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Abstract

We wish to study optimal dynamic nonlinear income taxes. Do real

world taxes share some of their features? What policy prescriptions can

be made? We study a two period model, where the consumers and

government each have separate budget constraints in the two periods,

so income cannot be transferred between periods. Labor supply in both

periods is chosen by the consumers. The government has memory, so

taxes in the first period are a function of first period labor income,

while taxes in the second period are a function of both first and second

period labor income. The government cannot commit to future taxes.

Time consistency is thus imposed as a requirement. The main results

of the paper show that time consistent incentive compatible two period

taxes involve separation of types in the first period and a differentiated
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lump sum tax in the second period, provided that the discount rate is

high or utility is separable between labor and consumption. In the

natural extension of the Diamond (1998) model with quasi-linear utility

functions to two periods, an equivalence of dynamic and static optimal

taxes is demonstrated, and a necessary condition for the top marginal

tax rate on first period income is found.
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1 Introduction

We wish to study optimal dynamic nonlinear income taxes. What do they

look like? How do they change over time? Do real world taxes share some

of their features? What policy prescriptions can be made? How do these

prescriptions differ from those of the static model? In particular, must the

top marginal tax rate be zero?

The public finance literature considers mainly static taxation. The macro-

economic literature considers mostly proportional taxes1 (possibly on multiple

income sources) over time, and thus is more closely related to the optimal

commodity tax literature. For instance, information accumulated about the

type of a particular taxpayer in one period typically cannot be used in the

next, since the tax rate is unique (the same for all income from a source); thus

differentiated lump sum taxes are excluded. See, for example, Persson and

Tabellini (2002).

We study a two period model as a beginning. The consumers and the

government each have independent budgets in each of the two periods, so

wealth cannot be transferred over time. The government has memory, so first

period tax liability is a function of first period income only, but second period

tax liability can be a function of both first and second period income. Taxes

are general (possibly nonlinear) functions of income. The government cannot

commit to future tax functions, so time consistency is imposed as a restriction

on taxes. Our main results involve analysis of the first and second order

conditions for incentive compatibility in the consumer problem, followed by

characterizations of optimal taxes under time consistency. The major theorem

says that time consistent, incentive compatible income taxes typically involve

separation of types in the first period followed by a differentiated lump sum

tax in the second period, provided that the discount rate is high or utility is

separable between labor and consumption. Thus, the second period tax rate

as a function of second period income is constant. The separation of types

in the first period is incentive compatible, in the sense that consumers know

what’s coming in the second period but choose to reveal their types anyway.

In the context of the natural extension of the Diamond (1998) model to

dynamics, utilities are time separable, quasi-linear and involve discounting.

We find an equivalence between optimal taxes in our dynamic extension and

static optimal income taxes. In general, there is a continuum of optimal

1Often, taxes with a transfer (either positive or negative) at zero are excluded, so when
the macroeconomic literature says “linear,” it means “proportional.”

3



dynamic taxes corresponding to a given optimal static tax. Moreover, we find

that not only does the separation of types in the first period occur, followed

by a differentiated lump sum tax in the second period, but this equivalence

allows us to give a necessary condition on the marginal tax rate at the top of

the income distribution for income in the first period.

The basic structure of this paper is to proceed from the most general to

the most specific framework. Of course, as more assumptions are imposed,

more results are found.

The two papers in the literature most closely related to our work are Brito,

Hamilton, Slutsky and Stiglitz (1991), henceforth BHSS, and Roberts (1984).

BHSS study a model with government commitment concerning future taxes,

two types of taxpayers, and an infinite time horizon. One focus of their study

is the relationship between static randomized taxes and nonstationary dynamic

taxes. They find, for example, that under some conditions the nonstationary

dynamic optimal income taxes are first best, but under other conditions, they

are not. Revelation or separation of types occurs in the first period in this

model, since the government has committed itself not to use this information

in future periods. The possibility that pooling might occur in the first period,

and the possibility that incentive constraints for periods beyond the first might

bind, is not considered in this work. Roberts (1984) studies optimal income

taxation under no commitment with discrete types and an infinite time horizon.

He finds (see his Proposition 8) that separation of types will never occur over

the infinite horizon. This work ignores the case where government revenue

requirements are large and a pooling equilibrium (where all consumers earn the

same income and pay the same tax) might bankrupt lower ability consumers.

In that case, a pooling equilibrium is not feasible.

We feel that our assumptions are natural. We do not assume that gov-

ernment commitment is possible, because it usually isn’t available. We use

a finite time period approach, since actors (particularly taxpayers) are finite-

lived.2 And this assumption makes for a large contrast between our results

and those of Roberts (1984).3 Finally, we use a continuum of types, since

2One could conceive of an infinitely lived government with finitely lived taxpayers. We
conjecture that this leads to results similar to ours, even in an overlapping generations
framework. In particular, the government would impose a differentiated lump sum tax on
the older workers, and an optimal income tax on the younger, whose types are currently
unknown.

3In particular, consider the possibility that the Roberts results are only true if the time
horizon is infinite.
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this makes the analysis much easier by employing the first order approach to

incentive compatibility.

In an interesting, related paper, Kapicka (2002) considers optimal nonlinear

income taxation in an infinite horizon model. Steady states are examined when

the time of consumers can be spent on schooling, leisure or labor. Human

capital is accumulated through schooling. Kapicka finds that optimal tax

rates are lower in this framework than in the static framework due to the

additional inefficiencies caused by lower human capital accumulation in the

dynamic context as opposed to the static context. A key assumption made

by Kapicka is that current period tax liability depends only on current period

income. Thus, it is assumed that the government has no memory.4 In

contrast, our two period model allows the government to use information on

income gleaned from the first period tax when formulating the second period

tax, so the government has memory. One of our main results says that when

the government has memory and imposes a time consistent tax, then it will

not be optimal for the government to forget the information it obtained in the

first period when formulating the second period tax, though it has this option.

In fact, it is precisely this dynamic information revelation question that makes

analysis of our problem so difficult. Actually, in our model the government

does not need to see a long history of incomes, but just one previous period’s

incomes, in order to separate types.

We note in passing that most of the literature also completely neglects the

problem of existence of an optimal tax.

For those readers better acquainted with the principal-agent literature on

incentives, it is useful to outline the comparisons between the (static) optimal

income tax model and the standard principal-agent model. First, sometimes

there are one or few agents in the principal-agent model, while there is often

(but not always) a continuum in the optimal income tax model. Second,

in the optimal income tax model, once an agent or taxpayer chooses their

action (labor supply), there is no residual uncertainty for the agent. In the

principal-agent model, sometimes there is residual uncertainty, specifically a

non-degenerate distribution over outcomes. This makes a difference in the

formal structure of the model (specifically in the second order conditions for

incentive compatibility). Third, in the principal-agent literature, linear or

quasi-linear utility is generally employed. The focus of the optimal income tax

4In other words, the model uses an infinitely repeated static optimal income tax frame-
work, modified by the accumulation of human capital over time.
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model is on the consumption-leisure trade-off, so more general utility functions

are used. Fourth, the optimal income tax model has a revenue constraint,

while the principal-agent model does not. Fifth, the principal-agent model has

voluntary participation or individual rationality constraints, while the optimal

income tax model does not. There is, however, a related problem in the

optimal income tax literature. The income earning ability of each taxpayer is

limited by the income they could earn if they worked all of the time and had no

leisure. This “capacity constraint” is type-specific and is usually ignored in the

literature; see Berliant and Page (2001) for a formal statement and analysis.

In a model with quasi-linear utility but without voluntary participation or

capacity constraints, one can achieve first best (i.e., the incentive constraints

are not binding). Optimal income taxation often gives up quasi-linear utility

and imposes capacity constraints; principal-agent models impose voluntary

participation constraints. Each leads to interesting implications. However, if

one replaces the Pareto criterion with a social welfare function, then one might

not be able to attain its optimal value in a world with quasi-linear utility and

no capacity or voluntary participation constraints.

In the next section, we give notation. In section 3 we write down the

optimization problems of the consumers and the government. The first or-

der approach to incentive compatibility is studied in section 4, while section

5 examines necessary conditions for a time consistent, incentive compatible

tax; these conditions apply directly to time consistent optimal income taxes.

Section 6 considers the Diamond (1998) example in our framework. Section

7 comments on conclusions and extensions, while an appendix contains two

longer proofs.

2 Notation

Consumers differ by an ability parameter, w, often interpreted as a wage. Let

w ∈ [w,w] = W ⊆ <+. The types of individuals are completely specified

by w. All references to measure-theoretic concepts are to Lebesgue measure

m on <. There is a population density function f : W → <++, where f

is integrable. The density function is common knowledge, but each agent’s

ability is private information. The only anonymous lump sum taxes that can

be used are thus uniform, but even such taxes must be bounded by the earning

capacity of the lowest ability individual.

We denote consumption by c ∈ <+ and labor by l ∈ [0, 1], where the
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total amount of labor that can be supplied in a period is 1. Leisure is given

by 1 − l. In this two period model, we denote time period by subscripts.

All consumers are identical except for their wage. Their utility is given by

a twice continuously differentiable function U : (<+ × [0, 1])2 → <. We

write U(c1, l1, c2, l2). We sometimes assume that ∂U
∂c1

> 0, ∂U
∂l1

< 0, ∂U
∂c2

> 0,
∂U
∂l2

< 0. Often we will use special cases. We say that U is time separable if
U(c1, l1, c2, l2) = u(c1, l1)+u(c2, l2), where the felicity functions of all consumers

are the same twice continuously differentiable functions u, u : <+× [0, 1]→ <.
We say that U is time separable with discounting when it is time separable and

u(c, l) = ρ ·u(c, l). In this special case, all consumers have a common discount
factor ρ ∈ <++ and time separable utility: U(c1, l1, c2, l2) = u(c1, l1) + ρ ·
u(c2, l2).

We define gross income in a period as y = w · l. If there are no taxes, then
c = y. Let Y = [0, w], the set of possible incomes.

An income tax (in a given period) is an indirect mechanism, since it is

based on a revelation of income rather than type. It is not hard to map from

a tax on types to an income tax and vice versa, provided that (endogenous)

income is an increasing function of type. We use indirect mechanisms in this

paper only because direct mechanisms would complicate notation.

Let a measurable function t1 : Y → < denote a first period tax function,
and let T1 denote the set of all measurable maps from Y into <. Let a

measurable function t2 : Y ×Y → < denote a second period tax function, and
let T2 denote the set of all measurable maps from Y × Y into <. It accounts
for both first and second period incomes, since information might be revealed

in the first period. A tax system is a pair (t1, t2) ∈ T1 × T2. The idea here is

that the first period tax function t1 is a (measurable) function of revealed first

period income only. The second period tax function t2 is a function of both

revealed second period income y2 and information (income) y1 revealed in the

first period.

3 Statement of the Problem

We assume that the government has memory, so that the problem is not simply

a repeated one period optimization. In a two period model, there are many

possible regimes. For instance, one could have a pooling equilibrium (all

incomes are the same) in the first period, and a separating tax in the second

period. More interesting is the case where one has a separating tax in the
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first period such that the consumers reveal their types even though they know

that the government will impose a type specific (differentiated) lump sum tax

in the second period. To find the optimal tax, one must find the optimum in

each of these classes (and any others possible), and take the best among them.

We will sometimes assume (as is standard in the literature) that the gov-

ernment has a utilitarian objective:Z
W

U(c1(w), l1(w), c2(w), l2(w)) · f(w)dw

where c1 : W → <+, l1 : W → [0, 1], c2 : W → <+, l2 : W → [0, 1] are

all measurable functions. Alternatively, we will use the concept of second

best Pareto optimality, which we will define formally below. The government

also has revenue constraints. Let R1 be the (exogenous) revenue to be raised

in period 1 and let R2 be the (exogenous) revenue to be raised in period 2.

Perhaps this revenue is used to fund a public good that is additively separable

in consumers’ utility.

This brings up the issue of saving on the parts of either or both of the

government and consumers. Can the consumers save, and can the govern-

ment issue debt or buy bonds? These are issues peripheral to the one we are

studying, namely sequential information revelation, and would only compli-

cate the problem by adding more endogenous variables, namely the choice of

consumption or saving.5 We relegate these issues to future work.

Given a tax system, consumers of type w have the following optimization

problem:

max
c1,c2∈<+
l1,l2∈[0,1]

U(c1, l1, c2, l2) (1)

subject to

l1 · w − t1(l1 · w) ≥ c1

l2 · w − t2(l1 · w, l2 · w) ≥ c2

5It could also complicate the problem because capital income might be treated differently
from labor income by the income tax.
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Hence, the government’s problem is:

max
(t1,t2)∈T1×T2

Z
W

U(c1(w), l1(w), c2(w), l2(w)) · f(w)dw (2)

subject to

c1(w), l1(w), c2(w), l2(w) measurable and solving (1) almost surely in w ∈W ,Z
W

t1(l1(w) · w) · f(w)dw ≥ R1Z
W

t2(l1(w) · w, l2(w) · w) · f(w)dw ≥ R2

A utilitarian optimal tax system (t1, t2) ∈ T1×T2 is defined to be a solution

to this problem.

A tax system (t1, t2) ∈ T1 × T2 is called feasible if there exist

c1(w), l1(w), c2(w), l2(w) measurable and solving (1) almost surely in w ∈W ,Z
W

t1(l1(w) · w) · f(w)dw ≥ R1Z
W

t2(l1(w) · w, l2(w) · w) · f(w)dw ≥ R2

A (second best6) optimal tax system (t1, t2) ∈ T1× T2 is a feasible tax system

(with associated c1(w), l1(w), c2(w), l2(w)) such that there is no other feasible

tax system (t01, t
0
2) ∈ T1 × T2 (with associated c01(w), l

0
1(w), c

0
2(w), l

0
2(w)) such

that U(c01(w), l
0
1(w), c

0
2(w), l

0
2(w)) ≥ U(c1(w), l1(w), c2(w), l2(w)) almost surely

in w ∈W , with strict inequality holding for a measurable set W 0 ⊆W , whereR
W 0 f(w)dw > 0. Notice that any utilitarian optimal tax system is necessarily

Pareto optimal.

4 The First Order Approach to Incentive Com-

patibility

We examine problem (1) under the assumption of differentiability of tax and

utility functions, using the definitions y1(w) = l1(w) ·w and y2(w) = l2(w) ·w.
For type w the problem reduces to:

max
y1,y2∈Y

U(y1 − t1(y1),
y1
w
, y2 − t2(y1, y2),

y2
w
)

Using subscripts on U to denote derivatives, the first order conditions are:

6The tax system is called second best due to the incentive compatibility constraints.
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U1 · (1− ∂t1
∂y1

) + U2 · 1
w
− U3 · ∂t2

∂y1
= 0 (3)

U3 · (1− ∂t2
∂y2

) + U4 · 1
w

= 0 (4)

The first order conditions for the purely static (period 2 only) model are

the second set of conditions, (4). This corresponds exactly to expressions

obtained in the literature. In the standard static case, we obtain an ordinary

first order differential equation for incentive compatible tax systems. Here we

obtain a (nicely behaved) system of partial differential equations. The third

term in equation (3) is an “extra term” in the system relative to the literature

on the static case. It represents the effect of increased income in the first

period on tax liability in the second period.

In the special case of time separability and discounting, using subscripts to

denote partial derivatives of u, we obtain first order conditions for incentive

compatibility:

u1(y1 − t1(y1),
y1
w
) · (1− ∂t1

∂y1
) + u2(y1 − t1(y1),

y1
w
) · 1

w
− (5)

ρ · u1(y2 − t2(y1, y2),
y2
w
) · ∂t2

∂y1
= 0

ρ · u1(y2 − t2(y1, y2),
y2
w
) · (1− ∂t2

∂y2
) + ρ · u2(y2 − t2(y1, y2),

y2
w
) · 1

w
= 0 (6)

Theorem 1 (Second Order Conditions) Assume time separability and dis-

counting in the utility function. Further assume that u1 ≥ 0, u11 ≤ 0, u22 < 0,
u12 ≤ 0, ∂2t1

(∂y1)2
≥ 0, ∂2t2

(∂y1)2
≥ 0, ∂t1

∂y1
≤ 1, ∂t2

∂y2
≤ 1. Then there exists ρ > 0 such

that ∀ρ < ρ, the second order condition for consumer optimization in y1 holds,

so the first order condition (5) characterizes optima. If, in addition, u2 ≤ 0,
∂2t2(y1,y2)
∂y1∂y2

≤ 0 and ∂t2
∂y1
≥ 0, then if either u12 is sufficiently close to zero (or

zero) or if ρ is sufficiently small, then dy1(w)
dw

> 0, and in particular y1 is one

to one.

Proof: See Appendix.

These conditions are sufficient, but of course they are not necessary.

Theorem 2 Suppose that U(c1, l1, c2, l2) = V (c1 + c2, l1 + l2). Then any

incentive compatible tax satisfies: ∂t1
∂y1
= ∂t2

∂y2
− ∂t2

∂y1
.
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Proof: Equations (3) and (4) reduce to:

V1 · (1− ∂t1
∂y1

) + V2 · 1
w
− V1 · ∂t2

∂y1
= 0

V1 · (1− ∂t2
∂y2

) + V2 · 1
w

= 0

Simplifying, the result follows.¥

5 Necessary Conditions for a Time Consistent

Tax

As a preamble to the consideration of time consistent taxes, consider optimal

income taxes in our framework. Two regimes of interest are:

• Nothing is revealed in the first period (all incomes are the same), and
an optimal static income tax is imposed in the second period. Thus,

R1 > w
R
W
f(w)dw implies this regime is impossible.

• A separating equilibrium occurs in the first period, and a differentiated

(type-dependent) lump sum tax is imposed in the second period. In this

case, t2 is constant as a function of y2. That is,
∂t2(y1,y2)

∂y2
= 0 ∀y1, y2 ∈ Y .

In the first case, obviously the top marginal tax rate is zero in the second

period for the usual reasons. In the second case, in the second period each

individual is facing a lump sum tax, so their marginal rates are always zero.

However, tax as a function of equilibrium income will not necessarily appear

to have a top marginal rate of zero, since the individualized lump sum taxes

could be increasing in type.

It is natural to try to advance an argument that when revelation of types

occurs in the first period, and the government has memory, that the second

period tax should be a differentiated lump sum tax. Here is how that argu-

ment, a proof by contradiction, would go. Suppose that the second period tax

is not lump sum, i.e. it is a function of period 2 income as well as period 1

income. (Differentiated lump sum taxes will have zero derivative with respect

to period 2 income.) Next we design a new tax system that Pareto dominates.

Keep the first period tax the same. Now replace the second period tax with

a differentiated lump sum tax that assigns each consumer (separated in the

first period) the same tax liability as in the original second period tax, so

there is no deadweight loss. This would clearly generate the same tax revenue,
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and would Pareto dominate the original tax. The problem is that the new

tax might not be incentive compatible in the first period, since the incentive

constraints are more severe. There is a trade-off between an efficiency gain in

the second period from moving from a distorting to a non-distorting tax, but

a possible efficiency loss in the first period since second period tax liability

is now a function only of first period income (as is first period tax liability),

so consumers have more of an incentive to pretend to be someone with lower

income and ability, since it affects their second period tax liability. The result

appears not to be true in general, and probably requires some very technical

conditions concerning this trade-off. For instance, in the general case, it’s

possible that an optimum involves having the government (commit to) forget

first period income when imposing the second period tax, that is, making the

second period tax a function of second period income only. Then the problem

reduces to a repeated static optimal income tax problem.

There is an entirely different argument for why the second period tax must

be a differentiated lump sum tax. Suppose we impose subgame perfection

or time consistency on the equilibrium concept (in particular, for the govern-

ment). Suppose we impose the conditions of Theorem 1, so the first period

tax separates. Will the government want to impose a second period tax that

ignores revelation in the first period? It cannot credibly commit to do so, since

once it gets to the second period decision node, given a Pareto or utilitarian

objective, it will want to impose a non-distorting tax in the second period.

So the use of this time consistency concept implies, in itself, that the second

period tax will be a differentiated lump sum tax. And thus the second period

tax will not be a function of second period income. It is possible, however,

that a Nash equilibrium without time consistency Pareto dominates the one

with time consistency.

Definition 1 A tax system (t1, t2) ∈ T is called utilitarian time consistent
if t2 solves the following optimization problem given t1 ∈ T1 and c1(w), l1(w)
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measurable.

max
t02∈T2

Z
W

U(c1(w), l1(w), c
0
2(w), l

0
2(w))df(w)

subject toZ
W

t02(l1(w) · w, l02(w) · w)df(w) ≥ R2

and subject to

c02(w), l
0
2(w) measurable and solving

max
c02∈<+
l02∈[0,1]

U(c1(w), l1(w), c
0
2, l

0
2)

subject to

l02 · w − t02(l1 · w, l02 · w) ≥ c02 almost surely in w ∈W .

Definition 2 A tax system (t1, t2) ∈ T1 × T2 is called Pareto time consistent

if the following holds given t1 ∈ T1 and c1(w), l1(w) measurable. There is no

t02 ∈ T2 such that U(c1(w), l1(w), c02(w), l
0
2(w)) ≥ U(c1(w), l1(w), c2(w), l2(w))

almost surely in w ∈ W , with strict inequality holding for a measurable set

W 0 ⊆W , where
R
W 0 f(w)dw > 0, and such thatZ

W

t02(l1(w) · w, l02(w) · w)df(w) ≥ R2

with

c02(w), l
0
2(w) measurable and solving

max
c02∈<+
l02∈[0,1]

U(c1(w), l1(w), c
0
2, l

0
2)

subject to

l02 · w − t02(l1 · w, l02 · w) ≥ c02 almost surely in w ∈W .

Equivalent definitions can be formulated using backward induction, but

they are much messier. Notice that any utilitarian time consistent tax is

necessarily Pareto time consistent.

It is very important to note that the concept of time consistency employed

in a model must be logically related to the government objective function in

the following way. The set of taxes generated using time consistency must

be a set at least as small as the set generated by optimizing the government

objective function in the second period. For instance, using a Pareto objec-

tive with Pareto time consistency is fine, as is using utilitarian consistency
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with a utilitarian objective. Employing a Pareto objective with utilitarian

time consistency works fine as well. Consider, however, employing a utilitar-

ian objective in conjunction with Pareto time consistency. In this case, the

government may wish, when it reaches its decision node in the second period,

to impose a utilitarian optimal income tax (given first period decisions) rather

than one that is only Pareto optimal (but perhaps not utilitarian optimal).

Thus, it is natural to require that the notion of time consistency employed in

a model be compatible, in the sense we have given, with the objective function

of the government. For otherwise "time consistency" does not mean that the

government will hold to its decision when it reaches the second period.

Theorem 3 Let (t∗1, t∗2) ∈ T1×T2 be a Pareto time consistent tax system such

that y∗1 is one to one. Then ∂t∗2(y
∗
1(w),y

∗
2(w))

∂y2
= 0 almost surely for {w ∈ W |

f(w) > 0}.

Proof: Suppose that there is a measurable setW 0 such that ∂t∗2(y
∗
1(w),y

∗
2(w))

∂y2
6=

0 for w ∈ W 0and
R
W 0 f(w)dw > 0. We claim that this tax is not Pareto time

consistent. Consider the alternative tax system t2 ∈ T2 given by t2(y1, y2) =

t∗2(y1, y
∗
2(y

∗−1
1 (y1))). Here, y∗−11 denotes the inverse of the function y∗1, which

is well-defined by assumption. Notice that this alternative tax system does

not depend on second period income, but only on first period income.

Z
W

t2(l
∗
1(w) · w, l2(w) · w)df(w)

=

Z
W

t∗2(y1(w), y
∗
2(y

∗−1
1 (y1(w))))df(w)

=

Z
W

t∗2(y1(w), y
∗
2(w))df(w) ≥ R2

Incentive compatibility follows trivially from the definitions of c2(w) and
l2(w). Fix w ∈ W 0. Then evaluated at (c∗1(w), l

∗
1(w), c

∗
2(w), l

∗
2(w)), (4) tells

us that offering tax t2, where t2(y∗1(w), y
∗
2(w)) = t∗2(y

∗
1(w), y

∗
2(w)) and

∂t2
∂y2
= 0,

leads to a local utility improvement for type w.¥
The theorem implies that any time consistent tax system is a lump sum

tax in the second period. In general, it will be a lump sum tax differenti-

ated by consumer type, which is revealed in the first period. The consumers

understand this when they make their first period labor supply decision.

Since any utilitarian time consistent tax system is also Pareto time consis-

tent, the theorem applies to these tax systems as well.
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Corollary 1 Let (t∗1, t∗2) ∈ T1 × T2 be a Pareto time consistent tax system

satisfying the assumptions of Theorem 1. Then ∂t∗2(y
∗
1(w),y

∗
2(w))

∂y2
= 0 almost

surely for {w ∈W | f(w) > 0}.

Definition 3 A utilitarian time consistent optimal tax is a tax system (t1, t2) ∈
T1× T2 that solves problem (2) subject to the additional constraint that (t1, t2)

is utilitarian time consistent.

Definition 4 A Pareto time consistent optimal tax is a tax system (t1, t2) ∈
T1×T2 is a feasible, Pareto time consistent tax system (with associated c1(w), l1(w), c2(w), l2(w))
such that there is no other feasible, Pareto time consistent tax system (t01, t

0
2) ∈

T1×T2 (with associated c01(w), l01(w), c02(w), l02(w)) such that U(c01(w), l01(w), c02(w), l02(w)) ≥
U(c1(w), l1(w), c2(w), l2(w)) almost surely in w ∈ W , with strict inequality

holding for a measurable set W 0 ⊆W , where
R
W 0 f(w)dw > 0.

Since the set of utilitarian time consistent taxes could be a strict subset of

Pareto time consistent taxes, it could be the case that a Pareto time consistent

optimal tax Pareto (or even utilitarian) dominates a utilitarian time consistent

optimal tax.

Corollary 2 Presuming either the conditions of Theorem 1 or directly that y∗1
is one to one, any [utilitarian or Pareto] time consistent optimal tax is Pareto

time consistent, so Theorem 3 applies and ∂t∗2(y
∗
1(w),y

∗
2(w))

∂y2
= 0 almost surely for

{w ∈W | f(w) > 0}.

6 The Diamond Model

We extend the static Diamond (1998) model using time separable utility and

discounting.

The utility function used by Diamond (1998) in our notation is:

u(c, l) = c+ v(1− l)

where v : [0, 1] → < and v is C2. Let v0 denote the derivative of v, and
let v00 be its second derivative. Assume that v0 > 0, v00 < 0. We refer to this
specification as “the Diamond model.”

Proposition 1 For the Diamond model, u12 = 0, so any incentive compatible
income tax satisfying the strict second order conditions locally, inequality (10),

with ∂2t1
(∂y1)2

≥ 0, ∂t2
∂y2
≤ 1, ∂2t2(y1,y2)

∂y1∂y2
≤ 0 and ∂t2

∂y1
≥ 0 has separation (dy1

dw
> 0) in

the first period, regardless of the discount rate ρ.
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The proof follows directly from the proof of Theorem 1. Alternatively, we

could apply Theorem 1. We will generally assume that dy1
dw

> 0 in this section.

Equations (5) and (6) reduce to:

1− ∂t1
∂y1
− v0(1− y1

w
) · 1

w
− ρ · ∂t2

∂y1
= 0 (7)

1− ∂t2
∂y2
− v0(1− y2

w
) · 1

w
= 0 (8)

Notice that in this case, equation (8) gives us

1− v0(1− y2
w
) · 1

w
=

∂t2
∂y2

Since the first period tax is separating (that is, dy1
dw

> 0), then time consis-

tency implies ∂t2
∂y2
= 0 and the equation

v0(1− y2
w
) = w (9)

completely determines y2 and l2.

In order to prepare for the statement of the next result, it is important to

inform the reader about some implicit assumptions. For the remainder of the

paper, we shall assume that consumers can transfer income between periods at

interest rate ρ. In other words, we assume that c1 and c2 can take on any

real values, subject to c1 + ρ · c2 ≥ 0. The analog in the static Diamond

model, which we will also use, is c ≥ 0. The capacity constraint, mentioned

in the introduction, has not required an explicit statement to this point. We

give one now. Since total time for work and leisure for any consumer in each

time period is 1, the capacity constraints in our two period model are y1 ≤ w,

y2 ≤ w. The analog in the static Diamond model will be y ≤ w.

Theorem 4 Consider the Diamond model. A tax system (t∗1, t
∗
2) is Pareto

time consistent optimal in the two period model among tax systems with dy1
dw

>

0 if and only if there is no measurable t : Y → < such that d(w·l(w))
dw

> 0

and
R
W
t(w · l(w))dw ≥ R1 + ρR2, where c(w), l(w) solve maxc,l c + v(1 − l)

subject to w · l − t(w · l) ≥ c a.s.(W ), and such that c(w) + v(1 − l(w)) ≥
c∗1(w) + ρ[c∗2(w)−w · l∗2(w)] + v(1− l∗1(w)), with strict inequality holding for a
measurable set W 0 with

R
W 0 f(w)dw > 0.

Thus, the optima of the dynamic Diamond model are equivalent to those of

a properly formulated static Diamond model. Suppose that (t∗1, t
∗
2) is Pareto

time consistent optimal. Then the static tax t(y) = t∗1(y)+ ρ · t∗2(y) is optimal
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(note that t∗2 is a function of only period 1 income, since it is a differentiated
lump sum tax in period 2).

Given an optimal income tax t∗ in the static Diamond (1998) model, for
example one computed by Diamond, any feasible tax system (t1, t2) satisfying

t∗(y) = t1(y) + ρ · t2(y) and the conditions of Theorem 1 or Proposition 1 (or
dy1
dw

> 0) will be Pareto time consistent optimal. There are many such tax

systems. In fact, there are so many that neither the first nor the second period

tax might look like the optimal tax in the static model.

Proof: See Appendix.

Corollary 3 A Pareto time consistent optimal tax (t∗1, t
∗
2) for the Diamond

model satisfying dy∗1
dw

> 0 also satisfies [∂t
∗
1(y1)

∂y1
+ ρ

∂t∗2(y1,y2)
∂y1

] |y1=w·l1(w), y2=w·l2(w)=
0.7

Proof: Any Pareto time consistent optimal tax must generate a Pareto

optimal tax t in the static model, as given by Theorem 4. The induced

utility function in the static model is separable (and in fact, quasi-linear) in

consumption and leisure, so consumption is noninferior. By Seade (1977,

Theorem 1), dt(y)
dy

|y=w·l(w)= 0, and the result follows.¥

7 Conclusions and Extensions

We have examined optimal income taxes in a two period model, beginning with

the first and second order conditions for incentive compatibility. Then impos-

ing time consistency of taxes, we find that if the discount rate is sufficiently

high or utility is separable in labor and consumption, a time consistent tax

has consumers revealing their types in the first period, so the second period

tax is independent of second period income; it is essentially a type differenti-

ated lump sum tax. Incentive constraints on first period consumer income are

brutal, as the consumers know what’s going to happen in the second period.

In the special case of stationary, time separable, quasi-linear utility with dis-

counting, we find an equivalence between static and dynamic optimal income

taxes. In this case, an implication is that the present discounted value of the

marginal tax rate on first period income at the top of the distribution must be

zero. There is a huge number of optimal dynamic tax systems that correspond

to a single optimal static tax; all that is required is that the present discounted

7In fact, we also know that ∂t∗2(y1,y2)
∂y2

= 0 everywhere.
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value of the dynamic tax is equal to the static tax for any first period income.

In this sense, the optimal one period tax in a two period model is not identified.

The next step is to examine time consistent taxes when the discount rate

is low. We conjecture that all we will find is that at the top of an interval

that has separation in the first period, the marginal tax rate on first period

income must be zero.

Our long term goal is to integrate the theory of optimal income taxation

with mechanism design. Each area brings useful ideas and techniques to the

other. A first step in this direction is to examine the relationship between

direct and indirect mechanisms in our context of dynamic revelation of infor-

mation.

Time consistent, incentive compatible taxes might also be useful for pur-

poses of positive political economy, where one replaces the Pareto or utilitarian

objective with a voting mechanism.

We leave examination of the question of existence of optimal taxes to future

work. Probably this issue can be addressed using the techniques of Berliant

and Page (2001).

As mentioned in section 3, it would be interesting to examine the implica-

tions of allowing consumers or the government to transfer wealth across time,

and to see how this alters our results.

Finally, we have examined the case where the correlation of a consumer’s

type in the first and second periods is perfect. The case when there is no

correlation between types in the two periods is simply a repeated static optimal

income tax problem. Intermediate cases are clearly of interest.

8 Appendix

Proof of Theorem 1: For the purpose of this proof, define G(y1, y2, w) =

u(y1−t1(y1), y1w )+ρ·u(y2−t2(y1, y2), y2w ). We remind the reader that subscripts
on functions represent partial derivatives with respect to the appropriate ar-

guments except for the function t, where a subscript denotes the time period.

Note also that all terms with a ρ attached to them are evaluated at second

period bundles, while all terms without a ρ attached to them are evaluated at
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first period bundles. The first order conditions are given by

G1 = u1(y1 − t1(y1),
y1
w
)(1− ∂t1(y1)

∂y1
) +

1

w
· u2(y1 − t1(y1),

y1
w
)− ρ · u1(y2 − t2(y1, y2),

y2
w
)
∂t2
∂y1

= 0

G2 = ρ · [u1(y2 − t2(y1, y2),
y2
w
)(1− ∂t2

∂y2
) + u2(y2 − t2(y1, y2),

y2
w
) · 1

w
] = 0

Useful second derivatives are

G11 = u11·(1−∂t1(y1)
∂y1

)2+
1

w
·u12·(1−∂t1(y1)

∂y1
)−u1· ∂

2t1
∂(y1)2

+
1

w
·u21·(1−∂t1(y1)

∂y1
)+

1

w2
· u22 + ρ · u11 · [ ∂t2

∂y1
]2 − ρ · u1 · ∂2t2

∂(y1)2

= u11 · (1− ∂t1(y1)

∂y1
)2 +

2

w
u12 · (1− ∂t1(y1)

∂y1
)− u1 · ∂2t1

∂(y1)2
+
1

w2
· u22

+ ρ · u11 · [ ∂t2
∂y1

]2 − ρ · u1 · ∂2t2
∂(y1)2

G12 = G21 = −ρ · [u11 · (1− ∂t2
∂y2

) · ∂t2
∂y1

+ u12 · 1
w
· ∂t2
∂y1

+ u1 · ∂2t2
∂y1∂y2

]

G22 = ρ · [u11 · (1− ∂t2
∂y2

)2 +
1

w
· u12 · (1− ∂t2

∂y2
)− u1 · ∂2t2

∂(y1)2
+
1

w
· u21 · (1− ∂t2

∂y2
) +

1

w2
· u22]

= ρ · [u11 · (1− ∂t2
∂y2

)2 +
2

w
· u12 · (1− ∂t2

∂y2
)− u1 · ∂2t2

∂(y1)2
+
1

w2
· u22]

G13 = − y1
w2
· u12 · (1− ∂t1(y1)

∂y1
)− 1

w2
· u2 − y1

w3
· u22 + ρ · y2

w2
· u12 · ∂t2

∂y1

G23 = ρ · [− y2
w2
· u12 · (1− ∂t2

∂y2
)− y2

w3
· u22 − 1

w2
· u2]

Checking term by term, under the stated assumptions, G11 < 0, G22 < 0.

Let A =

"
G11 G12

G21 G22

#
. For the second order conditions, it is sufficient to

prove that A is negative definite, or

| A |= G11 ·G22 − (G12)
2 > 0 (10)

The result follows by noticing that the first few (negative) terms in G11 are

the only ones in the expression without ρ in them, whereas all terms in G22
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and G12 have ρ in them. Hence (G12)
2 tends to zero with ρ2 while G11 · G22

tends to zero at rate ρ.

For the second part of the theorem, notice thatA−1 = 1
G11G22−(G12)2

"
G22 −G12

−G12 G11

#
.

By the implicit function theorem,

"
∂y1(w)
∂w

∂y2(w)
∂w

#
= −A−1·

"
G13

G23

#
= −1

|A| ·
"
G22 ·G13 −G12 ·G23

−G12 ·G13 +G11G23

#
.

We’re actually only interested in the top part of the vector. G22 < 0, G23 > 0.

Under the additional assumptions of the theorem, G12 ≥ 0. If u12 is suffi-

ciently close to zero (or is zero) or if ρ is sufficiently small, then G13 > 0 and

we have ∂y1(w)
∂w

> 0. ¥
Proof of Theorem 6: Suppose that (t∗1, t

∗
2) is Pareto time consistent optimal

in the two period model and there is a measurable t : Y → < such that R
W
t(w ·

l(w))dw ≥ R1 + ρR2,
d(w·l(w))

dw
> 0, where c(w), l(w) solve maxc,l c + v(1 − l)

subject to w · l − t(w · l) ≥ c a.s.(W ), and such that c(w) + v(1 − l(w)) ≥
c∗1(w) + ρ[c∗2(w) − w · l∗2(w)] + v(1 − l∗1(w)), with strict inequality holding for
a measurable set W 0 with

R
W 0 f(w)dw > 0. We show a contradiction, in

that there is a feasible (t1, t2) that Pareto time consistent dominates (t∗1, t
∗
2).

Define t1(y1) = R1
R1+ρR2

· t(y1) and t2(y1, y2) =
R2

R1+ρR2
· t(y1).8 In fact, second

period labor supply is the same for both tax systems, and determined by (9).

Evidently, the first order condition for incentive compatibility of the system

(t1, t2) is, from (7),

1− ∂t1
∂y1
− v0(1− y1

w
) · 1

w
− ρ · ∂t2

∂y1

= 1− R1
R1 + ρR2

· dt
dy
− ρ · R2

R1 + ρR2
· dt
dy
− v0(1− y1

w
) · 1

w

= 1− dt

dy
− v0(1− y1

w
) · 1

w
= 0

The last line follows from the first order conditions for incentive compat-

ibility of t, from the static model, so y1(w) = y(w). In fact, it is clear from

these calculations that the second order conditions for incentive compatibility

are the same for (t1, t2) (namely
dy1
dw

> 0) and t (namely dy
dw

> 0).9 Since

8There are actually many ways to define (t1, t2).
9Although we have not proved formally that these are, in fact, the second order condi-

tions, notice that in a rather trivial way (due, in part, to separability of the utility function),
agents facing either tax system are actually solving the same optimization problem. So the
solutions are the same.
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dy
dw

> 0 by assumption, dy1
dw

> 0.Z
W

t1(y1(w)) · f(w)dw

=
R1

R1 + ρR2
·
Z

t(y1(w)) · f(w)dw
≥ R1

Z
W

t2(y1(w)) · f(w)dw

=
R2

R1 + ρR2
·
Z

t(y1(w)) · f(w)dw
≥ R2

So (t1, t2) is feasible. Now from incentive compatibility, y(w) = y1(w). So

c1(w) + ρ · c2(w) + v(1− l1(w)) + ρ · v(1− l2(w))

= y1(w)− t1(y1(w)) + ρ · [y2(w)− t2(y1(w), y2(w))] + v(1− y1(w)

w
) + ρ · v(1− y2(w)

w
)

= y(w)− [t1(y(w)) + ρ · t2(y1(w), y2(w))] + ρ · y2(w) + v(1− y(w)

w
) + ρ · v(1− y2(w)

w
)

= y(w)− t(y(w)) + v(1− y(w)

w
) + ρ · y2(w) + ρ · v(1− y2(w)

w
)

= c(w) + v(1− y(w)

w
) + ρ · y2(w) + ρ · v(1− y2(w)

w
)

≥ c∗1(w) + ρc∗2(w) + v(1− l∗1(w)) + ρ · v(1− y∗2(w)
w

)

with strict inequality holding on W 0. So (t1, t2) Pareto time consistent

dominates (t∗1, t
∗
2) with

dy1
dw

> 0.

Next suppose that (t1, t2) is feasible and Pareto time consistent dominates

(t∗1, t
∗
2). Note that since by definition, t2 satisfies (8) and (9), t2 is independent

of y2. Define t(y) = t1(y)+ρ · t2(y). The optimization problem for consumers
in the static model is thus

max
y

y − t1(y)− ρ · t2(y) + v(1− y

w
)

The first order condition for incentive compatibility in the static model is

1− dt1(y)

dy
− ρ · dt2(y)

dy
− v0(1− y

w
) = 0
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This is the same as (7). Moreover, since (t1, t2) satisfies the second order

conditions for incentive compatibility (namely dy1
dw

> 0), so does t (hence dy
dw

>

0).10 So y(w) = y1(w).

Z
W

t(y(w)) · f(w)dw

=

Z
W

t1(y(w)) · f(w)dw + ρ ·
Z
W

t2(y(w)) · f(w)dw
≥ R1 + ρ ·R2

c(w) + v(1− l(w))

= y(w)− t(y(w)) + v(1− y(w)

w
)

= y1(w)− t1(y1(w))− ρ · t2(y1(w)) + v(1− y1(w)

w
)

= c1(w) + ρ[c2(w)− w · l2(w)] + v(1− l1(w))

Now (t1, t2) Pareto time consistent dominates (t∗1, t
∗
2), so

c1(w) + ρ · c2(w) + v(1− l1(w)) + ρ · v(1− l2(w))

≥ c∗1(w) + ρ · c∗2(w) + v(1− l∗1(w)) + ρ · v(1− l∗2(w))

with strict inequality holding for a measurable set W 0 with
R
W 0 f(w)dw >

0. Since by incentive compatibility of (t1, t2) and (t∗1, t
∗
2), (8) holds for both,

y2(w) = y∗2(w) and l2(w) = l∗2(w). So

c1(w) + ρ[c2(w)− w · l2(w)] + v(1− l1(w))

≥ c∗1(w) + ρ[c∗2(w)− w · l∗2(w)] + v(1− l∗1(w))

Hence

c(w) + v(1− l(w))

≥ c∗1(w) + ρ[c∗2(w)− w · l∗2(w)] + v(1− l∗1(w))

with strict inequality holding for a measurable set W 0 with
R
W 0 f(w)dw > 0.¥

10Please see the previous footnote.
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