

Note that any swing voter, regardless of whether he is informed or not, assigns strictly

positive probability to being pivotal irrespective of the strategy of the other swing voters.

Since this is the only event in which a voter can affect the election outcome, the optimal

behavior of uninformed voters depends on the probability that b chooses policy m condi-

tional on a vote being pivotal. Let θ ∈ [0, 1] denote this probability. Recall that for λ < θ

the voter strictly prefers b and for λ > θ the voter strictly prefers the a. Hence, it follows

that in equilibrium uninformed voters use a cutoff strategy with cutoff θ.

Next, we argue that b’s best response to any cutoff strategy is also a cutoff strategy.

In particular, we will show that given a cutoff strategy for the voters, if it is optimal for b

to choose m at state s, then the only optimal action for him at higher states is m as well.

For x ∈ [0, 1] let Bn(x) be defined as

Bn(x) =
2n+1X
k=n+1

µ
2n+ 1

k

¶
xk(1− x)2n+1−k

Hence Bn(x) is the binomial probability of at least n + 1 successes out of 2n + 1 trials

given that the probability of success in each trial is x. If success is the event that a single

voter will vote for b, then Bn becomes the probability of b getting elected. From the

perspective of b, who knows his own policy choice, the state s and the voters’ strategy λ,

the probability of success can be calculated as follows:

πl(λ, s) =
1− s

2
+
1− δ

2
F (λ)

πm(λ, s) =
1− s

2
+
1− δ

2
F (λ) +

δ

2

= πl(λ, s) +
δ

2

Candidate b chooses l if

Bn(π
l(λ, s)) > µBn(π

m(λ, s))
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and m if this inequality is reversed. Hence, we need to show that Bn(π
l(s))/Bn(π

m(s))

is decreasing in s. We do so by first showing that Bn is log-concave. Since π
m = πl +

(1 − λ)δ with πm a linear and decreasing function of s, log-concavity of Bn implies that

Bn(π
l(s))/Bn(π

m(s)) is decreasing in s. Finally, we use a fixed-point argument to establish

the existence of cutoff strategy equilibrium.

Every cutoff strategy pair (λ, s) implies a probability distribution over policy outcomes

for every states. For a given strategy (λ, s) we define with ρp(s0) the probability that policy

p ∈ P is implemented in state s0. Note that

ρl(s0) =
½
Bn(π

l(λ, s0) if s0 > s
0 if s0 > s.

ρm(s0) =
n
Bn(π

m(λ, s0) if s0 > s
0 if s0 < s.

ρr(s0) =
½
1−Bn(π

l(λ, s0) if s0 < s
1−Bn(π

m(λ, s0) if s0 > s.

We refer to ρ as the outcome function corresponding to the strategy (λ, s). We define

ρ̄p :=
R 1
0
ρ(s)g(s)ds to denote the ex ante probability that policy p is implemented.

In the following we analyze equilibrium strategies when the number of voters is large.

We denote with (λn, sn) a (cutoff) equilibrium for the election En and with ρn the corre-

sponding outcome function. Proposition 4 below characterizes limit points of this sequence.

We say that sp(λ) is the critical state for policy p at cutoff λ if

πp(λ, s) = 1/2

Hence, the critical state of policy p ∈ {l,m} is the state at which a randomly drawn voter
chooses b with probability 1/2 if b chooses policy p. Substituting the definitions of πl and

πm from into the definition of a critical state yields

sl(λ) = (1− δ)F (λ)

sm(λ) = (1− δ)F (λ) + δ

Clearly both sl and sm are increasing functions of λ.

Proposition 4 characterizes equilibria for large elections. In particular, it shows that

the equilibrium cutpoint of candidate b must converge to sl(λ) the critical state of policy l.

In addition, Proposition 4 provides a simple formula for the equilibrium cutpoint of voters.
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Proposition 4: Let (λn, sn) be a convergent sequence of equilibria with limit (λ, s).

Then,

s = sl(λ)

λ =
g(sm(λ))

g(sm(λ)) + g(sl(λ))(1− µ)

The first part of Proposition 4 is straightforward. In a large electorate, candidate b

wins the election with probability close to one close when s < sl(λ) and b chooses l. Since

b strictly prefers l to m it follows the l must be chosen for states s < sl(λ). Conversely, if

s > sl(λ) then b loses the election with probability close to one if b chooses l. Therefore,

for states s > sl(λ) policy m is optimal.

The fact that the limit cutpoint for b equals the critical state sl(λ) implies that policy

outcomes for a large electorate depend only on the critical states sl(λ) and sm(λ). For

states below sl(λ) candidate b is elected and chooses the partisan policy l; for states greater

than sm(λ) candidate a is elected and policy r will be implemented; for states between the

two critical states, candidate b is elected and chooses policy m. The following corollary

summarizes this implication.

Corollary: Let (λn, sn) be a convergent sequence of equilibria with limit (λ, s). Let ρn

be the outcome function corresponding to (λn, sn). Then,

(i) ρln(s
0)→ 1 for 0 ≤ s0 < sl(λ) and ρ̄ln → G(sl(λ));

(ii) ρmn (s
0)→ 1 for sl(λ) < s0 < sm(λ) and ρ̄mn → G(sm(λ))−G(sl(λ));

(iii) ρrn(s
0)→ 1 for sm(λ) < s0 ≤ 1 and ρ̄rn → 1−G(sl(λ)).

Next, we provide intuition for the characterization of the limit voter cutpoint in Propo-

sition 4. Note that as the number of voters becomes very large, the probability of being

pivotal is concentrated around states in which the election is expected to be tied. There

are two such states, sl(λ) and sm(λ); Hence, conditional on being pivotal, a voter knows

that the state is in one of two small “critical intervals” around the critical states. The

inference problem for the uninformed voter therefore reduces to determining the relative

likelihoods of sl(λ) and sm(λ) conditional on a vote being pivotal.
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Next, consider the incentives for candidate b. If the probability of winning with l is

less than µ-times the probability of winning with m then b strictly prefers the moderate

policy m. Therefore, the critical interval around sl(λ) is truncated at the point where the

probability of winning drops below µ. (The probability of winning the election with m in a

neighborhood of sl(λ) is close to one). Hence, the closer the parameter µ is to 1 the smaller

the critical interval. The key step in the proof is to show that the relative likelihood of the

sl(λ) and sm(λ) is related to µ by the simple formula given in Proposition 4.

We call a value θ ∈ [0, 1] that satisfies

θ =
g(sm(θ))

g(sm(θ)) + g(sl(θ))(1− µ)

a critical value. Proposition 4 establishes that limit points of equilibrium strategies for

voters correspond to critical values. It is easy to see that a critical value exists. In general,

there may be multiple critical values and hence multiple limit equilibria. In Proposition 5

below, we establish the existence of critical values and show that if G is log-concave then

there is a unique critical value.

Proposition 5: (i) The set of critical values is nonempty. (ii) If g is log-concave there

is a unique critical value.

Proof: Define the function h : [0, 1]→ [0, 1] as

h(θ) =
g(sm(θ))

g(sm(θ)) + g(sc(θ))(1− µ)

Note that θ is a critical value if and only if it is a fixed-point of h. Clearly sl and sm

are continuous, while g is both continuous and bounded away from 0. Therefore, h has a

fixed-point. To ensure that h has a unique fixed-point we show that h is non-increasing

whenever G is log-concave. It follows from (2) above that sm(λ)− sl(λ) = δ > 0 does not

depend on λ and sl(λ) is increasing in λ, g(sm(λ))
g(sl(λ))

is nonincreasing whenever g(x+k)
g(x) is a

nonincreasing function of x for k > 0, that is, whenever g is log-concave.

Note that Proposition 4 implies that limit equilibria are fully characterized by the

limit cutpoint of voters, λ. This motivates the following definition.
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Definition: For any fixed F,G, δ, µ that satisfy the assumptions above, let En denote
the the election game with 2n+1 voters and parameters F,G, δ, µ. We say that λ is a limit

equilibrium of En(µ) if there are equilibria (λn, sn) for En(µ) with (λn, sn)→ (λ, sl(λ)).

In Proposition 6 below, we analyze how changes in the parameter µ affect limit equi-

libra. Note that µ measures the strength of the partisan preference of candidate b. An

increase in µ means that candidate b’s preference for a partisan policy becomes weaker.

For example, µ = 1 means that the candidate cares only about winning the election but

does not care whether he wins with the partisan or the moderate policy. By contrast,

µ = 0 means that the candidate is indifferent between loosing the election and winning

with the moderate policy but strictly prefers winning with the partisan policy. For any

fixed F,G, δ that satisfy the assumptions above, let En(µ) denote the the election game
with 2n+ 1 voters and parameters F,G, δ, µ.

Proposition 6(i) shows that for µ close to one the equilibrium in a large electorate

has all uninformed voters vote for b, i.e., λ is close to one. Proposition 6 (ii) assumes that

g is log-concave and differentiable and hence the election has a unique limit equilibrium.

Under these assumption an increase in µ (and hence a decrease in the partisan preference

of b) implies an upward shift in the limit equilibrium cutpoint of voters λ. Hence, a higher

µ implies that a larger fraction of uninformed voters vote for b.

Proposition 6: (i) For every � > 0 there is µ < 1 such that if λ is a limit equilibrium

of En(µ0) with µ0 > µ then λ > 1− �. (ii) Assume g is log-concave and differentiable. Let

λ be the limit equilibrium for En(µ) and let λ0 be the limit equilibrium for En(µ0) with
µ > µ0. Then, λ > λ0.

Proof: Part (i) is straightforward using Propositions 2 and 3. It remains to prove part

(ii). Since g is log-concave there is a unique critical value λ that solves the equation

λ(1 +R(λ)(1− µ)) = 1

with

R(λ) =
g((1− δ)F (λ))

g((1− δ)F (λ) + δ)
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Since g is differentiable and log-concave and F is increasing in λ it follows that R0(λ) :=

∂R(λ)/∂λ ≥ 0. Taking a total derivative therefore yields

dλ

dµ
=

λR(λ)

1 +R(λ(1− µ) + λR0(λ)(1− µ)
> 0

which proves part (ii).

For the limit equilibrium λ the probability that candidate b is elected is given by

G(sm(λ)) = G((1− δ)F (λ) + δ))

Therefore, an increase in λ implies that candidate b is elected with a higher probability.

Hence, Proposition 6(ii) implies that the probability candidate b is elected is monotone

in the preference parameter µ. Proposition 6(i) implies that when µ is sufficiently close

to one, then the limit equilibrium λ is close to one and therefore the probability that b

is elected (G(sm(λ)) is close to one. We conclude that if b is an office seeker then he is

elected with probability close to 1. Note that this is the same probability with which b is

elected in the benchmark where all voters know the policy. However, in contrast to the

benchmark case the probability that the partisan policy is chosen does not converge to

zero.

For a limit equilibrium λ, the ex ante probability that the partisan policy is imple-

mented is given by

G(sl(λ)) = G((1− δ)F (λ))

Proposition 6(ii) implies that this probability is increasing in the parameter µ. Hence, a

candidate with a weaker partisan preference will lead to a higher probability of a partisan

outcome. When µ is close to one, then the probability of a partisan outcome is maximal

and approximately equal to

G(1− δ)

To provide intuition for Proposition 7 consider a limit equilibrium (λ, s). This equi-

librium has to satisfy the equation

λ =
g(sm(λ))

g(sm(λ)) + g(sl(λ))(1− µ)
(∗)
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If µ is close to 1 then this implies that λ must be close to one and hence part (i) follows.

For part (ii), log-concavity of g ensures that g(sm(λ))/g(sl(λ) is a non-increasing function

of λ. It is then straightforward to show that the λ that solves (*) must be increasing in µ.

Hence, the vote share of b among uninformed voters increases in µ.

Next, we analyze the effect of a change in the distribution of swing voter preferences F

on the equilibrium outcomes. Let Fα, α ∈ [0, 1] denote a family of probability distributions
over preference types T := [0, 1]. Assume that Fα(λ) is increasing and differentiable in α.

Hence an decrease in α implies a first order stochastically dominant shift in the distribution

of preferences. For any fixed G, δ that satisfy the assumptions above, let En(α) denote the
the election game with 2n+ 1 voters and parameters Fα, G, δ, µ.

Proposition 7 says that when swing voter preferences shift towards candidate b then

b will win more frequently and choose the partisan policy more frequently.

Proposition 7: Assume g is log-concave and differentiable. Let λ be the limit equilib-

rium for En(α) and let λ0 be the limit equilibrium for En(α0) with α > α0. Then, λ ≥ λ0

and s ≥ s0.

Proof: Since g is log-concave there is a unique critical value λ that solves the equation

λ(1 +R(λ, α)(1− µ)) = 1

with

R(λ,α) :=
g((1− δ)Fα(λ))

g((1− δ)Fα(λ) + δ)

Since g is differentiable and log-concave and Fα is increasing in λ it follows that

∂R/∂λ ≥ 0, ∂R/∂α ≤ 0

Taking a total derivative therefore yields

dλ

dα
=

−λ(1− µ)∂R/∂α

1 + (1− µ)(R+ λ∂R/∂λ)
≥ 0
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Proposition 7 shows that a shift in the distribution of swing voters’ preferences towards

candidate b has a similar effect as an increase in µ. It (weakly) increases the probability

that an uninformed voter votes for b. Therefore the probability of a partisan outcome

G((1− δ)Fα(λ))

is strictly increasing in α and similarly, the probability that b is elected

G((1− δ)Fα(λ) + δ)

is strictly increasing in α.

Next, we consider the effect of δ, the probability that a voter is informed, on the equi-

librium outcomes. In general, an increase in δ has an ambiguous effect on the equilibrium

strategies. Recall that sm(λ)− sl(λ) = δ and therefore in a large electorate the (ex ante)

probability that the moderate policy is chosen is bounded above by

max
s∈[0,1−δ]

(G(s+ δ)−G(s))

It follows that the moderate policy is implemented with probability close to zero if the

fraction of informed voters is close to zero. Conversely, the probability that the moderate

policy is chosen is bounded below by

min
s∈[0,1−δ]

(G(s+ δ)−G(s))

For δ close to one this implies that the moderate policy is chosen with probability close to

one.

For any fixed F,G, δ that satisfy the assumptions above, let En(δ) denote the the
election game with 2n+1 voters and parameters F,G, δ, µ. Proposition 8 characterizes the

limit equilibrium for small values of δ.

Proposition 8: For every � > 0 there is δ such that if λ is a limit equilibrium for En(δ0)
with δ0 < δ then

¯̄̄
λ− 1

2−µ
¯̄̄
< �.
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Proof: Note that g, sm, sl are continuous functions on [0, 1]. Since sm(λ) − sl(λ) = δ

we may choose δ small enough so that |R(λ) − 1| = |g(sl(λ))/g(sm(λ)) − 1| < � for all

λ ∈ [0, 1]. Therefore

| 1

2− µ
− 1

1 +R(λ)(1− µ)
| < �

Proposition 4 then yields the result.

Proposition 8 says that for small values of δ the election with a large electorate yields

the partisan policy l with probability

G(sl(λ)) = G

µ
F

µ
1

2− µ

¶¶
and the policy r with probability close to

1−G

µ
F

µ
1

2− µ

¶¶
Note that in every state s ∈ (0, 1) the median voter strictly prefers r to l. Neverthe-

less, candidate b wins the election with positive probability even though he almost never

implements the moderate policy.

In the case where G and F are uniform, the limit equilibrium takes on a particularly

simple form. In the uniform case,

λ =
g(sm(λ))

g(sm(λ)) + g(sl(λ))(1− µ)

=
1

2− µ

and hence the limit equilibrium λ depends only on the parameter µ. In this case, the ex

ante probability that the moderate policy is implemented is equal to δ, the probability

that a voter is informed. Moreover, the probability of a partisan outcome is given by

sl(λ) =
1− δ

2− µ

which is decreasing in δ. The probability that b is elected is given by

sm(λ) =
1− δ

2− µ
+ δ
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which is increasing in δ. Finally, note that the equilibrium payoff of b is

1− δ

2− µ
+ δµ

A straightforward calculation shows that b’s payoff is decreasing in δ. Note that candidate

a’s probability of winning is also decreasing in δ. This follows since the probability of win-

ning for b is increasing in δ and therefore candidate a’s probability of winning is decreasing

in δ. Hence, in the uniform case both candidates benefit from an ignorant electorate1Note,

that the effect of a change in δ is computed at an ex ante stage, prior to the choice of

policies. In section 5, we analyze a model where candidate b can affect δ at the interim

stage after the policy is chosen.

4. The Role of Asymmetric Information

To illustrate the role of asymmetric information between voters and candidates we

briefly examine a version of the model with symmetric information. Consider a model

identical to the model in section 3 but assume that candidates cannot observe the param-

eter s that determines the distribution of preferences. For simplicity assume that F and

G are uniform on [0, 1].

In this modified model, the strategy of the candidate cannot depend on s. Let

σ̄b ∈ [0, 1] denote the probability that candidate b chooses m. As before, we consider

symmetric equilibria in weakly undominated strategies. It is straightforward to show that

the equilibrium strategy of voters is a cutoff strategy λ. It is equally straightforward to

show that there is a unique limit equilibrium (λ, σ̄b) for this model with

λ = σ̄b =

(
1 if µ ≥ 1−2δ

1−δ
δ

(1−µ)(1−δ) if µ ≤ 1−2δ
1−δ

For µ ≥ 1−2δ
1−δ candidate b chooses m with probability 1 while for µ < 1−2δ

1−δ candidate

b mixes between m and l. In the latter case, the voter cutoff λ is chosen so that b is

indifferent between l and m. In the former case, all uninformed voters vote for b. As in the

previous section, the voter cutoff is equal to the probability that b chooses m conditional

1 This assumes that a only cares about winning the election and not about the policy outcome in case
b is elected.
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on a vote being pivotal. In contrast to the previous model, this probability converges to

σb, the probability that b chooses m.

As before, a voter is most likely to be pivotal when the state s is in a small interval

around sl(λ) or in a small interval around sm(λ). Since G is uniform these intervals

are equally likely and conditioning on being pivotal adds no information to the ex ante

probability σ̄b. For the case of a non-uniform density, conditioning on being pivotal would

add information because the density at sl(λ) may not be equal to the density at sm(λ).

In contrast to the model with asymmetric information, candidate b cannot condition his

behavior on the state s and, as a result, the interval around sl(λ) is not truncated at the

point where the probability of winning drops below µ.

In the model with symmetric information a higher µ yields more moderate policy

outcomes. In particular, for µ high enough we get the Downsian prediction that m is

chosen with probability close to one. This is true for any continuous F,G with densities

f, g > 0. Moreover, for the case of a uniform G, the probability that b chooses m is equal

to the probability that b chooses m conditional on a vote being pivotal. If G has a log-

concave density then both probabilities are increasing in µ. Hence, office seekers choose the

moderate policy with a high probability ex ante and conditional on a vote being pivotal.

By contrast, in the corresponding model with asymmetric information the (ex ante)

probability that b chooses m is

1− 1− δ

2− µ

while the probability that b chooses m conditional on a vote being pivotal is

1

2− µ

Hence, the ex ante probability that b choosesm is decreasing in µ while the probability that

b choosesm conditional on a vote being pivotal increases in µ. The asymmetric information

between voters and candidates creates a wedge between the two probabilities that prevents

median preferred outcomes even when candidates have weak partisan preferences.

Let (λ, s) denote a limit equilibrium for the model analyzed in the previous section (for

a general F,G). The strategy s of candidate b implies that for states s0 > s the candidate
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chooses m and for states s0 < s the candidate chooses l. Hence, the ex ante probability

that b chooses m is 1 −G(s). The corresponding probability that candidate b chooses m

conditional on a vote being pivotal is equal to λ, the voter cutoff.

The following proposition shows that if b has a weak partisan preference then λ >

1−G(s).

Proposition 9: (i) There is µ̄ < 1 such that if λ is a limit equilibrium for E(µ) for µ > µ̄

then λ > 1 − G(sl(λ)). (ii) If g is log-concave and differentiable then there is µ̄ ∈ [0, 1)
such that if λ is a limit equilibrium for E(µ) then λ > G(sl(λ) for µ > µ̄ and λ < G(sl(λ)

for µ < µ̄.

For the case of uniform F,G we have

λ > 1−G(sl(λ))

if

µ > δ

Hence, if candidate b’s partisan preference is weak relative to the fraction of informed

voters then b receives a larger share of the uninformed vote than his ex ante strategy

would suggest.

5. Control of Information

This section considers a situation where b can control the information about policy

choices. As in the previous section, we assume that a has a fixed policy r and b chooses

a policy p ∈ {l,m}. In addition, b chooses the probability δ ∈ {δ, δ̄} with 0 < δ < δ̄ < 1

with which voters are informed of the policy choice. We assume that the choice of δ is not

observed by voters.

One interpretation of this model is the following. Suppose b runs two campaign

commercials. One commercial is uninformative about the policy choice while the other

commercial is informative. The candidate runs a certain fixed number of commercials but

must choose what proportion of the commercials are informative. Voters sample one (or
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more) of the commercials at random. If a voters has the informative commercial in his

sample he observes the policy choice. The voter remains uninformed if the informative

commercial is not in the sample.

All swing voters strictly prefer m to r. Since voters never use weakly dominated

strategies this implies that b will choose δ = δ̄ whenever he chooses the moderate policy

m. Note also that all swing voters prefer r to l. Therefore choosing δ̄ when the policy l is

chosen cannot be optimal unless all uninformed swing voters vote for a. If all uninformed

swing voters vote for a then the choice of δ does not affect voting behavior when a chooses

l. Therefore, the analysis below suppresses the choice of δ and assumes that the probability

that a voter is informed of the policy choice is δ if b chooses l and δ̄ if b chooses m.

It is straightforward to adapt the analysis of the previous section to this case. The

critical states sl, sm are defined as follows:

sl(λ) = F (λ)(1− δ)

sm(λ) = F (λ) + δ̄(1− F (λ))

With this modified definition of critical states, Proposition 4 is unchanged. Proposition 5’

below is the modified version of Proposition 3 for this case.

Proposition 40: Let (λn, sn) be a convergent sequence of equilibria and let (λ, s) be the

limit. Then,

s = sl(λ)

λ =
g(sm(λ))

g(sm(λ)) + (1− µ)g(sl(λ))
1−δ
1−δ̄

Consider the case where µ is close to one. As before this implies that b wins the

election with probability close to one unless there is a partisan majority for candidate 2.

In addition, in this case b will choose the partisan policy with probability close to one if

elected. Hence, the cutoff point s that defines b’s strategy is close to one when n is large.

Proposition 10: For every � > 0 there is µ̄ such that if (λ, s) is the limit of a sequence

of equilibria for En(µ) with µ > µ̄ then λ > 1− �, s > 1− δ − �.
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Proposition 10 says that the equilibrium cutoff s is close to 1 − δ for µ close to one.

Hence, candidate b chooses the partisan policy with probability

G(1− δ)

If δ is close to zero then this implies that b chooses the partisan policy with probability close

to one and wins the election in nearly all states. Candidate b chooses the moderate policy

only when the state is close to 1 and approximately half the voters in a large electorate

are partisans for a.

In this case, candidate b is elected with probability close to one but chooses the

moderate policy with probability close to zero. All swing voters vote for b even though

they strictly prefer policy r to policy l.

Proposition 10 shows that an office seeker will choose to run an uninformative cam-

paign (i.e., choose δ close to zero) for most realizations of the distribution of the electorate

and choose the partisan policy. Of course, uninformed voters take this into account. The

terms
1−δ
1−δ̄ reflects this effect. However, for µ close to one this term has little effect on λ

and hence has little effect on the probability that b is elected.

6. Conclusion

We analyze how candidate competition is altered when not all voters are informed of

the candidate’s policy choice. We show that when a candidate is an office seeker with a weak

partisan preference then the incomplete information of voters will induce him to choose

more partisan policies. At the same time the candidate will be treated by uninformed

voters as if he had chosen the moderate (median preferred) policy.

One consequence of this effect is that candidates have little incentive to spend resources

to inform voters of their policy choices. For the uniform example in section 3 we show

that candidates payoffs are decreasing in δ the probability that a voter is informed. For

the general case this comparative static is ambiguous. However, for the case of an office

seeker (with µ close to one) it is clear that there the opportunistic candidate has little

to gain from an increase in δ. As long as voters are convinced that a candidate will “do

what it takes” to get elected, the chances of getting elected are not affected by the level

of ignorance among voters. At the same time, a less well informed electorate allows the

candidate to choose policies that closer match his policy preference.
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7. Appendix

Lemma 1: (i) Bn(x) =

R x
0
θn(1−θ)ndθR 1

0
θn(1−θ)ndθ

; (ii) Bn is log-concave.

Proof: (i) The binomial theorem implies that

Z x

0

θn(1− θ)ndθ =

Z x

0

(θ − θ2)ndθ =

Z x

0

nX
k=0

µ
n

k

¶
(−1)kθn+k

=
nX

k=0

µ
n

k

¶
xn+k+1

n+ k + 1
(−1)k

(A1)

Next, we show that

Bn(x) =
(2n+ 1)!

n!n!

nX
k=0

µ
n

k

¶
xn+k+1

n+ k + 1
(−1)k (A2)

Observe that

Bn(x) =
2n+1X
k=n+1

µ
2n+ 1

k

¶
xk(1− x)2n+1−k

=
2n+1X
k=n+1

2n+1−kX
m=0

xk+m(−1)m
µ
2n+ 1− k

m

¶µ
2n+ 1

k

¶

=
2n+1X
t=n+1

xt
tX

k=n+1

µ
2n+ 1− k

t− k

¶
(−1)t−k

µ
2n+ 1

k

¶

=
2n+1X
t=n+1

(2n+ 1)!xt

(2n+ 1− t)!

t−(n+1)X
m=0

(−1)m
m!(t−m)!

=
2n+1X
t=n+1

(2n+ 1)!xt

(2n+ 1− t)!

(−1)t−(n+1)
t!

(t− 1)!
(t− (n+ 1))!n!

=
(2n+ 1)!

n!n!

2n+1X
t=n+1

(−1)t−(n+1)n!xt
(2n+ 1− t)!(t− (n+ 1))! t

=
(2n+ 1)

n!n!

nX
k=0

µ
n

k

¶
xn+k+1

n+ k + 1
(−1)k

The second equality follows from the binomial theorem. The fifth equality follows from
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the following identity (see Feller (1967) pg 65:)µ
a

k

¶
−
µ

a

k − 1
¶
+− . . .

µ
a

0

¶
=

µ
a− 1
k

¶
We conclude from (A1) and (A2) that

A ·
R x
0
θn(1− θ)ndθR 1

0
θn(1− θ)ndθ

= Bn(x)

for some constant A > 0. Clearly, A = 1 since

1 = Bn(1) = A ·
R 1
0
θn(1− θ)ndθR 1

0 θ
n(1− θ)ndθ

= A

which proves part (i)

(ii) We must show that

d

dx

µ
B0
n(x)

Bn(x)

¶
< 0 (A3)

Substituting the left hand side expression from part (i) and computing the derivative,

straightforward computation shows that inequality (A3) is equivalent to

n(1− 2x)
µZ x

0

θn(1− θ)ndθ

¶
− xn+1(1− x)n+1 < 0 (A4)

For x ≥ 1/2 the inequality is obviously correct. To see that it holds for x < 1/2 note that

for x < 1/2 we have

(1− 2x)
µZ x

0

θn(1− θ)n
¶
≤
µZ x

0

θn(1− θ)n(1− 2θ)dθ
¶
=

xn+1(1− x)n+1

n+ 1
(A5)

Substituting (A5) into (A4) proves part (ii).

Lemma 2: Let � > 0 and 1 ≥ b ≥ 1/2 + � > a ≥ 0. Define α := max{a, 1/2− �}, β :=
1/2 + �. Then, R β

α
xn(1− x)ndxR b

a x
n(1− x)ndx

→ 1

Proof: Straightforward.
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7.1 Proof of Proposition 3

In the text, we have shown that in any equilibrium the voters must use a cutoff

strategy. Next, we show that b’s best response to any cutoff strategy is also a cutoff

strategy.

To see that a best response by b to a cutoff strategy by voters is a cutoff strategy note

that b chooses l if

Bn(π
m(λ, s))

Bn(πl(λ, s))
< µ

and m if this inequality is reversed. To show that this yields a cutoff strategy, it suffices

to show that Bn(π
m(λ,s))

Bn(πl(λ,s))
is increasing in s or equivalently

lnBn(π
m(λ, s))− lnBn(π

l(λ, s))

is increasing in s. Recall that πl(λ, s) is a decreasing linear function of s and πm(λ, s) =

πl(λ, s) + δ
2 . Lemma 1 shows that lnBn is concave and therefore lnBn(x+ δ)− lnBn(x)

is decreasing in x. Hence, lnBn(π
m(λ, s))− lnBn(π

l(λ, s)) is increasing in s.

Let h : T × S → T be defined as

h(λ, s) :=

"
1 +

R s
0
πl(λ, s)n(1− πl(β, s))ng(s)dsR 1

s πm(λ, s)n(1− πm(λ, s))ng(s)ds

#−1

Note that h is continuous. The cutoff h(λ, s) describes the optimal cutoff of a voter if other

voters are using the symmetric cutoff strategy λ and b is using the cutoff strategy s.

Let k : T → S be defined as follows:

k(λ) :=


1 if Bn(π

l(λ,1)))
Bn(πm(λ,1))

> µ

0 if Bn(π
l(λ,0)))

Bn(πm(λ,0))
< µ

{s| Bn(πl(λ,s)))Bn(πm(λ,s)))
= µ} otherwise.

The cutoff strategy with cutoff k(λ) is the best response of b to the cutoff strategy λ by

voters. Note that k is well defined since Bn(π
l(λ,s)))

Bn(πm(λ,s)))
is decreasing and continuous in s.

We conclude that (h, k) : S × T → S × T has a fixed point. This proves that there is an

equilibrium in cutoff strategies.
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7.2 Proof of Proposition 4

Lemma 3: Let (λn, sn) be a convergent sequence of equilibria with limit (λ, s). Then,

s = sl(λ).

Proof: Let s0 < sl(λ). Then there is � > 0 such that πl(λn, s
0) ≥ 1/2+ � for n sufficiently

large. This implies that b wins the election with probability close to one if he chooses

policy l. Since µ < 1 this implies that l must be the unique optimal choice and hence

s > s0. We conclude that s ≥ sl(λ).

If sl(λ) > s0 > sm(λ) then there is � > 0 such that πm(λn, s
0) > 1/2+� and πl(λn, s0) <

1/2 − �. This implies that b wins with probability close to one if he chooses m but loses

with probability close to one if he chooses l. Since 0 < µ it follows that the unique optimal

choice is m. It follows that s ≤ sl(λ). This shows that s = sl(λ).

Lemma 4: Let (λn, sn) be a convergent sequence of equilibria with limit (λ, s). Then,

0 < sn < 1 for large n and Bn(π
l(λn, sn))→ µ.

Proof: (i) We first show that there is n̄ such that 0 < sn < 1 for n > n̄. Note that

if sn = 1 then λn = 0 (conditional on a vote being pivotal b chooses l with probability

1). Further note that sl(0) = 1. Therefore, by Lemma 3 there can be no subsequence of

equilibria with sn = 1. If sn = 0 then λ = 1. Note that sl(1) = 1− δ > 0. Therefore, by

Lemma 3 there can be no subsequence of equilibria with sn = 0.

(ii) For 0 < sn < 1 we must have

µBn(π
m(λn, sn)) = Bn(π

l(λn, sn))

This follows since πp(λ, s) is continuous in s for all n. Further observe that πm = πl+ δ/2

with πl(λ, s) = 1/2. Therefore, it follows that for large n, πm(λn, sn) > 1/2 + � for some

� > 0 and hence Bn(π
m(λn, sn))→ 1. This yields the Lemma.

Observe that πp ∈ (0, 1) for all λ, s and hence there is a positive probability that a
vote is pivotal. Let hn : T × S → T be defined as

hn(λ, s) :=

"
1 +

R s
0
πl(λ, s)n(1− πl(λ, s))ng(s)dsR 1

s
πm(λ, s)n(1− πm(λ, s))ng(s)ds

#−1
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Note that hn is the probability that a vote is pivotal as a function of the cutoff strategies

(λ, s).

Lemma 4: Let (λn, sn) be a sequence of equilibria converging to (λ, s). Then, 0 < λ < 1.

Proof: First, we show that λn = hn(λn, sn) ≤ 1 − � for some � > 0 and n sufficiently

large. If λ ≤ 1/2 for large n we are done. Hence, assume that λ > 1/2 and hence λn > 1/2

for large n. Since g > 0, there is a constant c > 0 such that

1− hn(λn, sn)

hn(λn, sn)
≥ c ·

R sn
0

πl(λn, s)
n(1− πl(λn, s))

ndsR 1
sn
πm(λn, s)n(1− πm(λn, s))nds

≥ c ·
R πl(λn,sn)
πl(λn,0)

xn(1− x)ndsR 1
0 x

n(1− x)nds

The last inequality is derived by a change of variables using the fact that πm = πl + δ/2

and πl is a linear increasing function of s.

Optimal behavior requires that πl(λn, s
n) ≤ bn where Bn(bn) = µ. By the strong law

of large numbers, bn → 1/2. Let an := πl(λn, 0) = 1/2 + F (λn)(1 − δ)/2 and note that

an > 1/2 for n large since λn ≥ 1/2. We conclude thatR πp(λn,1)
πp(λn,sn)

xn(1− x)ndsR 1
0
xn(1− x)nds

=

R an
bn

xn(1− x)ndxR 1
0
xn(1− x)ndx

≥1
2

R 1
bn
xn(1− x)ndxR 1

0 x
n(1− x)ndx

=(1− µ)/2

The first inequality follows from Lemma 2 and the last equality follows from Lemma 1.

Since (1 − µ)/2 > 0 we conclude that 1 − h(λn, sn) is bounded away from 0 and hence

h(λn, sn) is bounded away from 1 for all n. This shows that λ < 1− � for some � > 0.

Next we show that λ > � for some � > 0. Let a0n := πm(λn, 1) and note that

a0n = 1/2 − (1 − δ)F (1 − λn)/2. Since λn stays bounded away from 1 we conclude that

there is � > 0 such that a0n < 1/2 − � for large n. Let b0n := πm(λn, sn) and note that

b0n = πl(λn, sn) + δ/2. Since πl(λn, sn) → 1/2 we conclude that there is � > 0 such that

b0n ≥ 1/2 + � for some � > 0.
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By an analogous argument to the one above, we conclude that there is a constant

c0 > 0 such that for large n

1− hn(λn, sn)

hn(λn, sn)
≤ c0 ·

R 1
0
xn(1− x)ndsR b0n

a0n
xn(1− x)nds

≥ c0/2

where the last inequality follows from Lemma 2. This shows that h(λn, sn) stays bounded

away from zero for all n and therefore λ > 0.

Lemma 5: Let (λn, sn) be a sequence of equilibria and converging to (λ, s). Then,

λ =
g(sm(λ))

g(sm(λ)) + g(sl(λ))(1− µ)

Proof: Note that

αn :=
1− λn
λn

=

R 1
sn
πl(λn, s)

n(1− πl(λn, s))
ng(s)R sn

0
πm(λn, s)n(1− πm(λn, s))ng(s)

To prove the Lemma, we must show that

αn → (1− µ)
g(sl(λ))

g(sm(λ))

Let an := πl(λn, sn), bn := πm(λn, sn), ān := πl(βn, 0), bn := πm(λn, 1). By Lemma

4 and the fact that δ > 0 there is � > 0 such that ān ≥ 1/2 + � and bn ≤ 1/2 − � and

bn ≥ 1/2 + � for large n. Moreover, an → 1/2 by Proposition 3.

A change of variables yields

αn =

R an
ān

xn(1− x)nĝln(x)dxR bn
bn
(1− x)nxnĝmn (x)dx

where ĝpn(x) = g(s : πp(λn, s) = x).

Step 1: R ān
an

xn(1− x)nĝln(x)dx

g(sn)
R 1
an

xn(1− x)n
→ 1
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Proof: Since an → 1/2 and ān > 1/2 + �0 for some �0 > 0 we can apply Lemma 2 to

conclude that for every 0 < � ≤ �0R ān
an

xn(1− x)nĝln(x)dxR an+�
an

xn(1− x)nĝln(x)dx
→ 1

Since g is continuous it follows that ĝn is equicontinuous. Moreover, ĝn(an) = g(sn)→ g(s).

This implies that R ān
an

xn(1− x)nĝln(x)dx

g(s)
R an+�
an

xn(1− x)ndx
→ 1

which (again by Lemma 2) implies thatR ān
an

xn(1− x)nĝln(x)dx

g(s)
R 1
0
xn(1− x)ndx

→ 1

proving Step 1.

Step 2: R bn
bn

xn(1− x)nĝmn (x)dx

g(sm(λ))
R 1
0
xn(1− x)ndx

→ 1

Proof: Note that bn ≤ 1/2 − �, bn ≥ 1/2 + � for some � > 0. Therefore, we can apply

Lemma 1 to yield R bn
bn

xn(1− x)nĝmn (x)dxR 1/2+�
1/2−� x

n(1− x)nĝmn (x)dx
→ 1

Since ĝn is equicontinuous and ĝmn (1/2)→ g(sm(λ)) it follows thatR bn
bn

xn(1− x)nĝmn (x)dx

g(sm(λ))
R 1/2+�
1/2−� x

n(1− x)ndx
→ 1

Applying Lemma 1 again yields step 2.

Steps 1 and 2 imply that

αn →
g(s)

R 1
an

xn(1− x)ndx

g(sm(λ))
R 1
0
(1− x)nxndx
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By Lemma 1, R 1
an

xn(1− x)ndxR 1
0
(1− x)nxndx

= 1−Bn(an)

By Lemma 3, Bn(λn)→ µ. Therefore, we conclude that

αn → (1− µ)
g(s)

g(sm(λ))

which completes the proof of the lemma.
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