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Abstract

We consider large factor models where factors’ explanatory power does not

strongly dominate the explanatory power of the idiosyncratic terms asymptot-

ically. We find the first and second order asymptotics of the principal com-

ponents estimator of such a weak factors as the dimensionality of the data

and the number of observations tend to infinity proportionally. The principal

components estimator is inconsistent but asymptotically normal.
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1 Introduction

High-dimensional factor models have recently attracted an increasing amount of at-

tention from researchers in macroeconomics and finance. Factors extracted from

hundreds of macroeconomic and financial variables observed for a period of several

decades have been used for macroeconomic forecasting, monetary policy and business
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cycle analysis, arbitrage pricing theory tests, and portfolio performance evaluation

(see, for example, Stock and Watson (2005), Bernanke, Boivin, and Eliasz (2005),

Forni and Reichlin (1998), and Connor and Korajczyk (1988)). A popular technique

for factor extraction is the principal components method, which estimates the fac-

tors by the principal eigenvectors of a sample-covariance-type matrix. In this paper

we study the asymptotic distribution of the principal components estimator when

the dimensionality of the data, n, and the number of observations, T , go to infinity

proportionally.

The consistency and asymptotic normality of the principal components estima-

tor when both n and T go to infinity have been recently shown by Bai (2003). To

prove his results, Bai makes a strong assumption equivalent to requiring that the ratio

between the k-th largest and the k + 1-th largest eigenvalues of the population co-

variance matrix of the data, where k is the number of factors, is rising proportionally

to n so that the cumulative effects of the normalized factors on the cross-sectional

units strongly dominate the idiosyncratic influences asymptotically. In practice, the

ratio of the adjacent eigenvalues of the finite sample analog of the population co-

variance matrix turns out to be rather small. For example, for the set of the 148

macroeconomic indicators used in Stock and Watson (2002), the ratio of the i-th to

the i+ 1-th eigenvalues of the sample covariance matrix is smaller than 1.75 for any

positive integer i ≤ 20, where 20 is a generous a priori upper bound on the number
of factors. Hence, for the macroeconomic data, the cumulative effect of the “least

influential factor” on the cross-sectional units is comparable to the strongest idiosyn-

cratic influence so that, even if the ratio of the k-th to the k + 1-th eigenvalues does

increase proportionally to n, the coefficient of proportionality must be very small and

the usefulness of the “strong-factor asymptotics” is questionable.

In this paper, we, therefore, focus on the principal components estimation of

models with factors having bounded, instead of increasing with n, cumulative effects

on the cross-sectional units. We call such factors weak. More precisely, we consider

a sequence of factor models indexed by n :

X
(n)
it = L

(n)0
i F

(n)
t + ε

(n)
it , with i ∈ N and t ∈ N, (1)

where F (n)
t and L

(n)
i are k × 1 vectors of factors at time t and factor loadings on the

cross-sectional unit i, respectively, and ε
(n)
it is an idiosyncratic or noise component of

X
(n)
it . Suppose that the data consist of the observations of X

(n)
it with i = 1, ..., n and
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t = 1, ..., T (n), and let the factors be normalized so that E
³PT (n)

t=1 F
(n)
t F

(n)0
t /T (n)

´
=

Ik. Then, our key assumption capturing the notion of weak factors is that

nX
i=1

L
(n)
i L

(n)0
i −D→ 0,

where D = diag (d1, ..., dk) with d1 > ... > dk > 0. This assumption is in contrast to

the “strong factor” assumption made by Bai (2003) which, when specialized to our

notation and setup, takes the form:

nX
i=1

L
(n)
i L

(n)0
i

n
−D→ 0.

Informally, the “strong factor” assumption requires factors to load non-trivially on

an infinite number of the cross-sectional units whereas the weak factor assumption

requires factors to load non-trivially on a possibly large but finite number of the

cross-sectional units.

This paper answers the question: what is the first and the second order asymptot-

ics of the principal components estimators of the factors and factor loadings when the

factors are weak. We find that, in contrast to the “strong factor” case, the estima-

tors are inconsistent. We give explicit formulae for the amount of this inconsistency.

Further, we show that, when centered around their respective probability limits, the

principal components estimators of the factors and factor loadings are asymptotically

normal, and we establish explicit formulae for the asymptotic variance. AMonte Carlo

analysis shows that our asymptotic formulae work very well even in samples as small

as n = 40 and T (n) = 20.

We derive all our results under a strong assumption that the noise ε(n)it is Gaussian

and i.i.d. both cross-sectionally (for i = 1, ..., n) and over time (for t = 1, ..., T (n)).

Hence, all non-trivial cross-sectional and time series dependence in the data is due

to the presence of factors. Making such an assumption substantially reduces the

generality of model (1) but allows us to overcome substantial technical difficulties of

analyzing the weak factor case. We leave an important issue of the generalization of

our results to less restrictive noise structures to future research.

Our main findings can be summarized in more detail as follows. In what follows,

we will omit the superscript (n) from our notations to make them easier to read.
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However, occasionally we will use the superscript to emphasize dependence on n. Let

X be an n×T matrix of the data, let F and L be T ×k and n×k matrices of factors

and factor loadings, respectively (that is, the t-th row of F is F 0
t and the i-th row

of L is L0i), and let ε be an n × T matrix of the noise. According to (1), we have:

X = LF + ε. The principal components estimator of F, F̂ , is defined as
√
T times

the matrix of the principal k eigenvectors of a sample-covariance-type matrix X 0X/T,

and the principal components estimator of L, L̂, is defined as XF̂/T.

In Theorem 1, we establish the following representation of the principal compo-

nents estimator of the factors:

F̂ = F ·Q+ F⊥, (2)

where Q is a random k × k matrix which tends in probability to a diagonal matrix

with positive diagonal elements strictly smaller than unity, and F⊥ is a random T ×k

matrix which has columns orthogonal to the columns of F and is such that the joint

distribution of the entries of F⊥ conditional on F is invariant with respect to the

multiplication of F⊥ from the left by any orthogonal matrix having span (F ) as an

invariant subspace. Matrix Q centered by its probability limit and scaled by
√
T has

asymptotically jointly normal entries, and we find explicit formulae for the probability

limit and for the covariance matrix of the asymptotic distribution of Q.

The above representation is illustrated in Figure 1. The principal components

estimates F̂ “randomly circle” around the true F so in the limit of large n there

remains a non-zero angle between F̂ and F.When the cumulative effects of the factors

on the cross-sectional units, measured by the the diagonal elements of D (the limit

of L0L), are large, plimQ is close to an identity matrix and F̂ is close to F . When

the cumulative effects are small, plimQ is close to zero and F̂ is nearly orthogonal to

F . In the extreme case, when the cumulative effect of one of the factors goes below

a certain threshold, representation (2) breaks down and the corresponding factor

estimate starts to point in a completely random direction. The width of the darker

band on the sphere of radius
√
T represents the size of the asymptotic variance of Q.

The more narrow the band, the smaller the asymptotic variance of Q.

A formula completely analogous to (2) holds for the normalized principal compo-

nents estimator of factor loadings L̂ ≡L̂
³
L̂0L̂

´−1/2
. Precisely, our Theorem 2 shows

that L̂ = L · R + L⊥, where L is a matrix of normalized factor loadings L (L0L)−1/2
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Figure 1: Distribution of F̂ (n). The darker areas on the sphere represent the regions
of relatively higher probability for F̂ (n).

and a random matrix R has properties parallel to those of Q in (2).

Representations of type (2) can be used to obtain the asymptotic distributions

of the principal components estimator of factors at particular time periods or factor

loadings corresponding to specific cross-sectional units. We find such distributions in

Theorems 3 and 4. The distributions are centered at the true values of the factors and

of the factor loadings, shrunk towards zero. As the cumulative effects of the factors

on the cross-sectional units tend to infinity, the bias disappears and our asymptotic

formulae converge to formulae found by Bai (2003) for the case of strong factors.

The Monte Carlo analysis shows that our asymptotic distribution provides a better

approximation for the finite sample distribution than the asymptotic distribution

found by Bai (2003) even for relatively “strong” factors.

In the special case when factors are i.i.d. Gaussian random variables, the principal

components estimator of the normalized factor loadings is the maximum likelihood

estimator. Its asymptotic distribution in the case of fixed n and large T is well known

(see Anderson (1984), Chapter 13). In this special case, our asymptotic distribution

converges to the classical analog when the limit of the n/T ratio converges to zero. The

Monte Carlo analysis shows that for n comparable to T our asymptotic approximation

works much better than the classical one.

In this paper we also find the asymptotic distribution of the principal eigenvalues
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of the sample covariance matrix XX 0/T. It is easy to show that the i-th eigenvalue

measures the square of the Euclidean length of the i-th column of L̂. Hence, the i-th

eigenvalue can be interpreted as the principal components estimator of the cumulative

effect of the i-th factor on the cross-sectional units. We find that the first k eigenvalues

of the sample covariance matrix of the data converge in probability to values strictly

larger than the first k eigenvalues of the population covariance matrix. When the

“population eigenvalues” are large enough, the “sample eigenvalues” centered by their

probability limits and multiplied by
√
T are asymptotically jointly normal, and we

find explicit formulae for the probability limits and the covariance matrix of the

asymptotic distribution. If a “population eigenvalue” is below a certain threshold,

the corresponding “sample eigenvalue” converges to a positive constant that does not

depend on the population eigenvalue.

The rest of the paper is organized as follows. Section 2 explains how our paper is

related to the previous statistical literature on large random matrices. In Section 3 we

introduce the model, state our assumptions, and formulate our main results. Section

4 provides an intuition for the inconsistency of the principal components estimator.

Monte Carlo analysis is given in Section 5. The main steps of our proofs are given in

Section 6. Section 7 concludes. All auxiliary results are proven in the Appendix.

2 Connection to the literature on large random

matrices

Our paper is related to the mathematical, physical and statistical literature studying

eigenvalues and eigenvectors of the sample covariance matrix of high-dimensional

data. Most of this literature is concerned with i.i.d. data, which may have factor

structure only in the special case when factors are i.i.d. The basic result in the

literature is due to Marčenko and Pastur (1967). They show that if an n by T matrix

X has i.i.d. entries (hence, there are no factors in the data) with zero mean and unit

variance and such that E |Xit|2+δ <∞ for some δ > 0, then for any real x, as n and

T tend to infinity so that n/T → c > 0 :

1

n
(number of eigenvalues of XX 0/T ≤ x)→ F (x) (3)

6



almost surely. Here F (x) is such that F 0(x) = 1
2πxc

p
(b− x) (x− a) for a < x < b,

where a = (1−√c)2 and b = (1 +
√
c)
2
. In cases when c > 1, the limiting measure

has an additional mass 1− 1
c
at zero. This result has been extended and generalized

by many authors (see Bai (1999) for a review). Although Marčenko-Pastur result

describes the limiting behavior of the whole distribution of the eigenvalues of XX 0/T,

it says little about the behavior of the largest eigenvalue, which, in the absence of

factors, estimates the “strongest” idiosyncratic influence on the cross-sectional units.

Geman (1980) shows that under the i.i.d. assumption and additional growth

restrictions on the moments ofXit, which are satisfied , for example, ifXit is Gaussian,

the largest eigenvalue of XX 0/T converges almost surely to the upper boundary of

the support of F (x) : λ1 → (1 +
√
c)
2
. Bai et al. (1988) generalize Geman’s result by

establishing the above convergence under the existence of the fourth moment of Xit.

Bai (1999) cites other generalizations and extensions of Geman’s result and provides

details. In the language of factor models, Geman’s result says that the principal

components estimator of the “strongest” idiosyncratic influence on the cross-sectional

units may substantially overestimate the influence. The larger the parameter c, that

is the larger the ratio of the cross-sectional dimension to the time series dimension,

the larger the amount of the overestimation.

Johnstone (2001) proposes the “spiked covariance” model for X. According to

this model, columns of X are i.i.d. observations of n-dimensional Gaussian vectors

with covariance matrix having a few relatively large eigenvalues and the rest of the

eigenvalues being equal to unity. The spiked covariance model corresponds to model

(1) with i.i.d. Gaussian factors. Then, the number of the relatively large eigenvalues

corresponds to the number of factors. Johnstone (2001) shows that in the null case

when all the eigenvalues of the covariance matrix are equal to one (no factors), the

largest eigenvalue of the sample covariance matrix, λ1, centered by (1 +
√
c)
2 and

multiplied by n2/3/
³√

c (1 +
√
c)
4/3
´
converges in distribution to the so called Tracy-

Widom law (see Tracy and Widom (1994)).

Baik et al. (2005) study the limiting behavior of λ1 in non-null cases (which are

consistent with the data having a non-trivial i.i.d. factor component). However, they

only consider the case when X has complex as opposed to real Gaussian entries, and

the complexity of the entries ofX plays a central role in their proofs. Non-null cases of

the spiked covariance model forX with real entries are studied in Baik and Silverstein

(2006) and Paul (2006). Baik and Silverstein (2006) find the almost sure limit of the
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largest eigenvalue of XX 0/T for X’s that have i.i.d. columns with correlated and not

necessarily Gaussian elements. Paul (2006) studies the asymptotic distribution of the

largest eigenvalue of XX 0/T for Gaussian X’s.

Our Corollary 2 states essentially the same result as Theorem 3 in Paul (2006).

However, we derive Corollary 2 from a more general result (Theorem 5), which allows

the factors to be non-Gaussian and non-i.i.d. over time. Whether Paul’s proofs can be

extended to handle the case of non-i.i.d. and non-Gaussian factors is an open question.

Paul starts his proofs from the fact that if X has i.i.d. Gaussian columns with spiked

covariance matrix Σ = diag (λ1, ..., λk, 1, 1, ..., 1) , then it can be represented in the

form X 0 =
£
Z 01Λ

1/2, Z 02
¤
, where Λ = diag (λ1, ..., λk) and [Z 01, Z

0
2] is a T × n matrix

with i.i.d. Gaussian elements. Then he uses the above representation to obtain a non-

linear equation that the first k largest eigenvalues of XX 0/T must satisfy, simplifies

these equations and derives his asymptotic results based on these simplifications. In

the case of non-i.i.d. and non-Gaussian factors that we analyze in this paper, X

cannot be represented in Paul’s form. Instead, an orthogonal transformation of X,

X̃, can be represented in the form X̃ 0 = [Z 01 +Q,Z 02] , where Q is a diagonal matrix

that depends on factors and factor loadings. Based on this representation one may,

potentially, write an equation analogous to that used by Paul and try to work from

this equation. This is, however, not the way we followed in this paper. We learned

about Paul’s work only after the first draft of this paper was written so that none of

our proofs mimic or extend his proofs.

There has been much less previous work on the eigenvectors of the sample co-

variance matrices of large dimension. It is well known (see Anderson, 1984) that the

matrix of eigenvectors of XX 0/T, where X has i.i.d. standard Gaussian entries, is

Haar distributed on the orthogonal group On. For X with non-Gaussian i.i.d. el-

ements, Silverstein (1990) shows weak convergence of random functions defined by

the eigenvectors of XX 0/T. Reimann et al. (1996) consider i.i.d. observations of

a high-dimensional Gaussian vector that has a systematic and idiosyncratic compo-

nents and study the process of learning the direction of the systematic component.

They describe the phenomenon of “retarded classification” when, if the ratio of the

dimensionality of the vector to the number of the i.i.d. observations is above a certain

threshold, nothing at all can be learned about the systematic direction. If the ratio is

above the threshold, then as the dimensionality and the number of observations grow

proportionally, the cosine of the angle between the best hypothesized direction and the
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true direction converges to a number from the interval (0, 1). The same phenomenon

is observed when there are several systematic directions to learn about ( see Hoyle

and Rattray (2007)). The “retarded classification” phenomenon is directly related to

our finding, mentioned in the introduction, that when the cumulative effects of the

factors are less than a threshold (which depends on the ratio n/T ), the principal com-

ponents estimates of the factors point in completely random directions, and when the

cumulative effects are larger than the threshold, the estimates asymptotically “live”

on a cone around the true direction (see Figure 1).

For a 1-factor model with i.i.d. Gaussian factor, Johnstone and Lu (2004) show

that the cosine of the angle between principal eigenvector of the sample covariance

matrix and the principal eigenvector of the population covariance matrix remains

separated from zero as n and T go to infinity proportionately. Paul (2006) quantifies

the amount of the inconsistency pointed out by Johnstone and Lu (2004) for the

case of i.i.d. Gaussian data such that all but k distinct eigenvalues of the population

covariance matrix are the same. For the same model, Paul (2006) finds the asymptotic

distribution of the eigenvectors corresponding to the k largest eigenvalues. Our paper

generalizes Paul’s (2006) result to factor models with non-i.i.d. and non-Gaussian

factors. As was mentioned above, a non-linear equation which is central for Paul’s

proofs breaks down for the case of general factors. Our proofs, therefore, use different

machinery than that used in Paul (2006).

3 Model, assumptions, and main results

We assume that (1) satisfies Assumptions 1 (or 1’), 2, and 3, formulated below.

In what follows, Ai· (A·i) denotes the i-th row (column) of matrix A, and Ii

denotes an i-dimensional identity matrix. Our first assumption comes in two varieties.

Assumption 1 treats factors as random variables. It allows us to identify factor

loadings. Assumption 1’ deals with deterministic factors. It allows us to identify both

factor loadings and factors. Both assumptions are standard (see Anderson (1984), pp.

552-553).

Assumption 1: For each n ≥ 1, factors
n
F
(n)0
t· ; t = 1, ..., T (n)

o
form a sample

of length T (n) from a stationary zero-mean k × 1 vector process, normalized so that
E
³
F
(n)0
t· F

(n)
t·
´
= Ik. The loadings are normalized so that the first non-zero elements
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of the columns of L(n) are positive and L(n)0L(n) is a k × k diagonal matrix with

non-increasing positive elements along the diagonal.

In the special case when the rows of F (n) represent i.i.d. observations of normally

distributed factors, model (1) becomes the so-called spherical Gaussian case of the

standard factor model (see Anderson (1984)).

Assumption 1’: For each n ≥ 1, factors form a deterministic sequence of k-

dimensional vectors. The factors are normalized so that F (n)0F (n)/T (n) = Ik and the

loadings are normalized so that the first non-zero elements of the columns of L(n) are

positive and L(n)0L(n) is a k×k diagonal matrix with non-increasing positive elements

along the diagonal.

The next assumption allows us to make orthogonal transformations of the data

without changing the joint distribution of the noise components. A particularly im-

portant property of the Gaussian noise that we use in this paper is that the orthogonal

matrix of eigenvectors of the sample covariance matrix of such noise has conditional

Haar invariant distribution (see Anderson (1984), p.536).

Assumption 2: For each n ≥ 1, entries of ε(n) are i.i.d. N(0, σ2) random

variables independent of the factors.

Our last assumption describes the conditions that need to be satisfied for the

asymptotic analysis below to be correct as n goes to infinity.

Assumption 3: There exist a scalar c > 0 and a k × k diagonal matrix D ≡
diag (d1, ..., dk) , d1 > ... > dk > 0

1, such that, as n→∞,

i) n/T (n) − c = o
¡
n−1/2

¢
,

ii) L(n)0L(n) −D = o
¡
n−1/2

¢
, where the equality should be understood in the element

by element sense,

iii)
√
T (n)

¡
1

T (n)
F (n)0F (n) − Ik

¢ d→ Φ, where entries of Φ have a joint normal dis-

tribution (degenerate in the case of deterministic factors) with covariance function

cov (Φst,Φs1t1) ≡ φsts1t1.

Part i) of the assumption requires that n and T (n) be comparable even asymp-

totically. The requirement that the convergence is faster than n−1/2 eliminates any

possible effects of this convergence on our asymptotic results. In our opinion, the

1We generalized Theorem 5 to the case of some or all of the diagonal elements of D being the
same. To save space, we do not report these results below.
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behavior of n/T (n) is likely to be application-specific and any consequential assump-

tion about the rate of convergence of n/T (n) will be arbitrary. The assumption about

the rate of convergence of L(n)0L(n) is made for the same reason. A generalization of

part ii) would be to assume that L(n)0L(n)/q(n) −D = o
¡
n−1/2

¢
, where q(n) is some

deterministic sequence. Although very interesting, such a generalization creates some

difficult technical problems in our proofs, so we do not consider it here.

The high-level assumption about the convergence of
√
T (n)

¡
1

T (n)
F (n)0F (n) − Ik

¢
is

important because parameters φsts1t1 enter our asymptotic formulae established be-

low. A primitive assumption that implies the convergence is that the individual factors

can be represented as infinite linear combinations, with absolutely summable coeffi-

cients, of i.i.d. random variables with a finite fourth moment (see Anderson (1971),

Theorem 8.4.2). In the special case when F (n)
t· are i.i.d. standard multivariate normal,

the covariance function of the asymptotic distribution of
√
T (n)

¡
1

T (n)
F (n)0F (n) − Ik

¢
has a particularly simple form: φiji1j1 = 2 if (i, j) = (i1, j1) and i = j, φiji1j1 = 1 if

(i, j) = (i1, j1) or (i, j) = (j1, i1) and i 6= j, and φiji1j1 = 0 otherwise.

In this paper, we study the principal components estimators F̂ (n) and L̂(n) of

factors and factor loadings, respectively. To define the estimators we introduce the

following notation. Denote the largest k eigenvalues of matrices 1
T (n)

X(n)X(n)0 and
1

T (n)
X(n)0X(n) as µ(n)1 ≥ ... ≥ µ

(n)
k . Note that the matrices have the identical sets

of largest min
¡
n, T (n)

¢
eigenvalues, and we assume that k < min

¡
n, T (n)

¢
. Fur-

ther, denote the corresponding eigenvectors for 1
T (n)

X(n)X(n)0 and 1
T (n)

X(n)0X(n) as

u
(n)
1 , ..., u

(n)
k , and v

(n)
1 , ..., v

(n)
k , respectively. Then the principal components estimator

F̂ (n) is defined as a matrix with columns
√
T (n)v

(n)
1 , ...,

√
T (n)v

(n)
k , and the principal

components estimator L̂(n) is defined as 1
T (n)

X(n)F̂ (n). It is easy to verify that the i-th

column of L̂(n) is equal to
q
µ
(n)
i u

(n)
i . Therefore, the square of the Euclidean length

of L̂(n)·i , which estimates the cumulative effect of the i-th factor on the cross-sectional

units, is equal to µ(n)i , and the normalized principal components estimator of factor

loadings L̂(n) ≡ L̂(n)
³
L̂(n)0L̂(n)

´−1/2
is equal to a matrix with columns u(n)1 , ..., u

(n)
k .

Of course, without further restrictions the eigenvectors u(n)i and v
(n)
i , and, there-

fore, the principal components estimators F̂ (n) and L̂(n), are defined only up to a

change in the sign. To eliminate this indeterminacy, we require that the direction of

the eigenvectors is chosen so that u(n)0i L
(n)
·i > 0 and v

(n)0
i F

(n)
·i > 0.

We now formulate and discuss our main results, postponing all proofs until Section
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6. As in the Introduction, we will omit the superscript (n) from our notations to make

them easier to read. For any q ≤ k, denote the matrix of the first q columns of F̂ as

F̂1:q, and let F⊥q be a T × q matrix with columns orthogonal to the columns of F such

that the joint distribution of its entries conditional on F is invariant with respect to

multiplication from the left by any orthogonal matrix having span (F ) as its invariant

subspace. We establish the following

Theorem 1: Let q be such that di >
√
cσ2 for i ≤ q, and di ≤ √cσ2 for i > q. Let

Assumptions 1 (or 1’), 2, and 3 hold and let, in addition, φijst = 0 when (i, j) 6= (s, t)
and (i, j) 6= (t, s) . Then, we have:
i)

F̂1:q = F ·Q+ F⊥q ,

Q = Q(1) +
1√
T
Q(2),

where Q(1) is diagonal with Q
(1)
ii =

q
d2i−σ4c

di(di+σ2)
, and vecQ(2) is an asymptotically zero

mean Gaussian vector with Acov
³
Q
(2)
ij , Q

(2)
st

´
given by the following formulae:

a) (
d2j+σ

2di)
(dj−di)2 + (φijij − 1)

dj(d2j−cσ4)
(dj+σ2)(dj−di)2 if (i, j) = (s, t) and i 6= j

b)
√

didj (di+σ2)(dj+σ2)(d2i−cσ4)(d2j−cσ4)
(dj−di)2(cσ4−didj) −¡φijij − 1¢ √didj (d2i−cσ4)(d2j−cσ4)

(dj−di)2
√
(dj+σ2)(di+σ2)

if (i, j) =

(t, s) and i 6= j

c) (
c2σ8+d4i )(di+σ2)
2di(d2i−cσ4)

2 + diσ4(c−1)
2(d2i−cσ4)(di+σ2)

+(φiiii − 2)
(di+σ2)

2−σ4(1−c) 2
di

4(d2i−cσ4)(di+σ2)3
if (i, j) = (t, s)

and i = j

d) 0 if (i, j) 6= (s, t) and (i, j) 6= (t, s)
ii) F̂q+1:k=F · Q̃+ F⊥k−q, where Q̃

p→ 0 as n→∞.

A graphic interpretation of the above representation of F̂1:q for the case of deter-

ministic factors was given in the Introduction. In the case of random factors, the

interpretation is complicated by the fact that the columns of F have random length,

not necessarily equal to
√
T . Hence, “vector” F in Figure 1 does not “live” on the

sphere and a potential graphic interpretation would not be so clean as in the case of

deterministic factors. The theorem’s requirement that φijst = 0 when (i, j) 6= (s, t)
and (i, j) 6= (t, s) holds, for example, if the different factors are mutually indepen-
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dent. It trivially holds if the factors are treated as non-random. This requirement was

introduced solely to simplify formulae for Acov
³
Q
(2)
ij , Q

(2)
st

´
, which would otherwise

become non-trivial even in the case (i, j) 6= (s, t) and (i, j) 6= (t, s) .
The formula Q(1)

ii =
p
(d2i − σ4c) /di (di + σ2) established in Theorem 1 reveals a

trade-off associated with using more cross-sectional data for factor estimation. On one

hand, using more cross-sectional data may call for using higher di in the approximating

asymptotics, which would increase Q(1)
ii and, hence, decrease the bias in the estimate

of the factor. On the other hand, using more data would increase the ratio n/T,

which would be associated with higher c. The rise in c will lead to a decrease in Q
(1)
ii

and, hence, to an increase in the bias. That more data are not always better for the

estimation was empirically demonstrated by Boivin and Ng (2006). They explain that

an estimator that uses more data may be less efficient depending on the information

content of the new data. Our formula provides an additional theoretical justification

for the Boivin-Ng observation.

Our next result is an analog of Theorem 1 for factor loadings. Denote the matrix

of normalized factor loadings L (L0L)−1/2 as L and let L⊥q be an n× q random matrix

with columns orthogonal to the columns of L and such that the joint distribution of
its entries is invariant with respect to multiplication from the left by any orthogonal

matrix having span (L) as its invariant subspace. We have the following
Theorem 2: Let q be such that di >

√
cσ2 for i ≤ q, and di ≤ √cσ2 for i > q. Let

Assumptions 1 (or 1’), 2, and 3 hold and let, in addition, φijst = 0 when (i, j) 6= (s, t)
and (i, j) 6= (t, s) . Then, we have:
i)

L̂1:q = L ·R+ L⊥q ,
R = R(1) +

1√
T
R(2),

where R(1) is diagonal with R
(1)
ii =

q
d2i−σ4c

di(di+σ2c)
, and vecR(2) is an asymptotically zero

mean Gaussian vector with Acov
³
R
(2)
ij , R

(2)
st

´
given by the following formulae:

a)
dj(dj+σ2)(di+σ2)+di(φijij−1)(d2j−σ4c)

(dj+σ2c)(dj−di)2 if (i, j) = (s, t) and i 6= j

b) −
√

didj (d2i−σ4c)(d2j−σ4c)
(dj−di)2

√
(di+σ2c)(dj+σ2c)

µ
φijij − 1 + (

dj+σ2)(di+σ2)
(didj−cσ4)

¶
if (i, j) = (t, s) and i 6= j

13



c)
cσ4di(di+σ2)

2

2(di+cσ2)(d2i−cσ4)
2

µ
1 + c

³
di+σ

2

di+cσ2

´2¶
+(φiiii − 2)

(di+σ2)
2−σ4(1−c) 2

c2σ4

4di(d2i−σ4c)(di+cσ2)3
if (i, j) =

(t, s) and i = j

d) 0 if (i, j) 6= (s, t) and (i, j) 6= (t, s)
ii) L̂q+1:k=L · R̃+ L⊥k−q, where R̃ p→ 0 as n→∞.

Theorems 1 and 2 can be used to obtain the asymptotic distributions of the

principal components estimator of factors at particular time periods or factor loadings

corresponding to specific cross-sectional units. We find such distributions in Theorems

3 and 4 below. Let δij denote the Kronecker delta. Then we have:

Theorem 3: Suppose the assumptions of Theorem 1 hold. Let τ 1, ..., τ r be such

that the probability limits of the τ 1-th, ..., τ r-th rows of matrix F/
√
T as n and T

approach infinity exist and equal F̄τ1·, ..., F̄τr·. Then,

i) Random variables
n
F̂τgi −Q

(1)
ii Fτgi : g = 1, ..., r; i = 1, ..., q

o
are asymptotically

jointly mean-zero Gaussian. The asymptotic covariance between F̂τsi −Q
(1)
ii Fτsi and

F̂τfp−Q(1)
pp Fτfp is equal to

Xk

s=1
F̄τgsF̄τf sAvar

³
Q
(2)
si

´
+
³
δgf −

Xk

s=1
F̄τgsF̄τf s

´µ
1−

³
Q
(1)
ii

´2¶
when i = p and to −F̄τgpF̄τf iAcov

³
Q
(2)
pi , Q

(2)
ip

´
when i 6= p.

ii) For any i > q, and any τ ≤ T, F̂τi/
√
T

p→ 0.

When factors are deterministic, allowing for non-zero limits F̄τ1·, ..., F̄τr· takes into

account a possibility that special time periods exist for which the values of some or

all factors are “unusually” large. Alternatively, non-zero limits F̄τ1·, ..., F̄τr· can be

viewed as a device to improve asymptotic approximation for relatively small T when

the rows of F/
√
T are not expected to be small. When the factors are random and

satisfy Assumption 1, then, obviously, the probability limits F̄τ1·, ..., F̄τr · exist and

equal zero. In such a case, the above formula for the asymptotic covariance between

F̂τsi − Q
(1)
ii Fτsi and F̂τfp − Q

(1)
pp Fτfp simplifies to δgf

σ2(di+σ2c)
di(di+σ2)

if i = p and to zero if

i 6= p.

Theorem 3 can be compared to Theorem 1 of Bai (2003). He finds that, under

his “strong-factor” requirement,
√
n
³
F̂t· −H 0Ft·

´
d→ N (0,Ω) , where H and Ω are

matrices that depend on the parameters describing factors, loadings, and noise. For

our normalization of factors and factor loadings, it can be shown that H equals

the identity matrix and Ω must be well approximated by nσ2D−1 in large samples.

Hence, Bai’s asymptotic approximation of the finite sample distribution of F̂ti − Fti
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can be represented as N
³
0, σ

2

di

´
. The variance of the latter distribution is close to

our asymptotic variance
σ2(di+σ2c)
di(di+σ2)

when di is very large, as it should be under the

“strong-factor” assumption, or if c is close to 1. Note that the multiplier Q(1)
ii , causing

the inconsistency of F̂ti in our case, becomes very close to 1 as di increases. Hence,

Bai’s asymptotic formula is consistent with ours in the case of factors with very large

cumulative effects on the cross-sectional units.

For factor loadings, we have the following:

Theorem 4: Suppose the assumptions of Theorem 2 hold. Let j1, ..., jr be such

that the limits of the j1-th, ..., jr-th rows of matrix L as n and T go to infinity exist

and equal L̄j1·, ..., L̄jr ·. Then,

i) Random variables
n√

T
³
L̂jgi −R

(1)
ii Ljgi

´
, g = 1, ..., r; i = 1, ..., q

o
are asymptoti-

cally jointly mean-zero Gaussian. The asymptotic covariance between
√
T
³
L̂jgi −R

(1)
ii Ljgi

´
and
√
T
³
L̂jfp −R

(1)
pp Ljfp

´
equalsXk

s=1
L̄jgsL̄jf sAvar

³
R
(2)
si

´
+
³
δgf −

Xk

s=1
L̄jgsL̄jf s

´µ
1−

³
R
(1)
ii

´2¶
when i = p and

equals −L̄jgpL̄jf iAcov
³
R
(2)
pi , R

(2)
ip

´
when i 6= p.

ii) For any i > q, and any j ≤ n, L̂ji
p→ 0

For the special case when the factors are i.i.d. k-dimensional standard normal

variables, the formula for the asymptotic covariance of the components of L̂ simplifies.
We have:

Corollary 1: Suppose that, in addition to the assumptions of Theorem 4, the

factors Ft· are i.i.d. standard multivariate random variables. Then, for any i ≤ q

√
T
³³
L̂j1i −R

(1)
ii Lj1i

´
, ...,

³
L̂jri −R

(1)
ii Ljri

´´
d→ N (0,Γ) ,

where

Γgf =
kX

s=1
s6=i

L̄jgsL̄jfs
di (di + σ2) (ds + σ2)

(di + cσ2) (di − ds)
2 +

Ã
δgf −

kX
s=1

L̄jgsL̄jf s

!
σ2 (di + σ2)

di (di + cσ2)

+L̄jgiL̄jf i
cσ4di (di + σ2)

2

2 (di + cσ2) (d2i − cσ4)
2

Ã
1 + c

µ
di + σ2

di + cσ2

¶2!
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Note that when factors are i.i.d. Gaussian random variables, the principal compo-

nents estimator of the normalized factor loadings is equal to the matrix of the principal

eigenvectors of the sample covariance matrix of i.i.d. Gaussian data. The asymptotic

distribution of such principal eigenvectors in the case when only T approaches infinity

is well known. According to Theorem 13.5.1 of Anderson (1984),

√
T
³
L̂·i − L·i

´
→ N (0,Π) , (4)

where

Πgf =
nX

s=1
s6=i

LgsLfs
(di + σ2) (ds + σ2)

(di − ds)
2 (5)

and it is understood that L·s is defined as the eigenvector of the population covari-
ance matrix corresponding to the s-th largest eigenvalue, and ds = 0 for s > k.

Note that
Xn

s=k+1
LgsLfs = δgf −

Xk

s=1
LgsLfs because the matrix of “population

eigenvectors” is orthogonal. Therefore, we can rewrite (5) as

Πgf =
kX

s=1
s6=i

LgsLfs
(di + σ2) (ds + σ2)

(di − ds)
2 +

Ã
δgf −

kX
s=1

LgsLfs

!
σ2 (di + σ2)

d2i
. (6)

Since in the classical case n is fixed, the requirement that rows of L have limits as
T approaches infinity is trivially satisfied. For the same reason, there is no need to

focus attention on a subset of components j1, ..., jr of the “population eigenvectors”,

so that formula (4) describes the asymptotic behavior of all components of L·i. More
substantially, the large dimensionality of the data introduces inconsistency (towards

zero) to the components of L̂·i viewed as estimates of the corresponding components
of L·i. Indeed, from Corollary 1, we see that the probability limit of L̂jsi equals Ljsi

multiplied by 0 ≤ R
(1)
ii < 1. Comparing Π and Γ, we see that the high dimensionality

of data introduces a new component to the asymptotic covariance matrix, which

depends solely on the limits of the components of the i-th “population eigenvector”.

At the same time, it reduces the “classical component” of the asymptotic covariance

by multiplying it by di
di+cσ2

. As c becomes very small, our formula for Γgf converges

to the classical formula for Πgf , as should be the case, intuitively.

The asymptotic result for high-dimensional data differs strikingly from the classi-

cal result when di is below the threshold
√
cσ2. In such a case, L̂·i has nothing to do
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with L·i. It just points out the direction of maximal spurious “explanatory power”
of the idiosyncratic terms. It is only when the cumulative effect of the i-th factor

on the cross-sectional units passes the threshold that L̂·i becomes related to L·i. As
di becomes larger and larger, components of L̂·i approximate those of L·i better and
better, eventually matching them.

The rest of our results concern the asymptotic behavior of eigenvalues µ1, ..., µk
which, as explained above, can be interpreted as the principal components estimators

of the cumulative effects of the 1st, 2nd,..., k-th factors, respectively, on the cross-

sectional units. In fact, a better estimator of the cumulative effect of the i-th factor

would be µi− σ̂2, where σ̂2 is any consistent estimator of σ2. This can be understood

by noting that the i-th eigenvalue of the population covariance matrix of data EX·tX 0
·t

equals di+σ2, where di is the true cumulative effect. According to our next theorem,

even such a corrected estimator would be inconsistent.

Theorem 5: Let q be such that di >
√
cσ2 for i ≤ q, and di ≤ √cσ2 for i > q.

For i = 1, ..., q, define constants mi =
(di+σ2)(di+σ2c)

di
. Under Assumptions 1 or (1’),

2, and 3, we have:

i)
√
T
¡
µ1 −m1, ..., µq −mq

¢0 d→ N (0,Σ) , where

Σij = φiijj
(d2i − σ4c)

¡
d2j − σ4c

¢
didj

+ 2δijσ
2
¡
2dj + cσ2 + σ2

¢ d2i − σ4c

d2i

ii) For any i > q, µi
p→ (1 +

√
c)
2
σ2

Note that according to Theorem 5, µi−σ2 converges tomi−σ2 = di+cσ2
³
1 + σ2

di

´
>

di. Hence, if we estimate the cumulative effect of the i-th factor by subtracting a true

known σ2 from µi, we are making a systematic positive mistake, which may be very

large if c and σ2 are large.

In the case of deterministic factors, the formula for the asymptotic covariance

matrix significantly simplifies because φiijj ≡ 0. The formula also simplifies in the

case when the factors are i.i.d. standard multivariate normal random variables. In

such a case, we have

Corollary 2: If, in addition to the assumptions of Theorem 5, factors Ft· are i.i.d.

standard multivariate normal random variables, then
√
T
¡
µ1 −m1, ..., µq −mq

¢0 d→
N (0,Σ), where Σ is a diagonal matrix such that Σii = 2 (di + σ2)

2
³
1− σ4c

d2i

´
.
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If we keep the framework of the above corollary, but consider the classical case,

when only T goes to infinity, then according to Theorem 13.5.1 of Anderson (1984),

µi consistently estimates di + σ2, and the asymptotic variance of µi is equal to

2 (di + σ2)
2
. This result can be recovered by setting c = 0 in Corollary 2. We see that

the large dimensionality of the data introduces inconsistency but reduces the asymp-

totic variance of µi, viewed as an estimate of di+σ2. Indeed, under our assumptions,

the probability limit of µi is di + σ2, multiplied by di+σ2c
di

> 1, and the asymptotic

variance is 2 (di + σ2)
2 multiplied by 1− σ4c

d2i
, which is positive if i ≤ q, but less than

1.

A striking difference from the classical case occurs when the cumulative effect of

the i-th factor on the cross-sectional units, measured by di, is below the threshold√
cσ2. In such a case, the i-th largest eigenvalue of 1

T
XX 0 converges to a constant

(1 +
√
c)
2
σ2 which does not depend on di. Hence, if the cumulative effect of the i-th

factors on the cross-sectional units is weak relative to the variance of idiosyncratic

noise and/or if the number of the cross-sectional units in the sample is much larger

than the number of the observations, the size of the i-th largest “sample eigenvalue”

does not reflect the strength of the cumulative effect, but measures the maximal

amount of variation in the data that can be spuriously “explained” by a linear com-

bination of the idiosyncratic terms. The i-th largest “sample eigenvalue” starts to

be related to the cumulative effect of the i-th factor only after the cumulative effect

passes the threshold.

4 An intuition for the inconsistency result

To see intuitively why the principal components estimator is inconsistent, consider a

special situation when F =
³√

T , 0, ..., 0
´0
and L =

³√
d, 0, ..., 0

´0
, where d measures

the cumulative effect of F on the cross-sectional units. In such a case, matrix X 0X/T

can be decomposed into a sum of two matrices: X 0X/T = d (F + ε1) (F + ε1)
0 /T +

ε0−1ε−1/T, where ε01 is the first row of the matrix of idiosyncratic terms ε, and

ε−1 is obtained from ε by deleting its first row. By definition, the principal com-

ponents estimator F̂ is a vector of length
√
T which maximizes F̂ 0 (X 0X/T ) F̂ =

dF̂ 0 £(F + ε1) (F + ε1)
0 /T

¤
F̂ + F̂ 0 £ε0−1ε−1/T ¤ F̂ . Had F̂ been maximizing just the

first term in the sum, it would have been close to F. However, the maximization is

achieved by balancing the marginal gains from increasing the first and the second
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terms. Hence, for F̂ to be close to F one of the following two scenarios must hold.

Either d is very large so that the high weight is put on the maximization of the first

term, or matrix ε0−1ε−1/T is close to the identity matrix so that the second term is

insensitive to the choice of F̂ . However, the first scenario is ruled out because we do

not want to assume the overwhelming domination of factors over the idiosyncratic

influences, and the second scenario does not hold because, although the elements of

ε−1 are i.i.d., the dimensionality of each row of ε−1 is so large that there always exists

a spurious direction which seems to agree with the directions of a significant propor-

tion of the rows. Therefore, the principal components estimator ends up mixing the

direction of the true factor with a spurious direction along which the variation of the

idiosyncratic terms seems to be maximized.

Although this intuition explains inconsistency of the principal components esti-

mator, it does not explain why there exists a separation between the directions of F

and F̂ which makes the darker region in Figure 1 look like a ring rather than a cap.

Such a separation is closely related to an observation, which Milman (1988) credits

to Poincaré, that in spaces of large dimensions, a randomly chosen direction is nearly

orthogonal to any fixed direction with high probability. Since the spurious direction

of high idiosyncratic variation is completely random, it turns out to be nearly orthog-

onal to the factor direction. Therefore, the principal components estimator mixes

the factor direction not just with some other direction, but with a nearly orthogonal

direction, which leads to a separation between F and F̂ with high probability.

5 A Monte Carlo study

In this section we will perform a Monte Carlo analysis to check whether our asymp-

totic results approximate finite sample situations well. We perform three different

experiments. The setting of our first experiment is as follows. We simulate 1000

replications of data having 1-factor structure with n = 40, T = 20, where Ft1 is an

AR(1) process with AR coefficient 0.5 and variance 1, σ2 = 1, Li1 =
p
d/n, and d is

on a grid 0.1:0.1:20. We repeat the experiment for n = 200, T = 100. Figure 2 shows

the Monte Carlo and theoretical means and 5% and 95% quantiles of the regression

coefficient in the regression of F̂ on F as functions of d. Smooth solid lines corre-

spond to the theoretical lines obtained using formulae of Theorem 1. According to

that theorem, the regression coefficient should be equal to Q(1) + 1√
T
Q(2). Note that
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Figure 2: Monte Carlo and theoretical means and 5% and 95% quantiles of the
regression coefficient in the regression of F̂ on F as functions of d. Horizontal axis:
d. Left panel: n = 40, T = 20; right panel: n = 200, T = 100.

the theoretical lines do not start from d = 0.1. It is because our formulae are valid

for d larger than the threshold, which is equal to
√
2 in all Monte Carlo experiments

below. Rough solid lines correspond to the Monte Carlo sample data. The left panel

is for n = 40, T = 20. The right panel is for n = 200, T = 100.

The theoretical mean of the regression coefficient, Q(1), approximates the Monte

Carlo mean reasonably well for n = 40, T = 20 and very well for n = 200, T =

100. For relatively small cumulative effects of the factor, the asymptotic quantiles

tend to overestimate the amount of finite sample variation in the coefficient. When

the cumulative effect approaches the threshold
√
2, the amount of overestimation

explodes.

In our next experiment, we simulate 1000 replications of data having 2-factor

structure with n = 40, T = 20, where Ft1 and Ft2 are i.i.d. N (0, 1) , σ2 = 1, and the

factor loadings are defined as follows. We set L0·1L·1 = 10
√
2 and L0·2L·2 = 2

√
2, so

that the cumulative effect of the first factor on the cross-sectional units is 10 times

the threshold, and the cumulative effect of the second factor is only 2 times the
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threshold. The vectors of loadings are designed so that their first two components are

“unusually” large and the other components are equal by absolute value. Precisely,

L11 = L21 =
¡
10
√
2/3
¢1/2

, Li1 =
¡
10
√
2/3 (n− 2)¢1/2 for i > 2, and L12 = −L22 =

− ¡2√2/3¢1/2 , Li1 = (−1)i
¡
2
√
2/3 (n− 2)¢1/2 for i > 2.

Figure 3 shows the results of the second experiment. The upper three graphs

correspond to the joint distributions of (from left to right) the (1st, 2nd), (2nd, 3rd),

and (3rd, 4th) components of the normalized (to have unit length) vector of factor

loadings corresponding to the first factor. The bottom three graphs correspond to the

joint distributions of the same components of the normalized vector of factor loadings

corresponding to the second factor. The dots on the graphs correspond to the Monte

Carlo draws, the solid lines correspond to 95% confidence ellipses of our theoretical

asymptotic distribution (see Corollary 1), the dashed lines correspond to the 95%

confidence ellipses of the classical asymptotic distribution (see equation 6), and the

dotted lines correspond to the 95% confidence ellipses of the asymptotic distribution

under the “strong factor” requirement.

Starting from the upper left graph and going in a clockwise direction, the percent-

age of the Monte Carlo draws falling inside our ellipse, a classical ellipse, and a “strong

factor ellipse” are, respectively, (90, 63, 64) , (92, 91, 76) , (92, 94, 93) , (93, 98, 94) ,

(87, 64, 66) , and (84, 23, 47) . Of course, ideally the percentage should be equal to

95. We see that our asymptotic distribution provides a much better approximation

to the Monte Carlo distribution than the classical and the “strong factor” asymptotic

distributions. The advantage of our distribution is particularly strong for relatively

weak factors and unusually large factor loadings (loadings on the first and second

cross-sectional units in our experiment).

In our third experiment, we simulate 1000 replications of data having 1-factor

structure with n = 40, T = 20, where Ft1 are i.i.d. N (0, 1) , σ2 = 1, Li1 =
p
d/n,

and d is on a grid 0.1:0.1:20. Figure 4 shows the Monte Carlo and theoretical means

and 5% and 95% quantiles of the first eigenvalue of XX 0/T as functions of d. Smooth

solid lines correspond to the theoretical lines obtained using formulae in Corollary

2. Rough solid lines correspond to the Monte Carlo sample data. Dotted lines are

classical theoretical lines (fixed n large T asymptotics). Remarkably, our asymptotic

formula for the mean traces the actual finite sample mean very well for all d on the

grid. The 5% and 95% asymptotic quantiles also work well. Clearly, our asymptotic

distribution provides a much better approximation to the finite sample distribution
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Figure 3: Monte Carlo draws and 95% asymptotic confidence ellipsoids for (from left
to right) (1st, 2nd), (2nd, 3rd), (3rd, 4th) components of the normalized vectors of
factor loadings. Upper panel: loadings correspond to the first factor. Lower panel:
loadings correspond to the second factor. Solid line: our asymptotics. Dashed line:
classical asymptotics. Dotted line: “strong factor” asymptotics.
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Figure 4: Monte Carlo and asymptotic means and 5% and 95% quantiles of the
eigenvalue distribution. Smooth solid lines: our asymptotics. Dotted lines: classical
asymptotics. Horizontal axis: the cumulative effect d of the factor. n = 40, T = 20.

than the classical distribution.

6 The proofs

In this section, we first prove Theorem 5 and then prove Theorem 2, Theorem 4,

and Proposition 1, in that order. (The proofs of Theorems 1 and 3 are completely

analogous to those of Theorems 2 and 4 and we omit them to save space.)

6.1 Proof of Theorem 5

Let OL and OF be n×n and T×T orthogonal matrices such that the first k columns of
OL are equal to the columns of L (L0L)

−1/2 and the first k columns of OF are equal to

the columns of F (F 0F )−1/2. Define ε̃ = O0
LεOF and let 1

T
ε̃k+1:T ε̃

0
k+1:T = O0ΛO be the

spectral decomposition of 1
T
ε̃k+1:T ε̃

0
k+1:T , where ε̃k+1:T denotes a matrix that consists

of the last T − k columns of ε̃. Note that, since ε̃k+1:T ε̃0k+1:T is distributed according

to Wishart W (σ2In, T − k) , its spectral decomposition can be chosen so that O

has the Haar invariant distribution (see Anderson (1984)).2 Define X̂ = OO0
LXOF

2The decomposition is not unique because each of the columns of O can be multiplied by −1 and
the last max (0, n− T + k) columns can be arbitrarily rotated.
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and Ψ = O1:k (L
0L)1/2

¡
F 0F
T

¢1/2
+ 1√

T
Oε̃1:k. Then, matrix 1

T
X̂X̂ 0 has a convenient

representation 1
T
X̂X̂ 0 = ΨΨ0 + Λ and the same eigenvalues as matrix 1

T
XX 0.

Let µi (A) denote the i-th largest eigenvalue of a symmetric matrix A, yij de-

note the i-th component of an eigenvector of 1
T
X̂X̂ 0, corresponding to eigenvalue

µj
¡
1
T
XX 0¢, and λi denote the i-th largest diagonal element of Λ. Then, if µj ¡ 1TXX 0¢ 6=

λi for any i = 1, ..., n, we have yij = 1
µj−λiΨi·Ψ0y·j. Multiplying this equality by Ψ0i·

and summing over all i, we get Ψ0y·j =M
(1)
n

¡
µj
¢
Ψ0y·j, whereM

(1)
n (x) ≡

Xn

i=1

Ψ0i·Ψi·
x−λi .

Note that M (1)
n

¡
µj
¢
must have an eigenvalue equal to 1. In fact, we can prove a

stronger result:

Lemma 1: Let µ 6= λi, i = 1, ..., n. Then, µ is an eigenvalue of 1
T
XX 0 if and

only if there exists m ≤ k such that x = µ satisfies equation

µm
¡
M (1)

n (x)
¢
= 1. (7)

A proof of this lemma as well as all other auxiliary propositions stated in this

section can be found in the Appendix. We plan to study the asymptotic behavior of

M
(1)
n (x) and its eigenvalues considered as random functions of x and to deduce from

it the asymptotic properties of solutions to (7), which by Lemma 1 are the eigenvalues

of 1
T
XX 0.

The key fact for the analysis below was established by Marčenko and Pastur

(1967). They showed that the empirical distribution of the elements along the diago-

nal of Λ defined as FΛ ≡ #{λi≤λ}
n

almost surely converges to a non-random cumulative

distribution function Fc, which has density

fc(λ) =

(
1

2πλcσ2

p
(b− λ) (λ− a) if a ≤ λ ≤ b

0 otherwise
(8)

a =
¡
1−√c¢2 σ2, b =

¡
1 +
√
c
¢2
σ2,

and a point mass 1− 1/c at λ = 0 if c > 1.
To see the significance of the Marčenko-Pastur result for our analysis, assume for

a moment that k = 1 and note thatM (1)
n (x) is a weighted linear combination of terms

Ψ2
i with weights (x− λi)

−1 . Now, by definition, Ψi = Oi,1 (L
0L)1/2

¡
F 0F
T

¢1/2
+ 1√

T
Oi·ε̃1.

The second element in this sum is independent of the first and, by Assumption 2,

is N (0, σ2/T ) . The first term is asymptotically N (0, d1/n) . Indeed, since O has the
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Haar invariant distribution, the joint distribution of the entries of its first column is

the same as that of the entries of ξ/ kξk , where ξ ∼ N (0, In) and kξk =
p
ξ0ξ. Hence,

M
(1)
n (x) asymptotically behaves as a weighted sum of χ2(1) independent random

variables with weights 1
n
(d1 + cσ2) (x− λi)

−1 . Intuitively, such a sum should converge

to (d1 + cσ2)
R
(x− λ)−1 dFc (λ) , which we confirm below. The properties ofM

(1)
n (x)

centered by its probability limit and scaled by
√
n can be analyzed using similar ideas.

Now, let us formally establish the asymptotic behavior of M (1)
n (x). As was shown

by Bai, Silverstein and Yin (1988), for any fixed k, λ1, ..., λk almost surely con-

verge to b. This result implies that, with high probability, M (1)
n (x) belongs to the

space C [θ1, θ2]
k2 of continuous k × k-matrix-valued functions on x ∈ [θ1, θ2] , where

θ2 > θ1 > b. Since the weak convergence in C [θ1, θ2] is well-studied, it will be conve-

nient to modifyM (1)
n (x) on a small probability set so that the modification is a random

element of C [θ1, θ2]
k2 equipped with the max sup norm. To construct such a modifi-

cation, define h(x, λi) = max
¡
x− λi,

θ1−b
2

¢
and let M̂ (1)

n (x) ≡
Xn

i=1

Ψ0i·Ψi·
h(x,λi)

. We will

study the asymptotic properties of M̂ (1)
n (x) keeping in mind that they are equivalent

to the asymptotic properties ofM (1)
n (x) because P

³
M

(1)
n (x) = M̂

(1)
n (x) , ∀x ∈ [θ1, θ2]

´
=

P
¡
λ1 <

θ1+b
2

¢→ 1 as n→∞.

To prove Theorems 2 and 4 we will also need to analyze the asymptotic prop-

erties of M (2)
n (x) ≡

Xn

i=1

Ψ0i·Ψi·
(x−λi)2 and M

(3)
n (x) ≡

Xn

i=1

O0i,1:kΨi·
x−λi . Define M̂

(2)
n (x) =Xn

i=1

Ψ0i·Ψi·
h2(x,λi)

, M̂
(3)
n (x) =

Xn

i=1

O0i,1:kΨi·
h(x,λi)

, M
(1)
0 (x) = (D + σ2cIk)

R dFc(λ)
x−λ , M

(2)
0 (x) =

(D + σ2cIk)
R dFc(λ)
(x−λ)2 , and M

(3)
0 (x) = D1/2

R dFc(λ)
x−λ . Appendix proves the following

Lemma 2: Let Assumptions 1 (or 1’), 2, and 3 hold. Then, for the random
elements of Ck2 [θ1, θ2] defined as N

(p)
n (x) =

√
n
³
M̂

(p)
n (x)−M

(p)
0 (x)

´
, p = 1, 2, 3, we

have: ©
N (p)

n (x), p = 1, 2, 3
ª d→ ©

N (p)(x), p = 1, 2, 3
ª
, (9)

where, for any {x1, ..., xJ} ∈ [θ1, θ2], the joint distribution of entries of©
N (p)(xj); p = 1, 2, 3, j = 1, ..., J

ª
is a 3Jk2-dimensional normal distribution with co-

variance between entry in row s and column t of N (p)(xj) and entry in row s1 and

column t1 of N (r)(xj1) equal to Ω(p,r) (τ , τ 1) , where τ = (s, t, j) and τ 1 = (s1, t1, j1) ,

and Ω(p,r) (τ , τ 1) is defined in the Appendix.

Using Lemma 2, it is easy to establish the probability limits of the first k eigen-

values of XX 0/T. Recall that by Lemma 1, we should look at the probability limits
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of the solutions to µj
³
M

(1)
n (x)

´
= 1. Consider, first, solutions to a related equation

µj

³
M

(1)
0 (x)

´
= 1. Function µj

³
M

(1)
0 (x)

´
= (dj + σ2c)

Z
dFc(λ)
x−λ is continuous and

strictly decreasing on (b,+∞), and tends to zero as x→ +∞. In addition, since, as is

straightforward to check, limx↓b

Z
dFc(λ)
x−λ = 1

cσ2

√
c

1+
√
c
, we have: limx↓b µm(M

(1)
0 (x)) > 1

if and only if dj >
√
cσ2. Therefore, there exist unique solutions x0j ∈ (b,+∞) to

equations µj
³
M

(1)
0 (x)

´
= 1 for j ≤ q, and there are no solutions to the equations on

(b,+∞) for q < j ≤ k.

Now, fix θ1 and θ2 so that θ2 > θ1 > b; {x0j : j ≤ q} ∈ (θ1, θ2) , and (dk + σ2c)

Z
dFc(λ)
θ2−λ <

1
2
. The continuous mapping theorem and Lemma 2 imply that µj

³
M̂

(1)
n (x)

´
d→

µj

³
M

(1)
0 (x)

´
, in the sense of the weak convergence of the random elements of

C [θ1, θ2] . Using this convergence and the monotonicity of µj
³
M̂

(1)
n (x)

´
it is easy to

show that with probability arbitrarily close to 1, there are no solutions to µj
³
M̂

(1)
n (x)

´
=

1 larger than θ1 for q < j ≤ k and large enough n.Therefore, P
©
µj(

1
T
XX 0) < θ1, q < j ≤ k

ª→
1 as n → ∞. But, since 1

T
X̂X̂ 0 − Λ is a positive semi-definite matrix, µj(

1
T
XX 0),

q < j ≤ k cannot be smaller than λk which tends almost surely to b. Since θ1 can

be chosen arbitrarily close to b, we have µj(
1
T
XX 0)

p→ b for q < j ≤ k which proves

statement ii of Theorem 5.

In contrast, with high probability there exist unique solutions xnj ∈ [θ1, θ2] to
µj

³
M̂

(1)
n (x)

´
= 1 for j ≤ q, and xnj

p→ x0j.
3 Therefore, µj(

1
T
XX 0)

p→ x0j for j ≤ q. A

short technical derivation relegated to the Appendix shows that x0j =
(di+σ2)(di+σ2c)

di

which is denoted as mj in the condition of Theorem 5.

Next, we show that, for any j ≤ q,

µj(M̂
(1)
n (x)) = µj

³
M

(1)
0 (x)

´
+

1√
n
N
(1)
n,jj(x) + op

µ
1√
n

¶
, (10)

where op
³

1√
n

´
is understood as a random element of C [θ1, θ2] , which, when mul-

tiplied by
√
n, tends in probability to zero as n → ∞. Formula (10) is an easy

consequence of Lemma 2 and part i of the following lemma.4

Lemma 3: Let A (κ) = A + κA(1), where A(1) is a symmetric k × k ma-

3When there is no solution to µj
³
M̂

(1)
n (x)

´
= 1 on [θ1, θ2] , we can define xnj ∈ [θ1, θ2] arbitrarily.

4We will need part ii of the lemma to prove Theorem 2.
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trix and A = diag (a1, a2, ..., ak) , a1 > a2 > ... > ak > 0. Further, let r0 =
1
2
minj=1,...,k |aj − aj+1| , where we define ak+1 as zero. Then, for any real κ such

that |κ| < r0/
°°A(1)°° , the following two statements hold:

i) Exactly one eigenvalue of A(κ) belongs to the segment (aj − r0, aj + r0) . Denoting

this eigenvalue as aj (κ) , we have:5
¯̄̄
1
κ (aj (κ)− aj)−A

(1)
jj

¯̄̄
≤ |κ|°°A(1)°° ¡r0 − |κ|°°A(1)°°¢−1 .

ii) Let Pj (κ) be the orthogonal projection on the invariant subspace of A (κ) corre-
sponding to eigenvalue aj (κ) and let
Sj = diag

¡
(a1 − aj)

−1 , ..., (aj−1 − aj)
−1 , 0, (aj+1 − aj)

−1 , ..., (ak − aj)
−1¢ . Then ej (κ) ≡

Pj (κ) ej/ kPj (κ) ejk is an eigenvector of A (κ) corresponding to eigenvalue aj (κ) ,
and

°° 1
κ (ej (κ)− ej) + SjA

(1)ej
°° ≤ 2 |κ|°°A(1)°°2 ¡r0 − |κ|°°A(1)°°¢−2 .

Define function νj (y) for y > 0 so that it is equal to b if y > limx↓b µj(M
(1)
0 (x))

and to the inverse function to function µj(M
(1)
0 (x)) otherwise. Since

d
dx
µj(M

(1)
0 (x)) =

− (dj + σ2c)
R dFc(λ)
(x−λ)2 , it is easy to see that limx↓b d

dx
µj(M0(x)) = +∞, and, hence,

νj (y) is differentiable for y > 0.Applying νj to both sides of (10) and using the first or-

der Taylor expansion of the right hand side, we have for x ∈ [θ1, θ2]: νj
³
µj(M̂

(1)
n (x))

´
=

x + ν 0j (τn(x))
1√
n
N
(1)
n,jj(x) + op

³
1√
n

´
, where τn(x) is a random element of C [θ1, θ2]

such that τn(x)
p→ µj(M

(1)
0 (x)) as n→∞.

Note that by definition of xnj, definition of νj(·), and Lemma 1, µj
³
M̂

(1)
n (xnj)

´
=

1, νj

³
µj

³
M̂

(1)
n (xnj)

´´
= x0j, and xnj = µj

¡
1
T
XX 0¢ with probability arbitrar-

ily close to 1 for large enough n. Substituting x by xnj in the above expansion

of νj
³
µj(M̂

(1)
n (x))

´
and using these facts, we obtain:

√
n
¡
µj
¡
1
T
XX 0¢− x0j

¢
=

−ν 0j (τn(xnj))N (1)
n,jj(xnm) + op (1) .

Further, since xnj
p→ x0j = mj, we have ν 0j (τn(xnj))

p→ ν 0j (1) . Finally,N
(1)
n,jj(xnj)−

N
(1)
n,jj(mj)

p→ 0, which follows from Lemma 2 and the following additional

Lemma 4: Let fn(x) and f0(x) be random elements of C [θ1, θ2] such that

fn(x)
d→ f0(x) as n → ∞. And let xn be random variables with values form [θ1, θ2]

and such that xn
p→ x0, where x0 ∈ [θ1, θ2] Then fn(xn)− fn(x0)

p→ 0.

Therefore,
√
n
¡
µj
¡
1
T
XX 0¢− x0j

¢
has the following form

√
n

µ
µj

µ
1

T
XX 0

¶
−mj

¶
= −ν 0j (1)N (1)

n,jj(mj) + op (1) . (11)

5For any matrix (or vector) B, kBk = (max eig (B∗B))1/2 , where ∗ denotes the operation of
transposition and complex conjugation.
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the Appendix shows that −ν 0j (1) =
¡
d2j − σ4c

¢
(dj + σ2c) d−2j . The latter equality,

formula (11), and Lemma 2 imply statement i of Theorem 5.¤

6.2 Proof of Theorem 2

First, note that representation L̂1:q=L·R+L⊥q , where L⊥q is a matrix with q columns
orthogonal to span (L) is a trivial coordinate decomposition statement. The value of
Theorem 2 is, therefore, contained in describing properties of L⊥q and R. Recall that

the columns of L̂1:q are equal to the q principal eigenvectors of 1TXX 0. By Assumption

2, the joint distribution of elements of X is invariant with respect to multiplication

of X from the left by any orthogonal matrix leaving columns of L unchanged. This

immediately implies that the joint distribution of entries of L⊥q is invariant with

respect to the multiplication of L⊥q from the left by any orthogonal matrix that has

span (L) = span (L) as its invariant subspace. In the rest of the proof we, therefore,
focus on the properties of R.

Since L̂·j is an eigenvector of 1TXX 0 corresponding to µj
¡
1
T
XX 0¢ , we have L̂·j =

OLO
0y·j, where y·j is an eigenvector of 1

T
X̂X̂ 0 corresponding to the same eigenvalue.

This implies that the vector of coordinates of L̂·j in the basis formed by columns
of OL is equal to O0y·j. Further, since the first k columns of OL form matrix L, R·j
must be equal to the vector of the first k coordinates O0

1:ky·j. Using this fact, the fact

established in the proof of Theorem 5, that yij =
¡
µj
¡
1
T
XX 0¢− λi

¢−1
Ψi·Ψ0y·j, and

the definitions of Ψ, M̂ (3)
n (x), and xnj, it is straightforward to check that

R·j = M̂ (3)
n (xni)Ψ

0y·j (12)

with probability arbitrarily close to one for large enough n. The analysis below will

be based on this representation of R·j.

We, first, find the probability limit R(1) of R. Lemma 2, Lemma 4, and the

fact that xnj
p→ mj imply that M̂

(3)
n (xnj)

p→ M
(3)
0 (mj) ≡ D1/2

Z
dFc(λ)
mj−λ . Further,

since Ψ0y·j = M
(1)
n

¡
µj
¡
1
T
XX 0¢¢Ψ0y·j, wnj ≡ Ψ0y·j/ kΨ0y·jk is a unit-length eigenvec-

tor of M̂ (1)
n (xnj) with high probability for large enough n. By part ii of Lemma 3,

wnj
p→ ej. Finally, since yij =

¡
µj
¡
1
T
XX 0¢− λi

¢−1
Ψi·Ψ0y·j and ky·jk = 1, kΨ0y·jk =³

w0njM̂
(2)
n (xnj)wnj

´−1/2
with high probability for large enough n. But by Lemma 2,

and Lemma 4, M̂ (2)
n (xnj)

p→ (D + σ2cIk)

Z
dFc(λ)
(mj−λ)2 . Therefore,
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kΨ0y·ik p→
µ
(dj + σ2c)

Z
dFc(λ)
(mj−λ)2

¶−1/2
. Using representation (12) and these conver-

gence results, we get: R·j
p→ d

1/2
j

Z
dFc(λ)
mj−λ

µ
(dj + σ2c)

Z
dFc(λ)
(mj−λ)2

¶−1/2
ej. Formulae

(24) and (25) from the Appendix imply that this limit simplifies so that we get:

R·j
p→
³

d2j−σ4c
dj(dj+σ2c)

´1/2
ej which establishes the form of R(1).

Now, we will study the asymptotic behavior of R around its probability limit R(1).

Starting from representation (12) the Appendix shows that the asymptotic joint dis-

tribution of the components of q k×1 vectors√n
³
R·j −R

(1)
·j
´
, j = 1, ..., q is the same

as that of the components of q k × 1 vectors
X4

s=1
κjÃ(s)j , j = 1, ..., q, where Ã(1)j =

N
(3)
n (mj)ej, Ã

(2)
j = −0.5 ¡d2j − cσ4

¢
d
−3/2
j N

(2)
n,jj(mj)ej, Ã

(3)
j = σ4c (d2i − cσ4)

−1
d
−1/2
i N

(1)
n,jj (mj) ej,

Ã(4) = −D1/2SjN
(1)
n (mj) ej, and κj =

¡
d2j − σ4c

¢1/2
(dj + σ2c)

1/2
d−1j . Using Lemma

2, we conclude that the joint asymptotic distribution of the elements of
√
n
¡
R−R(1)

¢
is Gaussian. The elements of the covariance matrix of the asymptotic distribution

of
√
n
¡
R−R(1)

¢
can be found6 using the above definitions of Ã(s)j , s = 1, ..., 4, the

expressions for the covariance ofN (1)
n (mj) , N

(2)
n (mj) , andN

(3)
n (mj) , j = 1, ..., q sum-

marized in the definition of Ω(·,·) given in the Appendix, and formulae (24),(25),(27),

and (28).

Let us now complete the proof by considering the case when dj ≤ √cσ2. Consider
a number γ > b. For large enough n, with high probability µj ≡ µj

¡
1
T
XX 0¢ < γ

because, by Theorem 5, µj
p→ b. Therefore, for large enough n with high probability

min eval
³Pn

i=k+1Ψ
0
i·
¡
µj − λi

¢−2
Ψi·
´
≥ min eval ¡Pn

i=k+1Ψ
0
i· (γ − λi)

−2Ψi·
¢
. Since k

is fixed, the right hand side of the latter inequality is asymptotically equivalent

to min evalM (2)
n (γ) which, by Lemma 2, converges to min eval (D + σ2cIk)

Z
Fc(dλ)
(γ−λ)2 .

Note that the latter expression can be made arbitrarily large by choosing γ close

enough to b. Therefore, min eval
³Pn

i=k+1Ψ
0
i·
¡
µj − λi

¢−2
Ψi·
´

p→∞. But, since yij =¡
µj − λi

¢−1
Ψi·Ψ0y·j and ky·jk = 1, (Ψ0y·j)

0
³Pn

i=k+1Ψ
0
i·
¡
µj − λi

¢−2
Ψi·
´
(Ψ0y·j) =Pn

i=k+1 y
2
ij ≤ 1, and hence, Ψ0y·j

p→ 0.

Now, let τ be a number 0 < τ < 1. We have:
Pn

i=[τn]+1 y
2
ij =

(Ψ0y·j)
0
³Pn

i=[τn]+1Ψ
0
i·
¡
µj − λi

¢−2
Ψi·
´
(Ψ0y·j) .Note that, for i ≥ [τn]+1,

¡
µj − λi

¢−2 ≥¡
µj − λ[τn]+1

¢−2
. By Marčenko and Pastur (1967) result and Theorem 5 the right

6To obtain these formulas we used symbolic manipulation software of the Scientific Workplace,
version 5.
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hand side of the latter inequality converges to (b− F−1c (1− τ))
−2

< ∞. Therefore,°°°Pn
i=[τn]+1Ψ

0
i·
¡
µj − λi

¢−2
Ψi·
°°° is bounded in probability and, sinceΨ0y·j

p→ 0,
Pn

i=[τn]+1 y
2
ij

p→
0. Loosely speaking, for any 0 < τ < 1, with high probability for large enough n, al-

most all “mass” in vector y·j is concentrated in the first τ100% of its components.

Finally, the i-th coordinate of L̂·j in the basis OL are equal to (O·i)
0 y·j. We have¯̄

(O·i)
0 y·j
¯̄
=
P[τn]

s=1Osiysj +
Pn

s=[τn]+1Osiysj ≤
³P[τn]

s=1O
2
si

´1/2
+
³Pn

s=[τn]+1 y
2
sj

´1/2
.

The last term in the right hand side of the above inequality converges in probability

to zero. As to the first term, since O is Haar distributed,
P[τn]

s=1O
2
si has the same

distribution as 1
kςk2

X[τn]

j=1
ς2j , where ς is an n × 1 standard normal vector. Clearly,

1
kςk2

X[τn]

j=1
ς2j

p→ τ . Therefore, Pr
¡¯̄
(O·i)

0 y·j
¯̄
> 2τ

¢→ 0 as n→∞ for any 0 < τ < 1.

In other words, all coordinates of L̂·j in basis OL converge in probability to zero.¤

6.3 Proof of Theorem 4

First, note that since the distribution of the data X does not depend on the multipli-

cation of X from the left by any orthogonal matrix having span (L) as its invariant

subspace, the joint distribution of the coordinates of the columns of L̂ in the basis
formed by the columns of OL does not depend on how the k+1-th, k+2-th, ..., n-th

columns of OL are chosen.

Denote an n×1 unit-length vector with all entries but the j-th equal to zero as ej.
Let the k+1-th column of OL be chosen asM(L)ej1/ kM(L)ej1k , whereM(L) denotes
the operator of taking the residual from the orthogonal projection on span (L) , the

k + 2-th column be chosen as M([L, ej1])ej2/ kM([L, ej1])ej2k , ..., and the k + r-th

column be chosen asM(
£
L, ej1, ..., ejr−1

¤
)ejr/

°°M(£L, ej1 , ..., ejr−1¤)ejr°° . For example,
if r = 2 and j1 = 1 and j2 = 2, then matrix OL has the following structure

OL =

 LD−1
2

x 0 0 · · · 0

y z 0 · · · 0

∗

 , (13)
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where x = kM(L)e1k , y = e02M(L)e1/ kM(L)e1k , and z = kM([L, e1])e2k . Note that:

x2 = e0j1M(L)ej1 = 1− e0j1L (L
0L)−1 L0ej1 = 1−

kX
i=1

L2j1i (14)

y =
1

x
e0j2M(L)ej1 = −

1

x

kX
i=1

Lj1iLj2i. (15)

Let us denote the n− k coordinates of the columns of L̂1:q in the basis formed by
the columns of OL as R⊥. That is, R⊥ij is the scalar product of L̂·j and the k + i-th

column of OL. Then, L̂jsi = Ljs· · R·i +
Pr

t=1OL,jst · R⊥ti . Hence, we can obtain the
asymptotic joint distribution of

n
L̂jsi; s = 1, ..., r; i = 1, ..., q

o
from the asymptotic

joint distribution of the entries of R and the first r columns of R⊥.

It is easy to see that matrix R̃⊥ ≡ R⊥ (Iq −R0R)−1/2 , where R is as defined in

Theorem 2, has orthonormal columns. Moreover, as a consequence of the invariance

of the distribution of X with respect to the orthogonal transformations leaving L

unchanged, the joint distribution of the entries of R̃⊥ conditional on R is invariant

with respect to multiplication of R̃⊥ from the left by any orthogonal matrix. This

implies that the joint distribution of the entries of R̃⊥α conditional on R, where α

is any q × 1 unit-length vector, is the same as the joint distribution of the entries of
ξ/ kξk , where ξ is an (n− k)× 1 vector with i.i.d. Gaussian entries.
As a consequence of the above result, the entries of R̃⊥α are independent from

the entries of Rα, and their unconditional joint distribution is the same as that of the

entries of ξ/ kξk . This fact, together with Theorem 2 and Cramer-Wold theorem (see
White (1999), p.114), implies that the entries of

√
n
¡
R−R(1)

¢
and of the first r rows

of
√
nR⊥, where r is any fixed positive number, are asymptotically independent and

have asymptotic joint zero-mean Gaussian distribution. The covariance matrix of the

asymptotic distribution of the first r raws of
√
nR⊥ is diagonal and Avar

¡√
nR⊥ji

¢
=

1−
³
R
(1)
ii

´2
.

The asymptotic joint Gaussianity of the entries of
√
n
¡
R−R(1)

¢
and
√
nR⊥ im-

plies that
n√

n
³
L̂jgi −R

(1)
ii Ljgi

´
; g = 1, ..., r; i = 1, ..., q

o
are asymptotically jointly

mean-zero Gaussian. We will now find the variances and covariances of the asymptotic

distribution. Consider the random variables
√
n
³
L̂jgi −R

(1)
ii Ljgi

´
and
√
n
³
L̂jfp −R

(1)
pp Ljfp

´
.

Without loss of generality assume that g = 1, f = 2. If g 6= 1 and/or f 6= 2, construct
OL so that its k + 1-th column is M(L)ejg/

°°M(L)ejg°° and its k + 2-th column
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is M(
£
L, ejg

¤
)ejf/

°°M(£L, ejg¤)ejf°° . From (13), we have:
√
n
³
L̂jgi −R

(1)
ii Ljgi

´
=X

1≤s≤k
Ljgs

√
n
³
Rsi −R

(1)
si

´
+ x
√
nR⊥1i, and

√
n
³
L̂jfp −R

(1)
pp Ljfp

´
=X

1≤s≤k
Ljf s

√
n
³
Rsp −R

(1)
sp

´
+y
√
nR⊥1p+z

√
nR⊥2p. These two formulae together with

(14), (15), and the formulae for the asymptotic covariance of entries of
√
n
¡
R−R(1)

¢
and of the first two rows of

√
nR⊥ established above and in Theorem 2 imply the

formula for the asymptotic covariance matrix claimed by Theorem 4.

Part ii of the theorem follows from part ii of Theorem 2 and the fact that the

entries of the first row of
√
nR̃⊥, where R̃⊥ is defined similarly to R⊥, converge in

distribution. This fact can be established similarly to the analogous fact for
√
nR⊥.¤

7 Conclusion

In this paper we have shown that the principal components estimators of factors

and factor loadings are inconsistent but asymptotically normal as n and T approach

infinity proportionally when the cumulative effects of the normalized factors on the

cross-sectional units are assumed to be bounded, as opposed to increasing in n. We

have found explicit formulae for the amount of the inconsistency and for the asymp-

totic covariance matrix of the estimators. Our Monte Carlo analysis suggests that

our asymptotic formulae work well even for such small samples as n = 40, T = 20.

Our assumption that the cumulative effects of the factors are bounded contrasts

the usual assumption of the unbounded effects made in the approximate factor mod-

els. This conflict should not preclude using our results in the empirical applications of

such models. Our formulae simply provide an alternative asymptotic approximation

to the finite sample distributions of interest to the applications. As we have shown,

our asymptotic approximations converge to those proposed by Bai (2003) when the

assumed bounds on the cumulative effects of the factors increase. Hence, in the ap-

plications where factors have very large cumulative effects in the sample investigated,

our asymptotic approximation should work similarly to Bai’s. On the other hand,

when factors do not have large cumulative effects in the sample investigated, our

results will provide a better approximation than results based on the assumption of

strong asymptotic domination of factors over the idiosyncratic influences.

We obtained all our results under a strong assumption of i.i.d. noise. Such an

assumption substantially reduces the generality of approximate factor models. There-
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fore, we see the main contribution of this paper in pointing out some situations in

which the “strong factor” approximation of Bai (2003) may not perform well. Pro-

viding a general asymptotic theory for principal components estimation under weak

factors is left for future research. In this paper we have not explored implications

of our results for econometric practice. The implications of our results for diffusion

index forecasting is the topic that I am currently working on.

8 Appendix

Definition of covariance function Ω from Lemma 1:

For τ = (s, t, j), τ1 = (s1, t1, j1) , and integers p1 and p2 such that 1 ≤ p1 ≤ p2 ≤ 2, we define
Ω as follows.

Ω(p1,p2) (τ , τ1) =
c

4
(ds + dt) (ds1 + dt1)φsts1t1

Z
dFc(λ)
(xj − λ)p1

Z
dFc(λ)

(xj1 − λ)p2

Ω(p1,3) (τ , τ1) =
c

4
(ds + dt)

p
ds1φsts1t1

Z
dFc(λ)
(xj − λ)

p1

Z
dFc(λ)
xj1 − λ

Ω(3,3) (τ , τ1) =
c

4

p
dsds1φsts1t1

Z
dFc(λ)
xj − λ

Z
dFc(λ)
xj1 − λ

if (s1, t1) 6= (s, t) and (s1, t1) 6= (t, s) ;

Ω(p1,p2) (τ , τ1) =
h c
4
(ds + dt)

2
φstst − (1 + δst) dsdt

i Z dFc(λ)
(xj − λ)p1

Z
dFc(λ)

(xj1 − λ)p2

+
h
(1 + δst)

¡
σ4c2 + dsdt

¢
+ σ2c

³
ds + dt + 2δst

p
dsdt

´i
·
Z

dFc(λ)
(xj − λ)p1 (xj1 − λ)p2

Ω(p1,3) (τ , τ1) =
h c
4
(ds + dt)

p
dsφstst − (1 + δst)

p
dsdt

i Z dFc(λ)
(xj − λ)

p1

Z
dFc(λ)
xj1 − λ

+
h
(1 + δst)

p
dsdt + σ2c

³p
ds + δst

p
dt

´iZ dFc(λ)
(xj − λ)

p1 (xj1 − λ)

Ω(3,3) (τ , τ1) =
³ c
4
dsφstst − (1 + δst) dt

´Z dFc(λ)
xj − λ

Z
dFc(λ)
xj1 − λ

+
¡
(1 + δst) dt + σ2c

¢ Z dFc(λ)
(xj − λ) (xj1 − λ)
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if (s1, t1) = (s, t) ; and

Ω(p1,p2) (τ , τ1) = Ω(p1,p2) ((t, s, j) , (s1, t1, j1))

Ω(p1,3) (τ , τ1) = Ω(p1,3) ((t, s, j) , (s1, t1, j1))

Ω(3,3) (τ , τ1) =
³ c
4
φstst − (1 + δst)

´p
dsdt

Z
dFc(λ)
xj − λ

Z
dFc(λ)
xj1 − λ

+
³
(1 + δst)

p
dsdt + δstσ

2c
´Z dFc(λ)

(xj − λ) (xj1 − λ)

if (s1, t1) = (t, s) .

Proof of Lemma 1:

Suppose x0 6= λi, i = 1, ..., n and x0 satisfies (7). Let v be an eigenvector of M
(1)
n (x0) cor-

responding to the unit eigenvalue. Define zi =
1

x0−λiΨi·v and let z = (z1, ..., zn)
0
. We have:

Ψ0z = M
(1)
n (x0) v = v, and hence, z = 1

x0−λiΨi·Ψ
0z, which proves that z is an eigenvector of

1
T X̂X̂ 0 corresponding to eigenvalue x0. Since the eigenvalues of 1T X̂X̂ 0 and 1

TXX 0 coincide, x0 must

be an eigenvalue of 1TXX 0 which proves the “if” statement of the Lemma. The “only if” statement

of the Lemma has been established in Section 4.¤

Proof of Lemma 2:

We, first, formulate and prove the key technical lemma of this paper. Let gj(λ), j = 1, ..., J,

be analytic functions of real variable λ on an open interval
¡
ā, b̄
¢
containing the support of the

Marčenko-Pastur distribution, that is the set {0, [a, b]} if c > 1, and the segment [a, b] if c ≥ 1.

Further, let ς(n) be an array of n × m matrices with i.i.d. standard normal entries independent

of λ1, ..., λn. In what follows we will omit the superscript n in ς(n) to simplify notations. Finally,

denote the set of triples {(j, s, t) : 1 ≤ j ≤ J, 1 ≤ s ≤ t ≤ m} as Θ1. Then, we have the following

Lemma 5: Let Assumptions 2 and 3 hold. Then, the joint distribution of random variablesn
1√
n

Xn

i=1
gj(λi) (ςisςit − δst) ; (j, s, t) ∈ Θ1

o
weakly converges to a multivariate normal distribu-

tion as n→∞. The covariance between components (j, s, t) and (j1, s1, t1) of the limiting distribu-

tion is equal to 0 when (s, t) 6= (s1, t1) , and to (1 + δst)
R
gj(λ)gj1(λ)dFc(λ) when (s, t) = (s1, t1) .

Proof: To prove this lemma we will need two well known results, which we formulate below as

two additional lemmas.

Lemma 6: (McLeish (1974)) Let {Xn,i,Fn,i; i = 1, 2, ..., n} be a martingale difference array on
the probability triple (Ω,F , P ) . If the following conditions are satisfied: a) Lindeberg’s condition:
for all ε > 0,

X
i

R
|Xn,i|>εX

2
n,idP → 0, n→∞; b)

Xn

i=1
X2
n,i

p→ 1, then
Xn

i=1
Xn,i

d→ N(0, 1).

Proof: This is a consequence of Theorem (2.3) of McLeish (1974). Two conditions of the
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theorem, i) maxi≤n |Xn,i| is uniformly bounded in L2 norm, and ii) maxi≤n |Xn,i| p→ 0, are replaced

here by the Lindeberg condition. As explained in McLeish (1974), since for any ε,maxi≤nX2
n,i ≤ ε2+X

i
X2
n,iI (|Xn,i| > ε) and since P {maxi≤n |Xn,i| > ε} = P

nX
i
X2
n,iI (|Xn,i| > ε) > ε2

o
, both

conditions i) and ii) follow from the Lindeberg condition.¤

Lemma 7: (Hall and Heyde) Let {Xn,i,Fni; 1 ≤ i ≤ n} be a martingale difference array and
define V 2

n,j =
Xj

i=1
E
¡
X2
n,i|Fn,i−1

¢
and U2n,j =

Xj

i=1
X2
n,i for 1 ≤ j ≤ n. Suppose that the

conditional variances V 2
n,n are tight, that is supn P

¡
V 2
n,n > ε

¢ → 0 as ε → ∞, and that the condi-

tional Lindeberg condition holds, that is for all ε > 0,
X

i
E
£
X2
n,iI (|Xn,i| > ε) |Fn,i−1

¤ p→ 0. Then

maxj
¯̄
U2n,j − V 2

n,j

¯̄ p→ 0.

Proof: This is a shortened version of Theorem 2.23 in Hall and Heyde (1980).¤

Returning to the proof of Lemma 5, let real numbers a1 and b1 be such that [a1, b1] is included

in
¡
ā, b̄
¢
, but itself includes the support of the Marčenko-Pastur law. Define functions hj(λ), j =

1, ..., J, so that hj(λ) = gj(λ) for λ ∈ [a1, b1], and hj(λ) = 0 otherwise. Note that |hj(λ)| < B

for any j = 1, ..., J and any λ, where B is a constant larger than maxj=1,...,J supλ∈[a1,b1] |gj (λ)| .
Note also that since, as shown in Bai, Silverstein and Yin (1988), λ1 almost surely converges to b,

P {∃j ≤ J, i ≤ n such that hj(λi) 6= gj(λi)}→ 0 as n→∞.
Consider random variables Xn,i =

1√
n

X
(j,s,t)∈Θ1

γjsthj(λi) (ςisςit − δst) , where γjst are some

constants. Let Fn,i be sigma-algebra generated by λ1, ..., λn and ςjs; 1 ≤ j ≤ i, 1 ≤ s ≤ m. Clearly,

{Xn,i,Fn,i; i = 1, 2, ..., n} form a martingale difference array. Let K be the number of different

triples (j, s, t) ∈ Θ1. Consider an arbitrary order in Θ1. In Hölder’s inequality
XK

r=1
arbr ≤µXK

r=1
(ar)

p

¶1/pµXK

r=1
(br)

q

¶1/q
, which holds for ar > 0, br > 0, p > 1, q > 1, and (1/p) +

(1/q) = 1, take ar =
¯̄̄
1√
n
γjsthj(λi) (ςisςit − δst)

¯̄̄
, where (j, s, t) is the r-th triple in Θ1, br = 1, and

p = 2+δ for some δ > 0. Then, the inequality implies that |Xn,i|2+δ ≤ K1+δB2+δ
X

(j,s,t)∈Θ1

¯̄̄
γjst

ςisςit−δst√
n

¯̄̄2+δ
.

Recalling that ςis are i.i.d. standard normal random variables, we have:
X

i
E |Xn,i|2+δ tends to

zero as n → ∞, which means that the Lyapunov condition holds for Xn,i. As is well known, Lya-

punov’s condition implies Lindeberg’s condition. Hence, condition a) of McLeish’s proposition is

satisfied for Xn,i.

Now, let us consider
Xn

i=1
X2
n,i. Since convergence in mean implies convergence in probability,

the conditional Lindeberg condition is satisfied for Xn,i because the unconditional Lindeberg con-

dition is satisfied as checked above. Further, in notations of Hall and Heyde’s proposition, we have

V 2
n,n = 1

n

Xn

i=1
E(
X

(j,s,t)∈Θ1,
(j1,s1,t1)∈Θ1

γjstγj1s1t1hj(λi)hj1(λi) (ςisςit − δst) (ςis1ςit1 − δs1t1) |Fn,i−1). It
is straightforward to check that the latter expression is equal to
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X
1≤j≤J
1≤j1≤J

h³X
1≤s≤t≤m γjstγj1st (1 + δst)

´
1
n

Xn

i=1
hj(λi)hj1(λi)

i
.

Consider now Ṽ 2
n,n =

X
1≤j≤J
1≤j1≤J

h³X
1≤s≤t≤m γjstγj1st (1 + δst)

´
1
n

Xn

i=1
gj(λi)gj1(λi)

i
. Since

P
³
Ṽ 2
n,n 6= V 2

n,n

´
→ 0 as n → ∞, Ṽ 2

n,n and V 2
n,n must converge in probability to the same limit,

or must both diverge. But, by Theorem 1.1 of Bai and Silverstein (2004), 1n
Xn

i=1
gj(λi)gj1(λi) −R

gj(λ)gj1(λ)dF n
T
(λ) converges in probability to zero. Therefore, since F n

T
(λ) weakly converge to

Fc(λ) as n→∞, we have

Ṽ 2
n,n

p→ Σ ≡
X

1≤j≤J
1≤j1≤J

 X
1≤s≤t≤m

γjstγj1st (1 + δst)

Z gj(λ)gj1(λ)dFc(λ)
 . (16)

Hence, V 2
n,n also converges in probability to Σ. In particular, V

2
n,n is tight and Hall and Heyde’s

proposition applies. From Hall and Heyde’s proposition, we know that
Xn

i=1
X2
n,i must converge

to the same limit as V 2
n,n. Therefore, using McLeish’s result, we get

Xn

i=1
Xn,i

d→ N(0,Σ).

Let us now define Yn,i =
X

(j,s,t)∈Θ1
γjstgj(λi)

ςisςit−δst√
n

. Since P
³Xn

i=1
Yn,i 6=

Xn

i=1
Xn,i

´
→

0 as n→∞, we have
Xn

i=1
Yn,i

d→ N(0,Σ). Finally, Lemma 5 follows from the latter convergence,

the Cramer-Wold result (see White (1999), p.114), and definition of Σ (16).¤

Now we turn to the proof of Lemma 2. To save the space, we will only study the convergence

of N (1)
n (x). The joint convergence of

n
N
(p)
n (x); p = 1, 2, 3

o
can be demonstrated using similar ideas.

We will prove the convergence of N (1)
n (x) by first checking the convergence of the finite dimensional

distributions
n
N
(1)
n,st(xj), (s, t, j) ∈ Θ

o
d→
n
N
(1)
st (xj), (s, t, j) ∈ Θ

o
, where Θ denotes the set of all

integer triples (s, t, j) satisfying 1 ≤ s, t ≤ k and 1 ≤ j ≤ J , and, second, by demonstrating the

tightness of all entries of N (1)
n (x).

Note that the distribution of N (1)
n (x) will not change if we substitute O1:k and Oε̃1:k in the

definition of Ψ by ξ(ξ0ξ)−1/2 and ση, where ξ and η are two independent n × k matrix with i.i.d.

standard normal entries independent from η, F, and λ1, ..., λn. Indeed, the substitution of Oε̃1:k by

ση is justified by Assumption 2. As to the other substitution, note that the columns of ξ(ξ0ξ)−1/2 are

orthogonal and of unit length. Further, the joint distribution of elements of ξ(ξ0ξ)−1/2 is invariant

with respect to multiplication from the left by any orthogonal matrix. Hence, this distribution

coincides with the joint distribution of the elements of the first k columns of random orthogonal

matrix having Haar invariant distribution. But the latter is the joint distribution of elements of O1:k.

In the rest of the proof, we, therefore, will make the substitutions and redefine N (1)
n (x) accordingly.

It is straightforward to check that N (1)
n (x) =

X10

v=1
S(v)(x), where
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S(1)(x) =
³
F 0F
T

´1/2
(L0L)1/2

³
ξ0ξ
n

´−1/2 ³
1√
n

Xn

i=1

ξ0i·ξi·−Ik
h(x,λi)

´³
ξ0ξ
n

´−1/2
(L0L)1/2

³
F 0F
T

´1/2
,

S(2)(x) =
³
F 0F
T

´1/2
(L0L)1/2

³
ξ0ξ
n

´−1
(L0L)1/2

p
n
T

√
T

µ³
F 0F
T

´1/2
− Ik

¶Xn

i=1

1
nh(x,λi)

,

S(3)(x) =
p

n
T

√
T

µ³
F 0F
T

´1/2
− Ik

¶
(L0L)1/2

³
ξ0ξ
n

´−1
(L0L)1/2

Xn

i=1

1
nh(x,λi)

,

S(4)(x) = (L0L)1/2
√
n
³
Ik −

³
ξ0ξ
n

´´³
ξ0ξ
n

´−1
(L0L)1/2

Xn

i=1

1
nh(x,λi)

,

S(5)(x) =
√
n (L0L−D)

Xn

i=1

1
nh(x,λi)

,

S(6)(x) = σ
p

n
T

³
F 0F
T

´1/2
(L0L)1/2

³
ξ0ξ
n

´−1/2 ³
1√
n

Xn

i=1

ξ0i·ηi·
h(x,λi)

´
,

S(7)(x) = σ
p

n
T

³
1√
n

Xn

i=1

η0i·ξi·
h(x,λi)

´³
ξ0ξ
n

´−1/2
(L0L)1/2

³
F 0F
T

´1/2
,

S(8)(x) = σ2
¡
n
T

¢
1√
n

Xn

i=1

η0i·ηi·−Ik
h(x,λi)

,

S(9)(x) = σ2
√
n
¡
n
T − c

¢
Ik
Xn

i=1

1
nh(x,λi)

,

S(10)(x) = − ¡D + σ2cIk
¢√

n
³R dFc(λ)

x−λ −
Xn

i=1

1
nh(x,λi)

´
By Theorem 1 of Bai and Silverstein (2004),

√
n
³R dFn/T (λ)

x−λ −
Xn

i=1

1
n

1
x−λi

´
p→ 0 for any

x ∈ [θ1, θ2] .Our assumption that n/T−c = o (1/
√
n) and the definition of Marčenko-Patur law imply

that
√
n
³R dFn/T (λ)

x−λ − R dFc(λ)
x−λ

´
p→ 0, and hence

√
n
³R dFc(λ)

x−λ −
Xn

i=1

1
nh(x,λi)

´
p→ 0. The latter con-

vergence result together with the facts that F 0F/T p→ Ik, ξ
0ξ/n p→ Ik, L

0L − D = o (
√
n) , and

n/T − c = o (
√
n) imply that

½X10

v=1
S
(v)
st (xj); (s, t, j) ∈ Θ

¾
and

½X10

v=1
S̃
(v)
st (xj); (s, t, j) ∈ Θ

¾
weakly converge to the same limit or do not converge together, where

S̃(1)(x) = D1/2
³

1√
n

Xn

i=1

ξ0i·ξi·−Ik
h(x,λi)

´
D1/2,

S̃(2)(x) = D
√
c
√
T

µ³
F 0F
T

´1/2
− Ik

¶R dFc(λ)
x−λ ,

S̃(3)(x) =
√
c
√
T

µ³
F 0F
T

´1/2
− Ik

¶
D
R dFc(λ)

x−λ ,

S̃(4)(x) = D1/2
√
n
³
Ik −

³
ξ0ξ
n

´´
D1/2

R dFc(λ)
x−λ ,

S̃(5)(x) = 0,

S̃(6)(x) = σ
√
cD1/2

³
1√
n

Xn

i=1

ξ0i·ηi·
h(x,λi)

´
,

S̃(7)(x) = σ
√
c
³

1√
n

Xn

i=1

η0i·ξi·
h(x,λi)

´
D1/2,

S̃(8)(x) = σ2c 1√
n

Xn

i=1

η0i·ηi·−Ik
h(x,λi)

,

S̃(9)(x) = S̃(10)(x) = 0.

Let us, first, consider the limit of
n
S̃
(2)
st (xj) + S̃

(3)
st (xj), (s, t, j) ∈ Θ

o
. Since

³
F 0F
T

´1/2
= I +

1
2

³
F 0F
T − I

´
+op

³
1√
T

´
, using Assumption 3, we get

√
T

µ³
F 0F
T

´1/2
− Ik

¶
d→ 1

2Φ. The latter conver-

gence and the definition of S̃(2)(x) , S̃(3)(x), and Φ imply that
n
S̃(2)(xj) + S̃(3)(xj), 1 ≤ j ≤ J

o
d→n√

c
2 (DΦ+ΦD)

R dFc(λ)
xj−λ , 1 ≤ j ≤ J

o
, and, hence,

n
S̃
(2)
st (xj) + S̃

(3)
st (xj), (s, t, j) ∈ Θ

o
weakly con-
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verge to
n
Z
(1)
stj , (s, t, j) ∈ Θ

o
having joint zero-mean Gaussian distribution such that

cov
³
Z
(1)
stj , Z

(1)
s1t1j1

´
=

c

4
(ds + dt) (ds1 + dt1)φsts1t1

Z
dFc(λ)
xj − λ

Z
dFc(λ)
xj1 − λ

. (17)

Now, let us consider the limit of
nX

v 6=2,3 S̃
(v)
st (xj); (s, t, j) ∈ Θ

o
. By definition, we have:X

v 6=2,3 S̃
(v)
st (xj) =

√
dsdt

1√
n

Xn

i=1

ξisξit−δst
h(xj ,λi)

−√dsdt
R dFc(λ)

xj−λ
Xn

i=1

ξisξit−δst√
n

+σ
√
cds

1√
n

Xn

i=1

ξisηit
h(xj ,λi)

+

σ
√
cdt

1√
n

Xn

i=1

ξitηis
h(xj ,λi)

+σ2c 1√
n

Xn

i=1

ηisηit−δst
h(xj ,λi)

. Since [ξ, η] is an n×2k matrix with i.i.d. standard
normal entries, Lemma 5 and the above decomposition imply thatnX

v 6=2,3 S̃
(v)
st (xj); (s, t, j) ∈ Θ

o
weakly converge to

n
Z
(2)
stj , (s, t, j) ∈ Θ

o
having joint normal distri-

bution such that cov
³
Z
(2)
stj , Z

(2)
s1t1j1

´
= 0 if (s, t) 6= (s1, t1) and (s, t) 6= (t1, s1) and cov

³
Z
(2)
stj , Z

(2)
s1t1j1

´
is equal to

cov
³
Z
(2)
stj , Z

(2)
s1t1j1

´
=

h
(1 + δst)

¡
σ4c2 + dsdt

¢
+ σ2c

³
ds + dt + 2δst

p
dsdt

´i
· (18)

·
Z

dFc(λ)
(xj − λ) (xj1 − λ)

− (1 + δst) dsdt

Z
dFc(λ)
xj − λ

Z
dFc(λ)
xj1 − λ

otherwise.

Finally, since
n
S̃
(2)
st (xj) + S̃

(3)
st (xj), (s, t, j) ∈ Θ

o
are, by definition, independent fromnX

v 6=2,3 S̃
(v)
st (xj); (s, t, j) ∈ Θ

o
,

n
Z
(1)
stj , (s, t, j) ∈ Θ

o
must be independent fromn

Z
(2)
stj , (s, t, j) ∈ Θ

o
and

½X10

v=1
S̃
(v)
st (xj); (s, t, j) ∈ Θ

¾
d→
n
Z
(1)
stj + Z

(2)
stj ; (s, t, j) ∈ Θ

o
, having joint

zero-mean Gaussian distribution such that cov
³
Z
(1)
stj + Z

(2)
stj , Z

(1)
s1t1j1

+ Z
(2)
s1t1j1

´
= cov

³
Z
(1)
stj , Z

(1)
s1t1j1

´
+

cov
³
Z
(2)
stj , Z

(2)
s1t1j1

´
. (17) and (18) imply that the joint distribution of Z(1)stj +Z

(2)
stj is equal to that ofn

N
(1)
st (xj); (s, t, j) ∈ Θ

o
.

Now we have to prove the tightness of all entries of N (1)
n (x) =

X10

v=1
S(v)(x). Since product

and sum are continuous mappings from C [θ1, θ2]
2 to C [θ1, θ2] , it is enough to prove the tightness

of every entry of each matrix entering definition of S(v)(x), v = 1, ..., 10. Assumption 3 and the facts

that F 0F/T
p→ Ik, ξ

0ξ/n
p→ Ik, L

0L − D = o (
√
n) , and n/T − c = o (

√
n) imply the tightness of

every entry of each of the matrices
³
F 0F
T

´1/2
, (L0L)1/2 ,

√
n (L0L−D) ,

³
ξ0ξ
n

´−1/2
,
³
ξ0ξ
n

´−1
,
p

n
T I,

√
n
¡
n
T − c

¢
I,
√
T

µ³
F 0F
T

´1/2
− Ik

¶
, and

√
n
³
Ik −

³
ξ0ξ
n

´´
considered as (constant) elements of

C [θ1, θ2] . Therefore, we only need to prove the tightness of entries of

1√
n

nX
i=1

ξisξit − δst
h(x, λi)

,
1√
n

nX
i=1

ξisηit
h(x, λi)

,
1√
n

nX
i=1

ηisηit − δst
h(x, λi)

(19)
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of
Xn

i=1

1
nh(x,λi)

and of
√
n
³R dFc(λ)

x−λ −
Xn

i=1

1
nh(x,λi)

´
.

Since ξ and η are, by definition, two independent n × k matrices with i.i.d. standard normal

entries, to prove the tightness of the sequences of sums in (19), it is enough to prove the tight-

ness of the first sum for all 1 ≤ s ≤ t ≤ k. We will use Theorem 12.3 of Billingsley (1968), p.

95. Condition i) of the theorem is equivalent in our context to the assumption of the tightness

of the sum at x = θ1. Lemma 5 implies that this assumption is satisfied. We will verify condi-

tion ii) of Theorem 12.3 by proving the moment condition (12.51) of Billingsley (1968). We have

E

Xn

i=1
(h(x1,λi)−1−h(x2,λi)−1)(ξisξit−δst)

2

n(x1−x2)2 ≤ E
³Xn

i=1
(h(x1, λi)h(x2, λi))

−1 (ξisξit − δst)
´2

/n ≤
16

n(θ1−b)4E
³Xn

i=1
(ξisξit − δst)

´2
= 16

(θ1−b)4 (1 + δst), where the first inequality follows from the fact

that
¯̄̄

1
h(x1,λi)

− 1
h(x2,λi)

¯̄̄
≤ |x2−x1|

h(x1,λi)h(x2,λi)
. Hence,

supn;x1,x2∈[θ1,θ2]E
³Xn

i=1

¡
h(x1, λi)

−1 − h(x2, λi)
−1¢ (ξisξit − δst)

´2
/n (x1 − x2)

2 is finite and the

moment condition (12.51) of Billingsley (1968) is satisfied. In a more complete proof (in which

the tightness of the elements of N (2)
n (x) is demonstrated), we also need to check Billingsley’s mo-

ment condition when h (·, ·) is replaced by h2 (·, ·) . We can use the above reasoning and inequality¯̄̄
1

h2(x1,λi)
− 1

h2(x2,λi)

¯̄̄
≤ |x2−x1|(h(x1,λi)+h(x2,λi))

h2(x1,λi)h2(x2,λi)
≤ 32θ2|x2−x1|

(θ1−b)4 to perform such a check.

Similarly, conditions of Theorem 12.3 of Billingsley (1968) are satisfied for
Xn

i=1

1
nh(x,λi)

. Con-

dition i) is satisfied because, as has been shown above,
√
n
³R dFc(λ)

x−λ −
Xn

i=1

1
nh(x,λi)

´
p→ 0 for any

x ∈ [θ1, θ2] . Condition ii) is satisfied because E
³Xn

i=1

1
nh(x1,λi)h(x2,λi)

´2
≤ 16

(θ1−b)4 .

To prove the tightness of
√
n
³R dFc(λ)

x−λ −
Xn

i=1

1
nh(x,λi)

´
, we adopt the argument on page 563 of

Bai and Silverstein (2004). In notations of Bai and Silverstein (2004), M̂n(·)→ − 1
2πi

R
1

x−zM̂n(z)dz

is a continuous mapping of C
¡C, R2¢ into C[θ1, θ2]. Since, M̂n(·) is tight, − 1

2πi

R
1

x−zM̂n(z)dz, and

subsequently n
³R dFn/T (λ)

x−λ −
Xn

i=1

1
n

1
x−λi

´
, form a tight sequence. But

supx∈[θ1,θ2]
√
n
³R dFn/T (λ)

x−λ − R dFc(λ)
x−λ

´
p→ 0 because, by assumption, n/T − c = o (1/

√
n) . There-

fore,
√
n
³R dFc(λ)

x−λ −
Xn

i=1

1
n

1
x−λi

´
is tight too. Finally, the latter tightness and the fact that

P
nXn

i=1

1√
n

³
1

x−λi − 1
h(x,λi)

´
6= 0

o
→ 0 imply that sequence

√
n
³R dFc(λ)

x−λ −
Xn

i=1

1
nh(x,λi)

´
must

be tight.¤

A derivation of the explicit formula for x0j.

Recall that x0j was defined as the solution to equation
¡
dj + σ2c

¢ Z dFc(λ)
x−λ = 1, and it is the

probability limit of µj(
1
TXX 0). Changing the roles of factors and factor loadings, it is straightforward

to show that y0j defined as the solution to
¡
cdj + σ2 1c

¢ Z dF 1
c
(λ)

y−λ = 1 must be the probability limit

of µj(
1
nX

0X). But µj(
1
TXX 0) = n

T µj(
1
nX

0X). Hence, x0j = cy0j and
dj+σ

2

c

Z F 1
c
(dλ)

1
cx0j−λ

= 1. Now, it

is straightforward to check that f 1
c
(λ) = c2fc(cλ) and F 1

c
does not have mass at zero if c > 1 and has
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mass at zero equal to 1−c if c < 1. Therefore, we have c ¡dj + σ2
¢µZ Fc(dλ)

x0j−λ −
1− 1

c

x0j

¶
= 1. Substitut-

ing
Z

Fc(dλ)
x0j−λ by

¡
dj + σ2c

¢−1
in the latter equation, we get 1 = c

¡
dj + σ2

¢ ³¡
dj + σ2c

¢−1 − 1− 1
c

x0j

´
,

which implies that x0j =
(di+σ2)(di+σ2c)

di
.

Proof of Lemma 3:

Let R (z,κ) = (A (κ)− zIk)
−1 be the resolvent of A (κ) defined for all complex z not equal

to any of the eigenvalues of A (κ) . We will denote R (z, 0) as R(z). Let Γ be a positively oriented

circle in the complex plane with center at aj and radius r0. The second Neumann series for the

resolvent R (z,κ) = R (z) +
X∞

n=1
(−κ)nR (z) ¡A(1)R (z)¢n (see Kato (1980), p.67, for a definition

of the second Neumann series) is uniformly convergent on Γ for κ < minz∈Γ
¡°°A(1)°° kR (z)k¢−1 =

r0/
°°A(1)°° , where the last equality follows from the fact that kR (z)k = r−10 for any z ∈ Γ. Therefore,

formula (1.19) of Kato (1980) implies that, for |κ| < r0/
°°A(1)°° , there is exactly one eigenvalue,

aj (κ) , inside the circle Γ. Formulae (3.6)7 and (2.32) of Kato (1980) imply the inequality stated in

part i of Lemma 3.

We now turn to the proof of part ii. According to Kato (1980), p.67, projection Pj (κ) can be

represented as Pj (κ) = − 1
2πi

R
Γ
R (z,κ) dz. Substituting the second Neumann series for the resolvent

in this formula, we obtain

Pj (κ) = Pj − 1

2πi

∞X
n=1

(−κ)n
Z
Γ

R (z)
³
A(1)R(z)

´n
dz (20)

where Pj ≡ Pj (0) and the series absolutely converges for |κ| < r0kA(1)k . Kato (1980), page 76,
shows that 1

2πi

R
Γ
R (z)A(1)R (z) dz = −PjA(1)Sj − SjA

(1)Pj . This equality and (20) imply that

Pj (κ) = Pj − κ
¡
PjA

(1)Sj − SjA
(1)Pj

¢ − 1
2πi

X∞
n=2

(−κ)n R
Γ
R (z)

¡
A(1)R(z)

¢n
dz. Therefore, we

have: °°°° 1κ (Pj (κ)− Pj) + PjA
(1)Sj + SjA

(1)Pj

°°°° ≤ |κ|°°A(1)°°2
r0
¡
r0 − |κ|

°°A(1)°°¢ (21)

for any |κ| < r0/
°°A(1)°° .

Since A is diagonal with decreasing elements along the diagonal, ej is an eigenvector of A

corresponding to the eigenvalue aj . By definition of Pj (κ) , ej (κ) ≡ Pj(κ )ej
kPj(κ )ejk must be an eigenvector

of A (κ) corresponding to the eigenvalue aj (κ). Consider an identity 1
κ (ej (κ)− ej) + SjA

(1)ej =¡
1
κ (Pj (κ) ej − ej) + SjA

(1)ej
¢
+ 1

κ ej (κ) (1− kPj (κ) ejk) . Using (21) and the fact that Sjej = 0,
7Note the difference in notations. Kato’s r0 is ours r0/

°°A(1)°° .
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for the first term on right hand side of the identity we have:

°°°° 1κ (Pj (κ) ej − ej) + SjA
(1)ej

°°°° ≤ |κ|°°A(1)°°2
r0
¡
r0 − |κ|

°°A(1)°°¢ . (22)

Using the fact that Pj (κ) is a projection operator so that kPj (κ) ejk ≤ 1 and Pj (κ)2 = Pj (κ), for

the second term on right hand side of the identity we have:

°°°° 1κ ej (κ) (1− kPj (κ) ejk)
°°°° ≤ 1

|κ|
³
1− kPj (κ) ejk2

´
= |κ|

°°°° 1κ (Pj (κ) ej − ej)

°°°°2 . (23)

But, form (22),
°° 1
κ (Pj (κ) ej − ej)

°°2 ≤ 2°°SjA(1)ej°°2+ 2|κ |2kA(1)k4
r20(r0−|κ |kA(1)k)2 ≤

kA(1)k2
2r20

+
2|κ |2kA(1)k4

r20(r0−|κ |kA(1)k)2 .
Combining the above identity, (22), (23), and the latter inequality, we obtain:

°° 1
κ (ej (κ)− ej) + SjA

(1)ej
°° ≤

|κ |kA(1)k2 3r20−4r0|κ |kA(1)k+5|κ |2kA(1)k2
2r20(r0−|κ |kA(1)k)2 ≤ 2|κ |kA(1)k2

(r0−|κ |kA(1)k)2 , where the last inequality follows from the

fact that r0 > |κ|
°°A(1)°° . This proves statement ii) of the lemma.¤

Proof of Lemma 4:

Since fn(x)
d→ f0(x), {fn(x)} is tight and, hence, for any ε > 0, we can choose a compact

K such that P (fn(x) ∈ K) > 1 − ε
2 for all n. By the Arzelà-Ascoli theorem (see, for example,

Billingsley (1999), p.81), for any positive ε1, we have K ⊂ {f : |f (θ1)| ≤ r} for large enough r

and K ⊂ {f : wf (δ(ε1)) ≤ ε1} for small enough δ(ε1), where wf (δ) is the modulus of continu-

ity of function f, defined as wf (δ) = sup|s−t|≤δ |f(s)− f(t)| , 0 < δ ≤ θ2 − θ1. Let us choose

N(ε, ε1) so that for any n > N(ε, ε1), P (|xn − x0| > δ(ε1)) <
ε
2 . Then, for n > N(ε, ε1), we have:

P (|fn(xn)− fn(x0)| > ε1) = P

(|fn(xn)− fn(x0)| > ε1 and |xn − x0| ≤ δ(ε1))+P (|fn(xn)− fn(x0)| > ε1 and |xn − x0| > δ (ε1)) ≤
P (fn(x) /∈ K) + P (|xn − x0| > δ (ε1)) < ε, which proves the lemma.¤

Derivation of the explicit formula for ν0j (1) :

By definition, ν0j (1) =
³
µ0j
³
M

(1)
0 (mj)

´´−1
=
³
− ¡dj + σ2c

¢ R dFc(λ)
(mj−λ)2

´−1
. The latter expres-

sion can be simplified as follows. Consider mj as a function of dj : mj =
¡
dj + σ2

¢ ¡
dj + σ2c

¢
/dj .

Note that since mj = x0j , and x0j is defined as the solution to equation
¡
dj + σ2c

¢ Z dFc(λ)
mj−λ = 1,

we must have: ¡
dj + σ2c

¢ Z dFc(λ)
mj − λ

= 1 (24)

Differentiating both sides of (24) with respect to dj , we get:
¡
dj + σ2c

¢−1−¡dj + σ2c
¢ Z dFc(λ)

(mj−λ)2
³
1− σ4c

d2j

´
=
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0. Solving this equation for the integral, we get:

Z
dFc(λ)
(mj − λ)

2 =
d2j¡

d2j − σ4c
¢
(dj + σ2c)

2 , (25)

and therefore −ν0j (1) = (d2j−σ4c)(dj+σ2c)
d2j

.

A proof of the fact that the asymptotic joint distribution of
√
n
³
R·j −R

(1)
·j
´
, j = 1, ..., q

and
X4

s=1
κjÃ

(s)
j , j = 1, ..., q are the same:

Representation (12) implies that
√
n
³
R·j −R

(1)
·j
´
=
P4

s=1A
(s)
j + op(1), where

A
(1)
j = N

(3)
n (xnj)wnj kΨ0y·jk ,

A
(2)
j =

√
n
³
D1/2

R dFc(λ)
xnj−λ −D1/2

R dFc(λ)
mj−λ

´
wnj kΨ0y·jk ,

A
(3)
j = D1/2

R dFc(λ)
mj−λ

√
n (wnj − ej) kΨ0y·jk ,

A
(4)
j = D1/2

R dFc(λ)
mj−λ ej

√
n (kΨ0y·jk− p lim kΨ0y·jk) .

Consider, first A(3)j and A
(2)
j . Using the Taylor expansion of function x−1/2 around probability

limit of kΨ0y·jk−2 , we get:
√
n (kΨ0y·jk− p lim kΨ0y·jk) = −12p lim kΨ0y·jk3

√
n
³
kΨ0y·jk−2 − p lim kΨ0y·jk−2

´
+

o
³√

n
³
kΨ0y·jk−2 − p lim kΨ0y·jk−2

´´
. As has been shown in the proof of Theorem 2,

kΨ0y·jk p→
µ¡

dj + σ2c
¢ Z dFc(λ)

(mj−λ)2

¶−1/2
and, with high probability for large enough n, kΨ0y·jk =³

w0njM̂
(2)
n (xnj)wnj

´−1/2
. Combining these facts with formulae (24) and (25) and using the Tay-

lor expansion of N (2)
n (xnj) around mj and Lemma 2, we get the following decomposition A

(3)
j =

(jej (wnj + ej)
0 M̂ (2)

n (xnj)
√
n (wnj − ej)+(jejN

(2)
n,jj(xnj)−2(jej

¡
dj + σ2c

¢ Z dFc(λ)
(mj−λ)3

√
n (xnj −mj)+

op(1), where (j = −0.5
¡
d2j − σ4c

¢3/2 ¡
dj + σ2c

¢1/2
d
−5/2
j . Further, using Taylor expansion of func-

tion
R dFc(λ)

x−λ around x = mj , A
(2)
j can be transformed into

−D1/2
R dFc(λ)
(mj−λ)2

√
n (xnj −mj)wnj kΨ0y·jk+ op(1).

The formulae obtained for A
(3)
j and A

(2)
j imply that we have the following representation

√
n
³
R·j −R

(1)
·j
´
=
P4

s=1 Â
(s)
j + op(1), where

Â
(1)
j = N

(3)
n (xnj)wnj kΨ0y·jk ,

Â
(2)
j = (jejN

(2)
n,jj(xnj),

Â
(3)
j = −

µ
D1/2

R dFc(λ)
(mj−λ)2wnj kΨ0y·jk+ 2(jej

¡
dj + σ2c

¢ Z dFc(λ)
(mj−λ)3

¶√
n (xnj −mj) ,

Â
(4)
j =

³
D1/2

R dFc(λ)
mj−λ kΨ0y·jk+ (jej (wnj + ej)

0
M̂

(2)
n (xnj)

´√
n (wnj − ej) .

Statement ii) of Lemma 3 and Lemma 2 imply that

√
n (wnj − ej) = −S̃ (xnj)N (1)

n (xnj) ej + op(1), (26)
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where S̃ (x) =
³R dFc(λ)

x−λ
´−1

diag

(d1 − dj)
−1 , ..., 0|{z}

j-th position

, ..., (dk − dj)
−1
 . Using the same ar-

gument as that in the derivation of the explicit formula for ν0j (1) given in the previous section of

the Appendix, we obtain

Z
dFc(λ)
(mi − λ)3

=

¡
d3i + c2σ6

¢
d3i

(di + cσ2)
3
(d2i − cσ4)

3 , (27)Z
dFc(λ)
(mi − λ)

4 =

¡
d6i + c4σ12 + cσ4d4i + 4c

2σ6d3i + c3σ8d2i
¢
d4i

(di + cσ2)4 (d2i − cσ4)
5 . (28)

Finally, the definitions of Â(s)j and xnj , the facts that kΨ0y·jk p→
µ¡

dj + σ2c
¢ Z dFc(λ)

(mj−λ)2

¶−1/2
,

wjn
p→ ej , xnj

p→ mj , and M̂
(2)
n (xnj)

p→ M
(2)
0 (mj), Lemma 4, and formulae (11), (26), (24), (25),

and (27) imply that the distribution limit of
½X4

s=1
Â
(s)
j , j = 1, ..., q

¾
must be the same as that of½X4

s=1
κjÃ(s)j , j = 1, ..., q

¾
, where κj and Ã

(s)
j are as defined in the proof of Theorem 2.¤
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