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Abstract

We argue that in very natural settings, optimal tax dynamics involve fluctuations. We
illustrate our point in a simple model of human capital accumulation where the payoffs from
current effort involves a stream of future productivity improvements, as opposed to when labor
effort only gives static payoffs. Thus, the general principle of smoothing distortions, as opposed
to smoothing taxes, can actually give rise to tax fluctuations. Not being convinced that tax
fluctuations characterize taxes implemented in real-world economies, we go on to argue that if
the government maximizes consumer welfare but cannot commit to future tax rates, a natural
dampening, or elimination, of tax fluctuation occurs. The conclusion from this argument is
that, if institutions allowing commitment could be set up, the resulting policy changes should
move toward higher fluctuations in tax rates (and lower fluctuations in distortions).
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1 Introduction

What is the desired path of taxes and of public expenditures over time? We argue in this paper
that (i) in very natural settings, fluctuations in taxes and expenditures are to be expected if policy
maximizes consumer welfare, and that (ii) the extent of the fluctuations depends on the extent to
which the government can commit to how to set future taxes: less commitment leads to a dampening
of the fluctuations. What we mean by a “natural setting”, first, involves the assumption of capital
accumulation of certain forms and, second, involves restrictions on the government’s ability to
differentiate taxes across different types of capital. We argue that these two assumptions are
plausible, although in this paper we do not carry out these arguments in detail.1 Here, our focus
is more on the role of commitment for fluctuations and in making the point how the absence of
commitment leads to less fluctuations.

Our application involves the optimal choice of public expenditures, and accompanying taxes,
over time in a model with an infinitely-lived household and a benevolent “Ramsey planner”. How-
ever, the basic argument can be carried over to a variety of other contexts, such as models of
political economy where the government revenue is used for redistribution, not public goods, and
where decisions are made under conflicts between the different agents in the population. In partic-
ular, democratic rule naturally limits the desirability of commitments to future policy choices, in
addition to the general difficulty of implementing commitment. Thus, when applied to a political-
economy context, where commitment is an even less natural assumption than here, our model
implies a natural tendency for taxes not to fluctuate or at least fluctuate less, i.e., the smaller or
no “politically driven cycles”.

The framework we study is very stylized in order to just capture the key features behind our
argument. We assume here that capital is human capital that is accumulated in period t and that
is productive in periods t and t + 1. To attach words to these assumption, we can think of two
“periods of life” of a worker, and of education, or on-the-job training, that occurs early in life and
whose benefits remain with the worker until he exits the labor market. More generally, what is
essential is that, first, the benefits of effort are persistent, i.e., that they lead to a form of capital,
and, second, that these benefits do not depreciate geometrically (such as in our case where the
capital dies abruptly with the worker).2 Although there is an overlapping-generations feature to
our capital technology, our results are not driven by overlapping generations per se; the model can
be regarded as of a single household that uses the income from the sequence of workers in order
to consume in every period. Nor is the two-period horizon of investment crucial. As long as the
building up of capacity requires an irreversible investment up-front, our result extends to cases
when investment pays off over a longer horizon (although a number of properties of the optimal
policy, e.g., the periodicity of the fluctuations, depend on the length of the horizon).

The second key assumption in our framework is that there are restrictions on how the gov-
ernment can raise revenue. In particular, we assume that taxation, because it is assumed to be
proportional to income, is distortionary. Moreover, we assume that it cannot distinguish different
capital vintages. I.e., income from capital built in periods t and t− k are taxed at the same rate;
in the context of our two-period-lived-worker model, “young” and “old” workers are taxed at the
same rate. Whether it is feasible in reality to tax capital of different vintages at different rates
probably depends on the context, and here we assume no ability to differentiate for illustration

1Another paper (Hassler, Krusell, Storesletten, and Zilibotti (2004)) extensively discusses which features of capital
accumulation are crucial.

2The paper mentioned in footnote 1 characterizes the nature of fluctuations in detail as a function of the form of
depreciation, including cases of quasi-geometric depreciation and flat (“lightbulb”) depreciation schedules of different
lifetimes.
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only.
Why does the Ramsey planner choose tax fluctuations in this environment? Consider the

following example. Suppose that at a certain time t, a country is subject to an unexpected surge
in an external security threat (e.g., “terrorism”), causing an increase in the social value of defense.
Suppose, for simplicity, that this increase is perceived as permanent. What is the optimal way to
increase tax revenue to finance the larger expenditure? A tax-smoothing argument would suggest
that the government should set a higher constant tax rate. Such a response, however, would forego
the opportunity to extract more tax revenue from the generation who made their investment before
the surge of the threat. This generation sunk its investment under the expectation of lower taxes,
and this investment is, at t, an inelastic tax base. So, from a public finance standpoint, a high
tax rate is called for at t. This high tax rate can be counteracted by a lower tax rate in t + 1 so
that effort decisions in period t are not too distorted. Then, since the t + 1 tax rate is low, the
government can afford a higher t+2 rate, and so on. This oscillating plan features a rather smooth
path of distortions, since the present discounted value of taxes on investment for each investor is
rather stable over time. At the same time, it allows the planner to exploit the lower elasticity of
the tax base at t.

The above example relies on a “surprise”. This might suggests that the incentives for the planner
to expropriate installed capital in the first period of the planning horizon (similarly to Chamley
(1986) and Judd (1985)) plays a crucial role. Indeed, if there were no installed capital in the first
period, or if the planner were not allowed to tax it, the optimal tax sequence would be constant.
However, we show that optimal tax fluctuations also arise when this incentive is missing in an
environment where there are stochastic shock affecting the marginal value of expenditure over time
(like in the example above, but without assuming that the change comes as a complete surprise)
and the planner sets a state-contingent tax sequence with full commitment. Moreover, allowing the
government to save or issue debt does not eliminate fluctuations. There is, however, one scenario
in which tax smoothing is optimal: if the government (planner) has access to complete markets,
i.e., it can issue state-contingent debt, then fluctuations disappear. This requires, essentially, that
the government can commit to raising taxes if the threat does not materialize in order to honor
claims to output in case the threat does materialize. We regard this as a very strong assumption,
and we conclude therefore that tax fluctuations are rather robust.

Our analysis of the commitment model relates to Barro’s (1979) result that tax smoothing is
optimal. Barro looked at debt-vs-tax finance of a given stream of expenditures. Our model differs
from Barro’s in a number of respects. First, in Barro, the distortionary effects of taxation have a
static (e.g., labor supply) rather than a dynamic nature. Second, in our specification expenditure
is endogenous and determined by the desire to finance a public good. Third, the main focus of
our analysis is not on debt-vs-tax finance, and in the benchmark model we impose, for simplicity,
that the government budget must balance period-by-period. Of these differences, only the first is
essential. Exogenous changes in the stream of public expenditure correspond, in our setting, to
an increase in the marginal value of public good inducing the government to increase taxes (e.g.,
a war).3 Moreover, we show in an extension that our main results are robust to allowing the
government to run budget surpluses or deficits subject to an intertemporal budget constraint.

Our main point in concluding that fluctuations in taxation can be optimal is not to say that
Barro’s analysis is inaccurate, but merely to emphasize that the smoothing should occur for distor-
tions, not for taxes. In particular, in our model, the distortions to an agent’s effort choice can be
summarized by the present value of extra taxes incurred by the effort choice: whether to become

3The analysis in Hassler et al. (2004) is conducted under the assumption that the government must finance an
exogenous stream of expenditures; whether the stream is exogenous or not is immaterial.

3



educated (a higher-earning career, presumably) or not depends on what one thinks will happen
with the taxes over the entire course of one’s working life. So a fluctuating tax rate on income is
not bad per se and, as we show, is desirable in order to implement a higher taxation of already
installed (more inelastic) sources of income.

In Barro’s model, the commitment solution is time-consistent; however, in related debt-vs-
tax analyses, such as the paper by Lucas and Stokey (1983) and the literature that followed, the
commitment solution is not. That literature has discussed various ways to achieve commitment,
involving institutional design and the introduction of additional instruments. The source of the
time-inconsistency is different there than here; there, it is the desire to lower interest rates in order
to ease the burden of carry government debt (Barro assumed an exogenous interest rate), whereas
here it is the more standard ex-ante vs. ex-post taxation of capital income. Therefore, a comparison
of the specifics of the proposed institutions/instrument there and here is not useful. However, more
general “mechanisms” for solving commitment problems have been proposed in the Lucas-Stokey
(and similar) contexts as well: the appeal to reputation equilibria, along the lines of Abreu, Pearce,
and Stacchetti (1990). Here, in contrast, we rule out reputation mechanisms by requiring Markov
perfection of the equilibrium; we essentially demand that the equilibrium be a limit of finite-horizon
equilibria.4

When there is no commitment, the government’s tradeoff between costs and benefits changes.
Under commitment, it sets the marginal benefit from raising public expenditure at t (which is
constant due to our assumption that preferences are linear in this argument) equal to the marginal
cost, and the marginal cost has two components. The first component has to do with how effort
at t is lowered, and the second with how effort at t − 1 is lowered. The second of these, clearly,
is not present when there is no commitment, just like it is not present in the first period of the
commitment problem. Thus, when the commitment problem sets the sum of each future pair
of marginal costs equal to the first-period marginal cost, and thus leaves it open for each future
marginal cost to fluctuate, the problem under no commitment requires the marginal costs to be
constant over time, one by one. This allows some movements in tax rates because of the initial
sunk effort not being equal to steady-state effort, but the fluctuations are minor. Interestingly, it
turns out that the commitment problem, where both taxes and effort fluctuate over time, leads to
constant output–i.e., the sum of past and present effort. Under no commitment, output has minor
movements.

Our paper is also related to the recent study of public expenditure choice in Klein, Krusell, and
Ŕıos-Rull (2003). Their model is a neoclassical growth setup where the government has no access to
debt and has no commitment; like in this paper, they focus on Markov-perfect equilibria. The focus
there is on (i) deriving and interpreting first-order conditions for the government and (ii) numerical
methods and a quantitative evaluation. The present paper is different not mainly because it derives
closed-form solutions but because it emphasizes conditions under which non-monotonic dynamics
arise (and which are plausible). The neoclassical framework studied in Klein et al.’s work uses only
physical capital, with geometric depreciation, thus ruling out the possibility of oscillations in the
solution with commitment.

In Section 2, we describe the basic setup. Then we look at the commitment and no-commitment
solutions in the following two sections (Section 3 and Section 4, respectively). The issue of whether
the fluctuations in our examples are all memories of the initial period is then dealt with in a very

4Using the Lucas-Stokey model, Krusell, Martin, and Ŕıos-Rull (2004) show that the assumption of lack of
commitment under Markov perfection leads to outcomes that are surprisingly similar to the commitment outcomes
in terms of observables. However, the results in their paper are of a very different nature than those here, since their
equilibrium relies on discontinuous decision rules; here, decision rules are (piece-wise) linear.
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simple extension of the basic setup to uncertainty in the second period. There we show that, if
government debt is not state-contingent, “new” fluctuations occur as a result of the shock (Section
5.1) whereas if it is state-contingent, no new fluctuations occur: those that are present are indeed
a memory of the initial period (Section 5.2). Section 6 concludes.

2 The model

2.1 Population, preferences, technology, and policy

The model economy is populated by a continuum one of dynasties of two-period lived agents. In the
first period of their lives, agents undertake an investment in human capital. The cost of investment
to each individual is e2, and the return is spread over two periods. In particular, the individual
earn labor earning equal to e · w in the first period of her life and e · w · z in the second period.
z ≤ 1 captures the fact that agents retire within the second period of their life (see, for instance,
Matsuyama (2003) for a similar assumption).5

Dynasties derive utility from the consumption of a private and a public good. Each period’s
felicity depends on the total consumption (net of the investment cost) of the dynasty’s member,
irrespectively of the split of consumption between the old and the young agent. The preferences of
the dynasty’s cohort that is alive at t are described by the following linear-quadratic utility function

Ut = ct + v(gt)− e2t + βUt+1,

where β ∈ [0, 1) is the discount factor and gt denotes the public good available at t. In most of the
analysis below, we will assume that v(g) = Ag, where A is a parameter describing the marginal
utility of the public good to the living cohorts.6 The marginal cost of the public good is unity and
we focus on the case where the social good is valuable; in the linear case, we assume A ≥ 1, which
will imply that the public good is socially valuable. Our quasi-linear utility formulation is chosen
so as to be able to ignore savings issues and interest rates that respond to public policy. We thus
have that the discount rate, (1− β) /β, equals the market interest rate. Since the savings decisions
can be abstracted from, the welfare of a dynasty is simply given by the present discounted value of
their income net of investment costs, i.e.,

Ut = Σ
∞
j=0β

j
¡
(1− τ t+j) yt+j + v(gt+j)− e2t+j

¢
,

where
yt+j = (zet+j−1 + et+j)w, (1)

i.e., the gross income accruing to the dynasty at t + j, given by the sum of the labor incomes
generated by the parent born at t + j − 1 and her offspring born at t + j. The parent’s human
capital depends on her investment at t+j−1 (et+j−1) while the offspring’s human capital depends on
her investment at t+ j (et+j). Since agents live for two periods, and the effect of the human capital
investment dies with them, yt only depends on the realization of two subsequent investments.

7

5This effect can be offset by a rising age-earnings profile. We assume here that the effect of retirement is more
important, implying that the total earnings are larger in the first than in the second period of an agent’s life.

6This is equivalent to assuming that the public good provides a marginal utility equal to A/2 to each living
individual.

7The assumption presented so far is consistent, for instance, with agents only consuming when they are old and
parents paying for the education of their children.
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Note that the environment described so far is equivalent to an economy populated by infinitely
lived agents (as opposed to infinitely lived dynasties with overlapping generations), where pro-
duction is carried out through a sequence of two-period lived projects. In every period t, the
representative agent can run a project of size et, at the cost e

2
t , without any liquidity constraints.

The project generates an income of wet in period t and of zwet in t+ 1 (where 1− z would be the
first-period depreciation rate of the project), and zero return at t + j for j > 1 (the depreciation
rate is 100% in the second period).

Due to a standard free-riding problem, there is no private provision of the public good. This
is instead provided by an agency that will be called “government” that has access to a technology
to turn one unit of revenue into one unit of public good. The government revenue is collected
by taxing agents’ labor income at the flat rate τ , subject to a balanced budget constraint. More
formally, the government budget constraint requires that gt = τ t (zet−1 + et)w, where, at time t,
et−1 is predetermined, whereas et depends on expectations about the current and future tax rate.
In particular, for τ t, τ t+1 ∈ [0, 1], the optimal investment of a young agent at t is given by

e∗t = e (τ t, τ t+1) ≡ 1 + βz − (τ t + βzτ t+1)

2
w. (2)

Equation (2) shows the distortionary effect of taxation on investments. In particular, τ t+j
distorts the investment of two generations: that born at t+ j− 1, as e∗t+j−1 = e (τ t+j−1, τ t+j), and
that born at t+ j, as e∗t+j = e (τ t+j , τ t+j+1)).

The government budget constraint allows us to express the provision of public good at t as a
function of current and future (next-period) taxes plus the level of investments sunk at t−1. More
formally:

gt = τ t (zet−1 + e (τ t, τ t+1))w = g (τ t, τ t+1, et−1) . (3)

Finally, we restrict τ t ∈ [0, 1]∀t, which implies that investments, public good provision and
private net income (e∗t , gt and (1− τ t) yt) all are non-negative.

3 The Ramsey allocation with commitment

In this section, we characterize the optimal tax sequence set by a benevolent planner maximizing
the utility of the representative dynasty. The choice set of the planner is the set of sequences of
taxes, {τ t}∞t=0, that are feasible for some sequence of public good provision, {gt}∞t=0 , and associated
private investment choices. We assume that the planner can commit to future taxes; we refer to
this problem as the Ramsey problem and to its solution as the Ramsey allocation. More formally,
the Ramsey planner chooses the sequence of τ t ∀t ≥ 0 in order to maximize

W (e−1) = Σ∞j=0β
j
¡
(1− τ t+j) (zet+j−1 + et+j)w + v(gt+j)− e2t+j

¢
, (4)

subject to

gt =

½
g (τ t, τ t+1, et−1) for t = 0

g (τ t, τ t+1, e (τ t−1, τ t)) for t ≥ 1. , (5)

where the functions e (.) and g (.) are given by (2) and (3), respectively, τ t ∈ [0, 1]∀t, and e−1 is
predetermined.

The Ramsey problem does not admit a standard recursive formulation, and the Ramsey allo-
cation is time-inconsistent. Intuitively, when planning at time zero, the planner takes into account
the distortion of τ t+j on et+j−1 (where j ≥ 1), but this investment is sunk when, at t+ j, the plan
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is implemented. This relates to the special formulation of the time-zero problem (see the imple-
mentability constraint, (5)); while labor tax for all t > 0 distort the investments of two cohorts, τ0
only distorts the investment of agents born in period zero, since the investment of agents born in
period minus one is sunk when the tax sequence is set.

We first discuss some general features of the Ramsey solution by deriving first-order conditions.
These first-order conditions make clear that monotone dynamics toward a steady state can be ruled
out, and argues why this is. Since the first-order conditions are not sufficient, we also provide a
complete characterization of the solution to the Ramsey problem by showing how it can be written
recursively.

3.1 First-order conditions

As a preliminary, we will first derive the first-order conditions for the planner’s choice of taxes.
As we will see, they will provide some important hints regarding the optimal solution. Letting
y(τ t−1, τ t, τ t+1) ≡ (ze(τ t−1, τ t) + e(τ t, τ t+1))w denote gross income at t, given privately optimal
investments in t− 1 and t, depending on taxes in t, t and t+ 1, the government’s objective can be
written directly in terms of tax rates as

∞X
t=0

βt
¡
y(τ t−1, τ t, τ t+1)(1− τ t) + v(y(τ t−1, τ t, τ t+1)τ t)− e(τ t, τ t+1)

2
¢
.

What is useful about this objective is that the first-order condition is simpler than one might
expect due to most effects of a marginal change in τ t being “indirect” and thus dropping out. The
first-order condition simply reads

yt(v
0
t − 1) = −

¡
β−1v0t−1yt−1,3τ t−1 + v0tyt,2τ t + βv0t+1yt+1,1τ t+1

¢
, (6)

where yt ≡ y(τ t−1, τ t, τ t+1), yt,j is the partial of yt with respect to the j:th argument and v0t is the
marginal value of the public good at period t.

In (6), the left-hand side captures the direct effect of raising taxes. Letting γg,t ≡ v0t − 1
denote the public-expenditures wedge, this term provides the marginal benefit of taxation, given
by γg,t times the tax base. Clearly, in the case when public good preferences are linear, this
term is always positive. Second, the right-hand side captures the marginal costs: the “budget
externalities” that arise because private agents do not take into account how their investment
choice influences distortions via the government’s budget: as the tax rate at time t increases, this
lowers the investment in periods t− 1 and t and thus lowers the tax bases in three periods: t− 1,
t, and t+ 1, leading to a loss which is proportional to the tax rate which multiplies each of these
tax bases.

For the understanding of why oscillations must arise, which we will show formally below, it is
instructive first to note in the first-order condition above that (i) the marginal benefit of taxation,
yγg, is decreasing in each tax rate, since output is lower with higher tax rates (recall that γg is
constant with a linear v) and that (ii) the marginal cost of taxation, the sum of the three right-
hand side terms, is increasing in each tax rate, because these costs are proportional to the tax rates
(recall that output is linear in tax rates so that the output derivatives are constant). Thus, if any
one tax rate is increased, since the marginal benefit must fall and the marginal cost must rise, the
government must decrease another tax rate in order to still be satisfying its first-order condition!
The argument below will be that at time zero, the government will want to have a high tax rate,
and that will force the time-1 tax rate down, which from the next first-order condition will force
the time-2 tax rate down, and so on.

7



More precisely, and focusing on the case where v is linear, substituting in the expression for y
and its derivatives, and simplifying, (6) can be written

zτ t−1 +
¡
1 + βz2

¢
τ t + βzτ t+1 = (1 + z) (1 + βz)

A− 1
2A− 1 . (7)

Turning to the dynamics of taxes implied by this equation, note that the characteristic polyno-
mial of this difference equation, given by (z + ρ) (ρβz + 1), has two roots, ρ = −z and ρ = − 1

βz ,
both being strictly negative for z > 0. Thus, oscillatory behavior is generic. Moreover, as we will
see, optimal dynamics will be determined by the root that is smallest in absolute value, ρ = −z.
In order to show that this type of dynamics is indeed optimal, it is necessary to make sure that
appropriate second-order conditions are met, to make sure that none of the tax choices in (7) vio-
lates non-negativity, and finally to explicitly incorporate the choice of the period-0 tax rate. The
period-0 tax choice also leads to a linear first-order condition, but the key question is whether the
tax there should be chosen so that oscillations result in the following periods or so that the future
tax rates will be constant: recall that equation (7) is indeed consistent with a constant solution if
τ0 is chosen to the steady state value implied by (7), namely τ =

A−1
2A−1 . Carrying this analysis out

in the sequential formulation of the problem is less convenient than with recursive methods. The
purpose of the next section is thus to provide a recursive formulation, where sufficient conditions
for optimality are easy to verify. Before doing that, we note that (i) taxes are oscillatory, (ii) effort
is oscillatory, but (iii) gross income is constant whenever (7) is satisfied. To see this, note that

y(τ t−1, τ t, τ t+1) = (ze(τ t−1, τ t) + e(τ t, τ t+1))w (8)

=
w2

2
(1 + βz) (1 + z)− w2

2

¡
zτ t−1 +

¡
1 + βz2

¢
τ t + βzτ t+1

¢
where the first term is a constant and the second is constant by (7). Specifically, (7) implies that

y(τ t−1, τ t, τ t+1) =
w2 (1 + z) (1 + βz)

2

A

2A− 1 .

As we see, income is decreasing in A.This is easy to understand. As A increases, it is optimal
to increase taxes, despite the fact that higher taxes leads to less investments and thus less income.

3.2 Optimal dynamic taxation, a complete characterization

It is well known that Ramsey problems admit a two-stage formulation whereby future decisions, in
stage two, can be described as coming from a recursive problem with an additional state variable
whereas the time-zero decisions, in stage one, can be derived from a “static” problem with payoffs
that are given by the value function associated with the solution to the recursive problem.8 In
this framework we will show that the second-stage recursive problem is particularly simple in that
the choice of τ t+1 involves only one state variable: the current period’s tax rate τ t is sufficient for
determining the optimal τ t+1. This result follows from the fact that since the investment horizon
is two periods only, a benevolent planner who can commit to benefits one period ahead would
choose the same level of redistribution as would a planner who could commit all future periods.
Specifically, if the planner at period t chooses τ t+1, she would have chosen the same τ t+1 if she
had had the ability to commit at any period s < t (assuming τ t is held constant). Furthermore,

8See, e.g., Marcet and Marimon (1999), where the additional state variable is marginal utility or the Lagrange
multiplier associated with the incentive constraint.
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although the flow of felicity in period t is affected by both the predetermined variables et−1 and
τ t, the optimal choice of τ t+1 is only affected by τ t. Therefore, the recursive program has only τ t
as a state variable, with τ t+1 being the choice variable. As to the choice in the initial period, the
planner is not subject to earlier pre-commitments and thus chooses τ0 and τ1 simultaneously. The
following lemma can thus be proved.

Lemma 1 The utilitarian planner program (4) is equivalent to the following recursive program:

W (e−1) = max
τ0∈[0,1]

{Y0 (e−1, τ0) + V (τ0)} (9)

V (τ t) = max
τ t+1∈[0,1]

{Y (τ t, τ t+1) + βV (τ t+1)} for t ≥ 0, (10)

where
Y0 (e−1, τ0) = (1 + (A− 1) τ0) zwe−1

and

Y (τ t, τ t+1) = e (τ t, τ t+1) ((1− τ t + βz (1− τ t+1)) +Aw (τ t + βzτ t)− e (τ t, τ t+1))

= e (τ t, τ t+1) (e (τ t, τ t+1) +wA (τ t + βzτ t+1)) .

Moreover, the mapping Γ (v) ≡ maxτ 0∈[0,1] {Y (τ , τ 0) + βv (τ 0)} is a contraction mapping with V as
the unique fixed point.

Proof. Consider the Ramsey-problem as formulated in (4). Using (3), we can define the
planner’s period t felicity for t ≥ 1 as

F (τ t−1, τ t, τ t+1) = wz (1 + (A− 1) τ t) e (τ t−1, τ t)
+w (1 + (A− 1) τ t) e (τ t, τ t+1)− e (τ t, τ t+1)

2 ,

and for t = 0 as

F0 (e−1, τ0, τ1) ≡ wz (1 + (A− 1) τ0) e−1
+w (1 + (A− 1) τ t) e (τ0, τ1)− e (τ0, τ1)

2 .

Clearly, F (.) can be separated into two additive terms: F (τ t−1, τ t, τ t+1) = D (τ t−1, τ t)+H (τ t, τ t+1) .
Here,

D (τ t−1, τ t) ≡ wz (1 + (A− 1) τ t) e (τ t−1, τ t)
and

H (τ t, τ t+1) ≡ w (1 + (A− 1) τ t) e (τ t, τ t+1)− e (τ t, τ t+1)
2 .

Note that D (τ t−1, τ t) is the felicity in period t that accrues from private consumption of the old
and public consumption financed by taxes on the old. Similarly, H (τ t, τ t+1) is the felicity in period
t that accrues from private consumption of the young and public consumption financed by taxes
on the young minus investment costs.

For t = 0, we define

F0 (e−1, τ0, τ1) ≡ wz (1 + (A− 1) τ0) e−1 +H (τ0, τ1) .

Now define
Y (τ t, τ t+1) ≡ H (τ t, τ t+1) + βD (τ t, τ t+1) .
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Furthermore, using (2) and τ t ∈ [0, 1]∀t we can write

Y (τ t, τ t+1) = e (τ t, τ t+1) (e (τ t, τ t+1) +wA (τ t + βzτ t+1)) .

The contribution of the period 0 old is

Y0 (e−1, τ0) ≡ wz (1 + (A− 1) τ0) e−1
= F0 (e−1, τ0, τ1)−H (τ0, τ1) .

The planner problem under commitment (4) can now be expressed as

W (e−1) = max
{τ t}∞t=0

(
F0 (e−1, τ0, τ1) +

∞X
t=1

βtF (τ t−1, τ t, τ t+1)

)

= max
{τ t}∞t=0

(
F0 (e−1, τ0, τ1) +

∞X
t=1

βt (D (τ t−1, τ t) +H (τ t, τ t+1))

)

= max
{τ t}∞t=0

(
F0 (e−1, τ0, τ1)−H (τ0, τ1) +

∞X
t=0

βt (βD (τ t, τ t+1) +H (τ t, τ t+1))

)

= max
{τ t}∞t=0

(
Y0 (e−1, τ0) +

∞X
t=0

βtY (τ t, τ t+1)

)
. (11)

Defining the value function

V (τ t) ≡ max
{τ t+s}∞s=1

∞X
s=0

βsY (τ t+s, τ t+s+1) , (12)

we can rewrite (11) as

W (e−1) = max
τ0
{Y0 (e−1, τ0) + V (τ0)} (13)

= max
τ0

½
Y0 (e−1, τ0) + max

τ1
{Y (e−1, τ0) + βV (τ1)}

¾
and standard recursion on (12) for t ≥ 1 yields the functional Bellman equation (10). Since Y is
bounded by the fact that τ ∈ [0, 1] and since 0 ≤ β < 1, the Bellman equation (10) is a contraction
mapping with a unique solution, which must also be the solution to the sequential continuation
problem (Theorem 4.3 in Stokey and Lucas, 1989).

Y (τ t, τ t+1) is the contribution to the planner’s utility (evaluated at time t) of the cohort
born in period t. This contribution consists of the cohort’s lifetime private consumption, i.e.,
1−τ t+βz (1− τ t+1), plus the utility from public consumption financed by the cohort’s contribution
(wAet (τ t + βzτ t+1)), minus the cost of period t investment (e2t ). Similarly, Y0 (e−1, τ0) is the
contribution of the initial old. Clearly, the planner’s objective is to maximize the discounted sum
of the contribution of all cohorts and this can be done in a recursive fashion when the tax rate is
determined one period in advance.

The recursive formulation form facilitates the characterization of the optimal sequence of taxes.
This characterization is provided in the following proposition.
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Proposition 1 The optimal solution to the Ramsey program, (4), is

τ t+1 = max {0, τ∗ − z (τ t − τ∗)} < 1, (14)

for t ≥ 0 and

τ0 =

 τ0 =
³
1 + 2ze−1

w(1−βz)
´
τ∗ if e−1 ≤ w(1−βz)

2z2

min
n
1,
³
1 + βz + 2ze−1

w

´
τ∗
o

else,
,

where

τ∗ =
A− 1
2A− 1 ∈ [0,

1

2
)

is the steady-state tax rate. If z < 1, the Ramsey tax sequence converges asymptotically in an
oscillatory fashion to τ∗. If z = 1, the Ramsey tax sequence is a 2-period cycle such that,

τ t =

½
τ0 if t is even

max {0, 2τ∗ − τ0} if t is odd.

Proof. We first guess the characterization of value function, V (τ t) , and then show that this
is the unique solution to (10). We guess that:

V (τ t) =

(
w2

4

¡
B0 +B1τ t +B2τ

2
t

¢
τ t ≤ 1+z

z τ∗
w2

4

³
− (2A− 1) τ2t + 2 (A− 1) (1 + βz) τ t + (1 + βz)2 + βB0

´
else,

, (15)

where

B2 ≡ − ¡1− βz2
¢
(2A− 1)

B1 ≡ 2
¡
1− βz2

¢
(A− 1)

B0 ≡ =
(2A− (1− βz)) (1 + βz (2A− 1)) + β (A− 1)2 (1− z)2

(1− β) (2A− 1)
τ∗ =

A− 1
2A− 1 .

We also guess that the optimal policy is linear in the state variable, i.e., that

τ t+1 = T (τ t) = T0 + T1τ t,

where

T1 = −z
T0 =

(1 + z) (A− 1)
2A− 1 .

Note that this guess implies that τ∗ = A−1
2A−1 . When τ t ≤ 2τ∗, the optimal τ t+1 is interior, and

otherwise the restriction τ t+1 ≥ 0 binds.
The first-order condition for τ t+1 in the Bellman equation is given by

0 = Y2 (τ t, τ t+1) + βV 0 (τ t+1) ,

0 = −βz1
2
w2 (2A− 1)

µ
τ t + βzτ t+1 − A− 1

2A− 1 (1 + βz)

¶
+ β

w2

4
(B1 + 2B2τ t+1) .

11



The solution to this yields (14). The right-hand side of the Bellman equation is concave in τ t+1 and
(14) implies that τ t+1 < 1 ∀t > 0 so the constraint τ t+1 ≤ 1 never binds. The first-order condition
(Y2 (τ t, τ t+1) + βV 0 (τ t+1)) τ t+1 = 0 is therefore necessary and sufficient for maximization of the
right-hand side of the Bellman equation. Substituting the expressions for B1 and B2 into the
right-hand side of the first-order condition yields

τ t+1 =
(1 + z) (A− 1)

2A− 1 − zτ t,

showing that our guess that τ t+1 = T (τ t) = T0 + T1τ t is the optimal policy given our proposed
value function.

Finally, we must verify that our proposed value function satisfies the functional equation

V (τ t) = Y (τ , T (τ)) + βV (T (τ)) .

This yields

w2

4

¡
B0 +B1τ t +B2τ

2
t

¢
= − (2A− 1) e (τ t, T (τ t))2 +Aw (1 + βz) e (τ t, T (τ t))

+β
w2

4

³
B0 +B1T (τ t) +B2T (τ t)

2
´
.

Some algebra verifies that this equality holds for all τ t.
We now consider cases when the constraint τ t+1 ≥ 0 binds. First note that (14) implies that

τ t+1 ≥ 0 possibly binds for t = 0, but never thereafter. Specifically, it binds if

τ0 >
1 + z

z
τ∗.

In this case, τ1 = 0 and the value function is given by

V (τ0) |τ0> 1+z
z

τ∗ = Y (τ0, 0) + βV (0)

=
w2

4

³
− (2A− 1) τ20 + 2 (A− 1) (1 + βz) τ0 + (1 + βz)2 + βB0

´
.

We have now verified that V (τ t) = maxτ t+1 {Y (τ t, τ t+1) + βV (τ t+1)}, i.e., that V is a fixed-
point of the functional mapping Γ (v) = maxτ 0∈[0,1] {Y (τ , τ 0) + βv (τ 0)}. Since Γ is a contraction
mapping, V is unique.

Finally, consider the first-period problem (9). Inserting the expression for Y0 and V and
simplifying yields

max
τ0
{Y0 (e−1, τ0) + V (τ0)}

= (1 + (A− 1) τ0) e−1zw + w2

4

¡
B0 +B1τ0 +B2τ

2
0

¢
,

if assuming that the optimal τ0 is less than or equal to
1+z
z τ∗. The first-order condition for this

problem is

0 = (A− 1) e−1zw + w2

4
(B1 + 2B2τ0)

⇒ τ0 =

µ
1 +

2ze−1
w (1− βz)

¶
τ∗.
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Clearly, this satisfies τ0 ≤ 1+z
z τ∗ if e−1 ≤ w(1−βz)

2z2
. For higher e−1, the first order condition is

τ0 =

µ
2z

w
e−1 + 1 + βz

¶
τ∗,

concluding the proof.
There are two main results in Proposition (1). First, tax and effort fluctuations are a generic

feature of the optimal plan. The oscillations are dampened if z < 1, and persist forever if z = 1.
In the latter case, the Ramsey allocation entails a 2-period cycle. Second, taxation attains its
maximum in the first period (i.e., in period zero). This follows immediately from the observation
that τ0 ≥ τ∗ and that the dynamics are non-diverging from period one onwards.9

The latter result is not unexpected: the elasticity of the tax base is lower in period zero than
in later periods, since the old sunk their investment in period minus one. Therefore, as is standard
in the optimal taxation literature (see Chamley (1986) and Judd (1985), the government has an
incentive to “overtax” in the first period. The former result is more surprising, as one might
have expected that the planner would opt for a constant tax sequence after the first period. To
understand why, instead, she chooses an oscillating sequence, note that efficiency requires that
distortions on investments, not taxes themselves, be smooth. Since the horizon of each investment
is two periods, the distortion on investments at t depends on the present discounted value of
taxes over two periods, τ t + βzτ t+1 (see equation (2)). Therefore the distortion implied by any
constant tax sequence can be replicated by an alternation of high and low taxes: for instance,
setting τ t = τ t+1 = 0 has the same effect on time-t investments as setting τ t = −βzτ t+1. But
why does the planner strictly prefer to oscillate? The answer lies in the incentive to overtax in the
first period. In period zero, the planner has a unique chance to raise funds at a low cost, but by
setting a high τ0 she would highly distort the investments of the agents born at time zero. This
can be corrected by promising this generation low taxes in period one. In turn, this implies that
agents born at one are treated generously in the first period, giving the planner the opportunity
to increase taxation in period two. And so on. Clearly, no constant tax sequence from period
one onwards could smooth investments to the same extent. In Section 3.3 below we will discuss
distortion smoothing more in detail from the perspective of the dynamic trading off of distortions
against each other.

The speed at which the sequence converges to the steady state depends on how responsive to
future taxes investments are. For instance, as z (or β) tends to zero, the scope for oscillating
tax rates vanishes, since agents become more “myopic” and less sensitive to the promise of future
taxation. When z is close to one, on the other hand, oscillations become very persistent, culminating
in a unit root when z = 1. It is interesting to note that when e−1 = 0 there are no oscillations. In
this case, there is no incentive for the planner to overtax in the first period, and the optimal solution
features tax smoothing, i.e., taxes are always at their steady state. This shows that oscillations are
a “long echo” of the first period.

Note that the steady-state tax rate that maximizes tax revenues is τ = 1
2 , which naturally is an

upper bound for the optimal steady-state tax rate. Therefore, naturally, the Ramsey allocation is
never on the descending part of the Laffer curve.

3.3 Distortion smoothing

Let us now return to the issue of distortion smoothing. When tax-distortions are a time-invariant
function of the current tax-rate only, as in Barro (1979), tax smoothing and distortion smoothing

9Note that τ0 =
³
1 + βz +

2ze−1
w

´
τ∗ is the case when the constraint τ0 ≥ 0 binds at t = 1.
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are equivalent. As noted above, this is, however, not the case in the present setting. To see that
optimal taxes do imply distortion smoothing, first note that a the per-period planner payoff may
be written

(zet−1 + et)w − gt + v(gt)− e2t .

It will be useful to express policy as a function of government expenditure and private investment
levels instead of using the tax rate as the choice variable. The tax rate satisfies τ t =

gt
(zet−1+et)w ,

i.e., the tax at t is a function of the expenditure at t and the effort levels at t− 1 and at t. We can
now abstractly express the agent’s first-order condition for effort at t as (concrete specifications
will follow below)

η(et−1, et, et+1, gt, gt+1) = 0.

This constraint makes explicit the budget externalities in this model; private agents ignore
that increased effort, via the balanced government budget, indirectly raises the level of public
expenditures (or, equivalently, allow a lower tax rate at maintained gt). This is a positive externality
since public goods are under-provided relative to the first best.

Denoting the multiplier for the private first-order constrain by βtλt, the government’s La-
grangian can be written as

∞X
t=0

βt
¡
(zet−1 + et)w − gt + v(gt)− e2t − λtη(et−1, et, et+1, gt, gt+1)

¢
.

Letting ηt,j denote the j th partial of η(et−1, et, et+1, gt, gt+1) the first-order conditions for the choice
of et and gt become, for t > 0,

γe,t − β−1λt−1ηt−1,3 − λtηt,2 − βλt+1ηt+1,1 = 0, (16)

and
γg,t − β−1λt−1ηt−1,5 − λtηt,4 = 0, (17)

where .we recall that γg,t ≡ v0(gt)− 1 is the wedge between the social value and cost of the public
good and, similarly, γe,t ≡ w (1 + βz) − 2et is the wedge between the social value and cost of
investment.

The Ramsey optimum is characterized by an optimal trade off of these wedges against each other
over time. How is the trade-off between wedges determined exactly? To find out, it is necessary to
eliminate the multipliers in the first-order conditions above. Thus, use equation (16) for period t
and equation (17) for periods t and t + 1, since then we have three equations with the unknowns
λt−1, λt, and λt+1. Thus, λt can be solved for as a function of γe,t, γg,t, and γg,t+1. Substitute the
solutions for λt and λt−1 into equation (17) and we obtain the final expression for the first-order
condition for the government’s policy choice:

γg,t = β−1ηt−1,5Dt−1
µ
γe,t−1 −

ηt−2,3
ηt−2,5

γg,t−1 − β
ηt,1
ηt,4

γg,t

¶
+ηt,4Dt

µ
γe,t −

ηt−1,3
ηt−1,5

γg,t − β
ηt+1,1
ηt+1,4

γg,t+1

¶
(18)

where Dt, the measure of how much a unit increase of the constraint at t is worth in terms of effort
et, is calculated as

Dt ≡ 1

ηt,2 − ηt,4
ηt−1,3
ηt−1,5

− ηt,5
ηt+1,1
ηt+1,4

.

The first-order condition for the government’s choice, equation (18), reveals exactly how distor-
tion smoothing takes place: smoothing involves all the relevant wedges, and the nature of the way
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wedges are balanced against each other is prescribed in this equation for the choice of gt. Thus, we
see that gt must be chosen in order to balance 5 gaps: two effort gaps (at t − 1 and t) and three
public-expenditure gaps (at t− 1, t, and t+ 1).

The left-hand side measures the direct benefit of raising gt, or expressed alternatively, the
marginal value of public funds in excess of their value used for private consumption. The right-
hand side measures the indirect costs of providing public goods, i.e., the distortionary cost of raising
public funds. Its first term summarizes how the increase in taxes at t increases the distortion on
effort at t− 1 (captured by γe,t−1). In turn, the lower effort at t− 1 decreases public expenditures
at t− 1 and t through the budget externalities in those periods (this is why the public expenditure
gaps in t− 1 and t appear in the second term on the right-hand side). Similarly, the second term
on the right-hand side summarizes the negative effects of the higher current tax on the current
effort gap and, through the budget externalities, on the public expenditure gaps at t and t+1. The
steady state of this first-order condition thus pins down a relation between the two kinds of gaps.

Now consider the wedges in period zero. Then first-order conditions in period 0 can be written

γg,0 = η0,4D0

µ
γe,0 − β

η1,1
η1,4

γg,1

¶
, (19)

where

D0 ≡ 1

η0,2 − η0,5
η1,1
η1,4

.

This equation differs from equation (18) in three ways, all relating to the fact that the marginal cost
of raising g0 involves no effects on variables in the period prior to period 0 are present. First, the
whole first term of equation (18)–the effect on effort in the period prior–is not present. Second,
the effect on effort in period 0, which is present here, does not feed back on the current public-
expenditure gap, γ0; if it had, e0 would have made g−1 change in order to fulfil the implementability
constraint in period -1. Third, the effect of a change in g0 on e0, η0,4D0, is slightly different: the
expression for D0 misses a term in the denominator. That is, again, the indirect effect that an
change in e0 has through the previous period’s constraint, measured through how much g0 would
have to change to neutralize the change in e0 on that constraint.

We can easily interpret (18) and (19) as “distortion-smoothing” in our model. First, we note
that the left-hand sides of these equations, γg,t, are constant at A − 1. Thus, also the right-hand
sides, the marginal cost of tax distortions, must be constant (smooth). To see what implications
this smoothness has for taxes, we first note that

η(et−1, et, et+1, gt, gt+1) = et − 1
2
(1 + βz)w +

gt
2 (zet−1 + et)

+
βzgt+1

2 (zet + et+1)
.

Taking the relevant partials and substituting into (18) yields

A− 1 = β−1
βz

2 (zet−1 + et)

µ
w (1 + βz)− 2et−1 + gt−1

zet−2 + et−1
(A− 1) + β

zgt
zet−1 + et

(A− 1)
¶
(20)

+
1

2 (zet−1 + et)

µ
w (1 + βz)− 2et + gt

zet−1 + et
(A− 1) + β

zgt+1
zet + et+1

(A− 1)
¶
.

Now, since our optimal allocation is expressed in terms of τ t, we use
gt

(zet−1+et) = wτ t to substitute
for gt, arriving at

A− 1 = w
¡
(1 + z) (1 + βz) + (A− 1) ¡zτ t−1 + ¡1 + zβz2

¢
τ t + βτ t+1

¢¢
2 (zet−1 + et)

− 1.
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The right-hand side of this equation equals A−1, which is easily verified using (7) to substitute
for the

¡
zτ t−1 +

¡
1 + zβz2

¢
τ t + βτ t+1

¢
and (8) for (zet−1 + et) . Thus, the difference equation for

tax rates derived above naturally comes out here as well.

4 No-commitment Ramsey outcomes: Markov-perfect equilibrium

In the previous section, we allowed the planner to determine taxes for all future dates under full
commitment. We also established that the sequence of taxes under full commitment is identical
to the sequence when taxes can be pre-committed one period ahead of their implementation. The
purpose of this section is to characterize the optimal time-consistent allocation, namely, the allo-
cation that is chosen by a benevolent planner without access to a commitment technology. We will
provide the recursive formulation of the problem, assuming, consistently with the setup above, that
period t taxes are set in the beginning of period t, and observed before period t investments are
decided.

More formally, we characterize the Markov-perfect equilibrium of the game between the agents
and the government, i.e., the equilibrium where et−1 is the only state variable in period t and
reputation is not used as a means to compensate for commitment. The period t felicity of the
planner is given by

Fd (et−1, τ t, τ t+1) = (1− τ t) yt − e (τ t, τ t+1)
2 +Agt

= (zet−1 + e (τ t, τ t+1)) (1 + (A− 1) τ t)w − e (τ t, τ t+1)
2 ,

where et−1 is pre-determined. Taxes are set according to a time-invariant function τ t = T (et−1) .
Given this function, individuals rationally believe that τ t+1 = T (et) , and individually rational
investment choices must therefore satisfy

et =
1 + βz − (τ t + βzT (et))

2
w.

The Markov equilibrium is defined as follows.

Definition 1 A time-consistent (Markov) allocation without commitment is defined as a pair of
functions hW,T i, where W is a bounded planner value function and T : [0,∞) → [0, 1] is a public
policy rule, τ t = T (et−1), such that the following functional equations are satisfied:

1. Wd (et−1) = maxτ t {Fd (et−1, τ t, T (et)) + βWd (et)}

2. T (et−1) = argmaxτ t {Fd (et−1, τ t, T (et)) + βWd (et)},
where et = (1 + β − (τ t + βT (et)))w/2.

The following Proposition can now be established.

Proposition 2 Assume that either A ≤ z(z+1)
(1+β)z2−1 or (1 + β) z2 ≤ 1.10 Then, the time-consistent

allocation is characterized as follows:

T (et−1) = min {τ̄ + α1 (et−1 − ē) , 1}
et = ē− w

2 + βzα1w
(τ t − τ̄) ,

10This assumption ensures that the constraint τ t+1 ≤ 1 never binds for t ≥ 0.Without this constraint, the analysis
would be substantially more complicated, involving non-continuous policy functions.
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where

ē =
w (1 + βz) (1− α0)

2 + α1w (1 + βz)
≤ e∗

τ̄ =
2α0 + α1w (1 + βz)

2 + α1w (1 + βz)
≥ τ∗

with equalities iff A = 1,and

α1 =

p
1 + 4A (A− 1) (1− βz2)− ¡1 + 2 ¡1− βz2

¢
(A− 1)¢

βz (A− 1) (1− βz2)w
≥ 0

α0 =
2 (A− 1)− βzα1w

2 + (A− 1) (4 + βzα1w)
≥ 0

∂α1
∂A

≥ 0,
∂α0
∂A
≥ 0, ∂τ̄

∂A
≥ 0, ∂ē

∂A
≤ 0.

For all t, the equilibrium law of motion is

et+1 = ē− zd (et − ē) , (21)

τ t+1 = τ̄ − zd (τ t − τ̄) . (22)

where
zd ≡ α1w

2 + βα1w
∈ (0, z) .

Given any e−1, the economy converges to a unique steady state such that τ = τ̄ and e = ē following
an oscillating path and the constraint τ t ≤ 1 iff t=0 and e−1 > 1−α0

α1
, while τ t ≥ 0 never binds.

The proof is in the appendix. The parameter restriction under which the Proposition is stated
is a sufficient condition for the constraint τ t+1 ≤ 1 never to bind for t ≥ 0. When this constraint is
violated, the equilibrium policy functions may be discontinuous, making the analysis more involved.

The main findings are that

1. the Markov allocation implies higher steady-state taxation (τ̄ > τ∗) and lower output and
investment (ē < e∗) than the Ramsey allocation.

2. the Markov allocation implies less oscillations (i.e., a smoother tax sequence) than the Ramsey
allocation: zd < z.

The lack of commitment induces the planner to systematically “overtax” human capital ex post.
Agents anticipate that and respond by decreasing their investment. As a result, output is lower.
It is interesting to note that the steady-state Markov tax rate, τ̄ , can exceed 1/2, i.e., it can be
larger than the constant value of taxes that maximizes tax revenues and public good provision.
Specifically, this happens if A > 1 + 2+z(1−βz)

z(2+z(1+β)) , a threshold which decreases in β and z. In this
case, the benevolent planner chooses a long-run tax rate that is on the wrong side of the Laffer
curve. This is an extreme manifestation of the lack of commitment; if τ̄ > 1/2, the planner would
clearly like to reduce the steady-state tax rate. However, the planner can only control the current
tax rate and a one-period reduction of τ t would lead to even higher taxes in the following period,
resulting in an overall reduction of the current welfare.

The second result is to our knowledge new. It states that, due again to lack of commitment, the
Markov planner chooses, along a transition, an inefficiently smooth tax sequence. The intuition,
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which as in the analysis of the commitment case we will support with a formal analysis of distortion
smoothing (contained in Section 4.1), runs as follows. The Ramsey planner taxes agents heavily in
the first period, in order to extract revenue from the inelastic human capital of the old. This tends
to cause a large distortion on the investment of the young in the first generation. In order to keep
distortions smooth, the planner compensates high taxation in period zero by trying to promise low
taxation in period one. The Markov planner, however, is unable to honor her promises, and cannot
commit, in particular, to future taxes that are as low as the Ramsey planner can set. At time 0,
agents thus expect that taxes will not be so low in period one. Distortions are therefore larger for
any given τ0. The optimal behavior of a Markov planner in period 0 is therefore to set τ0 lower
than the Ramsey planner would, because such a choice counteracts to some extent the unavoidable
fact that the next government will choose too high a tax: it keeps effort at zero from being too low.
The same logic applies to later periods. So the tax sequence starts out lower and tends to be much
smoother. However, income, which we saw was constant in the commitment outcome, becomes
somewhat volatile here. In fact, using the law of motion for τ t, it is straightforward to show that

yt =
1

2
w2
µ
(1 + βz) (1 + z) (1− τ̄) + (1− zdβz)

z − zd
zd

(τ t − τ̄)

¶
, (23)

implying that income oscillates and is positively correlated with taxes.

4.1 Distortion smoothing under lack of commitment

Along the lines of the analysis in section 3.3 above, we can state a first-order condition of the
government that summarizes how the public-expenditure and effort wedges are traded off over time
when there is lack of commitment to future policy. In essence, the result is a condition which is very
similar, though not identical, to the one for the period-0 first-order condition for the government
with commitment.

To find the first-order condition, first state the government’s problem as a dynamic program
with the previous investment choice, et−1, as state variable:

W (et−1) = max
et,gt

(zet−1 + et)w − gt + v(gt) + βW (et)

subject to
η(et−1, et, E(et), gt, G(et)) = 0.

Here, E(et−1) is the policy rule for effort and G(et−1) is the policy rule for public expenditures.
Taking first-order conditions, we obtain

w − 2et + βW 0
e = λt(η2 +E0 (et+1) η3 +G0 (et+1) η5)

for the choice of et and
γg,t = λη4

for the choice of gt. Solving for λt from the first-order condition for et, we obtain

γg,t = Dtηt,4(w − 2e+ βW 0 (et+1)),

where

Dt ≡ 1

ηt,2 +E0 (et+1) ηt,3 +G0 (et+1) ηt,5
.
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Since the envelope theorem gives
W 0 (et) = zw − λtηt,1,

evaluated the following period this expression and the first-order condition for gt deliver the
“distortion-smoothing” condition specifying how trade-offs between wedges occur in the model
without commitment. It reads

γg,t = ηt,4Dt(γe,t − β
ηt+1,1
ηt+1,4

γg,t+1). (24)

Clearly, in our model, the left-hand side–the excess value of government funds, that is, the
marginal benefit of raising g–is constant at (A− 1) , implying that the right-hand side, the
marginal cost of raising g, has to be constant. Unlike the distortion smoothing that occurs under
commitment, it involves only the marginal cost of distorting current e (and its repercussion on
future public expenditures): the cost of distorting past effort choices are, for natural reasons, not
taken into account.

Finally, we note that (24) differs from the period-0 first-order condition from the commitment
problem, (19), only in how Dt is determined. The expression Dt determines a key component of
how the change in gt influences et, via the implementability constraint. Here, an increase in et
changes ηt exactly by 1/Dt, and this expression includes the total effect on how a change in et
would influence the future government behavior that feeds back to the current constraint (et+1 and
gt+1). In D0 of the commitment problem, in contrast, the current government can control future
decisions and the effects of future government behavior on the current constraint are partial–they
are derived keeping future constraints constant. Thus, whereas we have E0 (et+1) ηt,3+G0 (et+1) ηt,5
in Dt here, in D0 we just have η0,5

η1,1
η1,4
.

5 Stochastic government expenditure

Proposition 1 establishes that fluctuations in taxes and output are efficient. However, if e−1 = 0,
the optimal tax sequence is smooth. The latter observation may raise the concern that the result
is of limited practical importance, as it is unclear what counterpart the first period has in the
real world. The purpose of the section is to show that fluctuations do not hinge on the particular
incentives faced by the planner the first period. To make the point sharp, we consider economies
where e−1 = 0, implying that the planner has no opportunity to tax sunk investments in the
first period. The planner has full commitment power over future taxation, and can announce a
state-contingent tax plan. The first result is that oscillations arise when the value of the public
good (and, hence, the marginal benefit of taxation) is not constant over time. This result hinges,
however, on the assumed inability of the government to borrow and lend. When this is introduced,
the optimal tax sequence are again smooth. The second, more interesting result, is that the optimal
tax sequence has an oscillatory nature when the value of the public good is stochastic. This result
is robust to the introduction of public savings/debt.

We extend the model in the following direction. In period zero, the value of the public good
is A = Al. In the beginning of period 1, with probability p, A jumps to Ah > Al and stays there
forever; with probability 1 − p nothing happens then or later. We can regard this event as the
start of a war that makes public expenditure particularly valuable. For simplicity, we assume that
this shock is permanent, i.e., the war once started never ends. The extreme cases where p = 0
and p = 1 correspond to no uncertainty. In particular, p = 0 is the benchmark case of section 3,
whereas p = 1 is a simple case where the value of public good is not constant over time.
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The planner sets, at period zero, τ0 and a state-contingent tax plan, {τh,t, τ l,t}t>0 . The se-
quence {τh,t}t>0 is implemented if A = Ah, whereas the sequence {τ l,t}t>0 is implemented if the
productivity of the public good remains low, A = Al. The two-state specification is chosen to
simplify analysis. Exploiting Lemma 1, we can write the Ramsey problem as follows:

W (e−1) = max
τ0∈[0,1]

{Y0 (e−1, τ0) + V (τ0)} , (25)

V (τ0) = max
τ l,τh

n
Ỹ (τ0, τ

e
1) + β (pV (τh,1;h) + (1− p)V (τ l,1; l))

o
, (26)

V (τω,t;ω) = max
τω,t+1∈[0,1]

{Yω (τω,t, τω,t+1) + βV (τω,t;ω)} for t ≥ 1, (27)

where τ e1 ≡ pτh,1 + (1− p) τ l,1, ω ∈ {h, l} , and

Y0 (e−1, τ0) = (1 + (Al − 1) τ0) zwe−1,
Yω (τω,t, τω,t+1) = e (τω,t, τω,t+1) · (e (τω,t, τω,t+1) + wAω (τω,t + βzτω,t+1))

Ỹ (τ0, τ
e
1) = e0 (τ0, τ

e
1)

· (e0 (τ0, τ e1) + w (Alτ0 + βz (pAhτh,1 + (1− p)Alτ l,1))) .

Here, e0 (τ0, τ
e
1) denotes the optimal investment at zero, defined as

e0 (τ0, τ
e
1) =

1 + βz − (τ0 + βzτ e1)

2
w.

The value functions W and V, as well as the return functions Y0 and Y , are as in Lemma 1
(aside from the fact that V and Y here are defined as conditional on a particular realization of
A in period one). In particular, the continuation problem from period one onwards is identical to
the deterministic problem of section 3, since all uncertainty is revealed at that point. V (τ0) and
Ỹ (τ0, τ

e
1) are instead modified to account for uncertainty, in period zero, about the realization at

period one. Since we want to abstract from incentives for the planner to overtax in the first period,
we set e−1 = 0.

To simplify the analysis further, we restrict attention to parameters such that the constraints
that taxes are bounded between zero and one never bind. In this case, the first order conditions in
period zero are

τ0;
∂Ỹ

∂τ0
= 0

τ l,1;
∂Ỹ

∂τ l
+ β (1− p)V 0 (τ l,1; l) = 0

τh,1;
∂Ỹ

∂τh,1
+ βpV 0 (τh,1;h) = 0,

where we know, by the proof of Proposition 1 (see, in particular, equation 15), that

V 0 (τω,t;ω) = 2
¡
1− βz2

¢
(Aω − 1)− 2τω,t

¡
1− βz2

¢
(2A− 1) .

Solving the resulting system of linear equations yields:
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τ0 =
Al − 1
2Al − 1 − p

βz

2Al − 1 ((Ah +Al − 1) τh − (Al − 1))

τ l,1 =
Al − 1
2Al − 1 (28)

τh,1 =
Ah − 1
2Ah − 1 +

z (Ah −Al)

2Ah − 1 ·
Al (2Ah − 1) (1 + βz (1− p)) + βzpAh (Ah +Al − 1)
(2Al − 1) (2Ah − 1) (1− βz2)− βz2p (Ah −Al)

2 .

The first observation is that, conditional on the realization Al (peace), taxes are smooth after
the first period. More formally, τ l,t = τ∗l =

Al−1
2Al−1 for all t ≥ 1. This result depends on the particular

specification chosen where one of the two realization of the stochastic process coincides with the
productivity of the public good at time zero. Consider, next, the tax sequence conditional on the
realization Ah (war). In this case, τh,1 > τ∗h =

Ah−1
2Ah−1 , i.e., the government sets period-one taxation

above its steady-state level.11 Since, for t ≥ 1, the standard dynamics apply, i.e.,
τh,t+1 = τ∗h − z (τh,t − τ∗h) ,

then, the Ramsey allocation features tax fluctuations even in the absence of any incentive for the
planner to tax sunk investments in the first period (e−1 = 0). Why would the planner promise a
tax rate above the steady state when the war starts? The reason is intuitive. Conditional on war,
the generation born at time zero had invested more than future generations, since (i) taxation had
been set lower in the period zero because public good provision was less valuable and (ii) agents had
invested while attaching some probability to peace and low taxes occurring in future. Specifically,
e0 = el + βzAh−Al

2Al−1
pw
2 τh,1, where el is effort in case of peace. Thus, the marginal cost of raising

tax revenue for the Ramsey planner in period one is low. Even if she cannot “surprise” agents, the
planner then finds it optimal to promise high taxes in the event of a war. As in the benchmark case
when p = 0, this discourages investments from the generation born at one, creating the conditions
for optimal taxes to be low in period two, and so on.

Two particular cases are worth emphasizing. First, if z = 0, i.e., agents only work in the first
period and taxes distort their static labor supply, there is no scope for inducing oscillations after
the war starts. In this case, the Ramsey tax sequence is perfectly smooth after the first-period
upward jump. More formally, if z = 0, then, for all t ≥ 1, τh,t = τ∗h. Second, suppose that p = 1,
i.e., the war is perfectly anticipated by the government and private agents. Fluctuations do not
disappear in this case. The reason is that even if agents anticipate the increase in future taxation,
the government has an incentive to spend less in the period zero, since the marginal utility of the
public good is low, and the government cannot save. Thus, in period one, there is a larger inelastic
tax base, an an incentive to tax high initiating the fluctuations.

Finally, τ0 is also affected by the probability of a war. The comparative statics are somehow
involved. However, the intuition suggests that the government would like to impose a low taxation
on the first generation of young agent, in order to increase the tax base for taxation in the following
period, when the war increases the benefits from public expenditure.

11The denominator of the last term on the right-hand side term of the expression can be negative. However, recall
that we are restricting attention to the region of the parameter space such that taxes are strictly within the unit
interval for all times and realizations. When this restriction is taken into account, that denominator is unambiguously
positive, implying that τh,1 > τ∗h.
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To illustrate the effects more concretely, we propose a numerical example. We set β = p = 0.5,
z = 1, Al = 1.6 and Ah = 2. Since z = 1, if there are fluctuations, they are not dampening. In this
case (see Figure 1), the Ramsey sequence implies

τ0 = 0.154, τh,1 = 0.632, τ l,1 = 0.273.

In the case of war, taxes fluctuate between τh,t = 0.632 for t = 1, 3, 5, ... and τh,t = 0.035 for
t = 2, 4, 6, .... If there is no war, the tax rate remains constant at 0.273. Increasing the probability
of a war decreases τ0 monotonically: when p = 0, τ0 = 0.632, whereas when p = 1, τ0 falls to 0.031.
As the war becomes more likely, the government becomes more eager to accumulate resources for
the future. If the planner cannot accumulate assets, the only way it can shift resources to the
future is by reducing taxation in period zero, so as to enhance the human capital investment of the
generation born at zero.

As this discussion suggests, the constraint that the government cannot save is important. In
particular, the planner would like not to spend its budget in period zero, and accumulate it in the
event of a war. Would fluctuations survive if government debt/savings were allowed? We address
this question in the next subsection.
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Peace taxes

Figure 1. Taxes under war and peace, no saving, β = p = 0.5, z = 1, Al = 1.6 and Ah = 2, z = 1.

5.1 Government debt/savings

We now assume that the government can accumulate assets. We denote the stock of government
assets by q (negative q is debt). We rule out Ponzi schemes by assuming that from period one
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onwards, after uncertainty is resolved, an intertemporal budget constraint must hold. This means
that if the government enters period one with a positive stock of assets, it can spend the surplus on
additional public good provision. To the opposite, if it is indebted, it has to repay it by imposing
extra taxes. The government flow budget constraint is

qt+1 = (1 + r) (qt + τ t (et−1 + et)− gt) ,

where we assume that 1 + r = β−1.
As in the previous section, we assume that the productivity of the public good is Al in period

zero and either Al or Ah > Al thereafter. Also, we continue to assume that e−1 = 0. Since, at time
zero, the expected future marginal value of the public good, pAh+(1− p)Al, exceeds the marginal
value of the public good in period zero, Al, the government will never spend any tax revenue in
period zero, i.e., it will set g0 = 0. Using these facts, government assets in period one are simply
given by

q1 =
1

β
τ0we0.

Note that, if the government reaches period one with a surplus, it is indifferent as to when to spend
it. The reason is twofold. First, 1 + r = β−1, and, second, the marginal value of the public good is
constant. Without loss of generality, we will assume in this case that the government spends the
entire surplus in period one. This is just for notational convenience. Nothing would change in the
analysis if we assumed, for instance, that the government smooths out spending over time.

The Ramsey problem can be reformulated as follows

W (0) = max
τ0∈[0,1]

V (τ0) ,

V (τ0) = max
τ l,τh

n
Ŷ (τ0, τ

e
1) + β (pV (τh,1;h) + (1− p)V (τ l,1; l))

o
for t = 0,

V (τω,t;ω) = max
τω,t+1∈[0,1]

{Yω (τω,t, τω,t+1) + βV (τω,t+1;ω)} for t ≥ 1, ω ∈ {l, h} ,

where
Ŷ (τ0, τ

e
1) = e0 (e0 + w (τ0A

e
1 + βz (pAhτh,1 + (1− p)Alτ l,1))) .

Here, Ae
1 ≡ (pAh + (1− p)Al) is the expected value of A. The term τ0A

e
1 in Ŷ (τ0, τ l, τh) replaces

the term τ0Al in Ỹ (τ0, τ
e
1) in the case of no public savings. This is because taxes levied on the

young in period zero can now be used to finance public goods in period one when they are, in
expectation, more useful. Other than that the problem is identical to the case of no savings.

This fact emphasizes a general property of this model. Access to government debt is only useful
whenever the government has an interest in disentangling the timing of tax collection from that of
expenditure. In particular, whenever A0 < Ae

1 the planner is better off by accumulating surplus.
Conversely, whenever A0 > Ae

1 the planner would like to accumulate debt. If A0 = Ae
1 the planner

is indifferent, ex-ante, as to when to spend, and adding the government savings/debt does not
affect the planner’s expected utility. This illustrates that our results in section 3 (constant A) are
unchanged if the assumption of balanced budget is relaxed.

Continuing to focus on the case when no constraint on the choice of taxes binds, and proceeding
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as before leads to the following solution to the first-order conditions:

τ0 = (1 + βz)
Al + p (Ah −Al)− 1

2Ae
1 − 1

− βzp
Al +Ah + p (Ah −Al)− 1

2Ae
1 − 1

τh,1

−βz (1− p)
2Al + p (Ah −Al)− 1

2Ae
1 − 1

τ l

τ l,1 =
(Al − 1) (1 + z)− z (2Al + p (Ah −Al)− 1) τ0 − βz2p (Ah +Al − 1) τh,1

(1− βz2p) (2Al − 1)
τh,1 =

(Ah − 1) (1 + z)− z (Ah +Al + p (Ah −Al)− 1) τ0 − βz2 (1− p) (Ah +Al − 1) τ l,1
(1− βz2 (1− p)) (2Ah − 1) .

While more involved than in the absence of debt, these expressions are instructive. First, if
p = 1, the solution yields τ0 = τh,1 = τ∗h =

Ah−1
2Ah−1 , implying no dynamics. A perfectly anticipated

war does not, alone, induce fluctuations, as long as the government can save or borrow. Access to a
market for saving and borrowing enables the government to concentrate spending on public goods
to times when A is high (wars). Taxation, in this case, is the same as if A were at the high level
each period.

Consider now the case when 0 < p < 1. Now, we have τh,1 6= τ∗h and uncertainty triggers
dynamics. Interestingly, oscillations arise in this case even if the war does not materialize. Consider
the same numerical example as before. The Ramsey sequence now implies

τ0 = 0.315, τh,1 = 0.473, τ l,1 = 0.083.

In case of war, the tax rate fluctuates between τh,t = 0.473 for t = 1, 3, 5, ... and τh,t = 0.194 for
t = 2, 4, 6, .... If there is no war, the tax rate fluctuates between τ l,t = 0.083 for t = 1, 3, 5, ...
and τ l,t = 0.463 for t = 2, 4, 6, .... The government accumulation in the first period amounts to
q1 = 0.33. Comparing the cases with and without public savings/debt, it turns out that when the
government can save, taxation in period zero is higher: the government engages in “precautionary
savings” in case the war materializes. This is the opposite of the case without assets, when the only
way the planner could prepare for a war was by encouraging human capital accumulation through
low taxes. Taxes are smoother conditional on war, but more volatile conditional on peace.

Note that when 0 < p < 1, a market for safe lending and borrowing does not span all states
of the world–financial markets are still incomplete. As we will see in the next subsection, this
incompleteness if crucial for the existence of tax fluctuations that are not just a repercussion of the
period 0 tax hike.

5.2 State-contingent debt

Suppose that in the first period there are two state-contingent assets paying 1 unit of the consump-
tion good in the state of war (peace) and 0 in the state of peace (war). Let period-zero consumption
be the numéraire and define pω,t as the Arrow-Debreu price of the consumption good in period t
and state ω. The government budget constraint at time 0 is then

g0 +
∞X
t=1

X
ω

pω,tgω,t = τ0 (ze−1 + e0)w +
∞X
t=1

X
ω

pω,tτω,t (zeω,t−1 + eω,t)w. (29)

In comparison to the case of no state-contingent assets, the budget constraint now is collapsed into
one time-zero constraint only.
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Figure 1: Figure 2. Taxes under war and peace, with saving, β = p = 0.5, z = 1, Al = 1.6 and
Ah = 2, z = 1.

Letting P (ω) denote the probability of state ω, the objective function is

W (e−1) = (1− τ0) (ze−1 + e0)w − e20 +Alg0

+ΣωΣ
∞
t=1β

tP (ω)
¡
(1− τω,t) (zeω,t−1 + eω,t)w +Aωgω,t+j − e2ω,t

¢
= Alg0 +

∞X
t=1

X
ω

βtP (ω)Aωgω,t + (1− τ0) (ze−1 + e0)w − e20

+ΣωΣ
∞
t=1β

tP (ω)
¡
(1− τω,t) (zeω,t−1 + eω,t)w − e2ω,t

¢
. (30)

Since individual utility is linear in consumption, it follows that the Arrow-Debreu prices must be
given by the discounted probabilities, i.e., pω,t = βtP (ω). Since the preferences over public-good
provision are linear and the state-contingent prices equal discounted probabilities, it follows that
the planner will choose zero public good provision in case of peace, i.e., to concentrate all spending
in the state of war when the marginal value of spending is high. Hence, g0 = gl,t = 0∀t. It follows
that the left-hand side of the budget constraint (29) is given by

g0 +
∞X
t=1

X
ω

pω,tgω,t =
∞X
t=1

βtpgh,t (31)
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and that the discounted expected utility of public-good provision is given by

Alg0 +
∞X
t=1

X
ω

βtP (ω)Aωgω,t

= Ah

∞X
t=1

βtpgh,t

= Ah

Ã
τ0 (ze−1 + e0)w +

∞X
t=1

X
ω

pω,tτω,t (zeω,t−1 + eω,t)w

!
,

where we used the budget constraint (29) and (31) for the last inequality. Substituting the last
expression for the discounted expected utility of public-good provision into the objective function
(30), we obtain

W (e−1) = Ah

Ã
τ0 (ze−1 + e0)w +

∞X
t=1

X
ω

pω,tτω,t (zeω,t−1 + eω,t)w

!
+(1− τ0) (ze−1 + e0)w − e20 +ΣωΣ

∞
t=1β

tP (ω)
¡
(1− τω,t) (zeω,t−1 + eω,t)w − e2ω,t

¢
= (1 + (Ah − 1) τ0) (ze−1 + e0)w − e20

+ΣωΣ
∞
t=1β

tP (ω)
¡
(1 + (Ah − 1) τω,t) (zeω,t−1 + eω,t)w − e2ω,t

¢
.

As we see, the marginal value of raising funds in both states of the world is now Ah. From this
it follows that the optimal sequence of taxes must be identical to the one when there is a war for
sure (see the analysis in subsection 5.1 with debt and deterministic war). With state-contingent
assets and government debt, if e−1 = 0, then τω,t = Ah−1

2Ah−1 ∀ω, t, giving rise to no fluctuations. The
state and time tax sequence is used to finance high provision in the state of war and no provision
in the state of peace. Specifically, if public good provision were gh in the case of a war for sure, it
would be gh

p when the probability of a war is p and there are state contingent assets.
We conclude that state-contingent assets allow the government to do two things. First, spending

can be concentrated to the state when the value of the public good is highest (war). Second, the
distortion of taxes can be equalized across states since taxes collected in any state of the world can
be used to finance war spending.

The result that all spending occurs in wartime is, of course, due to the assumption of linear
preferences over public good consumption and would not extend to the case of strictly concave
utility. However, the result that taxes do not depend on the state would survive such an extension.
Our conclusion is thus that non-existence of complete market for state-contingent assets is key for
the result that optimal taxes are cyclical. The results are summarized in the table below.

No debt/savings Debt/savings only Complete markets
Constant A cycles only if e−1 > 0 only if e−1 > 0 only if e−1 > 0
Deterministic change in A cycles only if e−1 > 0 only if e−1 > 0
Stochastic A cycles cycles only if e−1 > 0

6 Conclusions

To be written.
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8 Appendix

This section has not been proofread.

8.1 Details of claims in section3.3

The partials are,

ηt,1 = − gtz

2 (zet−1 + et)
2 , ηt,2 = 1−

gt

2 (zet−1 + et)
2 −

βz2gt+1

2 (zet + et+1)
2

ηt,3 = − βzgt+1

2 (zet + et+1)
2 , ηt,4 =

1

2 (zet−1 + et)
, ηt,5 =

βz

2 (zet + et+1)

and

ηt,4
ηt−1,3
ηt−1,5

= −1
2

gt

(zet−1 + et)
2 , ηt,5

ηt+1,1
ηt+1,4

= −1
2
βz2

gt+1

(zet + et+1)
2

ηt−1,3
ηt−1,5

= − gt
zet−1 + et

,
ηt,1
ηt,4

= − zgt
zet−1 + et

.

Using this, we find that

Dt =
1

1− gt
2(zet−1+et)2

− βz2 gt+1
2(zet+et+1)

2 +
1
2

gt
(zet−1+et)2

+ 1
2βz

2 gt+1
(zet+et+1)

2

= 1

Now,

γg,t = β−1ηt−1,5Dt−1
µ
γe,t−1 −

ηt−2,3
ηt−2,5

γg,t−1 − β
ηt,1
ηt,4

γg,t

¶
+ ηt,4Dt

µ
γe,t −

ηt−1,3
ηt−1,5

γg,t − β
ηt+1,1
ηt+1,4

γg,t+1

¶
A− 1 = β−1

βz

2 (zet−1 + et)

µ
w (1 + βz)− 2et−1 + gt−1

zet−2 + et−1
(A− 1) + β

zgt
zet−1 + et

(A− 1)
¶

+
1

2 (zet−1 + et)

µ
w (1 + βz)− 2et + gt

zet−1 + et
(A− 1) + β

zgt+1
zet + et+1

(A− 1)
¶
,

as in (20).
For period zero,. we have

D0 ≡ 1

1− g0
2(ze−1+e0)2

− βz2g1
2(ze0+e1)

2 +
1
2βz

2 g1
(ze0+e1)

2

= .
1

1− g0
2(ze−1+e0)2

and

γg,0 =
1

2 (ze−1 + e0)

1

1− g0
2(ze−1+e0)2

µ
w (1 + βz)− 2e0 + β

µ
zg0

ze−1 + e0

¶
(A− 1)

¶
(32)

=

³
(1 + βz)w − 2e0 + βz g0

ze−1+e0 (A− 1)
´

³
2 (ze−1 + e0)− g0

(ze−1+e0)

´ (33)

=
((1 + βz)w − 2e0 + βzτ0w (A− 1))

(2 (ze−1 + e0)− τ0w)
(34)
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8.2 Proof of Proposition 2 (to be cleaned up)

The planner felicity is

Fd (et−1, τ t, τ t+1) = (zet−1 + e (τ t, τ t+1)) (1 + (A− 1) τ t)w − e (τ t, τ t+1)
2 ,

We guess that
τ t = T (et−1) = α0 + α1et−1. (35)

Given the guess, the investment decision is et = (1 + βz − (τ t + βz (α0 + α1et)))w/2, implying

et = I (τ t) =
(1 + βz (1− α0))w

2 + βzα1w
− w

2 + βzα1w
τ t

and

τ t+1 = T (I (τ t)) = τ̄ + zd (τ t − τ̄) ,

et+1 = I (T (I (et))) = ē+ zd (et − ē) ,

where

τ̄ =
2α0 + α1w (1 + βz)

2 + α1w (1 + βz)
, (36)

ē =
w (1 + βz) (1− α0)

2 + α1w (1 + βz)
, (37)

zd = − wα1
2 + βzα1w

(38)

The problem then admits the following recursive formulation:

Wd (et−1) = max
τ t
{Fd (et−1, τ t, τ t+1) + βWd (et)} , (39)

s.t. τ t+1 = α0 + α1et,

et =
(1 + βz (1− α0))w

2 + βzα1w
− w

2 + βzα1w
τ t.

Given the guess, the first-order condition for maximizing the RHS of the Bellman equation is

∂Fd
∂τ t

+
∂Fd
∂τ t+1

dτ t+1
dτ t

+ β
dWd (et)

det

det
dτ t

= 0,

where
∂F

∂τ t
= (zet−1 + e (τ t, τ t+1)) (A− 1)w − ((1 + (A− 1) τ t)w − 2e (τ t, τ t+1)) w

2
,

∂F

∂τ t+1
= −βz ((1 + (A− 1) τ t)w − 2e (τ t, τ t+1)) w

2

where we have used the fact that

∂et
∂τ t

= −w
2
,

∂et
∂τ t+1

= −βzw
2
,

Using the envelope condition, we obtain

W 0
d (et) =

∂Fd (et, τ t+1, τ t+2)

∂et
= (1 + (A− 1) τ t+1)wz.
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which can be expressed in terms of τ t using the constraints in (39). We can then can write the
first-order condition as

0 =
∂F

∂τ t
+

∂F

∂τ t+1

dτ t+1
dτ t

+ βW 0
d (et)

det
dτ t

0 = w

µµ
A− βzα1w

2 + βzα1w

¶
et − 2 (A− 1)w

(2 + βzα1w)
2 τ t + z (A− 1) et−1

¶
−w2 (1 + βz) (2 +Aβzα1w) + 2βzα0 (A− 1)

(2 + βzα1w)
2

Using the fact that, et =
(1+βz(1−α0))w
2+βzα1w

− w
2+βzα1w

τ t and the guess τ t = α0 + α1et−1, dividing
by w and collecting terms, this yields

0 =

µ
z (A− 1)−

µ
2A

(2 + βzα1w)
+ (A− 1)

¶
wα1

(2 + βzα1w)

¶
et−1

+
w (1 + βz)

2 + βzα1w

µ
2A (1− α0)

2 + βzα1w
− (1 + α0 (A− 1))

¶
In order for this condition to be satisfied for all et−1 we need,

0 = f (α1, β, z) = z (A− 1)−
µ

2A

(2 + βzα1w)
+ (A− 1)

¶
· wα1
2 + βzα1w

(40)

0 = g (α0, α1, β, z) =
2A (1− α0)

2 + βzα1w
− (1 + α0 (A− 1)) (41)

A solution for these equations (ignoring the roots that would generate instability) is: :

α1 =

p
1 + 4A (A− 1) (1− βz2)− ¡1 + 2 ¡1− βz2

¢
(A− 1)¢

βz (A− 1) (1− βz2)w
≥ 0

α0 =
2 (A− 1)− βzα1w

2 + (A− 1) (4 + βzα1w)

=
2A (A− 1) ¡1− βz2

¢− ³p1 + 4A (A− 1) (1− βz2)− 1
´

(A− 1)
³
2A (1− βz2) +

³p
1 + 4A (A− 1) (1− βz2)− 1

´´ ≥ 0
The non-negativity of α0 and α1 are established by standard algebra, since, in both the expres-

sions, the numerator and denominators are both positive.
Before concluding that our solution to the first order condition is optimal, we must consider the

constraints τ t ∈ [0, 1] . First, we note that since α0, α1 ≥ 0, the constraint τ t+1 ≥ 0, cannot bind
for any choice of τ t. Second, since α0, α1 ≥ 0 and I(τ t) is increasing, the highest possible τ t+1 arise
if τ t = 0. In this case,

τ t+1 = T (I (0)) = α0 + α1
(1 + βz (1− α0))w

2 + βzα1w
= 1− 2 (1− α0)− α1w

2 + βzα1w
= 1− 2 ·¡

z +A
¡
1− βz2

¢¢ ³p
1 + 4A (A− 1) (1− βz2)− 1

´
− 2Az (A− 1) ¡1− βz2

¢³p
1 + 4A (A− 1) (1− βz2)− 1

´³
2A (1− βz2) +

³p
1 + 4A (A− 1) (1− βz2)− 1

´´
≡ τm
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Now, we note that the numerator in the expression above is zero if A ∈
n
0, 1, z(z+1)

(1+β)z2−1
o
,while the

denominator is positive for all A > 1. To see the former, write¡
z +A

¡
1− βz2

¢¢ ³p
1 + 4A (A− 1) (1− βz2)− 1

´
= 2Az (A− 1) ¡1− βz2

¢→
p
1 + 4A (A− 1) (1− βz2) = 1 +

2Az (A− 1) ¡1− βz2
¢

(z +A (1− βz2))

0 =
³p

1 + 4A (A− 1) (1− βz2)
´2 −Ã1 + 2Az (A− 1) ¡1− βz2

¢
(z +A (1− βz2))

!2
→

0 = 1 + 4A (A− 1) ¡1− βz2
¢

−
¡
Aβz2 −A− 2A2z + 2Az − z − 2Aβz3 + 2A2βz3¢2

(z +A (1− βz2))2

0 = 4A2 (A− 1) ¡1− βz2
¢2 A ¡βz2 − 1 + z2

¢− z (1 + z)

(z +A (1− βz2))2
.

Furthermore, since

lim
A→1

(τm) = 0

lim
A→1

µ
dτm
dA

¶
= 1 + z > 0,

τm ≤ 1 for
1 ≤ A ≤ z (z + 1)

(1 + β) z2 − 1 , (42)

provided (1 + β) z2 > 1. If, conversely, (1 + β) z2 − 1 ≤ 0, τm ≤ 1 for any A ≥ 1. To summarize,
we have now shown that for any (out of equilibrium) τ t ∈ [0, 1], the constraint τ t+1 ∈ [0, 1] is not
binding along the equilibrium path, provided (42) or (1 + β) z2 − 1 ≤ 0 is satisfied. At time 0, the
constraint τa ≤ 1 binds, iff e−1 > 1−α0

α1
.

We show, next that
∂α1
∂A
≥ 0 and ∂α0

∂A
≥ 0.

To this aim, note first that

∂α1
∂A

=

p
1 + 4A (A− 1) (1− βz2)− ¡1 + 2 (A− 1) ¡1− βz2

¢¢
Aβz (A− 1) (1− βz2)w

where the denominator is positive. The numerator is also positive, since

1 + 4A (A− 1) ¡1− βz2
¢
>
¡
1 + 2 (A− 1) ¡1− βz2

¢¢2
,

which is equivalent to
4βz2 (A− 1)2 ¡1− βz2

¢ ≥ 0
which is always true (with the equality being strict as long as A > 1).
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Next, observe that

∂α0
∂A

=
2∆1p

1 + 4A (A− 1) (1− βz2)
³
(A− 1)

³
1− 2A (1− βz2)−p1 + 4A (A− 1) (1− βz2)

´´2
where

∆1 = 2A (A− 1) ¡1− βz2
¢ ¡
A
¡
1− βz2

¢− 1¢
+
¡
1 +A

¡
1− βz2

¢
(A− 2)¢ ³p1 + 4A (A− 1) (1− βz2)− 1

´
,

and

lim
A→1

∂α0
∂A

= 1− βz2 > 0.

Clearly, ∂α0∂A has the same sign as ∆1.Furthermore, at A = 1,∆1 = 0 and the derivative with respect
to A is

∂∆1
∂A

=
2
¡
1− βz2

¢
(3A− 2)∆2p

1 + 4A (A− 1) (1− βz2)

where

∆2 = 2A
¡
1− βz2

¢
(A− 1) + ¡A ¡1− βz2

¢− 1¢ ³p1 + 4A (A− 1) (1− βz2)− 1
´
.

Clearly, ∂∆1
∂A has the same sign as ∆2. Finally, ∆2 evaluated at A = 1 equals 0 and

∂∆2
∂A

=
2A
¡
1− βz2

¢2
(4A− 3) + ¡1− βz2

¢
(4A− 3)

³p
1 + 4A (A− 1) (1− βz2)− 1

´
p
1 + 4A (A− 1) (1− βz2)

> 0.

We have thus established that ∆2 is strictly positive for A > 1. Then, in the same range,

∂∆1
∂A

=
2
¡
1− βz2

¢
(3A− 2)∆2p

1 + 4A (A− 1) (1− βz2)
> 0,

and since ∆1 is zero at A = 1, also ∆1 is strictly positive. This establishes that
∂α0
∂A ≥ 0, with the

inequality being strict for A > 1.
T (et−1) ∈ (0, 1) , which in turn implies that neither the constraint τ t ∈ [0, 1] nor the constraint

et > 0 are ever binding.
We now establish that −zd < z. To establish the claim, note that

∂zd
∂A

= −
2
¡
1− βz2

¢ ³p
1 + 4A (A− 1) (1− βz2)− ¡1 + 2 (A− 1) ¡1− βz2

¢¢´
³p

1 + 4A (A− 1) (1− βz2)− 1
´2

βz
p
1 + 4A (A− 1) (1− βz2)

< 0,

implying, by the continuity of zd, that

−zd < − lim
A→∞

(zd) =
1−

p
1− βz2

βz
< z.

Next, we establish that ∂τ̄
∂A > 0. Note that

∂τ̄

∂A
= X · (J (A) +M (A))
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where

J (A) =
¡
1 +A (A− 2) ¡1− βz2

¢¢p
1 + 4A (A− 1) (1− βz2) > 0

M (A) = (A− 1)2 ¡2A ¡1− 2βz2¢− 1¢+ βA2z2
¡
2 (A− 1)βz2 − 1¢

and

0 < X ≡ 8
¡
1− βz2

¢
β2z2 (1 + z)³

2A (1− βz2) +
p
1 + 4A (A− 1) (1− βz2)− 1

´2p
1 + 4A (A− 1) (1− βz2)

·

·
³p

1 + 4A (A− 1) (1− βz2) (1 + βz)− βz (1 + z) + (1− 2A) ¡1− βz2
¢´−2

We show that
|J (A)| > |M (A)| .

This follow from the fact that

(J (A))2 − (M (A))2 = 4A4βz2 (A− 1)2 ¡1− βz2
¢3

> 0.

Since J (A) > 0, this establishes that ∂τ̄
∂A > 0.

Finally, we establish that τ̄ > τ∗ for A > 1 and βz > 0.First, note that

τ̄ − τ∗ =
A

(2A− 1)
N1 (A)

N2 (A)

where

N1 (A) = 2A (1 + z)
¡
1− βz2

¢
(A− 1)

− ¡A ¡1− βz2
¢
+
¡
z + βz2

¢¢ ³p
1 + 4A (1− βz2) (A− 1)− 1

´
,

N2 (A) = 2A (1 + z)
¡
1− βz2

¢
(A− 1)

− ¡(1 + z)−A
¡
1− βz2

¢¢ ³p
1 + 4A (1− βz2) (A− 1)− 1

´
.

We now establish that, for all A > 1, N1(A)
N2(A)

6= 0. Since N1(A)
N2(A)

is a continuous function of A, this

implies that, in the relevant range where A > 1, the difference τ̄ − τ∗ is either always positive or
always negative. Then, we show that τ̄ − τ∗ is zero when A = 1 and has a strictly positive limit as
A tends to infinity. Then, τ̄ − τ∗ > 0, and the result is established.

We find, first, all levels of A such that N1 (A) = 0. Rearranging terms in the expression of
N1 (A) yields

2A (1 + z)
¡
1− βz2

¢
(A− 1)

(A (1− βz2) + (z + βz2))
+ 1 =

p
1 + 4A (1− βz2) (A− 1) (43)

Squaring terms on both sides of (43), and rearranging terms, yields:

0 = 4A (A− 1)2 ¡1− βz2
¢2
z
A (2 + (1 + β) z)− (1 + βz)

(A (1− βz2) + (z + βz2))2
. (44)

The roots of this expression (and of (43)) are A ∈
n
0, 1+βz
2+(1+β)z , 1

o
, all being in the range [0, 1] .
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Considering, then, the denominator. The equation N2 (A) = 0 can be rewritten as

2A (1 + z)
¡
1− βz2

¢
(A− 1)

(1 + z)−A (1− βz2)
+ 1 =

p
1 + 4A (1− βz2) (A− 1). (45)

Again squaring both sides, and rearranging terms, yields:

4A2 (A− 1) ¡1− βz2
¢2
z
A (2 + z (1 + β))− (1 + z)

(1 + z −A+Aβz2)2
= 0

with roots, A ∈
n
0, 1+z
2+(1+β)z , 1

o
, that also solve (45) and are all in the range [0, 1] . Therefore, we

have established that the ratio N1(A)
N2(A)

is well-defined for all A > 1 and, moreover, N1(A)
N2(A)

6= 0.
Finally, we note that12

lim
A→1

(τ̄ − τ∗) = 0

lim
A→∞

(τ̄ − τ∗) =
βz
p
1− βz2

³
1 + z −

p
1− βz2

´
2
³
1 + βz −

p
1− βz2

´³
1− βz2 +

p
1− βz2

´ > 0.

This establishes, by the intermediate value theorem, the result that τ̄ > τ∗ for all A > 1.
Let us also check that the requirement for τ̄ > 1

2 , i.e., A > 1 + 2+z(1−βz)
z(2+z(1+β)) is consistent with

A ≤ z(z+1)
(1+β)z2−1 or (1 + β) z2 ≤ 1. In the latter case, the two conditions are obviously consistent. In

the former, we require the set A ∈
³
1 + 2+z(1−βz)

z(2+z(1+β)) ,
z(z+1)

(1+β)z2−1
i
to be non-empty. This requires

z (z + 1)

(1 + β) z2 − 1 − 1−
2 + z (1− βz)

z (2 + z (1 + β))

=
(1 + z)

((1 + β) z2 − 1)

¡
2
¡
1− βz2

¢
+ z
¢

z (2 + z (1 + β))
≥ 0,

which is satisfied whenever (1 + β) z2 ≥ 1.

8.3 Proof of equation (23)

yt = zet−1 + et

=
w2

2
(1 + βz) (1 + z)− w2

2

µ
z
τ (1 + zd)− τ t

zd
+
¡
1 + βz2

¢
τ t + βz (τ̄ − zd (τ t − τ̄))

¶
= +

1

2
w2 (1 + βz) (1 + z)− 1

2
w2
µ
z
1 + zd
zd

+ βz (1 + zd)

¶
τ − 1

2
w2
µ
− z

zd
+ 1 + βz2 − zdβz

¶
τ t

=
1

2
w2
µ
(1 + βz) (1 + z)− (1 + zd) z

zd
(1 + βzd) τ̄ + (1− zdβz)

z − zd
zd

τ̄ + (1− zdβz)
z − zd
zd

(τ t − τ̄)

¶
=

1

2
w2
µ
(1 + βz) (1 + z) (1− τ̄) + (1− zdβz)

z − zd
zd

(τ t − τ̄)

¶
12The range for limA→∞

³
τ̄ − A−1

2A−1
´
is derived by noting that this expression increases in β and z and thus finding

the limit as β, z → 0 and β, z → 1.
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8.4 Details of claims in section 5

The first order conditions in period zero are

τ0;
∂Ỹ (τ0, τ l, τh)

∂τ0
= 0,

τ l,1;
∂Ỹ (τ0, τ l,1, τh,1)

∂τ l,1
+ β (1− p)V 0l (τ l,1) = 0

1

2
βwz (1− p) (2 (Al − 1) e0 − w (Alτ0 + βzEAτ )) + β (1− p)V 0l (τ l,1) = 0,

τh;
∂Ỹ (τ0, τ l,1, τh,1)

∂τh
+ βpV 0h (τh,1) = 0,

1

2
βwzp (2 (Ah − 1) e0 − w (Alτ0 + βzτ e1)) + βpV 0h (τh,1) = 0.

where EAτ = pAhτh,1 + (1− p)Alτ l,1. Solving for τ0 yields,

τ0 = (1 + βz)
Al − 1
2Al − 1 − βpz

(Ah +Al − 1)
(2Al − 1) τh,1 − (1− p)βzτ l,1.

From the proof of Proposition 1) we have

V 0h (τh) =
w2

4
(B1h + 2B2hτh,1)

=
w2

4

¡
2
¡
1− βz2

¢
(Ah − 1)− 2

¡
1− βz2

¢
(2Ah − 1) τh,1

¢
V 0l (τ l) =

w2

4
(B1l + 2B2lτ l,1)

=
w2

4

¡
2
¡
1− βz2

¢
(Al − 1)− 2

¡
1− βz2

¢
(2Al − 1) τ l,1

¢
Rearranging terms and simplifying yields

τ0 = (Al − 1) 1 + βz

2Al − 1 − pβz
Ah +Al − 1
2Al − 1 τh,1 − (1− p)βzτ l,1,

0 = −1
2
βw2 (2Ah − 1) p

¡
1− (1− p)βz2

¢
τh,1

−1
2
β2w2z2p (1− p) (Ah +Al − 1) τ l,1

−1
2
βw2zp (Ah +Al − 1) τ0

+
1

2
βw2 (Ah − 1) p (1 + z) ,

0 = −1
2
β2w2z2 (1− p) p (Ah +Al − 1) τh,1

−1
2
βw2 (2Al − 1) (1− p)

¡
1− pβz2

¢
τ l,1

−1
2
βw2z (1− p) (2Al − 1) τ0

+
1

2
βw2 (Al − 1) (1− p) (1 + z) .
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This is a system of linear equations with solutions given in the text.
When the government can save, the first order conditions in period 0 are

τ0;
∂Ŷ (τ0, τ l, τh)

∂τ0
= 0

τ l;
∂Ŷ (τ0, τ l, τh)

∂τ l
+ β (1− p)V 0l (τ l) = 0,

τh;
∂Ŷ (τ0, τ l, τh)

∂τh
+ βpV 0h (τh) = 0,

Using the functional expressions this is

τ0 = (1 + βz)
EA − 1
2EA − 1 − βzp

Ah +EA − 1
2EA − 1 τh − βz (1− p)

Al +EA − 1
2EA − 1 τ l,1

0 =
1

2
βwz (1− p) ((Al − 1) 2e0 −w (EAτ0 + βz (pAhτh,1 + (1− p)Alτ l,1)))

+β (1− p)
w2

4

¡
2
¡
1− βz2

¢
(Al − 1)− 2

¡
1− βz2

¢
(2Al − 1) τ l,1

¢
0 =

1

2
βwzp (2 (Ah − 1) e0 − w (EAτ0 + βz (pAhτh + (1− p)Alτ l,1)))

+βp
w2

4

¡
2
¡
1− βz2

¢
(Ah − 1)− 2

¡
1− βz2

¢
(2Ah − 1) τh,1

¢
yielding the system in the text.
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