
Heterogeneous Quantal Response Equilibrium and

Cognitive Hierarchies1

Brian W. Rogers, Thomas R. Palfrey, and Colin F. Camerer2

Current Version November 25, 2008

1We are grateful to the National Science Foundation grants SES-0450712 and SES-0617820
for supporting this research. We thank audiences at Collège de France, New York University,
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Abstract

We explore an equilibrium model of games where behavior is given by logit response

functions, but payoff responsiveness and beliefs about others’ responsiveness are

heterogeneous. We study two substantively different ways of extending quantal response

equilibrium (QRE) to this setting: (1) Heterogeneus QRE, where players share identical

correct beliefs about the distribution of payoff responsiveness; and (2) Truncated QRE,

where players have downward looking beliefs, systematically underestimating others’

responsiveness. We show that the congnitive hierarchy model is a special case of

Truncated QRE. We conduct experiments designed to differentiate these approaches.

We find significant evidence of payoff responsive stochastic choice, and of heterogeneity

and downward looking beliefs in some games.

JEL classification numbers: C70, C91

Key words: experimental economics, game theory, cognitive hierarchy, quantal response

equilibrium, bounded rationality



1 Introduction

Finding a disciplined, empirically accurate way to incorporate limits on rationality has

been a central challenge in game theory. One approach,1 “quantal response equilibrium”

(QRE, McKelvey and Palfrey 1995) maintains the assumption of equilibrium, in that

beliefs are statistically accurate, but relaxes the assumption that players choose best

responses.2 A different approach, based on “cognitive hierarchy” (CH, Camerer, Ho, and

Chong 2004) theories, relaxes the equilibrium assumption, by assuming that players do

not correctly anticipate what others will do, but retains the assumption of best

responding to beliefs. QRE and CH approaches both generate statistical predictions in

which every strategy is played with positive probability (which obviates the need for

perfection refinements), and have been used successfully to explain deviations from Nash

equilibrium in many types of experiments. We introduce heterogeneity of ”skill” to

QRE, where skill (individual payoff responsiveness) and possibly beliefs about others’

skill levels varies across players. We show that CH is a limiting case of this family of

QRE models with skill heterogeneity.3

This paper makes a theoretical contribution and an empirical contribution. The

theoretical contribution is the introduction of skill heterogeneity and identifying a

formal and intuitve connection between QRE and CH. One version of these models is

the natural and direct generalization of QRE, Heterogeneous Quantal Response

Equilibrium (HQRE), where players share common and correct information about the

distribution of skill-types. But we also consider more general specifications where the

distribution of skill levels is not common knowledge. This is what provides the

connection to CH. In truncated HQRE (TQRE), beliefs are downward-looking, in that

1Learning models explore a different kind of rationality limit than the static models considered here
(see Camerer 2004, chapter 6).

2A purer interpretation is that players do best respond, but that their expected payoffs include a
disturbance term which is unobserved by the econometrician, but whose distribution is commonly known.

3The first paper to combine notions of noisy best reply, central to QRE, and downward looking beliefs,
central to CH, with the goal of explaining experimental data was Stahl-Wilson 1995.
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players believe other other players are less skilled than themselves. A limiting version of

TQRE, where all payoff responsive types perfectly best respond to their downward

looking beliefs is behaviorally equivalent to CH.

The empirical contribution is new experimental data from a variety of games to

analyze the differential predictions of QRE, HQRE, TQRE, and CH, comparing their

relative ability to explain data from the different games. While the empirical fits are

similar in the majority of games we study, there are some interesting differences that

shed light on the strengths and weaknesses of the different approaches.We find

significant evidence of heterogeneity (of both skill and cognitive levels) and significant

evidence of downward looking beliefs (as opposed to rational expectations), at least in a

subset of the games.

While the paper is nominally about two different behavioral theories of

limited-rationality in games, the basic questions that are addressed are fundamental,

especially with regard to questions about how to introduce heterogeneity in the analysis

of behavioral data from games. In some areas of game theory it has proved useful to

introduce special preference “types” (e.g., Kreps et al, 1982; Fudenberg and Maskin,

1986). The QRE and CH approaches are similar except the heterogeneity in types

comes from either imperfect response or limited strategic thinking. Expanding the QRE

approach to include heterogeneity creates a unified framework in which to compare

these approaches and see their differences and similarities. Furthermore, introducing

heterogeneity into QRE allows a concept of “gamesmanship” or skill which is absent in

equilibrium analysis (since, in equilibrium, all players are equally accurate and rational).

Allowing variation in skill opens up new questions: Why are some people more skilled?

How do skills develop with experience and teaching? These questions are not the focus

of our analysis, but are naturally raised by introducing heterogeneity.

The paper proceeds as follows. Section 2 defines SQRE. Section 3 defines and

proves existence of the rational expectations version, HQRE. Section 4 defines and
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proves existence of TQRE, and provides an approximation theorem that shows CH is a

limiting case of TQRE. Section 5 describes the experimental design, reports the

experimental data, and contains an empirical analysis of the fit of the models across

various games. An Appendix contains proofs of the theorems and a table summarizing

part of our experimental design.

2 The Framework

We explore a logit quantal response equilibrium model where players’ choice behavior

follow logit quantal response functions but there is heterogeneity with respect to the

responsiveness parameter.4 The structure of this heterogeneity is not necessarily

common knowledge. Instead, players hold subjective beliefs about the distribution of

other players’ types.

An important aspect of this framework, which we call Subjective Heterogeneous

Quantal Response Equilibrium (SQRE), is that expectations about choice probabilities

may be inconsistent with the actual choice frequencies of the other players. Models with

this property could prove useful in explaining behavior in one-shot games, or complex

games in which learning or other forces have not enabled beliefs to fully equilibrate to

actual choices. However, the particular form of inconsistencies allowed in SQRE still

permits it to be thought of as an equilibrium model: choice probabilities conditional on

type are common knowledge; it is only the perceived distribution of types that varies

across players.

More specifically, let λi ∈ [0,∞) denote the type of player i. We replace the rational

expectations assumption by an assumption of subjective expectations. According to this

model, the equilibrium strategies, which map types into choice probabilities, of all

players are common knowledge in equilibrium, but players may have different beliefs

4Our approach and main theoretical results are easily extended beyond the logit specification to the
general framework of regular quantal response equilibrium studied by Goeree, Holt and Palfrey (2005).
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about the type distributions. Denote the conditional subjective beliefs of player k about

the type of player i by F k
i (λi|λk), where we assume that each F k

i has support contained

in [0,∞), a smooth density function, fk
i , and finite moments. For example, fk

i could be

the density function for an exponential or log normal distribution. Note that beliefs

generally depend on a player’s own type.5 As we show below, this framework provides a

way to link heterogeneous QRE approaches with cognitive hierarchy approaches, which

share a similar feature of belief heterogeneity. This difference in beliefs results in

equilibrium strategies (and induced mixed strategies) that in general are different from

those that obtain with common beliefs in a heterogeneous logit QRE.

Let Γ = [N, {Ai}n
i=1, {ui}n

i=1] be a game in strategic form, where N = {1, ..., n} is

the set of players, Ai = {ai1, . . . , aiJi
} is i’s action set and ui : A → < is i’s payoff

function, where A = A1 × · · · × An. Let ∆Ai denote the set of probability distributions

over Ai and let ∆A = ∆A1 × · · ·× ∆An denote the product set of probability

distributions over Ai, i = 1, ..., n.

For any subjective belief about action profiles, σ̂ ∈ ∆A, player i’s expected payoff is

given by:

Ui(σ̂) =
∑
a∈A

(Πn
k=1σ̂k(ak)) ui(a).

and the (subjective) expected payoff to player i from using action aij ∈ Ai is:

Uij(σ̂) =
∑

a−i∈A−i

(Πk 6=iσ̂k(ak)) ui(aij, a−i).

With logit response functions, choice probabilities are logit transformations of

expected utilities, so if i has type λi and the actions by i have expected payoffs

5A special case is when F k
i (λi|λk) = Fi(λi) for all i, k, λi, λk. In this case subjectivity is absent and

we are left with only heterogeneous QRE, discussed later.
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Ui = (Ui1, ..., UiJi
), then the probability of i choosing action j as a function of λi is:

pij(λi; Ui) =
eλiUij

∑Ji

k=1 eλiUik

(1)

We call any measurable function pi : [0,∞) → ∆Ai a strategy for player i.

We next turn to the beliefs that other players k have about i’s choice probabilities

without knowing λi, but with their subjective beliefs F k
i about its distribution. Because

of the different subjective beliefs about the distribution of λi, players k and k′ can have

different beliefs about player i’s choice probabilities. However, we assume that any

differences in their beliefs about i’s mixed strategy are due only to differences in beliefs

about the distribution of λi. That is, the strategy profile, p = (p1, . . . , pn), is assumed to

be common knowledge (hence we refer to this as an equilibrium model), although the

structure of beliefs departs from the conventional common prior assumption. We denote

type λk of player k’s belief about player i’s choice probabilities by σk
i (pi). Therefore,

given i’s strategy, pi(·), the belief of type λk of player k that player i will choose action j

(i.e., before λi is drawn) is:

σk
ij(pi|λk) =

∫ ∞

0

pij(λi)f
k
i (λi|λk)dλi (2)

Given σi
−i(p−i|λi), the beliefs of type λi of player i about the profile of choice

probabilities of all players other than i, type λi of player i’s expected payoffs,

Uλi
i (σi

−i) = (Uλi
i1 , ..., Uλi

iJi
), are simply:

Uλi
ij (σi

−i) =
∑

a−i∈A−i

(
Πn

k 6=iσ
i
k(ak|λi)

)
ui(aij, a−i). (3)

In a SQRE with logit response functions, equations (1), (2), and (3) must all be satisfied

simultaneously. This leads to the following:
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Definition 1 p∗ is a Subjective Heterogeneous Logit Equilibrium if:

p∗ij(λi) =
eλiU

λi
ij (σi

−i(p
∗|λi))

∑Ji

k=1 eλiU
λi
ik (σi

−i(p
∗|λi))

for all i = 1, ..., n, j = 1, ..., Ji and λi ∈ [0,∞).

This definition reflects the idea that in SQRE players have rational expectations

about strategies (that is, a player’s behavior conditional on his type λ), but may have

different beliefs about the distribution of mixed strategies, which are induced by

different beliefs about the distribution of types λ. That is, the beliefs in SQRE are

subjective and do not necessarily come from a common prior model. We refer to this an

equilibrium in exactly the same sense as a Bayesian equilibrium. In standard definitions

of Bayesian equilibrium (see for example Geanakoplos 1994, p. 1461), beliefs are type

contingent and there is no requirement of a common prior model of beliefs.6

SQRE is a general framework in that there is little that constrains the extent of

heterogeneity and subjective beliefs. In what follows, we consider a number of ways of

imposing constraints on SQRE, which are relevant from an empirical standpoint. In

addition, though, we are able to specialize SQRE in ways that reduce to more standard

models of utility-based choice, namely Quantal Response Equilibrium and Cognitive

Hierarchy. We also establish a connection between these models beyond simply taking

some sort of “convex combination” of the two. More generally, the question of how to

introduce heterogeneity into strategic models is a question of great concern. Since QRE

and CH take very different approaches to this issue, the more general framework has the

potential to benefit from ingredients of both models.

There is a substantial body of research on which we build. On the one hand, a

number of papers have considered various specific ways of extending QRE to allow for

6In fact, the entire theoretical analysis of this paper could be done using Bayesian equilibrium, because
the logit QRE is itself a particular form of Bayesian equilibrium with iid payoff disturbances that follow an
extreme value distribution. Heterogeneity in λ, simply means that the distribution of payoff disturbances,
in particular, the variances of those distubances, can vary across players. However, we did not take this
route because it would needlessly create more notation.

6



both heterogeneity and subjectivity (see footnote 6 below). In fact, the basic insight that

QRE could be extended to to allow for heterogeneity across individuals was presented in

the original formulation of McKelvey and Palfrey 1995. On the other hand, precursors

of the CH model date at least to Stahl and Wilson 1994. Following their work, a number

of authors developed “level-k” models which are closely related to CH (see footnote 10

below). An important difference between those models and CH is that CH assumes that

players have accurate beliefs about the relative frequencies of those below themselves in

the hierarchy, whereas most level-k formulations assume players look only one step

down. Goeree and Holt 2004 develop a model of “noisy introspection” that can be

viewed as incorporating the idea of downward-looking beliefs into a QRE-like model.

However, the method and generality with which we combine QRE and CH is novel, and

allows us to understand in a clearer way the relationships between the two approaches.

3 Eliminating Subjectivity and QRE

In this section we consider the special case of SQRE corresponding to the assumption of

rational expectations of players’ type distributions. That is, we eliminate the element of

subjectivity from SQRE, leaving only heterogeneous QRE, or HQRE. From this model,

it is straightforward to see that a limiting case in which the heterogeneity in types

(which is common knowledge in the absence of subjectivity) vanishes reduces to the

standard logit QRE.

In particular, we now require that F k
i = Fi for every i, k ∈ N , so that the

distributions of each player’s type is common knowledge. I.e., there is no subjectivity in

beliefs.

Each player is independently assigned by nature a response sensitivity, λi, drawn

from a commonly known distribution, Fi(λi), obeying the same assumptions as above.

The assumption in HQRE is that Fi(λi) is common knowledge, but i’s type, λi, is
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private information known only to i. Therefore, given i’s profile of choice probability

functions, pi(·), the ex ante probability i chooses action j (i.e., before λi is drawn) is:

σij(p) =

∫ ∞

0

pij(λ)fi(λ)dλ (4)

Following Harsanyi (1973), we call σi = (σi1, . . . , σiJi
) i’s induced mixed strategy, which is

common knowledge in HQRE. As in SQRE, strategies, p, are common knowledge, and

now the distributions of types are common knowledge as well. Given σ−i, the induced

mixed strategy profile of all players other than i, i’s expected payoffs,

Ui(σ−i) = (Ui1, ..., UiJi
), can be expressed as:

Uij(σ) =
∑

a−i∈A−i

(
Πn

k 6=iσk(ak)
)
ui(aij, a−i). (5)

In a heterogeneous quantal response equilibrium with logit response functions, equations

(1),(4), and (5) must all be satisfied simultaneously. This leads to the following

Definition 2 p∗ is a Heterogeneous Logit Equilibrium if:

p∗ij(λi) =
eλiUij(σ(p∗))

∑Ji

k=1 eλiUik(σ(p∗))
for all i = 1, ..., n, j = 1, ..., Ji and λi ∈ [0,∞).

This captures the idea that in HQRE players have rational expectations about the

distribution of mixed strategies, and these will then be self-fulfilling given the commonly

known distribution of profiles of quantal response functions. Therefore, like Nash

equilibrium, the solution to the problem is a fixed point of a mapping from choice

probabilities to choice probabilities. The Appendix proves existence of HQRE for the

logit case, using a fixed point theorem.

Theorem 1. In finite games, a Heterogeneous Logit Equilibrium exists.

Proof: See appendix.
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Note that if each Fi(λi) has a single mass point,7 then the heterogeneity in types

becomes degenerate. If, in addition λi = λj for all i, j, HQRE collapses to standard

(homogeneous) logit QRE.

4 Truncated Subjectivity, Best Response and CH

This section considers specializing the general framework of SQRE in a different

direction. In particular, we begin by introducing a specific kind of subjectivity, called

truncated expectations, which constrains the extent of subjectivity allowed in the general

model. The idea is that players have accurate beliefs about the relative proportions of

types that are lower than some bound, but are either unable to imagine the existence of

higher types in the population or do not believe that such types exist. This “imagination

bound” can be type-dependent. When the type distributions in SQRE take a discrete

form, this truncation allows us to tie together heterogeneity in payoff sensitivities and in

accuracy of beliefs. A limiting case in which all players (except for a random type)

become perfectly payoff sensitive then reduces to the Cognitive Hierarchy (CH) model.

4.1 Truncated expectations and bounded imagination

Since SQRE is quite general, precision in applying it must come from additional

restrictions on heterogeneity and subjective beliefs (preferably empirically-plausible

ones).8 We do this by introducing truncated rational expectations : Players act as if they

are not aware of the existence of types who are more rational than some maximum upper

bound, and this upper bound may depend on their own type. Given their truncated

7While the assumptions of the Fi above preclude this case, it can be approximated arbitrarily closely
by Fi that do satisfy the assumptions.

8Earlier papers have considered variations of subjective HQRE. McKelvey, Palfrey, and Weber (2000)
consider an HQRE model of self-centered subjective beliefs where players have different λi’s and believe
every one else is exactly like themselves. Weizsacker (2003) considers a version where the players still
have point beliefs, but these beliefs are not necessarily self-centered.
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beliefs, they form expectations by integrating over their perceived type distribution.

Denote the upper bound on player i’s imagined types by θi(λi), where θi(·) is

commonly known. We assume that θi(λi) is strictly increasing and uniformly continuous

in λi and for each i there exists θ̄i such that θi(λi) ≤ θ̄iλi for all λi. The beliefs of type λk

of player k about λ−k are rooted in the true distribution, F−k, but normalized to reflect

the missing density. That is, for λk > 0, the subjective beliefs of k about the type of

player i is given by F k
i (λi|λk) = Fi(λi)/Fi(θk(λk)) for λi ∈ [0, θk(λk)] and F k

i (λi|λk) = 1

for λi ≥ θk(λk). This is truncated HQRE, or TQRE. Note that as θi →∞ for all i, the

upper bound on λ is lifted and the model converges to the standard HQRE model.

The truncation, θi(λi) can be interpreted as type λi of player i’s imagination. Since

θi(λi) is finite, this is a model of bounded imagination, in the sense that for any type λi

of player i, all λ−i-types beyond a certain threshold, θi(λi), are unimaginable in the

sense that i assigns zero probability to all those higher types. Notice that since θi(λi) is

increasing, then players who are more skillful in the sense of payoff responsiveness (i.e.

higher λi) necessarily also have more accurate expectations, in the sense that their

beliefs are closer to the true distribution F . Types for which θi(λi) ≈ 0 are almost

completely unimaginative in the sense that they believe all other players are nearly

random. Hence these very low types will act approximately as if they are applying the

principle of insufficient reason to form expectations about the other players’ strategy

choices (as do the level-1 types in the cognitive hierarchy model), and then quantal

respond to these beliefs. If θi(λi) ≤ λi, then we say that players are self-limited, because

they cannot imagine types with higher λ than their own. Proving existence of TQRE

requires a slightly different proof than HQRE because different λ-types have different

beliefs about the other players.

Theorem 2. In finite games, a Truncated Heterogeneous Logit Equilibrium exists.

Proof: See appendix.
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There are a number of reasons why truncated beliefs represent a reasonable manner

of constraining belief heterogeneity. One rationale is that players with a low value of λ

who can imagine players with higher λ, and compute what those other players will do,

will generally want to switch to the higher-type behavior. There is also a significant

body of evidence from the psychology literature indicating that people are often

overconfident about their relative skill.9 A third rationale is computational complexity:

If there are cognitive costs to computing expected payoffs, those costs increase as players

have more other types to consider. The benefits from more imagination—the expected

payoff differential from imagining what a wider range of types will do—are likely to fall

as λ rises, so the truncated expectations assumption can be seen as a reduced-form

model of cost-benefit calculations which lead players to ignore information that is both

hard to process and not too costly to ignore.

4.2 Discretized TQRE: A connection between QRE and CH

In this section we establish a formal equivalence between a version of TQRE and CH.

4.2.1 Truncation and Heterogeneity in CH

CH introduces heterogeneity of player types of a much different kind than HQRE. In CH

there is a discrete distribution f(k) of players who do k steps of thinking, so k indexes

strategic sophistication. The choice probabilities for a k-step player i choosing strategy j

are pij(k). A 0-step player randomizes over her (finite) number of strategies Ji, so

pij(k) = 1/Ji for all j. Note that these players do not form beliefs or even attend to

their payoffs; their presence is just assumed to get a hierarchical process started in a

simple way.

Truncation of beliefs in a similar way to TQRE (albeit relative to beliefs about the

9Kahneman and Tversky (1973) first studied overconfidence, and much work has followed, e.g.
Camerer and Lovallo (1999) and Santos-Pinto and Sobel (2005).
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distribution of a much different parameter) is the central feature of the cognitive

hierarchy (CH) model of Camerer, Ho and Chong (2004). Players who do k ≥ 1 steps of

thinking form truncated beliefs about the fraction of h−step types according to

gk(h) = f(h)/
∑k−1

n=0 f(n) for all h < k and gk(h) = 0 for all h ≥ k. In this specification,

players do not imagine that any others are at their level (or higher), so, in the notation

of the TQRE, they effectively have θ < 1. All positive-step thinkers best respond given

their beliefs, so in a two-player game,10 pij(k) = 1 iff

aij = argmaxa

∑k−1
h=0 gk(h)

∑J−i

m=1 pim(h)ui(a, a−im)).11 The expected choice probabilities

for player i implied by the CH model are given by pij =
∑∞

k=0 pij(k)f(k).

Camerer, Ho and Chong (2004) assume f(k) is Poisson and estimate the mean of

the distribution using data from more than 100 normal-form games. Other types of

hierarchical models have been explored as well. Nagel (1995) and Stahl and Wilson

(1995) were the first to use strategic hierarchies to study dominance-solvable “beauty

contest” games and matrix games, respectively. In Nagel’s approach k−step players

think all others do k − 1 steps of reasoning (i.e., gk(h) = I(h, k − 1) where I(x, y) is an

identity function equalling one if x = y and zero otherwise). Stahl and Wilson’s

limited-step types have the same one-step-below beliefs as in Nagel, but they also

permit equilibrium types and “worldly” types who maximize against the empirical

distribution of play. Players in these models are typically modeled as using quantal

responses instead of best responses.12

10The expressions are more cumbersome to write out with n-player games because the probabilities of
other players’ types have a multinomial distribution with many terms. Roughly speaking, CH models
become hard to compute as the number of players increases, while QRE models, which require finding a
fixed point, become more difficult to compute as the number of strategies increases.

11If more than one action is a best response they are assumed to randomize equally across all best
responses.

12Recent applications of this approach include Costa-Gomes and Crawford (2006), Crawford and
Iriberri (2007b), and Crawford and Iriberri (2007a). The approach is also used to analyze Swedish
lottery and experimental data by Ostling et al (2007) and box office reviews of unreviewed movies by
Brown, Lovallo and Camerer (2007)

12



4.2.2 Differences and Similarities between CH and TQRE

The general form of TQRE is different from CH in three distinct ways. First, the

maximum “imagined” type of other players could be equal to, greater than, or less than

a player’s actual type (depending on θi), and this could be a second source of

heterogeneity, whereas in all the CH and related approaches the imagination parameter

for all players is strictly less than 1.13 Second, levels of rationality are indexed by λ in

TQRE, rather than k, so that types correspond to increasing payoff responsiveness

rather than strategic sophistication. Third, in TQRE, all types exhibit some degree of

randomness in response, reflecting the stochastic choice modeling. In CH all players

with k ≥ 1 best-respond, so the only source of stochastic choice behavior is buried in the

0−level types.

In spite of these major differences between the two models, there are a number of

important similarities between the TQRE and CH approaches. First, a central feature of

both models is heterogeneity in types. Second, both models incorporate stochastic

behavior. Third, they share an important type in common: the bottom of the food

chain (k = 0 or λ = 0); and these lowest types are in the support of the beliefs of all

(other) types. Fourth, both models assume there is a limit to the rationality of the other

players, and this limit is monotonically increasing in type. Fifth, in both approaches,

there is heterogeneity of beliefs as well as heterogeneity of types, and these are

correlated: higher types have more accurate beliefs. These beliefs move in the direction

of rational expectations about f(λ) (or f(k)) as λ (or k) increases.14 Finally, all players

are overconfident in the sense that they underestimate the gamesmanship (be it

sophistication or responsiveness) of the other players.

13The Stahl-Wilson (1995) and Costa-Gomes and Crawford (2006) specifications include other types
that do not correspond to levels in the thinking hierarchy. If the maximum imagined type is always less
that one’s own type, then the model’s solution can be computed recursively, as in CH. However, if θ = 1,
so that players are aware that others share their level of thinking, the model must be solved using fixed
point methods.

14Full convergence (in λ) to rational expectations would require limλ→∞ θi(λ) = ∞.
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4.2.3 The formal connection between TQRE and CH

In this section we show that by placing two restrictions on TQRE, for any CH model

there exist distributions of types in TQRE that lead to behavioral predictions that are

essentially equivalent to CH. By essentially equivalent, we mean two things. First we

mean that the the equivalence is in terms of approximations that can be made

arbitrarily close; second, the approximating equilibria in TQRE are unique.

To make this approximation, we first consider distributions such that the set of λ

values is discrete, Lγ = {0, γ, 2γ, ..., kγ, ...}, with grid size γ. A player of type k, is called

a level k player, and has response parameter λ = kγ. We fix the distribution over k, so

that the probabilities of types are f = {f(0), f(1), ...f(k), ...}. This is simply an HQRE

specification with discrete λ-types.

The first restriction is θi(λ) = k
k+1

λ for all i,λ ∈ Lγ. That is, players recognize only

(and all) lower types, but otherwise have correct beliefs about the distribution. In this

version of TQRE, level 0 players randomize uniformly, for any value of γ. Level 1

players quantal respond using λ = γ · 1, assuming all other players are type 0. Level 2

players quantal respond (using λ = γ · 2), assuming all other players are type 0 or type

1, with perceived probabilities f(0)
f(0)+f(1)

and f(1)
f(0)+f(1)

, respectively. Higher-level types are

defined analogously.

If we let γ →∞, then all k > 0 types have unboundedly large values of λ, so their

choice behavior approaches best response. By effectively removing the stochastic choice

component (except for the random k = 0 types), this converges to a generalized version

of CH in which the type probabilities have the probabilitiy distribution

{f(0), f(1), ...f(k), ...}. The second parametric assumption is that f(k) follows a Poisson

distribution.

The formal connection between TQRE and CH is asymptotic in γ, and we stress

that the result applies only in the limit as the grid size becomes large.15 In particular,

15For finite values of γ the model can be viewed alternatively as either a downward looking version of
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for almost all games and almost all values of τ , the Poisson distribution parameter, the

aggregate choice probabilties implied by the γ − TQRE model converge to the aggregate

choice probablilities of CH. This equivalence is stated more formally, as follows.

Fix τ . Denote the CH choice probability that level k of player i chooses action j by

pτ
ijk, and denote the γ − TQRE choice probability (and f distributed Poisson with

parameter τ) that type λ = γk of player i chooses action j by pγ
ijk. Denote the expected

CH choice probability of player i choosing action j by pτ
ij =

∑∞
k=0 pτ

ijkf(k) and the

expected γ − TQRE choice probability of player i choosing action j by

pγ
ij =

∑∞
k=0 pγ

ijkf(k). Denote ∆τ,γ =
∑n

i=1

∑Ji

j=1(p
τ
ij − pγ

ij)
2.

Theorem 3: Fix τ . For almost all finite games Γ and for any ε > 0, there exists γ

such that ∆τ,γ < ε for all γ > γ.

Proof: See appendix.

Figure 1: All of the models considered are special or limiting cases of subjective HQRE.
The relationships among the models are depicted in a “family tree.”

SQRE or a quantal response version of CH.

15



As illustrated in Figure 1, one can identify a “family tree” generated from SQRE by

imposing additional restrictions. When all subjectivity takes the form of truncation at a

player’s θi(λi), we have TQRE. From TQRE there are two branches to follow. If we

send θ →∞, then subjectivity vanishes, producing the rational expectations version,

HQRE. From there, a limiting distribution that places all mass at one value of lambda

corresponds to standard QRE. Following the other branch from TQRE corresponds to

discretizing TQRE so that λ takes on a countable set of values,

Lγ = {0, γ, 2γ, ..., kγ, ...}. Sending γ →∞, and assuming a Poisson distribution on F (k)

then yields the standard CH model.

Another interesting special case of TQRE is when θi(λi) = λi and γ →∞. The

former restriction means that 1-step (k = 1) players are best-responding to a mixture of

choices by their own types and some random (0-step, λ = 0) types. Under these

restrictions, in games with strict Nash equilibria, if F (0) is small enough (there are too

few random types to induce the QRE types away from the Nash strategies), and γ →∞
(the QRE types best respond), the model is a “noisy Nash” model which has been used

in previous applications as a benchmark that illuminates the empirical importance of

quantal response behavior.16

5 Experimental evidence

5.1 Games and design

We explored the fit of different HQRE and CH models in 17 complete-information

normal form games, and one game with information asymmetry (discussed separately in

Section 5.3 below). Table V in the Appendix presents the payoff matrices of all 17

games and the relative choice frequencies from our data. The data from the row and

16See, for example, McKelvey and Palfrey (1992), El-Gamal, McKelvey and Palfrey (1993), and Fey,
McKelvey and Palfrey (1996)
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column roles are combined in the symmetric games.

Before describing the games from our experiments, we first highlight some

qualitative features of how QRE and CH behave more generally. Even when Nash

equilibrium makes a pure strategy prediction, it is nearly always the case with

experimental data that many non-Nash equilibrium strategies are played with positive

probability. The random component of response, which is the central feature of QRE,

can help to describe such data. But more than simply adding a stochastic element to

choice, the equilibrium effects of noisy response are what make QRE particularly

interesting. This is what allows QRE to help explain, for instance, the behavior in

asymmetric pennies games in which the row player plays “Up” more frequently when his

payoff from (“Up”,“Left”) increases (see, e.g., Ochs (1995) and Goeree, Holt and Palfrey

(2003)). Another example is the Traveler’s Dilemma, in which each of two players earns

the minimum of their two announced strategies from an interval, plus a bonus, R > 0,

for the lower announcer. Experimental data show a strong effect of lower

announcements as R increases (see Capra, Goeree, Gomez and Holt (1999)), while Nash

predicts no effect. QRE is consistent with this trend because higher R means that being

the higher announcer is more costly, and so those strategies are played less frequently,

which implies that the opponent has a further incentive to lower his strategy, and so

forth. On the other hand, CH is not an equilibrium model, and does not incorporate

random choice (except for level 0s). One case in which CH tends to predict well is in

situations where it is natural to think in terms of iterated best response, such as

“Beauty Contest” games, in which the goal is to announce nearest to, say, two thirds the

average of all players’ announcements. One reason to be interested in combining the

theories of QRE and CH is to study a model that might benefit from both of these kinds

of effects relative to Nash equilibrium.

We now outline the complete information games and highlight some of the aspects

of QRE and CH in this setting. One game is an “unprofitable” game (Morgan and
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Sefton, 2002) in which maximin strategies do not form an equilibrium, yet guarantee the

same payoffs as equilibrium strategies. Twelve games are affine transformations of

games created by Stahl and Wilson (1995) (hereafter SW) to fit models of iterated

strategic thinking (which are precursors to CH that include more types). We changed

some design details about how the games were presented, in part to see how robust the

patterns of play were to such details, and to avoid focal points.17

These games were chosen because there is a high proportion of Nash play in some of

the games in the original SW sample, but the CH model cannot fit those data because

the Nash strategy is not reached by iterations of thinking steps with best response (see

Camerer, Ho and Chong, 2004). These games are interesting to study since one of our

goals is to identify strategic aspects in which some models make better predictions than

others. Game 8 from SW is a good example.

A B C Data QRE CH

A 11, 11 59, 91 51, 51 0.17 0.11 0.33

B 91, 59 27, 27 51, 43 0.20 0.25 0.33

C 51, 51 43, 51 53, 53 0.63 0.64 0.33�
 = 1.05 � = 0.0

S-W 8

Table I: Game 8 from SW, along with empirical choice frequencies and the optimal pre-
dictions of QRE and CH.

Table I shows the payoff matrix of our game based on SW 8. The three columns

following the payoff matrix list the empirical choice frequencies and the predictions of

17The main difference is the payoff transformation. This was done to eliminate possible focal payoffs,
such as 0 and 100, that appear in the original SW games. Instead, our payoffs are scaled so that all entries
are two-digit numbers. We also included 3 games that were neither symmetric nor 3x3. Another difference
is the matching protocol. We implemented a standard random matching procedure, whereas SW match
each choice against the empirical distribution of others’ choices. Also, we paid subjects exactly according
to the payoff tables instead of using the lottery procedure of SW. Finally, our games were presented
sequentially, without the possibility of changing choices in previous games, whereas SW allowed subjects
to revise all decisions before submitting their choices.
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QRE and CH, based on their fitted parameter values. We find an optimal λ∗ = 1.05,

which generates predictions that are close to the observed play. In contrast, the best

fitting parameter for CH is τ ∗ = 0.0, with corresponding uniformly random behavior.

That is, no other parameterization of CH fits better than random choice, and the model

is not consistent with the relative choice frequencies in our data in this sense. As stated,

the reason for this relates to the fact that equilibrium strategies can not be reached

through a process of iterated thinking, whereas the empirical choice probabilities show a

strong tendency towards equilibrium, as evidenced by the relatively large value of λ that

we estimate in QRE. Recall that QRE converges to a Nash equilibrium as λ increases

and players become completely payoff responsive.

Four games involve “cloning”—presenting the same pure strategy more than once.

These games are included because QRE and CH models can respond differently to the

addition of cloned strategies. It is well-known that in stochastic choice models, splitting

a single strategy into two equivalent strategies increases the predicted probability of

play (the two split strategy frequencies are generally higher than the single strategy

frequency) unless some hierarchical structure is imposed.18 This property can lead to

different predictions in QRE and CH approaches, since a cloned strategy does not

necessarily receive more weight in CH (except for 0-level players) because players are

assumed to best respond, rather than quantally respond, in CH.

One of our games with cloned strategies is asymmetric matching pennies, where

“down” is cloned for the row player and “right” is cloned for the column player, creating

a 3× 3 game. The payoff matrix is given in Table II, along with observed choice

18In multinomial logit modeling this property is called the “red bus, blue bus” problem. This term
comes from early transportation applications predicting whether commuters would drive or take a bus
to work. The choice between {drive,bus} and {drive,red bus, blue bus} can be different if choice is
stochastic. For example, if people choose randomly then there is a 1

2 probability they will take the bus
in the first choice set and a 2

3 probability of taking the bus in the second choice set. A large literature on
hierarchical models with nesting has emerged to take care of this problem, by treating the choice between
{drive,bus} as a top-level choice and the choice between {red bus, blue bus}, conditional on choosing bus,
as a second-level choice (where P (bus) = P (redbus) + P (bluebus)).
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L R R Data QRE CH

U 50, 10 10, 20 10, 20 0.78 0.51 0.73

D 10, 20 20, 10 20, 10 0.10 0.24 0.14

D 10, 20 20, 10 20, 10 0.12 0.24 0.14

Data 0.71 0.22 0.07

QRE 0.33 0.34 0.34
�
 = 0.12

CH 0.50 0.25 0.25 � = 0.90

Cloned Matching Pennies

Table II: The matching pennies game where “bottom” is cloned for the row player and
“right” is cloned for the column player, along with empirical choice frequencies and the
optimal predictions of QRE and CH.

frequencies, and the predictions from QRE and CH calculated at the best fitting

parameter values. Notice the reversal in prediction quality of the two models relative to

SW 8. QRE consistently overestimates the frequency of cloned strategy play.19 In

addition, the data show too much “up” and “left” play relative to Nash equilibrium, a

phenomenon that the CH model does a better job of accounting for, due partly to the

fact that these strategies are best responses to the uniform play of level 0’s.

Another game with cloned strategies is the “Joker game” of O’Neill (1987), which

was originally designed to allow a clean test of minimax play. The payoff matrix is

depicted in the lower right of Table V, where the first strategy (the joker card) has been

cloned for the row player. Notice that the row player’s frequency of the joker strategy is

14%, and the column player’s choice frequency of the joker strategy is 38%, both below

the Nash equilibrium probability of 40%, which is predicted by QRE. The predicted

change from Nash to CH depends on the value of τ . At the pooled maximum likelihood

estimate, these probabilities are 23% and 32%, respectively. The empirical frequencies

are also lower than what was observed in the original un-cloned O’Neill experiment

(36% and 43%, respectively), where both QRE and CH correctly predict the column

19In this game, CH also overestimates the amount of cloned play, but it is not significant, and it is a
much smaller magnitude than the error of QRE.
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player’s choice frequency to be above the Nash equilibrium level of 40%.

Before proceeding to a more comprehensive analysis of our data, we briefly

summarize the design features. The experimental sessions took place at Caltech and

UCLA in April, 2004. There were four sessions, each consisting of 25 rounds of the

betting game and one shot each of the 17 matrix games, with each ordering of the two

parts done twice. The sessions had 16, 18, 20, and 20 subjects each, resulting in a total

of 1210 observations in the matrix games20 as well as 1850 observations of the betting

game, discussed later. Subjects consisted of undergraduate students in the two

institutions, and were randomly selected to participate in the experiments. Upon

arrival, students were seated at random locations in the lab. Once in the lab,

instructions were read aloud for everyone to hear, and all subsequent interactions took

place only through the computers. During the phase of 17 matrix games, subjects were

randomly and anonymously rematched after each decision, and the same procedure was

used during the 25 repetitions of the betting game in order to minimize possible

repeated game effects. Average payoffs were $7.50 for the matrix games and $8.95 for

the betting game, resulting in an average total payoff of $21.45 after including a $5.00

showup fee. Sessions lasted approximately 2 hours.

5.2 Complete information games

The first focus of our analysis is on estimation of the QRE, HQRE with a uniform

distribution of λi, Poisson TQRE, and a Poisson CH model for the complete-information

games. All four models are estimated separately for each normal-form game, as well as

pooling data across games and constraining parameters to be the same for all games.

Table III summarizes the estimation results for the complete-information games.

Each column lists the best-fitting parameter value(s) and negative log likelihood for a

20Due to technical problems, one session is missing data from games 3, 4 and 17, resulting in a reduction
of 3 · 16 = 48 observations.
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particular model. The parameterizations are as follows: QRE has a single λ∗ (i.e.,

HQRE with a single mass point at λ∗); Poisson-CH has a mean number of levels, τ ;21

the distribution of types in HQRE has a uniform distribution over the interval

[Λ− ε/2, Λ + ε/2]; TQRE is discretized with grid size γ and Poisson parameter τ (i.e.,

the probability that λi = kγ is f(k) = τke−τ

k!
, and a level k player has beliefs truncated at

kγ). QRE is nested in HQRE, so we can test for significance of heterogeneity under the

maintained hypothesis of rational expectations. CH is nested in TQRE, so we can test

for rejection of the constrained model (CH).

We use maximum likelihood to estimate the parameters of the models and assess

their qualities of fit. Each model makes a unique statistical prediction in each game as a

function of its parameter(s). At the aggregate level, our data consists of group-level

choice counts for each strategy of each game. Denote the empirical choice count of

strategy j for player i in game g by cijg, and denote model M ’s prediction of the

frequency at parameter value ρ by fM
ijg(ρ). We can express the log likelihood of model M

as a function of ρ by

ln LM(ρ) =
17∑

g=1

∑
i∈Ng

Jg
i∑

j=1

cijg ln fM
ijg(ρ). (6)

Maximizing LM(ρ) allows us to estimate the parameter(s) for each model. The results

from this exercise appear near the bottom of Tabe 3, in the row marked “Pooled,” to

indicate that a single parameterization is estimated across all games. In addition, we

estimate the parameters separately for each of the 17 games, simply by taking the

likelihood function to consist only of the terms corresponding to strategies from a

particular game. That is,

ln LM(ρ, g) =
∑
i∈Ng

Jg
i∑

j=1

cijg ln fM
ijg(ρ). (7)

21In Camerer, Ho and Chong (2002), more flexible distributions with up to six free parameters were
estimated. This led to only very slightly better fits than the Poisson distribution.

22



These results occupy the bulk of the table.

The first two columns of Table III are important for assessing the fits of the models.

The “random” log likelihood is the the likelihood that results from a model that

assumes every player randomizes uniformly in every game, so that the choice frequencies

for player i in game g are simply 1/Jg
i . This number represents a lower bound on the

quality of fit (recall all models include uniformly random behavior as a special case).

The “empirical” log likelihood results from a (hindsight) model that assigns to every

strategy its empirical frequency, that is, f e
ijg =

cijg∑
j′≤J

g
i

cij′g
. This is the model that results

in the best possible fit to the aggregate data.

Random Empirical
neg Log L  -log L  -log L -log L -log L -log L

1 Unprofitable 81.30 73.12 10.19 73.65 0.06 75.97 0.35 3.73 73.12 0.07 0.13 75.96

2 Cloned MP 81.30 52.34 0.90 58.39 0.12 71.72 0.90 58.39 0.12 0 71.72

3 Cloned SH (Low 51.96 46.50 0.44 46.72 0.15 46.74 0.50 0.62 46.67 0.15 0.3 46.73

4 Cloned SH (Hi) 51.96 40.18 1.00 41.91 0.18 41.88 0.89 1.40 40.65 0.19 0.29 41.88

5 SW 1 81.30 39.55 3.10 40.92 0.13 41.51 0.17 2.66 39.93 0.15 0.23 40.51

6 SW 2 81.30 46.00 5.59 46.03 0.13 46.75 5.59 46.03 0.13 0 46.75

7 SW 3 81.30 53.26 0.72 63.26 0.07 73.94 0.72 63.26 0.08 0.16 73.63

8 SW 4 81.30 55.02 1.96 56.11 56.40 1.96 56.11 — 56.40

9 SW 5 81.30 79.27 0.00 81.30 0.14 80.50 0.00 0.00 81.30 0.15 0.3 80.40

10 SW 6 81.30 79.54 1.27 79.69 0.05 80.86 0.11 2.81 79.54 0.05 0.1 80.85

11 SW 7 81.30 73.69 0.67 73.73 73.73 0.67 73.73 — 73.73

12 SW 8 81.30 70.76 0.00 81.30 0.98 73.25 0.02 51.30 78.30 1 1.5 73.23

13 SW 9 81.30 54.30 1.01 60.94 0.08 66.56 1.01 60.94 0.08 0 66.56

14 SW 10 81.30 73.12 13.90 77.35 0.42 73.17 0.15 7.13 73.31 0.44 0.88 73.15

15 SW 11 81.30 73.81 0.83 73.82 0.17 74.55 0.17 0.93 73.81 0.18 0.36 74.52

16 SW 12 81.30 66.81 0.94 67.02 0.03 72.94 0.16 0.87 66.81 0.04 0.07 72.70

17 Cloned Joker 86.88 77.28 0.83 81.08 0.16 83.62 0.82 81.07 0.17 0 83.62

Sum 1329.00 1054.55 — 1103.21 — 1134.08 — — 1092.96 — — 1132.34

Pooled — — 0.53 1239.26 0.10 1192.00 0.11 1.57 1164.41 0.12 0.24 1182.95

TQRE

Matrix Game Estimates

Game Description
QRECH HQRE

Table III: Game 8 from SW, along with empirical choice frequencies and the optimal
predictions of QRE and CH.

There are several findings implied by the estimates in Table III. First, while the

parameter values for each model are reasonably similar across games, all models have

one or more games with outlying values. For example, two QRE λ estimates are infinite
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(Nash equilibrium)22 and four CH τ values are either zero (corresponding to random

choice) or implausibly high (above 10).

QRE will produce large estimates of λ for games where play is close to Nash

equilibrium, and in fact looking at the QRE estimates in Table III gives a way to

quantify how well Nash equilibrium performs, if that is a question of interest. Except for

the outliers where λ = ∞, the difference in λ estimates across games is hard to interpret

directly, since a given change in λ will produce changes in behavior that depend on the

spread of game-specific payoffs. The game-dependent interpretation is different for CH,

where τ represents the mean number of iterated steps of thinking carried out in the

population when computing best responses. A priori, one might expect the estimates to

be more stable across games, if players are indeed “types” that apply the same reasoning

to all these games, but this is clearly not the case. This is partly due to the fact that the

likelihood surface is often discontinuous in τ , since a small change in the population can

induce the best response for some types to simultaneously switch to a different action.

Second, and related to the existence of “outlier” estimates of λ and τ , we reject the

constrained model, where the parameters are the same across all 16 games. This can be

seen in the table by comparing the likelihoods in the last two rows, marked “Sum”

(unconstrained) and “Pooled” (constrained). The decline in fit is substantially worse for

CH relative to QRE. The log of the the likelihood ratio versus the random model

declines from 199 to 149 for both QRE and HQRE. This decline is much greater for CH,

where it falls from 226 to 90. Thus, while CH provides the best fit when game-specific

parameters are estimated, it provides the worst fit if the parameters are constrained to

be constant across games. The large improvement in fit for CH when allowing τ to be

game-specific is puzzling. On the one hand it suggests that differences in levels of

reasoning across games may be important behaviorally, but on the other hand it

22For these two cases, we cannot estimate the Uniform HQRE model. Instead we estimate a two point
distribution, with probability q at 0 and 1− q at λ. In both cases we estimate q̂ = 0, λ̂ = ∞.
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appears that for some games (such as SW8) it is simply a poor model of behavior.

Third, once rational expectations is assumed, type-heterogeneity appears to be only

a minor factor in these games. Comparing QRE and HQRE, we fail to reject the QRE

model for every game. The separately estimated mean of the uniform distribution in the

HQRE models, Λ, are within .02 of the estimated λ̂ in the homogeneous QRE model in

all games, and the estimated width of the uniform is exactly 0 (no variance) in 4 cases

and equal to Λ̂ (maximum variance, conditional on Λ̂) in 8 cases. However, in none of

the games where we estimate positive variance is the fit significantly different from 0 at

the p = 0.05 level. The bottom line is somewhat different in the pooled estimation,

where we can reject homogeneity of λi at very high significance (p < 0.001). However,

even here the improvement in the value of the log likelihood function is quite small (less

than one-half of one percent improvement).

A fourth observation, also related to heterogeneity, concerns the TQRE model.

While the comparison of QRE and HQRE estimates suggest heterogeneity is a minor

factor under the maintained assumption of rational expectations, heterogeneity emerges

as an important factor if we assume a structure of “downward looking” beliefs. In 10 of

the 17 games, TQRE improves over CH, and in 15 of 17 games TQRE improves over

QRE. We also find that in 7 of the games we estimate γ = ∞. This is interesting

because TQRE incorporates both QRE and CH features, and at least in some cases the

estimates show that there is no positive effect (as far as likelihoods) to adding a

stochastic choice element to the standard CH model. However, for 3 of these 7 games,

the homogeneous QRE model fits as well as or better than CH. Overall, our results

indicate that a combination of “strategic” heterogeneity and stochastic choice are

significant factors in explaining behavior in these games, and a downward looking belief

structure helps explain behavior in some of the games.

Fifth, despite their important structural differences, the differences in game-by-game

fits of the different models are small in magnitude for most games. The QRE and CH fits
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differ by five or more likelihood points in only five of 17 games. Not surprisingly, TQRE

also fits about as well as both QRE and CH, and slightly better in many cases, since it

contains structural elements of both models. Our prior expectation was that the models

would be widely separated in many of these games, but they are generally not. The

surprise here is not that the models differ, but that they differ relatively little in most of

these games. This is in stark contrast to the pooled estimation, where the models based

on stochastic choice outperform the CH model quite dramatically. This suggests a

robustness of the stochastic choice models that is absent from pure best-reponse models.

Table III shows that in many of the games we studied QRE and CH have

surprisingly small differences in their qualities of fit. To see this relationship in another

way, consider Figure 2. Each point corresponds to a single strategy from one of the 17

matrix games. The horizontal axis plots empirical choice frequencies for the strategies,

and the vertical axis plots the predicted choice frequencies from the models at the

pooled parameter estimate. QRE predictions are shown in black and CH in gray. For a

perfect fitting model, like the “empirical” model shown in Table III, all points would fall

on the 450 line, shown in heavy black. Of course, both QRE and CH show substantial

deviations from this line. Both models are also “biased” in the direction of

under-predicting extreme frequencies. That is, the models put too much weight on

strategies that are empirically played the least often, and too little weight on strategies

that are played the most often. This can be seen by looking at the solid and dashed

lines, which show the best fitting lines to the scatter plots from tho models. Both lines

have positive intercept and slope less than unity. The R2 for the QRE scatter is 0.56,

while for CH it is 0.46, so that the simple linear relationship explains more of the

variance in predicted frequencies for QRE. Perhaps most interestingly, the fitted lines

are almost identical, and can barely be distinguished in the figure (they differ only

slightly toward the upper right).

Finally, another regularity in the data, which is discussed in more length in Camerer
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Figure 2: Each point represents one strategy from one of the complete information games.
Empirical choice frequencies are plotted on the horizontal axis, and predicted frequencies
from pooled estimates of the models are on the vertical axis. QRE is shown in black,
and CH in gray. The heavy black line is the 450, which corresponds to a perfect fit, and
the solid and dashed lines are the fits to the QRE and CH scatters. The fits are almost
identical, and in both cases are flatter than the 450.

et al. (2006), concerns the “better response” feature commonly associated with the

QRE family of models. Besides rational expectations, the essence of the QRE approach

(and its HQRE and SQRE relatives) is payoff-responsive stochastic choice.23 We find

that fitted choice probabilities of the CH model also tend to exhibit this property

empirically although it is not guaranteed (for example, it is violated in SW game 8)

because it is not part of the model specification. Given that the data exhibit stochastic

payoff responsiveness, one would conjecture that a necessary condition for a behavioral

model to fit behavioral data from a specific game is that this monotonicity in choice

probabilities must arise for some parameter values. Indeed the CH model satisfes this

feature for at least some parameters for almost all the games we studied here, and fit

data badly only in games where this was lacking. On the other hand, the parameter

values for which this property holds in CH can vary widely across games. This might

help explain why our attempt to fit the CH model to the pooled data was so much less

23QRE models with this property are called ”regular”. See Goeree et al. (2005).
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successful than the pooled estimation of the models that incorporate quantal response

behavior directly.

5.3 The betting game and learning

We also studied a zero-sum betting game with asymmetric information over four states

used by Sonsino, Erev and Gilat (2001) and replicated by Sovik (2004).24 The game is

shown in Table IV. Player 1 has two information sets, {A,B} and {C, D}. Player 2 has

three information sets, {A}, {B, C}, and {D}. Note that if the state is A or D, player 2

knows the state with certainty. The prior on the states is uniform. Players choose

whether to “bet” or “not bet”. If both players bet, their payoffs are determined as in

the top panel of Table IV. If at least one player opts out, then there is an outside option

yielding an expected payoff of 36.

A B C D

Player 1 67 7 55 19

Player 2 3 63 15 51

Empirical A B C D

Betting Player 1

Frequencies Player 2 5.5% 96.7%

CH A B C D

Betting Player 1
�
 = 3.09

Frequencies Player 2 2.3% 97.7% neg Log L = 1073.5

QRE A B C D

Betting Player 1
�
 = 0.23

Frequencies Player 2 12.9% 78.7% neg Log L = 1051.8

TQRE A B C D

Betting Player 1
�
 = 2.34 �=1.1

Frequencies Player 2 4.8% 95.2% neg Log L = 1024.3

HQRE A B C D

Betting Player 1 �=0.23 �=0

Frequencies Player 2 12.9% 78.7% neg Log L = 1051.8

46.7%

16.3%

46.7%

19.1% 43.4%

50.9%

24.7% 37.1%

Betting Game

38.0%

Payoffs

24.7% 37.1%

60.4%

28.5%

44.7%

41.2%

Table IV: The betting game payoffs, empirical betting frequencies, and model estimates.

24Because neither of those papers have been published, we use data from new experiments we conducted.
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The Betting Game allows us to move beyond the scope of the games studied above

by considering settings with private information.25 In fact, the informational structure

of the game allows it to be solved via iterated steps of eliminating dominated strategies.

In this sense the game is one in which the different levels of CH-type agents will have

easily-classified decision rules. Moreover, looking ahead to Figure 3, which plots the

QRE and CH predictions of betting frequencies at the various information sets, it is

clear that this game generates substantial separation in these two theories. In

particular, notice that QRE predicts at least as much betting in information set BC as

in CD for all parameter values, whereas the opposite is true of CH.

This game tests the “Groucho Marx Theorem” (Milgrom and Stokey, 1982)—the

idea that privately-informed players should never agree to a zero-sum bet in equilibrium.

With these payoffs, player 2 loses by betting on A, and wins by betting on D. As a

result, although a CH 1-step risk-neutral player 1 will bet if her information is {A,B}
(thinking she is equally likely to win 31 or lose 29, relative to the expectation of the

outside option), in equilibrium she will never win since a rational player 2 will know the

state if it is A, and won’t bet. Hence if player 1 guesses that player 2 is rational, she

won’t bet if her information is {A,B} because she deduces that she will never win the

31 and might lose 29. By similar logic, if player 2 is rational, thinks player 1 is rational,

and thinks that player 2 thinks she (player 1) is rational, she can deduce that player 1

won’t bet if player 1’s information is {A, B}; player 2 therefore will not bet if her

information is {B, C}, since she can only lose by so doing. One more step of iterated

reasoning leads player 1 to not bet if her information is {C, D}. So there will be no state

in which both players agree to bet, if players are sufficiently confident about rationality

of others, and about others’ perceptions of rationality.

However, Sonsino et al (2001) and Sovik (2004) find that players do bet, even after

25Carrillo and Palfrey 2007 analyze a related game with asymmetric information and study the impli-
cations of QRE and CH, among other models, for behavior in their setting.
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many periods of experience. In most of the Sonsino treatments, however, the marginal

incentive is quite low; because they ran many periods, they used a low per-period

conversion rate from experimental currency to Israeli Shekels (at stake was roughly 2.4

US cents per observation). In early periods a surprising fraction of player 2’s bet when

they are sure to lose in {A} (around 20%) or don’t bet in {D} when they are sure to

win (around 20% do not bet). This game was therefore included with some design

changes to test the robustness of betting to higher incentives and other changes.

The main design change is that players who choose not to bet play a

mixed-equilibrium game with expected value of 36 instead. This helped control for

possible demand effects favoring betting, and also approximates the psychological value

of betting with playing a mixed-equilibrium game in which the outcome is also

uncertain.26

The second panel of Table IV presents aggregate betting rates in each information

set for our data. Notice first that in all non-degenerate information sets, there is a

substantial amount of betting, in contrast to the Nash prediction of no betting, reached

through iterated deletion of dominated strategies. Second, in the two information sets

where Player 2 has a dominant strategy, that strategy is selected about 95% of the time.

This contrasts with previous results in which, as mentioned, the error rate in these

information sets is closer to 20%. Third, the betting rates tend to increase when going

from information set A to AB to BC to CD to D, reflecting the higher levels of

sophistication required to eliminate betting in the latter information sets.27 Given the

observed behavior, betting is empirically suboptimal in every information set other than

D, where betting is a dominant strategy. Moreover, the observed betting rates are

strictly decreasing in the empirical expected cost of betting across information sets. For

26Sonsino et al. (2001) also included one treatment in which there was a small fixed payment for not
betting, which did not reduce betting rates. A fixed payment treatment is a step in the right direction
but does not control for a taste for gambling or risk-preference.

27The only exception is the comparison between BC and CD, which is not statistically significant.
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instance, we observe the most betting in BC, about 45%, and betting here has an

expected cost of less than one point (each point is worth one cent).28

The bottom five panels of Table IV show that maximum likelihood estimates for the

four models we consider, and the corresponding predicted betting frequencies for each

information set.29 Looking at the estimates for CH and QRE (third and fourth panels,

λ̂ = 0.23, τ̂ = 3.09) it is clear that their qualitative predictions for the betting game are

much different. While both models can account for positive amounts of betting in all

information sets, QRE is able to match Player 1’s behavior closely, but predicts too

much noise for Player 2, in the sense that QRE predicts too much betting in state A and

not enough betting in state D. CH, on the other hand, captures behavior of Player 2 at

information sets with dominant strategies, but under-predicts betting in AB and

over-predicts betting in CD for Player 1. The correspondences for QRE and CH are

plotted in Figure 3. It is clear from the figure that QRE is unable to capture the high

rate of betting in state D, whereas in CH this frequency converges to 1. However, QRE

does a better job of predicting the relative ordering of betting frequencies. In particular,

the betting rate in BC is always higher than the betting rate in CD for QRE, a feature

that holds in our data. Yet the CD betting rate is higher in CH for all values of τ . This

reason that QRE is able to capture this feature of the data is that for low λ, players

optimize against a nearly uniform distribution of play, in which case betting in BC has

higher expected payoff then betting in CD. As λ increases, the betting rate in BC is

determined by the relative betting rates in AB and BC. Since that difference is

relatively small, the betting rate in BC remains higher than that for CD, which is

characterized by the larger difference in betting rates between BC and D, the latter of

28An anomaly in our data is that, by chance, the percentage of times state A was realized was 19.8%
which is significantly less than 25%.

29The estimation is done representing the Betting Game in behavior strategies. We also estimated
the game in mixed strategies where, in all cases, the fit is (weakly) worse. The representation does
not affect the predictions of CH because of the best response property, but in all other models, where
quantal-response is an element, the representation does make a difference.
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which is quite large. TQRE is able to retain this feature since it incorporates QRE-like

features, although pure CH cannot since relative betting rates are closely related to

orders of thinking in the hierarchy. It is also interesting to note that QRE selects an

equilibrium where Player 2 bets with strictly positive probability in all information sets,

whereas CH selects the equilibrium corresponding to iterative deletion of dominated

strategies.

The best-fitting model in terms of likelihood is TQRE, the model that nests both

QRE and CH. Notice that TQRE retains most of the goodness-of-fit to Player 1’s

behavior from QRE, while allowing the extreme predictions of CH for Player 2’s

dominant strategies. Both CH and QRE are rejected in favor of the hybrid model.

Finally, we estimated the HQRE with a uniform distribution of types, as with the

complete information game. The maximum likelihood estimate is Λ̂ = 0.23, ε̂ = 0, so the

constrained (homogeneous λ) QRE model is not rejected.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1 2 3 4

0.2

0.4

0.6

0.8

1

AB

BC

D

CD

A
A

AB

BC

CD

D

QRE CH

Figure 3: Correspondences for betting frequencies by information set for QRE (left) and
CH (right).

One advantage of running the Betting Game in 25 repeated rounds per session is

that we are able to look at changes in behavior over time (as do Sonsino et al (2001) and

Sovik (2004)). Figure 4 shows betting rates across time for both players in a four-period

moving average. As with the Sonsino et al. (2001) and Sovik (2004) results, our data

show that betting is common and is slow to be extinguished by learning. However, our

32



0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Match

B
et

 F
re

q
u

en
cy A

A or B

B or C

C or D

D
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initial betting rates are significantly lower than Sonsino et al (2001), showing more levels

of sophisticated reasoning, a difference due perhaps to our attempt to balance the

design. We fit versions of QRE and CH in which the parameters λ and τ drift up over

time, as a reduced-form way of characterizing learning, since greater parameter values

correspond to play that is closer to Nash equilibrium. In QRE we estimate an initial

λ0 = 0.55 with a time trend of 0.012, which results in a negative log likelihood of 1083.5,

an improvement of less than two points over the fixed λ model. Allowing for the time

trend generates a larger improvement in CH. We estimate τ̂ 0 = 2.5 with a time trend of

0.017, which has a corresponding negative log likelihood of 1061.6, an improvement of
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about twelve points. These results reinforce the central conclusion above, that despite

their structural difference the QRE and CH share some basic commonalities.

6 Conclusion

The QRE approach combines Nash equilibrium with Luce’s (1959) stochastic utility

model. Players have rational expectations, but “better-respond”—choosing strategies

with higher expected payoffs more often—rather than necessarily best-responding with

the highest expected-payoff strategy. The CH approach goes in a different direction;

players iterate reasoning in discrete steps with some players doing more steps of iterated

reasoning than others. In contrast to QRE, in CH (and related level-k models), players

of all (positive) levels always choose best responses given their beliefs, but beliefs are

incorrect. Both models have had success explaining deviations from Nash equilibrium in

many experimental data sets, and are also generally consistent in those cases where the

Nash model fits well (Goeree and Holt, 2001; Camerer, Ho and Chong, 2004).

This paper generalizes QRE by incorporating skill-hetereogeneity: some players

better respond better than other players. With rational expectations, this leads to

HQRE, existence is established, and it is applied to data. By relaxing rational

expectations, and allowing subjective beliefs about the distribution of skill, one

generates a wide class of models, referred to here as SQRE, of which CH turns out to be

a special case. This provides an intuitive link between two models that were developed

from two much different perspectives about behavior – one with stochastic choice, and

the other based heterogeneous cognitive limitations.. The link is as follows: if SQRE

beliefs are downward looking this leads to truncated SQRE, or TQRE. If skill levels of

all but the lowest level type increase without bound in TQRE, this converges to CH.

The identification of these distinct ways to model heterogeneity in games raises

deeper questions about how to build heterogeneity into structural models of behavior in

34



games. What lies at the heart of the comparison between QRE and CH is that there are

two fundamentally different ways to introduce heterogeneity: first, by assuming that

types fully understand the distribution of heterogeneity (rational expectations); second,

by letting players be self-centered or otherwise ignorant of the full heterogeneity. The

former is HQRE; the latter is some version of TQRE (or CH or level-k). The former are

more challenging to analyze from a technical perspective, because they require solving

fixed-point problems, while the latter are defined recursively. The former has the

property that the classical Nash model is nested, while this is not generally true for the

recursive models with subjective beliefs. Therefore, if one wants to introduce

heterogeneity, then in principle there is a modeling choice to be made. This paper, by

characterizing a parent model (TQRE) than includes both kinds of approaches as

special cases, offers the opportunity of settling such questions empirically, rather than

being forced to choose one approach or the other. As we find in our analysis of the data,

for some games hierarchical thinking seems to capture the key features of behavior

better than rational expectations, and the opposite for some other games. Introducing

heterogeneity while assuming rational expectations does not significantly change the

coefficients for specific games, but leads to a significantly better overall fit of data

pooled across all games.

Two challenges for future research are to identify additional games where the models

make sharply different predictions, and to explore further why their predictions are often

so similar. The findings from this paper offer some insights about how to go about

constructing such games. Another important area for research is extension of these ideas

to extensive form games. QRE has been applied successfully to extensive form games,

typically in an “agent normal form” in which the response function at each information

set is controlled by a separate agent (e.g., McKelvey and Palfrey, 1998). Extending

hierarchical or recursive approaches to extensive form games is less straightforward,

because there is some ambiguity about the correct way to construct the hierarchy.
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While the direct extension of CH to the extensive form is simply to assume level zero

players are completely random, level ones best respond to this, etc., an alternative

approach is to model agents low in the hierarchy as also acting more myopically than

higher types (Camerer, et al. 2002b). Linking hierarchical reasoning as in TQRE with

differences in look-ahead could generate valuable insights and provide a disciplined way

to think about “chain store paradox” -type anomalies in which players do not appear to

use backward induction, even in relatively simple games (e.g., Johnson et al, 2002).

Finally, the preliminary understanding of these models derived by comparing them

on experimental data is just meant to get a sense of where the models fit well and badly,

and to see which restrictions are most plausible. The eventual hope is that these

behavioral theories can be applied to the economic analysis of naturally-occurring

games, just as conventional equilibrium concepts are now applied. The finding that

these models can reliably explain behavioral departures from Nash equilibrium in

one-shot games offers some promise that they can be useful in explaining anomalies in

more complex games and field data. Recent examples are Crawford and Iriberri (2007b),

which applies level-k models to auctions, Östling et al’s (2007) study of lowest-number

lotteries, and Brown, Lovallo and Camerer’s (2007) study of reactions to undisclosed

qualities of movies. Models like these can also be used for economic design. Proposed

institutions in which behavior predicted by models of limited rationality is far from

what the designer intends (even if equilibrium behavior is ideal) might be bad designs in

practice. Thus, applying these models is one approach to study in a disciplined way

about the robustness of mechanisms to mistakes.
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in experimental ‘hide-and-seek’ games, Amer. Econ. Rev. 97 (2007a), pp.

1731-1750.

[9] V. Crawford and N. Iriberri, Level-k auctions: Can boundedly rational strategic

thinking explain the winner’s curse and overbidding in private-value auctions?,

Econometrica 75 (2007b), pp. 1721-1770.

[10] M. El-Gamal, R. McKelvey and T. Palfrey, A bayesian sequential experimental

study of learning in games, J. Amer. Statistical Assoc. 88 (1993), pp. 428-35.

37



[11] M. Fey, R. McKelvey and T. Palfrey, An experimental study of constant sum

centipede games, Int. J. Game Theory 25 (1996), pp. 269-87.

[12] D. Fudenberg and E. Maskin, Folk theorem for repeated games with discounting or

with incomplete information, Econometrica 54 (1986), pp. 533-554.

[13] Glicksberg, A further generalization of the kakutani fixed point theorem with

applications to nash equilibrium points, Proceedings of the American Mathematical

Society 3 (1952), pp. 170–4.

[14] J. Goeree and C. Holt, Ten little treasures of game theory and ten intuitive

contradictions, Amer. Econ. Rev. 91(5) (2001), pp. 1402-1422.

[15] J. Goeree and C. Holt, A model of noisy introspection, Games Econ. Behav. 46(2)

(2004), pp. 365-382.

[16] J. Goeree, C. Holt, and T. Palfrey, Risk averse behavior in asymmetric matching

pennies games, Games Econ. Behav. 45(1) (2003), pp. 97-113.

[17] J.Goeree, C. Holt, and T. Palfrey, Regular quantal response equilibrium, Exper.

Econ. 8 (2005), pp. 347-67.

[18] J. Harsanyi, Games with randomly disturbed payoffs: a new rationale for

mixed-strategy equilibrium points, Int. J. Game Theory 2(1) (1973), pp. 1-23.

[19] E. Johnson, C. Camerer, S. Sen and T. Rymon, Detecting failures of backward

induction: monitoring information search in sequential bargaining, J. Econ. Theory

104(1) (2002), pp. 16-47.

[20] D. Kahneman and A. Tversky, On the psychology of prediction, Psychological

Review 80 (1973), pp. 237-51.

38



[21] D. Kreps, P. Milgrom, J. Roberts and R. Wilson, Rational cooperation in the

finitely repeated prisoners’ dilemma, J. Econ. Theory 27(2) (1982), pp. 245-252.

[22] R. D. Luce, Individual Choice Behavior, Wiley, New York, NY, 1959.

[23] R. McKelvey and T. Palfrey, An experimental study of the centipede game,

Econometrica 60 (1992), pp. 803–36.

[24] R. McKelvey and T. Palfrey, Quantal response equilibria in normal form games,

Games Econ. Behav. 10 (1995), pp. 6-38.

[25] R. McKelvey and T. Palfrey, Quantal response equilibria in extensive form games,

Exper. Econ. 1 (1998), pp. 9-41.

[26] R. McKelvey, T. Palfrey and R. Weber, The effects of payoff magnitude and

heterogeneity on behavior in 2x2 games with unique mixed strategy equilibria, J.

Econ. Behav. Organ. 42 (2000), pp. 523-48.

[27] P. Milgrom and R. Weber, Distributional strategies for games with incomplete

information, Mathematics of Operations Research 10(4) (1985), pp. 619-32.

[28] P. Milgrom and N. Stokey, Information, trade and common knowledge, J. Econ.

Theory 26 (1982), pp. 17-27.

[29] J. Morgan and M. Sefton, An experimental investigation of unprofitable games,

Games Econ. Behav. 40(1) (2002), pp. 123-46.

[30] R. Nagel, Unraveling in guessing games: an experimental study, Amer. Econ. Rev.

85(5) (1995), pp. 1313-1326.

[31] J. Ochs, Games with unique mixed strategy equilibria: an experimental study,

Games Econ. Behav. 10 (1995), pp. 202-217.

39



[32] B. O’Neill, Nonmetric test of the minimax theory of two-person zerosum games,

Proceedings of the National Academy of Sciences 84(7) (1987), pp. 2106-2109.
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7 Appendix

7.1 Proof of existence of HQRE

Theorem 1: In finite games, a Heterogeneous Logit Equilibrium exists.

Proof: To define the fixed point mapping, we take a slightly different approach from

the standard one. Rather than identify a mapping, the fixed points of which are

equilibria, we consider a fixed point in the induced mixed strategies, and then an

equilibrium is constructed from the induced mixed strategies using (1). This simplifies
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the existence theorem because we are finding a fixed point in ∆A, a compact convex

subset of <m rather than in a function space.

Let α ∈ ∆A. We construct the mapping Σ : ∆A → ∆A in the following way. Using

(5), U : ∆A → <m maps α into U(α), where m =
∑n

i=1 J i. Using (1), for each i,

Pi : <Ji × [0,∞) → ∆Ai maps Ui into ∆Ai for each λi ∈ [0,∞). Finally, using (4), for

each i, σi maps Pi(Ui(α)) into ∆Ai by taking expectations over λi according to the

distribution Fi. We define Σ = Σ1 × ...× Σn by the composed mapping Σi =

σi ◦ Pi ◦ Ui ◦ α. To see that this has a fixed point, observe that Ui is a single-valued,

bounded continuous function on ∆A. Furthermore, Pi is single valued, continuous and

uniformly bounded and hence
∫∞
0

Pi(λi; Ui)dFi(λi) exists for all Ui. Therefore, σi(Pi) is

well defined, and continuous by Lebegue’s dominated convergence theorem. Hence Σ is

a continuous function from ∆A into itself and has a fixed point σ∗ ∈ Σ. For each i and

each λi ∈ [0,∞), let:

p
∗
ij(λi) =

eλiUij(σ∗)
∑Ji

k=1 eλiUik(σ∗) .

so p
∗

is a Heterogeneous Logit Equilibrium. QED

Theorem 2: In finite games, a TQRE exists.

Proof: To define the fixed point mapping, we take a slightly different approach than

above, because player i’s beliefs about other players strategies depends on λi. Rather

than finding a fixed point in ∆A, a compact convex subset of <m, we find a fixed point

in distributional strategies, where a distributional strategy for i, σi, is a probability

measure on the subsets of [0,∞)× Ai, the type-action product space, since in our

approach i′s type is λi ∈ [0,∞). The proof is a straightforward adaptation of Milgrom

and Weber (1985). The only two differences are: (1) players have truncated expectations

rather than rational expectations; and (2) players quantal respond according to the logit

rule instead of best responding.

Payoffs are equicontinuous because each Ai is finite. Because of the truncated
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distribution of beliefs, the (ex ante) expected payoff to player i is then defined slightly

differently from Milgrom and Weber (p. 624), the difference being that the integral with

respect to the distribution of other player types (λ−i) is truncated at θi(λi) for each type

λi. Since our distribution of types is independent and a density function exists for each

fi, and because θi(λi) varies continously in λi, absolute continuity is satisfied, so we can

express expected payoffs almost exactly as in Milgrom and Weber (1982, p. 625,

expression 3.1), except for the well-behaved dependence of the upper bound for types

λ−i on λi. Consequently, using the topology of weak convergence for the distributional

strategies, strategy sets are convex compact metric spaces and payoff functions are

continuous and linear, so a fixed point exists by Glicksberg’s theorem (1952). The fact

that we are considering quantal responses rather than best responses is of no

consequence. It simply means that the fixed-point correspondence is single-valued and

continuous rather than being multi-valued and upper hemicontinuous. QED

Theorem 3: Fix τ . For almost all finite games Γ and for any ε > 0, there exists γ̄

such that ∆τ,γ < ε for all γ > γ̄.

Proof: Fix τ and let Γτ denote the set of finite games with the property that in the CH

model with parameter τ there is a unique best reply for all levels k ≥ 1. It is

straightforward to show that for each n and for each J , where J is the maximum size of

any of the n players’ strategy sets, the set of games without these properties has

Lebesgue measure 0. Since the countable union of measure 0 sets has measure 0, this

implies that Γτ consists of almost all finite games, in the generic sense. Let g ∈ Γτ .

Denote the unique maximizing action of a level k type of player i by aτ
ik, and let δτ

k be

the smallest difference in expected utility for a level k type of player i between choosing

aτ
ik and any other pure strategy. Fix ε > 0 and let L be an integer sufficiently large such

that
∑∞

k=L
τk

k!
e−τ < ε

3IJ
. Denote p̄τ

ijL =
∑L

k=0 pτ
ijk

τk

k!
e−τ and p̄γ

ijL =
∑L

k=0 pγ
ijk

τk

k!
e−τ . We

immediately obtain that |p̄τ
ijL − p̄τ

ij| < ε
3IJ

for all i, j. Hence
∑n

i=1

∑Ji

j=1(p̄
τ
ij − p̄τ

ijL)2 < ε
3
.
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Simlarly,
∑n

i=1

∑Ji

j=1(p̄
γ
ij − p̄γ

ijL)2 < ε
3

for any γ.Note that for each i and k, pτ
ijk = 0

except if j is the index corresponding to action aτ
ik. Next, we wish to examine p̄γ

ij, for

large γ. First, we show that there exists a number γ̄(L) such that for all γ ≥ γ̄(L), aτ
ik is

the unique maximizing action for all types 1 ≤ k ≤ L and pγ
iaτ

ikL > 1− ε
3ILJ

for all

k ≤ L. That is, if γ ≥ γ̄(L) then for all types L or lower types of player i,

|p̄τ
ijL − p̄γ

ijL| < ε
3LJ

for all j ∈ Si. The proof is recursive. It is true for level 1 types

because they have the same beliefs about other players that the CH-level-1 players have,

and therefore have the same unique maximizing strategy aτ
1. Therefore, by choosing a

large enough γ we can make the probability a level 1 type of player i chooses aτ
i1, as

close to 1 as we wish. In particular, we can find some γ̄(1) so that it is greater than

1− ε
3ILJ

for all γ ≥ γ̄(1). Level 2 (and higher) types are only slightly more complicated.

For the level 2 types, their optimal strategy will be aτ
2 as long as the probability level 1’s

of the players other than i play aτ
−i1 is sufficiently close to 1. This will be true for all γ

greater than some number, call it γ̂(1). Hence, we can find a γ̄(2) such that the

probability a level 1 type of player i chooses aτ
i2 is greater than 1− ε

3ILJ
for all γ ≥ γ̄(2).

Proceeding recursively, we can do the same for level 3 and higher types, and so forth all

the way to level L types. By construction,
∑n

i=1

∑Ji

j=1( p̄τ
ijL − p̄γ

ijL)2 < ε
3

for all

γ ≥ γ̄(L). Finally, by the triangle inequality:

∆τ,γ =
n∑

i=1

Ji∑
j=1

(p̄τ
ij − p̄γ

ij)
2

≤
n∑

i=1

Ji∑
j=1

(p̄τ
ij − p̄τ

ijL)2 +
n∑

i=1

Ji∑
j=1

(p̄τ
ijL − p̄γ

ijL)2 +
n∑

i=1

Ji∑
j=1

(p̄γ
ijL − p̄γ

ij)

<
ε

3
+

ε

3
+

ε

3
for all γ ≥ γ̄(L)

< ε

QED
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40, 40 60, 10 10, 40 0.33 35, 35 39, 63 95, 91 0.44

10, 60 10, 10 60, 40 0.24 63, 39 40, 40 56, 39 0.26

40, 10 40, 60 40, 40 0.43 91, 95 39, 56 15, 15 0.30

50, 10 10, 20 10, 20 0.78 37, 37 93, 45 53, 53 0.59

10, 20 20, 10 20, 10 0.10 45, 93 13, 13 85, 73 0.13

10, 20 20, 10 20, 10 0.12 53, 53 73, 85 36, 36 0.28

0.71 0.22 0.07

21, 21 10, 20 0.24 11, 11 59, 91 51, 51 0.17

21, 21 10, 20 0.17 91, 59 27, 27 51, 43 0.20

20, 10 20, 20 0.59 51, 51 43, 51 53, 53 0.63

0.34 0.66

31, 31 10, 20 0.45 50, 50 98, 44 70, 82 0.65

31, 31 10, 20 0.34 44, 98 38, 38 70, 18 0.04

20, 10 20, 20 0.21 82, 70 18, 70 70, 70 0.31

0.90 0.10

35, 35 39, 47 95, 40 0.11 47, 47 51, 44 28, 43 0.52

47, 39 51, 51 67, 15 0.81 44, 51 11, 11 43, 91 0.19

40, 95 15, 67 47, 47 0.07 43, 28 91, 43 11, 11 0.30

79, 79 51, 59 55, 59 0.80 41, 41 97, 45 35, 58 0.50

59, 51 31, 31 99, 67 0.15 45, 97 17, 17 53, 57 0.17

59, 55 67, 99 19, 19 0.06 58, 35 57, 53 33, 33 0.33

73, 73 13, 77 49, 93 0.15 50, 50 30, 36 74, 42 0.24

77, 13 41, 41 49, 41 0.17 36, 30 82, 82 18, 98 0.17

93, 49 41, 49 46, 46 0.69 42, 74 98, 18 62, 62 0.59

42, 42 58, 50 98, 46 0.61 30, 10 10, 30 10, 30 10, 30 0.07

50, 58 54, 54 26, 66 0.35 30, 10 10, 30 10, 30 10, 30 0.07

46, 98 66, 26 18, 18 0.04 10, 30 10, 30 30, 10 30, 10 0.17

10, 30 30, 10 10, 30 30, 10 0.28

10, 30 30, 10 30, 10 10, 30 0.41

0.38 0.34 0.17 0.10

21, 21 93, 13 45, 29 0.33

13, 93 69, 69 53, 53 0.28

29, 45 53, 53 61, 61 0.39

Cloned Stag Hunt (Low)

S-W 4

S-W 5

S-W 6

S-W 7

Cloned Stag Hunt (Hi)

S-W 1

S-W 2

S-W 3

Unprofitable

Cloned Matching Pennies

S-W 12

Cloned Joker

S-W 8

S-W 9

S-W 10

S-W 11

Table V: Payoff matrices for the 17 normal form games, along with empirical choice
frequencies (the row and column roles are combined in symmetric games).
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