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Abstract

This paper studies the problem of how to delegate the allocation of finite re-
sources across multiple categories to an agent who has better information on their
benefits. It focuses on a tractable, natural class of delegation policies that impose
a floor or cap on the allocation to each category, a generalization of Holmström’s
(1977) “interval controls” to multidimensional settings. The paper characterizes
the optimal policies and shows that they can impose distorting limits on categories
which cause no conflict of interest with the agent, so as to curb how the conflict
in other categories affects his overall allocation. Such limits are more likely to be
optimal when the conflict is weaker and the agent also has specific information
on categories causing no conflict. These solutions to the trade-off between rules
and discretion differ substantively from those in settings with unidimensional deci-
sions or information. The paper discusses applications to delegation within firms,
the design of fiscal constitutions and policies, and individual commitment problems.
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1 Introduction

In many settings, one party (principal, she) has to delegate to another, better informed
party (agent, he) the allocation of a finite amount of resources across multiple categories—
for example, money across projects or goods and time across tasks. Besides the presence
of a fixed resource budget, often these problems have two other distinctive features. First,
not only the agent’s decision but also his information involves multiple dimensions—the
value of each project, good, or task. Second, for some dimension of choice the agent’s
goals are in conflict with the principal’s, but for others they are not—the agent may favor
only some projects, goods, or tasks.

For such problems, this paper investigates how the principal designs her delegation
policies trading off rules vs. discretion, and how these policies depend on the degree of
conflict between the parties as well as the kind of information observed by the agent.
The paper shows that the principal can benefit from imposing distorting restrictions on
dimensions along which her preference agrees with the agent’s, so as to limit how the
conflict along other dimensions affects his overall allocation. Perhaps surprisingly, such
restrictions are more likely to be optimal when the conflict is weaker, and when the agent
also has information that is specific to dimensions causing no conflict of interest. In
these situations, one may instead think that rules are less valuable than discretion, and
that the agent should always be allowed to respond to specific information on dimensions
which cause no conflict (hereafter, agreement dimensions).

For the sake of concreteness, I present the analysis in terms of a fiscal-constitution
problem between society and the government.1 Society delegates the government to
allocate the economy’s resources (its GDP) between private consumption and public
spending. Their goals disagree, however: The government always favors higher public
spending than does society.2 Public spending finances multiple services under the control
of the government (national security, law enforcement, infrastructures, etc.). In this
paper, although the government is biased in favor of public spending, it does not favor
any specific service more than others.3 Thus, given any level of public spending, both
parties agree on how to allocate it across services. Though strong, this assumption
helps to highlight the roles of conflict and agreement dimensions in delegation problems.
Before the government chooses an allocation, it observes non-contractible information
(called state) of two types: one affects the overall trade-off between private consumption
and public spending, the other the social benefit of each service. For example, the first
type of information may be the state of the overall business cycle, the second may be
threats to national security. Due to these different goals and information, society faces a
typical trade-off between rules and discretion when designing a fiscal constitution, i.e., a
delegation policy specifying which allocations the government can choose.

1This paper’s model is similar to that in Amador et al. (2006), but differs from it by considering a
richer allocation problem as well as information structure.

2This hypothesis is supported by theoretical as well as empirical work in the political-economy liter-
ature (Niskanen (1975), Romer and Rosenthal (1979), Peltzman (1992), Funk and Gathmann (2011)).

3The assumption is consistent with some empirical evidence. For example, Peltzman (1992) finds
that “voters do not much care how the Federal government allocates its spending. Basically, every extra
dollar is equally bad.”
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Similar delegation problems arise in many other settings. Shareholders delegate the al-
location of financial resources between marketing multiple products and R&D to CEOs,
who may be overly concerned about the company’s short-run performance and hence
assign relatively less importance to R&D. Managers delegate time allocation across mul-
tiple tasks to workers, who may value unproductive activities like surfing the internet or
chatting with colleagues relatively more. Universities delegate time allocation between
research projects and teaching to professors, who may value relatively more research than
teaching. Individuals delegate income allocation across multiple consumption goods and
savings to their future (or short-run) selves, who may be present biased.4 An analogous
problem may arise for governments with regard to current spending and borrowing.5

As is well known (see below), multidimensional decisions and information make
mechanism-design problems hard to analyze. Therefore some structure needs to be im-
posed on the environment in order to make any progress. This paper allows for general
distributions of the agent’s information, but limits the externalities across the dimensions
of his decisions. It also leverages the structure that the resource constraint gives to the
problem. Finally, it mostly focuses on a tractable class of delegation policies: the multi-
dimensional version of Holmström’s (1977) “interval controls.” Such policies “are simple
to use with minimal amount of information and monitoring needed to enforce them” and
“are widely used in practice” (Holmström (1977), p. 68).6 Concretely, society can design
fiscal constitutions that set either a cap or a floor on how much the government is allowed
to allocate to private consumption and to each public service.7

To build intuition, Section 4 examines how restricting one dimension of the gov-
ernment’s allocation at a time affects society’s payoff. Since the government tends to
consistently allocate too few resources to private consumption, we may expect society
to design a constitution that sets a floor on private consumption (or equivalently an
aggregate cap on public spending). Indeed, if all society can do is to limit how much
the government is allowed to assign to private consumption, a floor that binds in some
states strictly improves on a full-discretion policy. When binding, the floor prevents the
government from splurging on public spending, but does not affect how it divides the
available resources across services, a decision which raises no conflict with society. More-
over, society sets the floor strictly above the lowest level of private consumption that
is optimal according to its preference. This result is related to those in Amador et al.
(2006), but differs in important aspects explained in the paper.

The effects of caps on each public service are more subtle. When binding, such a
4See Thaler and Shefrin (1981), Laibson (1997), Gul and Pesendorfer (2004), Amador et al. (2006),

Fudenberg and Levine (2006).
5See Halac and Yared (2014).
6Discussing multidimensional delegation, Armstrong (1995) writes, “in order to gain tractable results

it may be that ad hoc families of sets such as rectangles or circles would need to be considered, and that
[...] simple results connecting the dispersion of tastes and the degree of discretion could be difficult to
obtain. Moreover, in a multidimensional setting it will often be precisely the shape of the choice set that
is of interest.” (p.20, emphasis in the original). The present paper addresses these considerations.

7Alonso and Matouschek (2008) and Amador and Bagwell (2013b) provide conditions for Holmström’s
“interval controls” to be fully optimal in settings with unidimensional decision and information. No such
conditions have been derived for the multidimensional case yet.
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cap mitigates the government’s overspending in aggregate, but by freeing up resources,
it also exacerbates overspending on all other services. It thus distorts the allocation
for dimensions along which both parties’ preferences are not in conflict. Despite these
drawbacks, capping services can benefit society: Even if it can impose a cap on only one
of them, doing so strictly dominates granting the government full discretion. Intuitively,
the implied higher private consumption yields a first-order gain for society, as it values
this dimension relatively more. On the other hand, the distortions in the provision of
public services yields a second-order loss for society, as its preference on these dimensions
agrees with the government’s.

The paper then examines policies that combine multiple caps and floors. Service-
specific caps can be combined to impose, de facto, a target floor on private consumption.
Such a combination, however, can implement the same allocations as using an actual
floor if and only if information affects only the trade-off between private consumption
and public spending. This is because specific caps cannot ensure that public spending
stays below a certain level, and at the same time allow the government to freely vary
how it allocates this level across services in response to their idiosyncratic information.

Specific caps can also be used on top of an aggregate one (or a floor on private
consumption). Does society ever benefit from doing so? The answer turns out to depend
both on the strength of the government’s bias and on the type of its information.

On the one hand, everything else equal, if the government’s bias is sufficiently weak,
then an optimal fiscal constitution must involve service-specific caps. That is, it leads to
distortions along agreement dimensions as an optimal way to control the government’s
bias in other dimensions. This is because, when information also affects the value of
each service, the government spends the most on one service in the states where its value
is much higher than for the other services, whereas it spends the most in aggregate in
states where all services have high values. An aggregate cap deals with the latter states.
However, if it is set relatively high—which is what society wants to do when the bias is
weak—it may not curb overspending in the former states. To overcome this issue, society
can add service-specific caps that bind only when the aggregate one does not.

On the other hand, if the government’s bias is sufficiently strong, a policy featuring
only an aggregate cap on public spending (or floor on private consumption) is optimal.
This is because it turns out that society can never benefit from letting the allocation to
private consumption fall below the lowest optimal level from its viewpoint. But this limit
will always bind for a strongly biased government, even if it faces service-specific caps.
Since such caps then do not improve private consumption and create distortions along
agreement dimensions, they can only harm society. For strong enough biases, it is also
optimal for society to commit ex ante to a fixed level of public spending and grant the
government full discretion in allocating it across services.

A general message emerges here. In a concrete setting, we may observe richer dele-
gation policies with more rules than in other settings and infer that this is because the
principal faces an agent with a stronger bias. The paper shows, however, that the cor-
relation between complexity and conflict of interest may actually be negative, as richer
policies can work better when the agent’s bias is weaker and simpler ones when his bias
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is stronger.
A simple policy with only an aggregate cap is also more likely to be optimal when the

government’s service-specific information decreases. Section 6 considers the limit case in
which the information affects only the trade-off between private consumption and public
spending (i.e., it is unidimensional). Despite this, the multiplicity of services continues to
play a key role. If the government is forced to allocate high spending levels inefficiently
across services—for example, using specific caps—it will find such levels less attractive
and hence will tend to penalize private consumption less. Another way to deter the
government from doing so, however, is money burning, namely forcing it to “throw away”
part of what it does not allocate to private consumption.8 The paper shows that when
money burning is allowed and fiscal constitutions can be any set of feasible allocations—
not just generalized intervals—it is without loss to restrict attention to policies that
regulate only private consumption and aggregate spending, but not single services.

This simplification helps us understand when policies imposing only a consumption
floor are optimal for any degree of the government’s bias. If we focus on all sets of
feasible allocations in terms of public spending and private consumption only, Amador
et al.’s (2006) main result implies that those floor policies are optimal if and only if
the information distribution satisfies a simple, weak condition. This condition is then
sufficient (but not necessary) for the same policies to be optimal among all generalized-
interval ones. However, it happens to be more likely to hold when the bias is weak, which
corresponds to settings where policies with only a consumption floor are no longer optimal
if information is multidimensional. Amador et al. (2006) argue that, when their condition
fails, money burning can be part of an optimal policy. The present paper shows that, by
requiring distorted allocations across public services, society can achieve the same payoff
while burning less money. In some settings, money burning is even superfluous. This is
the case, for instance, if welfare falls significantly when some public service receives very
few resources, which seems plausible for cases like national security, law enforcement, or
criminal detention. This is useful if in practice money burning is infeasible or illegal. In
short, even with unidimensional information, treating public spending as a monolithic
entity can be restrictive, and distortions along agreement dimensions may again be part
of an optimal delegation policy.

Section 7 discusses the implications of these results for the other settings with similar
delegation problems mentioned before, which relate to the literatures on public finance,
individual commitment problems, corporate governance, and organization design.

2 Related Literature

This paper contributes to the literature on the trade-offs between rules (commitment)
and discretion (flexibility) and its numerous applications.9 It shows how a more realistic

8Papers that study money burning as a tool to shape incentives in delegation problems include
Amador et al. (2006), Ambrus and Egorov (2009), Ambrus and Egorov (2013), Amador and Bagwell
(2013a), Amador and Bagwell (2013b).

9See also Athey et al. (2005), Ambrus and Egorov (2013), Amador and Bagwell (2013b).
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and detailed description of the decision problem can open the door to identifying superior
(yet simple) commitment policies. The closest papers are Amador et al. (2006) and Halac
and Yared (2014). In the first paper, information has one dimension, allocations have
two (only total public spending matters for payoffs), and the agent has a known bias
against one of them. As the above examples suggest, in many settings allocations as
well as information involve more dimensions. The present paper shows that Amador et
al.’s (2006) main result does not generalize to such richer settings. Also, in contrast to
Amador et al. (2006), this paper has to restrict the class of delegation policies and rely
on different techniques, due to the well-known intricacies of multidimensional mechanism
design (discussed below). In the dynamic settings of Halac and Yared (2014), society and
the government disagree on how to trade off consumption between the present and the
future, but not across future periods; in each period both consumption and information
is unidimensional, but the latter is correlated over time. As a result, optimal fiscal
constitutions may distort future consumption, even though it causes no conflict of interest
once its current level is fixed. This is because society can relax the government’s current
incentive constraints by exploiting the link, created by information, between the values
of present and future allocations, as in other dynamic mechanism-design problems.10 By
contrast, in the present paper agreement dimensions may be distorted to exploit the link
with other dimensions created by the resource constraint.

More generally, this paper relates to the literature on optimal delegation in principal-
agent settings following Holmström (1977, 1984). Delegation problems naturally involve
multidimensional decisions and information. Few papers, however, have examined such
problems—and not of the kind considered here.11 In Koessler and Martimort (2012),
the agent’s information has one dimension and uniform distribution, his decision is bi-
dimensional and unconstrained, and payoffs are quadratic. This causes payoffs to ulti-
mately depend on the decision’s mean and spread across dimensions; also, the latter can
be used as an imperfect pseudotransfer to screen the agent’s information.

In Frankel (2014) and (2015), both information and decisions are multidimensional.
In Frankel (2014), the agent has the same bias for all dimensions, but the principal is
uncertain about its properties (strength, direction, etc.). The paper characterizes the
delegation policies that maximize the principal’s payoff for the worst-case bias (max-
min policies). Frankel’s (2014) “budget” policies should not be confused with caps and
floors in this paper: They require the average decision across dimensions to satisfy a
preset value (called budget). Frankel (2015) considers policies that set caps and floors
not directly on decisions, but “against the agent’s bias:” They limit the gap, due to the
bias, between the agent’s and principal’s total utilities from the implemented decisions.
Such policies are fully optimal if payoffs are quadratic and information is normally, i.i.d.
distributed across dimensions. More generally, they ensure that, relative to the first
best, the principal’s loss per dimension vanishes as the number of dimensions grows
while information remains independent across them. By contrast, the present paper

10See, for example, Courty and Li (2000), Battaglini (2005), Pavan et al. (2014).
11In Alonso et al. (2013), a fixed amount of resources has to be allocated across multiple dimensions,

but each dimension is controlled by a different agent with a unidimensional piece of information. This
makes the class of problems they study fundamentally different from that of the present paper.
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allows for general distributions and considers a different class of delegation policies. It
shows that policies which constrain dimensions for which the agent is not biased may
strictly dominate policies which do not—like Frankel’s (2015). It also provides useful
result for settings in which the agent’s decision has a small, fixed number of dimensions.

Finally, this paper relates to the literature on multidimensional screening (see Stole
and Rochet (2003) for a detailed survey). This literature allows for transfers between
the principal and the agent, a key difference from delegation problems which prevents us
from applying the lessons from that literature and forces us to consider a restricted class
of policies. In the present paper we could use the dual approach and other methods in
Rochet and Choné (1998) to summarize the agent’s incentive constraints and simplify the
principal’s objective. The fixed resource budget, however, adds a state-wise constraint to
the problem. Although general techniques exist for such problems (Luenberger (1969)),
in our case they do not help to characterize the optimal unrestricted mechanisms, which
need not follow the same logic of the unidimensional case—as suggested by Rochet and
Choné (1998)—or for that matter of monopolistic screening. One benefit of this paper’s
approach is that its results are insensitive to details of the information structure. By
contrast, such details can significantly affect the solution of multidimensional screening
problems (see Manelli and Vincent (2007)).

3 Model

For the sake of concreteness, I present the model in terms of a fiscal-constitution problem
between society and the government. Section 3.1 discusses other interpretations and
applications. The setting is similar to that studied in Amador et al. (2006) (hereafter,
AWA), except for two aspects which I will indicate shortly.

Society delegates to the government the choice of how to allocate the economy’s
known resources, I, between private consumption, x0 ≥ 0, and public spending, y ≥ 0,
subject to the constraint x0 + y ≤ I.12 Society and the government systematically
disagree on how I should be allocated: The government always favors higher public
spending than does society.13 Following AWA, if y leads to a payoff w(y) and x0 to a
payoff v(x0), then society’s overall welfare is θw(y) + v(x0) and the government’s payoff
is θw(y) + bv(x0). The variable θ > 0 represents non-contractible information that
arrives before the government chooses an allocation and determines the importance of
public spending vs. private consumption. For instance, θ could capture the state of the
business cycle: In a recession public spending may become more valuable, corresponding
to a higher θ. The parameter b ∈ (0, 1) captures in a tractable way the preference conflict
by systematically biasing the government in favor of public spending.

A key difference between private consumption and public spending is that the govern-
ment controls how the amount y is allocated across multiple services—national security,
law enforcement, infrastructures, health care, etc. Arguably, different allocations of the
same amount y yield different payoffs for society. To capture this feature, let n > 1

12In the proofs, society is denoted by P for principal and the government by A for agent.
13See Footnote 2 for theoretical and empirical justifications of this assumption.
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be the number of public services and xi be the amount of resources allocated to ser-
vice i. This multidimensionality of public spending is the first departure from AWA.
Since y =

∑n
i=1 xi, the resource constraint becomes

B = {(x, x0) ∈ Rn+1
+ :

∑n
i=0xi ≤ I}.

For simplicity, normalize I to equal 1. We can then interpret each xi as the share of
resources allocated to service i.

Besides the information on the value of public spending vs. private consumption, the
government may also observe non-contractible information on the social return of each
public service. This idiosyncratic information is captured by a variable r ∈ Rn, where ri
refers to service i. For instance, ri can measure the intensity of national-security threats
or of natural disasters requiring public relief. This multidimensionality of information
is the second departure from AWA. Given (θ, r), society’s and the government’s payoffs
become

θu(x; r) + v(x0) and θu(x; r) + bv(x0).

Although the government favors public spending over private consumption relative to
society, it does not favor any specific public service more than others.14 This simplifying
assumption is of course strong, but it helps to highlight the role of dimensions of (more)
conflict and of (more) agreement in delegation problems. To add clarity and tractability
to the model, assume that

u(x; r) =
n∑
i=1

ui(xi; ri) with ui12 > 0 for all i.

This additive-separability assumption may rule out realistic externalities across public
services, but it will help to isolate the mechanisms of interest for this paper. This
assumption is superfluous for some of the results below, which I will point out. I expect
that the other results are robust to moderate externalities (see below).

Our information structure involves some degree of redundancy, as both an increase
in θ and an increase in all components of r render public spending more valuable. This
approach, however, has several benefits. First, it clarifies the conceptual distinction
between service-specific information and information affecting the overall trade-off with
private consumption. Second, it will allow us to keep the same model throughout the
entire analysis and hence focus on the core messages of the paper. Third, it simplifies
the comparison with the literature.

The following are mostly technical assumptions:

• Information: Let S = [θ, θ] × [r1, r1] × · · · × [rn, rn], where 0 < θ < θ < +∞
and −∞ < ri < ri < +∞ for all i = 1, . . . , n. The joint distribution of (θ, r) is
represented by the probability measure G which has full support over S; that is,
G(S ′) > 0 for every open S ′ ⊂ S.15

14See Footnote 3 for some evidence supporting this property.
15This holds, for instance, if G has a strictly positive and continuous density function over S.
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• Differentiability, monotonicity, concavity : The function v : R+ → R is twice con-
tinuously differentiable with v′ > 0 and v′′ < 0. For all i = 1, . . . , n, the function
ui : R+ × [ri, ri]→ R is twice differentiable with ui1(·; ri) > 0 and ui11(·; ri) < 0 for
all ri ∈ [ri, ri]; also, ui1 and ui11 are continuous in both arguments.

• Boundary conditions : limx0→0 v
′(x0) = +∞ and limxi→0 u

i
1(xi; ri) = +∞ for all

ri ∈ [ri, ri] and i = 1, . . . , n. This will allow us to focus on interior solutions.

As usual in delegation problems, here society faces a trade-off between rules and
discretion. On the one hand, it benefits by letting the government act on its information;
on the other, it may want to limit the government’s freedom to choose how to allocate
the economy resources. To do so, society may design a fiscal constitution dictating
restrictions and guidelines that an allocation must satisfy. Formally, such a constitution
is a nonempty subset C of the resource constraint B, containing the allocations the
government is allowed to implement. For example, if C = B, the government has full
discretion; if C contains only one element, it has no discretion at all. I will be more
precise below about the class of fiscal constitutions examined in this paper.

The timing is as follows. First, society designs and commits to a fiscal constitution C.
Then, the government observes information (θ, r) and chooses an allocation (x, x0) in C.
The allocation is implemented and payoffs realize. Society designs C to maximize its
expected payoff.

The rest of the paper uses the following simplifying notation and definitions. Denote
every element of S by s = (θ, r1, . . . , rn), which we will call state. Let society’s and the
government’s payoff in each s from allocation (x, x0) be

U(x, x0; s) = û(x; s) + v(x0) and V (x, x0; s) = û(x; s) + bv(x0), (1)

where û(x; s) = θ
∑n

i=1 u
i(xi; ri). For each s, let π∗(s) be the allocation society would

like the government to choose in that state and α∗(s) the allocation it actually chooses
under full discretion:

π∗(s) = arg max
B

U(x, x0; s) and α∗(s) = arg max
B

V (x, x0; s). (2)

The functions π∗ and α∗ satisfy useful properties, summarized in the following lemma
for ease of reference.

Lemma 1.
• Both π∗ and α∗ are continuous in s.
• For all i = 0, . . . , n, the range of π∗i (resp. α∗i ) equals an interval [π∗i , π

∗
i ] (resp. [α∗i , α

∗
i ]),

• with 0 < π∗i < π∗i < 1 (resp. 0 < α∗i < α∗i < 1).
• For all s ∈ S, α∗0(s) is strictly increasing in b and α∗0(s) < π∗0(s) if and only if b < 1.
• For all s ∈ S, each α∗i (s) is strictly decreasing in b.

These properties follow immediately from (1) the assumptions on U and V , (2) compact-
ness, connectedness, and convexity of S, and (3) standard comparative-statics arguments.
Note also that all dimensions of x are normal goods in the sense that the optimal alloca-
tion to each xi increases as the total resources y available for public spending increase.16

16Given our assumptions, this property follows, for instance, from Proposition 1 in Quah (2007).
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A final observation which will be useful later is that, fixing private consumption, society
and the government agree on how to allocate the remaining resources across services:
Given x̂0 ∈ [0, 1],

arg max
{(x,x0)∈B:x0=x̂0}

U(x, x0; s) = arg max
{(x,x0)∈B:x0=x̂0}

V (x, x0; s) for every s. (3)

3.1 Alternative Interpretations and Applications

This section outlines other settings that create delegation problems which can be modeled
using the above framework. The reader interested in the results can skip this part.

Intrapersonal commitment problems. In each period an agent has to allocate his
income I between savings, x0, and immediate consumption, y, which involves multiple
goods, x1, x2, etc. The agent as two selves, called Planner and Doer. Doer is in charge of
choosing the allocation and suffers from present bias, which induces him to systematically
overweigh immediate consumption (i.e., b < 1). Knowing this, Planner would like to
limit the effect of Doer’s bias by restricting the available allocations. However, some
time elapses between when Planner can commit and when Doer chooses. In the mean
time, information arrives not only on the relative value of consumption vs. savings (θ),
but also on the utility from each consumption good (r). This information may be taste
shocks or observation of prices, which determine how each dollar spent on good i, xi,
translates into its physical units.17 To commit, Planner may force Doer to choose from
a subset C of his budget set B.

Workers’ time management. In a company, a manager supervises a worker. The
worker’s contract specifies a workweek of I hours and a fixed wage. The worker is in
charge of multiple tasks and chooses how to allocate his time across them (x1, x2, etc.).
Moreover, he can spend some time x0 on personal unproductive activities, such as having
lunch, chatting with colleagues, going to the bathroom, or surfing the internet. In this
case, manager and worker may disagree on the importance of such activities: He is likely
to weigh his benefits from x0 more than does the manager (i.e., b > 1 in the model).18

Being on the shop floor, the worker has firsthand information on which task demands
more attention and time at each moment. Given this, the manager would like to let him
choose how to allocate his time. However, she may also want to set up some rules to
avoid that he spends too much time on unproductive activities. Again, we can model
such rules with a subset C of the worker’s weekly time budget B.

Corporate governance. The shareholders of a company appoint a CEO, who each
year decides how to allocate an overall budget I to R&D, x0, and sales activities, y (e.g.,
ad campaigns). The company sells multiple products and the CEO also chooses which

17For instance, for all i = 1, . . . , n, let ui(zi) =
z
1−γi
i

1−γi with γi > 0 be the utility from zi units of good `i
and pi > 0 be its ex-ante uncertain price. If we define xi = pizi for all i, the budget constraint becomes∑n
i=1 xi + x0 ≤ 1. Letting ri = p1−γii , we can also define ui(xi; ri) = riu

i(xi), which satisfies all our
assumptions. This example can be generalized by allowing each ui to be a smooth, strictly increasing,
and strictly concave function.

18The paper focuses on the case of b < 1, but explains how the analysis can be adapted for the case
of b > 1.
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share of y goes to promoting each of them (x1, x2, etc.). Being more concerned with the
company’s short-run performance, the CEO may assign more importance to current sales
than to R&D relative to the shareholders (i.e., b < 1). Since he manages the business on a
daily basis, he has superior information on the returns from marketing each product and
from funding R&D, information the shareholders would like to see incorporated in the
allocation of I. However, they may be concerned about the CEO’s focus on short-term
performance. Therefore, they may want to limit his freedom by requiring him to select
from a subset C of all feasible allocations in B.

Research vs. teaching in academia. A university employs a professor to teach
and conduct research. Each month, the professor has a total amount of hours I that she
can allocate to research, y, or teaching, x0. Also, she works on several research projects
and has to choose how much of y to spend on each (x1, x2, etc.). As is often the case,
the professor may care more about his research than teaching, relative to the university
(i.e., b < 1). Nonetheless, she has better information on which activity is more likely to
advance her as well as the university’s interests on a weekly basis. Thus, the university
would like to let the professor choose how to allocate her time across activities. At the
same time, it may also want to establish some rules to limit the risk that she overlooks
teaching. Again, we can capture such rules with a subset C of the professor’s time
budget B.

Public finance. As in Halac and Yared (2014), each year t the government chooses
how much to borrow, zt, and spend, yt, subject to the intertemporal constraint yt ≤
τ + zt/ρ− zt−1, where zt−1 is the nominal debt inherited from period t− 1, τ is a fixed
tax revenue, and ρ is an exogenous (gross) interest rate. Differently from their model,
here the government divides yt across multiple services, xt, and its information, (θt, rt), is
i.i.d. over time. At the beginning of each year, before observing any information, the gov-
ernment evaluates an allocation (xt, zt) using the function θtu(xt; rt) + v̂(zt), where v̂(zt)
is the expected payoff from entering period t+ 1 with debt zt. By contrast, after observ-
ing θt and rt, the government chooses an allocation using the function θtu(xt; rt) + bv̂(zt)
with b ∈ (0, 1). Halac and Yared (2014) discuss several rationales for the government’s
present bias; for instance, Jackson and Yariv (2011) show that it arises under natural
assumptions when the government aggregates the preferences of heterogeneous citizens,
even if they are all time consistent. Anticipating its inconsistency, at the beginning of
each year the government may commit to some fiscal rules for that year.19 To map Halac
and Yared’s (2014) setting to the present one, we can assume an exogenous upper bound
on borrowing Z < +∞, let xt0 = −zt/ρ and I(xt0) = τ +ρxt0, and define v(xt0) = v̂(−ρxt0).
The intertemporal constraint becomes

∑n
i=1 x

t
i + xt0 ≤ I(xt−10 ). At the beginning of each

period t, given xt−10 the government can commit to some budget plan C ⊂ B(xt−10 ).
19Due to the i.i.d. assumption, considering fiscal rules that bind only for one period is without loss of

generality (see, Amador et al. (2003); Halac and Yared (2014)).
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4 Tractable Delegation Policies: Generalized Intervals

In principle, we would like to find society’s best policy among all possible fiscal constitu-
tions, that is, all subset C of B. However, as Holmström (1977) noted, “one might want
to restrict C to [...] only certain simple forms of [policies], due to costs of using other
and more complicated forms or due to the fact that the delegation problem is too hard
to solve in general.” In his seminal work in which the agent’s decision is unidimensional,
Holmström (1977) restricted attention to interval policies, noting that such policies “are
simple to use with minimal amount of information and monitoring needed to enforce
them” and “are widely used in practice.” For similar reasons, this paper focuses on a
class of policies which correspond to the multidimensional generalization of Holmström’s
intervals.20

Society can design constitutions which impose either a cap or a floor on how much the
government can allocate to private consumption and to each public service. Formally,
given f , c ∈ Rn+1

+ that satisfy fi ≤ ci for i = 0, 1, . . . , n and
∑n

i=0 fi ≤ 1, let

Cf ,c = {(x, x0) ∈ B : fi ≤ xi ≤ ci for all i}.

Denote the collection of all such delegation policies by R (for “rectangles”). Given a
policy Cf ,c, a floor (or cap) can constrain the government’s decision in some states but
not in others. Therefore, when describing a policy from the ex-ante viewpoint, I will
refer to a floor (or cap) as binding if it constrains the government in a set of states with
strictly positive probability. For simplicity, when considering policies in R, I will leave
f and c implicit unless required by the circumstances. Formally, society has to choose
C ∈ R so as to maximize

U(C) =

ˆ
S

U(α(s); s)dG (4)

where, for all s,
α(s) ∈ arg max

(x,x0)∈C
V (x, x0; s). (5)

This problem has a solution.

Lemma 2. There exists C that maximizes U(C) over R.21

Given this result, we can turn to characterizing the optimal delegation policies.

4.1 Restricting Disagreement Dimensions

Society and the government disagree on how much they value private consumption rela-
tive to public spending. We may then conjecture that society designs a fiscal constitution
which focuses on this one and only dimension of disagreement. Since the government

20In settings similar to Holmström’s (1977), the literature has identified conditions for intervals to
be optimal when no restriction on the delegation policies is imposed (see, for example, Alonso and
Matouschek (2008) and Amador and Bagwell (2013b)). Similar conditions are not available, however,
for multidimensional settings like in the present paper.

21All proofs appear in the Appendix.
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tends to allocate too few resources to private consumption, we may expect that society
imposes only a floor on this dimension.22 When binding, the floor prevents the govern-
ment from splurging on public spending, but never affects how it divides the resources
across services, a decision which raises no conflict (recall (3)).

As a first step in examining this conjecture, this section develops the following result:
If all society can do is to impose limits on how much the government can allocate to
private consumption, a floor f0 that binds in some states improves on the full-discretion
policy (i.e., on C = B). Moreover, the optimal f 0 is strictly higher than the lowest
level of private consumption that is optimal from society’s viewpoint (i.e., f0 > π∗0).23

These results rely only on two properties of the function û in (1): continuity and strict
concavity in x. Hence, they would not change if we allowed for general interactions across
dimensions of x and dependence on s.

Proposition 1. When the only available delegation policies involve a floor on x0, it is
optimal to set f0 strictly between π∗0 and π∗0.

Note that, in some settings, for practical reasons it may be possible to restrict only
dimension x0. For example, in the application to research vs. teaching in academia, a
university can easily request and monitor that a professor allocates at least f0 hours per
week to teaching, but may not be able to constrain the time that she spends on each of
her research projects.

Proposition 1 is clearly related to the results in AWA, but differs in several important
respects. In their setting in which both information and public spending are unidimen-
sional, they are able to consider all subsets of B as feasible delegation policies and show
that the optimal one must indeed involve a binding floor on private consumption. AWA
derive their result through a clever application of mechanism-design techniques. As is
well known,24 similar techniques are not available for the present setting with multidi-
mensional information and public spending, which renders finding the optimal policy
among all subsets of B a very hard problem. Therefore, this paper first restricts atten-
tion to policies which can involve only a floor or cap on private consumption. Second, to
prove the optimality of a binding floor, it relies on different techniques from AWA.

The intuition for Proposition 1 is simple. First, society wants to set f0 at least as
high as π∗0. On the one hand, under full discretion, for some states the government
allocates strictly less than π∗0 to private consumption. But such allocations are never
justifiable from society’s viewpoint. On the other hand, fixing any x0, both parties
always agree on how 1 − x0 should be divided across services. Therefore, even when f0
is binding, it does not distort the provision of public services. Second, the property that
f0 > π∗0 follows from an envelope-type argument. For states in which society would choose
x0 > π∗0, it strictly prefers setting f0 = x0 and letting the government freely allocate
1−f0 than setting f0 = π∗0, which leads to overspending. By contrast, for states in which

22Of course, this floor can be equivalently implemented with an aggregate cap on public spending.
23Proposition 4 below will imply that it is never beneficial to impose a binding cap on private con-

sumption (i.e., c0 < α∗0).
24See, for example, Rochet and Choné (1998) and their discussion on direct and dual approaches to

screening problems.
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society would choose x0 = π∗0, setting f0 = π∗0 already perfectly realigns the government’s
allocation with society’s goals in all dimensions; therefore, a marginal increase in f0 has
only a second-order negative effect on society’s payoff. Finally, society never wants to
allocate more than π∗0 to private consumption, and hence f0 ≤ π∗0. A similar envelope-
type argument explains why this inequality must be strict at the optimum.

Proposition 1 relies on the following lemma, which is also useful to study how f0 varies
as the government’s bias b changes. For any floor f0 ∈ [α∗0, π

∗
0],25 for simplicity denote

by Cf0 the corresponding policy in R.

Lemma 3. Define S(f0) = {s ∈ S : α∗0(s) ≤ f0} and

xf0(s) = arg max
{x∈Rn

+:
∑n

i=1 xi≤1−f0}
û(x; s).

The payoff U(Cf0) is differentiable in f0 over the domain [α∗0, π
∗
0] with

d

df0
U(Cf0) =

ˆ
S(f0)

[
v′(f0)−

∂

∂xi
û(xf0(s); s)

]
dG,

for any i = 1, . . . , n.

Using this result, we can easily see which considerations determine society’s choice of
an optimal floor f ∗0 . Of course, f ∗0 must satisfy the first-order condition d

df0
U(Cf∗0 ) = 0.

To obtain a simple interpretation of this condition, given f0 ∈ (π∗0, π
∗
0), let Sm(f0) contain

all states in which society would allocate more than f0 to private consumption and Sl(f0)
contain all states in which it would allocate less than f0:

Sm(f0) = {s ∈ S : π∗0(s) > f0} and Sl(f0) = {s ∈ S : π∗0(s) < f0}.

Also, define the positive function φ as

φ(s) =

{
v′(f0)− ∂

∂xi
û(xf0(s); s) if s ∈ Sm(f0)

∂
∂xi
û(xf0(s); s)− v′(f0) if s ∈ Sl(f0)

, (6)

for any i = 1, . . . , n. Intuitively, φ(s) represents the shadow benefit of raising f0 in the
states in Sm(f0) and the shadow cost of doing so in the states in Sl(f0). We can then
express the first-order condition asˆ

S(f∗0 )∩Sm(f∗0 )

φ(s)dG =

ˆ
S(f∗0 )∩Sl(f

∗
0 )

φ(s)dG.

That is, when affecting the government’s decision with f ∗0 , the expected benefits for the
states that demand higher consumption must equal the expected cost for the states that
demand lower consumption.

How does the optimal floor change as the government becomes more biased? Every-
thing else equal, society should tighten f ∗0 . Indeed, it turns out that U(Cf0) is submodular
in (f0, b), as d

df0
U(Cf0) decreases in b. Intuitively, as the bias worsens, the government pe-

nalizes private consumption more; so any f 0 is more likely to bind. This strengthens the
25Any other floor is dominated by one in this range.
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expected benefit of raising f 0 when society would choose an even higher level of private
consumption. But it does not change the expected cost of raising f 0 when society would
choose a lower level: In such states f 0 binds for any bias, as the government always
prefers to allocate less to private consumption than does society. To state the result,
let F (b) be the nonempty set of optimal floors on x0 for bias b < 1.

Proposition 2. F (b) is decreasing in b in the strong set order.26 In particular, maxF (b)
is decreasing in b and converges to π∗0 as b ↑ 1. Moreover, there exists b > 0 such that
F (b) = {f 0} for all b ≤ b, where f 0 satisfies

U(Cf0) = max
f0∈[π∗0,π∗0]

{
v(f0) +

ˆ
S

û(xf0(s); s)dG

}
.

Thus, when the bias is strong enough, society sacrifices entirely the option of letting the
government adjust private consumption to information. This happens even though the
government does care about x0 and hence would adjust its level to the state. It is worth
pointing out that the threshold b, whose formula is provided in the Appendix, does not
depend on the distribution G.

Case of b > 1. In the application to worker’s time management, where he overvalues
the dimension of conflict with the manager, an analysis similar to that in this section is
possible. If the manager can only impose a cap or floor on how much time the worker
spends on unproductive activities, she sets a cap c0 which is strictly below the maximum
time that she finds acceptable. Moreover, c0 falls as the worker’s tendency to indulge in
those activities worsens.

4.2 Restricting Agreement Dimensions

In practice, to implement a floor on private consumption, society can impose a corre-
sponding cap on aggregate public spending (i.e., y ≤ 1 − f ∗0 ). When public spending is
unidimensional, there is nothing else society can do within the class of interval delegation
policies. This is no longer true when public spending involves multiple services. Given a
target aggregate cap on spending, there are many ways to enforce it using specific caps
on each service—the type of constraints we usually see in practice. Moreover, society can
employ an aggregate cap together with service-specific ones; for example, public spending
should never exceed 50% of GDP, but national security alone should be less than 5%.
Since in this model society and the government have the same preference when it comes
to dividing resources across public services, we may expect specific caps to be at least
superfluous, at worst harmful. To check if this is true, this section examines the effects
of such caps.

In our setting, service-specific caps can implement the same allocations as a binding
cap on aggregate public spending if and only if information affects only the trade-off be-
tween public spending and private consumption. That is, the component r of information

26Given two sets F and F ′ in R, F ≥ F ′ in the strong set order if, for every f ∈ F and f ′ ∈ F ′,
min{f, f ′} ∈ F ′ and max{f, f ′} ∈ F (Milgrom and Shannon (1994)).

15



is degenerate (or commonly known from the outset).27

Lemma 4. Fix f0 > α∗0 and let C0,c be any policy that satisfies
∑n

i=1 ci = 1 − f0 and
c0 = 1. If r is constant, then there exists a C0,c that implements the same allocations
as Cf0. If r is not constant, then every C0,c implements allocations that differ with
positive probability from those implemented by Cf0.

We can see the limitations of specific caps as follows. Consider any state s = (θ, r)
at which f0 binds and the implemented allocation is α(θ, r). Let ci = αi(θ, r) for all
i = 1, . . . , n. Then, given C0,c so defined, in state (θ, r) the government will again
choose α(θ, r) and hence α0(θ, r) = f0.28 Consider now an r′ that satisfies, say, r′i > ri and
rj = r′j for all j 6= i. Under Cf0 we must have αi(θ, r′) > αi(θ, r) and αj(θ, r′) < αj(θ, r)
for all j 6= i: When service i becomes more valuable, the government wants to allocate to
it more resources, and if f0 binds before, it must also bind now. Under C0,c, however, this
reallocation is not possible because xi cannot exceed αi(θ, r). Recall that under Cf0 the
allocation across services is always efficient: θui1(αi(θ, r); ri) = θuj1(αj(θ, r); rj) for all i, j
and (θ, r). Therefore, trying to implement an aggregate cap on public spending using
service-specific caps must involve inefficiencies in the allocation across services—those
dimensions for which society and the government do not have conflicting goals.

Given these observations and the fact that society can always impose a single overall
cap on public spending (via f0), one may wonder whether it can ever benefit from impos-
ing specific caps. To answer this question, I first examine the effects of a specific cap in
isolation; that is, consider only policies inR that impose a cap ci for one i = 1, . . . , n (i.e.,
f = 0 and cj ≥ 1 for all j 6= i). In short, while a binding ci mitigates the government’s
aggregate overspending, without other constraints it also exacerbates overspending on all
other services.29

Lemma 5. Fix i 6= 0 and consider policies C0,c with cj ≥ 1 for j 6= i. In any state s,
if ci < α∗i (s), then the government chooses x0 > α∗0(s), but also xj > α∗j (s) for all j 6= i.

Because the total amount of resources is fixed, overspending on service j comes at the cost
of subtracting resources from private consumption, which the government undervalues,
or from other services like i, which it values on par with j. But when service i is already
capped, the second cost decreases, making the government overspend even more on j.

Despite these drawbacks, specific caps can benefit society relative to granting the
government full discretion.

Proposition 3. Fix i 6= 0 and consider policies C0,c with cj ≥ 1 for j 6= i. There
exists ci < α∗i such that society strictly benefits from it, i.e., U(C0,c) > U(B).

27This situation is of course inconsistent with our assumption on G. It is, however, easy to see how
to modify that assumption to describe this case.

28Indeed, α(θ, r) ∈ C0,c ⊂ Cf0 and α(θ, r) is the unique optimal allocation in Cf0 .
29If we interpret the model as capturing an individual commitment problem involving consumption and

savings (Section 3.1), this result says that binding caps on some goods exacerbate the overconsumption
of others. Heath and Soll (1996) provide evidence consistent with this prediction.
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To gain intuition, start from ci = α∗i and lower it a bit. On the one hand, when binding,
the cap distorts the allocation across public services. This reduces society’s expected
payoff, but this loss is initially of second-order importance. The reason is that, under full
discretion, the government’s allocation across x is always efficient; moreover, both parties
have the same preference regarding x. Hence, marginal distortions in x do not change
society’s payoffs. On the other hand, the cap induces the government to allocate more to
private consumption with strictly positive probability. Since society cares discretely more
about this dimension, this reallocation causes a first-order gain in its payoff. Overall the
cap must then benefit society, provided that resources are reallocated to consumption and
to the unrestricted services at comparable rates, which is not obvious. This key property
is guaranteed by the additive structure of preferences. It should continue to hold if all
public services are complements: Capping one of them renders all the others less valuable
and hence should incentivize the government to reallocate even more resources to private
consumption.

In light of Proposition 3, we might think that society always benefits by combining
a floor on private consumption (or an aggregate cap on public spending) with service-
specific caps. Perhaps surprisingly, this depends on the strength of the government’s bias
and the nature of its information: Whether it only affects the trade-off between private
consumption and public spending (θ) or also those across services (r).

Before deriving these results, the next proposition shows—as should be expected at
this point—that binding caps on private consumption or floors on public services are
never part of society’s optimal policy.

Proposition 4. For any Cf ,c ∈ R, let Cf0,c−0 be the policy obtained by removing the cap
on x0 and all floors on x. Then U(Cf0,c−0) ≥ U(Cf ,c), where the inequality is strict if
under Cf ,c either c0 or fi for some i 6= 0 binds with strictly positive probability.

Case of b > 1. The fact that the worker overvalues the dimension of conflict with
the manager changes the results in this section as follows. Specific floors on the time
he has to assign to each task can implement the same allocations as a binding cap on
unproductive activities if and only if he observes information only on θ. A floor on task i
induces the worker to allocate less time to unproductive activities, but also less time to
the other tasks. Nonetheless, the manager would strictly benefit from a single binding
floor on any task relative to granting the worker full discretion. This result is particularly
interesting for this application because, in practice, the manager may easily restrict and
monitor how much time a worker spends on a task, but not how much time he spends
on unproductive activities. Finally, binding task-specific caps or a floor on x0 are never
part of an optimal delegation policy.

5 Multidimensional Information: Restrictions on both
Agreement and Disagreement Dimensions

This section examines the case in which information also affects the trade-offs between
public services (i.e., it is multidimensional). It provides sufficient conditions for the
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optimal delegation policy withinR to also involve service-specific caps and to only involve
an aggregate cap on public spending. It also considers how reducing the government’s
idiosyncratic information on public services renders the second policy more likely to be
optimal. Note that this section’s results hold under the very weak assumptions on the
distribution of information introduced in Section 3.

Lemma 6 below first shows that, for any level of the government’s bias, every optimal
policy sets an effective lower bound on private consumption which is at least as high as
society’s lowest optimal level π∗0. Recall that by Proposition 4 we can focus on policies
C ∈ R with c0 = 1 and fi = 0 for all i = 1, . . . , n. Let x0 be the effective lower bound
on private consumption implied by C:

x0 = max{f0, 1−
n∑
i=1

ci}

Given C, the government always uses all resources and therefore allocates to x0 at least
the amount x0: For all s ∈ S,

∑n
i=0 αi(s) = 1 and hence α0(s) ≥ x0. Without loss of

generality, we can let x0 = minS α0(s) = α0.30

Lemma 6. For every b ∈ (0, 1), if C ∈ R is optimal, then x0 ≥ π∗0.

If C lets the government choose x0 below π∗0, society realizes that no state justifies such
a low x0. By increasing the floor f0 up to π∗0, society uniformly improves its payoff with
regard to private consumption. As a consequence of the lower aggregate spending, caps
(if any) are less likely to bind—recall that public services are normal goods—and hence
less likely to distort the allocation across services. Thus, society cannot lose on this front
either.

Proposition 5 shows that, everything else equal, there always exists a degree of the
government’s bias against private consumption below which an optimal C ∈ R must
involve service-specific caps. On the other hand, there exists a degree of disagreement
above which, to be optimal, a policy only needs to impose an aggregate cap on public
spending.

Proposition 5. There exist b∗ and b∗ that satisfy 0 < b∗ ≤ b∗ < 1 and the following
properties:
(1) if b > b∗, then every optimal policy in R must involve service-specific caps;
(2) if b < b∗, then every optimal policy in R involves only a private-consumption floor.
Moreover, let r′ ≥ r and r′ ≤ r with r′ 6= r and r′ 6= r. Then, the corresponding b′∗ and b∗
satisfy b′∗ > b∗.

The Appendix shows how to calculate the thresholds b∗ and b∗, which importantly do
not depend on the distribution G.

Proposition 5 relies on the following lemma, which summarizes some useful properties
of society’s and the government’s optimal allocation under full-discretion (π∗ and α∗).
These properties follow by observing that, under additivity of û, given r−i an increase
in ri makes π∗i (resp. α∗i ) rise and π∗j (resp. α∗j ) fall for all j 6= i.

30If α0 > x0, we could simply raise f0 to α0 and nothing would change in the government’s allocation.
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Lemma 7. The allocations π∗ and α∗ satisfy
• π∗i = π∗i (θ, ri, r−i) > π∗i (θ, r) and α∗i = α∗i (θ, ri, r−i) > α∗i (θ, r) for any i 6= 0,
• π∗0 = π∗0(θ, r) < π∗0(θ, ri, r−i) and α∗0 = α∗0(θ, r) < α∗0(θ, ri, r−i).

To gain intuition for part (1) of Proposition 5, suppose there are only two public
services. Both society and the government want to allocate more resources to service i
as its value relative to service j or private consumption rises. Hence, the states in which
their optimal allocation to service 1 (respectively 2) is highest are not the states in which
their optimal allocation to private consumption is lowest. A consumption floor primarily
targets the government’s decisions in the latter states, but may have no effect in the
former states. Yet, in these states the government continues to overspend and society
would like to intervene. Now recall that, if policies can involve only a consumption floor,
society sets it lower and lower as the government’s bias weakens, which makes it less and
less likely to affect the states in which, say, service 1 is very valuable but 2 is not. Society
does not want to raise the floor to address these states, but it can add a cap on service 1
that binds only when the floor does not. Our previous results show that such a cap will
mitigate overspending when the allocation to service 1 is high, and despite its distorting
effects, it strictly benefits society.

Perhaps surprisingly, part (2) of Proposition 5 says that a simple delegation policy
involving only an aggregate cap on public spending is optimal when the government’s
bias is strong enough. To see why in this case adding service-specific caps to an aggregate
one does not benefit society, recall that by Lemma 6 it never allows private consumption
to fall below the level π∗0 > 0. When b is very small, however, the government wants
to allocate much less than π∗0 to private consumption, no matter what information it
observes. Hence, when it has to spend less on service i because of a cap, it reallocates
all the savings across the other services, but not to private consumption. Since binding
caps distort the allocation across services, society cannot benefit from adding them if
they do not improve aggregate spending. The threshold b∗ is actually lower than b in
Proposition 2 (see the proof of Proposition 5). Thus part (2) also implies that for strong
enough biases, it is optimal for society to commit ex ante to a single level of public
spending, and to grant the government full discretion in allocating it across services.

This reasoning leads to the following simple observation.

Corollary 1. Suppose that C ∈ R involves binding caps but always induces the same
level of private consumption x0. Then C cannot be optimal.

Society can strictly improve on such a C by imposing only a floor f0 = x0.
The weakest bias for which optimal policies include service-specific caps is hard to

characterize and depends on the details of the setting at hand. Intuitively, as b falls
below b∗, for any policy C it increases the probability that the government ends up in
a state where C’s effective floor x0 binds. Since in these states binding caps only create
inefficiencies, their appeal for society falls accordingly. How society balances the ineffi-
ciencies in those states with the benefits that a cap can yield in other states ultimately
depends on their distribution G. Nonetheless, since society can always set f0 = x0,
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for biases below some level b̂ ≥ b∗ every optimal policy involves only a floor on private
consumption.

Overall Proposition 5 suggests that richer fiscal constitutions involving many restric-
tions may in fact prevail in environments with weaker conflict of interest, whereas simple
constitutions may prevail when the conflict is stronger. At first glance, one may think
that when the conflict is weak more rules are actually less valuable than discretion. As
the government bias weakens, society cares relatively more about allowing it to act on its
superior information, especially along the dimensions for which their preferences agree.

Finally, Proposition 5 gives an idea of how reducing the government’s idiosyncratic
information on each service may affect the optimal delegation policy. By shrinking the
range of such information—without changing that on the overall trade-off between private
consumption and public spending (θ)—it becomes more likely that the simple policy with
only an aggregate cap is optimal for a fixed degree of the government’s bias. We may
expect that such a simple policy is always optimal in the limit—when information is only
about θ. The next section analyzes this situation.

Case of b > 1. In this case the previous results change as follows. First, any optimal
delegation policy sets an effective upper bound on the time the worker can allocate
to unproductive activities, which is at least as low as the manager’s highest optimal
level (π∗0). Second, an optimal policy must involve binding task-specific floors if the
worker’s tendency to indulge in unproductive activities is weak enough. If this tendency
is strong enough, however, imposing only a cap on unproductive activities is optimal.

6 Unidimensional Information: Restrictions only on
Disagreement Dimensions

Suppose now that information is only about the trade-off between public spending and
private consumption (θ). We will show that, under a regularity condition on its distribu-
tion, the optimal fiscal constitution within R will involve an aggregate cap on spending
but no service-specific caps, for any degree of the government’s bias. To show this, we
will argue that Propositions 3 and 4 in AWA can be applied to the present environment
with multidimensional public spending. The assumption that the government’s informa-
tion is only about θ can be interpreted as saying that this is the only part of information
that is not contractible, or that is still uncertain when society commits to a policy. To
formalize this, let ri = ri for all i = 1, . . . , n; given this, we will suppress the dependence
of û on r. In this section, we also assume that the distribution G has a density function
g that is strictly positive and continuous on [θ, θ]. As will become clear, this section’s
analysis does not change if we allow û to be non-separable across public services.

Even if now information has only one dimension, given a level y of public spending,
its division across services remains a multidimensional decision. Changing the allocation
of y yields different utilities from public spending û(x), a fact that can be exploited to
curb the government’s tendency to overspend. For instance, if a policy requires that y
be allocated in a distorted way which does not provide much more utility than y′ < y, it

20



reduces the government’s willingness to choose y in states in which society prefers y′.
Since we assumed free disposal—the resource constraintB is defined by an inequality—

society has another tool to curb the government’s tendency to overspend: “money burn-
ing.” In theory—but perhaps not in practice—it could force the government to “throw
away” part of what it does not allocate to private consumption. For instance, using low
enough caps, society can force the government to choose allocations strictly inside B. It
is easy to see that, given any level û of utility obtained by allocating y = 1 − x0 ineffi-
ciently across x, we can always achieve û by burning part of 1 − x0 and allocating the
rest across x efficiently. Indeed, for any y ∈ [0, 1] and x ∈ Rn

+ that satisfy
∑n

i=1 xi = y,
the utility û(x) belongs to the interval [û(0), u∗(y)], where

u∗(y) = max
{x′∈Rn

+:
∑n

i=1 x
′
i≤y}

û(x′). (7)

Since u∗ is strictly increasing and continuous and u∗(0) = û(0), there always exists y′ ≤ y
such that u∗(y′) = û(x).

Building on these observations, we can show that in settings with unidimensional
information it is without loss of generality to restrict attention to all delegation policies
that regulate only private consumption and aggregate public spending. Formally, any
such policy corresponds to a subset Cas of the resource constraint defined only in terms
of private consumption and public spending, namely

Bas = {(y, x0) ∈ R2
+ : y + x0 ≤ 1}.

Given Cas ⊂ Bas, in each state θ the government’s problem becomes to maximize θû(x)+
bv(x0) subject to

∑n
i=1 xi ≤ y and (y, x0) ∈ Cas.

Lemma 8. Suppose that information affects only the trade-off between private consump-
tion and public spending. Then, there exists an optimal C ⊂ B with U(C) = U∗ if and
only if there exists an optimal Cas ⊂ Bas with U(Cas) = U∗.

Remark 1. Besides information’s being unidimensional, the important assumption for
Lemma 8 is that money burning is always feasible. Without money burning, constraints
on private consumption x0 translate one-to-one into constraints on public spending y.
Yet, society can still regulate how the government is allowed allocate y across services
(see also Proposition 7 below).

Lemma 8 allows us to recast our problem into AWA’s framework. Since the function û
is strictly increasing, the constraint

∑n
i=1 xi ≤ y will always bind when the government

faces Cas. Therefore, using the function u∗ in (7), we can express society’s problem as
choosing Cas ⊂ Bas so as to maximize

ˆ θ

θ

[θu∗(αy(θ)) + v(α0(θ))]g(θ)dθ

subject to
(αy(θ), α0(θ)) ∈ arg max

Cas

θu∗(y) + bv(x0) for all θ ∈ [θ, θ]. (8)
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AWA show that the properties of the solution to this problem depend on the function
H : [θ, θ]→ R given by

H(θ) = (1− b)θg(θ) +G(θ),

and the threshold

θ∗ = inf
{
θ ∈ [θ, θ] : ∫ θθ′(1−H(θ̂))dθ̂ ≤ 0 for all θ′ ≥ θ

}
. (9)

To understand what H(θ) captures, ignore feasibility for the moment. Suppose that
society forces the government to adjust its allocation in state θ in favor of private con-
sumption, without changing its total payoff—so that it does not select other allocations.
Doing so requires inducing the government to allocate less to public spending. Overall
this adjustment benefits society when θ occurs, because it cares discretely more about
private consumption. This explains the term (1−b)θg(θ). The adjustment, however, also
renders the allocation chosen in θ more attractive for the government in states where it
values public spending less: in all θ′ < θ, which have mass G(θ). Thus, society also has to
induce the government to increase private consumption in these states, which is exactly
what it wants. This explains the term G(θ).

Following AWA, we introduce the following condition.

Condition 1. The function H is non-decreasing over [θ, θ∗].

Also, given θ∗, define

Cas(θ∗) = {(y, x0) ∈ Bas : x0 ≥ α∗0(θ
∗)},

where α∗ is the government’s optimal allocation under full discretion (i.e., Cas = Bas).

Proposition 6 (Amador et al. (2006)). The delegation policy Cas(θ∗) is optimal among
all subsets of Bas if and only if Condition 1 holds.31

As AWA noted, many distributions commonly used in applications satisfy Condition 1.
Nonetheless, even if this condition holds, Proposition 5 implies that AWA’s result does not
extend to settings in which information also affects the trade-offs across public services.32

Note also that since G is strictly increasing, Condition 1 is more likely to hold when the
government’s bias is weak (i.e., b is close to 1). A weak bias, however, characterizes exactly
those settings with richer information structures where imposing only a consumption floor
can be suboptimal.

Together with Lemma 8, Proposition 6 provides a sufficient condition for a delegation
policy Cf0 to be optimal within R.

Corollary 2. Define θ∗ as in (9). If Condition 1 holds, then Cf∗0 with f ∗0 = α∗0(θ
∗) is

optimal within R.
31It can be easily checked that, when the function û is strictly increasing, concave, and continuously

differentiable, then the function u∗ in (7) satisfies the same properties, as assumed in AWA.
32We can imagine a setting in which θ and r are independent so that G(θ, r) = G1(θ)G2(r) and G1

satisfies Condition 1.
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In general, Condition 1 is not necessary for the conclusion of Corollary 2. This is because
policies that improve on Cf∗0 may lie outside R.33

AWA argue that, if Condition 1 fails, an optimal Cas may have to rely on money
burning. In this case, society can again benefit from the multidimensionality of public
spending. By forcing the government to implement distorted allocations across services
based on the level of public spending, society can achieve the same curbing effect on the
government’s tendency to overspend with strictly less (possibly no) money burning. This
highlights a possible limitation of treating public spending as a monolithic entity, even if
information is only about θ. To state the result, define u∗ : [0, 1]→ R as

u∗(y) = min
{x∈Rn

+:
∑n

i=1 xi=y}
û(x).

Note that, since û is strictly concave, u∗(y) < u∗(y) for all y > 0.

Proposition 7. Suppose that Cas ⊂ Bas is optimal and induces an allocation α in (8)
which satisfies αy(θ) > 0 for all θ ∈ [θ, θ] and αy(θ) < 1−α0(θ) over some set Θ ⊂ [θ, θ].
(1) There exists C ′ ⊂ B that satisfies U(C ′) = U(Cas) and involves less money burning:
The ensuing allocation α′ in (5) satisfies α′0(θ) = α0(θ) and

∑n
i=1 α

′
i(θ) ≥ αy(θ) for all θ,

with strict inequality over Θ.
(2) If u∗(1 − α0(θ)) ≤ u∗(αy(θ)) for all θ ∈ Θ, then C ′ can be chosen so that money
burning never occurs:

∑n
i=0 α

′
i(θ) = 1 for all θ ∈ [θ, θ].

The condition in part (2) means that, in every state in which society would like to burn
some money, it can alternatively let the government spend all the resources subtracted
from consumption but in such an inefficient way that the extra money does not improve
the payoff from public spending. This condition is more likely to hold if, for instance,
allocating no resources to some public service would be extremely inefficient and lead
to a very low payoff for society. Examples of such services seem abundant: national
security, law enforcement, criminal detention, or public medical treatment. Reducing
the share of 1 − x0 allocated to these services can replicate the effect of money burning
at the aggregate level. In these settings, if money burning is infeasible (or forbidden),
society may achieve strictly higher expected payoffs by again imposing distortions along
dimension which cause no conflict of interest with the government. Finally, note that
one easy way to implement these distortions is to use service-specific caps and floors that
vary based on how much the government allocates to private consumption.

Case of b > 1. In this case, the results in this section change as follows. A similar
monotonicity condition on the distribution of θ can be obtained which is necessary and
sufficient for a cap on unproductive activity alone to be fully optimal when the manager
can choose among all subsets of B. This condition is sufficient for the single cap to be
optimal within R. Finally, failures of this condition may require an optimal Cas ⊂ Bas

to force the worker to sit idle for part of the time he does not spend on unproductive
activities. In this case, there is a policy C ⊂ B which involves strictly less (possibly no)
waste of time and gives the manager the same expected payoff. This policy, however, has
to induce the worker to allocate inefficiently his time across tasks.

33See AWA for an example of a superior policy outside R.
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7 Implications for Other Applications

This section discusses the implications of the analysis for the other applications outlined
in Section 3.1. The application on workers’ time management has already been discussed
throughout the paper.

Intrapersonal Commitment Problems. Our analysis shows how the Planner can
commit to simple caps and floors limiting what Doer can allocate to each consumption
good and savings, so as to mitigate the impact of Doer’s present bias while granting him
some flexibility to act on information. On the one hand, if the bias is strong, Planner’s
optimal commitment strategy is simply to impose only a minimum level of savings. On
the other hand, if the bias is weak, Planner can do strictly better by using a richer
strategy which also imposes some good-specific caps. Such caps will distort consumption
from Planner’s viewpoint, but are still beneficial because they lead Doer to save more
when the minimum-savings rule has no bite.

It has been often observed that some individuals earmark their monthly pay accord-
ing to multiple categories of spending—sometimes as explicitly as dividing it into use-
specific envelopes or setting up category-specific budgets via online services like Mint or
Quicken. The literature has informally suggested that such earmarking and budgeting—
called “mental accounting”—represents how individuals deal with self-control problems
(Thaler (1985), Heath and Soll (1996), Thaler (1999)). This paper sheds light on this
conjecture by offering an explicit foundation based on a precise and well-known cause of
self-control problems: present bias. It also suggests some qualifications by showing that
in fact only individuals whose present bias is weak may set up category-specific budgets
(see Antonides et al. (2011) for some consistent evidence). Of course, these budgets
cause several anomalies in consumption behavior, most notably non-fungibility of money
with all its far-reaching consequences, anomalies for which again our theory provides an
explanation.

Finally, the analysis has implications for the demand of commitment devices. AWA
argued that illiquid assets may suffice to allow present-biased individuals to implement
their best minimum-savings strategy. This paper shows, however, that this strategy
may be dominated by simply adding category-specific budgets. This can explain why,
in addition to illiquid assets, some individuals also rely on services that allow them to
budget their expenses by categories (again, for example, using Mint or Quicken).

Corporate Governance. Our results suggest that to best incentivize a CEO who
undervalues R&D, the shareholders of a multi-product company may have to impose
caps on how much can be spent each year on marketing specific products, possibly in
addition to requiring a minimum investment in R&D. Due to the caps, the CEO may end
up spending too little for some products and too much for others from the shareholders’
viewpoint. This, however, is a risk they should accept, as it is more than compensated
in expectation by better allocations to R&D. A detailed budget plan with rules applying
to specific products is more likely to benefit the shareholders when they do not disagree
too much with the CEO on how important R&D is for the company. This may be true,
for instance, if the CEO has significant stakes in the company as well. Otherwise, the
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shareholders can simply demand a minimum investment in R&D, or even impose a fix
one if they think that the CEO is seriously biased. Of course, in this case they may
consider changing how he gets paid or hiring a new manager.

Research vs. Teaching in Academia. Research universities usually specify a
minimum amount of time that professors have to allocate each week to their teaching
duties (classes, office hours, etc.), granting them discretion on, say, course-preparation
time. However, we do not observe universities restricting how much time professors
should spend on each of their research projects. On the one hand, this is consistent with
our theory if we believe that, from the universities’ viewpoint, professors’ bias against
teaching is very severe, which is not completely implausible. On the other hand, the
theory raises the possibility that universities’ common practices may actually leave room
for welfare gains. Finally, monitoring how much time a professor spends on a research
project may simply be infeasible, so imposing any cap is pointless.

Public Finance. When deciding on the fiscal rules for the coming year, a government
may realize that due to its present bias it will tend to borrow excessively against future
tax revenues. It is then not surprising that the government benefits, as we saw, from
committing to a cap on how much it will be allowed to borrow, a provision often observed
in reality in the form of budget-deficit ceilings. The paper shows, however, that in some
settings the government can easily improve on a policy that imposes only a borrowing
cap. Although present bias never interferes with how the government trades off the value
of different public services within a time period, introducing specific caps on how much
it will be allowed to spend on some services can lead to a superior policy. Such caps also
appear often in reality as part of fiscal budgets. This observation suggests, according to
the theory, that governments’ present bias tends to be mild. Another point highlighted
in the paper is that service-specific caps are not a free lunch: Even though they are useful
to curb excessive borrowing, they also lead to inefficient compositions of public spending.

8 Conclusions

This paper examines a broad, new class of principal-agent delegation problems which
arise in many economic settings, from the design of fiscal rules to individual commitment
problems, corporate governance, and workforce management. In such problems, the
agent controls how to allocate a fixed amount of resources (money, time, etc.) across
multiple categories, having better information on their returns than does the principal
but pursuing different goals from hers.

The paper characterizes how optimal delegation policies trade off rules and discretion
and how they depend on the degree of conflict between parties as well as the nature of
the agent’s information. Perhaps counterintuitively, it can be optimal for the principal to
impose distorting restrictions on categories for which there is no conflict of interest with
the agent, so as to curb how the conflict along other categories affects his overall resource
allocation. Moreover, such restrictions are more likely to be optimal when the conflict
of interest is weaker and when the agent’s information is about the specific value of
categories causing no conflict. The paper also shows that requiring distorted allocations
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across these categories can reduce or even eliminate the need for money burning as a way
to manage the agent’s incentives. By considering a tractable class of simple delegation
policies, this paper offers insights that can be easily applied to many concrete problems,
which existing models cannot handle.

A Appendix: Proofs

A.1 Proof of Lemma 2

Each C ∈ R is defined by a vector (f , c) ∈ R2(n+1)
+ . Given the normalization I = 1,

without loss we can restrict attention to the following compact subset of R2(n+1)
+ :

FC = {(f , c) ∈ [0, 1]2(n+1) : f ≤ c,
n∑
i=0

fi ≤ 1}.

So, we can think that P chooses (f , c) ∈ FC.
Given any such (f , c), let α(s|f , c) be A’s optimal allocation in state s from the

compact set Cf ,c. Since Cf ,c is convex (Theorem 2.1 in Rockafellar (1997)), α(s|f , c) is
unique for every s ∈ S by strict concavity of V (·; s). Clearly, the correspondence that for
each (f , c) ∈ FC maps to Cf ,c is non-empty, compact valued, and continuous. It follows
from the Maximum Theorem that α(s; ·, ·) is continuous for every s ∈ S.

We can now show that P ’s payoff is continuous in (f , c). For each (f , c) ∈ FC, let

U(f , c) =

ˆ
S

U(α(s|f , c); s)dG.

Since U(α(s|f , c); s) is continuous in (f , c) for every s ∈ S and is uniformly bounded over
B, Lebesgue’s Dominated Convergence Theorem implies the claimed property of U(·, ·).

A second application of the Maximum Theorem gives the result.

A.2 Proof of Lemma 3

For simplicity, drop the subscript 0 from f0 and let Ψ(f) = U(Cf ). Also, we will consider
only f ∈ [α∗0, π

∗
0] without specifying this every time. Given f and any s, define

ũ(f ; s) ≡ û(xf (s); s) = max
{x∈Rn

+:
∑n

i=1 xi≤1−f}
û(x; s). (10)

and Ũ(f ; s) = ũ(f ; s) + v(f). We first want to show that Ũ(f ; s) is strictly concave in f
for every s. Take any f , f ′, and ζ ∈ (0, 1). We have

ũ(ζf + (1− ζ)f ′; s) + v(ζf + (1− ζ)f ′) ≥ û(ζxf (s) + (1− ζ)xf
′
(s); s) (11)

+v(ζf + (1− ζ)f ′)

> ζ
[
û(xf (s); s) + v(f)

]
+(1− ζ)

[
û(xf

′
(s); s) + v(f ′)

]
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= ζ [ũ(f ; s) + v(f)]

+(1− ζ) [ũ(f ′(s); s) + v(f ′)] ,

where the weak inequality follows because
∑

i x
f
i (s) ≤ f and

∑
i x

f ′

i (s) ≤ f ′ implies∑
i

[
ζxfi (s) + (1− ζ)xf

′

i (s)
]
≤ ζf + (1− ζ)f ′,

and the strict inequality follows from strict concavity of û(·, s) and v(·).
Now consider the derivative of Ũ(f ; s) with respect to f . Whenever it is defined, we

have
Ũ ′(f ; s) = ũ′(f ; s) + v′(f).

By considering the FOC of the Lagrangian defining ũ(f ; s), we see that ∂
∂xi
û(xf (s); s) =

λ(s; f) for any i = 1, . . . , n, where λ(s; f) is the Lagrange multiplier of the constraint∑n
i=1 xi ≤ 1 − f . Since xf (s) is continuous in f for every s, so it λ(s; f) given our

assumptions on û. By Theorem 1, p. 222, of Luenberger (1969), for every f ′, f ′′ ∈ [0, 1]
we have

λ(s; f ′)(f ′′ − f ′) ≤ ũ(f ′; s)− ũ(f ′′; s) ≤ λ(s; f ′′)(f ′′ − f ′).
Continuity of λ(s; ·) then implies that ũ′(f ; s) exists for every f and equals −λ(s; f).
Therefore,

Ũ ′(f ; s) = v′(f)− ∂

∂xi
û(xf (s); s) for all s. (12)

For any f , denote by αf the behavior of A as a function of s under f . Note that αf (s)
is continuous in both f and s by the Maximum Theorem. Since, given any choice of x0,
P and A choose the same bundle x in every state, by definition we have

Ψ(f) =

ˆ
S

Ũ(αf0(s); s)dG.

Consider any f > f̂ . Recall that S(f) = {s : α∗0(s) ≤ f}. Then,

Ψ(f)−Ψ(f̂) =

ˆ
S

[
Ũ(αf0(s); s)− Ũ(αf̂0(s); s)

]
dG

=

ˆ
S(f)

[
Ũ(f ; s)− Ũ(αf̂0(s); s)

]
dG

=

ˆ
S(f)∩(S(f̂))

c

[
Ũ(f ; s)− Ũ(αf̂0(s); s)

]
dG

+

ˆ
S(f̂)

[
Ũ(f ; s)− Ũ(f̂ ; s)

]
dG.

where the second equality follows because αf0(s) = αf̂0(s) for s /∈ S(f) and αf0(s) = f for
s ∈ S(f). Dividing both sides by f − f̂ , we get

lim
f↓f̂

Ψ(f)−Ψ(f̂)

f − f̂
= lim

f↓f̂

ˆ
S(f̂)

Ũ(f ; s)− Ũ(f̂ ; s)

f − f̂
dG (13)
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+ lim
f↓f̂

ˆ
S(f)∩(S(f̂))

c

Ũ(f ; s)− Ũ(αf̂0(s); s)

f − f̂
dG.

Consider the first limit. For all s, we have

lim
f↓f̂

Ũ(f ; s)− Ũ(f̂ ; s)

f − f̂
= Ũ ′(f̂ ; s).

Since Ũ(·; s) is concave,∣∣∣∣∣ Ũ(f ; s)− Ũ(f̂ ; s)

f − f̂

∣∣∣∣∣ ≤ max
{∣∣∣Ũ ′(f ; s)

∣∣∣ , ∣∣∣Ũ ′(f̂ ; s)
∣∣∣} .

Since Ũ ′(f ; s) is continuous in s and f as illustrated by (12),

max
{(f,s)∈[α∗0,π∗0]×S}

∣∣∣Ũ ′(f ; s)
∣∣∣ = M < +∞.

Therefore, by Lebesgue’s Bounded Convergence Theorem, we have

lim
f↓f̂

ˆ
S(f̂)

Ũ(f ; s)− Ũ(f̂ ; s)

f − f̂
dG =

ˆ
S(f̂)

Ũ ′(f̂ ; s)dG.

Consider now the second limit in (13). Again, by concavity of Ũ(·; s) and since
αf0(s) ∈ [α∗0, π

∗
0] for f ∈ [α∗0, π

∗
0], we have that∣∣∣∣∣ Ũ(f ; s)− Ũ(αf̂0(s); s)

f − αf̂0(s)

∣∣∣∣∣ ≤M.

Therefore,∣∣∣∣∣
ˆ
S(f)∩(S(f̂))

c

Ũ(f ; s)− Ũ(αf̂0(s); s)

f − f̂
dG

∣∣∣∣∣ ≤
ˆ
S(f)∩(S(f̂))

c

∣∣∣∣∣ Ũ(f ; s)− Ũ(αf̂0(s); s)

f − f̂

∣∣∣∣∣ dG
≤
ˆ
S(f)∩(S(f̂))

c

∣∣∣∣∣ Ũ(f ; s)− Ũ(αf̂0(s); s)

f − αf̂0(s)

∣∣∣∣∣ dG
≤ M

ˆ
S(f)∩(S(f̂))

c
dG.

Now, observe that S(f) ∩
(
S(f̂)

)c
= {s : f̂ < αf̂0(s) ≤ f} which converges to an empty

set as f ↓ f̂ . It follows that the second limit in (13) converges to zero as f ↓ f̂ . We
conclude that for every f̂ ∈ [α∗0, π

∗
0), we have

Ψ′(f̂+) =

ˆ
S(f̂)

Ũ ′(f̂ ; s)dG.

Now consider any f < f̂ . Then,

Ψ(f)−Ψ(f̂) =

ˆ
S

[
Ũ(αf0(s); s)− Ũ(αf̂0(s); s)

]
dG
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=

ˆ
S(f̂)

[
Ũ(αf0(s); s)− Ũ(f̂ ; s)

]
dG

=

ˆ
S(f̂)

[
Ũ(f ; s)− Ũ(f̂ ; s)

]
dG+

ˆ
S(f̂)

[
Ũ(αf0(s); s)− Ũ(f ; s)

]
dG

=

ˆ
S(f̂)

[
Ũ(f ; s)− Ũ(f̂ ; s)

]
dG+

ˆ
S(f̂)∩(S(f))

c

[
Ũ(αf0(s); s)− Ũ(f ; s)

]
dG,

where the second equality follows because αf0(s) = αf̂0(s) for s /∈ S(f̂) and αf̂0(s) = f̂ for
s ∈ S(f̂), and the last equality follows because αf0(s) = f for s ∈ S(f). By the same
argument as before,

lim
f↑f̂

ˆ
S(f̂)

Ũ(f ; s)− Ũ(f̂ ; s)

f − f̂
dG =

ˆ
S(f̂)

Ũ ′(f̂ ; s)dG,

lim
f↑f̂

ˆ
S(f̂)∩(S(f))

c

Ũ(αf0(s); s)− Ũ(f ; s)

f − f̂
dG = 0.

We conclude that for everyf̂ ∈ (α∗0, π
∗
0], we have

Ψ′(f̂−) =

ˆ
S(f̂)

Ũ ′(f̂ ; s)dG.

Hence, Ψ(f) is differentiable over the restricted domain [α∗0, π
∗
0].

A.3 Proof of Proposition 1

For simplicity, drop the subscript from f0. We shall show that Ψ′(f) > 0 for all f ∈
(α∗0, π

∗
0] and Ψ′(f−) < 0 for f = π∗0. Recall that αf (s) is continuous in f for every

s and therefore Ψ(f) is continuous in f . These observations imply that the optimal
f ∗ ∈ (π∗0, π

∗
0).

For any f ∈ (α∗0, π
∗
0], define

S+(f) = {s : π∗0(s) > f} and S−(f) = {s : π∗0(s) ≤ f}.

For s ∈ S+(f), consider the the following problem:

max û(x; s) + v(x0)

subject to
∑

i xi ≤ 1 and x0 ≤ f . The associated Lagrangian is

û(x; s) + v(x0) + µ(s)

[
1−

n∑
i=0

xi

]
+ φ+(s)[f − x0].

Hence, the FOC are34

v′(x0) = µ(s) + φ+(s) and
∂

∂xi
û(x; s) = µ(s) for all i.

34Here, as well as in the other proofs, the complementary slackness conditions are omitted for simplic-
ity.

29



Clearly, the constraint x0 ≤ f must be binding for s ∈ S+(f), which implies that x0 = f
and φ+(s) > 0. Also, conditional on choosing x0 = f , both P and A choose the same x
in state s, which therefore equals xf (s). Using (12), it follows that, for any i,

φ+(s) = v′(f)− ∂

∂xi
û(xf (s); s) = Ũ ′(f ; s)

when s ∈ S+(f).
For s ∈ S−(f), consider the following problem:

max û(x; s) + v(x0)

subject to
∑

i xi ≤ 1 and x0 ≥ f . The associated Lagrangian is

û(x; s) + v(x0) + µ(s)

[
1−

n∑
i=0

xi

]
+ φ−(s)[x0 − f ].

Hence, the FOC are

v′(x0) = µ(s)− φ−(s) and
∂

∂xi
û(x; s) = µ(s) for all i,

Clearly, the constraint x0 ≥ f must be binding for s ∈ S−(f) except when π∗0(s) = f ,
which implies that x0 = f and φ−(s) ≥ 0. Also, conditional on choosing x0 = f , both P
and A choose the same x in state s, which therefore equals xf (s). Using (12), it follows
that, for any i,

φ−(s) =
∂

∂xi
û(xf (s); s)− v′(f) = −Ũ ′(f ; s)

when s ∈ S−(f).
Consider any f ∈ (α∗0, π

∗
0]. Recall that S(f) = {s : α∗0(s) ≤ f}. Using Lemma 3, we

have

Ψ′(f) =

ˆ
S(f)

Ũ ′(f ; s)dG

=

ˆ
S(f)∩S+(f)

Ũ ′(f ; s)dG+

ˆ
S(f)∩S−(f)

Ũ ′(f ; s)dG

=

ˆ
S(f)∩S+(f)

φ+(s)dG,

where the last equality follows because either S−(f) = ∅ or φ−(s) = 0 for s ∈ S−(f).
The function φ+(s) is strictly positive over S(f)∩ S+(f). We need to show that this set
has strictly positive measure, which implies Ψ′(f) > 0. This is immediate if f ∈ (α∗0, π

∗
0),

because in this case S+(f) = S. Consider f = π∗0. Clearly, S(π∗0) ∩ S+(π∗0) contains the
open set

S
◦
(π∗0) ∩ S+(π∗0) = {s : α∗0(s) < π∗0 < π∗0(s)}.

If we can show that this set is non-empty, we are done because G assigns strictly positive
probability to it. Both S

◦
(π∗0) and S+(π∗0) are nonempty. Suppose that there is no

s ∈ S+(π∗0) such that we also have s ∈ S◦(π∗0). Then, it means that for every s ∈ S+(π∗0),
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we have α∗0(s) ≥ π∗0 and that S◦(π∗0) ⊂ S−(π∗0) = {s : π∗0(s) = π∗0}. Now, consider
ŝ ∈ S◦(π∗0) and any sequence {sn} is S+(π∗0) converging to ŝ. We have that

lim
sn→ŝ

inf α∗0(sn) ≥ π∗0 > α∗0(ŝ).

But this contradicts the continuity of α∗ and hence leads to a contradiction.
Now consider f = π∗0. Using again Lemma 3, we have

Ψ′(π∗0−) =

ˆ
S(π∗0)

Ũ ′(π∗0; s)dG =

ˆ
S

Ũ ′(π∗0; s)dG = −
ˆ
S

φ−(s)dG,

where φ−(s) > 0 for all s such that π∗0(s) < π∗0. Therefore, Ψ′(π∗0−) < 0.35

A.4 Proof of Proposition 2

Fix f0 ∈ [α∗0, π
∗
0]. Changes in b affect S(f0) through the change in α∗. By standard

arguments, if b < b′ < 1, then α∗0(s; b) < α∗0(s; b
′) for every s and hence S(f0; b

′) ⊂ S(f0; b).
On the other hand, for every b < 1, we have Sl(f0) ⊂ S(f0; b) because α∗0(s; b) < π∗0(s)
for every s. So, if b < b′ < 1, we have

Ψ′(f0; b)−Ψ′(f0; b
′) =

ˆ
(S(f0;b)\S(f0;b′))∩Sm(f0)

φ(s)dG ≥ 0,

where the inequality follows from (6). Standard monotone-comparative-static results
then imply that F (b) is increasing in the strong set order.

Define f 0(b) = maxF (b). Since f 0(b) ≥ π∗0 for all b and f 0(·) is decreasing, limb↑1 f 0(b)
exists; denote it by f 0(1−) ≥ π∗0. Clearly, f 0(1) = π∗0. Now suppose that f 0(1−) > f 0(1).
By a similar argument, for any f0 > π∗0, limb↑1 Ψ′(f0; b) exists and satisfies

lim
b↑1

Ψ′(f0; b) = −
ˆ
Sl(f0)

φ(s)dG < 0.

This implies that for b close enough to 1, f 0(b) ≥ f 0(1−) cannot be optimal. A contra-
diction which implies that f 0(1−) = f 0(1).

It is easy to see that, for all s ∈ S, α∗0(s; b) → 0 as b ↓ 0. Therefore, α∗0(b) =
maxS α

∗
0(s; b) also decreases monotonically to 0 as b ↓ 0. Let b = max{b ∈ [0, 1] :

α∗0(b) ≤ π∗0} which is strictly positive because π∗0 > 0. Then, S(f0) = S for all b ≤ b and
f0 ∈ [π∗0, π

∗
0], which implies that

Ψ(f0; b) = v(f0) +

ˆ
S

û(xf0(s); s)dG. (14)

From the proof of Lemma 3, we have that û(xf0(s); s) = ũ(f0; s) is strictly concave in
f0 for all s ∈ S. This implies that the maximizer of (14) is unique. From the proof of
Proposition 4.1, we know that the derivative of (14) is negative at π∗0 and hence f 0 < π∗0.

35It is easy to see that the optimal f satisfies f ≤ π∗0. Suppose f ∈ (π∗0, 1). Then, for all s, A chooses
x0(s) = f and x(s) = xf (s). Take any f ′ ∈ (π∗0, f). Then, for every s, f ′ = ζ(s)f + (1− ζ(s))π∗0(s) for
some ζ(s) ∈ (0, 1). Therefore, for every s, Ũ(f ′; s) > Ũ(f ; s) because Ũ(π∗0(s); s) > Ũ(f ; s) and Ũ(·; s)
is strictly concave. It follows that P ’s payoff is strictly larger under f ′ than under f .
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A.5 Proof of Lemma 4

Part 1: Fix f0 > α∗0. Suppose r is constant. For every θ ∈ [θ, θ], A maximizes
θ
∑n

i=1 u
i(xi; ri) + bv(x0) subject to (x, x0) ∈ B and x0 ≥ f0, which leads to the unique

optimal allocation α(θ). By strong monotonicity of preferences,
∑n

i=1 αi(θ) = 1 − α0(θ)
for every θ. By standard arguments, each αi(·) is a strictly increasing, continuous func-
tion of θ for i = 1, . . . , n. Let ci = maxθ∈[θ,θ] αi(θ). Clearly, 1−

∑n
i=1 ci = minθ∈[θ,θ] α0(θ).

Since f0 has to be binding for some θ, minθ∈[θ,θ] α0(θ) = f0. It is clear that if we replace
the floor f0 with the caps {ci}ni=1, A’s choices across θ’s do not change.

Part 2: Fix f0 > α∗0. Suppose r is not constant, i.e., ri < ri for some i = 1, . . . , n.
Let r = (r1, . . . , rn). It is easy to see that α∗0(θ, r) = α∗0. Therefore, f0 must be binding
in state s = (θ, r). Since α∗ is continuous in s, there exists ε > 0 such that, if |r− r| < ε,
then α∗0(θ, r) > f0 and hence the floor is still binding. When f0 binds, A’s allocation α̂−0
must maximize θ

∑n
i=1 u

i(xi; ri) subject to
∑n

i=1 xi ≤ 1−f0. So, for all r with |r− r| < ε,
we must have

ui1(α̂i(θ, r); ri) = uj1(α̂j(θ, r); rj) for all i, j.
It follows that there exists r′ with |r′ − r| < ε such that α̂−0(θ, r′) 6= α̂−0(θ, r). Since∑n

i=1 α̂i(θ, r
′) =

∑n
i=1 α̂i(θ, r) = 1 − f0, there exists i 6= j such that α̂i(θ, r′) > α̂i(θ, r)

and α̂j(θ, r′) < α̂j(θ, r). Now let S(f0) be the set of states for which α̂0(s) = f0. By the
previous argument, α̂i and α̂j cannot be constant over S(f0).

For each k = 1, . . . , n, let ĉk = maxS α̂k(s). When α̂i(s) = ĉi, we must have α̂j(s) < ĉj,
and when α̂j(s) = ĉj, we must have α̂i(s) < ĉi. Therefore,

∑n
i=1 ĉi > 1 − f0. It follows

that any collection of caps c−0 = {ci}ni=1 satisfying
∑n

i=1 ci = 1− f0 must involve ci < ĉi
for some i = 1, . . . , n. So, when A faces c−0, for some i and state s, αi(s) ≤ ci for
all states s such that A chooses xi > ci under f0. Since α̂ is continuous in s, the set
S(c−0) = {s : α̂i(s) > ci} is open and hence it has strictly positive probability under G.

A.6 Proof of Lemma 5

Without loss, let i = 1 and take any c1 ∈ (0, α∗1(s)). Consider A’s problem in state s
subject to c1:

max
{(x,x0)∈B:x1≤c1}

û(x, s) + bv(x0).

The first-order conditions of the associated Lagrangian are

bv′(α0(s)) = µ(s),

θu11(α1(s); r1) = µ(s) + λ1(s),

θui1(αi(s); ri) = µ(s) for all j 6= 0, 1,

where µ(s) ≥ 0 and λ1(s) ≥ 0 are the Lagrange multipliers for constraints
∑n

i=1 xi ≤ 1
and x1 ≤ c1.

Suppose α0(s) ≤ α∗0(s). Since α1(s) = c1 < α∗1(s) and
∑

j αj(s) =
∑

j α
∗
j (s) = 1 by

strong monotonicity of preferences, αj(s) > α∗j (s) for some j 6= 0, 1. By strict concavity
of uj and v,

θuj1(αj(s); rj) < θuj1(α
∗
j (s); rj) = bv′(α∗0(s)) ≤ bv′(α0(s)).
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This violates the first-order conditions for α(s). So we must have α0(s) > α∗0(s). This in
turn implies that for j 6= i

θuj1(αj(s); rj) = bv′(α0(s)) < bv′(α∗0(s)) = θuj1(α
∗
j (s); rj).

By concavity, we have αj(s) > α∗j (s) for j 6= 0, 1.

A.7 Proof of Proposition 3

Fix i = 1 and consider any c1 ≤ α∗1. Let αc1 describe A’s choices under cap c1. Then, let

Φ(c1) =

ˆ
S

U(αc1(s); s)dG.

Let S(c1) = {s : α∗1(s) > c1}. Note that for any c1 < α∗1, since α∗1 is continuous, S(c1) is
non-empty and open and hence has strictly positive probability under G. We have

Φ(c1)− Φ(α∗1) =

ˆ
S(c1)

[U(αc1(s); s)− U(α∗(s); s)] dG

= (1− b)
ˆ
S(c1)

[v(αc10 (s))− v(α∗0(s))] dG

+

ˆ
S(c1)

[
Ṽ (αc11 (s); s)− Ṽ (α∗1(s); s)

]
dG

where

Ṽ (ĉ1; s) = V (αĉ1(s); s) = max
{(x,x0)∈Rn+1

+ :
∑n

j=1 xj≤1,x1≤ĉ1}
{û(x; s) + bv(x0)}.

Clearly, Ṽ (α∗1(s); s) ≥ Ṽ (c1; s) for every s. From the first-order conditions of the La-
grangian defining V (αĉ1(s); s), we have λ1(s; ĉ1) = θu11(α

ĉ1
1 (s); s) − bv′(αĉ10 (s)), where

λ1(s; ĉ1) is the Lagrange multiplier on the constraint x1 ≤ ĉ1. Since αĉ1(s) is continuous
in ĉ1 as well as s, so is λ1(s; ĉ1). Relying again on Theorem 1, p. 222, of Luenberger
(1969), we conclude that Ṽ ′(ĉ1; s) exists for every ĉ1 and equals λ1(s; ĉ1). It follows
that Ṽ ′(α∗1(s); s) = 0 for every s by the definition of α∗. Therefore, by the Mean Value
Theorem,

Ṽ (αc11 (s); s)− Ṽ (α∗1(s); s) = Ṽ ′(χ(s); s)(αc11 (s)− α∗1(s)),

v(αc10 (s))− v(α∗0(s)) = v′(ξ(s))(αc10 (s)− α∗0(s)),

where χ(s) ∈ [αc11 (s), α∗1(s)] and ξ(s) ∈ [α∗0(s), α
c1
0 (s)].

Let cε1 = α∗1 − ε for some small ε > 0. Fix any s ∈ S(cε1) and, for now, suppress the
dependence on s for simplicity. Recall that

∑
i α

cε1
i =

∑
i α
∗
i = 1. Since αc

ε
1
0 > α∗0 for any

ε > 0, we can write

−α
cε1
1 − α∗1
α
cε1
0 − α∗0

= 1 +
∑
j 6=0,1

α
cε1
j − α∗j
α
cε1
0 − α∗0

.

Now, for any cε1, the following first order condition must hold for every j 6= 1:

bv′(α0)− θuj1(αj; rj) = 0.
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This defines an implicit function αj(α0) and, by the Implicit Function Theorem,

d

dα0

αj(α0) =
bv′′(α0)

θuj11(αj(α0); rj)
.

Since uj11 < 0, v′′ < 0, θ > 0, we have d
dα0
αj > 0 everywhere. Moreover, uj11 and v′′ are

continuous and we can restrict attention to α0 and αj that take values in the compact
set [α∗0, 1]× [α∗j , 1] where α∗0 > 0 and α∗j > 0. Therefore, d

dα0
αj is bounded above by some

finite kj > 0 for all s ∈ S(cε1). Hence, for any ε > 0, αc
ε
1
j − α∗j ≤ kj(α

cε1
0 − α∗0). Letting

K =
∑

j 6=0,1 kj, we then have

−α
cε1
1 − α∗1
α
cε1
0 − α∗0

≤ 1 +K ⇒ α
cε1
0 − α∗0 ≥

α∗1 − α
cε1
1

1 +K
.

Using these observations, we have that Φ(cε1)− Φ(α∗1) is bounded below by
ˆ
S(cε1)

[
1− b
1 +K

v′(ξ(s))− Ṽ ′(χ(s); s)

]
(α∗1(s)− cε1)dG. (15)

Since v′ is continuous and strictly positive everywhere and ξ(s) ∈ [α∗0, 1] with α∗0 > 0 for
all s ∈ S(cε1), there exists a finite κ > 0 such that v′(ξ(s)) ≥ κ for all s ∈ S(cε1).

Next let S(cε1) = {s : α∗1(s) ≥ cε1} which is a closed and bounded set by continuity of
α∗1 and hence is compact. As a function of cε1, the correspondence S(·) is continuous by
continuity of α∗1. Note that, if α∗1(s) = cε1, then Ṽ ′(χ(s); s) = Ṽ ′(αε1(s); s) = 0. We have

sup
s∈S(cε1)

Ṽ ′(χ(s); s) = sup
s∈S(cε1)

Ṽ ′(χ(s); s) ≤ max
cε1≤ζ≤α∗1,s∈S(cε1)

Ṽ ′(ζ; s) ≡ κ(cε1).

Clearly, κ(cε1) ≥ 0 for any ε > 0, ε′ > ε > 0 implies that κ(cε1) ≤ κ(cε
′
1 ), and limε→0 κ(cε1) =

0 because κ(·) is also continuous. Therefore, there exists ε∗ > 0 such that

κ(cε
∗

1 ) < κ
1− b
1 +K

.

It follows that for ε∗, expression (15) is strictly positive and hence Φ(cε
∗
1 ) > Φ(α∗1). This

also holds for all ε ∈ (0, ε∗).

A.8 Proof of Proposition 4

Let α̂ and α̂′ describe A’s choices across states under Cf ,c and Cf0,c−0 . Then, U(Cf0,c−0)−
U(Cf ,c) equalsˆ

S

[U(α̂′(s); s)− U(α̂(s); s)] dG =

ˆ
S

(1− b) [v(α̂′0(s))− v(α̂0(s))] dG

+

ˆ
S

[V (α̂′(s); s)− V (α̂(s); s)] dG

=

ˆ
S

(1− b) [v(α̂′0(s))− v(α̂0(s))] dG (16)
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+

ˆ
S

[
V̂ (Cf0,c−0 ; s)− V̂ (Cf ,c; s)

]
dG,

where for any (f̃ , c̃)

V̂ (Cf̃ ,c̃; s) = max
{(x,x0)∈B:f̃≤(x,c0)≤c̃}

V (x, x0; s).

Clearly, for every s, V̂ (Cf0,c−0 ; s) ≥ V̂ (Cf ,c; s). Moreover, the inequality is strict in states
in which either c0 or fi are binding for A, given the strict concavity of A’s payoff function
and convexity of the feasible set for A under both Cf0,c−0 and Cf ,c. Therefore, if any
of them binds with strictly positive probability, the second integral in (16) is strictly
positive.

Now consider the first integral, if we can show that α̂′0(s) ≥ α̂0(s) for every s, we are
done. To show this, we proceed in steps, removing one constraint from Cf ,c at a time.
Consider first removing only c0 which leads to an intermediate behavior of A described
by the function α0. If c0 is never binding for A, then it does not affect his choices and
hence α0

0(s) = α̂0(s) for every s. In any state s in which c0 is binding, removing only this
cap cannot decrease α̂0(s) because A could have decreased it when the cap was in place.
So, α0

0(s) ≥ α̂0(s) for every s. Note that, once we remove the cap on x0, for all s we must
have

∑
i xi = 1 because v is strictly increasing.

Now consider removing one floor fi for i 6= 0 at a time. Fix any state s and suppress
the dependence on it for simplicity. The Lagrangian of A’s problem after we remove only
c0 is

θ
n∑
i=1

ui(xi; ri) + bv(x0) + µ

[
1−

n∑
i=0

xi

]
+

n∑
i=1

γi[ci − xi] +
n∑
i=0

φi[xi − fi].

Hence, the first-order necessary and sufficient conditions are

θui1(α
0
i ; ri)− µ0 + φ0

i − γ0i = 0 for i = 1, . . . , n,

bv′(α0
0)− µ0 + φ0

0 = 0,

with the usual complementary-slackness conditions. Without loss, start by removing f1,
thus obtaining α1. First, if α0

0 = f0, then α1
0 ≥ α0

0. So suppose that α0
0 > f0 so that

φ0
0 = 0. If φ0

1 = 0, then removing f1 has no effect and hence again α1
0 ≥ α0

0. So suppose
that φ0

1 > 0; since c1 ≥ f1 = α0
1, it follows that γ01 = 0 without loss of generality.36 After

removing f1 only, the new conditions are

θui1(α
1
i; ri)− µ1 + φ1

i − γ1i = 0 for i = 1, . . . , n,

bv′(α1
0)− µ1 + φ1

0 = 0.

Clearly, at the resulting α1, we must have α1
1 < α0

1 because the opposite choice was
feasible for A before removing f1. Suppose α1

0 < α0
0. Then, we must have α1

j > α0
j for

some j 6= 0, 1, because
∑n

i=0 α
0
i =

∑n
i=0 α

1
i = 1, and hence uj1(α1

j ; rj) < uj1(α
0
j ; rj) by

36Recall that, by Lagrange Duality, γ01 is the result of a minimization of the Lagrangian at α0.
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strict concavity. To see that this leads to a contradiction, first observe that we must have
γ0j = 0, because if γ0j > 0, then α0

j = cj ≥ α1
j . Given this, then

bv′(α1
0) + γ1j = θuj1(α

1
j ; rj) < θuj1(α

0
j ; rj) = bv′(α0

0)− φ0
j ,

but this condition cannot hold because v′(α1
0) > v′(α0

0) for α1
0 < α0

0 by our starting
assumption. We conclude that α1

0 ≥ α0
0.

Continuing in this way, we can remove every fi for i = 2, . . . , n, obtaining at each
step that αi0 ≥ αi−10 . Since αn0 = α̂′0, by transitivity we get α̂′0 ≥ α̂0. Since this steps
assumed an arbitrary s, we have that α̂′0(s) ≥ α̂0(s) for every s as desired.

A.9 Proof of Lemma 6

Fix b ∈ (0, 1). Suppose C ′ is optimal, but x′0 < π∗0. Consider C ′′ ∈ R identical to C ′,
except that f ′′0 = π∗0. We claim that U(C ′′) > U(C ′), which contradicts the optimality of
C ′. Since C ′ is convex and compact, the ensuing allocation α′ is a continuous function of
s. Hence, the set S(π∗0) = {s ∈ S : α′0(s) < π∗0} contains an open subset and hence has
strictly positive probability under G.

Consider any s ∈ S(π∗0). Suppose P faces the following problem:

max{û(x; s) + v(x0)}

subject to (x, x0) ∈ Rn+1
+ , xi ≤ c′i, and x0 ≤ f0. For any f0 < π∗0, the latter constraint

must bind for P because, by the same logic of Lemma 5, P would choose π0(s) ≥ π∗0(s) ≥
π∗0 if facing only the constraints xi ≤ c′i for i = 1, . . . , n. Therefore, P ’s payoff from this
fictitious problem is strictly increasing in f0 for f0 ≤ π∗0. When A faces C ′′, the constraint
x0 ≥ π∗0 must bind. Hence, his allocation α′′(s) = (α′′−0(s), π

∗
0) solves max û(x; s) subject

to x ∈ Rn
+, xi ≤ c′i, and

∑n
i=1 xi ≤ 1− π∗0. This allocation coincides with P ’s allocation

under the fictitious problem with f0 = π∗0. Hence, in s, α′′(s) is strictly better for P than
α′(s).

We conclude that, for all s ∈ S(π∗0), P ’s payoff is strictly larger under C ′′ than under
C ′. Since for s /∈ S(π∗0) A’s allocation is unchanged, we must have U(C ′′) > U(C ′).

A.10 Proof of Proposition 5

Part (1): By Proposition 2, f 0(b) = maxF (b) decreases monotonically to π∗0 when
b ↑ 1. Also, for every i = 1, . . . , n, we have that α∗0(θ, ri, r−i; b) increases monotonically
to π∗0(θ, ri, r−i) as b ↑ 1. By Lemma 7, π∗0(θ, ri, r−i) > π∗0. Given this, define

b∗ = inf{b ∈ (0, 1) : f 0(b) < max
i
α∗0(θ, ri, r−i; b)}.

Clearly, b∗ < 1 and for every b > b∗ we have α∗0(θ, ri, r−i; b) > f 0(b) for at least some
i = 1, . . . , n. Hereafter, fix b > b∗ and any i that satisfies this last condition.

For ε ≥ 0, consider cεi = α∗i − ε as in Proposition 3 where α∗i = α∗i (θ, ri, r−i) by
Lemma 7. Let Φ(cεi , f 0) be P ’s expected payoff from adding cεi to the existing optimal
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floor f 0. We will show that there exists ε > 0 such that Φ(cεi , f 0) > Φ(c0i , f 0) where
Φ(c0i , f 0) = Ψ(f 0) in Section (4.1). To do so, for any ε ≥ 0, let αε be A’s allocation
function under (cεi , f 0) and S(cεi ) = {s ∈ S : α0

i (s) > cεi}. Then,

Φ(cεi , f 0)− Φ(c0i , f 0) =

ˆ
S(cεi )

[
U(αε(s); s)− U(α0(s); s)

]
dG.

Note that, if there exists ε > 0 such that for all 0 < ε < ε we have α0(s) = α∗(s) for
all s ∈ S(cεi ), then for such ε’s the previous difference equals Φ(cεi )− Φ(α∗i ) in the proof
of Proposition 3. The conclusion of that proof then implies that there exists ε∗∗ ∈ (0, ε)
such that Φ(cε

∗∗
i , f 0) > Φ(c0i , f 0).

Thus we only need to prove the existence of ε. Let S(f 0) = {s ∈ S : α∗0(s) ≤ f 0},
which is compact by continuity of α∗. Define α̃i = maxS(f0) α

0
i (s) which is well defined by

continuity of α0. Since α∗0(θ, ri, r−i) > f 0, it follows that (θ, ri, r−i) /∈ S(f 0) and hence
α0
i (θ, ri, r−i) = α∗i (θ, ri, r−i) where α∗i (θ, ri, r−i) = α∗i by Lemma 7. We must also have
α̃i < α∗i : for all s ∈ S(f 0), optimality requires

θui1(αi(s); ri) = v′(f 0) + λ0(s) > v′(α∗0(θ, ri, r−i)) = θui1(α
∗
i ; ri),

where λ0(s) ≥ 0 is the Lagrange multiplier for constraint x0 ≥ f 0. If s ∈ S is such
that α0

i (s) > α̃i, then s /∈ S(f 0)—otherwise it would contradict the definition of α̃i—and
therefore α0(s) = α∗(s). Now define ε = α∗i − α̃i > 0. By construction for any ε ∈ (0, ε),
α0
i (s) > cεi implies that α0(s) = α∗(s), as desired.
Part (2): We first show that there exists b∗∗ > 0 such that, if b < b∗∗, then for

any C ∈ R with x0 ≥ π∗0 the resulting α satisfies α0(s) = x0 for all s ∈ S. It is
enough to show that α0(s) = α0 = maxS α0(s) must equal x0. By strict concavity of v,
v′(α0) ≤ v′(π∗0) < +∞ because π∗0 > 0. By considering the Lagrangian of A’s problem in
state s (see Proposition 4’s proof), we have that α(s) must satisfy

bv′(α0(s)) + φ0(s) + γi(s) = θui1(αi(s); ri) for all i = 1, . . . , n,

where φ0(s) ≥ 0 and γi(s) ≥ 0 are the Lagrange multipliers for constraints x0 ≥ f0
and xi ≤ ci. For every i = 1, . . . , n, since αi(s) ≤ 1 and ui(·; ri) is strictly concave,
ui1(αi(s); ri) ≥ ui1(1; ri) > 0. Now let

b∗∗ = min
i

θui1(1; ri)

v′(π∗0)
> 0. (17)

Then, for any b < b∗∗, we have bv′(α0(s)) < θui1(αi(s); ri) for all i = 1, . . . , n. Therefore,
φ0(s)+γi(s) > 0 for all i = 1, . . . , n. Hence, either φ0(s) > 0, in which case α0 = f0 = x0;
or γi(s) > 0 for all i = 1, . . . , n, in which case α0 = 1−

∑n
i=1 αi(s) = 1−

∑n
i=1 ci = x0.

Finally, let b < b∗ = min{b, b∗∗} where b > 0 was defined in Proposition 2. Let Cb ∈ R
be an optimal policy for b. By Proposition 6, xb0 ≥ π∗0. The previous result then implies
that

U(Cb) = v(xb0) +

ˆ
S

û(α−0(s); s)dG.

Hence,

U(Cb) ≤ v(xb0) +

ˆ
S

û(xx
b
0(s); s)dG ≤ v(f 0) +

ˆ
S

û(xf0(s); s)dG = U(Cf0),
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where the first inequality follows since û(α−0(s); s) ≤ max{x∈Rn
+:

∑n
i=1 xi≤xb0} û(x; s) =

û(xx
b
0(s); s) for all s ∈ S and from the definition of f 0 in Proposition 4.1. It is immediate

to see that if Cb involves caps that bind for a set of states S ′ whose probability is strictly
positive, then û(α−0(s); s) < û(xx

b
0(s); s) for all s ∈ S ′, and hence U(Cb) < U(Cf0).

Therefore, optimal policies can only involve a private-consumption floor.
Finally, let r′, r, r′, and r satisfy the properties in the statement of Proposition 5.

The corresponding states s′, s, s′, and s satisfy the same properties. It follows that
π∗′0 = π∗0(s′) ≥ π∗0(s) = π∗0 with strict inequality if s 6= s′ (Lemma 7). Similarly, for each
b ∈ (0, 1), α∗′0 (b) = α∗0(s

′; b) ≤ α∗0(s; b) = α∗0(b) again with strict inequality if s′ 6= s. Using
the definition of b∗∗ in (17), the strict concavity of the function v, and that r′i ≥ ri, we
have that b′∗∗ > b∗∗. Using the definition of b in the proof of Proposition 2 and that α∗0 is
strictly increasing in b, we have that b′ > b. Therefore b′∗ > b∗.

A.11 Proof of Lemma 8

Recall the definition of U(C) and α(θ|C) in (4) and (5). There exists C ⊂ B such that
U(C) ≥ U(C ′) for all C ′ ⊂ B if and only if there exist functions χ : [θ, θ] → Rn

+ and
t : [θ, θ]→ R+ that satisfy two conditions:
(1) for all θ, θ′ ∈ [θ, θ]

θû(χ(θ)) + bv(t(θ)) ≥ θû(χ(θ′)) + bv(t(θ′))

and n∑
i=1

χi(θ) + t(θ) ≤ 1;

(2) the pair (χ, t) maximizes
ˆ θ

θ

[θû(χ(θ)) + v(t(θ))] g(θ)dθ.

On the other hand, there exists Cas ⊂ Bas such that U(Cas) ≥ U(Ĉas) for all Ĉas ⊂ Bas

if and only if there exist functions ϕ : [θ, θ] → R+ and τ : [θ, θ] → R+ that satisfy two
conditions:
(1’) for all θ, θ′ ∈ [θ, θ]

θu∗(ϕ(θ)) + bv(τ(θ)) ≥ θu∗(ϕ(θ′)) + bv(τ(θ′)),

where u∗(y) = max{x′:∈Rn
+

∑n
i=1 x

′
i≤y} û(x′), and

ϕ(θ) + τ(θ) ≤ 1;

(2’) the pair (ϕ, τ) maximizes
ˆ θ

θ

[θu∗(ϕ(θ)) + v(τ(θ))] g(θ)dθ.

Suppose (χ, t) that satisfies condition (1) and (2). Then, by our discussion on money
burning before the statement of Lemma 8, there exists a function ϕ : [θ, θ] → R+ such
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that u∗(ϕ(θ)) = û(χ(θ)) and ϕ(θ) ≤
∑n

i=1 χi(θ) for all θ ∈ [θ, θ]. Hence, letting τ ≡ t,
we have that (ϕ, τ) satisfy both (1’) and (2’).

Suppose (ϕ, τ) satisfy conditions (1’) and (2’). For every θ ∈ [θ, θ], let χ(θ) =
arg max{x∈Rn

+:
∑n

i=1 xi≤ϕ(θ)} û(x). Then, by definition, û(χ(θ)) = u∗(ϕ(θ)) for all θ ∈ [θ, θ].
Letting t ≡ τ , we have that (χ, t) satisfy both (1) and (2).

A.12 Proof of Proposition 7

Let Cas ⊂ Bas satisfy the premise of Proposition 7. Then, as noted in the proof of Lemma
8, we can describe A’s allocation from Cas with the functions (ϕ, τ) that satisfy condition
(1’) and such that 0 < ϕ(θ) < 1− τ(θ) for all θ ∈ Θ and

U(Cas) =

ˆ θ

θ

[θu∗(ϕ(θ)) + v(τ(θ))] g(θ)dθ.

Now, since û is continuous and Ey = {x ∈ Rn
+ :

∑n
i=1 xi = y} is connected, û(Ey) =

[u∗(y), u∗(y)]. Since û is strictly concave, u∗(y) < u∗(y) for all y > 0. Since û is strictly
increasing, so are u∗ and u∗. Clearly, u∗ is continuous.

These properties imply that, for every θ ∈ Θ, there exists y(θ) ∈ (ϕ(θ), 1− τ(θ)] and
x(θ) ∈ Ey(θ) such that û(x(θ)) = u∗(ϕ(θ)). So, for every θ ∈ [θ, θ], define t(θ) = τ(θ) and

χ(θ) =

{
x(θ) if θ ∈ Θ

arg max{x∈Rn
+:

∑n
i=1 xi≤ϕ(θ)} û(x) if θ /∈ Θ

.

Then, by construction the pair (χ, t) satisfy conditions (1) and (2) in the proof of Lemma
8. Now, let C ′ = {(x, x0) ∈ Rn

+ : (x, x0) = (χ(θ), t(θ)), for some θ ∈ [θ, θ]}. We have
C ′ ⊂ B, U(C ′) = U(Cas), and A’s allocation satisfies α′−0(θ) = χ(θ) and α′0(θ) = τ(θ) for
all θ ∈ [θ, θ]. By construction, α′ satisfies the stated relationship with α.

The last part is immediate because we can choose y(θ) = 1− τ(θ) for all θ ∈ Θ in the
previous construction.
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