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Abstract

I consider a fully rational repeated moral hazard problem in which the agent chooses
between hidden “long-term” and “short-term” actions. Relative to the long-term ac-
tion, the short-term action boosts expected output today at the expense of expected
output tomorrow. In general, today’s expected output is affected by both today’s and
yesterday’s actions. This is unlike traditional principal-agent models that ignore the
action persistence present in many real-life moral hazard problems. The paper shows
that ignoring action persistence can significantly distort optimality. For example, the
myopic agency optimal contract emphasizes sustained success rather than a more typ-
ical index like net success. Compared to its traditional cousins, this optimal contract
also has more subdued incentives that escalate after good performance. In addition,
the contract provides a fresh perspective on the optimality of upward sloping pay scales
and high watermark contracts. Lastly, a common contractual feature that the previ-
ous dynamic contracting literature has struggled with emerges as an intuitive optimal
arrangement: severance pay.
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1 Introduction

I investigate a novel moral hazard problem I call myopic agency in a dynamic principal-agent
setting. The agent takes hidden actions that have persistent effects on firm performance.
There are two actions: long-term and short-term. The long-term action maintains a certain
benchmark level of expected output. The short-term action causes current expected output
to rise and future expected output to drop. The drop is assumed to be sufficiently large
relative to the rise so that the principal prefers the long-term action. This paper explicitly
characterizes the optimal contract that always induces the long-term action from the agent.

A natural setting for myopic agency is a firm’s R&D department. Channeling a portion
of revenues to R&D helps increase the long-term profitability of the firm. The short-term
action of not investing in R&D will help boost profits and dividends today, but may cause
the firm to become obsolete in the future. More generally, settings where the manager
must make capital investment decisions are vulnerable to myopic agency if the quality of
the decisions cannot be well-monitored or understood. For decades, Kodak employed a
razor-blade business model with inexpensive cameras and a very profitable film business.
Naturally, most of the investment went into film. In the 90s as the digital revolution was in
full swing, Kodak faced a difficult decision between doubling down on film or switching to
digital. In Kodak’s case, the problem wasn’t that the firm underinvested like in the R&D
example - the company was still developing patents. The problem was that Kodak chose
to stick with film. Throughout the 90s, the company suffered very little from this decision.
Even in the late 90s, the firm sold about 1 billion rolls of film each year. However, by 2011,
the bottom had fallen out and sales had sunk to 20 million.

Financial markets are also rife with myopic agency situations. Subprime lending, if
done correctly, is a perfectly legitimate long-term action. However, given the nature of the
counterparty, responsible subprime lending requires effort to carefully vet the borrowers and
model and weigh the complex associated risks. Without the proper incentives, an agent may
easily deviate to the short-term action of indiscriminate lending under terms overly favorable
to the borrower. Hedge funds are also susceptible to myopic agency. Here, the long-term
action involves the manager exerting effort to turn his innate skill into generating α. The
short-term action can simply be writing a bunch of puts, exposing the fund to significant
future tail risk. Or it can involve portfolio pumping through, say, thinly traded stocks,
exposing the fund to significant future regression to the mean.

A common property in these examples is that the moral hazard problem is played out
over time. It cannot be properly modeled when actions in date t only affect the outcome
in date t. In a traditional, non-persistent moral hazard setting, rewarding high output, as
a general rule, helps alleviate the agency problem. However, in a myopic agency setting,
rewarding high output can exacerbate just as much as it can alleviate the agency problem.
Divorced from the past and the future, a stochastic output today communicates very little
information about the agent’s decisions. As a result, the optimal dynamic contract under
myopic agency differs in significant ways from many of those that arise under traditional,
non-persistent moral hazard.

The first difference is what constitutes “good” performance. A typical optimal dynamic
contract will formulate an endogenous measure(s) of good performance based on the history
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of outcomes. It will then use this measure to determine the spot contract that the agent faces
today. Traditional dynamic contracts typically have a measure that resembles counting total
high output dates net low output dates. In contrast, the measure in my optimal dynamic
contract tracks the number of consecutive high output dates leading up to today. Because
the contract values sustained high output, a low output after a long history of high output
can have a seemingly disproportionate effect on the agent’s standing with the principal.
This creates a cliff-like arrangement the I show is a natural way of dealing with the double
edged sword of rewarding high output in a myopic agency setting. The optimality of the
cliff arrangement also helps explain why, given the particular returns characteristics of hedge
funds, high watermark contracts are popular.

The paradigm shift in defining good performance also has theoretical implications. In
most traditional dynamic contracts, the state variable is the agent’s promised value. Under
myopic agency, the optimal contract’s state variable is the incentive level: the sensitivity of
the agent’s promised value to performance. Therefore, the optimal contract of this paper
exemplifies a new species of arrangements where promised value plays a genuinely secondary
role.

In the paper, I formally compare the myopic agency optimal contract and the contract
the principal would use if he decided to abstract away from the persistent nature of the
actions. I call the latter contract the traditional contract. It is the optimal contract of the
appropriate non-persistent version of the model. I find that the traditional contract isn’t
terrible in the sense that if it is used in the actual myopic agency setting in lieu of the optimal
contract, the agent will still take the long-term action. However, it always over-incentivizes
the agent relative to the optimal contract and is therefore inefficient.

The traditional contract has a stationary incentive level. In contrast, the optimal con-
tract’s expected incentive level increases in a concave, convergent way over time. This type
of behavior is also documented in Gibbons and Murphy (1992), which provides an alternative
justification that rests on career concerns and requires risk aversion. The incentive escala-
tion result of this paper is compatible with - but not dependent on - risk aversion. Another
difference is that the incentive escalation in my optimal contract exhibits history-dependent
dynamics. Specifically, incentives escalate only after high output.

Lastly, I consider optimal contracting when the agent is terminated for poor performance.
The resulting optimal contract with termination exhibits an upward sloping pay scale and
severance pay. The upward sloping pay scale, which appears in many actual employment
contracts, is a direct result of the aforementioned incentive escalation property. The myopic
agency driven intuition for upward sloping pay scales differs from previous arguments that
relied on combining the standard backloading intuition with firm-side incentive problems or
agent risk aversion. See, for example, Lazear (1981).

Severance pay is typically difficult to produce as an optimal arrangement in traditional
moral hazard models. However, the incentive escalation result of this paper provides a
simple justification for severance pay - even large, mostly lump sum, severance pay. When
the principal terminates the agent for poor performance, he may still want to pay the agent
a potentially large amount simply to dull incentives today. By dulling incentives today,
the principal would not have had to escalate incentives as much tomorrow had the agent
generated high output today and avoided termination. This is a good thing because incentive
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escalation, which is needed to combat myopic agency, is expensive.
While this paper explores how to induce the long-term action through contracts, there

is a related literature that focuses on why managers oftentimes take a variety of short-term
actions in equilibrium. Reasons put forth include costly signaling in the presence of takeover
threats (Stein, 1988), lack of takeover protection (Laffont and Tirole, 1988), myopic market
expectations (Stein, 1989) and herding due to reputation concerns (Zwiebel, 1995).

Another related literature deals with innovation. The process is frequently modeled using
bandit problems, which generates a dynamic not unlike the one produced by the long-term
action. Specifically, by exploring an unknown arm at date 0 the player sacrifices some
expected output. However, the player gains extra knowledge about which arm is the most
productive. This will increase expected output at date 1. Manso (2012) embeds such a
two-date bandit problem within a principal-agent framework and studies how to motivate
innovation at the first date. The model shares some common features with the one-shot
version of the myopic agency model.

Edmans, Gabaix, Sadzik and Sannikov (2012) consider a model of dynamic manipulation
that allows the agent to trade off state-by-state future and present performance. The agency
problem can be seen as a particularly virulent strain of the myopic agency considered in this
paper. Their optimal contract also exhibits a form of incentive escalation.

The incentive escalation result of this paper has a flavor of Holmstrom and Milgrom
(1991). Recall, that paper observes that if the agent has two tasks A and B, the incentives
of A may exert a negative externality on that of B. In my model, one can think of the
task of managing the firm today as task A and managing the firm tomorrow as task B.
And just as in Holmstrom and Milgrom (1991), if incentives today are too strong relative to
those of tomorrow, the agent will take the short-term action, which favors the firm today and
neglects the firm tomorrow. Now, Holmstrom and Milgrom use this to explain why contracts
often have much lower-powered incentives than what the standard single-task theory might
predict. In my paper things are further complicated by the dynamic nature of the model.
Specifically, today’s task B will become tomorrow’s task A. Each date’s task is both task
A and task B depending on the frame of reference. Therefore, the conclusion in my model
is not that incentives should be low-powered, but that incentives start low and optimally
escalate over time.

My paper is also part of a small literature on persistent moral hazard. An early treat-
ment by Fernandes and Phelan (2000) provides a recursive approach to computing optimal
contracts in repeated moral hazard models with effort persistence. Jarque (2010) considers
a class of repeated persistent moral hazard problems that admit a particularly nice recursive
formulation: those with actions that have exponential lagged effects. She shows that under
a change of variables, models in this class translate into traditional non-persistent repeated
moral hazard models. Her work can be interpreted as a justification for the widely used
modeling choice of ignoring effort persistence in dynamic agency models.

The present paper considers, in some sense, the opposite type of persistence to that of
Jarque (2010). Here, the ranking of the actions is flipped over time. Today: short term
> long term; future: long term > short term. With this type of persistent moral hazard,
results become noticeably different from those of the non-persistent class.

The rest of the paper is organized as follows: Section 2 introduces the basic repeated
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good bad

1− π
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a = l

a = s

Figure 1: Transition function between the good and bad states.

myopic agency model. I recursively characterize and solve for the optimal contract. Section
3 interprets the optimal contract. The novel performance measure and the cliff arrangement
emerge. Comparisons with high watermark contracts and non-persistent optimal contracts
are made. Section 4 deals with incentive escalation and the option to terminate. Upward
sloping pay scales and severance pay emerge as optimal arrangements. Section 5 concludes.

2 Repeated Myopic Agency

A principal contracts an agent to manage a firm at dates t = 0, 1, 2 . . . At each date t, the
firm can be in one of two states: σt = good or bad. If σt = good, then the agent can apply
one of two hidden actions: a long-term action at = l or a short-term action at = s. If the
agent applies the long-term action, then the firm remains in the good state: σt+1 = good.
If the agent applies the short-term action, then σt+1 = good with probability π < 1, and
σt+1 = bad with probability 1− π. If σt = bad, then there is no action choice and the state
reverts back to good at the next date. See Figure 1.

Actions and states are hidden from the principal, who can only observe output. At each
date t, the firm produces either high output Xt = 1 or low output Xt = 0. If σt = good
and at = l then the probability that the firm produces high output at date t is p < 1. If
σt = good and at = s then the firm produces high output for sure at date t. If σt = bad then
the firm produces low output for sure at date t. I assume that σ0 = good.

Thus, by always taking the long-term action, the agent keeps the firm in the good state
and maintains a probability p of high output at each date. Any deviation to the short-term
action boosts expected output today by 1 − p and lowers expected output tomorrow by
Q := (1− π)p. I assume that βQ > 1− p where β < 1 is the intertemporal discount factor.
This assumption implies that the gain today from taking the short-term action is outweighed
by the present discounted loss tomorrow.

Definition of a Contract.
At each date t, the principal may make a monetary transfer wt ≥ 0 to the agent. Note,

each wt can depend on the history of outputs up through date t. However, wt cannot depend
on the unobservable action nor the state. At each date t, the principal may also recommend
an action at to be taken provided σt = good. A contract is a complete transfer and action
plan w = {wt}, a = {at}. The principal’s utility is Ea

[∑∞
t=0 β

t(Xt − wt)
]

and the agent’s
utility is Ea

[∑∞
t=0 β

t(wt + b1at=s)
]
. I assume selecting the short-term action provides ben-
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efit b > 0 to the agent. I also assume that the agent has an outside option worth 0. This
assumption eliminates the participation constraint.

Assumption (A). The principal always wants to induce the agent to take the long-term
action.

The action sequence taken by the agent should, in principle, be determined as part of the
optimal contracting problem. However, I show that under certain parameterizations of the
model requiring the agent to take the long-term action is without loss of generality. Given
Assumption (A), I define the optimal contracting problem to be the following constrained
maximization:

max
{wt≥0}∞t=0

E{at=l}∞t=0

[
∞∑
t=0

βt(Xt − wt)

]

s.t. {at = l}∞t=0 ∈ arg max
{at}

E{at}

[ ∞∑
t=0

βt(wt + b1at=s)

]
Throughout the paper, if there are multiple optimal arrangements, I focus on the one that
pays the agent earlier. This ensures that the optimal contract is approximately robust to
small perturbations to the agent’s discount factor that make him more impatient than the
principal.

Let Ht denote the set of all binary sequences of length t + 1. Ht is the set of histories
of firm outputs up through date t. In general, the agent’s promised value depends on the
history of outputs up through today as well as today’s state and action. So for each ht ∈ Ht,
state σt and action at, define Wt(ht, σt, at) to be the agent’s date t promised value given all
the relevant information:

Wt(ht, σt, at) = Ea

[ ∞∑
i=t

βi−t(wi + b1ai=s)
∣∣∣ ht, σt, at]

In general, the promised value is not part of the principal’s information set since states and
actions are hidden. However, since the paper restricts attention to only those contracts
where the agent takes the long-term action all the time, it is well-defined to speak of Wt(ht),
which only depends on the publicly observable ht. For each history ht−1, define ∆t(ht−1) :=
Wt(ht−11) −Wt(ht−10). As a function over Ht−1, ∆t is a random variable representing the
date t incentive level of the contract.

Lemma 1. A contract always induces the long-term action if and only if at each date t and
after each history ht−1 ∈ Ht−1

∆t+1(ht−11) ≥ ε(∆t(ht−1)) :=
(1− p)∆t(ht−1) + b

βQ
(1)

Proof. Equation (1) is necessary because it is precisely the condition that prevents one-shot
deviations. Moreover, the only times when the agent can take the short term action is when
the state is good. Therefore, it is sufficient to only check one-shot deviations.
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The IC-constraint is a lower bound for the incentives tomorrow as a function of the
incentives today. The absolute levels of incentives do not matter per se, what matters is
the relative levels of incentives over time. The greater the incentives are today, the more
tempting it is to take the short-term action today. Therefore, the incentives tomorrow must
also keep pace to ensure that the agent properly internalizes the future downside of taking
the short-term action today. Similarly, if the private benefit b is large, then it is again
tempting to take the short-term action today. So the lower bound on tomorrow’s incentives
is also an increasing function of b.

Notice the IC-constraint cares about tomorrow’s incentives following high output to-
day but ignores tomorrow’s incentives following low output today. This is because if the
agent actually deviates and takes the short-term action low output today would never oc-
cur. The incentive level after low output is immaterial. Therefore, it is not included in the
IC-constraint.

Assumption (B). The agent can freely dispose of output before the principal observes the
net output.

Now, if a contract’s promised value is decreasing in output, the agent will simply engage
in free disposal after high output and mimic low output. Thus Assumption (B) implies
∆t ≥ 0 for all t.

Definition. For any ∆ ≥ 0, the term ∆-contract will denote a contract whose initial incen-
tive level is ∆. Define V (∆) to be the cost to the principal of the optimal ∆-contract.

A significant technical difference between the myopic agency setting and the traditional,
non-persistent setting relates to their respective approaches to the recursive formulation of
optimality. In the traditional approach, the optimal value function is defined over the agent’s
promised value Wt. As a result, the traditional contract is recursive over promised value. In
contrast, V (∆) will be the “optimal value function” of the myopic agency approach. Thus,
the resulting optimal contract is recursive over incentives not promised value.

Lemma 2. V (∆) is convex and weakly increasing. So optimal ∆-contracts are randomization-
proof and the optimal 0-contract is the optimal contract.

Fix an arbitrary ∆-contract. Then the IC-constraint implies that tomorrow’s incentives
following high output today must be at least ε(∆). Therefore, viewed as a contract in its
own right, this date 1 continuation contract is some ∆′ contract where ∆′ ≥ ε(∆). Now,
if the ∆-contract being considered is the optimal ∆-contract then the date 1 continuation
contract must also be the optimal ∆′-contract. Moreover, since V is weakly increasing, it
must be that ∆′ = ε(∆). Using the same logic, the date 1 continuation contract following
low output must be the optimal 0-contract.

Once the continuation contracts are determined, the date 0 high and low output payments
are pinned down:

w(1) =
(

∆− β
[
V (ε(∆))− V (0)

])+
w(0) =

(
β
[
V (ε(∆))− V (0)

]
−∆

)+ (2)
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These are the minimal payments that ensure today’s incentive level is ∆. Together with the
continuation contracts, they determine the Bellman equation characterizing V (∆). Solving
the Bellman equation formally solves the optimal contracting problem.

Proposition 1. The Markov law for the state variable ∆ is

∆→

{
ε(∆) following high output

0 following low output

The optimality function V (∆) satisfies the following explicitly solvable Bellman equation:

V (∆) = max{βV (ε(∆))− (1− p)∆, p∆ + βV (0)} (3)

The solution V (∆) to the Bellman equation is a piecewise linear, weakly increasing,
convex function. V (∆) not only implies the structure of the optimal contract but more
generally, the structure of the optimal ∆-contract for any ∆ ≥ 0. Viewed as a Markov
process, ∆t has stationary measure π over the discrete set {εN(0)}∞N=0. The stationary
measure is π(εN(0)) = (1− p)pN .

3 A Representative Optimal Contract

For a large set of parameters, including all sets of parameters where Q ≥ 6 − 4
√

2 ≈ .343,
V (∆) is a two piece piecewise linear function:2

V (∆) =

{
V (0) +m(p)∆ if ∆ ∈ [0, x1]

βV (0) + p∆ if ∆ ∈ [x1,∞)
(4)

where

• V (0) = 1
1−β2

pb
Q

• m(x) = 1−p
Q
x− (1− p)

• x1 = 1
1+β

pb
Q−p(1−p)

The optimal contract delivers expected value V (0) to the agent. Since V (0) is proportional
to b, it is without loss of generality for the optimal contracting problem to restrict attention
to always inducing the long-term action for all sufficiently small b.

2The condition on Q is fairly mild. Since I assume in the model 1−p < βQ and since by definition Q ≤ p,
it must be that p > 1

2 . Therefore, the condition on Q does not further restrict the domain of p. Moreover,
the closer Q is to p, the more flexibility one has in setting the values for the other parameters. Formally,

V (∆) is a two piece piecewise linear function if and only if β ≤ Q−p(1−p)
(p−Q)(1−p) .
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As a function of incentives, today’s spot contract is

w(1) =

{
0 if ∆ ∈ [0, x1]
Q−p(1−p)

Q
[∆− x1] if ∆ ≥ x1

(5)

w(0) =

{
Q−p(1−p)

Q
[x1 −∆] if ∆ ∈ [0, x1]

0 if ∆ ≥ x1
(6)

3.1 How and Why the Optimal Contract Works

Formally, the state variable of the optimal contract is ∆. In practice, it suffices to count the
number N of consecutive high output dates leading up to today. The performance indicator
N completely determines today’s spot contract, incentives and continuation contract.

Thus, the optimal contract cares about sustaining high output and not simply generating
a large number of high output dates.

As a function of N , today’s incentive level is εN(0) and is increasing concave. The limiting
incentive level is

∆ := ε∞(0) =
b

βQ− (1− p)
(7)

As a function N , today’s spot contract is also determined and its pay-to-performance sensi-
tivity is also increasing concave.

Consider the payment to the agent for high output when his performance indicator is
N . Viewed as a function over N , this reward schedule is zero for low values of N and then
becomes a concave, convergent function. Thus, when the agent’s performance is poor, he is
not rewarded for high output. Then there is an intermediate stage when the agent is facing
small but increasing rewards. Eventually, rewards for high output level off at a large sum
for sufficiently good performance.3

The design of the reward schedule contains the basic intuition for why the optimal con-
tract works. When the principal sets out to write a contract for the agent, he faces a dilemma.
On the one hand, he needs to reward the agent for good performance since he is asking the
agent to perform a productive yet costly hidden task. On the other hand, the principal
realizes that a large reward for high output, paradoxically, tempts the agent to deviate since
the short-term action guarantees the agent the reward. The optimal contract’s performance
indicator-reward schedule arrangement is tailored to resolve this dilemma.

Re-imagine the indicator-reward arrangement as a path up a cliff. At the bottom of the
cliff, the path is barren. At the top, the path is lined with big carrots. The path represents
the domain of the performance indicator and the carrots comprise the reward schedule.

Initially, the agent is at the bottom of the cliff. Performance determines his progress
along the path. In particular, every high output moves the agent forward one step. His goal
is to consume the big carrots at the top. To reach them, the agent must take the long-term

3In this particular class of examples, low values of N means N = 0. In general, the initial period of no
high output reward may last longer but not less than one date.
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action. Scaling the cliff requires sustained progress. Taking the short-term action today may
help the agent progress today but it will not help him progress over and over again.

Once the agent has progressed to the top of the cliff, he can begin to consume the big
carrots. The agent’s hidden actions represent two approaches to consumption. He can take
sensible bites by continuing to take the long-term action or he can gorge by taking the
short-term action.

Will the agent gorge? Suppose he does. Then one consequence of this choice is that the
agent is likely deprived of a big carrot tomorrow. For example, if Q = p, then gorging today
ensures no consumption tomorrow. But this is a relatively minor loss compared to the other
one looming on the horizon. Recall the agent’s fate is governed by a performance indicator
that cares only about sustained high output. Therefore, when the likely low output event is
realized tomorrow, the streak is broken and the indicator drops down to zero.

And the agent falls of the cliff.

3.2 The Cliff Arrangement and High-Watermark Contracts

As the cliff analogy demonstrates, the optimal contract motivates the agent in two mutually
reinforcing ways. Initially, the backloaded nature of the reward schedule induces the agent
to the take the long-term action. This, in and of itself, is unremarkable. Many optimal
dynamic contracts have some form of backloading of rents.

The novelty comes when the backloaded reward schedule is mapped against the optimal
contract’s novel performance indicator N . Because N takes precipitous drops, this combina-
tion creates a “contractual cliff” that provides the second way to motivate the agent - when
performance has already reached a high level and the previously backloaded payments have
come to the fore. At this point, the fear of falling off the cliff and starting all over again
serves as an effective deterrent to short-termism. This cliff arrangement differs from typical
optimal arrangements seen in traditional non-persistent dynamic moral hazard settings. In
those settings, optimal contracts typically care about something that roughly approximates
high output dates net low output dates. This inattention to the timing of high output
effectively means there’s no cliff.

How serious is this omission in a myopic agency setting? Suppose the principal eliminates
the optimal contract’s cliff entirely. At each date, the agent is then simply given the limiting
spot contract as the performance indicator goes to infinity. It is worth noting, this spot
contract’s pay-to-performance sensitivity is larger than that of any of the spot contracts
used in the optimal contract. Yet, under this arrangement, the agent never chooses to take
the long-term action.

The cliff arrangement connects the myopic agency optimal contract to high-watermark
contracts used in the hedge fund industry. The myopic agency model captures an important
aspect of the agency problem in a hedge fund. The manager can take the long-term action
of exerting effort to turn his innate skill into generating alpha. Or, the manager can take
the short-term action by engaging in various “information-free activities that amount to
manipulation... not based upon the production and deployment of value-relevant information
about the underlying assets in the portfolio.” (Goetzmann, Ingersoll and Spiegel, 2007).
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The mapping of hedge fund returns to the binary output system of my model is a little
trickier. Empirical findings suggest that the returns distributions of hedge funds typically
exhibit large negative skewness and high excess kurtosis. This means much of the variance
is generated by negative tail events. Thus, one reasonable mapping is to let high output
denote positive alpha and low output denote the negative tail event.

My paper predicts that the solution to the agency problem is the aforementioned cliff
arrangement. In practice, hedge fund managers are compensated using high-watermark con-
tracts. Essentially, a high-watermark contract pays the manager a performance-contingent
fee only when cumulative performance exceeds the running maximum, that is, the high-
watermark. As the manager consistently generates alpha, more funds flow in and the per-
formance fee typically increases. This fits well with the backloaded reward schedule of the
cliff arrangement.

When the negative tail event occurs, the fund’s net asset value falls well below the high
watermark and performance fees disappear. Compounding the loss, the smaller fund means
that the manager takes in less from his management fee. Moreover, since the gap between
current net asset value and the high-watermark is very large by definition of a negative tail
event, the manager will find it difficult to close the gap quickly. This implies that when
things do go south, it may be a while before the manager receives significant compensation
again.

It is worth noting that in particularly serious (though not all that uncommon) cases, the
manager may find the gap so large that he simply gives up. That is, he closes the fund and
starts anew. By doing this, the manager is effectively cushioning his fall off the cliff with the
backs of his previous investors. Such a maneuver certainly dilutes the effectiveness of the
high watermark’s implicit cliff arrangement. That being said, the manager’s new fund’s size
and his new performance fee will likely both be smaller. Therefore, even when a manager
abandons his fund, he still experiences something comparable to a fall.

3.3 Comparing with the Non-Persistent Version of the Model

A natural comparison to make is with the non-persistent version of the model. Suppose
the true model is the myopic agency model but the principal decides to abstract away from
the persistent nature of the moral hazard problem. He replaces the true model with the
appropriate, simplified, non-persistent approximation.

The long-term action is relabeled as effort. Effort today is modeled to produce a probabil-
ity p of generating high output today. The short-term action is relabeled shirking. Shirking
today is modeled to produce a probability 1− βQ of generating high output today. Notice,
the principal replaces the short-term action’s true multi-period effect on output with its
present value. Shirking provides private benefit b.

Recall in the true model, I assume that the parameters are such that βQ > 1 − p.
That is, the loss tomorrow associated with taking the short-term action today outweighs the
present gain. In the non-persistent model, this is precisely the condition that ensures shirking
generates high output with lower probability compared to effort. Therefore, Assumption (A)
can still be sensibly applied and the principal can solve for the optimal contract (subject
to always inducing effort). I will call this contract the traditional contract to distinguish it
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from the optimal contract of the true model.
Fortunately for the principal, sweeping the persistence of the moral hazard problem under

the rug and using the traditional contract still induces the long-term action from the agent.
That is, the traditional contract is incentive-compatible in the true model. Obviously, it is
inefficient since it is not isomorphic to the optimal contract. The degree of inefficiency can
be usefully quantified once I describe the traditional contract’s structure.

The traditional contract is stationary. The spot contract used at every date is: pay the
agent ∆ if output is high and nothing if output is low. The pay-to-performance sensitivity
of the contract is trivially always ∆. In addition, the incentive level is also always ∆.
In contrast, the optimal contract’s history dependent incentive level is εN(0) and satisfies
0 = ε0(0) < ε(0) < ε2(0) < . . . < ε∞(0) = ∆. Thus, the traditional contract over-incentivizes
the agent.

Consequently, the pay-to-performance sensitivity of the traditional contract is also too
high. There is, however, a small but meaningful difference between comparing incentive
levels and comparing pay-to-performance sensitivities. Notice as the agent’s performance
increases, the optimal contract’s incentive level converges to that of the traditional contract.
This convergence does not hold for pay-to-performance sensitivity.

In the traditional contract, the continuation contract is identical across histories leading
up through today. Therefore, any level of incentives today must be entirely generated by
today’s pay-to-performance sensitivity. This is not the case in the optimal contract, where
tomorrow’s continuation contract is more valuable if high output is generated today. As a
result the optimal contract exhibits a certain background level of incentives. Even if pay-
to-performance sensitivity were zero today, the incentive level would still be positive. This
means today’s pay-to-performance sensitivity is responsible for generating only a portion of
today’s incentive level. In particular, when N tends to infinity, the optimal contract only
pays the following quantity for high output:

w := ∆
1

1 + β

Q− β(1− p)(p−Q)

Q
(8)

Thus the optimal contract’s rewards for high output are bounded above by a quantity, w,
strictly smaller than the traditional contract’s reward for high output, ∆. This has important
feasibility implications.

Suppose that the agent’s private benefit exceeds the threshold βQ− (1−p). Then ∆ > 1
and the traditional contract pays the agent more than he produces! This need not be the
case if the principal uses the optimal contract. For example, if Q = p, then w = ∆/(1 + β).
With the optimal contract, the private benefit threshold is 1 + β times larger. Moreover,
even if b exceeds this larger threshold, only a fraction of the time is the optimal contract’s
spot contract rewarding the agent more than he produces.

4 Incentive Escalation and Termination

The incentive structure is a key difference between the optimal and traditional contracts. The
incentives of the optimal contract are smaller and have non-stationary dynamics. Specifically,
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incentives increase after high output. Over time, the expected incentive level E∆t also
increases and converges as N settles into its stationary distribution.

Thus, the optimal contract exhibits a form of incentive escalation. It predicts that
agents with histories of sustained high output should receive the highest incentives and pay-
to-performance sensitivities. The incentive escalation result complements and provides an
alternative theory of wage dynamics to Gibbons and Murphy (1992). In that paper, the
authors observe that the optimal contract should emphasize total reward-to-performance
sensitivity, which should factor in implicit career concerns as well as explicit pay. Escalation
in explicit pay-to-performance sensitivity is then driven by the gradual disappearance of
career concerns over time. Since career concerns disappear regardless of performance history,
the escalation of pay-to-performance sensitivity is history independent. This contrasts with
the myopic agency optimal contract that concentrates all of the escalation behind high output
histories. Another difference is with the agent’s risk attitude. While the incentive escalation
result in my model is fully compatible with a risk averse agent, it is not dependent on risk
aversion.

In general, introducing risk aversion tends to escalate pay-to-performance sensitivity in
optimal dynamic contracts. But this escalation should not be confused with the result in
my paper. Suppose over time the agent’s pay level is increasing, either due to accumulating
good performance or contractual backloading. Then if the agent is risk averse, wealth effects
kick in and may force the principal to escalate pay-to-performance sensitivity simply to in-
duce the same level of incentives as before. This type of escalation result is fundamentally
different from the incentive escalation of the myopic agency optimal contract. Since incen-
tives measure promised-value-to-performance sensitivity, a wealth effects driven escalation in
pay-to-performance sensitivity does not automatically count as any escalation in incentives.

4.1 Optimality with Termination

The incentive escalation property is the main reason I chose to not include in the original
model an important aspect of contracting: termination. If the only agency problem is myopic
agency, then giving the principal the ability to terminate the current agent and contract a
new one produces a perverse optimal termination rule. When the current agent is doing
well, the principal wants to terminate him due to the incentive escalation that occurs after
high output. And when the agent is doing poorly, the principal paradoxically wants to keep
him. This unwillingness to terminate the agent when he is doing poorly is a consequence
of a severance pay result that I will discuss shortly. Ultimately, it boils down, again, to the
incentive escalation property.

Thus, even though these termination tendencies are perverse, they are rational responses
given the nature of this particular second-best setting. Of course, by focusing on myopic
agency, the model ignores important facets of the principal-agent relationship such as reputa-
tion concerns and power dynamics. These considerations will cause the principal to strongly
reconsider how to optimally terminate the agent. Instead of adding these other elements
to the model and letting the termination choice arise endogenously, I will, for the sake of
simplicity, fix a “natural” benchmark termination rule. This rule will essentially serve as a
proxy for those unmodelled elements.
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The rule is: terminate the agent if and only if low output is generated. This rule is
the simplest one that subscribes to the more intuitive and empirically justified idea that the
agent should be fired for poor not good performance. It is also the endogenously optimal ter-
mination rule of the non-persistent version of the myopic agency model. And lastly, despite
the previous discussion to the contrary, this rule is actually a natural one to consider for the
myopic agency setting. To see this, notice that the optimal contract without termination
regenerates if and only if the agent produces low output. Thus quite literally, the building
block of the entire optimal contract without termination is itself restricted over the domain of
histories implied by the proposed termination rule: {0, 10, 110, 1110, 11110 . . .}. Not surpris-
ingly, this building block is a remarkably good approximation of the actual optimal contract
with the imposed termination rule.

The derivation of the optimal contract with termination mirrors the original analysis.
The state variable is still ∆, and the Bellman equation characterizing optimality is only
slightly changed: V (∆) = max{βV (ε(∆)) − (1 − p)∆, p∆}. The equation can be solved
and the optimal contract with termination can be explicitly characterized. Mirroring the
previous approach, I now describe a representative optimal contract with termination and
analyze it.

Let wt denote the agent’s salary in year t if high output is produced and he is retained. Let
St denote the agent’s severance pay in year t if low output is produced and he is terminated.
Suppose parameters of the model satisfy β ≤ Q−(1−p)p

pQ
. Then the optimal contract’s salary,

severance pay and incentive level are as follows:

• Salary: w0 = 0. For t > 0,

0 < w1 < . . . < wt = εt(0)p

[
Q− (1− p)p

Q

]
− bp2

Q
< . . . w∞ = ∆p(1− pβ)

• Severance pay: S0 = pb
Q

. For t > 0, St = 0.

• Incentive level: 0 = ∆0 < . . . < ∆t = εt(0) < . . .∆∞ = ∆.

4.2 Upward Sloping Pay Scale

When the agent is young, his salary is zero. After the initial stage, salary becomes nonzero
and increases with tenure. Eventually, as the agent’s tenure becomes long, his salary ap-
proaches the steady state w∞. In contrast, the traditional contract with termination has
a fixed salary w = ∆(1 − pβ) which is 1/p times as large as w∞. The salary comparison
between the optimal and traditional contracts with termination closely mirrors the previous
pay comparison between the no termination contracts. I will not say anything more about
this.

The upward sloping pay scale wt faced by the agent in the optimal contract with termina-
tion is a direct result of the incentive escalation property. It is an important feature of many
real life employment contracts and this paper is certainly not the first to have reproduced
it in a theoretical setting. The standard incentives-based arguments for upward sloping pay
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scales begin with the backloading idea: In general, it is not optimal to tie pay, on a date-
by-date basis, to marginal product or the flow payoff of the outside option. By delaying
a payment, the principal can efficiently reuse the threat of withholding that payment to
motivate the agent across multiple dates. This is particularly useful when the agent’s par-
ticipation constraint is a binding constraint.4 What the idea suggests is that the principal
should pay the agent only on the last date. Technically speaking, loading all the payments
onto the last date does produce an upward sloping pay scale, albeit an extreme one. To get
a more realistic shape, a counterbalance is typically introduced.

For example, Lazear (1981) argues that the principal also has incentive problems. In
particular, there is a risk that he may renege on payments promised to the agent. In this
situation, loading everything onto the last date is far too risky and so the agent’s pay increases
more gradually over time. Another argument used by many authors appeals to risk aversion.
With a sufficiently risk averse agent, it is simply far too expensive to exclusively use the
last date’s pay to generate the necessary incentives that motivate the agent throughout the
entire contract. Again, a more smoothly upward sloping pay scale results.

In my model, the principal is fully committed and the agent is risk neutral. Therefore,
myopic agency and incentive escalation combine to provide a fully independent reason for
having an upward sloping pay scale.

4.3 Severance Pay

The incentive escalation property provides a simple intuition for severance pay - potentially
even large, mostly lump sum, severance pay. Suppose after some low output event it is
optimal to terminate the agent. Facing such a situation, the principal may still want to pay
the agent a nontrivial amount simply to dull incentives today. Why might the principal want
to dull incentives today? By dulling incentives the principal need not escalate incentives as
much tomorrow following high output. This is a good thing, because incentive escalation,
which is an important tool used to combat the agency problem, is expensive.

Therefore, severance pay for poor performance is a mechanism to temper today’s in-
centives so as to preserve the future viability of the principal-agent relationship should it
continue.

The nontrivial S0 of the optimal contract with termination demonstrates that the sev-
erance pay intuition works in practice. If the principal deletes S0 then one of two things
will happen: either the agent takes the short-term action or the principal must increase the
incentives at all dates t > 0 to compensate for the increased date 0 incentives. Neither is
palatable.

The severance pay S0 is proportional to the private benefit b. Therefore, it’s value relative
to the surplus generated by the firm is ambiguous. What is not ambiguous is it’s value relative
to the contract. Since the contract’s initial incentive level is zero, the severance pay S0 is
equal in value to all of the agent’s future expected earnings had he generated high output
today and avoided termination. As this example demonstrates, even relatively massive, lump
sum severance pay can be supported as optimal arrangements.

4Notice though this is not the case for the myopic agency model.

14



That being said, the example should not be interpreted as a blanket justification of
golden parachutes. The size of the severance pay today is proportional to the degree to
which today’s incentive level can be compressed. In the optimal contract with termination,
there is no bound on incentive compression at date 0. But if in addition, there was, say,
a non-persistent moral hazard problem or some other constraint on the degree of incentive
compression, the severance pay would be smaller. In general, the intuition is compatible with
severance packages both large and small, immediate or vested, lump sum or performance-
contingent.

One curious feature of the optimal contract with termination is that severance pay is
decreasing with tenure. In fact, if tenure is sufficiently long, the optimal contract with
termination gives no severance pay.5 This unusual dynamic is an artifact of a simplifying
assumption of the model: the agent has a worthless outside option. If, instead, the agent’s
outside option increases with tenure, which seems likely if the labor pool is heterogeneous
with respect to ability, then it’s possible for severance pay to be also increasing.

In contrast, the traditional contract with termination exhibits no severance pay. The
downside of increasing today’s incentives that drives the severance pay intuition in the myopic
agency setting is simply not applicable in settings with non-persistent moral hazard. The
IC constraint in non-persistent settings is a lower bound on each date’s incentives. Deleting
severance pay for low output only further ensures that the IC constraint is not violated. This
intuition explains why the dynamic contracting literature traditionally has had difficulty
explaining severance pay.

The severance pay result in this paper is not driven simply by the fact that actions have
persistent effects. It is worth distinguishing between the intuition described in this paper
coming from myopic agency in particular and the rudimentary motivation for severance pay
coming from action persistence in general. The latter idea simply argues that since there is
persistence, actions taken by the agent continue to have effects on the firm post-termination.
Therefore, the principal may want to have part of the agent’s compensation postponed to
after termination - hence severance pay. This is clearly not the same idea as the one relying
on myopic agency and incentive escalation. The intuition for severance pay in this paper, for
example, can also explain lump sum severance pay, which is something the action persistence
intuition cannot.

5 Conclusion

Short-termism is a major component of many managerial agency problems. This paper
investigates optimal contracting when a manager can take hidden short-term actions that
hurt the future health of the firm. Like in many real-life settings, the short-term action in this
model boosts performance today. This temporarily masks the inferiority of the short-term
action choice and creates a tricky contracting setting where simply rewarding high output
is no longer guaranteed to eliminate the agency problem. I show that the optimal contract
in this setting differs in significant ways from traditional dynamic optimal contracts. The

5In this example, sufficiently long means t > 0. In general, the initial period with severance pay may last
longer but not less than one date.
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myopic agency optimal contract values sustained high output. Its incentive level is non-
stationary, escalating over time and after high output while remaining strictly below the
incentive level of the traditional contract. Also, severance pay may accompany termination
for low output. In addition, the myopic agency optimal contract provides new perspectives
on high watermark contracts and upward sloping pay scales. More generally, the paper
establishes a framework that can be used to model a variety of agency problems where the
assumption that actions have no persistent effects is flawed.

6 Appendix

Proof of Lemma 2 and Proposition 1. Let C be the space of all nonnegative convex functions
defined on [0, b/(βQ − (1 − p)] with slope at most p and bounded above by M := pb/[(1 −
β)(βQ− (1− p)]. Under the L∞ norm, C is a compact Banach space. Define the operator
Tf(x) := max{βf(ε(x)) − (1 − p)x, px + βmin{f(x)}}. It is easy to check that T is well-
defined endomorphism of C . Note this operator differs slightly from the implied operator in
Equation (3).

Let f , g ∈ C . For any x, |Tf(x) − Tg(x)| ≤ max{|Taf(x) − Tag(x)|, |Tbf(x) − Tbg(x)|}
where Taf(x) := βf(ε(x))− (1− p)x and Tbf(x) := px+βmin{f(x)}. Since both Ta and Tb
are contractions on C , T is a contraction on C . Therefore, a unique fixed point of C under
T is assured.

Consider two model realizations of Q: Q̂ < Q̃, with corresponding spaces Ĉ , C̃ and
operators T̂ , T̃ . Let f̂ ∈ Ĉ and f̃ ∈ C̃ . Then I say f̂ > f̃ if and only if on the domain of C̃ ,
f̂ − f̃ is weakly increasing, nonnegative and not identically zero.

It is easy to show that if f̂ and f̃ are both nondecreasing and f̂ ≥ f̃ then T̂ f̂ > T̃ f̃ .
Consider any model realization with Q := p, space Cp and operator Tp. It is easy to show that
T np 0 is nondecreasing for all n. Then T n0 is nondecreasing for all n in general. Therefore,
the unique fixed point T∞0 is nondecreasing.

Fix a ∆ ∈ (0, b/(βQ − (1 − p))). Define N ≥ 1 to be the unique integer satisfying
ε−N(∆) ≤ 0 < ε−N+1(∆). Define m(x) := (1 − p)x/Q − (1 − p). Construct the following
piecewise linear function v piece by piece starting from the left:

v(x) =



v(0) +mN(p)x x ∈ (0, ε−N+1(∆)]

v(ε−N+1(∆)) +mN−1(p)(x− v(ε−N+1(∆))) x ∈ (ε−N+1(∆), ε−N+2(∆)]

. . .

v(ε−1(∆)) +m(p)(x− v(ε−1(∆))) x ∈ (ε−1(∆),∆]

v(∆) + p(x− v(∆)) x > ∆

where v(0) is (uniquely) defined to satisfy v(∆) = p∆ + βmin{v}. Notice, it must be that
v(0) > 0.

As a function of ∆, d(∆) := v(0)− v(ε(0)) is strictly increasing. For ∆ sufficiently close
to 0, d(∆) < 0. For ∆ sufficiently large, d(∆) > 0.6 Let ∆∗ satisfy d(∆∗) = 0. Then the

6In fact, it suffices for ∆ to be large enough so that mN−1(p) ≤ 0.
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corresponding function v∗, when restricted to C , is the unique fixed point of T . Since the
fixed point is nondecreasing, v∗ is the unique solution to the Bellman equation (3).
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