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Abstract

This paper examines the effects of regulations that force insurers to include more

hospitals as in-network providers. Such regulations can help consumers by increasing

access to hospitals, but can also increase hospitals bargaining power when negotiating

with insurers, thereby leading to higher reimbursement rates and insurance premiums.

I develop and structurally estimate a model that endogenously captures how insurers

(i) form hospital networks, (ii) bargain over rates with hospitals, and (iii) set premi-

ums. Crucially, my bargaining formulation allows insurers to threaten to replace an

in-network hospital with an out-of-network one. I use the model to empirically analyze

the effects of these proposed regulations on a health insurance exchange from Mas-

sachusetts. I find that tighter regulations, which force insurers to include more than

85% of the hospital systems in the market, raise the average reimbursement rates paid

by some insurers by at least 28%.
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1 Introduction

Insurers increasingly use “narrow network” plan designs in the health insurance exchanges

established by the Affordable Care Act (ACA). These plans offer their enrollees a small set

of “in-network” hospitals to choose from, and if the enrollee decides to go “out of network,”

s/he will have to pay all or most of the healthcare expenses out of pocket.1,2 Narrow

hospital networks have received vast and often unfavorable media attention. Some provider-

as well as consumer-advocacy groups have filed lawsuits against both insurers and the

federal government regarding narrow networks. They have also pressed the administrators

of the healthcare exchanges, mainly Centers for Medicare and Medicaid Services (CMS), for

“network adequacy regulations,” which are regulations that would force minimum mandated

network sizes on insurers in order to expand narrower networks and increase consumers’

access to hospitals.3

However, the impacts of network adequacy regulations are not confined to hospital ac-

cess. They also can have price consequences. Under such regulations, insurers cannot drop

a hospital out of network if that action would take them below the minimum mandated net-

work size. Taking advantage of this restriction faced by insurers, hospitals may gain further

bargaining leverage and successfully negotiate higher reimbursement rates with insurers for

the care they provide to patients. Insurers can, in turn, respond to the increased rates by

raising their monthly premiums and passing the extra cost on to consumers.

The objective of this paper is to quantify the price consequences of network adequacy

regulations. I do this by developing an empirically estimable model of insurer-hospital mar-

kets with two crucial features. First, I endogenize how insurers (i) form hospital networks,

(ii) bargain with hospitals over rates, and (iii) set premiums. Second, my formulation of

the bargaining procedure allows insurers to try to negotiate lower rates with hospitals not

1According to McKinsey & Company, about 60% of the ACA exchange plans cover less than 70% of local

hospitals where their plans are offered, and about 20% of the plans cover less than 30% of local hospitals.

Networks are expected to further narrow in 2017.
2Narrow networks are not confined to hospitals. The same is true of other types of providers, such as

physician groups and prescription drugs. My focus in this paper is on hospitals.
3In fact, CMS had planned on introducing such regulations for the ACA exchanges in 2017. But in its

final rule, it chose not to do so.
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only by threatening to drop them from the hospital network, but also by threatening to

replace them with currently out-of-network hospitals. I leverage detailed medical claims

and insurance plan enrollments data to structurally estimate the model for the CommCare

market, a health insurance exchange in Massachusetts, predating the ACA but similar to

the ACA exchanges in many respects. I then use the estimated model to simulate a range

of network adequacy regulations and study how they impact hospital networks, negotiated

rates, and premiums. I identify and analyze multiple economic forces that govern how nar-

row network plans respond to the regulation as well as how broader network plans, which

are not directly affected by the regulation, respond to the responses of narrower network

ones.

My model consists of a game with two main steps. In the first step, equilibrium hospital

networks and reimbursement fees are simultaneously determined. In the second step, insur-

ers set premiums la Bertrand. To model the first step, I impose network stability conditions

and bargaining conditions on the equilibrium hospital networks and reimbursements. For

network stability, I adapt pairwise stability conditions from Jackson and Wolinsky [1996].

I require that at the equilibrium, no insurer or hospital can strictly profit either from drop-

ping a bilateral contract or from adding a new bilateral contract that the other party would

be willing to sign.

My bargaining conditions offer a substantial advantage over standard approaches to the

modeling of bargaining in vertical markets, by accounting for an economic force that arises

in settings in which the bargaining does not take place on a fixed network, but rather affects

and is affected by network formation. The standard model of bargaining on a network in

the empirical industrial organization literature is called Nash-in-Nash (NiN henceforth),

and is based on Horn and Wolinsky [1988]. NiN assumes that the reimbursement rate

negotiated between hospital i and insurer j is the outcome of a Nash Bargaining procedure

( la Binmore et al. [1986]) between the two, taking as given the rest of the network structure

and reimbursements. The construction of the Nash Bargaining formulation roughly implies

that hospital i can charge a high rate if insurer j would lose a substantial amount of profit

from leaving hospital i out of its hospital network, but not modifying the network otherwise.

This is the case under NiN even if insurer j would lose little or no profit, or would gain
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some profit, from leaving hospital i out and instead accepting a competing offer made by a

currently-out-of-network hospital i′ that is trying to outbid hospital i and replace it in the

network, in a negotiation process simultaneous with the negotiation between i and j. In

other words, the negotiated reimbursement rate predicted by NiN is not affected at all by

which hospitals are outside the network of insurer j and how close substitutes they are to

hospital i.

To capture insurers’ ability to use such out-of-network hospitals as “threats of replace-

ment” is critical in the context of studying network adequacy regulations. For an insurer

that is just meeting the minimum network size mandated by a network adequacy regula-

tion, dropping hospitals without replacement is not an option. Thus, for such insurers,

threats of replacement are the only bargaining chip that can help to keep reimbursement

rates low. Not accounting for these threats, NiN would predict unrealistically high charges

by hospitals to insurers bound by such regulations. My bargaining formulation, instead,

assumes that the rate negotiated between hospital i and insurer j is equal to the Nash Bar-

gaining rate only if under that rate, the insurer cannot strictly profit from replacing i with

a currently out-of-network i′ at the lowest rate that i′ would accept. If, however, under the

Nash Bargaining rate, insurer j can strictly profit from such replacement, my bargaining

formulation assumes that hospital i brings its rate down to a level that would make the

insurer indifferent between keeping hospital i and replacing it with hospital i′.4 I show that

my formulation can be sustained as an outcome of a Subgame Perfect Nash Equilibrium of

a non-cooperative extensive form game for a class of 2×1 (i.e., two upstream firms and one

downstream) settings.

My empirical analysis has several steps, in which I estimate demand and cost functions

for insurers and hospitals. First, I use detailed medical claims data on CommCare to es-

timate a model of hospital choice, backing out perceived hospital qualities by patients for

different diagnoses as well as patients’ disutility from travel. Based on these estimates, I

construct network-expected-utility measures for each CommCare plan across different en-

4That is, hospital i will charge the highest rate that deters threats of replacement by the insurer. Of

course, if such a rate is so low that hospital i would rather drop the contract, then pairwise stability is violated

and current network structure cannot be part of the equilibrium configuration. Hence, the replacement must

take place. See section 3 for more details.
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rollee demographic groups. I then use the network-expected-utility measures along with

data on other plan characteristics and on CommCare enrollments to estimate a demand

model for insurance plans. I estimate marginal costs of inpatient care to hospitals using

hospital cost reports, and to insurers, using the observed payments in my CommCare med-

ical claims data. Finally, I combine all of these estimates and impose the structure of my

model to back out relative bargaining powers for insurers and hospitals, as well as insurers’

fixed and variable non-inpatient costs.5

I use the estimated model to simulate a range of network adequacy regulations. I focus

on the Greater Boston Area and the 2011 fiscal year. I consider regulations in the form of

forcing all insurers in the market to cover at least X% of the hospital systems present in

the market. A higher X, hence, means a tighter regulation. I simulate the regulation over a

range of values for X, and examine the responses of the hospital networks, reimbursement

rates, and premiums.

My main finding is that under tight regulations, with X > 85%, affected insurers (i.e.,

those that are forced by the regulation to expand their networks) experience large increases

in the average reimbursement rates they pay to their in-network hospitals. Some of these

insurers respond by raising their monthly premiums.6 For instance, Celticare, a CommCare

plan that covered four out of the 16 hospital systems in 2011, is predicted to pay about

$4,000 (or 28%) more to its in-network hospitals per average hospital admission, when it

is forced to cover at least 14 hospital systems. Celticare responds by raising its premium

from $404/month to $425/month.7 The key driving force behind this result is a sorting

effect: the additional hospitals that insurers include in response to the regulation are those

with the lowest cost and/or in highest demand. In other words, they are the best hospitals.

This would leave the insurer with a pool of out-of-network hospitals comprising the worst

(100−X)% of the hospitals in the market. Thus, with high X, the threats of replacement

that the insurer can make using its weakened out-of-network pool only become credible

5Sources of non-inpatient costs can be outpatient care, doctor visits outside of hospitals, prescription

drugs, and administrative costs.
6Others do not raise premiums due to a premium cap which was imposed by the Massachusetts Health

Connector, which administered CommCare.
7The premium could rise even further if there were no regulated premium cap at $425/month in Comm-

Care. I will discuss these premium regulations in section 4.
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when the in-network hospitals, in particular the best ones among them, charge high rates.8

Besides the main result, my simulations also point to other interesting predictions about

the functioning of health insurance markets under network adequacy regulations. I find

that for lower ranges of X, in which the sorting effect that weakens the out-of-network

pools of insurers is less stringent, network adequacy regulations may in fact lower the

average reimbursement rates paid by some insurers. This happens when the hospitals

added in response to the regulation have lower marginal costs of providing care than the

insurer’s pre-regulation hospitals. I also find that even though they expand the narrower

hospital networks, in some cases network adequacy regulations shrink the broader ones.

This happens because some hospitals that get to charge higher rates to a narrow network

plan that is constrained by the regulation, are encouraged to abandon some of the broader

hospital networks in order to steer their more loyal patients to the plan that pays those

hospitals more for treating the patients. In section 6, I discuss these findings in more detail

and argue that the overall effect of the regulation on consumers depends on specific market

conditions.9

The framework I develop in this paper applies beyond network adequacy regulations.

It can be applied to problems in which the interaction between network formation and

bargaining is key. For example, it may be used to study how hospital-networks would

respond to increased hospital bargaining power due to hospital consolidation. It may also

be applied to other two-sided markets such as the market between TV channels and Cable

companies.

The rest of the paper is organized as follows. Section 2 reviews the related literature.

Section 3 sets up the model. Section 4 describes the CommCare market. Section 5 explains

the estimation procedure and estimation results. Section 6 presents and interprets the

counterfactual simulation results for CommCare and discusses potential differences from

8On top of this sorting effect, there are also more complex mechanisms that lead to rapid accelerations

in the average reimbursement rate per admission that Celticare pays to its in-network hospitals and in

Celticare’s premium. Those are discussed in section 6.2.1.
9In the case of CommCare, even stringent regulations improve consumer welfare due to the very market-

specific fact that in CommCare, premiums faced a mandatory cap set by the government. Thus, the increased

reimbursement rates resulting from network adequacy regulations did not fully pass through to customers.
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the ACA exchanges in terms of consumer-welfare implications. Section 7 concludes.

2 Related Literature

This paper can be considered part of the expanding body of literature in economics on

issues related to the implementation of the Affordable Care Act. Recent papers have exam-

ined issues like subsidy schemes (Tebaldi [2015]), tiered networks (Prager [2015]), market

competition and premiums (Dafny et al. [2015a]), and selection (Hackmann et al. [2015],

Shepard [2015]). Some papers have studied issues directly related to narrow networks

by comparing the health outcomes between enrollees of narrow and broad network plans

(Gruber and McKnight [2014]), examining the relationship between network breadth and

premium (Dafny et al. [2015b]), and estimating how much different groups of consumers

value network breadth (Ericson and Starc [2014]). My paper takes another step by study-

ing the consequences of regulating the networks for insurer-hospital bargaining and insurers

premiums.

From a methodological standpoint, this paper also makes two contributions to the em-

pirical analysis of vertical markets (e.g., Crawford and Yurukoglu [2012], Crawford et al.

[2015], Gowrisankaran et al. [2013], Ho and Lee [2017b], Prager [2015], Pakes [2010], Ho

[2009, 2006], Lee and Fong [2013]). First, I develop and empirically estimate a model that

fully endogenizes network formation, bargaining, and downstream price setting. Second,

by adding threats of replacement to NiN bargaining, I allow the upstream firms that a

downstream firm excludes to impact its bargaining with those that it includes.

Also close in spirit to this paper are two recent working papers by Ho and Lee [2017a]

and Liebman [2017]. As in this paper, they combine the bargaining model with a model of

network formation, to predict a network structure and a set of prices charged by upstream

firms (hospitals) to downstream firms (insurers). They also extend NiN to capture the

importance of an insurer’s out-of-network hospitals for its bargaining position with the in-

network ones. The bargaining formulation in Ho and Lee [2017a] is more similar to this

paper. One major difference between this paper and Ho and Lee [2017a] is in the network

formation models. I model network formation by adapting pairwise-stability conditions
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from Jackson and Wolinsky [1996]. Ho and Lee [2017a], in contrast, employ a two-step

model. In the first step, the insurer commits to a network. In the second step, the insurer

bargains with the hospitals in that network according to NiN with threats of replacement.

The choice of network in the first step is made to maximize the anticipated profit from the

second-step bargaining.

A main feature of Ho and Lee’s model is that an insurer can attain substantially lower

reimbursement rates by committing to a narrow network: the insurer commits to excluding

some hospitals in the first step (even if it pays off to include them) in order to use them as

threats of replacement against included hospitals in the bargaining process in the second

step. However, it is not clear why insurer commitment to exclusion should have the con-

sequence for negotiated rates that Ho and Lee [2017a] describe. Threatening hospital i to

replace it with hospital i′ means threatening to form a network that includes i′ but excludes

i. But the insurer can always make this type of threat even without first committing to

exclude hospital i′. If the insurer has gains from trade with both i and i′, it can include

both of them and then threaten to drop i. This would still be a threat to i of forming a

network that includes i′ but excludes i. In contrast, in this paper, an insurer always signs

a contract with a hospital if there are gains from trade to the two.10

Another major difference from Ho and Lee [2017a] is estimation. This paper not only

provides a model of network formation and bargaining, but also delivers a general estimation

procedure to rationalize the observed networks and bargaining outcomes and obtain an

estimated model for policy analysis.

10Note that some form of insurer commitment has been mentioned in the non-academic literature as

a reason for narrow networks. But the mechanism is different from those in Ho and Lee [2017a] and

Liebman [2017], which are based on commiting to exclude a set (or a number) of hospitals in order to use

them as threats of replacement. The mechanism is that insurers promise their in-network hospitals high

volume (through narrow networks) in exchange for low rates (see for instance, McKinsey [2013]) Usually the

commitment is implemented relationally: if the insurer promises high volume and signs a contract with a low

rate, but does not deliver the promised volume due to including other hospitals, then the original hospital

will not be willing to charge the low rate next year. This kind of commitment story can be modeled using

two-part tariff contracts between hospitals and insurers, and is not directly related to threats of replacement.
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Figure 3.1: Schematic and matrix representations of the state of the market

3 Model

3.1 Basic Setup and Notations

My model captures interactions among three types of players in a vertical market: m

hospitals (upstream firms, denoted ui), n insurers (downstream firms, denoted dj), and

consumers (who are enrollees for insurers and patients for hospitals). The state of the mar-

ket, or the “market outcome,” is described by three important elements: network structure,

denoted G; reimbursement rates, denoted T ; and premiums, denoted P . Figure 3.1 exhibits

the schematic and matrix representations of G,T and P through an example with three

hospitals and two insurers.

Network G represents who contracts with whom, or equivalently, which hospitals are

covered by each insurer. It can be represented graphically (as in figure 3.1) or using a

matrix of zeros and ones. Reimbursements matrix T is also represented in a matrix form

with elements tij . As is clear from the figure, for every inactive link gij = 0 in network

G, the corresponding reimbursement rate is null: tij = ∅. For an active link gij = 1, the

corresponding tij is interpreted as follows: insurer dj reimburses hospital ui with tij dollars

for every unit of healthcare provided to an enrollee of dj at hospital ui. Also, each element

pj of P is the amount each enrollee of insurer dj pays to that insurer per month.

I assume that the expected profit to each firm in the market is solely a function of

the market outcome. That is, the profit functions are in the form of πui (G,T, P ) and

πdj (G,T, P ) for all ui and dj . The exact nature of the profit functions arises from demand

and cost functions in the market, which I will turn to in later sections. My model of
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Figure 3.2: The four-step sequential game

the market takes the profit functions as primitives and predicts what market outcome(s)

(G∗, T ∗, P ∗) will arise at the equilibrium.

This model consists of a sequential game with four main steps, as depicted in figure

3.2. In step 1, hospitals and insurers will engage in a “network-formation and bargaining”

game. The outcome of this step is the equilibrium network and reimbursements (G∗, T ∗).

The structure of this step will be discussed in section 3.2. In step 2, insurers engage in a

premium-setting game la Bertrand, taking into account the outcome of the previous step,

(G∗, T ∗). The outcome of this step is the set of equilibrium premiums P ∗. In the third

step, consumers decide which insurance plan to buy in the market. Finally, in the fourth

step, if they get sick and need hospitalization, they decide which hospital within their plan’s

network of providers (as specified by G∗) to visit for treatment.

Step 2 in this game is fairly straightforward. Steps 3 and 4 are explained in more

details in the estimation section. In the remainder of this section, I’ll focus on step 1, where

network formation and bargaining are endogenously captured.

3.2 Network-Formation and Bargaining Game

I combine two sets of conditions in order to characterize the equilibrium pair of network

structure and reimbursements (G∗, T ∗). The first set consists of network-stability conditions,

which roughly require that no unilateral or joint deviation (among a pre specified set of

deviations) from G∗ be able to strictly pareto-improve the profits to the firms participating
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in the deviation. The second set of conditions consists of bargaining conditions which

determine, for all ij with g∗ij = 1, what t∗ij the negotiation between hospital ui and insurer

dj will result in.

The rest of this subsection is organized as follows. First I develop a base model with very

simple network stability and bargaining conditions. I then demonstrate, using an example,

that the base model is inadequate for capturing competition among hospitals for inclusion

in insurers’ hospital networks, which is crucial to my empirical analysis in this paper. I then

modify the bargaining conditions to capture this force. I close this subsection by discussing

my model’s advantages over some other potential alternatives.

3.2.1 Base Model

I start by introducing the network stability conditions, which are adapted with small mod-

ifications from the notion of pairwise stability in Jackson and Wolinsky [1996].

Definition 1. The network-reimbursements pair (G∗, T ∗) satisfies “pairwise network-stability”

if the following hold:

(i) For ∀gij = 1, neither ui nor dj can strictly profit by unilaterally severing the link

gij . That is:

πui (G
∗, T ∗) ≥ πui

(
G∗

−ij , T
∗
−ij
)

(3.1)

πdj (G
∗, T ∗) ≥ πdj

(
G∗

−ij , T
∗
−ij
)

(3.2)

(ii) For ∀gij = 0, there is no contract that ui and dj can sign that will yield a strict

pareto improvement in their profits. That is:

@tij ∈ R s.t. πui

(
G∗

+ij , T
∗
+tij

)
≥ πui (G

∗, T ∗) & πdj

(
G∗

+ij , T
∗
+tij

)
≥ πdj (G

∗, T ∗) (3.3)

with at least one inequality holding strictly.

where
(
G∗

−ij , T
∗
−ij

)
is constructed from (G∗, T ∗) by switching gij from 1 to 0 and tij to ∅;

and
(
G∗

+ij , T
∗
+tij

)
is constructed by doing the exact inverse. Also, note that in this section

the notation on P ∗ has been suppressed, as it has been assumed that P ∗ is anticipated by

firms at the first stage of the game.
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The bargaining conditions for the base model come from the NiN idea in Horn and

Wolinsky [1988].

Definition 2. The network-reimbursement pairs (G∗, T ∗) satisfies “NiN bargaining” rel-

ative to the “bargaining parameters matrix” γm×n ∈ [0, 1]m×n if, for ∀gij = 1, we have

t∗ij = tNBij (G,T, γij), where t
NB
ij (G,T, γij) is defined as:

argmax
t̃∈R

[
πui
(
G∗,

(
t̃, T ∗

−ij
))

− πui
(
G∗

−ij , T
∗
−ij
)]γij×[πdj (G∗,

(
t̃, T ∗

−ij
))

− πdj
(
G∗

−ij , T
∗
−ij
)]1−γij
(3.4)

where
(
t̃, T ∗

−ij

)
is constructed from T ∗ by substituting t̃ for its ij element.

The rough intuition behind the NiN conditions is that at the equilibrium, every ij pair

is taking the rest of (G∗, T ∗) as fixed, and negotiates over how to divide the total surplus

created due to the presence of gij . The value t∗ij is the one that divides this total surplus

between ui and dj based on their respective bargaining parameters γij and 1− γij .
11

Combining pairwise network stability and NiN bargaining, the base model gives us

a solution concept that can predict equilibrium (G∗, T ∗) pairs. So, thus far, we have a

model that in principle does endogenously capture network formation and bargaining (and

in the next stage, premium setting). Nevertheless, the particular way that the base model

accomplishes this job may be a source of concern, which I turn to next.

3.2.2 Problems with the Base Model

It is well documented in the literature (Gowrisankaran et al. [2013], Lee and Fong [2013],

etc.) that the implicit assumption in NiN bargaining (i.e., ui and dj taking the rest of

(G,T ) as fixed when bargaining with one another) may be a source of concern. I show,

using a stylized example, that this concern is more pronounced when endogenous network

formation is involved. My example focuses on a case in which an insurer is bound by a

network adequacy regulation to cover at least one of the two hospitals (absent the regulation,

11Note that what the Nash Bargaining formulation formally does (which is to maximize a weighted product

of the surpluses made by ui and dj , where the corresponding weights are γij and 1− γij), does not always

lead to dividing the total surplus between the two according to shares of γij and 1− γij . Nevertheless, the

surplus-division interpretation is useful for providing intuition about Nash Bargaining.
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Figure 3.3: Profits as functions of network structure and reimbursements (G,T )

it would cover none12). I show that the base model fails to capture competition from out

of network hospitals and, hence, will highly over-predict how much the hospital, that the

insurer will cover to abide by the mandate, will be able to leverage the mandate and charge

the insurer.

Setting of the example: There are two hospitals u1 and u2 and one insurer d.

Bargaining parameters are symmetric: γ =

 0.5

0.5

. The insurer’s premium is equal to 1.13

If u1 is covered by d, it will bring 2 enrollees. u2 brings 1 enrollee. Each enrollee consumes

1 unit of healthcare per month. There is no substitution between u1 and u2.
14 Covering

each of the hospitals induces a large fixed cost of 3 to d. Finally, regulation would make

d pay 100 in a fine if it did not cover any hospital. Figure 3.3 schematically presents the

profits to all ui and d as functions of the (G,T ).15

Analysis of the example using the base model: it is fairly straightforward to

verify that the base model predicts two equilibria: (G1∗, T 1∗) =

 1

0

 ,
 24.75

∅

 and

(G2∗, T 2∗) =

 0

1

 ,
 ∅

49

. Two features of this set of equilibria deserve further

discussion. First, t1∗11 and t2∗21 both seem too high. The base model predicts these high

12This assumption is not realistic for a working insurance market. But it does capture the more general

effect that I intend to highlight, while allowing for the setting to have only two hospitals, which significantly

simplifies the discussion.
13For simplicity, I do not assume here that the insurer sets its premium optimally. This assumption is not

crucial but simplifies a lot.
14That is, the profits that ui and d make by signing a contract do not depend on whether u3−i and d are

also contracting or not. This assumption makes the exposition of the example simpler but is not crucial to

the analysis and is not imposed on my empirical model.
15I continue to supress the notation on P , as it has been assumed constant here.
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reimbursement rates because, for instance, at (G1∗, T 1∗), hospital u1 is taking advantage of

the 100 that d would have to pay in a fine if the link g1∗11 broke off. What the base model

does not capture is that, on the one hand, d can replace u1 with u2 for any t2 ≥ 0 (so that

u2 is willing to participate) and make a much higher profit than it makes under (G1∗, T 1∗).

The base model also does not capture that u1 can foresee the aforementioned possibility

and offer a much lower price than t1∗11 = 24.75 in order to deter this substitution threat. The

second issue is that even though u1 seems to dominate u2 as a choice for d, we see that G2∗

is sustained as part of an equilibrium. The reason is that at (G2∗, T 2∗), neither dropping

u2 nor adding u1 is beneficial to d, even though doing both (i.e., replacing u2 with u1) is.

Next subsection introduces a model that addresses these issues.

3.2.3 Bargaining with threats of replacement

The objective of this subsection is to minimally expand on the bargaining conditions from

the base model to deal with the issues illustrated above, while keeping the model compu-

tationally tractable. The basic intuition for the expansion is to allow the firm in danger of

being substituted to anticipate this danger and bargain less aggressively. The definitions

below formalize this idea.

Definition 3. Under (G,T ), reimbursement rate tij is “safe for ui” if @ui′ , ti′j with gi′j = 0

such that the following hold:

Profitability:

πdj

(
G∗

−ij+i′j , T
∗
−ij+ti′j

)
≥ πdj (G

∗, T ∗) (3.5)

Incentive Compatibility:

πui′

(
G∗

−ij+i′j , T
∗
−ij+ti′j

)
≥ πui′ (G

∗, T ∗) (3.6)

No Commitment:

πui′

(
G∗

−ij+i′j , T
∗
−ij+ti′j

)
≥ πui′

(
G∗

−ij , T
∗
−ij
)

(3.7)
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where either profitability (condition 3.5) or incentive-compatibility (condition 3.6) holds

strictly.

In words, reimbursement rate tij is “safe for ui” if insurer dj cannot strictly profit

from replacing hospital ui with hospital ui′ in such a way that ui′ is willing to participate.

Conditions (3.5) through (3.7) formalize this idea. The profitability condition (3.5) says that

dj prefers replacing its current contract with ui with a contract of ti′j with ui′ over the status

quo. The incentive compatibility condition (3.6) says that ui′ also prefers this move over

the status quo. Finally, the no-commitment condition (3.7) says that after the substitution

takes place, ui′ would not prefer to drop its contract with dj . Trivial and unnecessary

as it may seem, condition (3.7) plays an important role in ensuring the existence of an

equilibrium in which multiple insurers are competing and enrollees can spill over among

them.16

Definition 4. Under (G,T ), for a gij = 1, the “best safe reimbursement rate” for ui is

denoted t̂ui(G,T, dj) and defined as the highest profit to ui among all values of t̃ij that

would be safe for ui if charged to dj .

Definition 4 provides us with the necessary notation for setting up the new bargaining

conditions. The basic intuition is that at the equilibrium (G∗, T ∗), each non-null t∗ij is equal

to the Nash-bargaining reimbursement rate tNBij (G,T, γij) unless t
NB
ij (G,T, γij) is not “safe”

for ui, in which case, ui will retreat to its best safe rate.

Definition 5. (G∗, T ∗) satisfies “bargaining with threats of replacement” conditions if for

∀g∗ij = 1 we have:

t∗ij = min
(
tNBij (G,T, γij) , t̂ui (G,T, dj)

)
(3.8)

My new solution concept for (G∗, T ∗) combines pairwise stability conditions on network

formation with bargaining-with-threats of replacement (rather than combining pairwise

stability and Nash-in-Nash). Now let’s revisit the above example to see the implications

of the new concept. There is now only one equilibrium: (G∗, T ∗) =

 1

0

 ,
 0.5

∅

.

Because the insurer can now swap the hospitals, a network with only u2 covered can no

16For more detail, see the online appendix.
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longer be an equilibrium.17 Also because now hospitals can anticipate and try to deter

threats of replacement, u1 does not charge unreasonably large amounts at the equilibrium

just because the fine for not abiding by the mandate is very high. Rather, given that the

replacement threat is binding, u1 is only charging for how much better it is than u2.

In the online appendix, I give more details behind my modeling choices. I discuss

why I use other alternatives such as cooperative-based models, non-cooperative models

such as Abreu and Manea [2012], vertical contracting models such as Segal [1999], Rey

and Whinston [2013], Prat and Rustichini [2003], and bargaining models such as Stole and

Zwiebel [1996a,b] among others. The rest of the paper is about the application.

4 The CommCare Market

In this section I introduce CommCare, the market to which I apply my framework in order

to study the effects of network adequacy regulations. CommCare –or, more precisely, the

“Commonwealth Care” market– was a subsidized health insurance exchange where people

with low income (below 300% of the federal poverty line) who could not get insured by

an employer or public programs were eligible to enroll. CommCare was operated by the

state of Massachusetts as part of the Massachusetts Healthcare Reform (which preceded the

ACA.) I chose CommCare for analysis because I believe that it is the most similar market

to the ACA exchanges among those health insurance markets for which comprehensive data

on claims, plan enrollments, network structures, and premiums are available. Both markets

are subsidized health insurance exchanges for individuals in which private insurers compete

by offering highly standardized plans.18 Nevertheless there are some differences between

the two markets.19 In section 6, I will discuss how some of these differences might lead us

17Like with existence, I do not prove any uniqueness result. But so far, in all of my counterfactual analyses,

my results have been unique.
18Other common features between CommCare and ACA exchanges include but are not limited to: (1)

Mandatory participation for people who are eligible and cannot find insurance elsewhere; (2) Risk-adjustment

programs to discourage insurers from competing for healthier enrollees.
19Some of the differences are: (1) CommCare included below poverty people but ACA exchanges leave

that group for state Medicaid programs. (2) ACA exchanges also include people ineligible for subsidies

but CommCare left them for another program named CommChoice, short for “Commonwealth Choice”.
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to expect different responses to network adequacy regulations between CommCare and the

ACA exchanges.

CommCare was established in 2007 and had around 200,000 enrollees annually in fiscal

years of 2011 through 2013. Enrollees were partitioned into three income-groups: below

the Federal Poverty Line (FPL), between 100% and 200% of FPL, and between 200% and

300% of FPL. Each income group was subject to a different subsidy rate and would pay a

different (uniform) co-pay when visiting an in-network hospital.20 In particular, the below-

FPL group was fully subsidized and paid no premium. This group also paid zero co-pay.

Other groups were also heavily subsidized but paid positive premiums and co-payments.

Given that the full subsidization of below-poverty enrollees rendered them price insensitive,

CommCare imposed a new, auction-like, regulation from 2012 on in order to foster price

competition among insurers. The regulation roughly stated that below-poverty consumers

who had just joined the market were only allowed to choose between the two cheapest plans.

I examine the whole CommCare market for estimation and identification. But for

the counterfactual policy I apply some restrictions. First, I focus on the 2011 fiscal year.

I do this because the particular auction-like regulation for 2012 and 2013 complicates the

premium-setting game.21 Also, to save on computation, I restrict my analysis geographically

by concentrating on the Greater Boston Area (which I define by all zip codes not more than

30 miles from zip code 02114 in downtown Boston). Finally, I focus on general acute

care hospitals rather than all hospitals (throughout this paper, unless otherwise stated, by

(3) CommCare was more highly standardized than ACA exchanges are. In the ACA exchanges, plans can

be offered in different “metal tiers” with different benefits. In CommCare, there was no deductible or co-

insurance. There was only a small co-pay which was not to be decided by the insurer. It was the same

for each income group across all insurers and all hospitals (MassHealth [2011]). (4) The subsidies for each

income group are fixed in the ACA exchanges but were linked to premiums in CommCare, meaning in

CommCare most consumers would receive more in subsidies if they bought a higher-premium plan.
20In fact, more precisely, the total number of income group was five rather than three: below FPL, 100%-

150% of FPL, 150%-200% of FPL, 200%-250% of FPL, and 250%-300% of FPL. Unfortunately, in my data,

I cannot distinguish between 100%-150% of FPL and 150%-200% of FPL or between 200%-250% of FPL

and 250%-300% of FPL. Therefore, I work with three income groups.
21With this regulation, the Bertrand Nash model for premium-setting often leads to mixed-strategy Nash

equilibria. Also, I found evidence for insurers’ incomplete information about each others’ pricing. For more

detail on this evidence, see the online appendix.
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Figure 4.1: General Acute Care Hospitals in Massachusetts. Those in the Greater Boston

Area are shown in blue rectangles.

“hospital” I mean a general acute care hospital.) There are 28 hospitals in the Greater

Boston Area, which are owned by 16 hospital systems. Figure 4.1 locates these hospitals

on a map.

In 2011 (and thereafter, until 2014 when CommCare was shut down and the ACA took

over), five insurers competed in CommCare. One of them (Fallon) was inactive the Boston

area. I focus, therefore, on the other four: BMC (Boston Medical Center), Celticare, NHP

(Neighborhood Health Plan), and Network Health. Given that below poverty consumers

in CommCare are insensitive to premiums, CommCare sets a cap on premiums in order to

prevent arbitrary price increases. In 2011, the cap was $425/month per person. CommCare

also had a mandated premium floor (likely to help prevent adverse selection by shifting the

competition from the price domain to quality domain) which was at the level of $404/month

in 2011. Table 1 summarizes the state of the market in the 2011 fiscal year. Celticare has

the narrowest network among the four with only 4 systems covered out of the whole 16.

It also charges the lowest premium. Nevertheless, my estimations indicate that Celticare

pays, on average, a higher reimbursement to its in-network hospitals for a severity-adjusted

admission than any of the other three insurers. The main reason is that Celticare cov-

ers the two most expensive hospitals in Massachusetts: Massachusetts General Hospital

(MGH) and Brigham and Women’s Hospital (BWH). Both MGH and BWH belong to the

Partners Healthcare system (“Partners” henceforth). MGH and BWH are highly presti-

gious academic medical centers and attract a lot of patients in any network in which they
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are participate, and particularly if the network is a smaller one like Celticare’s, leading to

high average reimbursements as well as high average marginal cost of inpatient care. All

of the other plans have broader networks, higher premiums, and lower estimated average

reimbursements than Celticare.

Celticare has other major differences from the other insurers in the market. Celticare

has a substantially lower market share than the rest of the plans. Also, unlike BMC, NHP,

and Network Health, which are all based in Massachusetts and entered CommCare in fiscal

year of 2007, Celticare is based in St. Louis, Missouri, and entered the market in 2010.

In other words, Celticare is a smaller insurer compared to the other three. As section 5

will explain in more detail, Celticare’s small enrollment size and little-known brand indeed

have implications for its hospital network and premium. There is evidence from the ACA

exchanges that smaller insurers have a harder time building hospital networks due in part to

lack of established relationships with agents, as well as lack of sufficient number of enrollees

to diversify risk (McKinsey [2015]). Celticare itself cites its “small size” as its biggest

limitation to engage with providers [Health Policy Commission, 2013]. Also, according to

McKinsey [2015], less well-known insurers like Celticare “may face greater pressure to be

price competitive to attract members” to make up for their weak brand names. Section

5 shows how different features of my formulations for profit functions πui (G,T, P ) and

πdj (G,T, P ) capture these differences among plans (in particular Celticare’s low economies

of scale) as well as the implications of these differences for network formation, bargaining,

and premiums.

5 Estimation

model’s purpose was to predict the market outcome (G∗, T ∗, P ∗) given all profit functions

πui(·) and πdj (·) and bargaining parameters matrix γm×n. Estimation is the reverse. We

observe (G∗, T ∗, P ∗) plus some partial data about πui(·) and πdj (·), and our objective is fully

backing out estimates π̂ui(·), π̂dj (·), and γ̂ij for all i, j so that we can then do counterfactual

analysis. Of course, part of the identification comes from parametric assumptions on profit

functions and bargaining powers. I start by specifying how profit functions depend on

demand and cost functions. Later (in sections 5.2 through 5.5), I will further specify
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BMC Celticare NHP Network Health

Systems Covered (out of 20) 11 4 15 14

Premium ($/month) 425 404 425 425

Average reimbursement ($/admission) 11,781 14,120 12,025 12,069

Average inpatient marginal cost ($/admission) 6721 10302 8335 8362

Market Share 32% 12% 27% 29%

Based in MA MO MA MA

First Fiscal Year in CommCare 2007 2010 2007 2007

Table 1: The CommCare Market in FY 2011, Greater Boston Area

the assumptions made on demand functions, cost functions, and the bargaining parameter

matrix.

Hospital ui’s profit from each insurer dj that covers ui is how many units of healthcare

per month care it provides to enrollees of dj times the marginal profit ui makes from each

unit of care provided to dj enrollees.22 Different consumer groups κ may have different

tastes for hospitals and insurers (I will discuss in more detail how consumers are binned

into different κ groups in section 5.2). So, ui’s total profit is given by:

πui(G,T, P ) =
∑
κ

∑
j

(
Dκ
j (G,P )× σκij(G)× (tij − ci)

)
(5.1)

In (5.1), ci is the marginal cost of providing one unit of care to a patient. Function

Dκ
j (G,P ) depicts how many enrollees from bin κ choose to enroll with insurer dj . Function

σκij(G) represents how many units of care per month the average dj enrollee from bin κ

receives from hospital ui.
23,24

Insurer dj ’s profit is the sum of premiums it charges minus the different types of costs

22One “unit of healthcare” is one hospital admission with average severity. Severities are measured in

DRG weights and discussed in section 5.2.
23Note that neither Dκ

j (G,P ) nor σκij(G) is a function of T . The reason is that in CommCare, there was

no co-insurance. Where there is co-insurance, T needs to be included as an argument to both functions.
24As I will formally define soon, by construction, σκij(G) = 0 for all ij such that gij = 0.
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it incurs:

πdj (G,T, P ) =
∑
κ

(
Dκ
j (G,P )×

(
pj − ξj −

∑
i

(
σκij(G)× tij

)))
−

∑
i s.t. gij=1

fij (5.2)

where pj is the premium that dj charges. The first element of cost to dj is ξj , which

denotes monthly “non-inpatient costs” to dj per each enrollee. ξj can include costs from

out-patient care by hospitals, pharmacies, non-hospital care, the variable component of

administrative costs, etc. The second element is the amount that dj pays to each in-network

hospital ui in reimbursements, which is equal to σκij(G)× tij for an average enrollee of type

κ.

The third component of costs to dj is the set of fixed costs fij which dj incurs for

every hospital ui that it covers. These fixed costs are an important part of what explains

the differences in economies of scale across plans (the other key part is heterogeneity in

plans’ brand values, and is discussed in section 5.3). They explain why Celticare forms a

narrow network including prestigeous hospitals like MGH and BWH but excluding a lot of

cheap hospitals geographically close to them.25 There are multiple sources for such fixed

costs. First, the bargaining process itself is costly. Second, “risk-diversification” can be

modeled as insurers facing fixed costs.26. Third, insurers sometimes leave hospitals out of

the network if they fail to meet some quality standards that may not be directly observable

to patients. I model such quality concerns as part of the fij costs.27 Finally, the fourth

source is insurer dj ’s over- or under-estimation of how profitable signing a contract with

25For instance, in the absence of such fixed costs, one would not expect low-cost hospitals to be left out

of hospital-networks that cover high-cost hospitals; because covering a hospital that would agree to join the

network with a low price could steer patients away from more expensive hospitals, and, in the worst case of

steering no one away, would do no harm to the insurer.
26Insurers with smaller sizes (e.g., Celticare in CommCare) often have a harder time contracting with

hospitals since the expected numbers of their enrollees who would visit a hospital are less likely to be large

enough to make the insurer feel more confident that those enrollees, who turn out to be more costly to the

insurer, will be cancelled out by those who are less costly. Of course, the most accurate way to model this

risk-diversification issue would be to (1) directly model the financial risk that insurers face regarding the

healthcare costs of their enrollees, and (2) model insurers as risk-averse agents. This would substantially

complicate the model. However, modeling this phenomenon as a fixed cost does not further complicate the

model and, at the same time, captures the idea that a small insurer might have a harder time sign a contract

with a hospital without facing risks.
27For instance, if a hospital has old equipment which the insurer believes might have serious side effects
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Figure 5.1: The four steps of the estimation procedure

hospital ui would be. This latter term plays the role of the structural errors that will be

used in the estimation procedure to rationalize the data.

Given the specifications of πui(·) and πdj (·) in (5.1) and (5.2), estimating the profit

functions means estimating all σ̂κij(·), D̂κ
j (·), ξ̂j , and f̂ij for all i and j. The procedure

that I develop for this estimation has four steps which correspond to the four steps of the

sequential game (shown in figure 3.2) in reverse order. Figure 5.1 schematically represents

the four steps of the estimation process. The first two steps are based heavily on methods

developed by Capps et al. [2003] and Ho [2006]. In step 1, I estimate all σ̂κij(·) using a

logit model of hospital choice. In step 2, given the outcome of step 1, I estimate all D̂κ
j (·)

using a model of plan choice. In step 3, given the full demand estimation outcome from

steps 1 and 2, I impose the Nash Bertrand assumption on premium-setting to back out all

non-inpatient costs ξ̂j . Finally, in step 4, I impose the network-formation and bargaining

model developed in section 3 to back out all f̂ij and γ̂ij . In the remainder of this section,

I review the data and discuss each of the four steps of the estimation procedure in more

details. For each step, after further parameterization of the object of interest if necessary, I

(i) describe the estimation methodology, (ii) discuss the identification, and (iii) report and

interpret the results.

for patients, the insurer may decide to leave the hospital out of network. Whether this comes from altruism

towards customers or from concerns about future profits, it can be captured as a cost to the insurer for

including that hospital in its network.
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5.1 Data

Datasets used in my analysis consist of (1) Data on hospital discharges and medical claims,

(2) data on insurance plan enrollments, and (3) data on hospital and insurance plan char-

acteristics. Below, I discuss these different data in more details.

5.1.1 Data on Hospital Discharges and Medical Claims

I use data on hospital discharges and medical claims at two points. First, I use data on

payments from insurers to hospitals in order to construct a measure of the reimbursements

matrix T ∗, the details of which are explained in the online appendix. Second, I use data on

hospital discharges in step 1 of the estimation procedure (see figure 5.1) where I back out

hospital choice functions σ̂κij(·). The primary source of my data for discharges and medical

claims is the Massachusetts All Payers Claims Database (MA-APCD) from the Center for

Health Information and Analysis (CHIA). MA-APCD has a medical claims dataset which

offers very rich and comprehensive information on medical claims and discharges from 2010

to 2014.

In the medical claims dataset, the unit of observation is claim-line, which pertains to

an individual medical bill that a provider (e.g., physician, hospital, pharmacy) sends to

an insurer. For each claim-line, MA-APCD’s medical claims dataset contains information

on patient demographics, diagnosis, type of claim (in particular whether or not the claim

pertains to an inpatient hospital admission), date, payments, and identifiers for the provider,

the patient, and the insurer. The demographic information consists of the patient’s gender,

age, and the 5-digit zip code of residence. The diagnosis information is reported in ICD-9-

CM diagnosis codes.28 The payments are broken down into payments by the patient and

payment by the carrier (i.e., insurer). The provider ID is the National Provider Identifier

(NPI) issued to providers by the Centers for Medicare and Medicaid Services (CMS). A

hospital may have multiple NPIs. The patient identifier is an ID assigned by CHIA. This

is an “APCD internal ID” which enables researchers to link together different claims and

28ICD-CM is short for International Classification of Diseases, Clinical Modification. The ICD-9-CM is

an adaptation by the U.S. National Center for Health Statistics of ICD-9 diagnostic codes which are used

internationally for diagnosis classification. There are about 14,000 ICD-9 codes.
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enrollment records of the same patient within the APCD.29

I carry out several further processings on the medical claims data before I use it in the

estimation procedure. I restrict the medical claims dataset to inpatient claims only. I also

use data on the NPIs of general acute care hospitals in Massachusetts from CMS both to

restrict the claims data to those from general hospitals in Massachusetts and to match each

claim line in the data to a hospital name. Since a hospital may issue multiple bills to an

insurer for different services provided during a single hospital stay, I aggregate the claims

data from the “claim-line level” to the “admission-episode” level by lumping together all

claims that have the same patient ID, insurer ID, hospital name (I do not use hospital

NPI, since a hospital can have multiple NPIs), diagnosis, and service provision year and

month. Finally, I link the ICD-9-CM diagnosis codes to a coarser category called Clinical

Classifications Software (CCS) developed by the Agency of Healthcare Research and Quality

(AHRQ). This linkage enables me to link diagnoses to MS-DRG severity indices for different

diagnosis groups.

5.1.2 Data on Insurance Plan Enrollments

I use data on enrollments in CommCare insurance plans to back out plan demand functions

D̂κ
j (·) from consumers’ plan choice patterns in step 2 of the estimation procedure (see figure

5.1 and section 5.3). My enrollments data comes from the MA-APCD’s enrollments dataset.

In the enrollments dataset, the unit of observation is enrollment record. An enrollment

record is uniquely identified by its enrollee ID and fiscal year. Enrollee IDs are the same

IDs as those assigned to patients in the medical claims file so the two files can be linked

together. Fiscal year is a variable that I construct for each record from enrollment start

year and month, as well as publicly available information on the timing of CommCare’s

operation. A CommCare fiscal year started on July with an open enrollment period, making,

for instance, July of 2010 the first month of the 2011 fiscal year (henceforth, 2011FY). For

each enrollment record, MA-APCD’s enrollments dataset contains information on enrollee

demographics and insurer ID. Demographic information in the enrollments dataset consists

of the same demographic elements that were included in the medical claims file plus an

29This ID cannot be used to personally identify any patient or enrollee.
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additional one: the enrollee’s income group, which can be one of the following three groups:

below FPL, within 100%-200% of FPL, and within 200%-300% of FPL.

5.1.3 Data on Hospital and Insurance Plan Characteristics

I supplement the MA-APCD medical claims data and enrollments data with several other

datasets. I use public data from the Mass Connector on CommCare plans’ hospital networks.

I use this dataset in the hospital choice estimation (see step 1 in figure 5.1) to identify the

choice set of each patient who visits a hospital. I also use it in the plan demand estimation

(see step 2 in figure 5.1), in conjunction with the results of the hospital choice estimation,

in order to construct measures of relative values of different plans’ hospital networks to

different consumer bins κ on CommCare. I also use data from the Mass Connector on

CommCare plans’ premiums as well as subsidy rates in CommCare. I use these data in the

plan demand estimation process (see step 2 in figure 5.1).30

Finally, I use data on hospitals’ costs from CMS’s Healthcare Cost Report Information

System (HCRIS). These data include annual costs reports by all Medicare-certified providers

(which include all of the hospitals I study) to CMS, broken down into seven cost centers

–such as general service, inpatient service, outpatient service, and ancillary service– and

then, for each cost center, broken down in great details into many items. I then adopt

the approach used in Schmitt [2015] to construct from these cost items a measure of ci,

hospital average inpatient costs per severity adjusted hospital admission. For details on

how I construct these ci measures, see the online appendix.31

30Even though data on hospital networks, plan premiums, and subsidies in CommCare was public, it was

removed from the Mass Connector website before I could access it. I thank Mark Shepard for sharing these

data with me.
31The original cost reports data from HCRIS is very raw and requires a great deal of processing before ci

measures can be constructed off of it. I thank Matt Schmitt for sharing with me a cleaned up version of the

HCRIS data.
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5.2 Step 1: Estimating Hospital Demand

In the first step of estimating the model, I back out the hospital choice function σκij(G).

This function represents the total demand for hospital ui from an average consumer who

is in bin κ and has enrolled in insurance plan dj . This is a weighted sum of demand levels

σκ,ψij (G) for different diagnoses ψ, where the weight for each diagnosis is its DRG severity

measure wψ. Formally:

σκij(G) =
∑
ψ∈Ψ

wψ × σκ,ψij (G) (5.3)

Note that (5.3) has a direct implication for the interpretation of (5.1) and (5.2). It

implies that the reimbursement made by insurer dj to hospital ui for a hospital admission

with diagnosis ψ is equal to wψ× tij . Similarly, the marginal cost to hospital ui of providing

care to an admitted patient with diagnosis ψ is implicitly assumed equal to wψ × ci. This

linearity assumption is standard in the literature (see, for example, Gowrisankaran et al.

[2013], Ho and Lee [2017b], Prager [2015]).

Diagnosis-specific hospital choice function σκ,ψij (G) is assumed to come from a multi-

nomial logit model of hospital choice for different consumer bins κ. I bin the consumers

based on two observables: the 5-digit zip code of residence location, and income group (be-

low poverty, between 100% and 200% of poverty, and between 200% and 300% of poverty).

Therefore, bin κ is a combination of location l and income group y. For each individual

k, I use the notation κ(k) (notation picked up from Ho and Lee [2017b]) to represent the

consumer bin that consumer k belongs to. Notations l(k) and y(k) are also used in a similar

manner.

Underlying my multi-nomial choice model is the following utility function for individual

k with diagnosis ψ admitted to hospital ui:

V H
ikψ = δdil(k) + vi ×

(
1 + θdiag × wψ

)
+ εikψ (5.4)

This utility function assumes that when evaluating hospital ui, consumer k pays atten-

tion to how far the hospital is located from where she lives as well as to the quality of the

hospital. In (5.4), dik is the distance between hospital i and the residence of individual k
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who belongs to bin κ(k), and δ is the corresponding coefficient. Also vi captures hospital

i’s quality as perceived by consumers. The utility function in (5.4) allows for the possibility

that for more severe conditions, consumers care more about hospital quality and less about

distance. Therefore, in (5.4), there is also an interaction term vi × wψ is multiplied by the

coefficient θdiag, which measures the extent to which patients with more severe conditions

(i.e., higher wψ) pay extra attention to hospital qualities vi compared to patients with less

severe conditions. The last term in (5.4), εikψ is an idiosyncratic error term whose distri-

bution is i.i.d Type 1 extreme value with variance of 1. The the distribution of εikψ gives

a closed-form representation for σκ,ψij (G). For gij = 0, we have σκ,ψij (G) = 0. For gij = 1 we

get:

σκ,ψij (G) = λκ,ψ
eV̄

H
iκψ∑

i′ s.t. gi′j=1 e
V̄ H
i′κψ

(5.5)

where V̄ H
iκψ (note that in the subscript, it is κ and not k) the average of V H

ikψ over all

consumers k of type κ. That is, V̄ H
iκψ = δdil + vi ×

(
1 + θdiag × wψ

)
, where l is the location

element of κ. Also λκ,ψ is the expected rate of hospital admission with diagnosis ψ per

month per member for consumer bin κ.

Estimation Procedure: The parameters to estimate in this step are
(
δ̂, v̂i, θ̂

diag, λ̂κ,ψ

)
.

I observe λ̂κ,ψ directly from the data. To estimate the rest of the parameters, I estimate a

multi-nomial logit model. I observe hospital choices σκ,ψij (G) for all i, j, κ, ψ in my data.32

I estimate the parameters using a maximum likelihood approach, matching the observed

σκ,ψij (G).

Identification: Hospital qualities vi are identified by cross-hospital variation in dis-

charge volumes. If hospital ui has a higher discharge share than hospital ui′ among consumer

bins κ that live in locations equally far from ui and ui′ , then vi must be larger than vi′ .

Distance coefficient δ is identified by within-hospital, cross-location variation in discharge

volumes. The faster the discharge share of hospital ui diminishes as we look at consumer

bins κ farther from ui, the more negative the distance coefficient δ must have been. The

severity weight coefficient θdiag is identified by the variation in discharge volumes within

consumer bins κ but across hospitals and diagnoses. The more the discharge shares get

32I construct σκ,ψij (G) for each i, j, κ, ψ using the discharge data for choices made by patients and data on

the network G for the choice set.
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skewed towards higher quality hospitals as we look at more severe diagnoses ψ, the higher

the implied θdiag would be.

Results and Interpretation: Table 2 summarizes the results of the multi-nomial

logit estimation of the hospital choice model. The distance coefficient is estimated to be

δ̂ = −0.137, which is consistent with the literature. It implies that an extra 10 miles of

distance reduces the share of a hospital by an average of 29%. The DRG weight coefficient

is estimated to be θ̂diag = 0.036. To illustrate the interpretation of this number, suppose

hospitals ui and ui′ are such that
v̂i−v̂i′

δ̂×(1+θ̂diag)
= 10. That is, the average patient with

diagnosis ψ of severity wψ = 1 would choose ui′ over ui if ui′ is no more than 10 miles farther

from her than ui. Then, a DRG coefficient of θ̂diag = 0.036 would imply that the average

patient with diagnosis ψ′ of severity wψ′ = 2 would be willing to travel 10× 1+2×0.036
1+0.036 ≃ 10.36

more miles to visit hospital ui′ than she would to visit ui.

Hospital Choice Estimates

coeff. std. error

distance (miles) -0.136*** (0.002)

DRG weight 0.036** (0.017)

Hospital FEs Yes

Num. hospital admissions 40,247

pseudo R2 0.413

std errors in parentheses, *: p < 0.1, **: p < 0.05, ***: p < 0.01

Table 2: Hospital Choice Model

5.3 Step 2: Estimating Insurance Plan Demand

Having estimated a model of hospital choice, I now turn to estimating the insurance plan

demand functions D̂κ
j (·). I assume that consumer k’s valuation of insurance plan j comes

from the following utility function:

V I
jk = α× EUjκ(k) + βy(k)p

sub
jk +∆j + ϵjk (5.6)

where EUjκ(k) is the expected utility of insurer dj ’s network of providers for consumer k
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of type κ, and α represents how much consumers care about network expected utility when

they compare plans. Network-of-providers utility EUjk is given by:

EUjκ =

∑
ψ λκ,ψEU

ψ
jκ∑

ψ λκ,ψ
(5.7)

which means that EUjκ comes from a weighted average of EUψjκ, which are values of

plan j’s network of providers for different diagnoses ψ for a consumer of type κ. The weights

come from the likelihoods of different conditions for type κ. Given the distribution of εikψ,

there is a closed-form representation for how the values V̄ H
iκψ of hospitals covered by dj

contribute to EUψjk:

EUψjκ = ln

 ∑
i s.t. gij=1

eV̄
H
iκψ

 (5.8)

∆j in (5.6) is insurer dj ’s fixed effect, which can be interpreted as “brand effect”. βy(k)

is the sensitivity of consumer k, who belongs to income group y(k), to the monthly premium

psubjk she has to pay for plan j. Due to subsidization in CommCare, there is a difference

between the premium pj each insurer charges for its plan and psubjk , the one a consumer

buying that plan pays. The relationship between psubjk and pj is linear. There is a fixed

subsidy by and a pass-through rate ay for each income group forming a linear relationship,

as shown in (5.9).33 All ay and by are observed.34

psubjk = ay(k) × pj − by(k) (5.9)

Finally, in (5.6), ϵjk is an i.i.d extreme value type I error term, which gives us the

following closed-form solution for Dκ
j (G,P ):

Dκ
j (G,P ) = Λκ

eV̄
I
jκ∑

j′ e
V̄ I
j′κ

(5.10)

33There is one non-linearity in CommCare’s subsidization policy. For the second poorest income group

(i.e., between 100% and 150% of poverty), by is determined in such a way that there is at least one free

option for income group y. That is, by should equate minj p
sub
jk to zero for that group. In my counterfactual

analysis, I do not incorporate this effect. Instead, I take all ay and by remains constant in response to

counterfactual scenarios. This simplifies the model greatly and does not substantially change the results.
34In 2011, an X% of the premiums charged by insurers in CommCare was subsidized through fixed subsidies

(i.e., ay) and another Y% through variable subsidies (i.e., by). Consumers paid the remaining 100-X-Y%,
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where (similar to the construction of V̄ H
iκψ) V̄

I
jκ is constructed by averaging V I

jk over all

consumers k of type κ (which gives the same formula as V I
jk but without the error term

ϵjk). Also, Λκ is the population of individual consumers of type κ.

Estimation Procedure: The parameters to estimate in this step are coefficients on

network utility and monthly premium, as well as the brand effects:
(
α̂, β̂y, ∆̂j

)
. Populations

Λκ are observed, and network utilities EUjκ can be constructed from the results of the

hospital choice estimation (and are hence, treated as data in this step). To back out(
α̂, β̂y, ∆̂j

)
, I estimate the multi-nomial logit model set up in equations (5.6) through

(5.10) using a maximum likelihood approach.

Identification: Brand fixed effects ∆j are identified by the variation in the enroll-

ment volumes across plans. Network utility coefficient α is identified by within-plan, cross-

location variation in enrollment volumes. To illustrate, if the ratio of Celticare enrollments

to NHP enrollments for a certain income group in a certain year is constant across residents

of different zip codes, then all of the difference is picked up by brand effects. But if this

enrollments ratio is lower in locations where NHP’s hospital network includes some nearby

hospitals, but Celticare’s does not, then this variation in ratios is explained by a non-zero

α. Price coefficients βy for different income groups are identified by within-plan, over time

variation in subsidy rates and plan premiums. The traditional price-endogeneity issue is

less of a concern in CommCare. Individuals with incomes below the federal poverty line

accounted for more than 40% of the total CommCare enrollees every year. Health insur-

ance for this group was always fully subsidized in CommCare. Therefore, the effective price

sensitivity for below-poverty consumers is zero, and the underlying βy for this group is not

a coefficient that I estimate. But due to its large size and due to the particular institutional

details of regulations regarding this income group on CommCare, I believe there is enough

evidence that most (if not all) of the variation in insurer premiums in my data stems from

insurers’ strategies regarding this group. Therefore, there should be little concern about

premium variation being endogenous to demand from the other income groups, for which I

estimate premium coefficients βy. For more detail on this, see the online appendix.

Results and Interpretation: Table 3 summarizes the results of the multi-nomial logit

estimation of the plan demand model. An average CommCare enrollee with an income
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between 100% and 200% of the federal poverty line is estimated to be almost twice as

sensitive to the after-subsidy premium paid as an average enrollee with an income between

200% and 300% of the federal poverty line. Brand effect estimates indicate that except for

Celticare, the brand values for all the CommCare plans are close to one another. An average

CommCare enrollee with an income between 100% and 300% of poverty would be willing to

pay about $30/month less (in after-subsidy premium) for Celticare than she would for BMC,

if the two plans offered the same network of hospitals. Similarly, the average above-poverty

CommCare enrollee would value the NHP brand and Network Health brand, respectively,

at $8/month and $3/month below that of BMC. Note that this is exactly where the model

captures the idea that Celticare is a smaller insurer than the others on CommCare. A

smaller brand fixed effect ∆j implies that a plan would get a smaller market share even if

it offered the same hospital network as the other insurers. This, as will be discussed later,

hinders Celticare from adding hospitals (especially smaller ones) to its network since the

number of new enrollees that those hospitals would bring Celticare is too few to justify the

corresponding fixed cost.

Finally, the network utility coefficient α is estimated at 0.76. This magnitude for α

implies that, an average CommCare enrollee with an income between 100% and 300% of

poverty would be willing to pay almost 21$ more in after-subsidy premium for Celticare, if

Celticare improved its network of hospitals to one similar to NHPs.35

5.4 Step 3: Estimating Insurers’ Non-Inpatient Costs

Variable costs to insurers have two main components. The first component is inpatient

costs, which are the reimbursements tij that the insurer pays to its in-network hospitals for

35A last note on my plan demand model is that it does not account for potential inertia in plan choice by

consumers. Even though it would be reasonable to believe that such inertia does exist, I think abstracting

away from the complexities that it would add to my model does not drastically change the results. This

is because in the plan demand estimation, I use data only from fiscal years of 2012 and 2013. And when I

use these estimates (which do not account for inertia) to project market shares for the fiscal year of 2011,

my predictions are close to the observed shares. Given that substantial changes happened to some plans

between 2011 and 2012 as well as between 2012 and 2013, I believe that the model doing well on predicting

2011 market shares suggests that abstracting from inertia is not a far from reasonable.
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Plan Demand Estimates

coeff. std. error

network expected utility 0.76*** (0.14)

price coefficients

0-100 % poverty (omitted, no premiums) — —

100-200 % poverty -0.0413*** (0.0028)

200-300 % poverty -0.0198*** (0.0021)

brand fixed effects

BMC (omitted category) 0 —

Celticare -1.137*** (0.041)

Fallon 0.012*** (0.004)

NHP -0.296*** (0.002)

Network Health -0.117** (0.05)

Num. enrollments 381901

pseudo R2 0.704

std errors in parentheses, *: p < 0.1, **: p < 0.05, ***: p < 0.01

Table 3: Plan Demand Model

the care that they provide to its enrollees. The second component is the non-inpatient cost

ξj in (5.2). In the online appendix, I detail how I measure reimbursement rates t∗ij using

the medical claims file of the MA-APCD. In the main text, I treat them as data. In this

section, I back out the non-inpatient costs ξj .

Estimation Procedure: The parameters to back out in this step are insurers’ non-

inpatient costs ξ̂j for FY2011. This is done by imposing the Nash Bertrand equilibrium

assumption on the premium-setting. That is, no insurer dj should be able to do better by

changing its premium:

πdj (G
∗, T ∗, P ∗) ≥ πdj

(
G∗, T ∗,

(
pj , p

∗
−j
))

(5.11)

Insurer dj ’s non-hospital cost per member per month is estimated by finding the ξj to

make this optimality condition hold.

Identification: Unfortunately, the identification is only partial in this step of the
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BMC Celticare NHP Network Health

Bound on ξj ($/month/person) 284 275 281 276

Type of Bound Lower Upper Lower Lower

Table 4: Upper or lower bounds on non-inpatient costs ξj

estimation process. In FY2011, the before-subsidy premiums bid by all CommCare insurers

were enforced by regulation to be no more than $425/month and no less than $404/month.

Thus, all that the identifying assumption (i.e., equation (5.11)) implies is that for every

insurer dj , the observed premium p∗j in the data would do weakly better than any other

pj ∈ [404, 425]. Given that all insurers’ premiums were exactly at either of the two extremes

of this continuum, equation (5.11) only gives us bounds on ξj values rather than point

estimates.

Results and Interpretation: Table 4 presents the bounds backed out on non-

inpatient costs ξj using (5.11).

Calibration: Given that I only have bounds on ξj , I need to calibrate the non-inpatient

costs. I calibrate the vector ξ̂ exactly at the boundaries of the inequalities. That is,

ξ̂ = (284, 275, 281, 276). I believe this is a reasonable calibration for multiple reasons. First,

the fact that Celticare covers, on average, more expensive hospitals than the other three

plans (see table 1) can also push Celticare’s outpatient cost further upward compared to

others. Therefore, given that, by table 4, the upper bound on ξCelticare is below the lower

bound on ξj for the other plans, calibration at the boundary seems not far from reasonable.

Also, even though non-inpatient costs ξj may have varied over time, looking at the pricing

decisions of insurers in fiscal years other than 2011 can still be suggestive regarding how

reasonable the decision to calibrate ξ̂ at the boundary is. In fiscal year 2010, the premium

floor and cap were $381/month and $391/month respectively. The fact that BMC, NHP,

and Network Health could all profitably charge no more than $391/month (i.e., $34/month

below their prices in FY2011) suggests that calibrating their ξj at the lower bounds is a good

working assumption. In addition, during fiscal years of 2012 and 2013 when CommCare had

set the premium floor at the much lower levels of $360/month and $354/month respectively,

and put in place a procurement process to encourage insurers to price lower, Celticare was
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not always among the two cheapest plan on CommCare.36 This suggests that Celticare must

not have had a ξj much lower than the other plans, which is consistent with my calibration.

5.5 Step 4:Estimating Insurer Fixed-Costs and Bargaining Parameters

Modifying the Model: Before I perform the estimation in this step, I make modifications

to the model to avoid computational burden for the estimation of fixed costs and bargaining

parameters and, more importantly, for the simulation of counterfactual scenarios. First,

instead of the whole state of Massachusetts, I concentrate on the Greater Boston Area

which I define by zip codes that are at most 30 miles far away from 02114, a zip code

in downtown Boston. There are 28 hospitals in this area. Also, Fallon was not active in

CommCare in this area. So, I am left with BMC, Celticare, NHP, and Network Health.

Second, I coarsen the set of consumer bins κ by aggregating the zip codes into 38 different

locations. I also aggregate all DRG weights into a single one.37 Third, I simplify the way

hospital-insurer pairs ui and dj anticipate how premiums respond to the outcome of their

bargaining over reimbursement rate tij . I assume that when negotiating, the pair take

as given the premiums set by all insurers other than dj . That is, the pair assume that

only dj will adjust its premium optimally after the outcome of the bargaining between

the two is determined. This assumption substantially simplifies the computation as it will

not involve computing a complete Nash Bertrand equilibrium for insurer premium-setting

for every candidate negotiated tij . In spite of the massive computational advantage, this

assumption does capture the first-order effect of premium response to bargaining outcomes.

It only leaves out how other insurers respond to the premium change by dj .
38 This type of

simplifying assumption has been made in the literature to ease the computation of models of

bargaining on two sided markets. In fact, Ho and Lee [2017b] assume that when bargaining,

hospital ui and insurer dj take as given all of the premiums, including pj. The assumption in

Ho and Lee [2017b] simplifies the computation much further than the assumption I impose.

36For more detail on CommCare procurement rules for fiscal years of 2012 and 2013 and the insurers’

premiums during those years, see the online appendix.
37This aggregation abstracts away from heterogeneity in the severity of different admission events. I

decided for this aggregation since trying it on the early versions of the model did little to change the results.
38Note that this assumption still retains the feature that at equilibium market outcome (G∗, T ∗, P ∗),

premiums P ∗ are a Nash Bertrand equilibium among insurers, given G∗ and T ∗.
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Nevertheless, as I will discuss in the online appendix, it would not be suitable to a model of

bargaining with endogenous network formation such as the model in this paper, as it would

lead to wide ranges of multiple equilibria in many cases.

The fourth modification to the model not only simplifies the computation, but is also

rooted in the institutional details of the market. I assume hospitals do not bargain indi-

vidually, but as systems. The participation of hospitals owned by the same hospital system

across plans’ hospital networks is highly correlated with one another with full correlation

in most cases. Therefore, I assume that it is the whole system, denoted s, that negotiates

with each insurer dj over rates and that the outcome of the negotiation is the participation

of either all of the system’s hospitals ui in dj ’s network or none of them. This partitions the

28 hospitals in the Greater Boston Area into 16 systems39. I also assume that in the case

of full participation, the prices negotiated between insurer dj and all hospitals ui in system

s are fully correlated. That is, I construct a fixed “base-rate matrix” T base =
[
tbaseij

]
m×n

and assume that the negotiated prices between insurer dj and all hospitals ui in system s

can only take the form of tij = tbaseij + zs.
40 In other words, I assume that the negotiation

between the insurer and the hospital system is in fact over zs. This assumption brings the

dimensionality of each bargaining process from the size of system s to 1, without substan-

tially affecting the outcomes.41 After implementing all these four modifications, I turn to

the estimation of fixed costs and bargaining parameters.

Estimation Procedure: The parameters to estimate in this step are insurers’ system-

specific fixed costs of inclusion f̂sj and bargaining parameters γ̂sj . Note that given the

39If, within an actual system (i.e., joint ownership of hospitals), the network participation of some hospitals

do not fully correlate with one another, I consider them separate systems. For instance, Faulkner Hospital is

owned by the Partners system, which means that it is in the same system as MGH. Nevertheless, I consider

them to be in separate systems, as they do not always appear in the same hospital networks.
40For every ij link that does appear in the network structure based on my FY2011 data, I set tbaseij to

the value of the estimated reimbursement rate t̂∗ij corresponding to that link, which, as mentioned before, I

measure in the online appendix. For all other links ij, I set tbaseij to hospital ui’s marginal cost ci.
41To see why this assumption does not have large effects on the outcome, observe that increasing some tij

and decreasing some ti′j would have little net effect on either the insurer profit or the hospital system profit

(which is the sum of the profits to the individual hospitals forming that system). Therefore, the bargaining

here could be thought of as the insurer’s attempt to get discounts from all of the individual hospitals in the

system, and the system’s attempt to charge the insurer more for the service of all of the hospitals.
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aforementioned aggregation to the hospital-system level, index s for systems has replaced

index i for hospitals. I combine the estimation results of the previous steps with network

stability conditions in definition 1 and bargaining conditions in definition 5 to back out the

set of f̂sj and γ̂sj that rationalizes the observed market outcome (G∗, T ∗, P ∗) in the data

as an equilibrium of the sequential game schematically represented in figure 3.2, section 3.

Note that by only imposing network-stability conditions and bargaining conditions, we

will not obtain point estimates for all f̂sj . For instance, bargaining conditions do not give

any information on f̂sj for any system-insurer pair who are not contracting with each other

(i.e., when g∗ij = 0 for all i ∈ s). For such pairs, network stability conditions also only give a

lower bound on f̂sj . To obtain point estimates, I impose the assumption that fixed costs fsj

depend linearly on observable characteristics of hospital systems and insurance plans. This

assumption allows for those fsjs that are point identified from the structural assumptions to

also carry some information about those for which the structure of the model only predicts

bounds. Given that the number of data points is limited (there are a total of 64 fsj values

for 16 hospital systems and 4 insurers in the Greater Boston area), for hospital system

characteristics, I only include total bed size, denoted χs, and for insurer characteristics, I

only include insurer fixed effects. Formally:

fsj = Ω × χs + FEj + υsj (5.12)

The procedure through which the linear regression model in (5.12) is combined with

the structural equations of the model to estimate fixed costs and bargaining parameters

is adopted from the estimation procedure in Gowrisankaran et al. [2013]. My estimation

procedure solves a constrained optimization problem. It finds the
(
f̂sj , Ω̂, F̂Ej , γ̂sj

)
that

minimize the variance of the residuals vsj as given by equation (5.12) (i.e., the moment

condition), subject to two types of constraints on the profit functions: (i) (G∗, T ∗, P ∗)

satisfies the inequalities imposed by the network stability conditions in definition 1, and

(ii) (G∗, T ∗, P ∗) satisfies bargaining with threats of replacement in definition 5 relative to

bargaining parameter matrix γ. Given the results of the previous steps, and given that

hospital marginal costs ci are observed, profit functions can now be fully computed up to

the fsj fixed costs and γsj bargaining parameters that are to be estimated in this step. This

36



turns constraints (i) and (ii) on the profit functions into constraints on fsj and γsj , making

the optimization problem well-defined. For the formal characterization of the constrained

optimization problem, see the online appendix.

Given that a high insurer fixed cost fsj and a low hospital-system bargaining parameter

γsj are expected to affect the bargaining outcomes in similar ways, I conservatively impose

strong restrictions on bargaining parameters to ensure identification. I divide all of the

hospital systems into two categories: “star” and “non-star.” I consider two hospital systems

to be stars. First, Partners, which includes Massachusetts General Hospital and Brigham

and Women’s Hospital. The second one is Tufts Medical Center. These systems are the

highest ranked in Massachusetts according to U.S. News and World Report’s 2016-2017

rankings of best hospitals in Massachusetts.42 Another reason for considering these two

systems to be star systems was that they seemed to have charged abnormally high to all

insurers according to my measurement of T ∗. I then assume that bargaining parameter

γsj equals γstar for all j when s is one of the two star systems, and it equals γnonStar

otherwise. Therefore, the problem of estimating
(
f̂sj , Ω̂, F̂Ej , γ̂sj

)
boils down to estimating(

f̂sj , Ω̂, F̂Ej , γ̂star, γ̂nonStar

)
.

In the online appendix I give more details on why I chose this estimation procedure based

on Gowrisankaran et al. [2013] over other alternatives such as MLE or moment inequalities.

Identification: Identification of all of the parameters come jointly from the structural

assumptions of the model described in section 3, as well as from the moment condition

in (5.12). Fixed effects F̂Ej are roughly identified by average differences among different

insurers dj in the bounds on their respective fsj by the structural assumptions. For instance,

the imposition of no gains from trade by definition 1 on links sj with g∗sj = 0 is expected

to imply a lower bound f
sj

on fsj . If such implied lower bounds for insurer dj tend to be

larger than those implied for insurer dj′ , then FEj can be larger than FEj′ . Also given the

structure of the model, the bargaining formulation (3.8) implies an upper bound f̄sj on fsj .

42In that ranking, Massachusetts General Hospital, Brigham and Women’s Hospital, and Tufts Medical

Center are ranked first, second, and fourth respectively. Beth Israel Deaconess Medical Center was ranked

third, above Tufts Medical Center. But I decided to not consider its parent system (i.e., Care Group) a star

system since it also included many much lower ranked hospitals such as Beth Isreael Deaconess Needham

and Beth Isreael Deaconess Milton, and especially Mount Auburn Hospital.
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A similar argument applies when f̄sj tends to be larger for dj than for dj′ .
43 The intuition

for the identification of Ω̂ is also similar, though the variation this time is within insurer

but across hospital systems.

The bargaining parameter for star hospital systems γstar is identified by searching for

the γstar value that makes the predicted fixed costs fsj for the Partners and Tufts systems

as close as possible to what a linear model of fixed costs with Ω̂, F̂Ej would predict. For

instance, if the fixed effects F̂Ej and size effect Ω̂ are all positive, but with γstar =
1
2 the

implied fixed costs for all or most sj with s ∈ {Partners, Tufts} and gsj = 1 are negative,

then we expect that the “true” γstar must have been larger than 1
2 . That is, the insurers must

have accepted higher reimbursements from those star hospital systems, not because of very

low fixed costs of inclusion, but because those systems have higher bargaining parameters.

Bargaining parameters γnonStar are also identified based on a similar logic.

A particular feature of my model that further helps to separately identify fixed-costs of

inclusion from bargaining parameters is endogenous network formation. Some of the equi-

librium conditions of the model only restrict fixed costs fsj and are invariant to bargaining

parameters γsj. For instance, lower bounds f
sj

for those sj with g∗sj = 0 are completely

independent of the whole bargaining-parameters matrix. So, very small values of γstar and

γnonStar, which would imply very low and sometimes negative upper-bounds f̄sj that are

far below f
sj
, will not do well in minimizing the error in regression equation (5.12), and

hence are not chosen by the estimation algorithm.44

Results and Interpretation: Table 5 summarizes the results. The two hospital

systems I consider star are estimated to have full bargaining power γ̂star = 1 when ne-

gotiating with insurers.45 I estimate that non-star systems have a bargaining power of

43Also, given that networks of different plans can be different, sometimes f̄sj can be compared to f
sj′

.

Similar arguments apply here.
44The analysis of these lower bounds from the network formation structure was also the reason why I chose

how to “split” the effects between the bargaining model and the fixed costs model. In the early versions

of the model, I also tried specifications where the fixed costs model included a star dummy but no size

effect and the bargaining model had a size effect. That approach led, on average, to a larger diversion in

f̂sj − F̂Ej for a fixed j across s than my chosen specification does, which means it does worse on matching

the moments.
45An estimated bargaining parameter of γ̂star = 1 might seem too high since it seems to give all the
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γ̂nonStar = 0.72. The fixed costs of inclusion fsj are estimated to be increasing with the

total bed size of the hospital system covered. The slope of this increasing relationship is

estimated at Ω̂ = $223K/year/100 beds. This magnitude, along with the fixed effects F̂Ej

reported in the table, implies that such fixed costs sum up to as large as about a third of

insurer profits (or, put differently, a fourth of insurer profits before accounting for the fixed

costs themselves). Observe that the fixed costs estimated for Celticare are not higher than

those for the other insurers. So, the rationzliation of Celticare’s narrwer network than the

other plan is not taking place by simply assigning higher fixed costs fsj to Celticare. As

mentioned before, an important role here is played by Celticare’s low brand fixed effect ∆j

in the estimated plan demand model.46

A final observation is that the magnitude of the estimated fixed costs seem rather high.

One reason for this can be that the Nash Bertrand assumption on the premiums tends

to imply overly high insurer markups, thereby underestimating the non-inpatient costs.

Such underestimation would overstate the value of new enrollees and, hence, the value of

including an additional hospital system, to insurers. This makes higher fixed costs necessary

to rationalize insurers’ choice of network.47

surplus from the contract to the hospital. Two notes about this issue are worth making. First, note that

all the surplus does not necessarily go to the hospital since the insurer is also allowed to make threats of

replacement. Second, and more importantly, standard plan demand models in the literature (which I also

use in this paper) do not capture consumer risk aversion as a source of bargaining leverage for star hospitals.

Therefore, this leverage in my estimation process is picked up by an extremely high estimated bargaining

parameter γ̂Star. See the online appendix for more detail on this.
46In fact, I ran a counterfactual simulation using the estimated parameters of the model, except that I

set all of the brand effects ∆j to zero to asume away brand heterogeneity. In the simulated equilibrium,

Celticare and Network Health ended up having 10 hospital systems (out of the total 16) covered in their

networks.
47The issue of Nash Bertrand conditions overstating markups has been mentioned in the literature before.

Ho and Lee [2017b] address it by assuming that insurers perceive demand to be more elastic than it actually

is. The estimates in this paper can be thought of as another alternative: Insurers failing to perceive the full

relevance of their non-inpatient costs when setting premiums but do take them into account when forming

networks, or equivalently, insurers implicitly taking part of their variable costs to be fixed. I, hence, do

not expect the magnidute of such fixed costs to drastically affect the results that I get in my counterfactual

analysis as long as they help to capture the heterogeneity in profitabilities of different hospitals to the insurer

that are not otherwise captured, since these differential profitabilities are key to both which hospitals are

included in the network and how strong they can be against each other as threats of replacement.
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Fixed Costs and Bargaining Parameters

coeff. std. error

insurer fixed effects (K$/year)

BMC 1146*** (180)

Celticare 788*** (177)

NHP 415** (181)

Network Health 636*** (177)

effect of size (K$/year/100 beds)

Ω 223*** (91)

bargaining parameters

γstar 1

γnonStar 0.72

std errors in parentheses, *: p < 0.1, **: p < 0.05, ***: p < 0.01

Table 5: Estimation of fixed costs of inclusion and bargaining parameters

6 Counterfactual Analysis

In this section, I use the estimated model to run counterfactual simulations that would help

us better understand the effects of Network Adequacy Regulations on the functioning of the

CommCare market. In section 6.1, I discuss the main economic forces that I believe underlie

how the market responds to network adequacy regulations. In section 6.2, I present and

interpret my simulation results on the effects of a range of network adequacy regulations

on CommCare. In section 6.3, I discuss some ways in which one might expect the response

of the ACA exchanges to such regulations to be different from CommCare’s.

6.1 Main Economic Forces

The hospital network of an insurance plan can affect the reimbursements it pays to its in-

network hospitals, as well as the premium it charges, through multiple channels. Among

these channels, two are of special importance when it comes to understanding the effects

of network adequacy regulations. The first channel has to do with the features of the
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in-network hospitals of each insurance plan. Hospitals with higher costs ci and/or higher

quality vi tend to charge more for their services. So, a hospital network consisting mainly

of such hospitals is expected to be more expensive to the insurer. The second channel is has

more to do with how in-network hospitals of an insurance plan compare to its out-of-network

hospitals. If the out of network hospitals are very close, in terms of cost and quality, to the

in-network ones, the insurer can use them as a strong bargaining chip and make credible

threats of replacement to its in-network hospitals in order to keep reimbursement rates low.

A network adequacy regulation can affect reimbursements through both of these chan-

nels. On the one hand, a network adequacy regulation forces an insurer with a narrow

hospital network to add hospitals. Depending on where the joining hospitals stand in terms

of cost ci and quality vi, their addition to the network can bring the average reimburse-

ment rate –and hence the premium– up or down. On the other hand, a network adequacy

regulation also weakens the insurer’s “out-of-network pool” of hospitals. As the insurer

is forced to cover more hospitals, it first appends to its hospital network those currently

out-of-network hospitals that are the most profitable for it, leaving out of network the least

profitable ones. Therefore, the out-of-network pool becomes a weaker replacement threat

tool for the insurer when it is negotiating rates with in-network hospitals.

The extent to which network adequacy regulations weaken the ability of an insurer to

make strong threats of replacement depends on how close to one another hospitals are in

terms of their profitability to the insurer. To illustrate, if higher-quality hospitals (i.e.,

those with higher vi, which can contribute more to network expected utility EUjκ of the

insurer) tend to also be the hospitals with higher marginal costs cj and/or fixed costs

of inclusion fsj , then one would expect the hospitals to be fairly similarly profitable to

the insurer. Hence, once the best out-of-network hospitals go in-network due to network

adequacy regulation, the remaining out-of-network hospitals may still provide almost as

strong threats of replacement as the insurer could make before the regulation. However, if,

for instance, higher quality-hospitals are also the cheaper ones, the insurer’s ability to make

threats of replacement should weaken more rapidly as tighter network adequacy regulations

are imposed.

Before I turn to examining the effects of the regulation on CommCare through simu-
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lation, I would like to emphasize that the two channels highlighed in this subsection only

provide a basis for thinking about the effects of the regulation. The intuition behind some

of the simulation results can, in some cases, be much more complex due to the numerous

moving parts of the model. An important instance of this will be discussed in section 6.2.1,

where I explain in detail the large reactions of Celticare’s premium and reimbursement rates

to stringent network adequacy regulations. The ability to point us to such complex mech-

anisms in counterfactual simulations is one of the main advantages of a structural analysis

of network-formation, bargaining, and premium setting in this market.

6.2 Effects of Network Adequacy Regulations on CommCare

I now simulate the effects of a range of network adequacy regulations using my estimated

model on CommCare for the Greater Boston Area and FY2011. I examine network ad-

equacy regulations in the form of mandating all insurers in the market to cover at least

X% of the hospital systems in the Greater Boston Area, for a range of values of X.48 To

model this mandate, I just include an additional term in the insurer-profit-function in (5.2),

representing a fine that the insurer has to pay if it falls below the X% requirement:

πNAdj (G,T, P ) = πdj (G,T, P )− ηΓj(G,X) (6.1)

where πdj (G,T, P ) is insurer dj ’s profit function from equation (5.2), and Γj(G,X) is

the number of hospital systems by which insurer dj is short of fulfilling the X% requirement

(e.g., ΓCelticare(G
∗, 0.5) = 16 × 0.5 − 4 because Celticare covers 4 hospital systems and is,

48Other types of network adequacy regulations to consider could be based on hospital counts or bed counts

rather than hospital-system counts. Examining those regulations can be done using my model, but it would

require first modifying the bargaining formula in (3.8) to capture threats of replacing multiple in-network

hospital systems by multiple out-of-network ones. For instance, if an in-network hospital system us has five

hospitals and no out-of-network system is as large, the insurer needs to be able to threat us to replace it, for

instance, by two other systems us′ and us′′ consisting of two and three hospitals respectively. I believe the

main difference between the hospital-system based regulation in my model and, say, a total-beds-based one

would be that a system based regulation will give more bargaining leverage to hospital systems with smaller

total bed sizes (and, thereby, less leverage to systems with more beds) compared to a bed-based regulation,

since a small system counts just as much as a larger system in terms of helping the insurer abide by the

minimum mandated network size.
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hence, 4 hospital systems short of 8 which would be 50% of the total 16 systems). Also η is

the amount of fine an insurer has to pay per each of those missing hospital systems.49 The

exact amount of the fine η does not play a role in determining the result of the counterfactual

simulation.50 It only has to be large enough to ensure that no insurer would prefer going

below X% to staying weakly above it. I then simulate the new equilibrium of the model

again, using the parameters estimated in section 5 and using (6.1) instead of (5.2) for insurer

profit.

Covering only four hospital system out of the total 16, Celticare has by far the narrowest

network among the four plans in CommCare. Thus, it is the only plan directly affected by

the regulation for most values of X. I hence, describe the simulated response of Celticare

to network adequacy regulations, and I then turn to other insurers.

As a last point before detailing the simulation results, I would like to reiterate the

main point made in section 3.2. As I argued in that section, using the NiN formulation

for the bargaining component of the model would result in extremely high and unrealistic

predicted increase in the reimbursement rates in response to network adequacy regulations.

That is, the predicted reimbursement rates by NiN in response to regulation would not just

be empirically biased. They would, in fact, be logically incoherent. In other words, part

of the question that my counterfactual analysis asks is “if an insurer who has expanded its

hospital network is no longer allowed to make a threat of dropping when negotiating with

hospitals, to what extent can threats of replacement keep rates from surging?” If we use

NiN which only allows for threats of dropping, it is straightforward that we will not get

realistic predictions about situations where this threat cannot be used and insurers attempt

to keep prices down in other ways. Therefore, in what follows, I analyze the counterfactual

simulations only for the bargaining model with threats of replacements. I do not do the

49A more natural way of modeling the fine would be having a constant fine for being below 50% no

matter how much below. With that formulation, however, my model would not capture Celticare’s incentive

to expand its network of hospitals. The reason is that the deviations allowed in my model are dropping,

adding, or replacing one hospital system. No single such deviation can take Celticare from covering 4 systems

to 8 systems. Therefore, if the fines for any degree of non-compliance with the requirement is the same, my

model will not predict a change in Celticare’s behavior.
50If the bargaining model was NiN instead of bargaining with threats of replacement, then η would play

a significant role, with η → ∞ implying t∗ij → ∞, which I do not find reasonable.
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analysis for NiN and compare results.51

6.2.1 Effects on Celticare

Figures 6.1 through 6.3 depict the simulated effects on Celticare of a range of network

adequacy regulations with X = 18.75% (i.e., must cover at least 3 out of the 16 hospital

systems) through X = 93.75% (i.e., must cover at least 15 systems). Absent any regulation,

Celticare covers four systems, which amount to 25% of those in the Greater Boston Area.

As figures 6.1 and 6.2 show, even though a regulation of X = 25% does not force

Celticare to expand its hospital network, it does raise Celticare’s average reimbursement rate

(see the vertical dashed lines in the two figures). This is because this regulation prohibits

Celticare from going below X = 25% by dropping any of its currently in-network hospital

systems without replacement. Hospital systems then exploit this prohibition by raising

their reimbursement rates exactly to their respective best safe reimbursements according to

definition 4. Celticare, in turn, responds by raising its premium.

For X = 25% through X = 81.25%, the average reimbursement rate declines gradu-

ally but fairly consistently. This is because the hospitals that Celticare brings in-network

tend to have lower marginal costs ci on average than the ones already in-network, which

51Liebman [2017] and Ho and Lee [2017a] do discuss the consequences of network adequacy regulations

under NiN. That is because their approach to modeling such regulation is different from this paper which

uses the negative profit shock Γ. I believe their approach can be thought of as a model of regulations that

mandate to negotiate with a certain number of hospitals (with no restriction on whether the negotiation

should lead to inclusion), rather than mandating to include them. To illustrate, those papers (which are

based on the two-step approach with commitment explained in section 2) model a regulation that mandates

a full network by assuming, in the first step, that when the insurer announces a subset of hospitals to

negotiate with, that subset has to be the full list of hospitals. The second step (i.e., bargaining) proceeds as

in the no-regulation case. This modeling approach abstracts away from the idea that hospitals get higher

bargaining positions when the insurer is constrained by the regulation; because, in this approach, the insurer

can still credibly threaten to drop hospitals in the second step of the game (i.e., the bargaining stage), even

though the regulation mandates a full network. Additionally, this approach also assumes the regulation to

be non-binding. For instance, if an insurer does not have gains from trade with 50% of the hospital systems

but is required to negotiate with 70% of them, it will negotiate with 70%, but will still exclude some of them.

In my approach, however, the penalty for going below 70% effectively creates gains from trade to ensure at

least 70% of the systems are included.
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Figure 6.1: Effects of network adequacy regulations on Celticare’s network size

Figure 6.2: Effects of network adequacy regulations on Celticare’s payments to in-network

hospitals
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Figure 6.3: Effects of network adequacy regulations on Celticare’s premium

means they can charge less. These hospitals also steer some patients away from Celticare’s

most expensive hospitals (in particular Brigham and Women’s Hospital and Massachusetts

General Hospital), further lowering the average reimbursement rate paid by Celticare. The

orange dashed curve in figure 6.2 depicts how the average marginal inpatient cost of Celti-

care’s hospital network changes with X, pushing Celticare’s reimbursements downward.52

This effect is partially offset by the second channel through which the regulation affects

reimbursement rates: the weakening threats of replacement. As the blue dotted curve in

figure 6.2 shows, the average reimbursement rate charged to Celticare by only those hos-

pitals that were in Celticare’s network before the regulation does indeed increase steadily.

Nevertheless, this latter effect is not strong enough to dominate the effect of lowered av-

erage marginal costs. Hence, the average reimbursement goes down. The reason why the

effect of the decreasing average marginal cost dominates that of the weakening threats of

replacement is that hospital systems are indeed close enough to one another in terms of their

profitability for Celticare. So, as Celticare adds the best out-of-network hospital system to

its network in response to tighter regulations, the second best systems are good enough

52Average marginal inpatient cost is calculated by taking a weighted average of marginal costs ci of

Celticare’s in-network hospitals, where the weights come from predicted discharge-volume shares of those

hospitals for Celticare enrollees, based on my estimated demand model.
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alternatives for Celticare to use as threats of replacement and contain the reimbursements.

Over the X = 25% through X = 81.25% range of regulations, Celticare’s premium is

$404/month/person, which is the lowest premium allowed by CommCare to charge. Absent

this premium floor, Celticare’s premium would be a little below $404/month/person due to

reduced average reimbursement.

From X = 81.25% up, the increasing trend in average reimbursement rates and the

premium accelerates. Underlying this acceleration is an important self-reinforcing loop

through which premiums and reimbursement rates both increase rapidly. The loop works

in the following way: Once reimbursement rates increase due to depletion of Celticare’s out-

of-network pool, Celticare responds by raising its premium. The increased premium lowers

Celticare’s market share. This decreases the inpatient volumes that Celticare’s in-network

hospital systems get through Celticare, roughly proportionally to Celticare’s market share

decrease. Now, note that the rate that each system charges to Celticare under a binding

network adequacy regulation is the highest safe reimbursement rate. That is, each in-

network hospital system charges Celticare for the differential profitability between that

system and Celticare’s best replacement option. If an in-network hospital system has a

lower total volume through Celticare (due to lower Celticare market share), that system

will get to charge a larger rate paid per admission in order to cover the difference in

profitabilities.53 Therefore, an increase in Celticare’s premium can feed back into increased

reimbursement rates. But higher reimbursement rates in turn will lead Celticare to further

raise its premium, which again further increases the rates, and so on. Another reason for

the large price increase towards the end of the spectrum of the regulations is that with high

X, other plans are also bound by the regulation, which means their in-network hospitals

charge higher to them. Thus, it is more likely that Celticare’s out-of-network hospital

systems are now in-network for another plan affected by the regulation. This raises the

reimbursement rates that such hospitals would be willing to accept in order to replace

a hospital system currently in Celticare’s network. Therefore, Celticare will have weaker

53One might think that the differences in the profitabilities of hospital systems for Celticare might also

decrease proportinally to Celticare’s market share. This is not true, since for Celticare itself, the decrease

in market share due to increased premium is (at least partly) compensated for by the higher margin from

the increased premium.
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threats of replacement, which leads to increased reimbursement rates and premium.

6.2.2 Effects on other insurers:

The other three insurers in the market were BMC, NHP, and Network Health with hospital

networks that included 11, 15, and 14 hospital systems, respectively. With X levels such

that the regulation is binding for Celticare only, and the other three are only responding to

Celticare’s response to the regulation, their responses are not very large. The most notable

observation for such X levels is that each of the other three insurers drops a hospital system

or two out of their hospital network. The reason is, for X levels high enough to substantially

increase the charges by some hospitals to Celticare, but low enough to not directly affect

the other insurers, those hospitals that charge high to Celticare are more likely to drop out

of the other insurers’ networks. This arises from the fact that those hospitals now have

higher incentive to try to steer their more loyal patients from other insurers to Celticare.

In order to prevent these hospital systems from leaving, other insurers must also raise

their reimbursements which is not always optimal, especially when the hospital system

threatening to leave the network was already only marginally profitable to the insurer.

Along the way, NHP drops the North Shore Health System and Emerson Hospital, and

Network Health drops Cambridge Health Alliance.54

When the regulation becomes binding, BMC, NHP, and Network Health have similar

reactions to that of Celticare. The average reimbursement increases abruptly for any in-

surer dj once X hits the network size of dj . Also, with higher levels of X, the average

reimbursement also increases, as the out-of-network pool of hospitals weakens.

6.2.3 Summary of Consumer Welfare Implications

As the analysis in this section shows, lower levels of X can have good consumer-welfare

effects. They expand Celticare’s hospital network. Also, since Celticare adds hospitals with

54Network Health drops Cambridge Health Alliance after X passes the level that makes the regulation

binding for BMC. So, it could be that dropping Cambridge Health Alliance is Network Health’s response to

BMC’s response to the regulation, and not to Celticare’s.
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lower marginal costs ci, they bring Celticare’s average reimbursement down.55 So, they do

not lead to increased premium, thereby making Celticare a better plan for consumers. with

mid-range values of X, however, the shrinkage of the other networks starts to happen which

hurts consumers. With high values of X, Celticare’s premium rapidly rises but the overall

effect of the regulation is still positive for consumers, according to my welfare analysis. This

is because all of the plans expands their networks and, besides Celticare, none of them can

raise its premium in response to the higher reimbursement rates, due to the premium cap

of $425/month set by CommCare.

Given that there are substantial differences between CommCare and the ACA ex-

changes, they might have different responses to network adequacy regulations, potentially

with different welfare implications. Thus, I do not discuss the consumer-welfare analysis of

CommCare in further detail here. Instead, I allocate the remaining space to the comparing

CommCare to the ACA exchanges on consumer welfare-relevant features.56

6.3 Potential Differences between CommCare and the ACA Exchanges

There are at least two major differences between CommCare and the ACA exchanges that

could trigger different responses to regulation. The first difference is in subsidy structures

and the second is in cost-sharing features of the plans.

6.3.1 Subsidy Structures

In CommCare, the amount psubjk , which consumer k pays out of pocket for insurer dj ’s

premium, is a subsidization of pj with a fixed and variable component, as given by (5.9). The

value of the pass-through rate ay was zero for the below-poverty income group. This renders

a large portion of CommCare consumers effectively price insensitive, thereby considerably

reducing the price sensitivity of an average CommCare consumer. ACA exchanges on the

55Note that those low-cost hospitals that Celticare appends to its network in response to regulations

usually have high fixed costs fsj and that is why Celticare did not already cover them in its network without

regulation. Nevertheless, the fsj costs are fixed and will not get passed on to consumers.
56Of course the fate of the ACA itself is actively in progress. As of now, the House of Representative has

passed measure to repeal and replace the ACA. The matter will now be in the hands of the Senate.
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other hand, follow a fixed subsidy policy. Each ACA exchange, enrollee pays the premium

charged by the plan she’s enrolled in minus the premium charged by the second cheapest

“silver plan” offered in the enrollee’s local exchange market.57,58

This difference in subsidy schemes can have implications for consumer-welfare impacts

of network adequacy regulations. Lower effective premium sensitivity in CommCare may

have led to high reimbursement rates in CommCare, both in the form of insurers covering

hospitals with higher ci and insurers paying a higher tij to each hospital ui than they would

have, had the subsidy scheme included only a fixed component. But in the ACA exchanges,

plans with narrower hospital networks tend to cover, on average, hospitals that have lower ci

(Dafny et al. [2015b]).59 Thus, in the ACA exchanges, including a new hospital in response

to network adequacy regulation is not as likely to bring down the average cost. Therefore,

the effect of the regulation, through the average marginal cost channel, on reimbursement

rates, and hence on premiums, could be an increasing effect now, unlike what was the case

with Celticare in CommCare. This difference, on the one hand, implies potentially steeper

price increases in ACA exchanges, compared to CommCare, in response to the regulation.

But on the other hand, given that hospitals with higher ci tend to also be hospitals with

higher quality vi, a network adequacy regulation can improve the ACA exchanges’ hospital

networks much more than it does in CommCare. This leaves an overall consumer welfare

comparison between the effects on CommCare and the exchanges somewhat ambiguous.

6.3.2 Cost-sharing Features

In CommCare, the only cost that patients paid out of pocket for hospital admission was

a uniform co-pay, independent of the hospital chosen and the service received. This was

mandated by regulation to be based only on the consumer’s income group. In the ACA

57Bronze, silver, gold, and platinum are the four different categories, or “metal tiers” of the ACA exchange

plans based on cost-sharing parameters. For a typical silver plan, the consumer pays, in expectation, 30% of

her healthcare costs out of pocket and the rest is borne by the insurer. Corresponding numbers for bronze,

gold, and platinum are, respectively, 40%, 20%, and 10%. CommCare’s cost sharing parameters are more

standardized and did not include this kind of tiering.
58If the price calculated by taking this difference is negative, then the consumer will pay zero.
59This is contrary to CommCare, in which Celticare, the plan with the narrowest hospital network, covers,

on the average, more expensive hospitals than all other plans.
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exchanges, there are four “metal tiers” of bronze, silver, gold, and platinum. For the bronze

tier, the average consumer is expected to pay 40% of her healthcare costs out of pocket in

the form of co-pays, co-insurance, and deductible. These numbers are 30%, 20%, and 10%,

respectively for silver, gold, and platinum plans.

This difference in cost-sharing features may also lead to different responses by the two

markets to network adequacy regulations, for at least two reasons. First, unlike CommCare,

the cost-sharing structure in the ACA exchanges makes patients sensitive to reimbursement

rates tij . This creates another control mechanism for reimbursement rates. In the ACA

exchanges, even under network adequacy regulations by which insurers have very weak

out-of-network pool to use as threats of replacement, in-network hospitals might still want

to charge reasonable prices in order to better compete with other in-network hospitals for

patients who do care about their out-of-pocket expenses when choosing which hospital to

visit.

The second difference that cost-sharing parameters can make for the ACA exchanges

is the network-expected-utility coefficient α introduced and estimated at 0.76 in section 5.

With higher out of pocket costs in the ACA exchanges for in-network hospital use, it is

possible that consumers place less value on how many and which hospitals a plan has in

its network.60 A lower α implies that a hospital’s quality vi matters less to insurers when

evaluating the hospital for its profitability, and that cost parameters ci and fsj now matter

relatively more. This effect can render the out-of-network hospitals in the exchanges, which

seem to be on the high-cost side, weaker threats of replacement for the in-network ones,

potentially amplifying the reimbursement rate increase in response to network adequacy

regulations. Of course, when hospital qualities matter less to insurers, it is also possible that

insurers spend more uniformly distributed resources on bargaining with different hospitals.

This could potentially lower the heterogeneity in fixed costs fsj of inclusion, likely mitigating

the amplifying effect of a lower α on the response of the market to network adequacy

60This might be one reason why in Ericson and Starc [2014], the network-expected-utility coefficient is

estimated at 0.375 for CommChoice, another market from the Massachusetts Healthcare Reform with cost-

sharing tiering similar to the ACA exchanges. This value is almost half as large as what I estimate for

CommCare. Given that similar normalizations are used in my paper and by Ericson and Starc [2014], the

estimates are directly comparable.
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regulations.

7 Conclusion and Future Research

In this paper, I developed a model of insurer-provider markets with three important features.

First, it endogenously captures the formation of hospital networks, bargaining between

hospitals and insurers over reimbursement rates, and premium setting by insurers. Second,

in formulating the bargaining process, my model improves upon a standard model called

Nash-in-Nash by allowing for the possibility that when bargaining with hospitals over rates,

insurers not only threaten to drop hospitals from the network, but also to replace them

with currently out-of-network hospitals. This helps capture the Bertrand-type competition

among hospitals for network inclusion and the fact that insurers can play hospitals off

against each other and get lower prices. The third feature is computational tractability.

My model can be estimated and used for counterfactual simulations on relatively large

markets. In this paper, I also develop an estimation procedure for the model and apply it

to the CommCare market in the fiscal year of 2011 in the Greater Boston Area with 16

hospital systems and four insurers.

I use my model to study by how much network adequacy regulations in CommCare

can undermine insurers’ bargaining position against hospitals and, hence, lead to increased

reimbursement rates as well as increased premiums. I find that milder regulations lead

to only moderate increases and sometimes even reductions in reimbursement rates and

premiums on CommCare. However, enforcing insurers to have almost-full networks can

lead to drastic price hikes since it depletes the out-of-network hospital pools that insurers

use as threats of replacement against in-network hospitals to keep rates down. I point

out some differences between the ACA exchanges and CommCare that might cause ACA

exchanges respond differently to such regulations than CommCare does.

This framework developed in this paper can applied beyond network adequacy regu-

lations. An important example is merger analysis. One of the anti-competitive effects of

a merger between two hospitals is that an insurer can no longer use them as threats of

replacement against each other. Unlike my model, NiN abstracts away from this effect and,
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hence, under-predicts the magnitude of the anti-competitive effects. More generally, this

framework can be applied beyong the insurer-provider market. It can be empirically applied

to other two-sided markets (such as TV channels and cable companies, or manufacturers

and retailers) to answer questions centered around how network formation and bargaining

take place and affect each other.
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Appendices

A Non-cooperative Foundation for a class of 2× 1 games

In this section, I provide a non-cooperative foundation for the solution concept introduced

in model section of the main text. Note that the non-cooperative foundation provided

here is for a class of 2 × 1 games (i.e. 2 upstream firms and 1 downstream firm) and are

hence not as general as the application in the main text. Nevertheless, studying these

2 × 1 games is helpful. The reason is it demonstrates that when, on the one hand, we do

not have a fully general non-cooperative foundation, but on the other hand, we do need

to modify the Nash-in-Nash formulation to capture the effects of substitution threats, the

formulation developed in this paper is a reasonable choice.61 This appendix is organized as

follows. First, I introduce the general class of 2×1 whose Subgame Perfect Nash Equilibria

I intend to solve for. Second, I propose a strategy profile for the game. Finally, I show

that my proposed strategy profile is in fact an SPNE of the game and that the network and

reimbursements predicted by this SPNE matches what the model suggested in the main

text of the paper would predict. Note that the proofs in this appendix are mostly at the

technical level. For a more intuitive argument instead, skip the proofs and see the discussion

after theorem 2.

A.1 A Class of 2× 1 Network-Formation-and-Bargaining Games

The game that I set up to analyze the problem of network formation and bargaining involves

two upstream firms u1 and u2 and a downstream firm d. This game will have infinitely many

periods and different components of the payoffs to the firms can realize in different periods.

In particular, similarly to Collard-Wexler et al. [2014], I make a distinction between two

components of firm payoffs. The first one is the “pre-transfer” payoff to each firm, which is

61Note that even the Nash-in-Nash concept (for modeling bargaining on an exogenously given network)

did not have a non-cooperative foundation until very recently when Collard-Wexler et al. [2014] developed

one. Nevertheless it was widely used in applied work. Moreover, many of the assumptions made in the

non-cooperative foundation provided by Collard-Wexler et al. [2014] are not made in the applied papers

that use Nash-in-Nash.
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Figure A.1: Pre-transfer payoffs to the three firms as functions of the network

the payoff each firm makes if no reimbursement is made by d to either u1 or u2. Denote this

by πui(G) and πd(G). The second component is, of course, the transfers ti of money from d

to u1 and u2. Note that, unlike the main text, here I am assuming that the reimbursements

are in the form of lump-sum transfers. Restrictive as this assumption may be, it significantly

reduces the complexity of the proof. Also the same assumption was made by Collard-Wexler

et al. [2014] in the development of the non-cooperative model for Nash-in-Nash even though

the price-per-unit could be thought of as the working assumption in the empirical literature

using Nash-in-Nash. Therefore, for the rest of this appendix, I will call reimbursements ti

“lump-sum transfers” or simply “transfers.”

Figure A.1 depicts the pre-transfer payoffs to the two upstream firms u1 and u2 and the

one downstream firm d under different networks and reimbursements. When the network is

empty, each firm makes a profit of 0. When d is connected to u1 only, the pre-transfer profit

to d is equal to πd

 1

0

 = π1 > 0 and that to u1 is πu1

 1

0

 = 0 (i.e. u1 has a

zero cost of production). Also because u2 is not doing any trade, we have πu2

 1

0

 =

0. When d is connected only to u2, the pre-transfer profits to u2 and d are equal to

πu2

 0

1

 = 0 and πd

 0

1

 = π2 respectively, where π2 > 0 and π2 < π1 (This

latter assumption implies that, all else equal, d would rather have u1 in its network than

u2). Finally, when the network is full, then the profits to u1, u2, and d are 0, 0, and π3

respectively, where π3 < π2 (This latter assumption absent any transfers, then d would

strictly prefer having either of u1 and u2 in its network to having both).

I now set up a non-cooperative game of network formation and bargaining among u1,

u2, and d. This game is a natural extension of the classic bilateral bargaining game in

Binmore et al. [1986] to 2 upstream firms and one downstream, and has a similar structure
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to the game in Collard-Wexler et al. [2014]. The extensive form of the game is as follows:

The game is a dynamic one with infinitely many periods τ = 0, 1, 2, 3, .... The time

distance between every two consecutive periods is ∆ > 0 (not to be confused with the same

notation in the estimation section of the main text. None of the estimation notations of

the main text are used in this appendix). The “discount factors” that are used to discount

firms’ payoffs are δu1 , δu2 , and δd respectively for u1, u2, and d. These discount factors are

given by: δui = e−rui∆ and δd = e−rd∆. I assume rui , rd > 0 which implies that δui and δd

are all within the interval (0, 1).

In period 0, no link has been “formed” yet. Every period has two stages. In the first

stage of even periods, all of the upstream firms ui who haven’t yet formed a link with the

downstream d simultaneously make offers of lump-sum transfers ti ∈ R. Then, in the second

stage of the even periods, the downstream firm considers the offers made in the first stage

(if any), and decides which one(s) to accept if any. Once the downstream accepts an offer

ti a corresponding link is “formed” between d and ui. This link stays formed for the rest

of the game. Every odd period also has two stages. In the first stage, downstream firm

d makes offers ti to all of the upstream firms with which it hasn’t formed a link yet. In

the second stage, all of those upstream firms, to whom d made offer(s) in the first stage,

consider the offer(s) ti and simultaneously decide whether or not to accept. For any offer

ti accepted by a ui from d, a corresponding link will be formed for the rest of the game.

The payoff to each firm is the discounted sum of the payoffs the firm makes in all periods

τ . The payoff to downstream firm d realized at the end of period τ has two components.

First, d receives a flow payoff of (1− δd)πd (Gτ ) where Gτ is the network structure realized

at the end of period τ and πd (Gτ ) is the pre-transfer payoff to d as specified in figure A.1.

The idea behind assuming that the fellow payoff has a 1 − δd term is that if the network

structure is G throughout the whole game, the net present value of the pre-transfer payoff

that it gives to d will be given by:

(1− δd)πd (G)×
∞∑
τ=1

δτ =
(1− δd)πd (G)

1− δd
= πd (G)

Therefore, the net present value of the pre-transfer payoff is exactly πd (G).
62 The

62This idea is adopted from Collard-Wexler et al. [2014].
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pre-transfer components of the payoffs to u1 and u2 at every period τ are also formulated

similarly, which, given figure A.1, means that this component is always zero for u1 and u2.

The second component of the payoff realized to each firm at every period τ is the transfer.

Unlike the pre-transfer payoffs (which are “direct” payoffs from the network structure), I do

not assume that payoffs from transfers are realized gradually and in perpetual cash flows.

Rather, I assume, similarly to Collard-Wexler et al. [2014], that if at some period τ , an

offer of ti is made by ui and accepted by d (or made by d and accepted by ui), then ui

immediately realizes a flow payoff of ti at period τ and never after. Similarly, d realizes an

immediate flow payoff of −ti at period τ and never after from this transaction. Of course,

from a net present value perspective, these one-time flow payoffs are evaluated at δτuiti and

−δτd ti for ui and d respectively. Therefore, for instance if in period τ = 0 the downstream

accepts an offer of t1 from u1 and never deals with u2 throughout the game, the net present

values of the payoffs to u1, u2, and d will be t1,0, and π1 − t1 respectively.

A.2 A Proposed SPNE of the Game

In this section I specify a strategy profile as a candidate SPNE of the game laid out in section

A.1. In next sections of this appendix, I prove that is in fact a SPNE and that the payoff

it predicts to be realized on the equilibrium path are in line with the formulations used in

the main text of this paper to analyze the problem of network formation and bargaining in

the health insurance industry.

Denote:

t̄1 = min

(
π1 − π2, π1

1− δd
1− δdδu1

)
(A.1)

t̃1 = δu1 t̄1 (A.2)

My proposed suggests the following actions at different types of subgames of the game

in section A.1:

I- Subgames S where u1 and d have already formed a link: These subgames S

are all subgames starting at the first or second stage of an even or odd period τ where there

is already a link between u1 and d, which by the specification of the rules of the game, we

know cannot be broken. This, then, boils down to a bilateral Rubinstein bargaining game
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with no gains from trade since π3 < π1. Therefore, Any offer that u2 would be willing

to make would be rejected by d and vice versa. Thus, for such subgames, instead of fully

specifying a set of strategies, we just observe that all equilibria of such subgames are offers

being made and rejected, which means that we expect no transfers and no change in the

network structure once we enter one of such subgames.

II- Subgames S where u2 and d have already formed a link: These subgames

behave in a similar way to subgames of type I since π3 < π2.

III- Subgames S where u1 and u2 simultaneously make offers to d: These

subgames S are all subgames starting at the first stage of an even period τ where no link

between d and any ui has already been formed yet. Proposed strategies by u1 and u2 at all

such S are:

t∗u1 (S) = t̄1 (A.3)

t∗u2 (S) = 0 (A.4)

The intuition behind these formulations for t∗u1 (S) and t
∗
u2 (S) is that u2 tries its best

(by offering 0) to undercut u1; and u1 offers a transfer that is consistent with Rubinstein

bargaining unless there is a danger of being undercut by u2, in which case u1 offers the

highest price that would just prevent u2 from undercutting u1 (this idea is in line with

the concept of “highest safe reimbursement” introduced in the main text to formulate the

network-formation and bargaining problem).

IV- Subgames S where d makes offers to both u1 and u2: These subgames S are

all subgames starting at the first stage of an odd period τ where no link between d and any

ui has already been formed yet. Proposed strategy by d at all such S is as follows:

t∗d (S) =
(
t̃1, 0

)
(A.5)

Note that since at these subgames, d has to make two offers, its strategy is a pair rather

than one number.

V- Subgames S where u1 and u2 are simultaneously considering offers t1 and

t2 from d: These are all subgames S starting at the second stage of an odd period of the
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game. Strategies here are denoted A∗
ui (S) which can take values of 1 (for “accept”) and 0

(for “reject”). The proposed strategies are:

A∗
u2 (S) = 1 [t2 > 0] (A.6)

A∗
u1 (S) = 1

[
(t2 > 0 & t1 > 0) or

(
t2 ≤ 0 & t1 ≥ t̃1

)]
(A.7)

The idea behind (A.6) is that u2 (who expects to be excluded from the network and

make a zero profit at the equilibrium) accept any offer that gives him anything more that

0. The idea behind (A.7) is that when t2 > 0, upstream firm u1 knows that u2 will accept

and if u1 does not accept, the game will enter a subgame of type II which is anticipated to

lead to no deal between u1 and d, hence a profit of 0 to u1. Thus, if t2 > 0, then u1 will

accept any t1 that would give u1 a higher profit than zero, which means any t1 > 0 will be

accepted. But If t2 ≤ 0, then u1 knows that it will have the opportunity to counter d’s offer

if it’s not sufficiently profitable for u1. Therefore, if t2 ≤ 0, upstream firm u1 is expected

to reject t1 if t1 < t̃1. That is, as I will discuss in more details, if u1 could do better by

waiting and countering d’s offer.

VI- Subgames S where d is considering offers t1 and t2 from u1 and u2 re-

spectively: These are all subgames S starting at the second stage of an even period of the

game. Strategy of d is denoted A∗
d (S) which can be one of the pairs in the set {0, 1}2. The

second element of the pair represents d’s decision on whether to accept u1’s offer and the

second element represents that for u2’s. In all such subgames S, the strategy of d works as

follows: Denote O =
{
δd
(
π1 − t̃1

)
, π1 − t1, π2 − t2, π3 − t1 − t2

}
.

A∗
d (S) =



if π1 − t1 ∈ argmax (O) : (1, 0)

else if π2 − t2 ∈ argmax (O) : (0, 1)

else if δd
(
π1 − t̃1

)
∈ argmax (O) : (0, 0)

else (1, 1)

(A.8)

The idea behind this formulation is that d accepts any offer that gives it a higher net

present value of profit from S on, and d breaks ties in favor of u1.
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A.3 Showing that the Proposed Strategy is a SPNE

Since this game has infinitely many periods, standard backwards induction cannot be used

to analyze its subgame perfect equilibria. But since the discount factors are less than 1, I use

the One-Shot-Deviation-Principle (OSDP). According to OSDP, no firm can strictly profit

from changing its strategy only in one period of the subgame without changing its strategy

elsewhere, where the strategies of the other firms have also been fixed. The following

theorem show that this holds for the strategy profile introduced in section A.2.

Theorem 1. The strategy profile described in section A.2 is a SPNE of the game set up in

section A.1.

Proof of theorem 1: I prove that there is no one-shot deviation by any firm at any

subgame S. I study different subgames according to the types specified in section A.2.

Subgames S of types I and II: For these types, as mentioned before, we have a

unique no-trade outcome from the bilateral Rubinstein bargaining. Therefore, for these

subgames, I did not even specify strategies and just mentioned that no-trade is what we

expect in continuation.

Subgames S of type III: In these subgames, we have t∗u1 (S) = t̄1 and t∗u2 (S) = 0. I

first compute the profits that u1 and u2 make under these strategies, and then show that

neither u1 nor u2 has a deviation that would strictly increase its profit. Lemma 1 below

enables us to calculate payoffs under t∗u1 (S) = t̄1 and t∗u2 (S) = 0.

Lemma 1. If at a subgame S of type III, u1 and u2 make offers according to (A.3) and

(A.4), then in the second stage of that period (which is a subgame of type VI), downstream

firm d would accept only u1’s offer if d acts according to (A.8).

Proof of lemma 1: I first show that π1 − t∗u1 (S) ≥ π2 − t∗u2 (S):

π1 − t∗u1 (S) = π1 − t̄1 = π1 −min

(
π1 − π2, π1

1− δd
1− δdδu1

)

= max

(
π1 − (π1 − π2) , π1 −

(
π1

1− δd
1− δdδu1

))
= max

(
π2, π1

(
1− 1− δd

1− δdδu1

))
(A.9)

≥ π2 = π2 − t∗u2 (S)
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Now I show π1 − t∗u1 (S) ≥ π3 − t∗u1 (S) − t∗u2 (S). This is immediate from t∗u1 (S) ≥ 0,

π1 − t∗u1 (S) ≥ π2 − t∗u2 (S), and π2 > π3.

Finally, I show π1 − t∗u1 (S) ≥ δd
(
π1 − t̃1

)
. First I rewrite the right-hand-side:

δd
(
π1 − t̃1

)
= δd (π1 − δu1 t̄1) = δd

(
π1 − δu1 min

(
π1 − π2, π1

1− δd
1− δdδu1

))

= δdmax

(
π1 − δu1 (π1 − π2) , π1

(
1− 1− δd

1− δdδu1

))
= δdmax

(
π1 − δu1 (π1 − π2) , π1

1− δu1
1− δdδu1

)
= max

(
δd (π1 − δu1 (π1 − π2)) , π1

1− δu1
1− δdδu1

δd

)
(A.10)

The fact that δd
(
π1 − t̃1

)
is the maximum between two terms gives us two natural cases

to examine:

Case 1: δd
(
π1 − t̃1

)
= π1

1−δu1
1−δdδu1

δd. In this case, given (A.9), it is immediate that

δd
(
π1 − t̃1

)
≤ π1 − t∗u1 (S) and the proof of the lemma is complete.

Case 2: δd
(
π1 − t̃1

)
= δd (π1 − δu1 (π1 − π2)). Given (A.10), under case 2 we have:

δd (π1 − δu1 (π1 − π2)) ≥ π1
1− δu1
1− δdδu1

δd

⇒ π1 − δu1 (π1 − π2) ≥ π1
1− δu1
1− δdδu1

⇒ π1 (1− δu1) + π2δu1 ≥ π1
1− δu1
1− δdδu1

⇒ π2δu1 ≥ π1 (1− δu1)

(
1

1− δdδu1
− 1

)
⇒ π2δu1 ≥ π1 (1− δu1)

(
δdδu1

1− δdδu1

)
⇒ π2 ≥ π1 (1− δu1)

(
δd

1− δdδu1

)
⇒ π2 (1− δdδu1) ≥ π1 (1− δu1) δd

⇒ π2 ≥ δd (π1 (1− δu1) + π2δu1)

⇒ π2 ≥ δd (π1 − δu1 (π1 − π2))

⇒ π2 ≥ δd
(
π1 − t̃1

)
(A.11)
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Together, (A.9) and (A.11) imply that π1 − t∗u1 (S) ≥ δd
(
π1 − t̃1

)
which completes the

proof of the lemma. �

Now, given lemma 1, we know that under t∗u1 (S) = t̄1 and t∗u2 (S) = 0, the present

values of the profits for u1 and u2 will be t̄1 and 0 respectively. Now I show that u1 and u2

cannot strictly profit from deviating from these strategies. First consider u2. If u2 deviates

to some t2 < t∗u2 (S) = 0, then either its offer will still not get accepted by d, in which case

u2 should still expect a present value profit of 0, or the offer will be accepted in which case

u2 will make a negative profit. Therefore, u2 cannot strictly benefit from deviating from

0 to a negative number. Also, if u2 deviates to some t2 > t∗u2 (S) = 0, since according to

OSDP we’re assuming that u1 is sticking to its t∗u1 (S) = t̄1 strategy and d is sticking to its

strategy in subgames of type VI, it’s straightforward to show that d will still only accept

u1’s offer, taking the game into a subgame of type I in the next period, implying a profit of

0 to u2. Thus, u2 cannot strictly profit by increasing its price either.

Now let’s consider potential deviations by u1. If u1 deviates to some t1 < t∗u1 (S) = t̄1,

then one can use a similar argument to lemma 1 to show that d will still only accept u1’s

offer, taking the game to a type I subgame where nothing will change from then on. This

will lead to a present value profit of t1 < t̄1 for u1 which is less that what u1 got under

t∗u1 (S) = t̄1 . So, u1 does not have an incentive to reduce its price. To examine potential

incentives by u1 to increase its price, given that t∗u1 (S) = t̄1 = min
(
π1 − π2, π1

1−δd
1−δdδu1

)
, I

consider the follwoing two cases:

Case 1, t̄1 = π1 − π2: if u1 deviates to t1 > t∗u1 (S) = t̄1, then given that the OSDP

assumption that u2 is keeping offering a transfer of 0 and d will sticks to the same algorithm

when deciding the offers in the next stage of this period, one can show that d will decide to

accept u2’s offer since now π1 − t1 < π1 − t̄1 = π1 − (π1 − π2) = π2 = π2 − t∗u2 (S).

Case 2, t̄1 = π1
1−δd

1−δdδu1
< π1 − π2: if u1 deviates to t1 > t∗u1 (S) = t̄1, then we have

t1 > π1
1−δd

1−δdδu1
. Now I show that under this t1, we have

δd
(
π1 − t̃1

)
> π1 − t1
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To show this, note that by (A.10), we have:

δd
(
π1 − t̃1

)
= max

(
δd (π1 − δu1 (π1 − π2)) , π1

1− δu1
1− δdδu1

δd

)

≥ π1
1− δu1
1− δdδu1

δd

= π1 − π1
1− δd

1− δdδu1
= π1 − t̄1 > π1 − t1

Therefore, given the strategy specified for d in subgames of type VI, d will never accept

only u1’s offer, since d at least prefers accepting none of the offers to accepting only u1’s.

It’s straightforward that d will not accept both. So, the only options are d accepting only

u2’s offer of zero or accepting none of the offers in this period. If d, accepts only u2’s

offer, then as discussed before, u1 will make a profit of zero, implying that moving up to

t1 > t∗u1 (S) = t̄1 is not a strictly profitable deviation for u1. If d accepts none of the offers,

then given that OSDP assumes that from now on, all firms stick to their original strategies,

it’s expected that next period d will offer
(
t̃1, 0

)
and then u1 will accept and u2 will reject.

This will bring u1 a profit of t̃1 × δu1 = t̄1. So, given that u1 is already making t̄1, this

deviation will never be strictly profitable for u1.

Subgames S of type IV: As a reminder, these are subgames where d is supposed to

make a pair of offers (t1, t2) to u1 and u2. Again, I will first derive d’s profit under the

strategies specified in section A.2 and then I show there is no deviation available to d that

would enable d to make a strictly higher profit than that. The proposed SPNE strategy for

d was t∗d (S) =
(
t̃1, 0

)
. Given the strategies of u1 and u2 when considering these offers (see

(A.6) and (A.7)), it’s expected that u1 accept d’s offer and u2 will reject. This means that

from the next round on, the game will enter a subgame of type I where no further change

is supposed to happen. Therefore, the payoff to d is going to be:

π1 − t̃1 = π1 − δu1 t̄1

= π1 − δu1 min

(
π1 − π2, π1

1− δd
1− δdδu1

)
= max

(
π1 − δu1 (π1 − π2) , π1

(
1− δu1

1− δd
1− δdδu1

))
= max

(
(1− δu1)π1 + δu1π2, π1

1− δu1
1− δdδu1

)
(A.12)

67



Now, in order to analyze the possible deviations, let’s consider four cases.

Case 1- d deviates from
(
t̃1, 0

)
to some (t1, t2) where t2 > 0 and t1 ≤ 0: In this case,

given the strategies of u1and u2 regarding what offers to accept, only u2 will accept d’s offer.

Then the game enters a subgame of type II following the acceptance by u2 and nothing will

not change afterwards. Therefore, the profit to d will be given by π2 − t2 which is strictly

less than π2. But by (A.12), d makes at least (1− δu1)π1+δu1π2 under it’s current strategy

which is higher than π2. So, d will not have the incentive to make such a deviation.

Case 2- d deviates from
(
t̃1, 0

)
to some (t1, t2) where t2 > 0 and t1 > 0: In this case,

given the strategies of u1and u2 regarding what offers to accept, both u1 and u2 will accept

the offers, after which all links are formed and nothing will change in the game. The profit

that d will make in this situation will be

π3 − t1 − t2 < π3 < π2 < π1 − t̃1

Therefore, d will also not have the incentive to make this type of deviation.

Case 3- d deviates from
(
t̃1, 0

)
to some (t1, t2) where t2 ≤ 0 and t1 > t̃1: In this case,

given the strategies of u1and u2 regarding what offers to accept, only u1 will accept d’s offer.

Then the game enters a subgame of type I following the acceptance by u1 and nothing will

not change afterwards. Therefore, the profit to d will be given by π1 − t1 which is less than

π1 − t̃1. So, d will not have the incentive to make this type of deviation.

Case 4- d deviates from
(
t̃1, 0

)
to some (t1, t2) where t2 ≤ 0 and t1 < t̃1: In this case,

given the strategies of u1and u2 regarding what offers to accept, both u1 and u2 will reject

the offers. So, the game will enter a subgame of type II where u1 will make an offer of

t̄1 and u2 will make an offer of 0. Then d will accept only u1’s offer and nothing else will

change after that. The profit that d will get out of this process will be equal to

δd (π1 − t̄1) < π1 − t̄1 < π1 − δu1 t̄1 = π1 − t̃1

which implies that d does not have an incentive to make this type of deviation either.

So, I now have shown that in general d does not have an incentive to deviate from
(
t̃1, 0

)
given that the rest of the strategies, both by other firms and by d itself on the subsequent

subgames stays fixed.
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Subgames S of type V: These are subgames where u1 and u2 are supposed to simul-

taneously decide on whether to accept the offers made to them by d, where the offers are

t1 and t2. Four the following four cases, I first derive the profits to u1 and u2 under the

proposed strategies in (A.6) and (A.7), and then show that neither u1 nor u2 has a strictly

profitable deviation.

Case 1) t2 > 0 and t1 > 0: In this case, given the strategies proposed in (A.6) and

(A.7), both u1 and u2 accept the offers and the profits they make will be equal to t1 and t2

respectively. If u1 deviates and rejects d’s offer, then given that u2 accepts, the game will

enter a subgame of type II in the next period and nothing will change afterwards given the

strategies of the firms. Therefore, u1 will make a profit of 0 which is less than t1. So, u1

will not have an incentive to not accept. Using a similar argument, u2 does not have an

incentive to deviate.

Case 2) t2 > 0 and t1 ≤ 0: In this case, given the strategies proposed in (A.6) and

(A.7), only u2 accepts the offer and the profits u1 and u2 make will be equal to 0 and t2

respectively (given that these strategies will take us to a subgame of type II from which

point no further changes are expected to happen). If u1 deviates to accepting, then the

profit to u1 will be t1 ≤ 0. So, u1 will not have an incentive for such a deviation. If u2

deviates to rejecting, then in the next round we will enter a subgame of type III, which

given the strategies of the firms, is expected to reward u2 with a profit of 0. But u2’s current

profit is t2 > 0 so u2 will not deviate.

Case 3) t2 ≤ 0 and t1 < t̃1: In this case, given the strategies proposed in (A.6) and

(A.7), neither of u1 and u2 accept the offers. So, the game will enter a subgame of type

III next round and it will deliver present value payoffs of δu1 t̄1 = t̃1 and 0 for u1 and u2

respectively. If u1 deviates to accepting, then, given u2 is rejecting, the game will enter

a subgame of type I from which point on no further changes occur. So, the payoff to u1

would be t1 which is less than t̃1, the payoff u1 is making without deviating. So, u1 will

not deviate. If u2 deviates to accepting, given that u1 is rejecting, the game will enter a

subgame of type II from which point on no further changes happen. So, the profit this

deviation gives to u2 will be t2. But t2 is weakly less than u2’s profit without deviation: 0.

So, u2 also will not deviate.
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Case 4) t2 ≤ 0 and t1 ≥ t̃1: In this case, given the strategies proposed in (A.6) and

(A.7), only u1 accepts the offer and the profits u1 and u2 make will be equal to t1 and

0 respectively (given that these strategies will take us to a subgame of type I from which

point no further changes are expected to happen). If u1 deviates to rejecting, given that

u2 is also rejecting, the game will enter a subgame of type III which will give a present

value payoff of δu1 t̄1 = t̃1 to u1. But u1 is already making t1 ≥ t̃1. So, u1 does not want to

deviate. If u2 deviates to accepting, it will make a profit of t2 which is weakly less than 0,

what u2 is making without deviation. So, u2 will not deviate either.

Subgames S of type VI: As a reminder, these subgames are those where d is consid-

ering the pair of offers (t1, t2) from u1 and u2. The proposed strategy for d was specified in

(A.8).

Claim 1. If d accepts only u1’s offer, then the present value of the profit to d will be π1− t1.

To see this, note that once d accepts u1’s offer and rejects u2’s, the game will enter a

subgame of type I after which no further change occurs.

Claim 2. If d accepts only u2’s offer, then the present value of the profit to d will be π2− t2.

A similar argument proves this remark.

Claim 3. If d accepts neither of the offers, then the present value of the profit to d will be

δd
(
π1 − t̃1

)
.

To see this, note that if d does not accept any of the offers, we will enter a subgame of

type IV where d will make an offer of t̃1 to u1 which will be accepted and offer of 0 to u2

which will be rejected.

Claim 4. If d accepts both of the offers, then the present value of the profit to d will be

π3 − t1 − t2.

Given the above claims, it’s straightforward that the strategy specified in (A.8) is opti-

mal and if d makes a one-shot deviation from this strategy, d will be weakly worse off. So,

d will not have an incentive to deviate. This completes the proof of the theorem. �

Theorem 1 shows that the strategies set out in section A.2 are a SPNE of the game

in A.1. My next theorem relates this game to the formulation offered in the main text.

The idea is that as ∆ →+ 0, (that is, as the time difference between two consecutive
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periods shrinks), the transfers predicted by the SPNE of the game converges to what my

bargaining formulation predicts. Before stating the theorem, observe that the network

expected to realize on the equilibrium path of the above SPNE is G∗ =

 1

0

 and the

corresponding transfer is t∗1 = t̄1, which, from equation (A.1), is equal by definition to

min
(
π1 − π2, π1

1−δd
1−δdδu1

)
.

Theorem 2. Denote γi =
rd

rd+rui
. Then, the limit of t̄1 as ∆ →+ 0 is given by

lim
∆→+0

t̄1 = min (π1 − π2, π1γ1) (A.13)

Proof of theorem 2:

lim
∆→+0

t̄1 = lim
∆→+0

min

(
π1 − π2, π1

1− δd
1− δdδu1

)

= min

(
π1 − π2, π1 × lim

∆→+0

(
1− δd

1− δdδu1

))
= min

(
π1 − π2, π1 × lim

∆→+0

(
1− e−rd∆

1− e−(ru1+rd)∆

))
= min

(
π1 − π2, π1 ×

rd
rd + ru1

)
= min (π1 − π2, π1γ1)

�

Note that according to (A.13), this SPNE of the game coincides with the formulation of

used in the main text of the paper for the empirical analysis of the health insurance markets.

To see this, note that the construction γi = rd
rd+rui

of γi matches the way bargaining

parameters are defined in Binmore et al. [1986], Collard-Wexler et al. [2014]. So, γ1 is

interpreted is u1’s bargaining power when negotiating with d. Given that the total additional

surplus to u1 and d from contracting with one another is equal to π1, it is expected that a

Nash Bargaining between u1 and d divides this total surplus between them in a way that

they get γ1 and 1− γ1 fractions of the total surplus respectively. So, the Nash Bargaining

transfer between u1 and d, when d and u2 are not connected, is expected to be exactly π1γ1

which is one of the two terms in (A.13). Now also notice that the other term (i.e. π1 − π2),
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is exactly the highest safe rate that u1 can charge to d as defined in the definition of best

safe reimbursement rates in the main text. To see this, note that if u1 charges anything

more than π1 − π2, then d will have strictly profit from replacing u1 with u2 at, say, t2 = 0

where u2 is also willing to participate. But when u1 is charging π1 − π2, the only way for d

to strictly profit from replacing u1 with u2 is to pay u2 a negative amount, which violates

incentive compatibility for u2. Therefore, π1−π2 is in fact the highest safe transfer that u1

can charge. So, to sum up, the strategies that were proven to constitute an SPNE of the

game imply that at the equilibrium, u1 charges the Nash Bargaining price unless under the

Nash bargaining price, there is a danger of replacement (that is, unless the Nash Bargaining

price is not “safe” from replacement threats), in which case u1 charges the highest price

that is in fact safe from substitution.

The reason why the logic of the formulation in the main text is sustained as an equilib-

rium outcome of the extensive form game in section A.1 was explained at a technical and

detailed level in sections A.2 and A.3 (By “the logic”, I mean going with Nash Bargaining

if it’s safe from replacement threats, and going with the highest safe reimbursement oth-

erwise). To see this at a more intuitive level, suppose that the Nash Bargaining transfer

between u1 and d gives a higher profit to d than d could get from replacing u1 with u2 and

being charged a price of 0 by u2. Now consider a subgame of the offers and counter offers

game where u1 and u2 are simultaneously making offers to d. Suppose that u2 is asking for

a transfer of 0 and u1 is asking for strictly more than the Nash Bargaining price and also

strictly more than π1 − π2. In this situation, the optimal response for d isn’t one where d

accepts u2’s offer and rejecting u1’s. The optimal response for d is, rather, rejecting both

offers and waiting till the next period where d will be supposed to make offers, and then

offer the Nash Bargaining price to u1. In other words, as long as the Nash Bargaining price

is safe from substitution threats, any threat from d of replacing u1 with u2 is an empty

threat and it’s common knowledge that it is so. Therefore, the replacement threat will not

affect the outcome of the bargaining if the Nash Bargaining price is safe from replacement.

That’s roughly the intuition for why the effects of replacement threats start to kick in the

form of a minimum function.
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B The Regression Fixed-Point Algorithm

In this appendix, I introduce a computational approach to solve the optimization problem

used in the fourth and last step of the estimation procedure (i.e. estimating fixed costs of

coverage) in the estimation section of the main text of the paper. Notations in this appendix

are separate from the notations in the main text unless otherwise is stated. The reason is

that I introduce the algorithm for a general problem that I set up below, not just for the

problem in the main text. The rest of this appendix is organized as follows. First, I set up

the general estimation problem. Then, I introduce the Regression Fixed-Point approach.

Finally, I show that the Regression Fixed-Point algorithm converges to the solution of the

estimation problem. I conclude by discussing the more general application of the Regression

Fixed-Point approach beyond this paper.

B.1 The Estimation Problem

We have N observations for the following regression:

yn = βxn + ϵn (B.1)

where y ∈ RN is the dependent variable, x is a vector of independent variables, β is

the vector of true coefficients, and ϵ is an i.i.d normally distributed error term. The key

feature of this problem is that y is not fully observed (x is observed). We only know that

y ∈ A where A ⊂ RN . One instance is when y is coming from a discrete choice model, like

discrete choice single agent decision making, or a model involving network formation, like

the model in the main text of this paper. In these cases, for at least some n, instead of

observing yn, we only know a bound on yn. Or for some n and n′, we have a restriction on

the relationship between yn and yn′ . For instance, in the estimation problem in the main

text, for some hospital-insurer pairs, we only had a lower bound for the corresponding fixed

costs. Those lower bounds came from the imposed no-gains-from-trade condition for pairs

that do not have a link in the data. Similarly, we had a lower bound on the differences

between some of the fixed costs. Those bounds came from the restriction that ensured no

incentive for replacement.
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The objective is to go from the partial identification of y (given by some imposed

economic model) to full identification, by assuming that the true y is the one that is best

fitted, among all candidates in A, to some observable characteristics x in as specified in

the linear regression (B.1) (In the application in the main text, these characteristics were

hospital fixed effects and insurer fixed effects). As such, ŷ is defined by:

ŷ = argmin
y∈A

σ (y) (B.2)

where σ (y) is the standard error of the regression when y is plugged into (B.1). Solv-

ing this problem using plain constrained optimization can be computationally demanding,

especially when N is large or when this problem needs to be solved multiple times within

a loop, nested in a larger iterative process. The Regression Fixed-Point algorithm substan-

tially reduces the computational burden.

B.2 The Algorithm

The algorithm has three main steps. The input to the algorithm is an arbitrary y0 ∈ A.

The i-th iteration of the algorithm updates yi−1 to yi. We repeat until the output of the

algorithm converges to some ȳ. In next section, I show that, under some conditions, ȳ is

a global optimum of the minimization problem in (B.2). Each iteration i of the algorithm

has the three following steps:

Step 1: Plug yi−1 into (B.1) and run the regression to get estimated coefficients βi−1.

Step 2: Predict a new left-hand side vector yp,i−1 using the estimated coefficients:

yp,i−1 = βi−1x (B.3)

Step 3: Find yi as the closest point (by point, I mean a vector in RN ) to yp,i−1 among

members of A:

yi = argmin
y∈A

∑
n∈{1,...,N}

(
yn − yp,i−1

n

)2
(B.4)

where, if the argmin is not a singleton, an arbitrary minimizer is chosen, unless yi−1 is

a member of the argmin, in which case the algorithm chooses yi = yi−1.
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Each iteration of this algorithm is computationally straightforward. The only poten-

tially worrisome step is step 3 where we have to solve a constrained optimization problem in

RN . But this step is usually very fast in most natural cases where the restrictions on y given

by A are in the form of independent upper- or lower-bounds for different observations or

upper- or lower-bounds on the differences. For instance, suppose that A gives an exact value

of yAn for some n and a lower bound of zAn for the rest of the observations. In that case, yi is

given by yin = yAn for observations where A specifies a point and by yin = max
(
yp,i−1
n , zAn

)
for observations where A specifies a lower bound.

B.3 Properties of the Regression Fixed-Point Algorithm

In this section, I first show that the algorithm always converges to some ȳ ∈ A, and then

I characterize the necessary conditions for ȳ to be a local optimum to the minimization

problem in (B.2).

Theorem 3. The Regression Fixed-Point algorithm converges to a ȳ ∈ A.

Proof of theorem 3. By the definition of standard error, we know that ∀y ∈ RN :

σ (y) ≥ 0. This, combined with the following lemma proves the convergence:

Lemma 2. For every two consecutive iterations i − 1 and i, if yi−1 ̸= yi, then σ
(
yi
)
<

σ
(
yi−1

)
.

Proof of Lemma 2. If yi−1 ̸= yi, then, (B.4) and the choice rule for non-singleton

argmin imply: ∑
n∈{1,...,N}

(
yin − yp,i−1

n

)2
<

∑
n∈{1,...,N}

(
yi−1
n − yp,i−1

n

)2
(B.5)

But
∑

n∈{1,...,N}

(
yi−1
n − yp,i−1

n

)2
= σ2

(
yi−1

)
. Therefore:∑

n∈{1,...,N}

(
yin − yp,i−1

n

)2
< σ2

(
yi−1

)
On the other hand, given (B.3):∑

n∈{1,...,N}

(
yin − yp,i−1

n

)2
=

∑
n∈{1,...,N}

(
yin − βi−1x

)2 ≥ min
β

∑
n∈{1,...,N}

(
yin − βx

)2
⇒ min

β

∑
n∈{1,...,N}

(
yin − βx

)2 ≤ ∑
n∈{1,...,N}

(
yin − yp,i−1

n

)2
(B.6)
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But by the construction of linear regression, minβ
∑

n∈{1,...,N}
(
yin − βx

)2
= σ2 (y).

Therefore, combining (B.5) and (B.6), we get:

σ
(
yi
)
< σ

(
yi−1

)
which completes the proof of the lemma as well as the theorem. �

I so far established that the algorithm has a fixed point. Now observe that each global

maximum of the optimization problem (B.2) is a fixed point.

Proposition 1. If yi ∈ argminy∈A σ (y), then y
i+1 = yi.

Proof of proposition 1. The proof follows directly from Lemma 2. �

I now show that if set A is convex, then every fixed point ȳ of the algoritm solves

the optimization problem in (B.2). Most common applications satisfy convexity of A. For

instance, observation-specific lower and/or upper bounds on yn gives a convex A. So do

pair-specific lower and/or upper bounds on yn − yn′ .63

Theorem 4. If set A is convex, then every fixed point ȳ of the Regression Fixed-Point

algorithm solves (B.2).

Proof of theorem 4. Define B =
{
y ∈ RN : ∃β ∈ RM : y = βx

}
. That is, B is the

set of all y that satisfy all N equations specified by (B.1) with zero error terms.

Lemma 3. B is a closed and convex set.

Proof of Lemma 3. For all β and β
′
in RM and all α ∈ [0, 1], the linear combination

β
′′
= αβ+(1− α)β

′
is also in RM . So, β

′′
x ∈ B. Thus B is convex. The proof of closedness

is more also straightforward and is left to the reader. �

Now suppose ȳ is a fixed point of the Regression Fixed-Point algorithm. Also take

ỹ ∈ argmin
y∈B

∑
n∈{1,...,N}

(yn − ȳn)
2 (B.7)

In other words, ỹ = β̄x where β̄ comes from regressing ȳ on x. Now observe that by ȳ

63Also for non-convex A it can likely be shown that for any fixed-point ȳ of the Regression Fixed-Point

algorithm that does NOT solve (B.2), the algorithm reaches ȳ at its fixed point only if it starts out at y0 = ȳ

(In other words, ȳ is an “unstable” fixed point). But proving this result is beyond the scope of this appendix.
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being a fixed point, we also have:

ȳ = argmin
y∈A

∑
n∈{1,...,N}

(yn − ỹn)
2 (B.8)

That is, ȳ is the closest point in A to ỹ and also ỹ is the closest point in B to ȳ. Note

that the distance between ȳ and ỹ is exactly σ (ȳ). In order to show that ȳ solves the

optimization problem (B.2), one would need to show there is no ȳ
′ ∈ A with σ

(
ȳ
′
)
< σ (ȳ).

A sufficient condition for there being no such ȳ
′
is proven in the following lemma.

Lemma 4. There is no pair
(
ȳ
′
, ỹ

′
)
with ȳ

′ ∈ A and ỹ
′ ∈ B such that

∑
n∈{1,...,N}

(
ỹ
′
n − ȳ

′
n

)2
<

∑
n∈{1,...,N}

(ỹn − ȳn)
2 (B.9)

Proof of Lemma 4. I use convexity of A (by assumption) and convexity of B (by

lemma 3) and apply the separating hyperplane theorem twice.

First observe that ỹ is the closest point in B to ȳ and B is convex. Hence, by the

separating hyperplane theorem, for all ỹ
′ ∈ B we have:(

ỹ
′ − ỹ

)
· (ỹ − ȳ) ≥ 0 (B.10)

Similarly, by convexity of A, for all ȳ
′ ∈ A, the separating hyperplane theorem gives:(

ȳ − ȳ
′
)
· (ỹ − ȳ) ≥ 0 (B.11)

Now observe that(
ỹ
′ − ȳ

′
)
· (ỹ − ȳ) =

[(
ỹ
′ − ỹ

)
+ (ỹ − ȳ) +

(
ȳ − ȳ

′
)]

· (ỹ − ȳ)

=
(
ỹ
′ − ỹ

)
· (ỹ − ȳ) + (ỹ − ȳ) · (ỹ − ȳ) +

(
ȳ − ȳ

′
)
· (ỹ − ȳ) (B.12)

The first and the third term in (B.12) are non-negative by (B.10) and (B.11) respectively.

Therefore: (
ỹ
′ − ȳ

′
)
· (ỹ − ȳ) ≥ (ỹ − ȳ) · (ỹ − ȳ)

But given that (ỹ − ȳ)·(ỹ − ȳ) = |ỹ − ȳ|2 and given that
(
ỹ
′ − ȳ

′
)
· (ỹ − ȳ) ≤ |ỹ − ȳ| ×

∣∣∣ỹ′ − ȳ
′
∣∣∣,

we can write:

|ỹ − ȳ| ×
∣∣∣ỹ′ − ȳ

′
∣∣∣ ≥ |ỹ − ȳ|2
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⇒
∣∣∣ỹ′ − ȳ

′
∣∣∣ ≥ |ỹ − ȳ|

⇒
∣∣∣ỹ′ − ȳ

′
∣∣∣2 ≥ |ỹ − ȳ|2∑

n∈{1,...,N}

(
ỹ
′
n − ȳ

′
n

)2
≥

∑
n∈{1,...,N}

(ỹn − ȳn)
2

which completes the proof of the lemma. �

Now I use lemma 4 to complete the proof of the theorem. Take some ȳ
′ ∈ A. I now

show σ
(
ȳ
′
)
≥ σ (ȳ) which will complete the proof of the theorem. Observe that:

σ2
(
ȳ
′
)
= min

y∈B

∑
n∈{1,...,N}

(
yn − ȳ

′
n

)2
(B.13)

Denote one of the minimizers of (B.13) by ỹ
′ ∈ B. This gives:

σ2
(
ȳ
′
)
=

∑
n∈{1,...,N}

(
ỹ
′
n − ȳ

′
n

)2

But by lemma 4 we know∑
n∈{1,...,N}

(
ỹ
′
n − ȳ

′
n

)2
≥

∑
n∈{1,...,N}

(ỹn − ȳn)
2 = σ2 (ȳ)

So, σ2
(
ȳ
′
)
≥ σ2 (ȳ), and, hence, σ

(
ȳ
′
)
≥ σ (ȳ). �

I used this algorithm in estimation section of the main text to estimate the hospital

system specific fixed costs of coverage fsj to insurers. In step 3 of each iteration of the

algorithm, I use an approximation to which the results are not sensitive.

C The Constrained Optimization Problem for the Estima-

tion of Fixed Costs of Inclusion and Bargaining Parame-

ters

In the main text, I mentioned that the estimation procedure backs out the fixed costs

of inclusion f̂sj and bargaining parameters γ̂sj by finding the values that minimize the

standard deviation of the residuals in the specification fsj = Ω×χs+FEj+υsj of the fixed
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costs, subject to some constraints. The formal statement of those constraints is left to this

appendix. As a reminder, there were two types of constraints. First, for each system-insurer

pair sj, the corresponding bargaining parameter γsj is equal to γstar if s is either Partners

or Tufts Medical Center, and equal to γnonStar otherwise. Of course, γstar and γnonStar are

both within the interval [0, 1]. The second restrictions came from imposing the equilibrium

condisions of the model (i.e., pairwise stability for network formation and nash in nash

bargaining with threats of replacement for bargaining) on the observed market outcome

(G∗, T ∗, P ∗).

This above arrangement turns out the optimization problem into one in terms of the

tuple (fsj , γstar, γnonStar, Ω, FEj , νsj). The object of minimization in this problem is

∑
s,j

ν2sj (C.1)

This is subject to the following constraints:

1. The characterization of the fixed costs of inclusion:

fsj = Ω × χs + FEj + υsj (C.2)

2. Bargaining parameters:

(γstar, γnonStar) ∈ [0, 1]2 (C.3)

3. Equilibrium condisions imposed on (G∗, T ∗, P ∗):

(a) Lower-bound on fsj from no gains-from-trade for every sj with g∗sj = 0

fsj ≥ f
sj

(C.4)

(b) Upper-bound on fsj from gains-from-trade for every sj with g∗sj = 1

fsj ≤ f
NB(γstar,γnonStar)
sj (C.5)

(c) Differential-bound from no-replacement. For every g∗sj = 1, for all s′ such that

g∗s′j = 0, it must be that

fs′j − fsj ≥ fdiffsj (C.6)
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Some terms in (C.4), (C.5), and (C.6) need further explanation. In (C.4), the lower-bound

f
sj

is the minimum value for fsj that would rationalize there being no gains from trade for

hospital-system s and insurer j. Given that at this point in the estimation procedure, we

have already estimated the demand for hospitals and insurance plans as well as the non-

inpatient costs ξj to insurers, the value of f
sj

can be computed. To see how the computation

is done, denote

πNFCdj
(G,T, P ) = πdj (G,T, P ) +

∑
s s.t. gsj=1

fsj

That is, πNFCsdj
(G,T, P ) is the profit to insurer dj under market outcome (G,T, P ), just not

accounting for the fixed costs of inclusion. Note that in order to compute πus (G,T, P ) and

πNFCdj
(G,T, P ), knowing the outcomes of the first three stages of the estimation process

(i.e., hospital choice function, plan demand function, and non-inpatient costs) sufficient.

We would not need to know either the fixed costs fsj or bargaining parameters γsj . Now,

f
sj

is given by:64

f
sj

=

(
max
tsj

(
πus

(
G∗

+sj , T
∗
+tsj

)
+ πNFCdj

(
G∗

+sj , T
∗
+tsj

)))
−
(
πus (G

∗, T ∗) + πNFCdj
(G∗, T ∗)

)
(C.7)

This way, for any fsj < f
sj
, there will be some contract tsj that system us and insurer

dj can sign and get a strict pareto-improvement in their profits compared to the status

quo of (G∗, T ∗, P ∗). But there is no strict pareto-improving tsj in case fsj ≥ f
sj
, which is

exactly what we expect based on the pairwise stability condition.

In (C.5), f
NB(γstar,γnonStar)
sj is the level of fixed cost fsj that would rationalize the

observed reimbursement rate t∗sj as the outcome of Nash Bargaining between us and dj

given the rest of the network structure and reimbursement rates, and assuming that γsj =

γstar for s ∈ {Partners, Tufts} and γsj = γnonStar otherwise. Note that to compute

f
NB(γstar,γnonStar)
sj , we do not need to have identified πdj (G,T, P ). As with (C.4), here

πus (G,T, P ) and π
NFC
dj

(G,T, P ) –which are both identified at this point in the estimation

procedure– are sufficient. The intuition behind the inequality in (C.5) would, therefore,

be that either hospital-system us is charging the insurer the Nash Bargaining rate (i.e.,

64Note that in (C.7), like section 3 of the main text, I am suppressing the notation on P given that its

response to formation of a link is anticipated by firms.
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fsj = f
NB(γstar,γnonStar)
sj ), or us is charging less than the Nash Bargining rate in order to

deter a threat of replacement, in which case it must be that fsj < f
NB(γstar,γnonStar)
sj .

In (C.6), fdiffss′j is the minimum amount by which fs′j needs to be larger than fsj in

order for the model to rationalize that insurer dj would not strictly profit from replacing

system us with system us′ . Based on the bargaining conditions with threats of replacement

that were specified in the main text of the paper, fdiffss′j is computed in the following way:

fdiffss′j = πNFCdj

(
G∗

−sj+s′j , T
∗
−sj+tR

s′j(G
∗,T ∗,s)

)
− πNFCdj

(G∗, T ∗) (C.8)

where tRs′j (G
∗, T ∗, s) is dj ’s reservation rate for replacing us with us′ . That is, dj ’s threat

to us of replacing it with us′ would take place at the reimbursement rate of tRs′j (G
∗, T ∗, s).

This, in line with the definition of best safe reimbursement rate in the model section of

the main text, would be the lowest rate that would satisfy incentive-compatibility and

no-commitment conditions. Note that tRs′j (G
∗, T ∗, s) is not a function the fixed costs of

inclusion and can be computed at the end of the first three stages of the estimation procedure

(it can be described in terms of the πus (·, ·) functions only). Note that at least one of the

inequalities in (C.6) has to hold with equality in case (C.5) holds strictly. The reason is

that, if hospital system us is charging below the Nash Bargaining rate in order to deter a

threat of replacement, according to the formulation of such threats in my model, it has to

be charging its highest safe rate. This implies that at there should be at least one us′ such

that us is just deterring a threat of being replaced with us′ by dj .

The above derivations formally complete the optimization problem (C.1) over (fsj , γstar, γnonStar, Ω, FEj , νsj),

which I solve using the Regression-Fixed-Point algorithm. A computationally powerful fea-

ture of this procedure is that the constraints on each fsj are computed completely inde-

pendently of the values of other fsj . This feature may not be present in other potential

applications. For instance, if I were estimating a set of marginal costs instead of fixed costs,

then the value of an in-network hospital’s marginal cost would factor into the bounds on

the marginal cost of an out-of-network hospital calculated from the equilibrium conditions

of the model. In those cases, the procedure developed in this paper can still be applied but

with the further complication that the bounds become interdependent.
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D Further Discussion of Modeling Choices

D.1 Discussion of Model Choice

I believe that the model developed in this section is better suited than other potential

candidates in the economic theory literature for structural empirical analysis of interactions

among network formation, bargaining, and downstream price (i.e., premium) setting in

vertical markets. Cooperative-based models of network formation and bargaining (e.g.,

Jackson [2005]) do not restrict the transfers to be only between firms who are contracting

with one another. Such models, therefore, always deliver efficiency, which for the health

insurance market, implies that only one insurer stays in the market and pays off all other

insurers to stay out, in order to extract the most out of consumers. Non-cooperative models

like that of Abreu and Manea [2012] offer the advantage of having a well-defined extensive

form; but heavily restrict externalities by assuming for each link there is exactly one unit

of surplus to divide between the two sides no matter what the rest of the network looks

like. Models of many-to-many matching with transfers (e.g., Hatfield et al. [2013]) also

heavily restrict externalities. Additionally, none of the models above captures the idea

that transfers among firms can affect the total surplus (e.g., reimbursement rates can affect

premiums and, hence, total market demand). Papers on vertical contracting (such as Segal

[1999], Rey and Whinston [2013], Prat and Rustichini [2003]) give the full bargaining power

to one side (either upstream or downstream) and do not capture the full range. Also, these

papers examine settings with either a single upstream or a single downstream.65 I do not

use a model with insurer commitment to a hospital network (such as Liebman [2017] and

Ho and Lee [2017a]) for multiple reasons as I discussed in the related-literature section in

the main text.

I also do not use some other alternative bargaining models to NiN that have been

developed in the literature. For instance, models such as Stole and Zwiebel [1996a,b],

Dranove et al. [2016], Lee and Fong [2013], unlike NiN, capture the idea that if an insurer

drops a hospital from its network, it can re-negotiate with other hospitals (e.g. Stole

65The only paper with multiple firms on both sides, to my knowledge, is Prat and Rustichini [2003], which

restricts the externalities in a way that cannot accept standard demand functions and premium competition,

as modeled in my paper and other empirical papers on vertical markets.
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and Zwiebel [1996a,b], Dranove et al. [2016], Lee and Fong [2013]). Unlike my model,

however, these approaches are based on the idea that the renegotiation takes place after

the dropping and not simultaneously to it. This takes away the insurer’s ability to play

hospitals off against each other for network inclusion and can still predict unrealistically high

reimbursement rates in response to network adequacy regulations. Also these approaches,

when applied to settings with endogenous network formation and bargaining, are very

computationally complex. Also the dynamic-based model of Lee and Fong [2013] is worth

further discussion. Lee and Fong [2013] analyze both bargaining and network formation in a

dynamic game context using the concept of Markov Perfect Equilibrium (MPE) a la Maskin

and Tirole [1988]. To my knowledge, this approach has not yet been applied to an empirical

setting most likely because MPE combined with network formation and bargaining is very

computationally demanding, even if we abstract away from strategic premium setting as

Lee and Fong [2013] do. In addition, that approach would need long panel data on many

variables including some that may be hard to observe, like costs that firms incur from

forming, retaining, and removing links with other firms.

Finally, my approach in this paper to incorporating threats of replacement into the

bargaining formulation is one among multiple options. My approach says the negotiated

reimbursement rate is the minimum between the Nash Bargaining rate and the highest

safe rate. Another approach, for instance, would be to keep using the Nash Bargaining

formulation (without taking any minimums) but have dj ’s “outside option profit” (which

is equal to πdj

(
G∗

−ij , T
∗
−ij

)
in standard NiN) equal to the maximum profit dj could attain

by either severing the link with ui or replacing ui with some ui′ in a way that would satisfy

incentive-compatibility and no-commitment constraints as specified in the model section of

the main text. The reason why I choose my specific formulation over other possible options

is that I can show that for a class of 2 × 1 games, it can be sustained as the outcome of

a subgame perfect Nash equilibrium of an extensive form game which is constructed by

extending the alternating-offers game in Binmore et al. [1986] to from a bilateral bargaining

to two upstream firms and one downstream. See section A for more details.
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D.2 Discussion of the Choice of Estimation Procedure

My estimation procedure is based on the one developed by Gowrisankaran et al. [2013]. I

take a linear characterization of the insurers’ fixed costs of inclusion fsj based some some

observables as the moment condition (Gowrisankaran et al. [2013] do this for insurer-specific

margainal costs of hospitals). The characterization was:

fsj = Ω × χs + FEj + υsj (D.1)

I then minimize the deviation from that moment condition (i.e., minimize the standard

deviation of ν̂) by searching not only over the values of the right-hand-side variables, but

also those of fsj values themselves as well as bargaining parameters γstar and γnonStar

subject to the equilibrium conditions of the model.

Alternatively, I could take a maximum likelihood approach. I instead of minimizing the

standard devaiation of the error terms in the linear characterization of the fixed costs based

on observables, I search for parameters that would maximize the likelihood of the observed

data being an equilibrium of the model. I decided against that approach as it would be

very computationally intensive. For each parameterization, it would be necessary to draw

numerous instances of all νsj and simulate the equilibrium for each of them to compute the

likelihood of the observed market outcome arising at equilibiurm; and that would be only

one instance of the likelihood function. Finding the MLE estimates would require carrying

out this expensive procedure iteratively and looking for the optimum.

Another alternative approach would be moment inequalities. I could exclude the term

νsj from (D.1) and find the values of fsj , γstar, γnonStar, Ω, and FEj that would minimally

violate the inequalities coming from the equilibium conditions of the model. I decided

against that approach because using a moment inequalities estimation procedure can run

into difficulties in exercises like this paper, where counterfactual analysis is an integral part

to the research. In moment inequalities, the estimated parameters do not fully rationalize

the model. Therefore, they would predict a different equilibrium than the observed market

outcome in the data. So, running counterfactual simulation to evaluate the effects of a

policy, it would not be clear how much of the difference between the simulation results and

the data is because of the policy and how much of it is simply because the model did not
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rationalize the data in the first place.66 This problem has been noticed in the literature.

In their model of bargaining, Crawford et al. [2015] add shocks to firm profits after they

estimate their model. In order to make sure that the shocks do rationalize the data, they

draw them from truncated normal distributions, which by construction makes the shocks

non-mean-zero. I prefer the approach taken in this paper which allows more control over

the profit shocks νsj so that the mean is zero and the variance is minimized.

Finally, another possibility would be to make the approach more similar to Gowrisankaran

et al. [2013]. That is, I could include no fixed costs of inclusion fsj into the model, and

instead consider hospital marginal costs ci to be insurer specific, implying that certain

hospital ui could have different marginal costs of providing inpatient care cij to the same

patient, depending on which plan dj the patient is enrolled with. The next step would be

to characterize cij based on some observables and minimize the deviation from that linear

characterization subject to the equilibrium conditions of the model and subject to bargain-

ing powers being no less than 0 and no more than 1. I decided against that approach for

three reasons. First, such an approach would not use the available data on hospital marginal

costs. Second, using such an approach could imply unrealistic estimates for cij values. It

would, for example, imply that the cij for ui =Boston Medical Center (the hospital, not

the plan) and dj =Celticare would be about twice as high as that for ui =Boston Medical

Center and dj′ =NHP, as, absent fixed costs, that would be the only way to rationalize

the fact that Celticare is excluding BMC hospital and includes MGH and BWH at very

expensive rates, and NHP is including the BMC hospital at much a much lower rate. I find

the fixed-cost explanation for Celticare including MGH and BWH but excluding BMC to

be more realistic than the particular cij for ui =Boston Medical Center and dj =Celticare

to be overly high even though BMC is a fairly cheap hospital compared to MGH and BWH.

Finally, the third reason why I dediced against the cij approach –not as important as the

two aforementioned reasons– is computational complexity. As appendix C points out, with

66Of course an alternative would be to compare the counterfactual simulation results to the results of

simulating the equilibrium of the estimated model with no policy, instead of comparing it to the data.

However, such an approach is implicitly assuming that the direction and magnitude of the difference between

the model’s prediction under no policy and the data is exactly the same as that between the model’s

prediction under the policy and the prediction that a model that would rationalize the data would make. I

find this assumption strong.
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the cij approach, the bounds on each cij implied by the equilibrium conditions of the model

would be a function of the values of the other cij . This further complicates the process of

finding the optimal cij values. I implemented the process for an earlier version of the analy-

sis, so in principle, it can be implemented. But I do not discuss the further complications of

that optimization process here, since we do not run into those problems with the fixed-costs

approach.

E The Algorithm for Computing EquilibriumMarket-Outcome

(G∗, T ∗, P ∗), and Discussion of Existence and Uniqueness

In this appendix, first I will outline the algorithm that I use to compute the equilibrium

market outcome (G∗, T ∗, P ∗). I will then qualitatively discuss existence and uniqueness of

the equilibria for the algorithm.

E.1 The Computational Algorithm for (G∗, T ∗, P ∗)

The computational algorithm works by starting from and initial market outcome (G,T, P )

and iteratively updating it using an updating procedure which modifies (G,T, P ) if and

only if it does not satisfy all of the equilibrium conditions outlined in the model section of

the main text. I keep updating (G,T, P ) until it satisfies all the equilibrium conditions and,

hence, is not modified by further updates. At this point, the algorithm stops and its most

recently updated market outcome (G,T, P ) is output as the equilibrium market outcome

(G∗, T ∗, P ∗). In the rest of this section, I first explain a procedure called LINK UPDATE

which is the cornerstone of my updating algorithm. Roughly, the LINK UPDATE proce-

dure takes an input market outcome
(
GInput, T Input, P Input

)
plus a pair (s, j) representing

hospital system s and insurer j, and outputs
(
GOutput, TOutput, POutput

)
which is an updat-

ing of
(
GInput, T Input, P Input

)
with respect to the sj link in a sense that I will detail in this

section. Once I lay out how LINK UPDATE works, I explain how it’s used as the building

block of a procedure called MARKET-OUTCOME-UPDATE which updates the market

outcome completely, not just with respect to a particular link.
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E.1.1 The LINK UPDATE Procedure

Every time the procedure LINK UPDATE is applied to input information
(
GInput, T Input, P Input

)
and (s, j), the following algorithm is run to produce output

(
GOutput, TOutput, POutput

)
:

Step 1: Check if there are gains from trade (GFT) for the pair sj under
(
GInput, T Input, P Input

)
.

That is, fix GInput−sj , T Input−sj , P Input−j and check if there is any reimbursement tsj that hospital

system s and insurer j can contract on and both get higher profits than if they do not

have a contract. In making these profit comparisons, assume that insurer j optimally re-

sponds to any reimbursement rate tsj (or lack thereof). If there is no such tsj then there is

no GFT. In this case, set
(
GOutput−sj , TOutput−sj , POutput−j

)
=
(
GInput−sj , T Input−sj , P Input−j

)
. Also set

gOutputsj to 0, and tOutputsj to ∅. Then set pOutputj to insurer j’s optimal premium response to(
GOutput, TOutput, POutput−j

)
. Then exit the LINK UPDATE procedure.

In sum, what step 1 does is it checks if link sj can be sustained. If not, it drops the

link, adjusts insurer j’s premium accordingly, and exits.

Step 2: (Note: If the algorithm enters this step, it means there were GFT in step

1.) Set
(
GInterim−sj , T Interim−sj , P Interim−j

)
=
(
GInput−sj , T Input−sj , P Input−j

)
. Set gInterimsj to 1, and .

Then, I follow the bargaining formulation developed in the main text. As a reminder, the

formulation was:

t∗ij = min
(
tNBij (G,T, γij) , t̂ui (G,T, dj)

)
(E.1)

Following (E.1), I set

tInterimsj = min
(
tNBsj (GInterim, T Interim, γsj), t̂us(G

Interim, T Interim, dj)
)

(E.2)

where in computing both t̂us and t
NB
sj , the optimal reaction of pj is anticipated. Finally,

set pInterimj to insurer j’s optimal response to
(
GInterim, T Interim, P Interim−j

)
.

In sum, step 2 sets the reimbursement rate for link sj to the Nash Bargaining price

or the Best Safe Price, whichever is smaller, according to the model outlined in the model

section of the main text. It then adjusts insurer j’s premium accordingly. Next steps

make sure that, in order to deter replacement threats, hospital system s does not offer a

reimbursement so low that it actually makes losses on the sj link.
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Step 3: Construct another market outcome
(
GInterim2, T Interim2, P Interim2

)
by setting(

GInterim2
−sj , T Interim2

−sj , P Interim2
−j

)
=
(
GInterim−sj , T Interim−sj , P Interim−j

)
, setting gInterim2

sj to 0,

and tInterim2
sj to ∅, and finally setting pInterim2

j to insurer j’s optimal response to
(
GInterim2, T Interim2, P Interim2

−j

)
.

If

πus
(
GInterim, T Interim, P Interim

)
≥ πus

(
GInterim2, T Interim2, P Interim2

)
(E.3)

then set
(
GOutput, TOutput, POutput

)
=
(
GInterim, T Interim, P Interim

)
and exit.

In sum, step 3 checks whether the reimburse rate tInterimsj as specified in (E.2) is too small

a rate to be sustainable. Observe that according to definition of best safe reimbursement

rates, and equation (E.2), the rate tInterimsj has to be small enough to disincentivize insurer j

from replacing system s with any currently out of network system s′. But a reimbursement

rate this small might also be small enough so that hospital system s would rather drop

the sj link than keep such a low rate (e.g. when tInterimsj falls well below the marginal

cost of hospital system s). This would violate network stability conditions as defined in

the main text. That’s why step 3 checks for this condition. If tInterimsj is still high enough

not to violate network stability conditions, step 3 approves of it and exits the algorithm.

Otherwise, hospital system s is not capable of deterring replacement threats. Therefore,

the algorithm moves on to step 4 to actually allow a replacement to happen.

Note that if the algorithm enters step 4, it means that condition E.3 in step 3 did not

hold. This can only be the case when:

tInterimsj = t̂us(G
Interim, T Interim, dj)

That is, tInterimsj is the highest safe price for system s when dealing with insurer j.

Therefore, under tInterimsj , insurer j is just indifferent between keeping the contract with

system s and replacing system s with some other system s′. Formally, there is a system s′

and reimbursement rate ts′j such that

πdj

(
GInterim−sj+s′j , T

Interim
−sj+ts′j

)
= πdj

(
GInterim, T Interim

)
(E.4)

πus′

(
GInterim−sj+s′j , T

Interim
−sj+ts′j

)
≥ πus′

(
GInterim, T Interim

)
(E.5)

πus′

(
GInterim−sj+s′j , T

Interim
−sj+ts′j

)
≥ πus′

(
GInterim−sj , T Interim−sj

)
(E.6)
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Step 4 simply implements the above replacement.

Step 4: Set
(
GOutput−s′j , TOutput−s′j , POutput−j

)
=
(
GInterim2

−s′j , T Interim2
−s′j , P Interim2

−j

)
. Then set

gOutputs′j to 1, and tOutputs′j to ts′j , and finally set pOutputj to insurer j’s optimal response to(
GOutput, TOutput, POutput−j

)
.

Step 4 was the last step of the LINK UPDATE procedure. My next procedure, MARKET-

OUTCOME-UPDATE, simply applies LINK UPDATE multiple times.

E.1.2 The MARKET OUTCOME UPDATE procedure

This procedure starts with
(
GInput, T Input, P Input

)
and outputs

(
GOutput, TOutput, POutput

)
.

It does this job in the following steps:

Step 1: Produce a random ordering of all possible links sj.

Step 2: Set
(
GInterim0 , T Interim0 , P Interim0

)
=
(
GInput, T Input, P Input

)
. Then for each

index ∈ {1, ..., S × n}, set

(
GInterimindex , T Interimindex , P Interimindex

)
=

LINKUPDATE
(
GInterimindex−1 , T Interimindex−1 , P Interimindex−1 , (s, j)index

)
where (s, j)index means the index-th link according to the random ordering generated

in step 1 of the algorithm.

Step 3: Finally, set
(
GOutput, TOutput, POutput

)
=
(
GInterimS×n , T InterimS×n , P InterimS×n

)
.

The reason why I have a randomization over the ordering of the links to update in step

1 is that this, along with using multiple starting points, is a good way to check for multiple

equilibria.

It is straightforward to verify that a market outcome that does not change if MAR-

KET OUTCOME UPDATE is applied to it satisfies all the equilibrium conditions (i.e.,

the conditions in the definitions of pairwise stability as well as bargaining with threats of

replacement in the main text).
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E.2 Existence

As mentioned before, In this section I will not give formal results on existence. Instead, I

briefly discuss some of the most important issues regarding it.

1. Capturing replacement threats helps existence: My proposed bargaining

formulation does much better than NiN bargaining when it comes to equilibrium existence.

Using NiN for bargaining as part of a network-formation and bargaining model sometimes

leads to non-converging cycles in the algorithm for finding the equilibrium market outcome.

To illustrate, the following cycle in the algorithm is possible when using NiN: hospital

system us is in the network of insurer dj with some tsj as the Nash Bargaining outcome.

Reimbursement rate tsj is high enough so that there is gain for insurer dj to also sign

a contract with hospital us′ and steer some of its patients from us to us′ . But once the

s′j link is added to the network, insurer dj ’s outside option profit in bargaining with us

increases because now dj has us′ in its network and losing us would not have as big of an

effect on dj as it did before. This enables dj to negotiate a lower reimbursement rate with

us. This lower reimbursement rate is low enough so that dj loses the incentive to keep its

contract with us′ . So, the s′j link severs. But this compromises dj ’s outside option profit

in bargaining with us, bringing the sj negotiated reimbursement back up. But then, the

sj reimbursement rate is now again high enough so that dj will have the incentive to sign

a contract with us′ , and so forth.

The type of cycle described above happens with NiN bargaining often in general and

always when I simulate network adequacy regulations. With such regulations, when insurer

dj is just abiding by the regulation (e.g. when it covers exactly X% of the hospitals

where X is the mandated minimum percentage), NiN would imply very high negotiated

reimbursement rates due to the fact that the insurer is not allowed to drop any of the

hospitals. These extremely high rates incentivize the insurer to bring in at least another

hospital. But then the regulation is not binding anymore and none of the hospitals that

used to charge high sums due to the bind of the regulation are able to keep doing that.

Therefore all those reimbursements fall and take back away the insurer’s incentive to have

the new additional hospitals in its network. But once those hospitals are out of network,

the regulation becomes binding again, leading to very high reimbursement rates, and so
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forth.

2. The importance of no-commitment conditions for existence: The no-

commitment condition in the definition of best safe reimbursement rates is important for

existence when there are multiple insurers. To illustrate, that condition makes sure the

following cycle does not happen in the algorithm that finds the equilibrium (G∗, T ∗, P ∗):

hospital system us′ is willing to replace system us in insurer dj ’s hospital network and

charge a low price. The reason for us′ ’s willingness is that by taking us out of dj ’s network,

dj will become less popular among customers and some of dj ’s enrollees will now switch to

dj′ which also covers us′ and pays a high reimbursement to it. But once the replacement

takes place, us′ would profit from exiting dj ’s network because of the low rare it’s charging.

Once that happens, dj brings us back. Then us′ is again willing to substitute us for a low

price, and so on and so forth. The no-commitment condition prevents this by imposing the

extra restriction that the dj will not replace us′ for us if us is willing to participate only at

rates that it will find unacceptable after the replacement takes place.

3. Existence and horizontal differentiation: When there is horizontal differen-

tiation among hospitals (e.g. heterogeneity in locations), there could be a potential non-

existence issue, which happened (though not frequently) in my simulations. To illustrate,

suppose hospital systems us and us′ are located in two different locations. Also suppose

there are two other hospital systems us1 and us′1 which are located near us and us′ respec-

tively. The following cycle can happen through which us1 and us′1are always covered by an

insurer dj but us and us′ keep replacing each other: us is in network and us′ isnt. Here,

us’s presence in the market reduces us1 ’s rate due to the fact that dj ’s outside option profit

in the Nash Bargaining with us1 increases (because if us1 drops out of dj ’s network, some

of its patients go to us). But the low rate charged by us1 , in turn, makes the presence of

us less necessary. Therefore, insurer dj replaces us by us′ . After that, the price by us1 goes

back up due to the fact that now, if dj drops us11, patients in that geographical area may

drop the insurer rather than spillover to us. Also, due to presence of us′ in the market,

the rate charged by geographically nearby us′1 goes down, making the presence us′ a little

less necessary. These two, together, can lead the insurer to replace us back for us′ in the

network, and the cycle repeats from here on.
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Two natural questions arise about this situation. First, the main purpose of adding

replacement threats to the NiN bargaining solution was that it captured the competition

that, say, us1 faces from the neighboring us even when us is out of dj ’s network. So, why is

it that when us is left out, us1 gets to charge a higher rate to dj than when us is in-network,

which leads, in some cases, to the cycle described in the previous paragraph? The answer is

in the particular formulation of replacement threats in the model as constructed in equation

(E.1). This formulation assumes that when us is out of network, us1 will charge the highest

rate at which dj would not want to swap us and us1 , or even a higher rate. Therefore,

even though equation (E.1) captures the competition that us1 faces from us when us is out-

of-network, this competition exists to a lesser extent than it does when us is in-network.

This, then leads to the cyclical mechanism mentioned above. Note that there would be

possible formulations of replacement threats than (E.1). However, I decided for (E.1) and

against those other formulations for two reasons. First, the non-existence cases described

above do not happen very often. Second, and more importantly, equation (E.1) has the

non-cooperative support detailed in section A but for no other formulation did I succeed in

finding any non-cooperative support even for 2× 1 games.

The second natural question is whether there is a workaround in these cases so that the

algorithm converges? What I do in these cases, where dj oscillates by replacing us and us′

for one another, is that I make the algorithm choose the network that gives a higher profit

to the insurer. I assume that the hospital system that is in that profitable network (say it is

us′) charges its “lowest acceptable rate” to the insurer, which is the lowest rate under which

us′ would not want to leave the network. Under this rate, of course, the insurer would like

to replace us′ by us but I assume this does not happen to prevent the cycle from happening.

In all of my simulations that led to such cycles, this approach assured convergence. Also, in

all cases, the two networks between which the algorithm oscillates are very similar to one

another in terms of the profits to the firms and the consumer welfare implications. So, a

simple algorithm for choosing between the two, like the one I implement here, would be a

reasonable approach to deal with the issue of oscillations in the algorithm that searches for

the equilibrium market outcome.
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E.3 Uniqueness

Like with existence, I do not have formal proofs regarding uniqueness. Nevertheless, in

my simulations the equilibrium has always been unique. I conjecture that in situations

where non-unique equilibria are natural, my model can generate all of the equilibria (e.g.

a product differentiation situation where one insurer covers only the cheap, lower-quality,

hospitals to be able to charge a low premium and appeal to more price-sensitive consumers,

and another insurer covers all hospitals and charges a higher premium and appeal to more

quality-sensitive consumers.) Nonetheless, I have not come across this type of situation in

the analysis of CommCare. In this section, I qualitatively discuss features of the model

that, based on simulations, I have concluded prevent the existence of multiple equilibria in

ways that are not as economically natural as, say, product differentiation.

1. Capturing replacement threats helps uniqueness: NiN bargaining could lead

to non-uniqueness of equilibria. To illustrate, suppose there is one insurer d and two hos-

pitals u1 and u2. Suppose that if the insurer does not have any hospital in its network,

then signing a contract with hospital u1 will give gains from trade to both the hospital and

the insurer. Also suppose that if the insurer is contracting only with u1 and paying the

corresponding Nash Bargaining price, it does not have an incentive to bring in also u2, due

to the fact that there are fixed costs of bringing in u2 and that u1 already being in the net-

work gives less marginal value to u2. In addition, suppose similar conditions hold between

insurer d and hospital u2. That is, first they do have an incentive to sign a contract if the

insurer is not already covering u1, and second, once they are signing their Nash Bargaining

contract, the insurer does not have an incentive to sign with u1. Under these circumstances,

a model of network formation with NiN bargaining would imply that networks

 1

0

 and 0

1

 could both be sustained as part of equilibria. Importantly, even if the insurer prefers

the Nash Bargaining contract with hospital u1 to that with hospital u2, a contract with

hospital u2 could still be an equilibrium since the only ways the insurer can deviate from

this equilibrium is either by dropping the contract or by adding u1 to the network, none

of which the insurer would like to do. This issue is not there in my proposed bargaining
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formulation. In my model, if network

 1

0

 can be sustained as part of the equilibrium

market outcome, it means that hospital u1 is able to reduce its price by enough so that even

the lowest price from u2 will not incentivize insurer d to replace u2 for u1. This directly

implies that if the current network is

 0

1

, hospital u2 cannot offer a low enough price

that would beat hospital u1’s lowest price, and hence, insurer d will inevitably substitute

u1 for u2, alleviating the issue of multiple equilibria.

2. Capturing sequential premium setting helps uniqueness: A second thing

that could lead to multiple equilibria is assuming that premium setting (i.e., step 2 in the

four-stage game set up in the main text) happens simultaneously to network formation

and bargaining (i.e., step 2 in the four-stage game set up in the main text). That is,

when bargaining, firms take the premiums as fixed and do not anticipate them to change

in response to the outcome of the bargaining. This assumption has been used in at least

two papers on upstream-downstream bargaining in vertical markets (Ho and Lee [2017b],

Crawford et al. [2015]) due to the substantial computational simplicity that it provides.

Those papers do not fully endogenize network formation. But when network formation

is also endogenous, this assumption on premium setting could undermine uniqueness. To

illustrate, suppose there are two hospitals u1 and u2 and one insurer d. Hospital u1 is a

prestigious hospital with very high marginal cost and hospital u2 is the opposite: low quality

but also low cost. Now consider two market outcomes. In the first one, the insurer covers

hospital u1, pays a high reimbursement to u1 due to u1’s high marginal cost and quality,

and charges a high premium accordingly. In this situation, hospital u2 could, in principle,

provide a strong replacement threat for insurer d to use against hospital u1 when bargaining.

Since hospital u2 is cheap, replacing it for hospital u1 could allow the insurer to lower its

premium and appeal to more consumers. Nevertheless, a model that assumes premiums

are set simultaneously with the bargaining would only allow for the insurer to substitute

hospital u2 for u1 without changing the premium, making the replacement threat much

weaker. A similar issue exists with the reverse situation: Consider a market outcome where

the insurer covers hospital u2, pays a low reimbursement to u2 due to u2’s low marginal cost

and quality, and charges a low premium accordingly. In this situation, hospital u1 could
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provide a strong replacement threat for insurer d to use against hospital u2. Since hospital

u1 is prestigious, replacing it for hospital u2 could make the insurance plan more attractive.

But the insurer might only want to do this if it can raise its premium to cover the higher

reimbursement that it has to pay the expensive u1. Nevertheless, a model that assumes

premiums are set simultaneously with the bargaining would only allow for the insurer to

substitute hospital u1 for u2 without changing the premium, making the replacement threat

much weaker. So both market outcomes could possibly be sustained as equilibria. We do

not face this issue if the premium setting happens after network formation and bargaining.

In this latter case, only one of the two above mentioned market outcomes is sustainable

under my network stability and bargaining conditions. If the insurer prefers covering u1

and charging a high premium over covering u2 and charging a low premium, then u1 can

deter a threat of replacement by u2 but u2 cannot do the same. The reverse is true if the

insurer prefers covering u2 and charging a low premium over covering u1 and charging a

high premium. Thus, we get only one equilibrium.

F Exogeneity of Premium Variation in Plan Demand Esti-

mation

In this appendix, I argue that the variation of monthly plan premiums in my plan demand

estimation procedure is exogenous to the variation in demand from those income groups

for which I seek to estimate premium coefficients (i.e. income groups of between 100%

and 200% of poverty and between 200% and 300% of poverty). I do this by arguing that

plans’ strategies regarding the below poverty income group -who always paid zero premium

and for whom I do not estimate premium a coefficient- drove all the premium variation in

the data that I use. I first detail the premium variation in my data and then discuss the

institutional details behind the variation.

F.1 Premium Variation in the Data

Before I use my enrollments dataset (described in the data section of the main text) to

estimate the plan demand model (i.e., step 2 in the four-stage estimation procedure set up
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Fiscal year BMC Celticare Fallon NHP Network Health

2012 447 360 429 415 360

2013 346 377 415 415 355

Table 6: Premiums of all CommCare plans, in $/month/person, in fiscal years of 2012 and

2013

in the main text), I restrict it in two ways. First, I restrict the dataset to fiscal years of 2012

and 2013 as, unfortunately, my data on FY2011 and before has missing records. Second, I

restrict to consumers only from the two above poverty income groups, and drop the below

poverty ones. The reason for this restriction is the particular policy adopted by CommCare

towards this specific income group. I will detail that policy in section F.2. Given that in

my model I assume all income groups have the same brand preference and the care to the

same extent about hospital networks when choosing insurance plans, dropping this group

will not undermine the identification of those coefficients.

CommCare premiums from 2011 on were “community rated.” That is, each of the

insurers charged the same pre-subsidy premium to all CommCare consumers, regardless of

demographics. Table 6 shows these pre-subsidy premiums set by all CommCare plans in

fiscal years of 2012 and 2013.

The premium paid by each consumer depends only on the premiums reported in table 6

and subsidy parameters described in the followingi formulation copied from the main text:

psubjk = ay(k) × pj − by(k) (F.1)

The pass-through rate subsidy parameter ay for each income groups 100%-200% of

poverty and 200%-300% of poverty were approximately 50% and 90% for both 2012 and

2013 fiscal years.67 Table 7 shows the after-subsidy premium changes from FY2012 to

67Note that as mentioned before, the income-grouop specific subsidies are based on a finer categorization

than the one I use in this paper. 100%-150% of poverty and 150%-200% of poverty groups have different

subsidy rates. Same with 200%-250% of poverty and 250%-300% of poverty groups. But since in my

datasets, I only see the coarser categorization, I simply assume that the pass through rate for the bigger

group of 100%-200% of poverty is the average of the rates for 100%-150% and 150%-200% and make a similar

assumption for the 200%-300% of poverty group.
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Income Group BMC Celticare Fallon NHP Network Health

100%-200% of poverty -50 8.41 -6.93 0 -2.48

200%-300% of poverty -91.41 15.38 -12.67 0 -4.53

Table 7: Changes in CommCare plans’ premiums (after accounting for subsidies) from

FY2012 to FY2013.

FY2013 for all CommCare plans.

F.2 Role of the Below Poverty Income-Group in the Premium Variation

Since FY2012, CommCare mandated that, every year, those below poverty CommCare

consumers that did not hold a CommCare plan in the past year, had to choose a plan

only between the two cheapest plans offered in the market, as long as those two plans

each had a pre-subsidy premium of 380$/month/person or less.68 This rule, Celticare and

Network Health lowered their premiums from 404$/month/person and 425$/month/person

respectively in FY2011 to 360$/month/person in FY2012. The two became the cheapest

two plans on CommCare for 2012 and enjoyed duopoly for serving the new below poverty

enrollees.69 Below, I argue that almost all of the premium variation between FY2012

and FY20133, as shown in table 7, comes from the insurers’ reactions to this particular

regulation.

BMC’s premium change of 101$ accounts for a large portion of the total premium

variation. The institutional setting detailed in the previous paragraph strongly suggests

that BMC reduced its premium by this large amount in order to get access to the new

below poverty enrollees, which it successfully did. Also Celticare’s premium increased from

360$/month/person to 377$/month/person, just below the 380$ cap described above. This

strongly suggests that in FY2012 Celticare fiercely competed for the two spots for serving the

below poverty group; and when it succeeded, it increased its price to 377$/month/person,

68If only one plan had a premium no higher than 380$/month/person, that plan would be the only choice

for new below-poverty enrollees. If no plan satisfied this premium requirement, there would be another open

enrollment preiod for the new below poverty enrollees. None of these two situations took place in CommCare

however.
69In order to be able to go cheap, Network Health dropped some prestigeous hospitals out of its network.
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the highest level under which it could still serve the new below poverty enrollees, only to get

surprised by the unanticipated large reduction in BMC’s premium. These changes in BMC’s

and Celticare’s premiums, hence, seem to have arisen from their strategies regarding the

below poverty group, and not affected by unobservable changes in the demand for insurance

plans from the other two groups.

Of course beside the premium changes for BMC and Celticare, there are other premium

changes as well between FY2012 and FY2013. Nevertheless, they do not account for as

large variations in premiums as the chances for Celticare, and in particular BMC do. Fallon

reduced its premium by 14 dollars and this reduction cannot be attributed to the below

poverty group. But Fallon’s market share in CommCare was around 3% and this change

is not likely to largely affect the estimated premium coefficients. Also Network Health

reduced its premium going into FY2013. Nevertheless, this premium changes was only by

5$/month/person, which is not comparable to the much more substantial premium change

from slightly more popular BMC. Therefore, I argue that a very large portion of the variation

in premiums was exogenous to the demand functions of the two income groups y for which

I estimate price coefficients βy.

G Constructing measures of hospital marginal costs ci and

reimbursement rates t∗ij

In the main text, I treated both hospitals’ marginal costs ci of inpatient care and the

reimbursements matrix T ∗ =
[
t∗ij

]
m×n

as data. These quantities, however, are not directly

observed in my data. In this appendix, I detail how I construct measures of these quantities

using hospitals’ cost reports data and medical claims data.

G.1 Measuring hospital marginal costs ci

In my model, ci is the severity adjusted inpatient marginal cost to hospital ui. In order to

construct a measure of ci from HCRIS data, I follow these four steps:

Step 1: I construct a measure of total variable cost to each hospital. To do that, I
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sum over all of the costs items in the hospitals cost report for 2011, except for those that

I believe are fixed costs. More specifically, I include all cost items except for all capital

related costs, employee benefits, operation of plant, nursing school costs, all costs regarding

interns and residents, and all non-reimbursable costs.

Step 2: I construct a measure of total variable inpatient cost to hospital ui. This cost

measure is a fraction of total variable cost determined by how large of a fraction of the total

revenue to the hospital is from inpatient care:

total variable inpatient cost = total variable cost× total inpatient revenue

total revenue
(G.1)

To illustrate, if 40% of a hospital’s revenue comes from inpatient care, then also 40% of

the cost must have come from costs to provide inpatient care. Of course, this approach is

non-ideal since it implicitly assumes that the hospital’s profit margins from inpatient and

outpatient care are equal. But it is a good approximation and is used in other work (e.g.

see Schmitt [2015]).

Step 3: I construct a measure of inpatient marginal cost to hospital ui simply by

dividing the total variable inpatient cost by total discharges.

Step 4: I construct the severity adjusted inpatient marginal cost ci by dividing the

inpatient marginal cost of hospital ui by hospital ui’s Case Mix Index (which is a measure

of average severity of the inpatient admissions by the hospital constructed by CMS).

G.2 Measuring reimbursement rates t∗ij

Reimbursement rate t∗ij is the average payment by insurer dj to hospital ui for an inpatient

admission an enrollee of dj at hospital ui. I estimate each t∗ij off of MA-APCD’s medical

claims file by simply dividing the total payments from insurer dj to hospital ui for inpatient

care in the fiscal year of 2011 by the total number of discharges of dj enrollees and ui in

that year. The following notes about these rate estimates are worth mentioning.

First, I am not taking MS-DRG severity indices into account in constructing the t∗ij

measures. Other papers, (e.g. Gowrisankaran et al. [2013], Ho and Lee [2017b]) assume
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payments are proportional to DRG severity scores. I examined this assumption for Comm-

Care by taking the following regression:

ln (ta) = FEij,year + ρ× ln (ψa) + ϱa (G.2)

In this regression, a represents an inpatient admission event. ta represents the payment

from the corresponding insurer to the corresponding hospital for that admission. FEij,year is

a hospital-insurer-year fixed effect. DRG severity score corresponding the principal diagnosis

for admission is denoted ψa. Finally, ϱa is an idiosyncratic error term. In this regression,

coefficient ρ represents the effect of severity score on the payment. If the payment is, on

average, proportional to the severity score, we should expect an estimated ρ̂ close to 1 and

significant. However, I estimate ρ̂ at 0.028 and insignificant at the 5% level. It remains

insignificant when I also include the age of the patient as another control variable, and its

magnitude remains almost the same. I also anecdotally noticed that there was at least one

hospital-insurer pair for which ta had the same value for all admissions. Thus, I decided

against incorporating ψa into the modeling of the reimbursement rates.

The second note about the t∗ij measures is that, unfortunately, I am missing data on

Network Health claims from 2012 and before. Therefore, I am not able to estimate t∗ij for

j = ”Network Health”. I instead, calibrate those rates from the outcomes of the estimation

process in Shepard [2015] which examines the same market. Shepard [2015] reports average

reimbursement rates for hospitals (across all insurers). Given that I estimate the rates for all

insurers but Network Health, I use his numbers (in Table 1, Panel A) to back out what the

average rate for Network Health must have been. Also, given that Shepard [2015] reports

the rates for only 10 of the most expensive hospitals, I cannot use this approach for the

rest of the hospitals. For them, I instead use my estimated Network Health rates for 2013.

I ran the estimation procedure for a range of “reasonable” alternative calibrations and the

results are not sensitive to that.

Finally, before using the t∗ij measures in the model for estimating cost functions and

running counterfactual simulations, I carry out another further processing. Some of my

t∗ij measures happen to fall below my measures of hospital marginal costs ci. This will be

inconsistent with the equilibrium conditions of my model, given that t∗ij < ci would imply

an incentive for the hospital ui to break off the ij link, unless this hospital is part of a bigger
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hospital system s which includes other hospitals that charge high enough to dj to cover the

loss from t∗ij < ci. To avoid this and help my model rationalize the date as an equilibrium, I

bump up the t∗ij measures in cases where it leads to the aforementioned problems to ci+300,

measures in $/admission. This procedure modifies 15 of the t∗ij measures out of a total of

112. It increases the average reimbursement rate paid to hospitals by BMC, Celticare, NHP,

and Network Health, respectively by 1%, 0%, 2%, and 1%. The t∗ij < ci could be results of

measurement errors in estimating t∗ij and/or ci potentially both by the econometrician and

the hospitals.

H Consumer risk aversion and bargaining leverage for star

hospitals

In this appendix, I describe a hypothesis about the effects of consumers’ risk aversion in

how they evaluate health plans against each other, and I argue that, not capturing this

risk aversion, standard models of insurance plan demand (developed by Capps et al. [2003],

further completed by Ho [2006], and then widely used in the literature) might miss an

important source of bargaining leverage for star hospitals in negotiating rates with insurers.

Therefore, if such demand models are used in conjunction with a supply model (such as the

model I develop in this paper) to estimate bargaining powers, they may over estimate the

bargaining parameters of star hospitals γ̂star, as the bargaining leverage from risk aversion

is being picked up by γ̂star. Formalizing and empirically testing this hypothesis would be a

separate paper. In this appendix, I only describe this hypothesis and discuss its implication

for estimation of bargaining parameters.

Hypothesis: Due to risk aversion, consumers place additional value on insurance plans

that cover star hospitals in their network, to a much greater extent than their likelihood of

using those star hospitals would suggest. That is, even those consumers who are not likely

to use the star hospitals (e.g. due to geographical distance) would still place a large value on

insurance plans that cover them, just in order to have a peace of mind in case of complex

but very rare conditions that start hospitals have a clear advantage at treating.

If the above hypothesis is true, then consumer risk aversion provides a channel through
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which including a star hospital in network can give an insurer additional enrollees without

proportionally giving the star hospital additional patients (due to the fact that those en-

rollees need the hospital mainly for peace of mind). Therefore, the only way for the star

hospital to charge for this “peace of mind effect” would be to load the charge on the reim-

bursement rates for the patients that the hospital does get, thereby increasing the average

reimbursement rate paid by the insurer to the hospital. Of course if this effect is there in

the market and we use the demand model that does not capture it, the high reimburse-

ment rates resulting from the peace of mind effect would have to be picked up by another

parameter in the model, which in the case of my model is γ̂Star.
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