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Abstract
Recent work on econometric detection mechanisms has shown the effectiveness of recur-

sive procedures in identifying and dating financial bubbles. These procedures are useful as
warning alerts in surveillance strategies conducted by central banks and fiscal regulators with
real time data. Use of these methods over long historical periods presents a more serious
econometric challenge due to the complexity of the nonlinear structure and break mecha-
nisms that are inherent in multiple bubble phenomena within the same sample period. To
meet this challenge the present paper develops a new recursive flexible window method that
is better suited for practical implementation with long historical time series. The method
is a generalized version of the sup ADF test of Phillips, Wu and Yu (2011, PWY) and de-
livers a consistent date-stamping strategy for the origination and termination of multiple
bubbles. Simulations show that the test significantly improves discriminatory power and
leads to distinct power gains when multiple bubbles occur. An empirical application of the
methodology is conducted on S&P 500 stock market data over a long historical period from
January 1871 to December 2010. The new approach successfully identifies the well-known
historical episodes of exuberance and collapse over this period, whereas the strategy of PWY
and a related CUSUM dating procedure locate far fewer episodes in the same sample range.
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Economists have taught us that it is unwise and unnecessary to combat asset price bubbles

and excessive credit creation. Even if we were unwise enough to wish to prick an asset price

bubble, we are told it is impossible to see the bubble while it is in its inflationary phase. (George

Cooper, 2008)

1 Introduction

As financial historians have argued recently (Ahamed, 2009; Ferguson, 2008), financial crises

are often preceded by an asset market bubble or rampant credit growth. The global financial

crisis of 2007-2009 is no exception. In its aftermath, central bank economists and policy makers

are now affi rming the recent Basil III accord to work to stabilize the financial system by way of

guidelines on capital requirements and related measures to control “excessive credit creation”. In

this process of control, an important practical issue of market surveillance involves the assessment

of what is “excessive”. But as Cooper (2008) puts it in the header cited above from his recent

bestseller, many economists have declared the task to be impossible and that it is imprudent to

seek to combat asset price bubbles. How then can central banks and regulators work to offset a

speculative bubble when they are unable to assess whether one exists and are considered unwise

to take action if they believe one does exist?

One contribution that econometric techniques can offer in this complex exercise of market

surveillance and policy action is the detection of exuberance in financial markets by explicit

quantitative measures. These measures are not simply ex post detection techniques but antici-

pative dating algorithm that can assist regulators in their market monitoring behavior by means

of early warning diagnostic tests. If history has a habit of repeating itself and human learning

mechanisms do fail, as financial historians such as Ferguson (2008)1 assert, then quantitative

warnings may serve as useful alert mechanisms to both market participants and regulators.

Several attempts to develop econometric tests have been made in the literature going back

some decades (see Gurkaynak, 2008, for a recent review). Phillips, Wu and Yu (2011, PWY

hereafter) recently proposed a recursive method which can detect exuberance in asset price series
1“Nothing illustrates more clearly how hard human beings find it to learn from history than the repetitive

history of stock market bubbles.”Ferguson (2008).
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during an inflationary phase. The approach is anticipative as an early warning alert system, so

that it meets the needs of central bank surveillance teams and regulators, thereby addressing

one of the key concerns articulated by Cooper (2008). The method is especially effective when

there is a single bubble episode in the sample data, as in the 1990s Nasdaq episode analyzed in

the PWY paper and in the 2000s U.S. house price bubble analyzed in Phillips and Yu (2011).

Just as historical experience confirms the existence of many financial crises (Ahamed reports

60 different financial crises since the 17th century2), when the sample period is long enough there

will often be evidence of multiple asset price bubbles in the data. The econometric identification

of multiple bubbles with periodically collapsing behavior over time is substantially more diffi cult

than identifying a single bubble. The diffi culty arises from the complex nonlinear structure

involved in the multiple breaks that produce the bubble phenomena. Multiple breaks typically

diminish the discriminatory power of existing test mechanisms such as the recursive tests given

in PWY. These power reductions complicate attempts at econometric dating and enhance the

need for new approaches that do not suffer from this problem. If econometric methods are to be

useful in practical work conducted by surveillance teams they need to be capable of dealing with

multiple bubble phenomena. Of particular concern in financial surveillance is the reliability of a

warning alert system that points to inflationary upturns in the market. Such warning systems

ideally need to have a low false detection rate to avoid unnecessary policy measures and a high

positive detection rate that ensures early and effective policy implementation.

The present paper responds to this need by providing a new framework for testing and dating

bubble phenomena when there may be multiple bubbles in the data. The mechanisms developed

here extend those of PWY by allowing for flexible window widths in the recursive regressions on

which the test procedures are based. The approach adopted in PWY uses a sup ADF (SADF)

test based on sequence of forward recursive right-tailed ADF unit root tests. This procedure also

gives rise to a dating strategy which identifies points of origination and termination of a bubble.

When there is a single bubble in the data, it is known that this dating strategy is consistent,

2“Financial booms and busts were, and continue to be, a feature of the economic landscape. These bubbles
and crises seem to be deep-rooted in human nature and inherent to the capitalist system. By one count there
have been 60 different crises since the 17th century.”Ahamed (2009).
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as was first shown in an unpublished working paper by Phillips and Yu (2009) whose results

are subsumed as a special case within the present work. Other break testing procedures such

as Chow tests, model selection, and CUSUM tests may also be applied as dating mechanisms.

Extensive simulations conducted recently by Homm and Breitung (2012) indicate that the PWY

procedure works satisfactorily against other recursive (as distinct from full sample) procedures

for structural breaks and is particularly effective as a real time bubble detection algorithm.

Importantly, the procedure can detect market exuberance arising from a variety of sources,

including mildly explosive behavior that may be induced by changing fundamentals such as a

time-varying discount factor.

When the sample period includes multiple episodes of exuberance and collapse, the SADF

test may suffer from reduced power and can be inconsistent, thereby failing to reveal the exis-

tence of bubbles. This weakness is a particular drawback in analyzing long time series or rapidly

changing market data where more than one episode of exuberance is suspected. To overcome

this weakness and deal with multiple breaks of exuberance and collapse, the present paper pro-

poses an alternative approach named the generalized sup ADF (GSADF) test. The GSADF

test also relies on recursive right-tailed ADF tests but uses flexible window widths in the im-

plementation. Instead of fixing the starting point of the recursion on the first observation, the

GSADF test extends the sample coverage by changing both the starting point and the ending

point of the recursion over a feasible range of flexible windows. Since the GSADF test covers

more subsamples of the data and has greater window flexibility, it is designed to outperform

the SADF test in detecting explosive behavior when multiple episodes occur in the data. This

expected enhancement in performance by the GSADF test is demonstrated here in simulations

which compare the two tests in terms of their size and power in bubble detection. The new pro-

cedure delivers a consistent dating mechanism when multiple bubbles occur, in contrast to the

original version of the PWY dating strategy which can be inconsistent when multiple bubbles

occur. The technique is therefore well suited to analyzing long historical time series.

A modified version of the original PWY dating algorithm is developed in which the detec-

tion procedure is repeated sequentially with re-initialization after the detection of each bubble.

4



Like the GSADF test, this sequential PWY algorithm works with subsamples of the data with

different initializations in the recursions and therefore in theory is capable of detecting multiple

bubbles. We also consider detection mechanism based on a recursive CUSUM test suggested

recently in Homm and Breitung (2012).

An empirical application of these methodologies is conducted to S&P 500 stock market

data over the period January 1871 to December 2010. The new GSADF approach successfully

identifies all the well-known historical episodes of exuberance and collapse over this period,

including the great crash, the post war boom in 1954, Black Monday in October 1987, the

dot-com bubble and the subprime mortgage crisis. Several short episodes are also identified,

including the famous banking panic of 1907, and the 1974 stock market crash. The strategy

of PWY is much more conservative and locates only two episodes over the same historical

period, catching the 1990s stock bubble but entirely missing the 2007-2008 subprime crisis. The

sequential PWY algorithm is similarly conservative in detecting bubbles in this data set, as is

the CUSUM procedure.

The organization of the paper is as follows. Section 2 discusses reduced form model specifica-

tion issues for bubble testing, describes the new rolling window recursive test, and gives its limit

theory. Section 3 proposes date-stamping strategies based on the new test and outlines their

properties in single, multiple and no bubble scenarios. Section 4 reports the results of simula-

tions investigating size, power, and performance characteristics of the various tests and dating

strategies. In Section 5, the new procedures, the original PWY test, the sequential PWY test,

and the CUSUM test are all applied to the S&P 500 price-dividend ratio data over 1871-2010.

Section 6 concludes. Proofs are given in the Appendix. A companion paper (Phillips, Shi and

Yu, 2013b) develops the limit theory and consistency properties of the dating procedures of the

present paper covering both single and multiple bubble scenarios.
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2 A Rolling Window Test for Identifying Bubbles

2.1 Models and Specification

A common starting point in the analysis of financial bubbles is the asset pricing equation:

Pt =

∞∑
i=0

(
1

1 + rf

)i
Et (Dt+i + Ut+i) +Bt, (1)

where Pt is the after-dividend price of the asset, Dt is the payoff received from the asset (i.e.

dividend), rf is the risk-free interest rate, Ut represents the unobservable fundamentals and Bt

is the bubble component. The quantity P ft = Pt − Bt is often called the market fundamental

and Bt satisfies the submartingale property

Et (Bt+1) = (1 + rf )Bt. (2)

In the absence of bubbles (i.e. Bt = 0), the degree of nonstationarity of the asset price is

controlled by the character of the dividend series and unobservable fundamentals. For example,

if Dt is an I (1) process and Ut is either an I (0) or an I (1) process, then the asset price is

at most an I (1) process. On the other hand, given (2), asset prices will be explosive in the

presence of bubbles. Therefore, when unobservable fundamentals are at most I (1) and Dt is

stationary after differencing, empirical evidence of explosive behavior in asset prices may be

used to conclude the existence of bubbles.3

The pricing equation (1) is not the only model to accommodate bubble phenomena and there

is continuing professional debate over how (or even whether) to include bubble components in

asset pricing models (see, for example, the discussion in Cochrane, 2005, pp. 402-404) and their

relevance in empirical work (notably, Pástor and Veronesi, 2006, but note also the strong critique

3This argument also applies to the logarithmic asset price and the logarithmic dividend under certain condi-
tions. This is due to the fact that in the absence of bubbles, equation (1) can be rewritten as

(1− ρ) pft = κ+ ρed̄−p̄dt + ρeū−p̄ut + ed̄−p̄
∞∑
j=1

ρjEt [4dt+j ] + eū−p̄
∞∑
j=1

ρjEt [4ut+j ] ,

where pft = log(P ft ), dt = log(Dt), ut = log (Ut) , ρ = (1 + rf )−1, κ is a constant, p̄, d̄ and ū are the respective
sample means of pft , dt and ut. The degree of nonstationary of p

f
t is determined by that of dt and ut. Lee

and Phillips (2011) provide a detailed analysis of the accuracy of this log linear approximation under various
conditions.
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of that view in Cooper, 20084). There is greater agreement on the existence of market exuberance

(which may be rational or irrational depending on possible links to market fundamentals), crises

and panics (Kindelberger and Aliber, 2005; Ferguson, 2008). For instance, financial exuberance

might originate in pricing errors relative to fundamentals that arise from behavioral factors, or

fundamental values may themselves be highly sensitive to changes in the discount rate, which

can lead to price run ups that mimic the inflationary phase of a bubble. With regard to the

latter, Phillips and Yu (2011) show that in certain dynamic structures a time-varying discount

rate can induce temporary explosive behavior in asset prices. Similar considerations may apply

in more general stochastic discount factor asset pricing equations. Whatever its origins, explo-

sive or mildly explosive (Phillips and Magdalinos, 2007) behavior in asset prices is a primary

indicator of market exuberance during the inflationary phase of a bubble and it is this time series

manifestation that may be subjected to econometric testing using recursive testing procedures

like the right sided unit root tests in PWY. As discussed above, recursive right sided unit root

tests seem to be particularly effective as real time detection mechanisms for mildly explosive

behavior and market exuberance.

The PWY test is a reduced form approach to bubble detection. In such tests (as distinct

from left sided unit root tests), the focus is usually on the alternative hypothesis (rather than the

martingale or unit root hypothesis) because of interest in possible departures from fundamentals

and the presence of market excesses or mispricing. Right sided unit root tests, as discussed in

PWY, are informative about mildly explosive or submartingale behavior in the data and are

therefore useful as a form of market diagnostic or warning alert.

As with all testing procedures, model specification under the null is important for estimation

purposes, not least because of the potential impact on asymptotic theory and the critical values

used in testing. Unit root testing is a well known example where intercepts, deterministic trends,

or trend breaks all materially impact the limit theory. Such issues also arise in right-tailed unit

root tests of the type used in bubble detection, as studied recently in Phillips, Shi and Yu (2013a;

4“People outside the world of economics may be amazed to know that a significant body of researchers are still
engaged in the task of proving that the pricing of the NASDAQ stock market correctly reflected the market’s true
value throughout the period commonly known as the NASDAQ bubble.... The intellectual contortions required
to rationalize all of these prices beggars belief.”(Cooper, 2008, p.9).
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PSY1). Their analysis allowed for a martingale null with an asymptotically negligible drift to

capture the mild drift in price processes that are often empirically realistic over long historical

periods. The prototypical model of this type has the following weak (local to zero) intercept

form

yt = dT−η + θyt−1 + εt, εt
iid∼
(
0, σ2

)
, θ = 1 (3)

where d is a constant, T is the sample size, and the parameter η is a localizing coeffi cient

that controls the magnitude of the intercept and drift as T → ∞. Solving (3) gives yt =

d t
T η +

∑t
j=1 εj + y0 revealing the deterministic drift dt/T η. When η > 0 the drift is small

relative to a linear trend, when η > 1
2 , the drift is small relative to the martingale component,

and when η = 1
2 the standardized output T

−1/2yt behaves asymptotically like a Brownian motion

with drift which suits many macroeconomic and financial time series. The null specification (3)

includes the pure random walk null of PWY as a special case when η → ∞ and the order of

magnitude of yt is then identical to that of a pure random walk. Estimation of the localizing

coeffi cient η is discussed in PSY1.5

The model specification (3) is usually complemented with transient dynamics in order to

conduct tests for exuberance, just as in standard ADF unit root testing against stationarity.

The recursive approach that we now suggest involves a rolling window ADF style regression

implementation based on such a system. In particular, suppose the rolling window regression

sample starts from the rth1 fraction of the total sample (T ) and ends at the rth2 fraction of the

sample, where r2 = r1+rw and rw is the (fractional) window size of the regression. The empirical

regression model can then be written as

∆yt = αr1,r2 + βr1,r2yt−1 +

k∑
i=1

ψir1,r2∆yt−i + εt, (4)

where k is the lag order and εt
iid∼
(
0, σ2r1,r2

)
. The number of observations in the regression is

Tw = bTrwc , where b.c is the floor function (giving the integer part of the argument). The ADF

statistic (t-ratio) based on this regression is denoted by ADF r2r1 .

5When η > 0.5 the drift component is dominated by the stochastic trend and estimates of η typically converge
to 1/2, corresponding to the order of the stochastic trend. When η ∈ [0, 1

2
], the parameter is consistently estimable,

although only at a slow logarithmic rate when η = 1
2
. See PSY1 for details.

8



We proceed to use rolling regressions of this type to construct a new approach to bubble de-

tection that is particularly useful in the case of multiple bubbles in the sample. The formulation

includes the earlier SADF test procedure developed and used in PWY, which we now briefly

review together with some other recursive and regression switching procedures.

2.2 The SADF Test of PWY

The SADF test relies on repeated estimation of the ADF model on a forward expanding sample

sequence and the test is obtained as the sup value of the corresponding ADF statistic sequence.

In this case, the window size rw expands from r0 to 1, so that r0 is the smallest sample window

width fraction (initializing computation) and 1 is the largest window fraction (the total sample

size) in the recursion. The starting point r1 of the sample sequence is fixed at 0, so the end

point of each sample (r2) equals rw, and changes from r0 to 1. The ADF statistic for a sample

that runs from 0 to r2 is denoted by ADF
r2
0 . The SADF statistic is defined as

SADF (r0) = sup
r2∈[r0,1]

ADF r20 .

The SADF test and other right-sided unit root tests are not the only method of detecting

explosive behavior. An alternative approach is the two-regime Markov-switching unit root test

of Hall, Psaradakis and Sola (1999). While this procedure offers some appealing features like

regime probability estimation, recent simulation work by Shi (2012) reveals that the Markov

switching model is susceptible to false detection or spurious explosiveness. In addition, when

allowance is made for a regime-dependent error variance as in Funke, Hall and Sola (1994)

and van Norden and Vigfusson (1998), filtering algorithms can find it diffi cult to distinguish

periods which may appear spuriously explosive due to high variance and periods when there is

genuine explosive behavior. Furthermore, the bootstrapping procedure embedded in the Markov

switching unit root test is computationally burdensome as Psaradakis, Sola and Spagnolo (2001)

pointed out. These pitfalls make the Markov switching unit root test a diffi cult and somewhat

unreliable tool of financial surveillance.

Other econometric approaches may be adapted to use the same recursive feature of the

SADF test, such as the modified Bhargava statistic (Bhargava, 1986), the modified Busetti-
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Taylor statistic (Busetti and Taylor, 2004), and the modified Kim statistic (Kim, 2000). These

tests are considered in Homm and Breitung (2012) for bubble detection and all share the spirit

of the SADF test of PWY. That is, the statistic is calculated recursively and then the sup

functional of the recursive statistics is calculated for testing. Since all these tests are similar

in character to the SADF test and since Homm and Breitung (2012) found in their simulations

that the PWY test was the most powerful in detecting multiple bubbles, we focus attention in

this paper on extending the SADF test. However, our simulations and empirical implementation

provide comparative results with the CUSUM procedure in view of its good overall performance

recorded in the Homm and Breitung simulations.

Fig. 1: The sample sequences and window widths of the SADF test and the GSADF test.

2.3 The Rolling Window GSADF Test

The GSADF test developed here continues the idea of repeatedly running the ADF test regression

(4) on subsamples of the data in a recursive fashion. However, the subsamples used in the

recursion are much more extensive than those of the SADF test. Besides varying the end point

of the regression r2 from r0 (the minimum window width) to 1, the GSADF test allows the

starting point r1 in (4) to change within a feasible range, i.e. from 0 to r2 − r0. We define the

GSADF statistic to be the largest ADF statistic over all feasible ranges of r1 and r2, and we
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denote this statistic by GSADF (r0) . That is,

GSADF (r0) = sup
r2∈[r0,1]

r1∈[0,r2−r0]

{
ADF r2r1

}
.

Fig. 1 illustrates the comparative sample sequences used in the recursive SADF and GSADF

procedures.

Theorem 1 When the regression model includes an intercept and the null hypothesis is a ran-

dom walk with an asymptotically negligible drift (i.e. dT−η with η > 1/2 and constant d) as in

(3), the limit distribution of the GSADF test statistic is:

sup
r2∈[r0,1]

r1∈[0,r2−r0]


1
2rw

[
W (r2)

2 −W (r1)
2 − rw

]
−
∫ r2
r1
W (r) dr [W (r2)−W (r1)]

r
1/2
w

{
rw
∫ r2
r1
W (r)2 dr −

[∫ r2
r1
W (r) dr

]2}1/2
 (5)

where rw = r2 − r1 and W is a standard Wiener process. The limit theory continues to hold

when the null is a unit root process with asymptotically negligible drift and innovations satisfying

the error condition EC in the Appendix.

The proof of Theorem 1 is given in the Appendix. The limit distribution of the GSADF

statistic is identical to the case where the regression model includes an intercept and the null

hypothesis is a random walk or unit root proces without drift. The usual limit distribution of

the ADF statistic is a special case of equation (5) with r1 = 0 and r2 = rw = 1 while the limit

distribution of the SADF statistic is a further special case of (5) with r1 = 0 and r2 = rw ∈ [r0, 1]

(see Phillips, Shi and Yu, 2012).

Similar to the limit theory of the SADF statistic, the asymptotic GSADF distribution de-

pends on the smallest window size r0. In practice, r0 needs to be chosen according to the total

number of observations T. If T is small, r0 needs to be large enough to ensure there are enough

observations for adequate initial estimation. If T is large, r0 can be set to be a smaller number

so that the test does not miss any opportunity to detect an early explosive episode. In our

empirical application we use r0 = 36/1680, corresponding to around 2% of the data.
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Critical values of the SADF and GSADF statistics are displayed in Table 1. The asymptotic

critical values are obtained by numerical simulations, where the Wiener process is approximated

by partial sums of 2, 000 independent N(0, 1) variates and the number of replications is 2, 000.

The finite sample critical values are obtained from 5, 000 Monte Carlo replications. The lag

order k is set to zero. The parameters (d and η) in the null hypothesis are set to unity.6

Table 1: Critical values of the SADF and GSADF tests against an explosive alternative
(a) The asymptotic critical values

r0 = 0.4 r0 = 0.2 r0 = 0.1
SADF GSADF SADF GSADF SADF GSADF

90% 0.86 1.25 1.04 1.66 1.18 1.89
95% 1.18 1.56 1.38 1.92 1.49 2.14
99% 1.79 2.18 1.91 2.44 2.01 2.57
(b) The finite sample critical values

T = 100 and r0 = 0.4 T = 200 and r0 = 0.4 T = 400 and r0 = 0.4
SADF GSADF SADF GSADF SADF GSADF

90% 0.72 1.16 0.75 1.21 0.78 1.27
95% 1.05 1.48 1.08 1.52 1.10 1.55
99% 1.66 2.08 1.75 2.18 1.75 2.12
(c) The finite sample critical values

T = 100 and r0 = 0.4 T = 200 and r0 = 0.2 T = 400 and r0 = 0.1
SADF GSADF SADF GSADF SADF GSADF

90% 0.72 1.16 0.97 1.64 1.19 1.97
95% 1.05 1.48 1.30 1.88 1.50 2.21
99% 1.66 2.08 1.86 2.46 1.98 2.71

Note: the asymptotic critical values are obtained by numerical simulations with 2,000 iterations. The
Wiener process is approximated by partial sums of N(0, 1) with 2, 000 steps. The finite sample critical
values are obtained from the 5, 000 Monte Carlo simulations. The parameters, d and η, are set to unity.

We observe the following phenomena. First, as the minimum window size r0 decreases,

critical values of the test statistic (including the SADF statistic and the GSADF statistic)

increase. For instance, when r0 decreases from 0.4 to 0.1, the 95% asymptotic critical value of

the GSADF statistic rises from 1.56 to 2.14 and the 95% finite sample critical value of the test

statistic for sample size 400 increases from 1.48 to 2.21. Second, for a given r0, the finite sample

6From Phillips, Shi and Yu (2012), we know that when d = 1 and η > 1/2, the finite sample distribution of
the SADF statistic is almost invariant to the value of η.
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critical values of the test statistic are almost invariant. Notice that they are very close to the

corresponding asymptotic critical values, indicating that the asymptotic critical values may well

be used in practical work.7

Third, critical values for the GSADF statistic are larger than those of the SADF statistic.

As a case in point, when T = 400 and r0 = 0.1, the 95% critical value of the GSADF statistic

is 2.21 while that of the SADF statistic is 1.50. Fig. 2 shows the asymptotic distribution of

the ADF , SADF (0.1) and GSADF (0.1) statistics. The distributions move sequentially to the

right and have greater concentration in the order ADF , SADF (0.1) and GSADF (0.1).

Fig. 2: Asymptotic distributions of the ADF and supADF statistics (r0 = 0.1).

3 Date-stamping Strategies

As discussed in the Introduction, regulators and central banks concerned with practical policy

implementation need to assess whether real time data provide evidence of financial exuberance

- specifically whether any particular observation such τ = bTrc belongs to a bubble phase in the

overall trajectory. The strategy suggested in PWY is to conduct a right-tailed ADF test using

information up to this observation (i.e. information embodied in IbTrc =
{
y1, y2, · · · , ybTrc

}
).

Since it is possible that the data IbTrc may include one or more collapsing bubble episodes, the

ADF test, like earlier unit root/cointegration-based tests for bubbles (e.g., Diba and Grossman,

1988), may result in finding pseudo stationary behavior. The strategy recommended here is to

7For accuracy here we use finite sample ciritical values in the simulations and the empirical applications
reported below.
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perform a backward sup ADF test on IbTrc to improve identification accuracy. We use a similar

flexible window recursion as that described above.

In particular, the backward SADF test performs a sup ADF test on a backward expanding

sample sequence where the end point of each sample is fixed at r2 and the start point varies from

0 to r2 − r0. The corresponding ADF statistic sequence is
{
ADF r2r1

}
r1∈[0,r2−r0]. The backward

SADF statistic is defined as the sup value of the ADF statistic sequence over this interval, viz.,

BSADFr2 (r0) = sup
r1∈[0,r2−r0]

{
ADF r2r1

}
.

Fig. 3: The sample sequences of the ADF test and the backward SADF test.

The ADF test is a special case of the backward sup ADF test with r1 = 0. We denote the

corresponding ADF statistic by ADFr2 . Fig. 3 illustrates the difference between the simple

ADF test and the backward SADF test recursion. PWY propose comparing ADFr2 with the

(right-tail) critical values of the standard ADF statistic to identify explosiveness at observation

bTr2c. The feasible range of r2 runs from r0 to 1. The origination date of a bubble bTrec is

calculated as the first chronological observation whose ADF statistic exceeds the critical value.

We denote the calculated origination date by bT r̂ec. The estimated termination date of a bubble

bT r̂fc is the first chronological observation after bT r̂ec+log (T ) whose ADF statistic goes below

the critical value. PWY impose a condition that for a bubble to exist its duration must exceed

a slowly varying (at infinity) quantity such as LT = log (T ). This requirement helps to exclude

short lived blips in the fitted autoregressive coeffi cient and, as discussed below, can be adjusted

to take into account the data frequency. The dating estimates are then delivered by the crossing
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time formulae

r̂e = inf
r2∈[r0,1]

{
r2 : ADFr2 > cv

βT
r2

}
and r̂f = inf

r2∈[r̂e+log(T )/T,1]

{
r2 : ADFr2 < cv

βT
r2

}
, (6)

where cvβTr2 is the 100 (1− βT ) % critical value of the ADF statistic based on bTr2c observations.

The significance level βT depends on the sample size T and it is assumed that βT → 0 as T →∞.

This control ensures that cvβTr2 diverges to infinity and thereby eliminates the type I error as

T → ∞. In empirical applications, however, βT will often be fixed at some level such as 0.05

rather than using drifting significance levels.

The new strategy suggests that inference about explosiveness of the process at observation

bTr2c be based on the backward sup ADF statistic, BSADFr2 (r0). We define the origination

date of a bubble as the first observation whose backward sup ADF statistic exceeds the critical

value of the backward sup ADF statistic. The termination date of a bubble is calculated as the

first observation after bT r̂ec+δ log (T ) whose backward sup ADF statistic falls below the critical

value of the backward sup ADF statistic. Here it is assumed that the duration of the bubble

exceeds δ log (T ), where δ is a frequency dependent parameter.8 The (fractional) origination

and termination points of a bubble (i.e. re and rf ) are calculated according to the following first

crossing time equations:

r̂e = inf
r2∈[r0,1]

{
r2 : BSADFr2 (r0) > scv

βT
r2

}
, (7)

r̂f = inf
r2∈[r̂e+δ log(T )/T,1]

{
r2 : BSADFr2 (r0) < scv

βT
r2

}
, (8)

where scvβTr2 is the 100 (1− βT ) % critical value of the sup ADF statistic based on bTr2c obser-

vations. Analogously, the significance level βT depends on the sample size T and it goes to zero

as the sample size approaches infinity.

8For instance, one might wish to impose a minimal condition that to be classified as a bubble its duration
should exceed a certain period such as one year (which is inevitably arbitrary). Then, when the sample size is 30
years (360 months), δ is 0.7 for yearly data and 5 for monthly data.
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Fig. 4: An alternative illustration of the sample sequences and window widths of the SADF

test and the GSADF test.

The SADF test is based on repeated implementation of the ADF test for each r2 ∈ [r0, 1].

The GSADF test implements the backward sup ADF test repeatedly for each r2 ∈ [r0, 1]

and makes inferences based on the sup value of the backward sup ADF statistic sequence,

{BSADFr2 (r0)}r2∈[r0,1]. Hence, the SADF and GSADF statistics can respectively be written

as

SADF (r0) = sup
r2∈[r0,1]

{ADFr2} ,

GSADF (r0) = sup
r2∈[r0,1]

{BSADFr2 (r0)} .

Thus, the PWY date-stamping strategy corresponds to the SADF test and the new strategy

corresponds to the GSADF test. The essential features of the two tests are shown in stylized

form in the diagrams of Fig. 4.

3.1 Asymptotic properties of the dating algorithms

The limit theory of these date-stamping strategies requires very detailed calculations which are

provided in our companion paper (Phillips, Shi andYu, 2013b; PSY2). Additional technical

material needed for those derivations is contained in the online supplement to the paper. The
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main results and import of the theory for empirical practice are reviewed here. We look in turn

at cases where there are no bubbles, a single bubble, and multiple bubbles in the data.

No bubbles Under the null hypothesis of the no bubble episodes in the data the asymptotic

distributions of the ADF and SADF statistics follow from Theorem 1. The backward ADF test

with observation bTr2c is a special case of the GSADF test with r1 = 0 and a fixed r2 and the

backward sup ADF test is a special case of the GSADF test with a fixed r2 and r1 = r2 − rw.

Therefore, from the limit theory given in (5), we have the following asymptotic distributions of

these two statistics

Fr2 (W ) :=

1
2r2

[
W (r2)

2 − r2
]
−
∫ r2
0 W (r) drW (r2)

r
1/2
2

{
r2
∫ r2
0 W (r)2 dr −

[∫ r2
0 W (r) dr

]2}1/2 ,

F r0r2 (W ) := sup
r1∈[0,r2−r0]
rw=r2−r1


1
2rw

[
W (r2)

2 −W (r1)
2 − rw

]
−
∫ r2
r1
W (r) dr [W (r2)−W (r1)]

r
1/2
w

{
rw
∫ r2
r1
W (r)2 dr −

[∫ r2
r1
W (r) dr

]2}1/2
 .

Define cvβT as the 100 (1− βT ) % quantile of Fr2 (W ) and scvβT as the 100 (1− βT ) % quantile

of F r0r2 (W ). We know that cvβT → ∞ and scvβT → ∞ as βT → 0. Given cvβT → ∞ and

scvβT →∞ under the null hypothesis of no bubbles, the probabilities of (falsely) detecting the

origination of bubble expansion and the termination of bubble collapse using the backward ADF

statistic and the backward sup ADF statistic tend to zero, so that both Pr {r̂e ∈ [r0, 1]} → 0

and Pr {r̂f ∈ [r0, 1]} → 0.

One bubble PSY2 study the consistency properties of the date estimates r̂e and r̂f under

various alternatives. The simplest is a single bubble episode, like that considered in PWY. The

following generating process used in PWY is an effective reduced form mechanism that switches

between a martingale mechanism, a single mildly explosive episode, collapse, and subsequent

renewal of martingale behavior:

Xt = Xt−11 {t < τ e}+ δTXt−11 {τ e ≤ t ≤ τ f}
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+

 t∑
k=τf+1

εk +X∗τf

 1 {t > τ f}+ εt1 {j ≤ τ f} . (9)

In (9) δT = 1+cT−α with c > 0 and α ∈ (0, 1) , εt
iid∼
(
0, σ2

)
, X∗τf = Xτe +X∗ with X∗ = Op (1),

τ e = bTrec dates the origination of bubble expansion and τ f = bTrfc dates the termination

of bubble collapse. The pre-bubble period N0 = [1, τ e) is assumed to be a pure random walk

process but this is not essential to the asymptotic theory. The bubble expansion period B =

[τ e, τ f ] is a mildly explosive process with expansion rate given by the autoregressive (AR)

coeffi cient δT . As discussed in PWY, mildly explosive processes are well suited to capturing

market exuberance. The process then collapses abruptly to X∗τf , which equals Xτe plus a small

perturbation, and continues its random wandering martingale path over the subsequent period

N1 = (τ f , τ ]. Of course, more general models with various transitional collapse mechanisms

can also be considered. The prototypical system (9) captures the main features of interest when

there is a single bubble episode and is useful in analyzing test properties for a bubble alternative.

Under (9) and certain rate conditions both the ADF and BSADF detectors provide consistent

estimates of the origination and termination dates of the bubble.9 When the point estimates

r̂e and r̂f are obtained as in PWY using the ADF test and the first crossing times (6) then

(r̂e, r̂f )
p→ (re, rf ) as T → ∞ provided the following rate condition on the critical value cvβT

holds
1

cvβT
+

cvβT

T 1/2δτ−τeT

→ 0, as T →∞. (10)

Consistency of (r̂e, r̂f ) was first proved in a working paper (Phillips and Yu, 2009). When the

point estimates r̂e and r̂f are obtained from the BSADF detector using the crossing time criteria

(7) - (8), we again have consistency (r̂e, r̂f )
p→ (re, rf ) as T →∞ under the corresponding rate

condition on the critical value scvβT , viz.,

1

scvβT
+

scvβT

T 1/2δτ−τeT

→ 0, as T →∞. (11)

Hence both strategies consistently estimate the origination and termination points when

there is only a single bubble episode in the sample period. The rate conditions (10) and (11)
9Consistent estimation of the bubble origination date also requires that the minimum window size r0 not

exceed re otherwise the recursive regressions do not include re and the origination date is not identified.
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require for consistency of (r̂e, r̂f ) that
(
cvβT , scvβT

)
pass to infinity and that their orders of

magnitude be smaller than T 1/2δτ−τeT . It is suffi cient for consistency of (r̂e, r̂f ) that the critical

values cvβT and scvβT used in the recursions expand slowly as T →∞, for example at the slowly

varying rate log (T ). The probability of false rejection of normal behavior then goes to zero.

The upper rate condition that delimits the rate at which
(
cvβT , scvβT

)
pass to infinity ensures

the successful detection of mildly explosive behavior under the alternative. In effect, the critical

values used in the crossing times (6) and (7) must not pass to infinity too fast relative to the

strength of exuberance in the data which is governed by the value of the localizing parameter

α < 1 in the AR coeffi cient δT = 1 + cT−α.

Multiple bubbles Multiple bubble episodes may be analyzed in a similar way using more

complex alternative models and more detailed calculations, which are reported in PSY2. The

key outcomes are revealed in the case of two bubble episodes, which are generated in the following

system extending the prototypical model (9):

Xt = Xt−11 {t ∈ N0}+ δTXt−11 {t ∈ B1 ∪B2}+

 t∑
k=τ1f+1

εk +X∗τ1f

 1 {t ∈ N1}

+

 t∑
l=τ2f+1

εl +X∗τ2f

 1 {t ∈ N2}+ εt1 {j ∈ N0 ∪B1 ∪B2} , (12)

In (12) we use the notation N0 = [1, τ1e), B1 = [τ1e, τ1f ] , N1 = (τ1f , τ2e), B2 = [τ2e, τ2f ]

and N2 = (τ2f , τ ]. The observations τ1e = bTr1ec and τ1f = bTr1fc are the origination and

termination dates of the first bubble; τ2e = bTr2ec and τ2f = bTr2fc are the origination and

termination dates of the second bubble; and τ is the last observation of the sample. After the

collapse of the first bubble, Xt resumes a martingale path until time τ2e−1 and a second episode

of exuberance begins at τ2e. The expansion process lasts until τ2f and collapses to a value of

X∗τ2f
. The process then continues on a martingale path until the end of the sample period τ .

The expansion duration of the first bubble is assumed to be longer than that of the second

bubble, namely τ1f − τ1e > τ2f − τ2e. Obvious extensions of (12) include models where the

mildly explosive coeffi cient δT takes different values in regimes B1 and B2, and models where
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the transition mechanisms to martingale behavior over N1 and N2 take more graduated and

possibly different forms, thereby distinguishing the bubble mechanisms in the two cases.

The date-stamping strategy of PWY suggests calculating r1e, r1f , r2e and r2f from the

following equations (based on the ADF statistic):

r̂1e = inf
r2∈[r0,1]

{
r2 : ADFr2 > cv

βT
r2

}
and r̂1f = inf

r2∈[r̂1e+log(T )/T,1]

{
r2 : ADFr2 < cv

βT
r2

}
, (13)

r̂2e = inf
r2∈[r̂1f ,1]

{
r2 : ADFr2 > cv

βT
r2

}
and r̂2f = inf

r2∈[r̂2e+log(T )/T,1]

{
r2 : ADFr2 < cv

βT
r2

}
, (14)

where the duration of the bubble periods is restricted to be longer than log (T ). The new strategy

recommends using the backward sup ADF test and calculating the origination and termination

points according to the following equations:

r̂1e = inf
r2∈[r0,1]

{
r2 : BSADFr2 (r0) > scv

βT
r2

}
, (15)

r̂1f = inf
r2∈[r̂1e+δ log(T )/T,1]

{
r2 : BSADFr2 (r0) < scv

βT
r2

}
, (16)

r̂2e = inf
r2∈[r̂1f ,1]

{
r2 : BSADFr2 (r0) > scv

βT
r2

}
, (17)

r̂2f = inf
r2∈[r̂2e+δ log(T )/T,1]

{
r2 : BSADFr2 (r0) < scv

βT
r2

}
. (18)

An alternative implementation of the PWY procedure is to use that procedure sequentially,

namely to detect one bubble at a time and sequentially re-apply the algorithm. The dating

criteria for the first bubble remain the same (i.e. equation (13)). Conditional on the first bubble

having been found and terminated at r̂1f , the following dating criteria are used to date stamp

a second bubble:

r̂2e = inf
r2∈(r̂1f+εT ,1]

{
r2 :r̂1f ADFr2 > cv

βT
r2

}
and r̂2f = inf

r2∈[r̂2e+log(T )/T,1]

{
r2 :r̂1f ADFr2 < cv

βT
r2

}
,

(19)

where r̂1fADFr2 is the ADF statistic calculated over (r̂1f , r2]. This sequential application of

the PWY procedure requires a few observations in order to re-initialize the test process (i.e.

r2 ∈ (r̂1f + εT , 1] for some εT > 0) after a bubble.
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The asymptotic behavior of these various dating estimates is developed in PSY2 and sum-

marized as follows.10

(i) The PWY procedure: Under (12) and the rate condition (10) the ADF detector provides

consistent estimates (r̂1e, r̂1f )
p→ (r1e, r1f ) of the origination and termination of the first

bubble, but does not detect the second bubble when the duration of the first bubble exceeds

that of the second bubble (τ1f − τ1e > τ2f − τ2e). If the duration of the first bubble is

shorter than the second bubble τ1f − τ1e ≤ τ2f − τ2e, then under the rate condition

1

cvβT
+

cvβT

T 1−α/2
→ 0 as T →∞, (20)

PWY consistently estimates the first bubble and detects the second bubble but with a

delay that misdates the bubble —specifically (r̂2e, r̂2f )
p→ (r2e + r1f − r1e, r2f ).

(ii) The BSADF procedure: Under (12) and the rate condition (11) the BSADF detector

provides consistent estimates (r̂1e, r̂1f , r̂2e, r̂2f )
p→ (r1e, r1f , r2e, r2f ) of the origination and

termination points of the first and second bubbles.

(iii) The sequential PWY procedure: Under (12) and the rate condition (10), sequential

application (with re-initialization) of the ADF detectpr used in PWY provides consistent

estimates (r̂1e, r̂1f , r̂2e, r̂2f )
p→ (r1e, r1f , r2e, r2f ) of the origination and termination points

of the first and second bubbles.

When the sample period includes successive bubble episodes the detection strategy of PWY

consistently estimates the origination and termination of the first bubble but does not con-

sistently date stamp the second bubble when the first bubble has longer duration. The new

BSADF procedure and repeated implementation (with re-initialization) of the PWY strategy

both provide consistent estimates of the origination and termination dates of the two bubbles.

PSY2 also examine the consistency properties of the date-stamping strategies when the duration

of the first bubble is shorter than the second bubble. In this case, the PWY procedure fails

10As mentioned earlier, we also need the condition of r0 ≤ r1e for consistent estimation of the first bubble
origination date.
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to fully consistently date-stamp the second bubble whereas the new strategy again succeeds in

consistently estimating both the origination and termination dates of the two bubbles.

The reason for detection failures in the original PWY procedure lies in the asymptotic

behavior of the recursive estimates of the autoregressive coeffi cient. Under data generating

mechanisms such as (12), a recursive estimate δ̂0,t of δT = 1 + c
Tα that is based on data up to

observation t ∈ B2 is dominated by data over the earlier domain N0 ∪ B1 ∪ N1 and it turns

out that δ̂0,t ∼ 1 − c
Tα < 1. It follows that right sided unit root tests generally will not detect

explosive behavior with such asymptotic behavior in the coeffi cient estimate. This diffi culty

is completely avoided by flexible rolling window methods such as the new BSADF test or by

repeated use of the original PWY procedure with re-initialization that eliminates the effects of

earlier bubble episodes.11

4 Simulations

Simulations were conducted to assess the performance of the PWY and sequential PWY pro-

cedures as well as the CUSUM approach and the new moving window detection procedure

developed in the present paper. We look at size, power, and detection capability for multiple

bubble episodes. The data generating process for size comparisons is the null hypothesis in

(3) with d = η = 1. Discriminatory power in detecting bubbles is determined for two different

generating models — the Evans (1991) collapsing bubble model (see (21) - (24) below) and an

extended version of the PWY bubble model (given by (9) and (12)).

4.1 Size Comparisons

We concentrate on the SADF and GSADF tests. Size is calculated based on the asymptotic

critical values displayed in Table 1 using a nominal size of 5%. The number of replications is

5, 000. From Table 2, it is clear that with k = 0 (no additional transient dynamic lags in the

system), size performance of both tests is satisfactory. We observe that size distortion in the

11To consistently estimate the second bubble using PSY and sequential PWY detectors, the minimum window
size needs to be small enough to distinguish the different episods. In particular, r0 should be less than the distance
separating the two bubbles, i.e. r0 < r2e − r1f . See PSY for more discussion.
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GSADF test is smaller than that of the SADF test. For example, when T = 200 and r0 = 0.2,

size distortion of the GSADF test is 0.6% whereas that of the SADF test is 1.2%.

In addition, we explore the effect of fixed and variable transient dynamic lag length selec-

tion in the tests, using a fixed lag, BIC order selection, and sequential significance testing (e.g.

Campbell and Perron, 1991) with maximum lag 12. First, as evident in Table 2, use of signif-

icance testing to determine order leads to non negligible size distortion particularly when the

maximum lag length (kmax ) is large. For instance, when T = 200, r0 = 0.2, and kmax = 12,

sizes of the SADF and GSADF tests are 0.116 and 0.557 (for a nominal size of 5%), indicating

distortion in both tests, particularly GSADF which is vulnerable because of the short sample

sizes that arise in the implementation of the flexible window width method. Second, there are

downward size distortions for both tests when using a fixed lag order (k = 3). Third, BIC

provides satisfactory sizes for SADF but less so for GSADF, where size distortion is positive and

increases with sample size.

Overall, the magnitude of the size distortion seems smallest when a fixed lag length is used

in the recursive tests. The tests are conservative in this case and GSADF is noticeably less

affected than SADF. There are advantages to conservative testing because size must go to zero for

consistent date stamping of bubbles. So conservative testing helps to reduce the false detection

probability. We therefore recommend using fixed lag length methods in the GSADF testing and

dating algorithms. This approach is used later in the paper in the empirical application.

4.2 Power Comparisons

4.2.1 Collapsing Bubble Alternatives

We first simulate asset price series based on the Lucas asset pricing model and Evans (1991)

collapsing bubble model. The simulated asset prices consist of a market fundamental component

P ft , which combines a random walk dividend process and equation (1) with Ut = 0 and Bt = 0

23



Table 2: Sizes of the SADF and GSADF tests with asymptotic critical values. The data gener-
ating process is equation (3) with d = η = 1. The nominal size is 5%.

k = 0 k = 3 BIC Significance Test
T = 100 and r0 = 0.4
SADF 0.043 0.008 0.040 0.115
GSADF 0.048 0.021 0.064 0.378
T = 200 and r0 = 0.2
SADF 0.038 0.007 0.050 0.116
GSADF 0.044 0.024 0.105 0.557
T = 400 and r0 = 0.1
SADF 0.034 0.007 0.056 0.137
GSADF 0.059 0.037 0.131 0.790

Note: size calculations are based on 5000 replications.

for all t to obtain12

Dt = µ+Dt−1 + εDt, εDt ∼ N
(
0, σ2D

)
(21)

P ft =
µρ

(1− ρ)2
+

ρ

1− ρDt, (22)

and the Evans bubble component

Bt+1 = ρ−1BtεB,t+1, if Bt < b (23)

Bt+1 =
[
ζ + (πρ)−1 θt+1 (Bt − ρζ)

]
εB,t+1, if Bt ≥ b . (24)

This series has the submartingale property Et (Bt+1) = (1 + rf )Bt. Parameter µ is the drift

of the dividend process, σ2D is the variance of the dividend, ρ is a discount factor with ρ−1 =

1 + rf > 1 and εB,t = exp
(
yt − τ2/2

)
with yt ∼ N

(
0, τ2

)
. The quantity ζ is the re-initializing

value after the bubble collapse. The series θt follows a Bernoulli process which takes the value

1 with probability π and 0 with probability 1 − π. Equations (23) - (24) state that a bubble
12An alternative data generating process, which assumes that the logarithmic dividend is a random walk with

drift, is as follows:

lnDt = µ+ lnDt−1 + εt, εt ∼ N
(
0, σ2

d

)
P ft =

ρ exp
(
µ+ 1

2
σ2
d

)
1− ρ exp

(
µ+ 1

2
σ2
d

)Dt.
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grows explosively at rate ρ−1 when its size is less than b while if the size is greater than b, the

bubble grows at a faster rate (πρ)−1 but with a 1− π probability of collapsing. The asset price

is the sum of the market fundamental and the bubble component, namely Pt = P ft +κBt, where

κ > 0 controls the relative magnitudes of these two components.

The parameter settings used by Evans (1991) are displayed in the top line of Table 3 and

labeled yearly. The parameter values for µ and σ2D were originally obtained by West (1988),

by matching the sample mean and sample variance of first differenced real S&P 500 stock price

index and dividends from 1871 to 1980. The value for the discount factor ρ is equivalent to a

5% yearly interest rate.

Table 3: Parameter settings
µ σ2D D0 ρ b B0 π ζ τ κ

Yearly 0.0373 0.1574 1.3 0.952 1 0.50 0.85 0.50 0.05 20
Monthly 0.0024 0.0010 1.0 0.985 1 0.50 0.85 0.50 0.05 50

In our empirical application of the SADF and GSADF tests to S&P 500 data we use monthly

data. Correspondingly in our simulations, the parameters µ and σ2D are set to match the sample

mean and sample variance of the first differenced monthly real S&P 500 stock price index and

dividend series described in the application section below. The discount value ρ equals 0.985

(we allow ρ to vary from 0.975 to 0.999 in the power comparisons). The new setting is labeled

monthly in Table 3.

Fig. 5 depicts one realization of the data generating process with the monthly parameter

settings. As is apparent in the figure, there are several collapsing episodes of different magnitudes

within this particular sample trajectory. Implementation of the SADF and GSADF tests on this

particular realization reveals some of the advantages and disadvantages of the two approaches.

25



Fig. 5: Simulated time series of Pt = P ft + κBt using the Evans collapsing bubble model (21) -

(24) with sample size 400 and monthly parameter settings.

We first implement the SADF test on the whole sample range of this trajectory. We then

repeat the test on a sub-sample which contains fewer collapsing episodes. The smallest window

size considered in the SADF test for the whole sample contains 40 observations (setting r0 =

0.1, T = 400). The SADF statistic for the full trajectory is 0.71,13 which is smaller than the

10% finite sample critical value 1.19 (from Table 1). According to this test, therefore, we would

conclude that there are no bubbles in the sample.

Next suppose that the SADF test starts from the 201st observation, and the smallest regres-

sion window again contains 40 observations (setting r0 = 0.2, T = 200). The SADF statistic

obtained from this sample is 1.3914, which is greater than the 5% finite sample critical value

1.30 (from Table 1). In this case, we reject the null hypothesis of no bubble in the data at

the 5% level. These conflicting results point to some instability in the SADF test: evidently

the SADF test fails to find bubbles when the full sample is utilized whereas when the sample

is truncated to exclude some of the collapse episodes the test succeeds in finding supportive

evidence of bubbles.

These two experiments can be viewed as particular (fixed) component runs within the flexible

window GSADF test. In the first experiment, the sample starting point of the GSADF test r1
13The SADF statistic is obtained from the subsample regression running from the first observation to the peak

of the most significant explosive episode within the sample period (i.e. the 333th observation).
14This value comes from the subsample regression starting with the 201st observation up to the 333th observa-

tion.
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is set to 0, while in the second experiment the sample starting point r1 is fixed at 0.5. The

conflicting results obtained from these two experiments demonstrate the importance of allowing

for variable starting points in the implementation of the test, as is done in the GSADF test.

When the GSADF procedure is applied to the data, the test statistic value is 8.59,15 which

substantially exceeds the 1% finite sample critical value 2.71 (from Table 1). Thus, the GSADF

test finds strong evidence of bubbles in the simulated data. Compared to the SADF test, the

GSADF identifies bubbles without having to arbitrarily re-select sample starting points, giving

an obvious improvement that is useful in empirical applications.16

We now proceed to discuss the results for the full simulation of R = 5000 replications.

The powers shown in Tables 4 and 5 are calculated using 95% quantiles of the finite sample

distributions (Table 1). The smallest window size for both the SADF test and the GSADF test

has 40 observations. The data generating process is the periodically collapsing explosive process

given in (21) - (24). For comparison with the literature, we first set the parameters in the DGP

as in Evans (1991) with sample sizes of 100 and 200. From the left panel of Table 4 (labeled

yearly), the powers of the GSADF test are respectively 7% and 15.2% higher than those of the

SADF test when T = 100 and 200.17

Table 4: Powers of the SADF and GSADF tests. The data generating process is equation
(21)-(24).

Yearly Monthly
SADF GSADF SADF GSADF

T = 100 and r0 = 0.4 0.408 0.478 0.509 0.556
T = 200 and r0 = 0.2 0.634 0.786 0.699 0.833
T = 400 and r0 = 0.1 - - 0.832 0.977

Note: power calculations are based on 5000 replications.

15This value is obtained from the subsample regression which covers the most significant expansion period,
spanning from the 289th observation to the 333th observation.
16Similar phenomena (not reported in detail here) were observed with an alternative data generating process

where the logarithmic dividend is a random walk with drift. Parameters in the alternative data generating
process (monthly) were set as follows: B0 = 0.5, b = 1, π = 0.85, ζ = 0.5, ρ = 0.985, τ = 0.05, µ = 0.001, lnD0 = 1,
σ2

lnD = 0.0001, and Pt = P ft + 500Bt.
17We also considered test results when the lag order is determined by significance testing as in Campbell and

Perron (1991) with a maximum lag order of 12. When T = 200 and r0 = 0.2, the powers of the SADF test and
the GSADF test are 0.565 and 0.661, which are smaller than those in Table 4.

27



Table 4 also displays powers of the SADF and GSADF tests under the DGP with monthly

parameter settings and sample sizes 100, 200 and 400. From the right panel of the table, when

the sample size T = 400, the GSADF test raises test power from 83.2% to 97.7%, giving a 14.5%

improvement. The power improvement of the GSADF test is 4.7% when T = 100 and 13.4%

when T = 200. For any given bubble collapsing probability π in the Evans model, the sample

period is more likely to include multiple collapsing episodes the larger the sample size. Hence,

the advantages of the GSADF test are more evident for large T .

In Table 5 we compare powers of the SADF and GSADF tests with the discount factor ρ

varying from 0.975 to 0.990, under the DGP with the monthly parameter setting. First, due to

the fact that the rate of bubble expansion in this model is inversely related to the discount factor,

powers of both the SADF test and GSADF tests are expected to decrease as ρ increases. The

power of the SADF (GSADF) test declines from 84.5% to 76.9% (99.3% to 91.0%, respectively)

as the discount factor rises from 0.975 to 0.990. Second, as apparent in Table 5, the GSADF

test has greater discriminatory power for detecting bubbles than the SADF test. The power

improvement is 14.8%, 14.8%, 14.5% and 14.1% for ρ = {0.975, 0.980, 0.985, 0.990}.

Table 5: Powers of the SADF and GSADF tests. The data generating process is equations
(21)-(24) with the monthly parameter settings and sample size 400 (r0 = 0.1).
ρ 0.975 0.980 0.985 0.990
SADF 0.845 0.840 0.832 0.769
GSADF 0.993 0.988 0.977 0.910

Note: power calculations are based on 5000 replications.

4.2.2 Mildly Explosive Alternatives

We next consider mildly explosive bubble alternatives of the form generated by (9) and (12).

These models allow for both single and double bubble scenarios and enable us to compare the

finite sample performance of the PWY strategy, the sequential PWY approach, the new dating

28



method and the CUSUM procedure.18 The CUSUM detector is denoted by Crr0 and defined as

Crr0 =
1

σ̂r

bTrc∑
j=bTr0c+1

∆yj with σ̂2r = (bTrc − 1)−1
bTrc∑
j=1

(∆yj − µ̂r)2 ,

where bTr0c is the training sample,19 bTrc is the monitoring observation, µ̂r is the mean of{
∆y1, ...,∆ybTrc

}
, and r > r0. Under the null hypothesis of a pure random walk, the recursive

statistic Crr0 has the following asymptotic property (see Chu, Stinchcombe and White (1996))

lim
T→∞

P
{
Crr0 > cr

√
bTrc for some r ∈ (r0, 1]

}
≤ 1

2
exp (−κα/2) ,

where cr =
√
κα + log (r/r0).20 For the sequential PWY method, we use an automated proce-

dure to re-initialize the process following bubble detection. Specifically, if the PWY strategy

identifies a collapse in the market at time t (i.e. ADFt−1 > cv0.95t−1 and ADFt < cv0.95t )21 we

re-initialize the test from observation t.

We set the parameters y0 = 100 and σ = 6.79 so that they match the initial value and the

sample standard deviation of the differenced series of the normalized S&P 500 price-dividend

ratio described later in our empirical application. The remaining parameters are set to c = 1, α =

0.6 and T = 100. For the one bubble experiment, we set the duration of the bubble to be 15%

of the total sample and let the bubble originate 40% into the sample (i.e. τ f − τ e = b0.15T c

and τ e = b0.4T c). For the two-bubble experiment, the bubbles originate 20% and 60% into

the sample, and the durations are b0.20T c and b0.10T c , respectively. Fig. 6 displays typical

realizations of these two data generating processes.

18Simulations in Homm and Breitung (2012) show that the PWY strategy has higher power than other proce-
dures in detecting periodically collapsing bubbles of the Evans (1991) type, the closest rival being the CUSUM
procedure.
19 It is assumed that there is no structural break in the training sample.
20When the significance level α = 0.05, for instance, κ0.05 equals 4.6.
21We impose the additional restriction of successive realizations ADFt+1 < cv0.95

t+1 and ADFt+2 < cv0.95
t+2 to

confirm a bubble collapse.
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Fig. 6: Typical sample paths generated according to (9) for panel (a) and (12) for panel (b).

We report here a summary of the simulation findings for the main experimental designs. In

simulations, we allow τ e, the bubble location parameter in the single bubble process (13), to be

b0.2T c , b0.4T c and b0.6T c and the duration of bubbles to vary from b0.10T c to b0.20T c. Other

parameter configurations were considered and led to broadly similar findings, so are not reported

here. For each parameter constellation, 5,000 replications were used. Bubbles were identified

using respective finite sample 95% quantiles, obtained from Monte Carlo simulations with 5,000

replications. The minimum window size has 12 observations. We report the empirical mean

and standard deviation (in parentheses) of the number of bubbles identified within the sample

range, along with the proportions of sample paths identified with bubbles (in squared brackets).

Sample paths with no evidence of bubbles found are omitted from the calculation of the mean

and the standard deviation. Tables 6 - 7 provide a selection of the results. The main findings

are as follows.

1. For the single bubble case, powers of the PWY strategy, the sequential PWY approach

and the CUSUM procedure are similar and are slightly lower than that of the new strategy

(Table 6).

2. The power of the tests increase with the duration of bubble expansion, shown in square

brackets in Table 6, and with the value of the autoregressive coeffi cient δT , although this is

not reported here. Hence, bubble detection is more successful when duration of the bubble

is longer (and its expansion rate faster).
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Table 6: Number of bubbles identified for the single bubble DGP with different bubble durations
and locations. Parameters are set as: y0 = 100, c = 1, σ = 6.79, α = 0.6, T = 100. Figures in
parentheses and square brackets are standard deviations and powers of the tests, respectively.

PWY PSY Seq CUSUM
τ e = b0.2Tc
τ f − τ e = b0.10T c 1.05 (0.27) [0.81] 1.25 (0.51) [0.84] 1.36 (0.62) [0.80] 1.09 (0.34) [0.71]
τ f − τ e = b0.15T c 1.04 (0.20) [0.92] 1.23 (0.50) [0.95] 1.36 (0.61) [0.91] 1.04 (0.24) [0.90]
τ f − τ e = b0.20T c 1.04 (0.20) [0.96] 1.22 (0.48) [0.98] 1.35 (0.61) [0.95] 1.03 (0.20) [0.96]

τ e = b0.4Tc
τ f − τ e = b0.10T c 1.18 (0.45) [0.73] 1.24 (0.48) [0.81] 1.35 (0.60) [0.73] 1.17 (0.45) [0.76]
τ f − τ e = b0.15T c 1.17 (0.43) [0.88] 1.22 (0.47) [0.91] 1.33 (0.58) [0.88] 1.13 (0.40) [0.91]
τ f − τ e = b0.20T c 1.17 (0.44) [0.94] 1.22 (0.47) [0.96] 1.31 (0.56) [0.93] 1.13 (0.38) [0.96]

τ e = b0.6Tc
τ f − τ e = b0.10T c 1.32 (0.64) [0.72] 1.26 (0.51) [0.79] 1.37 (0.62) [0.73] 1.26 (0.58) [0.78]
τ f − τ e = b0.15T c 1.30 (0.61) [0.86] 1.25 (0.50) [0.90] 1.32 (0.58) [0.86] 1.23 (0.55) [0.90]
τ f − τ e = b0.20T c 1.30 (0.61) [0.92] 1.26 (0.50) [0.95] 1.28 (0.55) [0.92] 1.23 (0.55) [0.94]

Note: Calculations are based on 5,000 replications. The minimum window has 12 observations.

3. Bubble location has little impact on the accuracy of the PSY and sequential PWY esti-

mators. But the PWY and CUSUM estimators both become less accurate if the bubble

originates at a later stage of the sample period, as shown in parentheses in Table 6. Over-

all, in the one bubble scenario, the sequential PWY procedure tends to over-estimate the

bubble number, the PSY estimator to slightly overestimate bubble number, and the PWY

and CUSUM estimators to be more accurate.

4. In the two-bubble scenario, bubble duration can have an especially large impact on the

PWY strategy, as is clear in Table 7. When the duration of the first bubble is longer than

the second bubble, the mean values of the PWY bubble number estimates are far from

the true value and close to one, indicating substantial underestimation. This is consistent

with the asymptotic theory which shows that when the duration of the first bubble is

longer than the second bubble, the PWY strategy consistently identifies the first bubble

but not the second bubble. When the duration of the second bubble is longer than the first
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bubble, the bias of the estimate is much smaller. For instance, when τ1f − τ1e = b0.1T c

and τ2f−τ2e = b0.2T c, the mean value of the PWY estimates is 1.71, which is much closer

to the true value. This simulation finding corroborates the asymptotic theory, which shows

that the PWY strategy can detect both bubbles under these conditions.

5. Similar to the weakness of the PWY strategy, when the duration of first bubble is longer

than that of the second bubble, the performance of the CUSUM procedure is also biased

downwards to selecting a single bubble. Also, like the PWY procedure, there is obvious

improvement in the performance of the CUSUM procedure when the second bubble lasts

longer (Table 7 final column).

6. As expected, the sequential PWY procedure performs nearly as well as the PSY strategy

in the two bubble case but tends to have higher variation and less power than PSY.

Estimation accuracy of both estimators improves with the durations of bubbles. (Table

7).

7. Overall, substantially better performance in the two bubble case is delivered by the PSY

and sequential PWY estimators, with higher power and much greater accuracy in deter-

mining the presence of more than one bubble (Table 7 column 2 and 3).

5 Empirical Application

We consider a long historical time series in which many crisis events are known to have occurred.

The data comprise the real S&P 500 stock price index and the real S&P 500 stock price index

dividend, both obtained from Robert Shiller’s website. The data are sampled monthly over the

period from January 1871 to December 2010, constituting 1,680 observations and are plotted in

Fig. 6 by the solid (blue) line, which shows the price-dividend ratio over this period to reflect

asset prices in relation to fundamentals, according to the pricing equation (1). One might allow

also for a time-varying discount factor in that equation. If there were no unobservable component

in fundamentals, it follows from the pricing equation that in the absence of bubbles the price-

dividend ratio is a function of the discount factor and the dividend growth rate (e.g., Cochrane,
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Table 7: Number of bubbles identified for the two-bubble DGP with varying bubble duration.
Parameters are set as: y0 = 100, c = 1, σ = 6.79, α = 0.6, τ1e = b0.20T c , τ2e = b0.60T c , T =
100. Figures in parentheses and square brackets are standard deviations and powers of the tests,
respectively.

PWY PSY Seq CUSUM
τ 1f − τ 1e = b0.10Tc
τ2f − τ2e = b0.10T c 1.25 (0.46) [0.87] 1.77 (0.57) [0.92] 1.85 (0.63) [0.86] 1.41 (0.53) [0.84]
τ2f − τ2e = b0.15T c 1.55 (0.53) [0.91] 1.84 (0.54) [0.96] 1.89 (0.57) [0.91] 1.62 (0.52) [0.93]
τ2f − τ2e = b0.20T c 1.71 (0.49) [0.95] 1.86 (0.52) [0.97] 1.85 (0.53) [0.95] 1.68 (0.50) [0.97]

τ 1f − τ 1e = b0.15Tc
τ2f − τ2e = b0.10T c 1.08 (0.30) [0.94] 1.83 (0.54) [0.97] 1.87 (0.61) [0.94] 1.15 (0.39) [0.93]
τ2f − τ2e = b0.15T c 1.28 (0.47) [0.95] 1.94 (0.47) [0.98] 1.95 (0.53) [0.96] 1.48 (0.53) [0.96]
τ2f − τ2e = b0.20T c 1.60 (0.53) [0.97] 1.97 (0.43) [0.99] 1.93 (0.47) [0.97] 1.75 (0.48) [0.98]

τ 1f − τ 1e = b0.20Tc
τ2f − τ2e = b0.10T c 1.05 (0.23) [0.97] 1.83 (0.53) [0.99] 1.89 (0.60) [0.97] 1.06 (0.26) [0.97]
τ2f − τ2e = b0.15T c 1.10 (0.31) [0.97] 1.97 (0.43) [0.99] 1.96 (0.52) [0.98] 1.16 (0.39) [0.97]
τ2f − τ2e = b0.20T c 1.29 (0.48) [0.98] 2.01 (0.38) [0.99] 1.95 (0.45) [0.98] 1.46 (0.54) [0.98]

Note: Calculations are based on 5,000 replications. The minimum window has 12 observations.

1992; Ang and Bekaert, 2006). In such cases, tests for a unit root in the price-dividend ratio

do not preclude the presence of a (stationary or nonstationary) time-varying discount factor

influencing the ratio.

Table 8: The SADF test and the GSADF test of the S&P500 price-dividend ratio
Test Stat. Finite Sample Critical Values

90% 95% 99%
SADF 3.30 1.45 1.70 2.17
GSADF 4.21 2.55 2.80 3.31

Note: Critical values of both tests are obtained from Monte Carlo simulation with 2, 000 replications (
sample size 1,680). The smallest window has 36 observations.

We first apply the summary SADF and GSADF tests to the price-dividend ratio. Table

8 presents critical values for these two tests obtained by simulation with 2, 000 replications

(sample size 1, 680). In performing the ADF regressions and calculating the critical values, the
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smallest window comprised 36 observations. From Table 8, the SADF and GSADF statistics

for the full data series are 3.30 and 4.21, obtained from subsamples 1987M01-2000M07 and

1976M04-1999M06, respectively. Both exceed their respective 1% right-tail critical values (i.e.

3.30 > 2.17 and 4.21 > 3.31), giving strong evidence that the S&P 500 price-dividend ratio had

explosive subperiods. We conclude from both summary tests that there is evidence of bubbles

in the S&P 500 stock market data. These calculations used a transient dynamic lag order k = 0.

The findings are robust to other choices. For example, the same conclusion applies when k = 3,

where the SADF and GSADF tests for the full data series are 2.16 and 3.88 with corresponding

5% critical values of 1.70 and 3.40.

To locate specific bubble periods, we compare the backward SADF statistic sequence with

the 95% SADF critical value sequence, which were obtained from Monte Carlo simulations with

2, 000 replications. The top panel of Fig. 7 displays results for the date-stamping strategy over

the period from January 1871 to December 1949 and the bottom panel displays results over the

rest of the sample period.
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Fig. 7: Date-stamping bubble periods in the S&P 500 price-dividend ratio: the GSADF test.

The identified exuberance and collapse periods after 1900 include the banking panic of 1907

(1907M09-1908M02), the 1917 stock market crash (1917M08-1918M04), the great crash episode

(1928M11-1929M09), the postwar boom in 1954 (1954M09-1956M04), black Monday in October

1987 (1986M03-1987M09), the dot-com bubble (1995M07-2001M08) and the subprime mortgage

crisis (2008M10-2009M04). The durations of those episodes are greater than or equal to half

a year. This strategy also identifies several episodes of explosiveness and collapse whose du-

rations are shorter than six months — including the 1974 stock market crash (1974M07-M12).

Importantly, the new date-stamping strategy not only locates explosive expansion periods but

also identifies collapse episodes. Market collapses have occurred in the past when bubbles in

other markets crashed and contagion spread to the S&P 500 as occured, for instance, during the

dot-com bubble collapse and the subprime mortgage crisis.

35



Fig. 8: Date-stamping bubble periods in the S&P 500 price-dividend ratio: the SADF test.

Fig. 8 plots the ADF statistic sequence against the 95% ADF critical value sequence. We can

see that the strategy of PWY (based on the SADF test) identifies only two explosive periods —

the recovery phase of the panic of 1873 (1879M10-1880M04) and the dot-com bubble (1997M07-

2001M08). If we restrict the duration of bubbles to be longer than twelve months. The new

dating strategy identifies three bubble episodes: the postwar boom in 1954, black Monday in

October 1987 and the dot-com bubble whereas the strategy of PWY identifies only the dot-com

bubble in that case.

Empirical results from the sequential PWY procedure are shown in Fig. 9 which plots the

ADF statistic sequence against the 95% ADF critical value sequence (as for the PWY dating

strategy). As in the simulation exercise (see Section 4.2.2) we use automated re-initialization in

the implementation of sequential PWY. A minimum window size br0T c is needed to initiate the
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recursive regression test, so the sequential PWY procedure is unable to perform detection (and

hence will fail to identify any bubbles that may occur) over the intervening period (t, t+ br0T c)

following a re-intialization at time t. Futhermore, if the PWY strategy fails to detect a bubble,

no re-initialization occurs and the recursive test continues through the sample until a bubble is

detected and a subsequent re-initialization is triggered. Hence, the sequential PWY strategy,

just like PWY, has some inherent disadvantages in detecting multiple bubbles. In practice, one

could potentially pre-divide the sample period into sub-samples for testing but, as shown in the

example of Section 4.2.1, the subsample approach may well be sensitive to the pre-selection of

the sample periods.

The sequential ADF plot has several breaks in the Figure, each corresponding to the re-

initialization of the test procedure following a collapse. The findings from the sequential PWY

test indicate two bubbles after 1900 —the dot-com bubble (1997M12 - 2002M04) and the subprime

mortgage crisis (2008M10 -2009M03). Interestingly, after excluding data from the dot-com bub-

ble collapse and earlier data, the sequential PWY strategy successfully identifies an additional

episode —the subprime mortgage crisis —which the PWY strategy fails to catch (Fig. 8).22

22 If the transient dynamic lag order is k = 3, the backward SADF strategy identifies two additional bubble
episodes (namely, 1945M12-1946M07 and 1969M11-1970M12). The PWY and sequential PWY strategies identify
the same bubble episodes with slight changes in dates.
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Fig. 9: Date-stamping bubble periods in the S&P 500 price-dividend ratio: the sequential

PWY strategy.

For comparison, we applied the CUSUM monitoring procedure to the detrended S&P 500

price-dividend ratio (i.e. to the residuals from the regression of yt on a constant and a linear time

trend). To be consistent with the SADF and GSADF dating strategies, we choose a training

sample of 36 months. Fig. 8 plots the CUSUM detector sequence against the 95% critical

value sequence. The critical value sequence is obtained from Monte Carlo simulation (through

application of the CUSUM detector to data simulated from a pure random walk) with 2,000

replications.
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Fig. 10. Date-stamping bubble periods in the S&P 500 price-dividend ratio: the CUSUM

monitoring procedure.

As is evident in Fig. 10, the CUSUM test identifies four bubble episodes for periods before

1900. For the post-1900 sample, the procedure detects only the great crash and the dot-com

bubble episodes. It does not provide any warning for or acknowledgment of black Monday in

October 1987 and the subprime mortgage crisis in 2008, among other episodes identified by the

GSADF dating strategy. So CUSUM monitoring may be regarded as a relatively conservative

surveillance device.23

23The conservative nature of the test arises from the fact the residual variance estimate σ̂r (based on the data{
y1, ..., ybTrc

}
) can be quite large when the sample includes periodically collapsing bubble episodes, which may

have less impact on the numerator due to collapses, thereby reducing the size of the CUSUM detector.
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6 Conclusion

This paper introduces a new recursive testing procedure and dating algorithm that is useful in

detecting multiple bubble events. The GSADF test is a rolling window right-sided ADF unit

root test with a double-sup window selection criteria. The reason for the double sup is that the

ADF statistic is computed over feasible ranges of the window start points and over a feasible

range of window sizes. As distinct from the SADF test of PWY, the window size is selected using

the double-sup criteria and the ADF test is implemented repeatedly on a sequence of samples,

which moves the window frame gradually toward the end of the sample. Experimenting on

simulated asset prices reveals one of the shortcomings of the SADF test - its limited ability to

find and locate bubbles when there are multiple collapsing episodes within the sample range.

The GSADF test surmounts this limitation and our simulation findings demonstrate that the

GSADF test significantly improves discriminatory power in detecting multiple bubbles. This

advantage is particularly important in the empirical study of long historical data series.

The date-stamping strategy of PWY and the new date-stamping strategy are shown to have

quite different behavior under the alternative of multiple bubbles. In particular, when the sample

period includes two bubbles the strategy of PWY often fails to identify or consistently date stamp

the second bubble, whereas the new strategy consistently estimates and dates both bubbles. The

PWY dating algorithm may be applied sequentially by re-initializing the detection process after

a bubble is found. This sequential application of the PWY dating algorithm has improved

asymptotic properties over PWY in the detection of multiple bubbles but both simulations and

empirical applications show its performance to be more limited in this capacity.

We apply both SADF and GSADF tests, the sequential PWY dating algorithm, and the

CUSUMmonitoring procedure, along with their date-stamping algorithms, to the S&P 500 price-

dividend ratio from January 1871 to December 2010. All four tests find confirmatory evidence

of multiple bubble existence. The price-dividend ratio over this historical period contains many

individual peaks and troughs, a trajectory that is similar to the multiple bubble scenario for

which the PWY date-stamping strategy turns out to be inconsistent. The empirical test results

confirm the greater discriminatory power of the GSADF strategy found in the simulations and
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evidenced in the asymptotic theory. The new date-stamping strategy identifies all the well known

historical episodes of banking crises and financial bubbles over this long period, whereas all other

procedures seem more conservative and locate fewer episodes of exuberance and collapse.
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APPENDIX. Asymptotic Distribution of the GSADF test

Before proving Theorem 1 we give conditions on the innovations and state two preliminary

lemmas whose proofs follow directly by standard methods (Phillips, 1987; Phillips and Perron,

1988; Phillips and Solo, 1992).

Assumption (EC) Let ut = ψ (L) εt = Σ∞j=0ψjεt−j , where Σ∞j=0j
∣∣ψj∣∣ <∞ and {εt} is an i.i.d

sequence with mean zero, variance σ2 and finite fourth moment.

Lemma 7.1 Suppose ut satisfies error condition EC. Define MT (r) = 1/T
∑[Tr]

s=1 us with r ∈
[r0, 1] and ξt =

∑t
s=1 us. Let r2, rw ∈ [r0, 1] and r1 = r2 − rw. The following hold:

(1)
∑t

s=1 us = ψ (1)
∑t

s=1 εs + ηt − η0, where ηt =
∑∞

j=0 αjεt−j, η0 =
∑∞

j=0 αjε−j and
αj = −

∑∞
i=1 ψj+i, which is absolutely summable.

(2) 1T
∑bTr2c

t=bTr1c ε
2
t

p→ σ2rw.

(3)T−1/2
∑[Tr]

t=1 εt
L→ σW (r) .

(4)T−1
∑bTr2c

t=bTr1c
∑t−1

s=1 εsεt
L→ 1

2σ
2
[
W (r2)

2 −W (r1)
2 − rw

]
.

(5)T−3/2
∑bTr2c

t=bTr1c εtt
L→ σ

[
r2W (r2)− r1W (r1)−

∫ r2
r1
W (s) ds

]
.

(6)T−1
∑bTr2c

t=bTr1c
(
ηt−1 − η0

)
εt

p→ 0.

(7)T−1/2
(
η[Tr] − η0

)
p→ 0.

(8)
√
TMT (r)

L→ ψ (1)σW (r) .

(9) T−3/2
∑bTr2c

t=bTr1c ξt−1
L→ ψ (1)σ

∫ r2
r1
W (s) ds.

(10) T−5/2
∑bTr2c

t=bTr1c ξt−1t
L→ ψ (1)σ

∫ r2
r1
W (s) sds.

(11) T−2
∑bTr2c

t=bTr1c ξ
2
t−1

L→ σ2ψ (1)2
∫ r2
r1
W (s)2 ds.

(12) T−3/2
∑bTr2c

t=bTr1c ξtut−j
p→ 0,∀j ≥ 0.

Lemma 7.2 Define yt = α̃T t +
∑t

s=1 us, α̃T = α̃ψ (1)T−η with η > 1/2 and let ut satisfy
condition EC. Then

(a) T−1
bTr2c∑
t=bTr1c

yt−1εt
L→ 1

2
σ2ψ (1)

[
W (r2)

2 −W (r1)
2 − rw

]
.

(b) T−3/2
bTr2c∑
t=bTr1c

yt−1
L→ ψ (1)σ

∫ r2

r1

W (s) ds.
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(c) T−2
bTr2c∑
t=bTr1c

y2t−1
L→ σ2ψ (1)2

∫ r2

r1

W (s)2 ds.

(d) T−3/2
bTr2c∑
t=bTr1c

yt−1ut−j
p→ 0, , j = 0, 1, · · · .

Proof of Theorem 1. The regression model is

∆yt = αr1,r2 + βr1,r2yt−1 +

p−1∑
k=1

φkr1,r2∆yt−k + εt.

Under the null hypothesis that αr1,r2 = α̃T−η and βr1,r2 = 0, we have yt = α̃T t +
∑t

s=1 us

and 4yt = α̃T + ut, where α̃T = ψr1,r2 (1)αr1,r2 and ut = ψr1,r2 (1) εt with ψr1,r2 (1) =(
1− φ1r1,r2L− φ

2
r1,r2L

2 − · · · − φp−1r1,r2L
p−1)−1.

The deviation of the OLS estimate θ̂r1,r2 from the true value θr1,r2 is given by

θ̂r1,r2 − θr1,r2 =

 bTr2c∑
t=bTr1c

XtX
′
t

−1  bTr2c∑
t=bTr1c

Xtεt

 , (25)

where Xt = [α̃T +ut−1 α̃T +ut−2 . . . α̃T +ut−p+1 1 yt−1]′, θ = [φ1r1,r2 φ
2
r1,r2 . . . φ

p−1
r1,r2 αr1,r2 βr1,r2 ]′.

The probability limit of
∑bTr2c

t=bTr1cXtX
′
t is block diagonal from (d) of Lemma 7.2. Therefore, we

only need to obtain the last 2× 2 components of
∑bTr2c

t=bTr1cXtX
′
t and the last 2× 1 component

of
∑bTr2c

t=bTr1cXtεt to calculate the ADF statistics, which are[
Σ′1 Σyt−1

Σ′yt−1 Σy2t−1

]
and

[
Σ′εt

Σ′yt−1εt

]
,

respectively, where Σ′ denotes summation over t = bTr1c , bTr1c + 1, · · · , bTr2c . Based on (3)

in Lemma 7.1 and (a) in Lemma 7.2, the scaling matrix should be ΥT = diag
(√

T , T
)
. Pre-

multiplying equation (25) by ΥT , results in

ΥT

[
α̂r1,r2 − αr1,r2
β̂r1,r2 − βr1,r2

]
=

Υ−1T

 bTr2c∑
t=bTr1c

XtX
′
t


(−2)×(−2)

Υ−1T


−1Υ−1T

 bTr2c∑
t=bTr1c

Xtεt


(−2)×1

 .

Consider the matrix Υ−1T

[∑bTr2c
t=bTr1cXtX

′
t

]
(−2)×(−2)

Υ−1T , whose partitioned form is[ √
T 0

0 T

]−1 [
Σ′1 Σ′yt−1

Σ′yt−1 Σ′y2t−1

] [ √
T 0

0 T

]−1
=

[
T−1Σ′1 T−3/2Σ′yt−1

T−3/2Σ′yt−1 T−2Σ′y2t−1

]
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L→
[

rw ψr1,r2 (1)σr1,r2
∫
r2
r1
W (s) ds

ψr1,r2 (1)σr1,r2
∫
r2
r1
W (s) ds σ2

r1,r2
ψr1,r2 (1)2

∫
r2
r1
W (s)2 ds

]

and the matrix Υ−1T

[∑bTr2c
t=bTr1cXtεt

]
(−2)×1

, for which

[
T−1/2Σεt
T−1Σyt−1εt

]
L→
[

σr1,r2 [W (r2)−W (r1)]
1
2σ

2
r1,r2

ψr1,r2 (1)
[
W (r2)

2 −W (r1)
2 − rw

] ] .
Under the null hypothesis that αr1,r2 = T−η and βr1,r2 = 0,[ √

T (α̂r1,r2 − αr1,r2)

T β̂r1,r2

]
L→
[

rw Ar1,r2
Ar1,r2 Br1,r2

]−1 [
Cr1,r2
Dr1,r2

]
,

where

Ar1,r2 = ψr1,r2 (1)σr1,r2

∫
r2

r1

W (s) ds,

Br1,r2 = σ2
r1,r2

ψr1,r2 (1)2
∫

r2

r1

W (s)2 ds,

Cr1,r2 = σr1,r2 [W (r2)−W (r1)] ,

Dr1,r2 =
1

2
σ2
r1,r2

ψr1,r2 (1)
[
W (r2)

2 −W (r1)
2 − rw

]
.

Therefore, β̂r1,r2 converges at rate T to the following limit variate

T β̂r1,r2
L→ Ar1,r2Cr1,r2 − rwDr1,r2

A2r1,r2 − rwBr1,r2
.

To calculate the t-statistic tr1,r2 =
β̂r1,r2

se(β̂r1,r2)
of β̂r1,r2 , we first find the standard error

se
(
β̂r1,r2

)
. We have

var

([
α̂r1,r2
β̂r1,r2

])
= σ2

r1,r2

[
Σ′1 Σ′yt−1

Σ′yt−1 Σ′y2t−1

]−1
,

so the variance of T β̂r1,r2 can be calculated from

var

([ √
T (α̂r1,r2 − αr1,r2)

T β̂r1,r2

])

= σ2
r1,r2

{[ √
T 0

0 T

]−1 [
Σ′1 Σ′yt−1

Σ′yt−1 Σ′y2t−1

] [ √
T 0

0 T

]−1}−1
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= σ2
r1,r2

[
T−1Σ′1 T−3/2Σ′yt−1

T−3/2Σ′yt−1 T−2Σ′y2t−1

]−1
L→ σ2

r1,r2

[
rw Ar1,r2

Ar1,r2 Br1,r2

]−1
.

It follows that the t-statistic tr1,r2 of β̂r1,r2 satisfies

tr1,r2
L→

1
2rw

[
W (r2)

2 −W (r1)
2 − rw

]
−
∫ r2
r1
W (s) ds [W (r2)−W (r1)]

r
1/2
w

{
rw
∫ r2
r1
W (s)2 ds−

[∫ r2
r1
W (s) ds

]2}1/2 .

By continuous mapping the asymptotic distribution of the GSADF statistic is

sup
r2∈[r0,1]

r1∈[0,r2−r0]


1
2rw

[
W (r2)

2 −W (r1)
2 − rw

]
−
∫ r2
r1
W (s) ds [W (r2)−W (r1)]

r
1/2
w

{
rw
∫ r2
r1
W (s)2 ds−

[∫ r2
r1
W (s) ds

]2}1/2
 ,

giving the stated result.
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1 Introduction

A recent article by Phillips, Wu and Yu (2011, PWY) developed new econometric methodology

for real time bubble detection. When it was applied to Nasdaq data in the 1990s, the algorithm

revealed that evidence in the data supported Greenspan’s declaration of ‘irrational exuberance’

in December 1996 and that this evidence of market exuberance had existed for some 16 months

prior to that declaration. Greenspan’s remark therefore amounted to an assertion that could

have been evidence-based if the test had been conducted at the time.

Greenspan formulated his comment as a question: “How do we know when irrational ex-

uberance has unduly escalated asset values?” It was this very question that the recursive test

procedure in PWY was designed to address. Correspondingly, an element of the methodology

that is critical for empirical applications and policy assessment is the consistency of the test.

Ideally we want a test whose size goes to zero and whose power goes to unity as the sample

size passes to infinity. Then in very large samples there will be no false positive declarations of

exuberance and no false negative assessments where asset price bubbles are missed.

PWY gave heuristic arguments showing that their recursive methodology produced a consis-

tent test for exuberance and they provided a real time dating algorithm for finding the bubble

origination and termination dates that was used in analyzing the Nasdaq data. The present

paper provides a rigorous limit theory showing formal test consistency of the PWY bubble

detection procedure and the consistency of its associated dating algorithm under certain condi-

tions, notably the existence of a single bubble period in the data.1 This limit theory is part of

a much larger formal investigation undertaken here which examines the asymptotic properties

of bubble detection algorithms when there may be multiple episodes of exuberance in the data,

under which the PWY procedure does not perform nearly as well. As argued in our companion

paper Phillips, Shi and Yu (2013b, PSY), data over long historical periods often include several

crises involving financial exuberance and collapse. Bubble detection in this context of multi-

ple episodes of exuberance and collapse is much more complex and is the main subject of the

1The present paper therefore subsumes the results contained in the unpublished working paper of Phillips and
Yu (2009) which is referenced in PWY and which first analyzed the asymptotic properties of the PWY procedure.
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PSY paper, which develops a new moving window bubble detector that has some substantial

advantages for long data series characterised by multiple financial crises.

The dating algorithms of PWY and PSY are now being applied to a wide range of markets

that include energy, real estate, and commodities, as well as financial assets2. This methodology

and its various applications have also attracted the attention of central bank economists, fiscal

regulators, and the financial press.3 It is therefore important that the limit properties and

performance characteristics of these dating algorithms be well understood to assist in guiding

practitioners about the suitable choice of procedures for implementation in empirical work and

policy assessment exercises.

The PWY and PSY strategies for bubble detection and the estimation of any bubble origina-

tion and termination dates involve the comparison of a sequence of recursive test statistics with

a corresponding critical value sequence, the crossing times of the lines being used to provide

the date estimates. The PWY procedure uses recursively calculated right sided unit root test

statistics based on a full sample of observations up to the current data point, whereas PSY use

a moving window recursion of sup statistics based on a sequence of right sided unit root tests

calculated over flexible windows of varying length taken up to the current data point. Inferences

from the PWY and PSY strategies about the presence of exuberance in the data, including the

dating of any exuberance or collapse, are drawn from these test sequences and the corresponding

critical value sequences. The goals of the present paper are to explore the asymptotic and finite

sample properties of these two procedures and to build a methodology for analyzing real time

detector asymptotics in this context.

Our findings can be summarized as follows. First, under some general conditions both the

PWY and PSY detectors are consistent when there is a single bubble in the sample period.

2See Phillips and Yu (2011b), Das et al. (2011), Homm and Breitung (2012), Gutierrez (2013), Bohl et al.
(2013), Etienne et al. (2013), among others.

3For example, a Financial Times article (Meyer, 2013) reports the work of Etienne et al. (2013) which employs
the PSY dating algorithm to identify agricultural commodity bubbles. Recent working papers from the Hong Kong
Monetary Authority (Yiu et al, 2012) and the Central Bank of Colombia (Gómez-González, et al, 2013) use PSY
in studying real estate bubbles in Hong Kong and Columbia. Work for UNCTAD by Gilbert (2010) applies PWY
to date bubbles in commodity prices and test congressional testimony reasoning by Masters (2008), and recent
financial press articles (Phillips and Yu, 2011a, 2013) use PWY to assess current real estate and world stock
market data for evidence of bubbles.
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Second, when there are two bubbles in the sample period, the PWY detector for the first bubble

is consistent, whereas the PWY estimates associated with the second bubble are duration-

dependent. Specifically, the PWY strategy fails to detect the existence of the second bubble

(and hence cannot provide consistent date estimates for the timing of that bubble) when the

first bubble has longer duration than the second. But when the duration of the second bubble

exceeds the first, the PWY strategy can detect the second bubble but only with some delay.

Third, the PSY strategy and (under additional conditions) a sequential implementation of the

PWY strategy (to each individual bubble in turn) do provide consistent detectors for both

bubbles and these results hold irrespective of bubble duration. Thus, the PSY dating algorithm

and sequential application of the PWY procedure have desirable asymptotic properties in a

multiple bubbles scenario. One disadvantage of sequentially applying the PWY procedure is

that suffi cient data is needed between bubbles to implement the procedure and therefore some

origination dates may not be consistently estimated if the origination date is excluded from the

PWY sample recursion.

The paper also reports simulations to evaluate the finite sample performance of these de-

tectors and date estimators, along with an alternative procedure based on CUSUM tests, as

proposed in recent work by Homm and Breitung (2012). The simulation results strongly cor-

roborate the asymptotic theory, indicating that the PSY detector is much more reliable than

PWY. On the other hand and with some exceptions that will be discussed in detail below, se-

quential application of the PWY procedure may perform nearly as well as the PSY algorithm.

The performance characteristics of the CUSUM procedure are found to be similar to those of

PWY. Overall, the results suggest that the PSY detector is a preferred procedure for practical

implementation, especially with long data series involving more than one crisis episode.

The rest of the paper is organized as follows. Section 2 introduces the date stamping pro-

cedures that use recursive regressions and right tailed unit root tests of the type considered in

PWY and PSY. This section also describes the models used to capture mildly explosive bubble

behaviour when there are single and multiple bubble episodes in the data. Section 3 derives

the limit theory for the dating procedures under both single bubble and multiple bubble al-
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ternatives. Finite sample performance is studied in Section 4 and Section 5 concludes. Two

appendices contain supporting lemmas and derivations for the limit theory presented in the

paper covering both single and multiple bubble scenarios. A technical supplement to the paper

(Phillips, Shi and Yu, 2013c) provides a complete set of additional mathematical derivations

that are needed for the limit theory presented here.

2 Bubble Dating Algorithms

This Section introduces three different dating algorithms —the original PWY detector, the PSY

detector, and a sequential version of the PWY detector. The approach in all of these algorithms

is to use recursive right tailed unit root tests to assess evidence for mildly explosive bubble

behaviour. In what follows we use the same models, tests, and notation as the companion paper

PSY to assist joint reading of the two papers.

The null hypothesis is specified as suggested in Phillips, Shi and Yu (2013a): a random walk

(or more generally a martingale) process with an asymptotically negligible drift which we write

in the form

Xt = kT−η +Xt−1 + εt, with constant k and η > 1/2, (1)

where T is the sample size, εt
i.i.d∼

(
0, σ2

)
and X0 = Op (1) . Under these simple conditions,

partial sums of εt satisfy the functional law

T−1/2
bT ·c∑
t=1

εt ⇒ B (·) := σW (·) , (2)

where W is standard Brownian motion. The framework can be extended to allow for martingale

difference sequence and more general weakly dependent innovations under conditions that allow

the limit theory to continue to hold under the null (1), based on the functional law (2), and

under mildly explosive alternatives as in (4) below, the latter based on results in Phillips and

Magdalinos (2007a, 2007b). We maintain the iid error assumption here to keep the exposition

as simple as possible and the paper to manageable length.

The fitted regression model is

∆Xt = α+ βXt−1 + εt, εt
i.i.d∼

(
0, σ2

)
, (3)
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which includes an intercept but no time trend. As in PSY, the fitted model may also be formu-

lated in ADF regression format to allow for any short memory dependence in the innovations.

The results given below continue to hold in that event but full extension to this case will sub-

stantially complicate derivations that are already extremely lengthy.

The test alternative is a mildly explosive bubble process with either a single bubble or

sequence of multiple bubble episodes. The data generating processes that are used to capture

bubble effects are extended versions of the PWY bubble model. That model has a single explosive

episode and collapse within the sample period [1, T ] and has the following form

Xt = Xt−11 {t < τ e}+ δTXt−11 {τ e ≤ t ≤ τ f}

+

 t∑
k=τf+1

εk +X∗τf

 1 {t > τ f}+ εt1 {j ≤ τ f} . (4)

As usual, it is convenient to work with fractions of the sample T and we use the notation t = bTrc

to denote the integer part of Tr for r ∈ [0, 1] . In the process (4) a mildly explosive bubble runs

from τ e = bTrec to τ f = bTrfc with an expansion rate determined by the mildly explosive

coeffi cient δT = 1 + cT−α with c > 0 and α ∈ (0, 1). When the bubble terminates, the process

collapses to a value X∗τf which equals Xτe plus an Op (1) perturbation (i.e. X∗τf = Xτe + X∗)

at period τ f + 1, which represents a re-initialization of the process to a level that relates to the

last pre-bubble observation Xτe . The pre-bubble period N0 = [1, τ e) and post-bubble period

N1 = (τ f , τT ] are assumed to follow a pure random walk process.

The model is readily extended to include multiple bubble episodes. Suppose there are K

bubble episodes in the sample period, represented in terms of sample fraction intervals as Bi =

[τ ie, τ if ] for i = 1, 2, . . . ,K. The shifting dynamics of Xt are then given by the model

Xt = (Xt−1 + εt) 1 {t ∈ N0}+ (δTXt−1 + εt) 1 {t ∈ Bi}

+

K∑
i=1

 t∑
l=τ if+1

εl +X∗τ if

 1 {t ∈ Ni} , (5)

where X∗τ if = Xτ ie + X∗ and the intervening subperiods N0 = [1, τ1e), Nj = (τ j−1f , τ je) with

j = 1, . . . ,K − 1, and NK = (τKf , τT ] are ‘normal’ intervals of pure random walk (or more

generally martingale) evolution.
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The dating algorithms studied here are implemented repeatedly for observations starting

from some initialization bTr0c, where r0 is the minimum window size required to initiate the

regression. For each individual observation t = bTrc, we suppose that interest centres on whether

this particular observation comes from a bubble realization or an interval of normal martingale

behavior. Both the PWY and PSY algorithms use data from the same information set that starts

from the first observation and goes up to the observation of interest (i.e. Ir = {1, 2, . . . , bTrc}).

PWY conduct recursive right tailed unit root tests with sample data running from the first

observation to the current observation t = bTrc. The corresponding unit root t statistic at

t = bTrc is denoted DFr. PSY conduct recursive right tailed unit root tests repeatedly on a

sequence of (backward expanding from observation t) windows of data and perform inference

based on the sup value of this t statistic sequence. Let r1 and r2 denote the start and end points

of the regression. The regression window width rw then equals r2 − r1. With the end point of

the regressions r2 fixed at r (so that the test refers to the state of the process at the current

observation t = bTrc) and r1 ≥ 0, the backward expanding sample sequence extends the window

size rw from r0 to r2 (which is equivalent to varying r1 from 0 to r2 − r0). The corresponding

unit root test sequence is denoted by
{
DF r2r1

}
r1∈[0,r2−r0]. The sup value of the test statistic

sequence is called the backward SDF statistic and is defined as

BSDFr (r0) = sup
r1∈[0,r2−r0],r2=r

{
DF r2r1

}
.

The origination and termination dates of any bubbles that are detected are calculated using

the first crossing principle. Specifically, in the single bubble scenario, the origination (termi-

nation) date of the bubble is the first chronological observation whose DF or BSDF statistic

exceeds (goes below) its corresponding critical value. The duration of a bubble is restricted to

be longer than a slowly varying (at infinity) quantity such as LT = δ log (T ) /T , where δ is a fre-

quency dependent parameter —see PSY for further discussion. The origination and termination

estimators are calculated as the crossing times

PWY : r̂e = inf
r∈[r0,1]

{
r : DFr > cvβT

}
and r̂f = inf

r∈[r̂e+LT ,1]

{
r : DFr < cvβT

}
, (6)

PSY : r̂e = inf
r∈[r0,1]

{
r : BSDFr (r0) > scvβT

}
and r̂f = inf

r∈[r̂e+LT ,1]

{
r : BSDFr (r0) < scvβT

}
,
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(7)

where cvβT and scvβT are the 100 (1− βT ) % critical values of the DF and BSDF statistics.

In the multiple bubbles scenario, estimators associated with the first bubble are defined as

in equation (6) and (7), and denoted by r̂1e and r̂1f . The origination (termination) of bubble i

(for i ≥ 2) is the first chronological observation after r̂i−1f whose DF or BSDF statistic exceeds

(goes below) its corresponding critical value. Structurally,

PWY : r̂ie = inf
r∈[r̂i−1f ,1]

{
r : DFr > cvβT

}
and r̂if = inf

r∈[r̂ie+LT ,1]

{
r : DFr < cvβT

}
(8)

PSY : r̂ie = inf
r∈[r̂i−1f ,1]

{
r : BSDFr (r0) > scvβT

}
and r̂if = inf

r∈[r̂ie+LT ,1]

{
r : BSDFr (r0) < scvβT

}
.

(9)

For the sequential PWY procedure, the dating criteria of the first bubble remains the same

(i.e. equation (6)). For all subsequent bubbles, the sequential procedure uses information

starting from the termination of the previous bubble and ending at the current observation, i.e.

Ii,r =
{⌊
T r̂i−1f

⌋
+ 1, . . . , bTrc

}
for i ≥ 2. Importantly, note that the distance between r and

r̂i−1f needs to be greater than the minimum regression window r0, which restricts the capability

of this sequential procedure to detect bubble activity in the intervening period (r̂i−1f , r0). The

origination and termination dates of bubble i is then calculated as

Seq_PWY : r̂ie = inf
r∈[r̂i−1f+r0,1]

{
r :r̂i−1f DFr > cvβT

}
and r̂if = inf

r∈[r̂ie+LT ,1]

{
r :r̂i−1f DFr < cvβT

}
,

(10)

where r̂i−1fDFr is the DF statistic calculated over
(
r̂i−1f , r

]
.

3 Asymptotic Properties of the Detectors

The asymptotic performance of the dating algorithms is examined in this section. Under the null

hypothesis of no bubble episodes, the limit distributions of the DF and BSDF statistics follow

from PSY (Theorem 1). Both the DF and BSDF statistics are special cases of the GSADF

statistic introduced in PSY. For the DF statistic, the start point of the regression is r1 = 0 and

the end point r2 is fixed at r. Therefore, the limit distribution of the DF statistic under the null

8



hypothesis is

Fr (W ) :=

1
2r
[
W (r)2 − r

]
−
∫ r
0 W (s) dsW (r)

r1/2
{
r
∫ r
0 W (s)2 ds−

[∫ r
0 W (s) ds

]2}1/2 , (11)

where W is a standard Wiener process. For the BSDF statistic, the end point r2 is fixed at r

and the start point r1 varies from 0 to r − r0. The limit distribution of the BSDF statistic is

Fr (W, r0) := sup
r1∈[0,r−r0]
rw=r−r1


1
2rw

[
W (r)2 −W (r1)

2 − rw
]
−
∫ r
r1
W (s) ds [W (r)−W (r1)]

r
1/2
w

{
rw
∫ r
r1
W (s)2 ds−

[∫ r
r1
W (s) ds

]2}1/2
 . (12)

The asymptotic critical values cvβT and scvβT are defined as the 100 (1− βT ) % quantiles of

Fr (W ) and Fr (W, r0) , respectively. Notice that the significance level βT depends on the sample

size T and it is assumed that βT → 0 as T → ∞. This control ensures that cvβT and scvβT

diverge to infinity and thereby under the null hypothesis the probabilities of (falsely) detecting

a bubble using the DF and BSDF statistics, (6) - (10), tend to zero as T →∞.

We next derive the limit distributions under mildly explosive alternatives. We consider

the case of a single bubble and multiple bubbles separately as the properties of some of the

detectors differ markedly in the case of multiple bubbles. The derivations require some careful

calculations involving weak convergence arguments and mildly explosive limit theory, paying

attention to some subtleties in the orders of magnitude of the various components of the test

statistics. The details are provided in the Appendix, together with the technical supplement to

the paper (Phillips, Shi and Yu, 2013c).

Single Bubble Alternative

Theorem 1. Under the data generating process (4), the asymptotic distributions of the DFr

and BSDFr (r0) statistics are as follows:

DFr ∼ a


Fr (W ) if r ∈ N0
T 1/2δτ−τeT

r
3/2
w B(re)

2(re−r1)
∫ re
r1
B(s)ds

if r ∈ B

−T (1−α)/2
(
1
2crw

)1/2
if r ∈ N1

(13)

9



BSDFr (r0) ∼ a


Fr (W, r0) if r ∈ N0
T 1/2δτ−τeT supr1∈[0,r−r0]

{
r
3/2
w B(re)

2(re−r1)
∫ re
r1
B(s)ds

}
if r ∈ B

−T (1−α)/2 supr1∈[0,r−r0]

{(
1
2crw

)1/2}
if r ∈ N1

, (14)

where B (r) ≡ σW (r).

Evidently, for all three cases the order magnitudes of the DF and BSDF statistics are the

same. Specifically, the test statistics diverge to positive infinity when the current observation

falls in the explosive bubble period and to negative infinity when it is in a bubble collapsing

period. Based on these limit distributions, we have the following consistency results for the date

detectors.

Theorem 2 (PWY detector). Suppose r̂e and r̂f are the date estimates obtained from the DF

t statistic crossing times (6). Under the alternative hypothesis of mildly explosive behavior in

model (4), if
1

cvβT
+

cvβT

T 1/2δτ−τeT

→ 0, (15)

we have r̂e
p→ re and r̂f

p→ rf as T →∞.

Theorem 3 (PSY detector). Suppose r̂e and r̂f are the date estimates obtained from the back-

ward sup DF statistic crossing times (7). Under the alternative hypothesis of mildly explosive

behavior in model (4), if
1

scvβT
+

scvβT

T 1/2δτ−τeT

→ 0, (16)

we have r̂e
p→ re and r̂f

p→ rf as T →∞.

These results show that both strategies consistently estimate the origination and termination

points when there is only a single bubble episode in the sample period. The regularity conditions

in Theorems 2 and 3 imply that the orders of magnitude of the critical value expansion rates

need to be smaller than T 1/2δτ−τeT to deliver consistency of r̂e and r̂f . In effect, for consistent

estimation of re the critical value sequence needs to pass to infinity but not too fast —otherwise

the signal from the mildly explosive period under the alternative is not strong enough to ensure

10



that the critical value is exceeded. The first condition (cvβT , scvβT →∞) ensures that there are

no false positives prior to the origination date re. The second condition ( cvβT

T 1/2δτ−τeT

, scvβT

T 1/2δτ−τeT

→ 0)

ensures that the signal from the data during the mildly explosive period dominates that from

the earlier unit root period leading to identifying information that there is now exuberance in

the data.

An implicit restriction in these two results is that the minimum window size r0 is smaller

than the origination date of the bubble re (i.e. r0 < re) so that the recursive regressions

provide information for some r ∈ N0 for comparison to identify the origination point. This

requirement is also implicit in what follows, in particular in later proofs of consistency of the

first bubble orgination date in the multiple bubbles scenario as discussed below. In the event

that r0 ∈ (re, rf ) , then the results given in the second panels of (13) and (14) are relevant and

the origination date of the first bubble is determined to be r0, so re is estimated with delay.

For consistent estimation of rf , both conditions again come into play. The second condition

( cvβT

T 1/2δτ−τeT

, scvβT

T 1/2δτ−τeT

→ 0) ensures that there is no underestimation of rf asymptotically because

for r ≤ rf the signal from the data during the mildly explosive period continues to dominate.

When r > rf , the autoregressive estimate is calculated from data that involves the explosive

episode as well as post explosive (r > rf ) data, which makes the post-collapse data look mean

reverting and, as shown in the proofs of Theorems 2 and 3, the test statistics become negative.

The expansion condition (cvβT , scvβT →∞) then ensures that there is no overestimation of rf
asymptotically.

Multiple Bubble Alternatives

The limit behavior of the recursive DF and BSDF statistics in the presence of multiple bubbles

is much more complicated. The strengths and weaknesses of the various detectors are well

illustrated by considering a mildly explosive process with two bubble episodes. We therefore

confine much of our discussion here to the case of model (5) with K = 2. Even in this case, as

shown below, there are several possibilities depending on the respective durations of the bubbles.

We start with the case where the duration of the first bubble exceeds that of the second
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bubble. Also, to obtain the BSDF asymptotics in Theorems 4 and 5, it is assumed that the

distance separating the termination dates of the first and second bubbles exceeds the minimum

window size (i.e. r2e − r1f > r0). This requirement seems a natural condition to achieve

identification of the second bubble. The effect of its relaxation is considered later.

Theorem 4. Under the data generating process of (5) with K = 2 and τ1f − τ1e > τ2f − τ2e,

the limit behavior of the recursive statistics DFr, BSDFr (r0) and r̂1fDFr is given by:

DFr ∼ a


Fr (W ) if r ∈ N0
T 1/2δτ−τ1eT

r
3/2
w B(r1e)

2(r1e−r1)
∫ r1e
r1

B(s)ds
if r ∈ B1

−T (1−α)/2
(
1
2crw

)1/2
if r ∈ N1 ∪B2 ∪N2

(17)

BSDFr (r0) ∼ a


Fr (W, r0) if r ∈ N0
T 1/2δτ−τ ieT sup

r1∈[0,r−r0]

{
r
3/2
w B(rie)

2(rie−r1)
∫ rie
r1

B(s)ds

}
if r ∈ Bi with i = 1, 2

−T (1−α)/2 sup
r1∈[0,r−r0]

(
1
2crw

)1/2
if r ∈ N1 ∪N2

(18)

r̂1fDFr ∼ a


Fr (W ) if r ∈ N1
T 1/2δτ−τ2eT

r
3/2
w B(r2e)

2(r2e−r1)
∫ r2e
r1

B(s)ds
if r ∈ B2

−T (1−α)/2
(
1
2crw

)1/2
if r ∈ N2

(19)

Evidently from the first panel (17), it is clear that when the duration of the first bubble

exceeds that of the second bubble, the DF statistic diverges to positive infinity when r ∈ B1,

whereas for r ∈ N1 ∪B2 ∪N2, the statistic is asymptotically equivalent to −T (1−α)/2
(
1
2crw

)1/2
and tends to negative infinity as T →∞. Importantly, therefore, the behavior of the DF statistic

during the second (shorter) bubble B2 is the same as it is for the normal martingale periods

N1 and N2. Hence, the DF statistic does not have discriminatory power for second bubble

detection when the duration of the second bubble is less than that of the first bubble.

From the second panel (18), the behavior of the BSDF statistic in both bubble periods B1

and B2 is the same and is distinct from that of the normal periods N0, N1 and N2. Unlike the

DF statistic, the BSDF statistic therefore has discriminatory power in detecting both bubbles.

From the final panel (19), it is clear that the limit behavior of the sequential DF statistic r̂1fDFr

is the same as that of the BSDF statistic for r ∈ B2 and r ∈ N2. Hence, like BSDF, the sequential

DF statistic has discriminatory power for the two bubble periods.
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Next consider the case where the duration of the second bubble exceeds that of the first

bubble.

Theorem 5. Under the data generating process of (5) with K = 2 and τ1f − τ1e ≤ τ2f − τ2e,

the limit behavior of the recursive statistics DFr, BSDFr (r0) and r̂1fDFr is as follows:

DFr ∼ a



Fr (W ) if r ∈ N0
T 1/2δτ−τ1eT

r
3/2
w B(r1e)

2(r1e−r1)
∫ r1e
r1

B(s)ds
if r ∈ B1

−T (1−α)/2
(
1
2crw

)1/2
if r ∈ N1 ∪N2

−T (1−α)/2
(
1
2crw

)1/2
if r ∈ B2 and r1f − r1e > r − r2e

T 1−α/2
[

cr3w
2(r1e−r1+r2e−r1f)

]1/2
if r ∈ B2 and r1f − r1e ≤ r − r2e

(20)

BSDFr (r0) ∼ a


Fr (W, r0) if r ∈ N0
T 1/2δτ−τ ieT sup

r1∈[0,r−r0]

{
r
3/2
w B(rie)

2(rie−r1)
∫ rie
r1

B(s)ds

}
if r ∈ B1 ∪B2

−T (1−α)/2 sup
r1∈[0,r2−r0]

(
1
2crw

)1/2
if r ∈ N1 ∪N2

(21)

r̂1fDFr ∼ a


Fr (W ) if r ∈ N1
T 1/2δτ−τ2eT

r
3/2
w B(rie)

2(rie−r1)
∫ rie
r1

B(s)ds
if r ∈ B2

−T (1−α)/2
(
1
2crw

)1/2
if r ∈ N2

. (22)

As is evident in panels (21) and (22) of this theorem, the limit behaviors of the BSDF

statistic and sequential DF statistic are identical to those that apply in the earlier case where

τ1f − τ1e > τ2f − τ2e. Thus both procedures have the same discriminatory capability for

identifying bubble episodes in the data. Again, results are very different for the DF statistic

where the behavior of the statistic during the second bubble (r ∈ B2) is contingent on the

timing of latest date (r) in the recursion. In particular, when r ∈ B2, the limit behavior of

the DF statistic depends on the relative length of r1f − r1e (the duration of the first bubble)

and r − r2e (the segment of the second bubble that is included in data used in the recursion).

When r1f − r1e exceeds r − r2e, the statistic diverges to negative infinity, just as for the case

where τ1f − τ1e > τ2f − τ2e. Thus, in this case there is insuffi cient data to identify the second

bubble period. However, as is clear from the final asymptotic expression in (20), behavior

changes dramatically as soon as there is more data. Specifically, when the segment of the second
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bubble included in the recursive regression exceeds the duration of the first bubble (i.e., when

r − r2e ≥ r1f − r1e ) the sign in the limit behavior of the DF statistic changes and the statistic

now diverges to positive infinity rather than negative infinity. The order of the magnitude

in the divergence also rises (from T (1−α)/2 to T 1−α/2). It follows that the DF statistic has

discriminatory power once there is suffi cient data for this test to identify a second bubble - that

is, as soon as data from the second bubble dominates that of the first bubble.

With the limit behavior of the recursive tests in hand, results on the consistency properties

of the bubble date detectors now follow. It is convenient to separate the results according to

each of the recursive tests and contingent conditions regarding duration of the bubbles.

Theorem 6 (PWY detector). Suppose r̂1e, r̂1f , r̂2e and r̂2f are obtained from the DF test based

on the t statistic (8). Given the alternative hypothesis of mildly explosive behavior in model (5)

with K = 2 and durations satisfying τ1f − τ1e > τ2f − τ2e, if

1

cvβT
+

cvβT

T 1/2δτ−τ1eT

→ 0,

we have r̂1e
p→ r1e and r̂1f

p→ r1f as T → ∞; and r̂2e and r̂2f are not consistent estimators of

r2e and r2f .

Theorem 7 (PWY detector). Suppose r̂1e, r̂1f , r̂2e and r̂2f are obtained from the DF test based

on the t statistic (8). Given the alternative hypothesis of mildly explosive behavior in model (5)

with K = 2 and durations satisfying τ1f − τ1e ≤ τ2f − τ2e, if

1

cvβT
+

cvβT

T 1/2δτ−τ1eT

→ 0,

we have r̂1e
p→ r1e and r̂1f

p→ r1f ; if

1

cvβT
+

cvβT

T 1−α/2
→ 0

we have r̂2e
p→ r2e + r1f − r1e and r̂2f

p→ r2f as T →∞.

Theorem 8 (PSY detector). Suppose r̂1e, r̂1f , r̂2e and r̂2f are obtained from the backward sup

DF test based on the t statistic (9). Given the alternative hypothesis of mildly explosive behavior
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in model (5) with K = 2, if

1

scvβT
+

scvβT

T 1/2δτ−τ ieT

→ 0 with i = 1, 2,

we have r̂1e
p→ r1e, r̂1f

p→ r1f , r̂2e
p→ r2e and r̂2f

p→ r2f as T →∞.

Theorem 9 (Sequential PWY detector). Suppose r̂1e, r̂1f , r̂2e and r̂2f are obtained from se-

quential application of the DF test based on the t statistics (6) and (10). Given the alternative

hypothesis of mildly explosive behavior in model (5) with K = 2, if

1

cvβT
+

cvβT

T 1/2δτ−τ ieT

→ 0,

we have r̂1e
p→ r1e, r̂1f

p→ r1f , r̂2e
p→ r2e and r̂2f

p→ r2f as T →∞.

Theorems 6 - 9 characterize the consistency properties of the detectors when there are two

bubble episodes in the observed data. The results depend on the detector and certain side

conditions regarding the duration of the bubbles. Importantly, the PWY strategy consistently

estimates the origination and termination of the first bubble but not the second bubble. When

the duration of the first bubble exceeds that of the second bubble, the PWY strategy fails to

detect the second bubble. When the duration of the second bubble exceeds the first, the PWY

recursion detects the presence of a second bubble but with a delay measured by the duration of

the first bubble (r1f − r1e). The PWY detector is therefore inconsistent in date stamping the

second bubble even when the conditions favor its detection. In contrast, the PSY and sequential

PWY recursions are both consistent date detectors for the origination and termination of the

two bubbles irrespective of their relative durations. These procedures are therefore robust to

bubble duration.

Theorems 6 - 9 can be extended to scenarios with multiple bubbles (K > 2). In this case,

if the duration of bubble i+ 1 is less than that of bubble i for some i ∈ {1, 2, · · · ,K − 1}, then

the PWY recursion may, under certain conditions such as increasing duration up to bubble i,

detect the presence of bubble i, but it will not detect bubble i + 1. In contrast, the PSY and

sequential PWY strategies detect each of the K bubbles, with fully consistent date detection by

the PSY recursion.
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We now consider the extreme scenario, mentioned earlier, where the minimum window length

r0 exceeds the distance between the termination dates of the two bubbles. Suppose K = 2. For

the sequential PWY procedure, the first regression after re-initialization from the end point of

the first bubble now runs from period N1 directly to N2, so this procedure completely passes over

the second bubble and is unable to detect it. Somewhat remarkably however, the PSY strategy

still has some detective capability for the second bubble depending on the relative length of

τ1f − τ1e and τ2 − τ2e. Specifically, for observations in the second bubble episode (i.e. r ∈ B2),

their backward expanding regression sample sequences does not include the case of τ1 ∈ N1 and

τ2 ∈ B2 when r0 > r2f − r1f . Hence, the limit behavior of BSDFr (r0) under the two-bubble

data generating process is

BSDFr (r0) ∼a


−T (1−α)/2 sup

r1∈[0,r2−r0]

(
1
2crw

)1/2
if r ∈ B2 and τ1f − τ1e > τ2 − τ2e

T 1−α/2
(

cr3

2(r1e+r2e−r1f)

)1/2
if r ∈ B2 and τ1f − τ1e ≤ τ2 − τ2e

. (23)

Then, if τ1f − τ1e > τ2 − τ2e, the limit behavior of BSDFr (r0) at r ∈ B2 is the same as when

r ∈ N1 ∪N2, so in that event the PSY strategy also cannot detect the second bubble. But when

τ1f − τ1e ≤ τ2 − τ2e, the limit behavior of BSDFr (r0) at r ∈ B2 is divergent with an order

magnitude of T 1−α/2. Hence, even though r0 > r2f −r1f , the PSY strategy is still able to detect

the second bubble (with a delay of r1f − r1e in the estimated origination date) as long as the

duration of the second bubble exceeds the first bubble.

A less extreme scenario is the case where r2e − r1f < r0 ≤ r2f − r1f . That is, the minimum

window size exceeds the distance separating the two bubbles but does not exceed the distance

between the termination dates of these two bubbles. In this circumstance, the limit behaviors

of BSDFr (r0) and r̂1fDFr remain the same as in (21) and (22) for r1f + r0 ≤ r ≤ r2f (the

later segment of B2). However, for observations prior to that in B2, the r̂1fDFr statistic does

not exist by construction and the BSDF statistic follows the limit behavior of (23). Therefore,

there will be delay in estimates of the second bubble origination date using both the PSY and

sequential PWY strategies. However, the delay is potentially smaller using the PSY strategy

due to the last panel of (23).
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The advantage of the PSY strategy over the sequential PWY procedure is revealed in

the simulations reported below which consider some less extreme cases. For instance, when

r3e−r2f < r0 < r3f −r2f (i.e. 0.05 < 0.12 < 0.15) as in the first panel of Table 10, the detection

rate of the sequential PWY strategy is zero as oppose to 62% for the PSY strategy.

4 Simulation Evidence

This section reports simulations to explore the finite sample performance of the PSY, PWY,

sequential PWY, and CUSUM procedures for bubble detection. These simulations focus on

detection rates and estimation accuracy of the dating algorithms of these procedures. They

complement the findings reported in PSY and examine performance characteristics in systems

with many bubbles.

Experiments are conducted with generating models that involve up to three separate bubbles.

The generating system for single, dual and three bubbles are as in (4) and (5). The parameter

settings follow those used in PSY, so that y0 = 100, σ = 6.79, c = 1 and T = 100. In

the single bubble setting, we explore the sensitivities of the dating strategies to the parameters

determining the magnitude of the bubbles (the bubble expansion rate α and the bubble duration

dT = τ f−τ e), the bubble location parameter τ e and the sample size T . We focus our attention on

the impact of bubble durations in the two bubble and three bubble settings. For each parameter

constellation, 5,000 replications were used. Bubbles were identified using respective finite sample

95% quantiles, obtained from simulations with 5,000 replications. The minimum window size

has 12 observations.

We report the proportion of samples in which a bubble was successfully detected, along with

the empirical mean and standard deviation (in parentheses) of the estimated origination and

termination dates. Successful detection of a bubble is defined as an outcome where the estimated

origination date is greater than or equal to the true origination date and smaller than the true

termination date of that particular bubble (i.e. rie ≤ r̂ie < rif ).
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4.1 A Single Bubble

In Tables 1 and 2, the bubble expansion rate α and bubble duration dT can each take three values:

specifically, the expansion rate α ∈ {0.60, 0.55, 0.50} with corresponding autoregressive coeffi -

cient δT ∈ {1.04, 1.05, 1.07} when T = 100; and duration is dT ∈ {b0.10T c , b0.15T c , b0.20T c}.

Evidently for all algorithms the bubble detection rate increases with the value of the autore-

gressive coeffi cient δT and the bubble duration dT . Moreover, a higher autoregressive coeffi cient

results in more timely detection of the bubble, whereas longer bubble duration is associated

with longer delay (i.e. r̂e − re). For instance, the delay in the PSY estimate reduces from 0.05

to 0.03 when δT increases from 1.04 to 1.07 and the delay increases from 0.04 to 0.06 when the

bubble duration extends from b0.10T c to b0.20T c.

Table 1: Detection rate and estimation of the origination and termination dates under single
bubble DGP and different bubble expansion rates. Parameters are set to: y0 = 100, c = 1, σ =
6.79, τ e = b0.4T c , τ f − τ e = b0.15T c , T = 100. Figures in parentheses are standard deviations.

PWY PSY Seq CUSUM
α = 0.60, δT = 1.04
Detection Rate 0.78 0.86 0.80 0.86
re = 0.40 0.46 (0.04) 0.45 (0.03) 0.46 (0.03) 0.46 (0.03)
rf = 0.55 0.55 (0.01) 0.55 (0.01) 0.55 (0.01) 0.55 (0.01)

α = 0.55, δT = 1.05
Detection Rate 0.85 0.91 0.86 0.91
re = 0.40 0.45 (0.03) 0.44 (0.03) 0.45 (0.03) 0.45 (0.03)
rf = 0.55 0.55 (0.00) 0.55 (0.01) 0.55 (0.01) 0.55 (0.01)

α = 0.50, δT = 1.07
Detection Rate 0.90 0.94 0.91 0.93
re = 0.40 0.45 (0.03) 0.43 (0.03) 0.45 (0.03) 0.44 (0.03)
rf = 0.55 0.55 (0.00) 0.55 (0.00) 0.55 (0.00) 0.55 (0.01)

Note: Calculations are based on 5,000 replications. The minimum window has 12 observations.

In Table 3, the location parameter τ e varies from b0.2T c to b0.6T c. When the bubble

originates at a later stage of the sample, the bubble detection rates of all strategies are lower.

Table 4 monitors the effects of increasing the sample size from 100 to 400. Evidently, the bubble
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Table 2: Detection rate and estimation of the origination and termination dates under single
bubble DGP and different bubble durations. Parameters are set to: y0 = 100, c = 1, σ =
6.79, α = 0.6, τ e = b0.4T c , T = 100. Figures in parentheses are standard deviations.

PWY PSY Seq CUSUM
τ f − τ e = b0.10T c
Detection Rate 0.57 0.71 0.57 0.69
re = 0.40 0.44 (0.02) 0.44 (0.02) 0.44 (0.02) 0.44 (0.02)
rf = 0.50 0.50 (0.00) 0.50 (0.00) 0.50 (0.01) 0.50 (0.01)

τ f − τ e = b0.15T c
Detection Rate 0.78 0.86 0.80 0.86
re = 0.40 0.46 (0.04) 0.45 (0.03) 0.46 (0.03) 0.46 (0.03)
rf = 0.55 0.55 (0.01) 0.55 (0.01) 0.55 (0.01) 0.55 (0.01)

τ f − τ e = b0.20T c
Detection Rate 0.87 0.93 0.88 0.92
re = 0.40 0.47 (0.04) 0.46 (0.04) 0.47 (0.04) 0.46 (0.04)
rf = 0.60 0.60 (0.01) 0.60 (0.01) 0.60 (0.01) 0.60 (0.01)

Note: Calculations are based on 5,000 replications. The minimum window has 12 observations.

detection rate increases with the sample size as expected. But the time needed to detect bubbles

in all algorithms is largely unaffected by the location of the bubble and the sample size.

The most striking finding in Tables 1 - 3 is the superiority of the PSY strategy relative to

the other algorithms in the single bubble case. The PSY strategy has a higher rate of bubble

detection and provides a more accurate estimate of the origination date. All strategies deliver

a good detection rate of the termination date of the bubble, which is no doubt associated with

the sharp collapse specification in the model formulation.

4.2 Two Bubbles

Two duration scenarios feature in the dual bubble simulations. In one the first bubble has longer

duration (Table 5), while in the other the second bubble has longer duration (Table 6). The

bubbles originate 20% and 60% into the sample and the expansion rate of the two bubbles is

1.04 (i.e. α = 0.6).

In Table 5, the duration of the first bubble is 20% of the total sample. The duration of the
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Table 3: Detection rate and estimation of the origination and termination dates under single
bubble DGP and different bubble locations. Parameters are set to: y0 = 100, c = 1, σ = 6.79, α =
0.6, τ f − τ e = b0.15T c , T = 100. Figures in parentheses are standard deviations.

PWY PSY Seq CUSUM
τ e = b0.2T c
Detection Rate 0.88 0.91 0.87 0.87
re = 0.20 0.26 (0.03) 0.25 (0.03) 0.26 (0.03) 0.26 (0.03)
rf = 0.35 0.35 (0.01) 0.35 (0.01) 0.35 (0.01) 0.35 (0.01)

τ e = b0.4T c
Detection Rate 0.78 0.86 0.80 0.86
re = 0.40 0.46 (0.04) 0.45 (0.03) 0.46 (0.03) 0.46 (0.03)
rf = 0.55 0.55 (0.01) 0.55 (0.01) 0.55 (0.01) 0.55 (0.01)

τ e = b0.6T c
Detection Rate 0.72 0.83 0.74 0.82
re = 0.60 0.66 (0.03) 0.65 (0.03) 0.66 (0.03) 0.65 (0.03)
rf = 0.75 0.75 (0.01) 0.75 (0.01) 0.75 (0.01) 0.75 (0.01)

Note: Calculations are based on 5,000 replications. The minimum window has 12 observations.

second bubble is shorter than the first one, taking values dT = τ2f − τ2e = b0.10T c , b0.15T c.

As anticipated from asymptotic theory, PWY fails to detect the second bubble in this dura-

tion scenario. For instance, when dT = b0.10T c, the proportion of samples where the second

bubble is detected using PWY is negligible (around 0.01). Noticeably, all algorithms perform

well in identifying the first bubble. The average delay in detecting this bubble is four to five

observations.

The opposite setting is considered in the simulations reported in Table 6. Here the duration

of the first bubble is fixed at b0.10T c and the duration of the second bubble varies from b0.10T c

to b0.20T c. Several results emerge from the table. First, there is no dramatic performance

difference in identifying the first bubble among the dating algorithms. It is interesting to note

that, due to its shorter bubble duration, the detection rates for the first bubble are lower than

those in Table 5. Second, we observe a significant boost in the second bubble detection rate for

the PWY strategy. In particular, when the duration of the second bubble is twice as long as the

first, the detection rates of the PWY strategy is 76%. This outcome contrasts sharply with the
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Table 4: Detection rate and estimation of the origination and termination dates under single
bubble DGP and different sample sizes. Parameters are set to: y0 = 100, c = 1, σ = 6.79, α =
0.60, τ e = b0.4T c , τ f − τ e = b0.15T c , τ f − τ e = b0.15T c. Figures in parentheses are standard
deviations.

PWY PSY Seq CUSUM
T = 100
Detection Rate 0.78 0.86 0.80 0.86
re = 0.40 0.46 (0.04) 0.45 (0.03) 0.46 (0.03) 0.46 (0.03)
rf = 0.55 0.55 (0.01) 0.55 (0.01) 0.55 (0.01) 0.55 (0.01)

T = 200
Detection Rate 0.80 0.93 0.83 0.89
re = 0.40 0.46 (0.04) 0.45 (0.04) 0.46 (0.04) 0.45 (0.03)
rf = 0.55 0.55 (0.01) 0.54 (0.02) 0.55 (0.02) 0.55 (0.02)

T = 400
Detection Rate 0.86 0.99 0.89 0.86
re = 0.40 0.46 (0.04) 0.45 (0.04) 0.46 (0.04) 0.45 (0.03)
rf = 0.55 0.55 (0.02) 0.54 (0.04) 0.54 (0.02) 0.54 (0.03)

Note: Calculations are based on 5,000 replications. The minimum window has 12 observations.

PWY detection rates for the second bubble displayed in Table 5. Third, there are relatively long

delays in PWY detection of the second bubble. As a case in the point, when the duration of the

second bubble is b0.20T c, the PWY estimate of the origination date of the second bubble is 0.71

with a delay of 11 observations (nearly twice as long as the delay in detection of 6 observations

when using PSY). Those findings corroborate closely the asymptotic theory, which shows how

the PWY detector consistently estimates the first bubble but only identifies the second bubble

with some delay when τ2f − τ2e > τ1f − τ1e.

In both experiments (Tables 5 and 6), the performance of the CUSUM procedure follows

closely that of the PWY procedure. The PSY and the sequential PWY detectors are much more

reliable in all cases, as shown in their higher detection rates and more timely detection of both

bubbles. Overall, the findings indicate that the PSY strategy provides the best performance

when there are two bubbles in the time series.
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Table 5: Detection rate and estimation of the origination and termination dates under two
bubble DGP with shorter second bubble durations. Parameters are set to: y0 = 100, c =
1, σ = 6.79, α = 0.6, τ1e = b0.20T c , τ2e = b0.60T c , τ1f − τ1e = b0.20T c , T = 100. Figures in
parentheses are standard deviations.

PWY PSY Seq CUSUM
τ2f − τ2e = b0.10T c
Detection Rate (1) 0.93 0.97 0.93 0.95
r1e = 0.20 0.26 (0.04) 0.26 (0.04) 0.26 (0.04) 0.27 (0.04)
r1f = 0.40 0.40 (0.01) 0.40 (0.01) 0.40 (0.01) 0.40 (0.01)

Detection Rate (2) 0.01 0.73 0.67 0.03
r2e = 0.60 0.67 (0.02) 0.64 (0.02) 0.64 (0.02) 0.66 (0.02)
r2f = 0.70 0.70 (0.00) 0.70 (0.00) 0.70 (0.00) 0.70 (0.00)

τ2f − τ2e = b0.15T c
Detection Rate (1) 0.93 0.97 0.93 0.95
r1e = 0.20 0.26 (0.04) 0.26 (0.04) 0.26 (0.04) 0.27 (0.04)
r1f = 0.40 0.40 (0.01) 0.40 (0.01) 0.40 (0.01) 0.40 (0.02)

Detection Rate (2) 0.05 0.89 0.83 0.13
r2e = 0.60 0.70 (0.03) 0.65 (0.03) 0.65 (0.03) 0.70 (0.03)
r2f = 0.75 0.75 (0.00) 0.75 (0.01) 0.75 (0.01) 0.75 (0.01)

Note: Calculations are based on 5,000 replications. The minimum window has 12 observations.

4.3 Three bubbles

Table 7 - 10 report findings for the three bubble case. In Tables 7 - 9, we adjust the duration

of one bubble to dT ∈ {b0.10T c , b0.20T c} and fix the durations of the other two bubbles. The

bubbles originate 15%, 45% and 75% into the sample and the bubble expansion rate is 1.04 in

each case.

Results are similar to the two bubble case and are consistent with asymptotic theory in the

more complex scenarios of multiple bubbles. First, when the duration of bubble i (for i = 1, 2)

is longer than bubble i+ 1, theory indicates that the PWY strategy is not capable of detecting

the presence of bubble i + 1. The simulation findings in Table 7 show that, due to the longer

duration of the second bubble where dT = b0.20T c, the PWY detection rate is zero for the third

bubble, whose duration is dT = b0.10T c. Similar results are found in Table 9 where the duration
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of the first bubble is longer than the second. An interesting feature of the PWY outcomes is

that the presence of a long duration bubble causes weak identification of all subsequent bubbles.

In particular, when the first bubble lasts longer than the second and third bubbles (the first

panel of Table 9), the PWY detection rates of these two bubbles are 0.00 and 0.01.

Second, the simulations confirm that when the duration of bubble i is shorter than that of

bubble i + 1, the PWY strategy detects the existence of both bubbles but with a delay in the

identification of bubble i + 1. A case in point occurs in the first panel of Table 8 where the

duration of the second bubble is shorter than that of the third bubble. The detection rate of

the third bubble using the PWY strategy is 0.68 and the length of the delay in the detection of

this bubble is b0.13T c, more than twice the delay incurred by the PSY detector. Third, just as

for the two bubble case, the behaviour of the CUSUM detector resembles that of PWY.

Fourth, the performances of PSY and sequential PWY are invariant to the relative durations

among the bubbles. In other words, the frequency of detecting bubble i and the time needed

to detect this bubble depend on the duration of this particular bubble, not on the duration of

bubble j (for j 6= i).

Overall best performance is delivered by the PSY algorithm, followed by the sequential PWY

strategy. Notice that when the duration of bubble i is twice as long as the duration of bubble

i + 1, the sequential PWY detection rate of bubble i + 1 rises to a higher level than PSY. For

example, in the first panel of Table 7 where τ2f − τ2e = b0.20T c and τ3f − τ3e = b0.10T c, the

third bubble detection rate of sequential PWY is 0.81, exceeding that of PSY at 0.73. This is

due to the fact that the sequential procedure re-initializes after the collapse of the second bubble

and the first regression following re-initialization already covers several observations of the third

bubble episode. This situation resembles the case of bubbles occurring at the beginning of the

sample, which increases the bubble detection rate as shown in Table 3.

In extreme cases when the first regression after re-initialization covers most observations of

the particular bubble episode, the sequential PWY procedure may fail to detect this bubble.

Table 10 gives examples that forcefully illustrate this point. In the first panel of the table,

the sequential PWY procedure re-initiates at b0.65T c and the undetectable period (due to the
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minimum regression window requirement of 12 observations) following this re-initialization is

over the period b0.65T c to b0.77T c and covers most of the third bubble episode. As a result, the

detection rate of the third bubble episode using the sequential PWY procedure is zero, whereas

the detection rate of the third bubble using PSY is 62%. A further example occurs in the bottom

panel of the same table. For the same reason, the sequential procedure fails to detect the second

bubble episode in 94% of cases —the detection rate reported in the table is only 6%. Noticeably,

the unsuccessful detection of the second bubble also leads to a low detection rate for the third

bubble, which may be partly explained by the fact that the remaining sample period includes

two bubble episodes. In all of these cases the PSY detector works well with a high average

detection rate (94%, 62% and 76% for bubbles 1, 2, and 3 respectively) and an average delay of

4-7 observations in detection.

5 Conclusions

We develop limit theory for real time dating of the origination and termination of mildly explosive

periods using detectors based on the PWY, PSY, and sequential PWY algorithms. All three

strategies rely on recursive right tailed unit root tests but involve different types of recursion.

The asymptotic performance of the detectors are evaluated using the extended PWY bubble

model where mildly explosive bubble episodes are embedded within a longer period of normal

stochastic trend behavior.

The PWY date estimates are shown to depend on the number of bubble episodes within

the sample period and the relative durations of the bubbles when there are multiple bubble

episodes. Specifically, in the single bubble case, the PWY estimators are consistent under some

mild regularity conditions. When the sample period includes two bubble episodes, the PWY

approach can consistently estimate the first bubble but not the second. The dating accuracy

of the second bubble is related to the relative duration of the two bubbles. If the first bubble

lasts longer than the second, the PWY strategy cannot detect occurrence of the second bubble.

Alternatively, if the duration of the second bubble exceeds the first, the PWY detector finds

the second bubble but with some delay even asymptotically. In contrast, the PSY approach
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and a sequential implementation of the PWY strategy both provide consistent estimators of

all bubbles regardless the number of bubble episodes occurring in the sample period and their

relative duration.

Finite sample simulation are strongly confirmative of the asymptotics, indicating that the

PSY algorithm is much more reliable as a detector than the PWY strategy. The second best

procedure is the sequential PWY strategy. The performance of the CUSUM procedure resembles

that of the PWY strategy and has similar disadvantages in multiple bubble cases.

The results obtained here require some detailed and complex calculations to obtain the limit

theory of the various recursive detection algorithms. While these results are specific to the bubble

model context under study, the methods should be useful in other recursive regression contexts.

Also, with some modifications, the results continue to hold under more general conditions on

the innovations than those used here. The main requirements are that the weak convergence

(2) applies under normal periods and the limit theory for mildly explosive periods applies as it

is known to do under general forms of weak dependence (Phillips and Magdalinos, 2007b).
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APPENDIX A. The Dating Algorithms (a single bubble)

Section A.1 provides some useful preliminary results than characterize the limit behavior of

the regression components over the various subperiods of the data. Section A.2 provides test

asymptotics and gives proofs of Theorems 1-3 which describe the consistency properties of the

PWY and PSY dating strategies.

A.1: Notation and Useful Preliminary Lemmas

We define the following notation:

• The bubble period B = [τ e, τ f ], where τ e = bTrec and τ f = bTrfc.

• The normal market periods N0 = [1, τ e) and N1 = [τ f + 1, τT ], where τ = bTrc is the last

observation of the sample.

• The starting point of the regression τ1 = bTr1c, the ending point of the regression τ2 =

bTr2c, the regression sample size τw = bTrwc with rw = r2−r1 and observation t = bTpc .

• B (.) ≡ σW (.) , where W is standard Brownian motion.

We use the data generating process

Xt =


Xt−1 + εt for t ∈ N0
δTXt−1 + εt for t ∈ B

X∗τf +
∑t

k=τf+1
εk for t ∈ N1

, (24)

where δT = 1 + cT−α with c > 0 and α ∈ (0, 1) , εt
iid∼
(
0, σ2

)
and X∗τf = Xτe + X∗ with

X∗ = Op (1). Under (24) we have the following lemmas.

Lemma A1. Under the data generating process,

(1) For t ∈ N0, Xt=bTpc ∼a T 1/2B (p).

(2) For t ∈ B, Xt=bTpc = δt−τeT Xτe {1 + op (1)} ∼a T 1/2δt−τeT B (re) .

(3) For t ∈ N1, Xt=bTpc ∼a T 1/2 [B (p)−B (rf ) +B (re)] .
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Proof. (1) For t ∈ N0, Xt is a unit root process. We know that T−1/2Xt=bTpc ⇒ B (p) as

T →∞. (2) For t ∈ B, the data generating process

Xt = δTXt−1 + εt = δt−τe+1T Xτe−1 +

t−τe∑
j=0

δjT εt−j .

Based on Phillips and Magdalinos (2007a, lemma 4.2), we know that for α < 1,

T−α/2
t−τe∑
j=0

δ
−(t−τe)+j
T εt−j

L→ Xc ≡ N
(
0, σ2/2c

)
,

as t − τ e → ∞. Furthermore, we know that T−1/2Xτe−1
L→ B (re) and δT → 1 as T → ∞.

Therefore,

δ
−(t−τe)
T T−1/2Xt = δTT

−1/2Xτe−1 + T−1/2
t−τe∑
j=0

δ
−(t−τe)+j
T εt−j

= δTT
−1/2Xτe−1 + T−(1−α)/2T−α/2

t−τe∑
j=0

δ
−(t−τe)+j
T εt−j

L→ B (re) .

This implies that the first term has a higher order than the second term. Hence,

Xt = δt−τeT Xτe

{
1 +

∑t−τe−1
j=0 δjT εt−j

δt−τeT Xτe

}
= δt−τeT Xτe {1 + op (1)} ∼a T 1/2δt−τeT B (re) .

(3) For t ∈ N1,

Xt =
t∑

k=τf+1

εk +X∗τf =

t∑
k=τf+1

εk +Xτe +X∗ ∼a T 1/2 [B (p)−B (rf ) +B (re)]

due to the fact that Xτe ∼a T 1/2B (re),
∑t

k=τf+1
εk ∼a T 1/2 [B (p)−B (rf )] and X∗ = Op (1).

Lemma A2. Under the data generating process,

(1) For τ1 ∈ N0 and τ2 ∈ B,

1

τw

τ2∑
j=τ1

Xj =
Tαδτ2−τeT

τwc
Xτe {1 + op (1)} ∼a Tα−1/2δτ2−τeT

1

rwc
B (re) .
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(2) For τ1 ∈ B and τ2 ∈ N1,

1

τw

τ2∑
j=τ1

Xj =
Tαδ

τf−τ1
T

τwc
Xτe {1 + op (1)} ∼a Tα−1/2δ

τf−τ1
T

1

rwc
B (re) .

(3) For τ1 ∈ N0 and τ2 ∈ N1,

1

τw

τ2∑
j=τ1

Xj = Xτe

Tαδ
τf−τe
T

τwc
{1 + op (1)} ∼a Tα−1/2δ

τf−τe
T

1

rwc
B (re) .

Proof. (1) For τ1 ∈ N0 and τ2 ∈ B, we have

1

τw

τ2∑
j=τ1

Xj =
1

τw

τe−1∑
j=τ1

Xj +
1

τw

τ2∑
j=τe

Xj .

The first term is

1

τw

τe−1∑
j=τ1

Xj = T 1/2
τ e − τ1
τw

 1

τ e − τ1

τe−1∑
j=τ1

Xj√
T


∼a T 1/2

re − r1
rw

∫ re

r1

B (s) ds. (25)

The second term is

1

τw

τ2∑
j=τe

Xj =
Xτe

τw

τ2∑
j=τe

δj−τeT {1 + op (1)} from Lemma A1

=
Xτe

τw

δτ2−τe+1T − 1

δT − 1
{1 + op (1)}

= Xτe

Tαδτ2−τeT + cδτ2−τeT − Tα
τwc

{1 + op (1)}

= Xτe

Tαδτ2−τeT

τwc
{1 + op (1)} ∼a Tα−1/2δτ2−τeT

1

rwc
B (re) . (26)

Furthermore, we have

Tα−1/2δτ2−τeT

T 1/2
=
δτ2−τeT

T 1−α
=
ec(r2−re)T

1−α

T 1−α
> 1.

This implies that τ−1w
∑τ2

j=τe
Xj has a higher order than τ−1w

∑τe−1
j=τ1

Xj . Hence,

1

τw

τ2∑
j=τ1

Xj =
1

τw

τ2∑
j=τe

Xj {1 + op (1)}
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=
Tαδτ2−τeT

τwc
Xτe {1 + op (1)} from equation (26)

∼a Tα−1/2δτ2−τeT

1

rwc
B (re) .

(2) For τ1 ∈ B and τ2 ∈ N1, we have

1

τw

τ2∑
j=τ1

Xj =
1

τw

τf∑
j=τ1

Xj +
1

τw

τ2∑
j=τf+1

Xj .

The first term is

1

τw

τf∑
j=τ1

Xj =
Xτe

τw

τf∑
j=τ1

δj−τeT {1 + op (1)} from Lemma A1

=
Xτe

τw

δ
τf−τ1+1
T − 1

δT − 1
{1 + op (1)}

=
Xτe

τw

Tαδ
τf−τ1
T + cδ

τf−τ1
T − Tα

c
{1 + op (1)}

=
Tαδ

τf−τ1
T

τwc
Xτe {1 + op (1)}

∼a Tα−1/2δ
τf−τ1
T

1

rwc
B (re) .

The second term is

1

τw

τ2∑
j=τf+1

Xj

=
1

τw

τ2∑
j=τf+1

 j∑
k=τf+1

εk +Xτe

 (27)

= T 1/2
τ2 − τ f
τw

 1

τ2 − τ f

τ2∑
j=τf+1

T−1/2 j∑
k=τf+1

εk

+ T 1/2
τ2 − τ f
τw

(
T−1/2Xτe

)
∼a T 1/2

r2 − rf
rw

∫ r2

rf

[B (s)−B (rf )] ds+ T 1/2
r2 − rf
rw

B (re)

= T 1/2
r2 − rf
rw

{∫ r2

rf

[B (s)−B (rf )] ds−B (re)

}
. (28)

Furthermore, we have

Tα−1/2δ
τf−τ1
T

T 1/2
=
δ
τf−τ1
T

T 1−α
=
ec(rf−r1)T

1−α

T 1−α
> 1.
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This implies that τ−1w
∑τf

j=τ1
Xj has a higher order than τ−1w

∑τ2
j=τf+1

Xj . Hence,

1

τw

τ2∑
j=τ1

Xj =
Tαδ

τf−τ1
T

τwc
Xτe {1 + op (1)} ∼a Tα−1/2δ

τf−τ1
T

1

rwc
B (re) .

(3) For τ1 ∈ N0 and τ2 ∈ N1,

1

τw

τ2∑
j=τ1

Xj =
1

τw

τe−1∑
j=τ1

Xj +
1

τw

τf∑
j=τe

Xj +
1

τw

τ2∑
j=τf+1

Xj .

The first term is

1

τw

τe−1∑
j=τ1

Xj ∼a T 1/2
re − r1
rw

∫ re

r1

B (s) ds from equation (25).

The second term is

1

τw

τf∑
j=τe

Xj =
Xτe

τw

τf∑
j=τe

δj−τeT {1 + op (1)} from Lemma A1

=
Xτe

τw

δ
τf−τe+1
T − 1

δT − 1
{1 + op (1)}

=
Xτe

τwc

(
Tαδ

τf−τe
T + cδ

τf−τe
T − Tα

)
{1 + op (1)}

=
Tαδ

τf−τe
T

τwc
Xτe {1 + op (1)} (29)

∼a Tα−1/2δ
τf−τe
T

1

rwc
B (re) .

The third term is

1

τw

τ2∑
j=τf+1

Xj ∼a T 1/2
r2 − rf
rw

{∫ r2

rf

[B (s)−B (rf )] ds−B (re)

}
from equation (28).

Furthermore, we know
Tα−1/2δ

τf−τe
T

T 1/2
=
ec(rf−re)T

1−α

T 1−α
> 1.

This implies that τ−1w
∑τf

j=τe
Xj dominates τ−1w

∑τe−1
j=τ1

Xj and τ−1w
∑τ2

j=τf+1
Xj . Therefore,

1

τw

τ2∑
j=τ1

Xj =
Tαδ

τf−τe
T

τwc
Xτe {1 + op (1)} ∼a Tα−1/2δ

τf−τe
T

1

crw
B (re) .
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Lemma A3. Define the centered quantity X̃t = Xt − τ−1w
∑τ2

j=τ1
Xj.

(1) For τ1 ∈ N0 and τ2 ∈ B,

X̃t =


−Tαδ

τ2−τe
T
τwc

Xτe {1 + op (1)} if t ∈ N0[
δt−τeT − Tαδ

τ2−τe
T
τwc

]
Xτe {1 + op (1)} if t ∈ B

.

(2) For τ1 ∈ B and τ2 ∈ N1,

X̃t =


[
δt−τeT − Tαδ

τf−τ1
T
τwc

]
Xτe {1 + op (1)} if t ∈ B

−Tαδ
τf−τ1
T
τwc

Xτe {1 + op (1)} if t ∈ N1
.

(3) For τ1 ∈ N0 and τ2 ∈ N1,

X̃t =


−Tαδ

τf−τe
T
τwc

Xτe {1 + op (1)} if t ∈ N0 ∪N1[
δt−τeT − Tαδ

τf−τe
T
τwc

]
Xτe {1 + op (1)} if t ∈ B

.

Proof. (1) Suppose τ1 ∈ N0 and τ2 ∈ B. If t ∈ N0,

X̃t = Xt − τ−1w
τ2∑
j=τ1

Xj = −T
αδτ2−τeT

τwc
Xτe {1 + op (1)} , (30)

where the second term dominates the first term due to the fact that

T−1/2Xt ∼a B (p) from Lemma A1

1

τw

τ2∑
j=τ1

Xj ∼a Tα−1/2δτ2−τeT

1

rwc
B (re) from Lemma A2

and
Tα−1/2δτ2−τeT

T 1/2
=
ec(r2−re)T

1−α

T 1−α
> 1.

If t ∈ B,

X̃t = Xt − τ−1w
τ2∑
j=τ1

Xj =

[
δt−τeT − Tαδτ2−τeT

τwc

]
Xτe {1 + op (1)} .

(2) Suppose τ1 ∈ B and τ2 ∈ N1. If t ∈ B,

X̃t = Xt − τ−1w
τ2∑
j=τ1

Xj =

[
δt−τeT − Tαδ

τf−τ1
T

τwc

]
Xτe {1 + op (1)} .
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If t ∈ N1,

X̃t = Xt − τ−1w
τ2∑
j=τ1

Xj = −T
αδ

τf−τ1
T

τwc
Xτe {1 + op (1)} ,

where the second term dominates the first term due to the fact that

Xt=bTpc ∼a T 1/2 [B (p)−B (rf ) +B (re)] from Lemma A1

1

τw

τ2∑
j=τ1

Xj ∼a Tα−1/2δ
τf−τ1
T

1

rwc
B (re) from Lemma A2

and
Tα−1/2δ

τf−τ1
T

T 1/2
=
δ
τf−τ1
T

T 1−α
=
ec(rf−r1)T

1−α

T 1−α
> 1.

(3) Suppose τ1 ∈ N0 and τ2 ∈ N1. If t ∈ N0,

X̃t = Xt − τ−1w
τ2∑
j=τ1

Xj = −T
αδ

τf−τe
T

τwc
Xτe {1 + op (1)} ,

where the second term dominates the first term due to the fact that

Xt=bTpc ∼a T 1/2B (p) from Lemma A1

1

τw

τ2∑
j=τ1

Xj ∼a Tα−1/2δ
τf−τe
T

1

rwc
B (re) from Lemma A2

and
Tα−1/2δ

τf−τe
T

T 1/2
> 1.

If t ∈ B,

X̃t = Xt − τ−1w
τ2∑
j=τ1

Xj =

[
δt−τeT − Tαδ

τf−τe
T

τwc

]
Xτe {1 + op (1)} .

If t ∈ N1,

X̃t = Xt − τ−1w
τ2∑
j=τ1

Xj = −T
αδ

τf−τe
T

τwc
Xτe {1 + op (1)} ,

since Xt=bTpc ∼a T 1/2 [B (p)−B (rf ) +B (re)] (from Lemma A1).
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Lemma A4. The sample variance terms involving X̃t behave as follows.

(1) For τ1 ∈ N0 and τ2 ∈ B,
τ2∑
j=τ1

X̃2
j−1 =

Tαδ
2(τ2−τe)
T

2c
X2
τe {1 + op (1)} ∼a

T 1+αδ
2(τ2−τe)
T

2c
B (re)

2 .

(2) For τ1 ∈ B and τ2 ∈ N1,

τ2∑
j=τ1

X̃2
j−1 =

Tαδ
2(τf−τe)
T

2c
X2
τe {1 + op (1)} ∼a

Tα+1δ
2(τf−τe)
T

2c
B (re)

2 .

(3) For τ1 ∈ N0 and τ2 ∈ N1,

τ2∑
j=τ1

X̃2
j−1 =

Tαδ
2(τf−τe)
T

2c
X2
τe {1 + op (1)} ∼a

Tα+1δ
2(τf−τe)
T

2c
B (re)

2 .

Proof. (1) For τ1 ∈ N0 and τ2 ∈ B,
τ2∑
j=τ1

X̃2
j−1 =

τe∑
j=τ1

X̃2
j−1 +

τ2∑
j=τe

X̃2
j−1.

The first term is

τe−1∑
j=τ1

X̃2
j−1 =

τe−1∑
j=τ1

T 2αδ
2(τ2−τe)
T

τ2wc
2

X2
τe {1 + op (1)} from Lemma A3

=
τ e − τ1
τ2wc

2
T 2αδ

2(τ2−τe)
T X2

τe {1 + op (1)}

∼a
re − r1
r2wc

T 2αδ
2(τ2−τe)
T B (re) .

Given that
τ2∑
j=τe

δ
2(j−1−τe)
T =

δ
2(τ2−τe)
T − δ−2T

δ2T − 1
=
Tαδ

2(τ2−τe)
T

2c
{1 + op (1)}

τ2∑
j=τe

δj−1−τeT =
δτ2−τeT − δ−1T

δT − 1
=
Tαδτ2−τeT

c
{1 + op (1)} ,

the second term
τ2∑
j=τe

X̃2
j−1
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=

τ2∑
j=τe

[
δj−1−τeT − Tαδτ2−τeT

τwc

]2
X2
τe {1 + op (1)}

=

τ2∑
j=τe

[
δ
2(j−1−τe)
T − 2δj−1−τeT

Tαδτ2−τeT

τwc
+
T 2αδ

2(τ2−τe)
T

τ2wc
2

]
X2
τe {1 + op (1)}

=

[
Tαδ

2(τ2−τe)
T

2c
− 2

T 2α−1δ
2(τ2−τe)
T

rwc2
+
r2 − re + 1

T

r2wc
2

T 2α−1δ
2(τ2−τe)
T

]
X2
τe {1 + op (1)}

=
Tαδ

2(τ2−τe)
T

2c
X2
τe {1 + op (1)} (since α > 2α− 1)

∼a
T 1+αδ

2(τ2−τe)
T

2c
B (re)

2 .

Since 1 + α > 2α,
∑τ2

j=τe
X̃2
j−1 dominates

∑τe
j=τ1

X̃2
j−1. Therefore,

τ2∑
j=τ1

X̃2
j−1 =

τ2∑
j=τe

X̃2
j−1 {1 + op (1)} =

Tαδ
2(τ2−τe)
T

2c
X2
τe {1 + op (1)}

∼a
T 1+αδ

2(τ2−τe)
T

2c
B (re)

2 .

(2) For τ1 ∈ B and τ2 ∈ N1,
τ2∑
j=τ1

X̃2
j−1 =

τf∑
j=τ1

X̃2
j−1 +

τ2∑
j=τf+1

X̃2
j−1.

Given that

τf∑
j=τ1

δ
2(j−1−τe)
T =

Tα
[
δ
2(τf−τe)
T − δ2(τ1−τe−1)T

]
2c+ c2T−α

=
Tαδ

2(τf−τe)
T

2c
{1 + op (1)}

τf∑
j=τ1

δj−1−τeT =
Tα
[
δ
τf−τe
T − δτ1−τe−1T

]
c

=
Tαδ

τf−τe
T

c
{1 + op (1)} ,

the first term is
τf∑
j=τ1

X̃2
j−1

=

τf∑
j=τ1

[
δj−1−τeT − Tαδ

τf−τ1
T

τwc

]2
X2
τe {1 + op (1)}

36



=

Tαδ2(τf−τe)T

2c
− 2

Tαδ
τf−τ1
T

τwc

Tαδ
τf−τe
T

c
+
τ f − τ1 + 1

τ2wc
2

T 2αδ
2(τf−τ1)
T

X2
τe {1 + op (1)}

=

Tαδ2(τf−τe)T

2c
− 2

δ
(τf−τ1)+(τf−τe)
T

T 1−2αrwc2
+
rf − r1 + 1

T

T 1−2αr2wc
2
δ
2(τf−τ1)
T

X2
τe {1 + op (1)}

=
Tαδ

2(τf−τe)
T

2c
X2
τe {1 + op (1)} (since α > 2α− 1 and τ f − τ e > τ f − τ1)

∼a
Tα+1δ

2(τf−τe)
T

2c
B (re)

2 .

The second term is

τ2∑
j=τf+1

X̃2
j−1 =

τ2∑
j=τf+1

T 2αδ
2(τf−τ1)
T

τ2wc
2

X2
τe {1 + op (1)}

=
τ2 − τ f
τ2wc

2
T 2αδ

2(τf−τ1)
T X2

τe {1 + op (1)}

∼a
r2 − rf
r2wc

2
T 2αδ

2(τf−τ1)
T B (re)

2 .

Since 1 + α > 2α,
∑τf

j=τ1
X̃2
j−1 dominates

∑τ2
j=τf+1

X̃2
j−1. Therefore,

τ2∑
j=τ1

X̃2
j−1 =

τf∑
j=τ1

X̃2
j−1 {1 + op (1)} =

Tαδ
2(τf−τe)
T

2c
X2
τe {1 + op (1)}

∼a
Tα+1δ

2(τf−τe)
T

2c
B (re)

2 .

(3) For τ1 ∈ N0 and τ2 ∈ N1,

τ2∑
j=τ1

X̃2
j−1 =

τe−1∑
j=τ1

X̃2
j−1 +

τf∑
j=τe

X̃2
j−1 +

τ2∑
j=τf+1

X̃2
j−1.

The first term is

τe−1∑
j=τ1

X̃2
j−1 =

τe−1∑
j=τ1

T 2αδ
2(τf−τe)
T

τ2wc
2

X2
τe {1 + op (1)}

=
τ e − τ1
τ2wc

2
T 2αδ

2(τf−τe)
T X2

τe {1 + op (1)}
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∼a
re − r1
r2wc

2
T 2αδ

2(τf−τe)
T B (re)

2 .

Given that

τf∑
j=τe

δ
2(j−1−τe)
T =

δ
2(τf−τe)
T − δ−2T

δ2T − 1
=
Tαδ

2(τf−τe)
T

2c
{1 + op (1)}

τf∑
j=τe

δj−1−τeT =
δ
τf−τe
T − δ−1T
δT − 1

=
Tαδ

τf−τe
T

c
{1 + op (1)} ,

the second term
τf∑
j=τe

X̃2
j−1

=

τf∑
j=τe

[
δj−1−τeT − Tαδ

τf−τe
T

τwc

]2
X2
τe {1 + op (1)}

=

Tαδ2(τf−τe)T

2c
− 2

δ
2(τf−τe)
T

T 1−2αrwc2
+
rf − re + 1

T

T 1−2αr2wc
2
δ
2(τf−τe)
T

X2
τe {1 + op (1)}

=
Tαδ

2(τf−τe)
T

2c
X2
τe {1 + op (1)} (since α > 2α− 1)

∼a
Tα+1δ

2(τf−τe)
T

2c
B (re)

2 .

The third term is

τ2∑
j=τf+1

X̃2
j−1 =

τ2∑
j=τf+1

T 2αδ
2(τf−τe)
T

τ2wc
2

X2
τe {1 + op (1)}

=
τ2 − τ f
τ2wc

2
T 2αδ

2(τf−τe)
T X2

τe {1 + op (1)}

∼a
r2 − rf
r2wc

2
T 2αδ

2(τf−τe)
T B (re)

2 .

Since 1 + α > 2α,
∑τf

j=τe
X̃2
j−1 dominates the other two terms. Therefore,

τ2∑
j=τ1

X̃2
j−1 =

τf∑
j=τe

X̃2
j−1 {1 + op (1)} =

Tαδ
2(τf−τe)
T

2c
X2
τe {1 + op (1)}
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∼a
Tα+1δ

2(τf−τe)
T

2c
B (re)

2 .

Lemma A5. The sample covariance of X̃t and εt behaves as follows.

(1) For τ1 ∈ N0 and τ2 ∈ B,
τ2∑
j=τ1

X̃j−1εj =

τ2∑
j=τe

X̃j−1εj {1 + op (1)} ∼a T (α+1)/2δτ2−τeT XcB (re) .

(2) For τ1 ∈ B and τ2 ∈ N1,

τ2∑
j=τ1

X̃j−1εj =

τf∑
j=τ1

X̃j−1εj {1 + op (1)} ∼a T (α+1)/2δ
τf−τe
T XcB (re) .

(3) For τ1 ∈ N0 and τ2 ∈ N1,

τ2∑
j=τ1

X̃j−1εj =

τf∑
j=τe

X̃j−1εj {1 + op (1)} ∼a T (α+1)/2δ
τf−τe
T XcB (re) .

Proof. (1) For τ1 ∈ N0 and τ2 ∈ B,

τ2∑
j=τ1

X̃j−1εj =

τe−1∑
j=τ1

X̃j−1εj +

τ2∑
j=τe

X̃j−1εj .

The first term is

τe−1∑
j=τ1

X̃j−1εj =

τe−1∑
j=τ1

−T
αδτ2−τeT

τwc
Xτeεj {1 + op (1)}

= −T
αδτ2−τeT

τwc
Xτe

τe−1∑
j=τ1

εj {1 + op (1)}

= −T
αδτ2−τeT

rwc

(
T−1/2Xτe

)T−1/2 τe−1∑
j=τ1

εj

 {1 + op (1)}

∼a −
Tαδτ2−τeT

rwc
B (re) [B (re)−B (r1)] .
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The second term is
τ2∑
j=τe

X̃j−1εj

=

τ2∑
j=τe

[
δj−1−τeT − Tαδτ2−τeT

τwc

]
Xτeεj {1 + op (1)}

=

 τ2∑
j=τe

δj−1−τeT εj −
Tαδτ2−τeT

τwc

τ2∑
j=τe

εj

Xτe {1 + op (1)}

=

Tα/2δτ2−τeT

 1

Tα/2

τ2∑
j=τe

δ
−(τ2−j+1)
T εj

− δτ2−τeT

T 1/2−αrwc

 1√
T

τ2∑
j=τe

εj

Xτe {1 + op (1)}

= Tα/2δτ2−τeT

T−α/2 τ2∑
j=τe

δ
−(τ2−j+1)
T εj

Xτe {1 + op (1)} (since α/2 > α− 1/2)

∼a T (α+1)/2δτ2−τeT XcB (re) .

Since (α+ 1) /2 > α,
∑τ2

j=τe
X̃j−1εj dominates

∑τe−1
j=τ1

X̃j−1εj . Therefore,

τ2∑
j=τ1

X̃j−1εj =

τ2∑
j=τe

X̃j−1εj {1 + op (1)} ∼a T (α+1)/2δτ2−τeT XcB (re) .

(2) For τ1 ∈ B and τ2 ∈ N1,
τ2∑
j=τ1

X̃j−1εj =

τf∑
j=τ1

X̃j−1εj +

τ2∑
j=τf+1

X̃j−1εj .

The first term is
τf∑
j=τ1

X̃j−1εj

=

τf∑
j=τ1

[
δj−1−τeT − Tαδ

τf−τ1
T

τwc

]
Xτeεj {1 + op (1)}

=

 τf∑
j=τ1

δj−1−τeT εj −
Tαδ

τf−τ1
T

τwc

τf∑
j=τ1

εj

Xτe {1 + op (1)}

=

Tα/2δτf−τeT

 1

Tα/2

τf∑
j=τ1

δ
−(τf−j+1)
T εj

− Tα+1/2δ
τf−τ1
T

τwc

 1√
T

τf∑
j=τ1

εj

Xτe {1 + op (1)}
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= Tα/2δ
τf−τe
T

T−α/2 τf∑
j=τ1

δ
−(τf−j+1)
T εj

Xτe {1 + op (1)}

∼a T (α+1)/2δ
τf−τe
T XcB (re) .

The second term is

τ2∑
j=τf+1

X̃j−1εj =

τ2∑
j=τf+1

−T
αδ

τf−τ1
T

τwc
Xτeεj {1 + op (1)}

= −T
αδ

τf−τ1
T

rwc

(
T−1/2Xτe

)T−1/2 τ2∑
j=τf+1

εj

 {1 + op (1)}

∼a −
Tαδ

τf−τ1
T

rwc
B (re) [B (r2)−B (rf )] .

Since (α+ 1) /2 > α,
∑τf

j=τ1
X̃j−1εj dominates

∑τ2
j=τf+1

X̃j−1εj . Therefore,

τ2∑
j=τ1

X̃j−1εj =

τf∑
j=τ1

X̃j−1εj {1 + op (1)} ∼a T (α+1)/2δ
τf−τe
T XcB (re) .

(3) For τ1 ∈ N0 and τ2 ∈ N1,

τ2∑
j=τ1

X̃j−1εj =

τe−1∑
j=τ1

X̃j−1εj +

τf∑
j=τe

X̃j−1εj +

τ2∑
j=τf+1

X̃j−1εj .

The first term is

τe−1∑
j=τ1

X̃j−1εj =

τe−1∑
j=τ1

−T
αδ

τf−τe
T

τwc
Xτeεj {1 + op (1)}

= −T
αδ

τf−τe
T

rwc

(
T−1/2Xτe

)T−1/2 τe−1∑
j=τ1

εj

 {1 + op (1)}

∼a −
Tαδ

τf−τe
T

rwc
B (re) [B (re)−B (r1)] .

The second term is
τf∑
j=τe

X̃j−1εj
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=

τf∑
j=τe

[
δj−1−τeT − Tαδ

τf−τe
T

τwc

]
Xτeεj {1 + op (1)}

=

 τf∑
j=τe

δj−1−τeT εj −
Tαδ

τf−τe
T

τwc

τf∑
j=τe

εj

Xτe {1 + op (1)}

=

Tα/2δτf−τeT

 1

Tα/2

τf∑
j=τe

δ
−(τf−j+1)
T εj

− Tα−1/2δ
τf−τe
T

rwc

 1√
T

τf∑
j=τe

εj

Xτe {1 + op (1)}

= Tα/2+1/2δ
τf−τe
T

T−α/2 τf∑
j=τe

δ
−(τf−j+1)
T εj

(T−1/2Xτe

)
{1 + op (1)}

∼a T (α+1)/2δ
τf−τe
T XcB (re) .

The third term is
τ2∑

j=τf+1

X̃j−1εj =

τ2∑
j=τf+1

−T
αδ

τf−τe
T

τwc
Xτeεj {1 + op (1)}

= −T
αδ

τf−τe
T

rwc

(
T−1/2Xτe

)T−1/2 τ2∑
j=τf+1

εj

 {1 + op (1)}

∼a −
Tαδ

τf−τe
T

rwc
B (re) [B (r2)−B (rf )] .

Since (α+ 1) /2 > α,
∑τf

j=τe
X̃j−1εj dominates the other two terms. Therefore,

τ2∑
j=τ1

X̃j−1εj =

τf∑
j=τe

X̃j−1εj {1 + op (1)} ∼a T (α+1)/2δ
τf−τe
T XcB (re) .

Lemma A6. The sample covariance of X̃j−1 and Xj − δTXj−1 behaves as follows.

(1) For τ1 ∈ N0 and τ2 ∈ B,
τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1) ∼a
re − r1
rw

Tδτ2−τeT B (re)

∫ re

r1

B (s) ds.

(2) For τ1 ∈ B and τ2 ∈ N1,
τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1) ∼a −Tδ
2(τf−τe)
T B (re)

2 .

42



(3) For τ1 ∈ N0 and τ2 ∈ N1,
τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1) ∼a −Tδ
2(τf−τe)
T B (re)

2 .

Proof. (1) When τ1 ∈ N0 and τ2 ∈ B,

τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1) =

τ2∑
j=τe

X̃j−1εj +

τe−1∑
j=τ1

X̃j−1 (Xj −Xj−1 +Xj−1 − δTXj−1)

=

τ2∑
j=τe

X̃j−1εj +

τe−1∑
j=τ1

X̃j−1
(
εj −

c

Tα
Xj−1

)

=

τ2∑
j=τ1

X̃j−1εj −
c

Tα

τe−1∑
j=τ1

X̃j−1Xj−1. (31)

The first term is

τ2∑
j=τ1

X̃j−1εj ∼a T (α+1)/2δτ2−τeT XcB (re) (from Lemma A5).

The second term is

c

Tα

τe−1∑
j=τ1

X̃j−1Xj−1

=
c

Tα

τe−1∑
j=τ1

−T
αδτ2−τeT

τwc
XτeXj−1 {1 + op (1)}

= −δ
τ2−τe
T

τw
Xτe

τe−1∑
j=τ1

Xj−1 {1 + op (1)}

= −τ e − τ1
τw

Tδτ2−τeT

(
T−1/2Xτe

) 1

τ e − τ1

τe−1∑
j=τ1

(
T−1/2Xj−1

) {1 + op (1)}

∼a −
re − r1
rw

Tδτ2−τeT B (re)

∫ re

r1

B (s) ds.

Since (α+ 1) /2 < 1, c
Tα
∑τe−1

j=τ1
X̃j−1Xj−1 dominates

∑τ2
j=τ1

X̃j−1εj . Therefore,

τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1) = − c

Tα

τe−1∑
j=τ1

X̃j−1Xj−1 {1 + op (1)}
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∼a
re − r1
rw

Tδτ2−τeT B (re)

∫ re

r1

B (s) ds.

(2) When τ1 ∈ B and τ2 ∈ N,

τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1) =

τf∑
j=τ1

X̃j−1εj + X̃τf

(
Xτf+1 − δTXτf

)
+

τ2∑
j=τf+2

X̃j−1 (Xj −Xj−1 +Xj−1 − δTXj−1)

=

τf∑
j=τ1

X̃j−1εj + X̃τf

(
Xτe +X∗ + ετf+1 − δTXτf

)
+

τ2∑
j=τf+2

X̃j−1
(
εj −

c

Tα
Xj−1

)

=

τ2∑
j=τ1

X̃j−1εj − δT X̃τfXτf −
c

Tα

τ2∑
j=τf+2

X̃j−1Xj−1.

The first term is

τ2∑
j=τ1

X̃j−1εj ∼a T (α+1)/2δ
τf−τe
T XcB (re) (from Lemma A5).

The second term is

δT X̃τfXτf = δT

[
δ
τf−τe
T − Tαδ

τf−τ1
T

τwc

]
XτeXτf {1 + op (1)}

= δ
τf−τe+1
T XτeXτf {1 + op (1)} ∼a Tδ

2(τf−τe)
T B (re)

2

due to the fact that
δ
τf−τe
T

Tα−1δ
τf−τ1
T

= T 1−αδτ1−τeT > 1.

The third term is

c

Tα

τ2∑
j=τf+2

X̃j−1Xj−1

=
c

Tα

τ2∑
j=τf+2

−T
αδ

τf−τ1
T

τwc
XτeXj−1 {1 + op (1)}

= −δ
τf−τ1
T

τw
Xτe

τ2∑
j=τf+2

Xj−1 {1 + op (1)}

= −τ2 − τ f − 1

τw
Tδ

τf−τ1
T

(
T−1/2Xτe

) 1

τ2 − τ f − 1

τ2∑
j=τf+2

T−1/2Xj−1

 {1 + op (1)}
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∼a −
r2 − rf
rw

Tδ
τf−τ1
T B (re)

∫ r2

rf

B (s) ds.

The quantity δT X̃τfXτf dominates the other two terms and hence

τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1) = −δT X̃τfXτf {1 + op (1)} ∼a −Tδ
2(τf−τe)
T B (re)

2 .

(3) When τ1 ∈ N0 and τ2 ∈ N1,
τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1)

=

τf∑
j=τe

X̃j−1εj +

τe−1∑
j=τ1

X̃j−1 (Xj −Xj−1 +Xj−1 − δTXj−1)

+ X̃τf

(
Xτf+1 − δTXτf

)
+

τ2∑
j=τf+2

X̃j−1 (Xj −Xj−1 +Xj−1 − δTXj−1)

=

τf∑
j=τe

X̃j−1εj +

τe−1∑
j=τ1

X̃j−1
(
εj −

c

Tα
Xj−1

)
+ X̃τf

(
Xτf+1 − δTXτf

)
+

τ2∑
j=τf+2

X̃j−1
(
εj −

c

Tα
Xj−1

)

=

τ2∑
j=τ1

X̃j−1εj −
c

Tα

τe−1∑
j=τ1

X̃j−1Xj−1 − δT X̃τfXτf −
c

Tα

τ2∑
j=τf+2

X̃j−1Xj−1.

The first term is
τ2∑
j=τ1

X̃j−1εj ∼a T (α+1)/2δ
τf−τe
T XcB (re) (from Lemma A5).

The second term is

c

Tα

τe−1∑
j=τ1

X̃j−1Xj−1

=
c

Tα

τe−1∑
j=τ1

−T
αδ

τf−τe
T

τwc
XτeXj−1 {1 + op (1)}

= −δ
τf−τe
T

τw
Xτe

τe−1∑
j=τ1

Xj−1 {1 + op (1)}
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= −τ e − τ1
τw

Tδ
τf−τe
T

(
T−1/2Xτe

) 1

τ e − τ1

τe−1∑
j=τ1

T−1/2Xj−1

 {1 + op (1)}

∼a −
re − r1
rw

Tδ
τf−τe
T B (re)

∫ re

r1

B (s) ds

The third term is

δT X̃τfXτf = δT

[
δ
τf−τe
T − Tαδ

τf−τe
T

τwc

]
XτeXτf {1 + op (1)}

= δ
τf−τe+1
T XτeXτf {1 + op (1)} ∼a Tδ

2(τf−τe)
T B (re)

2

due to the fact that
δ
τf−τe
T

Tα−1δ
τf−τe
T

= T 1−α > 1.

The fourth term is

c

Tα

τ2∑
j=τf+2

X̃j−1Xj−1

=
c

Tα

τ2∑
j=τf+2

−T
αδ

τf−τe
T

τwc
XτeXj−1 {1 + op (1)}

= −δ
τf−τe
T

τw
Xτe

τ2∑
j=τf+2

Xj−1 {1 + op (1)}

= −τ2 − τ f − 1

τw
Tδ

τf−τe
T

(
T−1/2Xτe

) 1

τ2 − τ f − 1

τ2∑
j=τf+2

T−1/2Xj−1

 {1 + op (1)}

∼a −
r2 − rf
rw

Tδ
τf−τe
T B (re)

∫ r2

rf

B (s) ds.

The quantity δT X̃τfXτf dominates the other three terms and hence

τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1) = −δT X̃τfXτf {1 + op (1)} ∼a −Tδ
2(τf−τe)
T B (re)

2 .
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A.2: Test Asymptotics and Proofs of Theorems 1-3.

The fitted regression model for the subperiod unit root test is

Xt = α̂r1,r2 + δ̂r1,r2Xt−1 + ε̂t, t ∈ [bTr1c , bTr2c] (32)

The intercept α̂r1,r2 and slope coeffi cient δ̂r1,r2 are obtained using data over the subperiod

[r1, r2] . We calculate the asymptotic distribution of the unit root statistic under the alternative

hypothesis. Based on Lemma A4 and Lemma A6, we can obtain the limit distribution of

δ̂r1,r2 − δT using

δ̂T − δT =

∑τ2
j=τ1

X̃j−1 (Xj − δTXj−1)∑τ2
j=τ1

X̃2
j−1

.

(1) When τ1 ∈ N0 and τ2 ∈ B,

δ̂r1,r2 − δT ∼a T−αδ
−(τ2−τ ie)
T

re−r1
rw

∫ re
r1
B (s) ds

B (re)
;

(2) when τ1 ∈ B and τ2 ∈ N1,

δ̂r1,r2 − δT ∼a −2T−αc;

(3) when τ1 ∈ N0 and τ2 ∈ N1,

δ̂r1,r2 − δT ∼a −2T−αc.

A.2.1: Limit Behavior of the recursive unit root statistics

The asymptotic distributions of the unit root coeffi cient Z-statistics are as follows: (1) When

τ1 ∈ N0 and τ2 ∈ B,

DF zr1,r2 = τw

(
δ̂r1,r2 − 1

)
= τw (δT − 1) + τw

(
δ̂r1,r2 − δT

)
= τw (δT − 1) + op

(
rw

T 1−α

δτ2−τeT

)

=
τwc

Tα
+ op

(
rw

T 1−α

ec(r2−re)T 1−α

)
= rwcT

1−α + op (1)→∞;
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(2) when τ1 ∈ B and τ2 ∈ N1,

DF zr1,r2 = τw

(
δ̂r1,r2 − 1

)
= τw (δT − 1) + τw

(
δ̂r1,r2 − δT

)
=
τwc

Tα
+ op

( τw
Tα

)
= (c− 2c)

τw
Tα

= −crwT 1−α → −∞;

(3) when τ1 ∈ N0 and τ2 ∈ N1,

DF zr1,r2 = τw

(
δ̂r1,r2 − 1

)
= τw (δT − 1) + τw

(
δ̂r1,r2 − δT

)
=
τwc

Tα
+ op

( τw
Tα

)
= (c− 2c)

τw
Tα

= −crwT 1−α → −∞.

This implies that when τ1 ∈ N0 and τ2 ∈ B,

δ̂r1,r2 − 1 ∼a T−αc and Tα
(
δ̂r1,r2 − 1

)
L→ c;

and for the other two cases,

δ̂r1,r2 − 1 ∼a −T−αc and Tα
(
δ̂r1,r2 − 1

)
L→ −c.

To obtain the asymptotic distributions of the unit root t-statistics, we need first to estimate

the standard error of δ̂r1,r2 . (1)When τ1 ∈ N0 and τ2 ∈ B,

V ar
(
δ̂r1,r2

)
= τ−1w

τ2∑
j=τ1

(
X̃j − δ̂r1,r2X̃j−1

)2

= τ−1w

τe−1∑
j=τ1

[
εj −

(
δ̂r1,r2 − 1

)
X̃j−1

]2
+

τ2∑
j=τe

[
εj −

(
δ̂r1,r2 − δT

)
X̃j−1

]2
= τ−1w

τ2∑
j=τ1

ε2j +
(
δ̂r1,r2 − 1

)2
τw
−1

τe−1∑
j=τ1

X̃2
j−1 +

(
δ̂r1,r2 − δT

)2
τ−1w

τ2∑
j=τe

X̃2
j−1
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− 2
(
δ̂r1,r2 − 1

)
τ−1w

τe−1∑
j=τ1

X̃j−1εj − 2
(
δ̂r1,r2 − δT

)
τ−1w

τ2∑
j=τe

X̃j−1εj

=
(
δ̂r1,r2 − δT

)2
τ−1w

τ2∑
j=τe

X̃2
j−1

∼a
2c

Tα
(re − r1)2

r3w

[∫ re

r1

B (s) ds

]2
.

The term
(
δ̂r1,r2 − δT

)2
τ−1w

∑τ2
j=τe

X̃2
j−1 dominates the other terms due to the fact that

(
δ̂r1,r2 − 1

)2
τw
−1

τe−1∑
j=τ1

X̃2
j−1 = Op

(
T−2α

)
Op

(
T 2α−1δ

2(τ2−τe)
T

)
= Op

(
T−1δ

2(τ2−τe)
T

)
,

(
δ̂r1,r2 − δT

)2
τ−1w

τ2∑
j=τe

X̃2
j−1 = Op

(
1

T 2αδ
2(τ2−τe)
T

)
Op

(
Tαδ

2(τ2−τe)
T

)
= Op

(
T−α

)
,

2
(
δ̂r1,r2 − 1

)
τ−1w

τe−1∑
j=τ1

X̃j−1εj = Op
(
T−α

)
Op

(
δτ2−τeT

T 1−α

)
= Op

(
T−1δτ2−τeT

)
,

2
(
δ̂r1,r2 − δT

)
τ−1w

τ2∑
j=τe

X̃j−1εj = Op

(
1

Tαδτ2−τeT

)
Op

(
δτ2−τeT

T (1−α)/2

)
= Op

(
T−(1+3α)/2

)
.

(2) When τ1 ∈ B and τ2 ∈ N1,

X̃τf+1 − δ̂r1,r2X̃τf

=
δ
τf−τ1
T

rwcT 1−α
Xτe − X̃τf −

[
δ̂r1,r2 − 1

]
X̃τf

= Op

(
Tα−1/2δ

τf−τ1
T

)
−Op

(
T 1/2δ

τf−τe
T

)
−Op

(
T−α

)
Op

(
T 1/2δ

τf−τe
T

)
= −X̃τf = −δτf−τeT Xτe {1 + op (1)} ,

using the fact that

X̃τf =

[
δ
τf−τe
T − δ

τf−τ1
T

rwcT 1−α

]
Xτe {1 + op (1)} = δ

τf−τe
T Xτe {1 + op (1)} .

Therefore,

V ar
(
δ̂r1,r2

)
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= τ−1w

τ2∑
j=τ1

(
X̃j − δ̂r1,r2X̃j−1

)2

= τ−1w


τ2∑

j=τf+2

[
εj −

(
δ̂r1,r2 − 1

)
X̃j−1

]2
+

τf∑
j=τ1

[
εj −

(
δ̂r1,r2 − δT

)
X̃j−1

]2
+
[
X̃τf+1 − δ̂r1,r2X̃2

τf
− ετf+1 + ετf+1

]2}
= τ−1w

τ2∑
j=τ1

ε2j +
(
δ̂r1,r2 − 1

)2
τw
−1

τ2∑
j=τf+2

X̃2
j−1 +

(
δ̂r1,r2 − δT

)2
τ−1w

τf∑
j=τ1

X̃2
j−1

− 2
(
δ̂r1,r2 − 1

)
τ−1w

τ2∑
j=τf+2

X̃j−1εj − 2
(
δ̂r1,r2 − δT

)
τ−1w

τf∑
j=τ1

X̃j−1εj + τ−1w X̃2
τf

= τ−1w X̃2
τf

= τ−1w δ
2(τf−τe)
T X2

τe {1 + op (1)}

∼a
1

rw
δ
2(τf−τe)
T B (re)

2 .

The term τ−1w X̃2
τf
dominates the other terms due to the fact that

(
δ̂r1,r2 − 1

)2
τw
−1

τ2∑
j=τf+2

X̃2
j−1 = Op

(
T−2α

)(
T 2α−1δ

2(τf−τ1)
T

)
= Op

δ2(τf−τ1)T

T

 ,

(
δ̂r1,r2 − δT

)2
τ−1w

τf∑
j=τ1

X̃2
j−1 = Op

(
1

T 2α

)
Op

(
Tαδ

2(τf−τe)
T

)
= Op

δ2(τf−τe)T

Tα

 ,

2
(
δ̂r1,r2 − 1

)
τ−1w

τ2∑
j=τf+2

X̃j−1εj = Op
(
T−α

)
Op

(
Tα−1δ

τf−τ1
T

)
= Op

(
δ
τf−τ1
T

T

)
,

2
(
δ̂r1,r2 − δT

)
τ−1w

τf∑
j=τ1

X̃j−1εj = Op

(
1

Tα

)
Op

(
T (α−1)/2δ

τf−τe
T

)
= Op

(
δ
τf−τe
T

T (1+α)/2

)
,

τ−1w X̃2
τf

= Op

(
δ
2(τf−τe)
T

)
.

(3) When τ1 ∈ N0 and τ2 ∈ N1,

X̃τf+1 − δ̂r1,r2X̃τf − ετf+1

= − δ
τf−τe
T

rwcT 1−α
Xτe − X̃τf −

[
δ̂r1,r2 − 1

]
X̃τf

= −Op
(
Tα−1/2δ

τf−τe
T

)
−Op

(
T 1/2δ

τf−τe
T

)
−Op

(
T−α

)
Op

(
T 1/2δ

τf−τe
T

)
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= −X̃τf = −δτf−τeT Xτe {1 + op (1)} ,

using the fact that

X̃τf =

[
δ
τf−τe
T − δ

τf−τe
T

rwcT 1−α

]
Xτe {1 + op (1)} = δ

τf−τe
T Xτe {1 + op (1)} .

V ar
(
δ̂r1,r2

)
= τ−1w

τ2∑
j=τ1

(
X̃j − δ̂r1,r2X̃j−1

)2

= τ−1w


τ2∑

j=τf+2

[
εj −

(
δ̂r1,r2 − 1

)
X̃j−1

]2
+

τe−1∑
j=τ1

[
εj −

(
δ̂r1,r2 − 1

)
X̃j−1

]2

+

τf∑
j=τe

[
εj −

(
δ̂r1,r2 − δT

)
X̃j−1

]2
+ X̃τf+1 − δ̂r1,r2X̃2

τf


2

= τ−1w

τ2∑
j=τ1

ε2j +
(
δ̂r1,r2 − 1

)2
τw
−1

 τ2∑
j=τf+2

X̃2
j−1 +

τe−1∑
j=τ1

X̃2
j−1

+
(
δ̂r1,r2 − δT

)2
τ−1w

τf∑
j=τe

X̃2
j−1

− 2
(
δ̂r1,r2 − 1

)
τ−1w

 τ2∑
j=τf+2

X̃j−1εj +

τe−1∑
j=τ1

X̃j−1εj

− 2
(
δ̂r1,r2 − δT

)
τ−1w

τf∑
j=τe

X̃j−1εj + τ−1w τ2f

= τ−1w X̃2
τf

=
δ
2(τf−τe)
T

τw
X2
τe {1 + op (1)} ∼a

δ
2(τf−τe)
T

rw
B (re)

2 .

The term τ−1w X̃2
τf
dominates the other terms due to the fact that

(
δ̂r1,r2 − 1

)2 1

τw

 τ2∑
j=τf+2

X̃2
j−1 +

τe−1∑
j=τ1

X̃2
j−1

 = Op

δ2(τf−τe)T

T

 ,

(
δ̂r1,r2 − δT

)2 1

τw

τf∑
j=τe

X̃2
j−1 = Op

δ2(τf−τe)T

Tα

 ,

2
(
δ̂r1,r2 − 1

) 1

τw

 τ2∑
j=τf+2

X̃j−1εj +

τe−1∑
j=τ1

X̃j−1εj

 = Op

(
δ
τf−τe
T

T

)
,

2
(
δ̂r1,r2 − δT

) 1

τw

τf∑
j=τe

X̃j−1εj = Op

(
δ
τf−τe
T

T (1+α)/2

)
,
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τ−1w X̃2
τf

= Op

(
δ
2(τf−τe)
T

)
.

The asymptotic distributions of the t-statistic

DF tr1,r2 =

(∑τ2
j=τ1

X̃2
j−1

σ̂2

)1/2 (
δ̂r1,r2 − 1

)
can be calculated as follows:

(1) When τ1 ∈ N0 and τ2 ∈ B,

DF tr1,r2 ∼a T
1/2δτ2−τeT

r
3/2
w B (re)

2 (re − r1)
∫ re
r1
B (s) ds

→∞.

(2) When τ1 ∈ B and τ2 ∈ N1,

DF tr1,r2 ∼a −
(

1

2
crw

)1/2
T (1−α)/2 → −∞.

(3) When τ1 ∈ N0 and τ2 ∈ N1,

DF tr1,r2 ∼a −
(

1

2
crw

)1/2
T (1−α)/2 → −∞.

Taken together with (11) and (12), these results establish the limit behavior of the unit root

statistics DFr and BSDFr (r0) in Theorem 1 (see also (33) below).

A.2.2: The PWY strategy

The origination of the bubble expansion and the termination of the bubble collapse based on

the DF test are identified as

r̂e = inf
r∈[r0,1]

{
r : DFr > cvβT

}
and r̂f = inf

r∈[r̂e+LT ,1]

{
r : DFr < cvβT

}
.

We know that when βT → 0, cvβT →∞.

The asymptotic distributions of the DF statistic under the alternative hypothesis are

DFr ∼a


Fr (W ) if r ∈ N0

T 1/2δτ−τeT
r
3/2
w B(re)

2(re−r1)
∫ re
r1
B(s)ds

→∞ if r ∈ B

−T (1−α)/2
(
1
2crw

)1/2 → −∞ if r ∈ N1

.
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It is obvious that if r ∈ N0,

lim
T→∞

Pr
{
DFr > cvβT

}
= Pr {Fr (W ) =∞} = 0.

If r ∈ B, limT→∞ Pr
{
DFr > cvβT

}
= 1 provided that cvβT

T 1/2δ
τ2−τe
T

→ 0. If r ∈ N1, limT→∞ Pr
{
DFr < cv

βT
r

}
=

limT→∞ Pr
{
−T (1−α)/2

(
1
2crw

)1/2
< cvβT

}
= 1.

It follows that for any η, γ > 0,

Pr {r̂e > re + η} → 0 and Pr {r̂f < rf − γ} → 0

due to the fact that Pr
{
DFre+aη > cvβT

}
→ 1 for all 0 < aη < η and Pr

{
DFrf−aγ > cvβT

}
→ 1

for all 0 < aγ < γ. Since η, γ > 0 is arbitrary and Pr {r̂e < re} → 0 and Pr {r̂f > rf} → 0, we

deduce that Pr {|r̂e − re| > η} → 0 and Pr {|r̂f − rf | > γ} → 0 as T →∞, provided that

1

cvβT
+

cvβT

T 1/2δτ2−τeT

→ 0.

Therefore, the PWY date detectors r̂e and r̂f are consistent estimators of re and rf . This proves

Theorem 2.

A.2.3: The PSY algorithm

The origination of the bubble expansion and the termination of the bubble collapse based on

the backward sup DF test are identified as

r̂e = inf
r∈[r0,1]

{
r : BSDFr (r0) > scvβT

}
and r̂f = inf

r∈[r̂e+LT ,1]

{
r2 : BSDFr (r0) < scvβT

}
.

We know that when βT → 0, scvβT →∞.

The asymptotic distributions of the backward sup DF statistic under the alternative hypoth-

esis are

BSDFr (r0) ∼a


Fr (W, r0) if r ∈ N0

T 1/2δτ−τeT supr1∈[0,r−r0]

{
r
3/2
w B(re)

2(re−r1)
∫ re
r1
B(s)ds

}
if r ∈ B

−T (1−α)/2 supr1∈[0,r−r0]

{(
1
2crw

)1/2}→∞ if r ∈ N1

. (33)
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It is obvious that if r ∈ N0,

lim
T→∞

Pr
{
BSDFr (r0) > scvβT

}
= Pr {Fr2 (W, r0) =∞} = 0.

If r ∈ B, limT→∞ Pr
{
BSDFr (r0) > scvβT

}
= 1 provided that scvβT

T 1/2δ
τ2−τe
T

→ 0. If r ∈ N1,

limT→∞ Pr
{
BSDFr (r0) < scv

βT
r

}
= 1.

It follows that for any η, γ > 0,

Pr {r̂e > re + η} → 0 and Pr {r̂f < rf − γ} → 0,

since Pr
{
BSDFre+aη (r0) > scvβT

}
→ 1 for all 0 < aη < η and Pr

{
BSDFrf−aγ (r0) > scvβT

}
→

1 for all 0 < aγ < γ. Since η, γ > 0 is arbitrary and Pr {r̂e < re} → 0 and Pr {r̂f > rf} → 0, we

deduce that Pr {|r̂e − re| > η} → 0 and Pr {|r̂f − rf | > γ} → 0 as T →∞, provided that

1

scvβT
+

scvβT

T 1/2δτ2−τeT

→ 0.

Therefore, the PSY date detectors r̂e and r̂f are consistent estimators of re and rf . This proves

Theorem 3.

APPENDIX B. The Dating Algorithms (two bubbles)

Section B.1 provides preliminary results that characterize the limit behavior of the regression

components over subperiods of the data. Section B.2 provides test asymptotics and gives proofs

of Theorems 4-9 which describe the consistency properties of the PWY, PSY and sequential

PWY dating strategies.

B.1: Notation and lemmas

• The two bubble periods are B1 = [τ1e, τ1f ] and B2 = [τ2e, τ2f ] , where τ1e = bTr1ec,

τ1f = bTr1fc, τ2e = bTr2ec and τ2f = bTr2fc.

• The normal periods are N0 = [1, τ1e), N1 = (τ1f , τ2e), N2 = (τ2f , τT ], where τ = bTrc is

the last observation of the sample.
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We use the data generating process

Xt =


Xt−1 + εt for t ∈ N0
δTXt−1 + εt for t ∈ Bi with i = 1, 2

X∗τ if +
∑t

k=τ if+1
εk for t ∈ Ni with i = 1, 2

, (34)

where δT = 1 + cT−α with c > 0 and α ∈ (0, 1) , εt
iid∼
(
0, σ2

)
and X∗τ if = Xτ ie + X∗ with

X∗ = Op (1) for i = 1, 2. We state the following lemmas whose proofs follow arguments closely

related to those given in the proofs of Lemmas A1-A6. They are provided in full in the technical

supplement (Phillips, Shi and Yu, 2013c; lemmas S1-S6).

Lemma A7. Under the data generating process,

(1) For t ∈ N0, Xt=bTpc ∼a T 1/2B (p).

(2) For t ∈ Bi with i = 1, 2, Xt=bTpc = δt−τ ieT Xτ ie {1 + op (1)} ∼a T 1/2δt−τ ieT B (rie) .

(3) For t ∈ Ni with i = 1, 2, Xt=bTpc ∼a T 1/2 [B (p)−B (rif ) +B (rie)] .

Lemma A8. Under the data generating process,

(1) For τ1 ∈ Ni−1 and τ2 ∈ Bi with i = 1, 2,

1

τw

τ2∑
j=τ1

Xj =
Tαδτ2−τ ieT

τwc
Xτ ie {1 + op (1)} ∼a Tα−1/2δτ2−τ ieT

1

rwc
B (rie) .

(2) For τ1 ∈ Bi and τ2 ∈ Ni with i = 1, 2,

1

τw

τ2∑
j=τ1

Xj =
Tαδ

τ if−τ1
T

τwc
Xτ ie {1 + op (1)} ∼a Tα−1/2δ

τ if−τ1
T

1

rwc
B (rie) .

(3) For τ1 ∈ Ni−1 and τ2 ∈ Ni with i = 1, 2,

1

τw

τ2∑
j=τ1

Xj = Xτ ie

Tαδ
τ if−τ ie
T

τwc
{1 + op (1)} ∼a Tα−1/2δ

τ if−τ ie
T

1

rwc
B (rie) .

(4) For τ1 ∈ N0 and τ2 ∈ N2, if τ1f − τ1e > τ2f − τ2e

1

τw

τ2∑
j=τ1

Xj =
Tαδ

τ1f−τ1e
T

τwc
Xτ1e {1 + op (1)} ∼a Tα−1/2δ

τ1f−τ1e
T

1

rwc
B (r1e)
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and if τ1f − τ1e ≤ τ2f − τ2e

1

τw

τ2∑
j=τ1

Xj =
Tαδ

τ2f−τ2e
T

τwc
Xτ2e {1 + op (1)} ∼a Tα−1/2δ

τ2f−τ2e
T

1

rwc
B (r2e) .

(5) For τ1 ∈ B1 and τ2 ∈ B2, if τ1f − τ1 > τ2 − τ2e

1

τw

τ2∑
j=τ1

Xj =
Tαδ

τ1f−τ1
T

τwc
Xτ1e {1 + op (1)} ∼a Tα−1/2δ

τ1f−τ1
T

1

rwc
B (r1e) ;

if τ1f − τ1 ≤ τ2 − τ2e

1

τw

τ2∑
j=τ1

Xj =
Tαδτ2−τ2eT

τwc
Xτ2e {1 + op (1)} ∼a Tα−1/2δτ2−τ2eT

1

rwc
B (r2e) .

(6) For τ1 ∈ B1 and τ2 ∈ N2, if τ1f − τ1 > τ2f − τ2e,

1

τw

τ2∑
j=τ1

Xj =
Tαδ

τ1f−τ1
T

τwc
Xτ1e {1 + op (1)} ∼a Tα−1/2δ

τ1f−τ1
T

1

rwc
B (r1)

and if τ1f − τ1 ≤ τ2f − τ2e,

1

τw

τ2∑
j=τ1

Xj =
Tαδ

τ2f−τ2e
T

τwc
Xτ2e {1 + op (1)} ∼a Tα−1/2δ

τ2f−τ2e
T

1

rwc
B (r2e) .

(7) For τ1 ∈ N0 and τ2 ∈ B2, if τ1f − τ1e > τ2 − τ2e,

1

τw

τ2∑
j=τ1

Xj =
Tαδ

τ1f−τ1e
T

τwc
Xτ1e {1 + op (1)} ∼a Tα−1/2δ

τ1f−τ1e
T

1

rwc
B (r1e)

and if τ1f − τ1e ≤ τ2 − τ2e,

1

τw

τ2∑
j=τ1

Xj =
Tαδτ2−τ2eT

τwc
Xτ2e {1 + op (1)} ∼a Tα−1/2δτ2−τ2eT

1

rwc
B (r2e) .

Lemma A9. Define the centered quantity X̃t = Xt − τ−1w
∑τ2

j=τ1
Xj.

(1) For τ1 ∈ Ni−1 and τ2 ∈ Bi with i = 1, 2,

X̃t =


−Tαδ

τ2−τie
T
τwc

Xτ ie {1 + op (1)} if t ∈ Ni−1[
δt−τ ieT − Tαδ

τ2−τie
T
τwc

]
Xτ ie {1 + op (1)} if t ∈ Bi

.

56



(2) For τ1 ∈ Bi and τ2 ∈ Ni with i = 1, 2,

X̃t =


[
δt−τ ieT − Tαδ

τif−τ1
T
τwc

]
Xτ ie {1 + op (1)} if t ∈ Bi

−Tαδ
τif−τ1
T
τwc

Xτ ie {1 + op (1)} if t ∈ Ni

.

(3) For τ1 ∈ Ni−1 and τ2 ∈ Ni with i = 1, 2,

X̃t =


−Tαδ

τif−τie
T
τwc

Xτ ie {1 + op (1)} if t ∈ Ni−1 ∪Ni[
δt−τ ieT − Tαδ

τif−τie
T
τwc

]
Xτ ie {1 + op (1)} if t ∈ Bi

.

(4) For τ1 ∈ N0 and τ2 ∈ N2, if τ1f − τ1e > τ2f − τ2e

X̃t =


−Tαδ

τ1f−τ1e
T
τwc

Xτ1e {1 + op (1)} if t ∈ Ni[
δt−τ ieT Xτ ie −

Tαδ
τ1f−τ1e
T
τwc

Xτ1e

]
{1 + op (1)} if t ∈ Bi, i = 1, 2,

and if τ1f − τ1e ≤ τ2f − τ2e

X̃t =


−Tαδ

τ2f−τ2e
T
τwc

Xτ2e {1 + op (1)} if t ∈ Ni[
δt−τ ieT Xτ ie −

Tαδ
τ2f−τ2e
T
τwc

Xτ2e

]
{1 + op (1)} if t ∈ Bi, i = 1, 2,

.

(5) For τ1 ∈ B1 and τ2 ∈ B2, if τ1f − τ1 > τ2 − τ2e,

X̃t =


[
δt−τ ieT Xτ ie −

Tαδ
τ1f−τ1
T
τwc

Xτ1e

]
{1 + op (1)} if t ∈ Bi, i = 1, 2,

−Tαδ
τ1f−τ1
T
τwc

Xτ1e {1 + op (1)} if t ∈ N1

and if τ1f − τ1 ≤ τ2 − τ2e

X̃t =


[
δt−τ ieT Xτ ie −

Tαδ
τ2−τ2e
T
τwc

Xτ2e

]
{1 + op (1)} if t ∈ Bi, i = 1, 2,

−Tαδ
τ2−τ2e
T
τwc

Xτ2e {1 + op (1)} if t ∈ N1
.

(6) For τ1 ∈ B1 and τ2 ∈ N2, if τ1f − τ1 > τ2f − τ2e,

X̃t =


[
δt−τ ieT Xτ ie −

Tαδ
τ1f−τ1
T
τwc

Xτ1e

]
{1 + op (1)} if t ∈ Bi, i = 1, 2,

−Tαδ
τ1f−τ1
T
τwc

Xτ1e {1 + op (1)} if t ∈ Ni, i = 1, 2,
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and if τ1f − τ1 ≤ τ2f − τ2e,

X̃t =


[
δt−τ ieT Xτ ie −

Tαδ
τ2f−τ2e
T
τwc

Xτ2e

]
{1 + op (1)} if t ∈ Bi, i = 1, 2,

−Tαδ
τ2f−τ2e
T
τwc

Xτ2e {1 + op (1)} if t ∈ Ni, i = 1, 2,

.

(7) For τ1 ∈ N0 and τ2 ∈ B2, if τ1f − τ1e > τ2 − τ2e

X̃t =


−Tαδ

τ1f−τ1e
T
τwc

Xτ1e {1 + op (1)} if t ∈ Ni, i = 1, 2,[
δt−τ ieT Xτ ie −

Tαδ
τ1f−τ1e
T
τwc

Xτ1e

]
{1 + op (1)} if t ∈ Bi, i = 1, 2,

and if τ1f − τ1e ≤ τ2 − τ2e

X̃t =


−Tαδ

τ2−τ2e
T
τwc

Xτ2e {1 + op (1)} if t ∈ Ni, i = 1, 2,[
δt−τ ieT Xτ ie −

Tαδ
τ2−τ2e
T
τwc

Xτ2e

]
{1 + op (1)} if t ∈ Bi, i = 1, 2,

.

Lemma A10. The sample variance of X̃t has the following limit form:

(1) For τ1 ∈ Ni−1 and τ2 ∈ Bi with i = 1, 2,

τ2∑
j=τ1

X̃2
j−1 =

Tαδ
2(τ2−τ ie)
T

2c
X2
τ ie {1 + op (1)} ∼a

T 1+αδ
2(τ2−τ ie)
T

2c
B (rie)

2 .

(2) For τ1 ∈ Bi and τ2 ∈ Ni with i = 1, 2,

τ2∑
j=τ1

X̃2
j−1 =

Tαδ
2(τ if−τ ie)
T

2c
X2
τ ie {1 + op (1)} ∼a

T 1+αδ
2(τ if−τ ie)
T

2c
B (rie)

2 .

(3) For τ1 ∈ Ni−1 and τ2 ∈ Ni with i = 1, 2,

τ2∑
j=τ1

X̃2
j−1 =

Tαδ
2(τ if−τ ie)
T

2c
X2
τ ie {1 + op (1)} ∼a

T 1+αδ
2(τ if−τ ie)
T

2c
B (rie)

2 .

(4) For τ1 ∈ N0 and τ2 ∈ N2,

τ2∑
j=τ1

X̃2
j−1 =


Tαδ

2(τ1f−τ1e)
T
2c X2

τ1e {1 + op (1)} ∼a
Tα+1δ

2(τ1f−τ1e)
T
2c B (r1e)

2 if τ1f − τ1e > τ2f − τ2e
Tαδ

2(τ2f−τ2e)
T
2c X2

τ2e {1 + op (1)} ∼a
Tα+1δ

2(τ2f−τ2e)
T
2c B (r2e)

2 if τ1f − τ1e ≤ τ2f − τ2e
.
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(5) For τ1 ∈ B1 and τ2 ∈ B2,

τ2∑
j=τ1

X̃2
j−1 =

 Tαδ
2(τ1f−τ1e)
T
2c X2

τ1e {1 + op (1)} ∼a
Tα+1δ

2(τ1f−τ1e)
T
2c B (r1e)

2 if τ1f − τ1e > τ2 − τ2e
Tαδ

2(τ2−τ2e)
T
2c X2

τ2e {1 + op (1)} ∼a Tα+1δ2(τ2−τ2e)T
1
2cB (r2e)

2 if τ1f − τ1e ≤ τ2 − τ2e
.

(6) For τ1 ∈ B1 and τ2 ∈ N2,

τ2∑
j=τ1

X̃2
j−1 =


Tαδ

2(τ1f−τ1e)
T
2c X2

τ1e {1 + op (1)} ∼a
Tα+1δ

2(τ1f−τ1e)
T
2c B (r1e)

2 if τ1f − τ1e > τ2f − τ2e
Tαδ

2(τ2f−τ2e)
T
2c X2

τ2e {1 + op (1)} ∼a
Tα+1δ

2(τ2f−τ2e)
T
2c B (r2e)

2 if τ1f − τ1e ≤ τ2f − τ2e
.

(7) For τ1 ∈ N0 and τ2 ∈ B2,

τ2∑
j=τ1

X̃2
j−1 =

 Tαδ
2(τ1f−τ1e)
T
2c X2

τ1e {1 + op (1)} ∼a
Tα+1δ

2(τ1f−τ1e)
T
2c B (r1e)

2 if τ1f − τ1e > τ2 − τ2e
Tαδ

2(τ2−τ2e)
T
2c X2

τ2e {1 + op (1)} ∼a
Tα+1δ

2(τ2−τ2e)
T
2c B (r2e)

2 if τ1f − τ1e ≤ τ2 − τ2e
.

Lemma A11. The sample covariance of X̃t and εt has the following limit form:

(1) For τ1 ∈ Ni−1 and τ2 ∈ Bi with i = 1, 2,

τ2∑
j=τ1

X̃j−1εj ∼a T (α+1)/2δτ2−τ ieT XcB (rie) .

(2) For τ1 ∈ Bi and τ2 ∈ Ni with i = 1, 2,

τ2∑
j=τ1

X̃j−1εj ∼a T (α+1)/2δ
τ if−τ ie
T XcB (rie) .

(3) For τ1 ∈ Ni−1 and τ2 ∈ Ni with i = 1, 2,

τ2∑
j=τ1

X̃j−1εj ∼a T (α+1)/2δ
τ if−τ ie
T XcB (rie) .

(4) For τ1 ∈ N0 and τ2 ∈ N2,
τ2∑
j=τ1

X̃j−1εj ∼a

{
T (1+α)/2δ

τ1f−τ1e
T XcB (r1e) if τ1f − τ1e > τ2f − τ2e

T (1+α)/2δ
τ2f−τ2e
T XcB (r2e) if τ1f − τ1e ≤ τ2f − τ2e

.

(5) For τ1 ∈ B1 and τ2 ∈ B2,
τ2∑
j=τ1

X̃j−1εj ∼a

{
T (α+1)/2δ

τ1f−τ1e
T XcB (r1e) if τ1f − τ1e > τ2 − τ2e

T (α+1)/2δτ2−τ2eT XcB (r2e) if τ1f − τ1e ≤ τ2 − τ2e
.
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(6) For τ1 ∈ B1 and τ2 ∈ N2,
τ2∑
j=τ1

X̃j−1εj ∼a

{
T (1+α)/2δ

τ1f−τ1e
T XcB (r1e) if τ1f − τ1e > τ2f − τ2e

T (1+α)/2δ
τ2f−τ2e
T XcB (r2e) if τ1f − τ1e ≤ τ2f − τ2e

.

(7) For τ1 ∈ N0 and τ2 ∈ B2,
τ2∑
j=τ1

X̃j−1εj ∼a

{
T (α+1)/2δ

τ1f−τ1e
T XcB (r1e) if τ1f − τ1e > τ2 − τ2e

T (α+1)/2δτ2−τ2eT XcB (r2e) if τ1f − τ1e ≤ τ2 − τ2e
.

Lemma A12. The sample covariance of X̃j−1 and Xj − δTXj−1 has the following limit form:

(1) For τ1 ∈ Ni−1 and τ2 ∈ Bi with i = 1, 2,

τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1) ∼a
rie − r1
rw

Tδτ2−τ ieT B (rie)

∫ rie

r1

B (s) ds.

(2) For τ1 ∈ Bi and τ2 ∈ Ni with i = 1, 2,

τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1) ∼a −Tδ
2(τ if−τ ie)
T B (rie)

2 .

(3) For τ1 ∈ Ni−1 and τ2 ∈ Ni with i = 1, 2,

τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1) ∼a∼a −Tδ
2(τ if−τ ie)
T B (rie)

2 .

(4) For τ1 ∈ N0 and τ2 ∈ N2,
τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1) ∼a

 −Tδ
2(τ1f−τ1e)
T B (r1e)

2 if τ1f − τ1e > τ2f − τ2e
−Tδ2(τ2f−τ2e)T B (r2e)

2 if τ1f − τ1e ≤ τ2f − τ2e
.

(5) For τ1 ∈ B1 and τ2 ∈ B2,
τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1) ∼a

{
−Tδ2(τ1f−τ1e)T B (r1e)

2 if τ1f − τ1e > τ2 − τ2e
Tαδ

τ2−τ2e+τ1f−τ1e
T

1
rwc

B (r2e)B (r1e) if τ1f − τ1e ≤ τ2 − τ2e
.

(6) For τ1 ∈ B1 and τ2 ∈ N2,
τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1) ∼a

 −Tδ
2(τ1f−τ1e)
T B (r1e)

2 if τ1f − τ1e > τ2f − τ2e
−Tδ2(τ2f−τ2e)T B (r2e)

2 if τ1f − τ1e ≤ τ2f − τ2e
.

(7) For τ1 ∈ N0 and τ2 ∈ B2,
τ2∑
j=τ1

X̃j−1 (Xj − δTXj−1) ∼a

{
−Tδ2(τ1f−τ1e)T B (r1e)

2 if τ1f − τ1e > τ2 − τ2e
Tαδ

τ2−τ2e+τ1f−τ1e
T

1
rwc

B (r2e)B (r1e) if τ1f − τ1e ≤ τ2 − τ2e
.
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B.2: Test asymptotics and Proofs of Theorems 4-9

The fitted regression model for the recursive unit root tests is

Xt = α̂r1,r2 + δ̂r1,r2Xt−1 + ε̂t,

where as in (32) above the intercept α̂r1,r2 and slope coeffi cient δ̂r1,r2 are obtained using data over

the subperiod [r1, r2] . First, we calculate the asymptotic distribution of the unit root statistic

under the alternative hypothesis. Based on Lemma A10 and Lemma A12, we can obtain the

limit distribution of δ̂r1,r2 − δT using

δ̂T − δT =

∑τ2
j=τ1

X̃j−1 (Xj − δTXj−1)∑τ2
j=τ1

X̃2
j−1

.

(1) When τ1 ∈ Ni−1 and τ2 ∈ Bi with i = 1, 2,

δ̂T − δT ∼a T−αδ−(τ2−τ ie)T

rie−r1
rw

∫ rie
r1

B (s) ds

B (rie)
;

(2) when τ1 ∈ Bi and τ2 ∈ Ni with i = 1, 2,

δ̂T − δT ∼a −2T−αc;

(3) when τ1 ∈ Ni−1 and τ2 ∈ Ni with i = 1, 2,

δ̂T − δT ∼a −2T−αc;

(4) when τ1 ∈ N0 and τ2 ∈ N2,

δ̂T − δT ∼a −2T−αc;

(5) when τ1 ∈ B1 and τ2 ∈ B2,

δ̂T − δT ∼a

{
−2T−αc if τ1f − τ1e > τ2 − τ2e
T−1δ

−(τ2−τ2e)+(τ1f−τ1e)
T

2B(r1e)
rwB(r2e)

if τ1f − τ1e ≤ τ2 − τ2e
;

(6) when τ1 ∈ B1 and τ2 ∈ N2,

δ̂T − δT ∼a −2T−αc;
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(7) when τ1 ∈ N0 and τ2 ∈ B2,

δ̂T − δT ∼a

{
−2T−αc if τ1f − τ1e > τ2 − τ2e
T−1δ

−(τ2−τ2e)+(τ1f−τ1e)
T

2B(r1e)
rwB(r2e)

if τ1f − τ1e ≤ τ2 − τ2e
.

The asymptotic distributions of the unit root coeffi cient Z-statistics are as follows: (1) When

τ1 ∈ Ni−1 and τ2 ∈ Bi with i = 1, 2,

DF zr1,r2 = τw

(
δ̂r1,r2 − 1

)
= τw (δT − 1) + τw

(
δ̂r1,r2 − δT

)
= τw (δT − 1) + op

(
rw

T 1−α

δτ2−τ ieT

)

=
τwc

Tα
+ op

(
rw

T 1−α

ec(r2−rie)T 1−α

)
= rwcT

1−α + op (1)→∞.

(2) When τ1 ∈ Bi and τ2 ∈ Ni with i = 1, 2,

DF zr1,r2 = τw

(
δ̂r1,r2 − 1

)
= τw (δT − 1) + τw

(
δ̂r1,r2 − δT

)
= crwT

1−α + op
(
rwT

1−α)
= −crwT 1−α → −∞.

(3) When τ1 ∈ Ni−1 and τ2 ∈ Ni with i = 1, 2,

DF zr1,r2 = τw

(
δ̂r1,r2 − 1

)
= τw (δT − 1) + τw

(
δ̂r1,r2 − δT

)
= crwT

1−α + op
(
rwT

1−α)
= −crwT 1−α → −∞.

(4) When τ1 ∈ N0 and τ2 ∈ N2,

DF zr1,r2 = τw

(
δ̂r1,r2 − 1

)
= τw (δT − 1) + τw

(
δ̂r1,r2 − δT

)
= crwT

1−α + op
(
rwT

1−α)
= −crwT 1−α → −∞.
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(5) When τ1 ∈ B1 and τ2 ∈ B2,

DF zr1,r2 = τw

(
δ̂r1,r2 − 1

)
= τw (δT − 1) + τw

(
δ̂r1,r2 − δT

)
=


crwT

1−α + op
(
rwT

1−α) if τ1f − τ1e > τ2 − τ2e

crwT
1−α + op

(
rw

δ
(τ2−τ2e)−(τ1f−τ1e)
T

)
if τ1f − τ1e ≤ τ2 − τ2e

=

{
−crwT 1−α → −∞ if τ1f − τ1e > τ2 − τ2e
crwT

1−α →∞ if τ1f − τ1e ≤ τ2 − τ2e
.

(6) When τ1 ∈ B1 and τ2 ∈ N2,

DF zr1,r2 = τw

(
δ̂r1,r2 − 1

)
= τw (δT − 1) + τw

(
δ̂r1,r2 − δT

)
= crwT

1−α + op
(
rwT

1−α)
= −crwT 1−α → −∞.

(7) When τ1 ∈ N0 and τ2 ∈ B2,

DF zr1,r2 = τw

(
δ̂r1,r2 − 1

)
= τw (δT − 1) + τw

(
δ̂r1,r2 − δT

)
=


crwT

1−α + op
(
rwT

1−α) if τ1f − τ1e > τ2 − τ2e

crwT
1−α + op

(
rw

δ
(τ2−τ2e)−(τ1f−τ1e)
T

)
if τ1f − τ1e ≤ τ2 − τ2e

=

{
−crwT 1−α → −∞ if τ1f − τ1e > τ2 − τ2e
crwT

1−α →∞ if τ1f − τ1e ≤ τ2 − τ2e
.

To obtain the asymptotic distributions of the t-statistics, we need to estimate the standard

error of δ̂r1,r2 . (1) When τ1 ∈ Ni−1 and τ2 ∈ Bi with i = 1, 2,

V ar
(
δ̂r1,r2

)
=
(
δ̂r1,r2 − δT

)2
τ−1w

τ2∑
j=τ ie

X̃2
j−1 ∼a

2c

Tα
(rie − r1)2

r3w

[∫ rie

r1

B (s) ds

]2
.

(2) When τ1 ∈ Bi and τ2 ∈ Ni with i = 1, 2,

V ar
(
δ̂r1,r2

)
= τ−1w X̃2

τ if
∼a

1

rw
δ
2(τ if−τ ie)
T B (rie)

2 .

(3) When τ1 ∈ Ni−1 and τ2 ∈ Ni with i = 1, 2,

V ar
(
δ̂r1,r2

)
= τ−1w X̃τ if ∼a

δ
2(τ if−τ ie)
T

rw
B (rie)

2 .
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(4) When τ1 ∈ N0 and τ2 ∈ N2,

V ar
(
δ̂r1,r2

)
=

 τ−1w X̃2
τ1f
∼a r−1w δ

2(τ1f−τ1e)
T B (r1e)

2 if τ1f − τ1e > τ2f − τ2e
τ−1w X̃2

τ2f
∼a r−1w δ

2(τ2f−τ2e)
T B (r2e)

2 if τ1f − τ1e ≤ τ2f − τ2e
.

(5) When τ1 ∈ B1 and τ2 ∈ B2,

V ar
(
δ̂r1,r2

)
=

 τ−1w X̃2
τ1f
∼a δ

2(τ1f−τ1e)
T r−1w B (r1e)

2 if τ1f − τ1e > τ2 − τ2e(
δ̂r1,r2 − 1

)2
τ−1w

∑τ2e−1
j=τ1f+2

X̃2
j−1 ∼a T−1δ

2(τ2−τ2e)
T

r2e−r1f
r3w

B (r2e)
2 if τ1f − τ1e ≤ τ2 − τ2e

.

(6) When τ1 ∈ B1 and τ2 ∈ N2,

V ar
(
δ̂r1,r2

)
=

 τ−1w X̃2
τ1f
∼a δ

2(τ1f−τ1e)
T

1
rw
B (r1e)

2 if τ1f − τ1e > τ2f − τ2e
τ−1w X̃2

τ2f
∼a δ

2(τ2f−τ2e)
T

1
rw
B (r2e)

2 if τ1f − τ1e ≤ τ2f − τ2e
.

(7)When τ1 ∈ N0 and τ2 ∈ B2,

V ar
(
δ̂r1,r2

)
=

 τ−1w X̃2
τ1f

if τ1f − τ1e > τ2 − τ2e(
δ̂r1,r2 − 1

)2
τ−1w

[∑τ1e−1
j=τ1

X̃2
j−1 +

∑τ2e−1
j=τ1f+2

X̃2
j−1

]
if τ1f − τ1e ≤ τ2 − τ2e

∼ a

 δ
2(τ1f−τ1e)
T

1
rw
B (r1e)

2 if τ1f − τ1e > τ2 − τ2e
T−1δ

2(τ2−τ2e)
T

r1e−r1+r2e−r1f
r3w

B (r2e)
2 if τ1f − τ1e ≤ τ2 − τ2e

.

The asymptotic distributions of the DF t-statistic can be calculated as

DF tr1,r2 =

(∑τ2
j=τ1

X̃2
j−1

σ̂2

)1/2 (
δ̂r1,r2 − 1

)
.

(1) When τ1 ∈ Ni−1 and τ2 ∈ Bi with i = 1, 2,

DF tr1,r2 ∼a T
1/2δτ2−τ ieT

r
3/2
w B (rie)

2 (rie − r1)
∫ rie
r1

B (s) ds
→∞;

(2) when τ1 ∈ Bi and τ2 ∈ Ni with i = 1, 2,

DF tr1,r2 ∼a −
(

1

2
crw

)1/2
T (1−α)/2 → −∞;

(3) when τ1 ∈ Ni−1 and τ2 ∈ Ni with i = 1, 2,

DF tr1,r2 ∼a −
(

1

2
crw

)1/2
T (1−α)/2 → −∞;

64



(4) when τ1 ∈ N0 and τ2 ∈ N2,

DF tr1,r2 ∼a −
(

1

2
crw

)1/2
T (1−α)/2 → −∞;

(5) when τ1 ∈ B1 and τ2 ∈ B2,

DF tr1,r2 ∼a


−
(
1
2crw

)1/2
T (1−α)/2 → −∞ if τ1f − τ1e > τ2 − τ2e[

cr3w
2(r2c−r1f)

]1/2
T 1−α/2 →∞ if τ1f − τ1e ≤ τ2 − τ2e

;

(6) when τ1 ∈ B1 and τ2 ∈ N2,

DF tr1,r2 ∼a −
(

1

2
crw

)1/2
T (1−α)/2 → −∞;

(7) when τ1 ∈ N0 and τ2 ∈ B2,

DF tr1,r2 ∼a


−
(
1
2crw

)1/2
T (1−α)/2 → −∞ if τ1f − τ1e > τ2 − τ2e[

cr3w
2(r1e−r1+r2e−r1f)

]1/2
T 1−α/2 →∞ if τ1f − τ1e ≤ τ2 − τ2e

.

Taken together with (11) and (12), these results establish the limit behavior of the unit root

statistics DFr and BSDFr (r0) in the two cases considered in theorems 4 and 5 (see also (36)

below).

B.2.1: The PWY Strategy

The origination of the bubble expansion r1e, r2e and the termination of the bubble collapse

r1f , r2f based on the DF test are identified as

r̂1e = inf
r∈[r0,1]

{
r2 : DFr > cvβT

}
and r̂1f = inf

r∈[r̂1e+LT ,1]

{
r2 : DFr < cvβT

}
,

r̂2e = inf
r∈(r̂1f ,1]

{
r2 : DFr > cvβT

}
and r̂2f = inf

r∈[r̂2e+LT ,1]

{
r2 : DFr < cvβT

}
.

We know that when βT → 0, cvβT →∞.
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Case I Suppose τ1f − τ1e > τ2f − τ2e. The asymptotic distributions of the DF statistic under

the alternative hypothesis are

DFr ∼a


Fr2 (W ) if r ∈ N0

T 1/2δτ2−τ1eT
r
3/2
w B(r1e)

2(r1e−r1)
∫ r1e
r1

B(s)ds
if r ∈ B1

−T (1−α)/2
(
1
2crw

)1/2
if r ∈ N1 ∪B2 ∪N2

.

It is obvious that if r ∈ N0,

lim
T→∞

Pr
{
DFr > cvβT

}
= Pr {Fr2 (W ) =∞} = 0.

If r ∈ B1, limT→∞ Pr
{
DFr > cvβT

}
= 1 provided that cvβT

T 1/2δ
τ−τ1e
T

→ 0. If r ∈ N1, limT→∞ Pr
{
DFr < cvβT

}
=

1.

It follows that for any η, γ > 0,

Pr {r̂1e > r1e + η} → 0 and Pr {r̂1f < r1f − γ} → 0,

due to the fact that Pr
{
DFr1e+aη > cvβT

}
→ 1 for all 0 < aη < η and Pr

{
DFr1f−aγ > cvβT

}
→

1 for all 0 < aγ < γ. Since η, γ > 0 is arbitrary, Pr {r̂1e < r1e} → 0 and Pr {r̂1f > r1f} → 0, we

deduce that Pr {|r̂1e − r1e| > η} → 0 and Pr {|r̂1f − r1f | > γ} → 0 as T →∞, provided that

1

cvβT
+

cvβT

T 1/2δτ−τ1eT

→ 0.

The strategy can therefore consistently estimate both r1e and r1f .

Since limT→∞ Pr
{
DFr < cvβT

}
= 1 when r ∈ N1 ∪B2 ∪N2, the strategy cannot estimate

r2e and r2f consistently when τ1f − τ1e > τ2f − τ2e. This proves Theorem 6.

Case II Suppose τ1f−τ1e ≤ τ2f−τ2e. The asymptotic distributions of the DF statistic under

the alternative hypothesis are

DFr ∼a



Fr (W ) if r ∈ N0
T 1/2δτ−τ1eT

r
3/2
w B(r1e)

2(r1e−r1)
∫ r1e
r1

B(s)ds
if r ∈ B1

−T (1−α)/2
(
1
2crw

)1/2
if r ∈ N1 ∪N2

−T (1−α)/2
(
1
2crw

)1/2
if r ∈ B2 and τ1f − τ1e > τ − τ2e

T 1−α/2
[

cr3w
2(r1e−r1+r2e−r1f)

]1/2
if r ∈ B2 and τ1f − τ1e ≤ τ − τ2e

. (35)
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It is obvious that if r ∈ N0,

lim
T→∞

Pr
{
DFr2 > cvβT

}
= Pr {Fr (W ) =∞} = 0.

If r ∈ B1, limT→∞ Pr
{
DFr > cvβT

}
= 1 provided that cvβT

T 1/2δ
τ−τ1e
T

→ 0. If r ∈ N1, limT→∞ Pr
{
DFr < cvβT

}
=

1.

It follows that for any η, γ > 0,

Pr {r̂1e > r1e + η} → 0 and Pr {r̂1f < r1f − γ} → 0,

due to the fact that Pr
{
BDFr1e+aη > cvβT

}
→ 1 for all 0 < aη < η and Pr

{
DFr1f−aγ > cvβT

}
→

1 for all 0 < aγ < γ. Since η, γ > 0 is arbitrary and Pr {r̂1e < r1e} → 0 and Pr {r̂1f > r1f} → 0,

we deduce that Pr {|r̂1e − r1e| > η} → 0 and Pr {|r̂1f − r1f | > γ} → 0 as T →∞, provided that

1

cvβT
+

cvβT

T 1/2δτ−τ1eT

→ 0.

The strategy therefore consistently estimates r1e and r1f .

If r ∈ B2 and τ1f − τ1e > τ − τ2e, limT→∞ Pr
{
DFr < cvβT

}
= 1 since cvβT → ∞. If

r ∈ B2 and τ1f − τ1e ≤ τ − τ2e, limT→∞ Pr
{
DFr > cvβT

}
= 1 provided that cvβT

T 1−α/2
→ 0 in

view of the final panel entry of (35). If r ∈ N1, limT→∞ Pr
{
DFr < cvβT

}
= 1. This implies

that the strategy cannot identify the second bubble when τ1f − τ1e > τ2 − τ2e. However, when

τ1f − τ1e ≤ τ2 − τ2e it can identify the second bubble provided that

1

cvβT
+

cvβT

T 1−α/2
→ 0.

This suggests that estimated second bubble origination date r̂2e will be biased, taking values of

r2e + r1f − r1e (in view of the condition τ1f − τ1e ≤ τ − τ2e under which the final panel entry of

(35) holds). The termination point r2f can be consistently estimated. This proves Theorem 7.

B.2.2: The PSY algorithm

The origination of the bubble expansion r1e, r2e and the termination of the bubble collapse

r1f , r2f based on the backward sup DF test are identified as follows:

r̂1e = inf
r∈[r0,1]

{
r : BSDFr (r0) > scvβT

}
and r̂1f = inf

r∈[r̂1e+LT ,1]

{
r : BSDFr (r0) < scvβT

}
,
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r̂2e = inf
r∈(r̂1f ,1]

{
r : BSDFr (r0) > scvβT

}
and r̂2f = inf

r∈[r̂2e+LT ,1]

{
r : BSDFr (r0) < scvβT

}
.

We know that when βT → 0, scvβT →∞.

The asymptotic distributions of the backward sup DF statistic under the alternative hypoth-

esis are

BSDFr (r0) ∼a


Fr (W, r0) if r ∈ N0

T 1/2δτ−τ ieT sup
r1∈[0,r−r0]

{
r
3/2
w B(rie)

2(rie−r1)
∫ rie
r1

B(s)ds

}
if r ∈ Bi

−T (1−α)/2 sup
r1∈[0,r−r0]

(
1
2crw

)1/2
if r ∈ N1 ∪N2

. (36)

It is obvious that if r ∈ N0,

lim
T→∞

Pr
{
BSDFr (r0) > scvβT

}
= Pr {Fr (W, r0) =∞} = 0.

If r ∈ Bi with i = 1, 2, limT→∞ Pr
{
BSDFr (r0) > scvβT

}
= 1 provided that scvβT

T 1/2δ
τ−τie
T

→ 0. If

r ∈ Ni with i = 1, 2, limT→∞ Pr
{
BSDFr (r0) < scvβT

}
= 1.

It follows that for any η, γ > 0,

Pr {r̂ie > rie + η} → 0 and Pr {r̂if < rif − γ} → 0,

since Pr
{
BSDFrie+aη (r0) > scvβT

}
→ 1 for all 0 < aη < η and Pr

{
BSDFrif−aγ (r0) > scvβT

}
→

1 for all 0 < aγ < γ. Since η, γ > 0 is arbitrary and Pr {r̂ie < rie} → 0 and Pr {r̂if > rif} → 0,

we deduce that Pr {|r̂ie − rie| > η} → 0 and Pr {|r̂if − rif | > γ} → 0 as T →∞, provided that

1

scvβT
+

scvβT

T 1/2δτ−τ ieT

→ 0 .

Therefore, the date-stamping strategy based on the backward sup ADF test can consistently

estimate r1e, r1f , r2e and r2f . This proves Theorem 8.

B.2.3: The sequential PWY procedure

The origination of the bubble expansion r1e, r2e and the termination of the bubble collapse

r1f , r2f based on the sequential DF test are identified as

r̂1e = inf
r∈[r0,1]

{
r : DFr > cvβT

}
and r̂1f = inf

r∈[r̂1e+LT ,1]

{
r : DFr < cvβT

}
,
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r̂2e = inf
r∈(r̂1f+r0,1]

{
r :r̂1f DFr > cvβT

}
and r̂2f = inf

r∈[r̂2e+LT ,1]

{
r :r̂1f DFr < cvβT

}
.

where r̂1fDFr is the DF statistic calculate over (r̂1f , r]. We know that when βT → 0, cvβT →∞.

The asymptotic distributions of the DF statistic under the alternative hypothesis are

DFr ∼a


Fr (W ) if r ∈ N0

T 1/2δτ−τ1eT
r
3/2
w B(r1e)

2(r1e−r1)
∫ r1e
r1

B(s)ds
if r ∈ B1

−T (1−α)/2
(
1
2crw

)1/2
if r ∈ N1

and

r̂1fDFr ∼a


Fr (W ) if r ∈ N1

T 1/2δτ−τ2eT
r
3/2
w B(r2e)

2(r2e−r1)
∫ r2e
r1

B(s)ds
if r ∈ B2

−T (1−α)/2
(
1
2crw

)1/2
if r ∈ N2

.

It is obvious that if r ∈ N0,

lim
T→∞

Pr
{
DFr > cvβT

}
= Pr {Fr2 (W ) =∞} = 0.

If r ∈ B1, limT→∞ Pr
{
DFr > cvβT

}
= 1 provided that cvβT

T 1/2δ
τ−τ1e
T

→ 0. If r ∈ N1, limT→∞ Pr
{
DFr < cvβT

}
=

1 and limT→∞ Pr
{
r̂1fDFr > cvβT

}
= Pr {Fr (W ) =∞} = 0. If r ∈ B2, limT→∞ Pr

{
r̂1fDFr > cvβT

}
=

1 provided that cvβT

T 1/2δ
τ−τ2e
T

→ 0. This implies that provided that cv
βT

T 1/2
→ 0, limT→∞ Pr

{
r̂1fDFr > cvβT

}
=

1 for any r ∈ B2. If r ∈ N2, limT→∞ Pr
{
r̂1fDFr < cvβT

}
= 1.

It follows that for any η, γ > 0,

Pr {r̂1e > r1e + η} → 0 and Pr {r̂1f < r1f − γ} → 0,

since Pr
{
DFr1e+aη > cvβT

}
→ 1 for all 0 < aη < η and Pr

{
DFr1f−aγ > cvβT

}
→ 1 for all

0 < aγ < γ. Since η, γ > 0 is arbitrary and Pr {r̂1e < r1e} → 0 and Pr {r̂1f > r1f} → 0, we

deduce that Pr {|r̂1e − r1e| > η} → 0 and Pr {|r̂1f − r1f | > γ} → 0 as T →∞, provided that

1

cvβT
+

cvβT

T 1/2δτ−τ1eT

→ 0.

Thus, this date-stamping strategy consistently estimates r1e and r1f .

For any φ, κ > 0,

Pr {r̂2e > r2e + φ} → 0 and Pr {r̂2f < r2f − κ} → 0,
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since Pr
{
r̂1fDFr2e+aφ > cvβT

}
→ 1 for all 0 < aφ < φ and Pr

{
r̂1fDFr2f−aκ > cvβT

}
→ 1 for all

0 < aκ < κ. Since φ, κ > 0 is arbitrary and Pr {r1f < r̂2e < r2e} → 0 and Pr {r̂2f > r2f} → 0,

we deduce that Pr {|r̂2e − r2e| > η} → 0 and Pr {|r̂2f − r2f | > γ} → 0 as T →∞, provided that

1

cvβT
+

cvβT

T 1/2δτ−τ2eT

→ 0.

Therefore, the alternative sequential implementation of the PWY procedure consistently esti-

mates r2e and r2f . This proves Theorem 9.

70



Table 6: Detection rate and estimation of the origination and termination dates under two bubble
DGP with longer second bubble durations. Parameters are set to: y0 = 100, c = 1, σ = 6.79, α =
0.6, τ1e = b0.20T c , τ2e = b0.60T c , τ1f − τ1e = b0.10T c , T = 100. Figures in parentheses are
standard deviations.

PWY PSY Seq CUSUM
τ2f − τ2e = b0.10T c
Detection Rate (1) 0.70 0.76 0.68 0.65
r1e = 0.20 0.24 (0.02) 0.24 (0.02) 0.24 (0.02) 0.24 (0.02)
r1f = 0.30 0.30 (0.00) 0.30 (0.00) 0.30 (0.01) 0.30 (0.01)

Detection Rate (2) 0.21 0.71 0.59 0.45
r2e = 0.60 0.66 (0.02) 0.64 (0.02) 0.64 (0.02) 0.66 (0.02)
r2f = 0.70 0.70 (0.00) 0.70 (0.01) 0.70 (0.01) 0.71 (0.00)

τ2f − τ2e = b0.15T c
Detection Rate (1) 0.70 0.76 0.68 0.65
r1e = 0.20 0.24 (0.02) 0.24 (0.02) 0.24 (0.02) 0.24 (0.02)
r1f = 0.30 0.30 (0.00) 0.30 (0.00) 0.30 (0.02) 0.30 (0.01)

Detection Rate (2) 0.53 0.87 0.78 0.77
r2e = 0.60 0.69 (0.03) 0.65 (0.03) 0.66 (0.03) 0.68 (0.03)
r2f = 0.75 0.75 (0.00) 0.75 (0.01) 0.75 (0.01) 0.75 (0.00)

τ2f − τ2e = b0.20T c
Detection Rate (1) 0.70 0.76 0.68 0.65
r1e = 0.20 0.24 (0.02) 0.24 (0.02) 0.24 (0.02) 0.24 (0.02)
r1f = 0.30 0.30 (0.00) 0.30 (0.00) 0.30 (0.01) 0.30 (0.01)

Detection Rate (2) 0.76 0.93 0.87 0.90
r2e = 0.60 0.71 (0.04) 0.66 (0.04) 0.67 (0.04) 0.69 (0.04)
r2f = 0.80 0.80 (0.00) 0.80 (0.02) 0.80 (0.01) 0.80 (0.01)

Note: Calculations are based on 5,000 replications. The minimum window has 12 observations.
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Table 7: Detection rate and estimates of the origination and termination dates under three
bubble DGP with different first bubble durations. Parameters are set to: y0 = 100, c = 1, σ =
6.79, α = 0.6, T = 100, τ1e = b0.15T c , τ2e = b0.45T c , τ3e = b0.75T c. Figures in parentheses are
standard deviations.

PWY PSY Seq CUSUM

τ1f − τ1e = b0.1T c, τ2f − τ2e = b0.2T c, τ3f − τ3e = b0.1T c
Detection Rate (1) 0.71 0.73 0.68 0.68
r1e = 0.15 0.19 (0.02) 0.19 (0.02) 0.19 (0.02) 0.19 (0.02)
r1f = 0.25 0.25 (0.00) 0.25 (0.00) 0.25 (0.00) 0.25 (0.02)

Detection Rate (2) 0.79 0.96 0.92 0.92
r2e = 0.45 0.57 (0.04) 0.51 (0.04) 0.52 (0.04) 0.55 (0.04)
r2f = 0.65 0.65 (0.00) 0.65 (0.01) 0.65 (0.01) 0.65 (0.01)

Detection Rate (3) 0.00 0.73 0.81 0.01
r3e = 0.75 - 0.79 (0.02) 0.79 (0.02) 0.80 (0.03)
r3f = 0.85 - 0.85 (0.00) 0.85 (0.00) 0.85 (0.01)

τ1f − τ1e = b0.2T c, τ2f − τ2e = b0.2T c, τ3f − τ3e = b0.1T c
Detection Rate (1) 0.92 0.94 0.88 0.93
r1e = 0.15 0.21 (0.04) 0.21 (0.04) 0.21 (0.04) 0.21 (0.04)
r1f = 0.35 0.35 (0.01) 0.35 (0.01) 0.35 (0.01) 0.35 (0.02)

Detection Rate (2) 0.13 1.00 0.95 0.27
r2e = 0.45 0.60 (0.03) 0.51 (0.04) 0.50 (0.04) 0.60 (0.03)
r2f = 0.65 0.65 (0.00) 0.65 (0.01) 0.65 (0.01) 0.65 (0.00)

Detection Rate (3) 0.00 0.75 0.83 0.00
r3e = 0.75 - 0.79 (0.02) 0.78 (0.02) 0.81 (0.02)
r3f = 0.85 - 0.85 (0.00) 0.85 (0.00) 0.85 (0.00)

Note: Calculations are based on 5,000 replications. The minimum window has 12 observations.
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Table 8: Detection rate and estimates of the origination and termination dates under three
bubble DGP with different second bubble durations. Parameters are set to: y0 = 100, c = 1, σ =
6.79, α = 0.6, T = 100, τ1e = b0.15T c , τ2e = b0.45T c , τ3e = b0.75T c. Figures in parentheses are
standard deviations.

PWY PSY Seq CUSUM

τ1f − τ1e = b0.1T c, τ2f − τ2e = b0.1T c, τ3f − τ3e = b0.2T c
Detection Rate (1) 0.71 0.73 0.68 0.68
r1e = 0.15 0.19 (0.02) 0.19 (0.02) 0.19 (0.02) 0.19 (0.02)
r1f = 0.25 0.25 (0.00) 0.25 (0.00) 0.25 (0.00) 0.25 (0.01)

Detection Rate (2) 0.17 0.74 0.64 0.37
r2e = 0.45 0.51 (0.02) 0.49 (0.02) 0.49 (0.02) 0.51 (0.02)
r2f = 0.55 0.55 (0.00) 0.55 (0.00) 0.55 (0.01) 0.55 (0.01)

Detection Rate (3) 0.68 0.94 0.86 0.87
r3e = 0.75 0.88 (0.03) 0.81 (0.04) 0.81 (0.05) 0.86 (0.04)
r3f = 0.95 0.95 (0.00) 0.95 (0.01) 0.95 (0.01) 0.95 (0.01)

τ1f − τ1e = b0.1T c, τ2f − τ2e = b0.2T c, τ3f − τ3e = b0.2T c
Detection Rate (1) 0.71 0.73 0.68 0.68
r1e = 0.15 0.19 (0.02) 0.19 (0.02) 0.19 (0.02) 0.19 (0.02)
r1f = 0.25 0.25 (0.00) 0.25 (0.00) 0.25 (0.00) 0.25 (0.02)

Detection Rate (2) 0.79 0.96 0.90 0.92
r2e = 0.45 0.57 (0.04) 0.51 (0.04) 0.52 (0.04) 0.54 (0.04)
r2f = 0.65 0.65 (0.00) 0.65 (0.01) 0.65 (0.01) 0.65 (0.01)

Detection Rate (3) 0.13 0.96 0.92 0.22
r3e = 0.75 0.91 (0.02) 0.81 (0.04) 0.80 (0.04) 0.90 (0.03)
r3f = 0.95 0.95 (0.00) 0.95 (0.02) 0.95 (0.01) 0.95 (0.01)

Note: Calculations are based on 5,000 replications. The minimum window has 12 observations.
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Table 9: Detection rate and estimation of the origination and termination dates under three
bubble DGP with different third bubble durations. Parameters are set to: y0 = 100, c = 1, σ =
6.79, α = 0.6, T = 100, τ1e = b0.15T c , τ2e = b0.45T c , τ3e = b0.75T c. Figures in parentheses are
standard deviations.

PWY PSY Seq CUSUM

τ1f − τ1e = b0.2T c, τ2f − τ2e = b0.1T c, τ3f − τ3e = b0.1T c
Detection Rate (1) 0.92 0.94 0.88 0.93
r1e = 0.15 0.21 (0.04) 0.21 (0.04) 0.21 (0.04) 0.21 (0.04)
r1f = 0.35 0.35 (0.00) 0.35 (0.01) 0.35 (0.01) 0.35 (0.01)

Detection Rate (2) 0.00 0.75 0.84 0.01
r2e = 0.45 - 0.49 (0.02) 0.49 (0.02) 0.51 (0.02)
r2f = 0.55 - 0.55 (0.00) 0.55 (0.01) 0.55 (0.01)

Detection Rate (3) 0.01 0.76 0.68 0.05
r3e = 0.75 0.82 (0.02) 0.79 (0.02) 0.79 (0.02) 0.81 (0.02)
r3f = 0.85 0.85 (0.00) 0.85 (0.00) 0.85 (0.00) 0.85 (0.00)

τ1f − τ1e = b0.2T c, τ2f − τ2e = b0.1T c, τ3f − τ3e = b0.2T c
Detection Rate (1) 0.92 0.94 0.88 0.93
r1e = 0.15 0.21 (0.04) 0.21 (0.04) 0.21 (0.04) 0.21 (0.04)
r1f = 0.35 0.35 (0.00) 0.35 (0.01) 0.35 (0.01) 0.35 (0.01)

Detection Rate (2) 0.00 0.62 0.06 0.01
r2e = 0.40 - 0.47 (0.00) 0.47 (0.01) 0.45 (0.03)
r2f = 0.50 - 0.50 (0.00) 0.50 (0.01) 0.50 (0.01)

Detection Rate (3) 0.01 0.76 0.17 0.06
r3e = 0.75 0.82 (0.02) 0.79 (0.02) 0.81 (0.02) 0.81 (0.02)
r3f = 0.85 0.85 (0.00) 0.85 (0.00) 0.55 (0.00) 0.85 (0.00)

Note: Calculations are based on 5,000 replications. The minimum window has 12 observations.
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Table 10: Detection rate and estimates of the origination and termination dates under three
bubble DGP and special examples. Parameters are set to: y0 = 100, c = 1, σ = 6.79, α =
0.6, T = 100, τ1e = b0.15T c. Figures in parentheses are standard deviations.

PWY PSY Seq CUSUM

τ1f − τ1e = b0.1T c , τ2f − τ2e = b0.2T c , τ3f − τ3e = b0.10T c , τ2e = b0.45T c , τ3e = b0.70T c
Detection Rate (1) 0.72 0.74 0.68 0.69
r1e = 0.15 0.19 (0.02) 0.19 (0.02) 0.19 (0.02) 0.19 (0.02)
r1f = 0.25 0.25 (0.00) 0.25 (0.00) 0.25 (0.00) 0.25 (0.02)

Detection Rate (2) 0.79 0.95 0.90 0.91
r2e = 0.45 0.57 (0.04) 0.51 (0.04) 0.51 (0.04) 0.55 (0.04)
r2f = 0.65 0.65 (0.00) 0.65 (0.01) 0.65 (0.01) 0.65 (0.01)

Detection Rate (3) 0.00 0.62 0.00 0.01
r3e = 0.70 - 0.77 (0.00) - 0.75 (0.03)
r3f = 0.80 - 0.80 (0.00) - 0.80 (0.01)

τ1f − τ1e = b0.2T c , τ2f − τ2e = b0.1T c , τ3f − τ3e = b0.10T c , τ2e = b0.40T c , τ3e = b0.75T c
Detection Rate (1) 0.72 0.94 0.88 0.93
r1e = 0.15 0.21 (0.04) 0.21 (0.04) 0.21 (0.04) 0.21 (0.04)
r1f = 0.35 0.35 (0.00) 0.35 (0.01) 0.35 (0.01) 0.35 (0.01)

Detection Rate (2) 0.00 0.62 0.06 0.01
r2e = 0.40 - 0.47 (0.00) 0.47 (0.01) 0.45 (0.03)
r2f = 0.50 - 0.50 (0.00) 0.50 (0.01) 0.50 (0.01)

Detection Rate (3) 0.01 0.76 0.17 0.06
r3e = 0.75 0.82 (0.02) 0.79 (0.02) 0.81 (0.02) 0.81 (0.02)
r3f = 0.85 0.85 (0.00) 0.85 (0.00) 0.85 (0.00) 0.85 (0.00)

Note: Calculations are based on 5,000 replications. The minimum window has 12 observations.
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